Solstice™ CMIP 8.2
Programmer’s Guide

¥ SunSoft

A Sun Microsystems, Inc. Business
2550 Garcia Avenue

Mountain View, CA 94043
U.S.A.

Part No.: 802-5281-10
Revision A, April 1996

&E
Please
Recycle

00 1996 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., awholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Solstice, Solstice Enterprise Manager, Solaris, SunOS, OpenWindows, DeskSet, ONC,
ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and certain other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe
Systems, Inc. OSILOGIE and OSIAM_C are trademarks of Marben Produit.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCware, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED *“AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Preface. XV
1. Introduction to OSI Systems Management
OVEIVIBW. . ot
Managed Systems
Managed Objects
Attributes
Operations
Behavior
Notifications.
Packages and Conditional Packages
Classes and Inheritance.
ISO Registration Tree.t

Object Containment Hierarchy.

© © o o o g ga ~A BN WN P R

Object Naming i i e

Management Information Tree (MIT) 10

SCOPING . .ot 11

Filtering. 12
LinkedReplies i, 13
Chapter SUMmary e 13
Software Architecture Overview 15
Overview of the Software Architecture. 15
XMP SErVICeSot 18
Management Communication Services (MCS). 18
User Context. 19
Association Context. 19
MCS Communicationtothe User 19
Common Management Information Service (CMIS)......... 20
Chapter Summary i i 20
Object Management (OM). 21
OVEIVIBW. . . i 21
C Naming Conventions. 23
Package 25
Object Attributes 26
Class ... 26
XOM Representation of ASN.L. 27
Public and Private Objects 28
PublicObjects. 28
Client-Generated Public Object 28
Service-Generated Public Object 30

Solstice CMIP Programmer’s Guide—April 1996

Private Objects 31

Import/Export of Object Identifiers 34
XOM Function Interface 35
Storage Management. 36
WOIKSPACES . . . ot 37
Chapter SUMmaAry 37
4. Systems ManagementProtocol.......................... 39
OVEIVIEW. . .o 39
The Managerand Agent. 40

C Naming Conventionoiuirinnn.... 42
CMIS SerVviCeS. . ..t e 44
FunctionCalls. 45
Function Sequencing, 49
Implementation Specific Enhancements................... 50
mp_negotiate() Function.......................... 50
mp_wait() Function 51
proprietary-Args Attribute of Session Object........ 51
AETItleS 52
Chapter Summary i i 52
5. XMP DevelopmentConceptsoiviin... 55
OVEIVIBW. . o o e 55
Initial Declaration 55
Connection Management 56
Responder Versatility 56

Contents \Y;

Vi

Loopback Facility. 56

Synchronous and Asynchronous Operations. 58
SYNCAIONOUS. e 58
ASYNCArONOUSo 58

AccessControl ... 59

Error Codes. 59
Unbind/Shutdown Errors 59

Asynchronous Mode Errors 60

SessioN ObjectS. 60

Default Session Object Attributes 61

Context Objects ... e 62
Default Context Object Attributes. 63
Restrictions. 64

Managing Multiple Event Types 64

Packageso i 65
Common Management Service Package................ 65
CMIS Management Service Package................... 65

Chapter Summary 65

6. AAAressing............iiiiii e 67

Remote Addressing i 67
Specialized Session 67
Specialized Context............ 68

Local Addressingt e 68

Chapter Summary 70

Solstice CMIP Programmer’s Guide—April 1996

7. Compiling and Linking Application Programs............ 71

Library Contents 71
Include File Structure 72
Compileand Link Procedure 72
Example Makefile 73
Running the Example Programs 74
Example 1. 74
Compilingand Linking. 75
Running Example1 75
Example 2. 79
Compilingand Linking......................... 80
Running Example 2, 80
EXxample 3. ... 82
Compilingand Linking......................... 82
Running Example 3 83

A. Enhancements to Draft 7 Preliminary Specification........ 85
ErrorHandling. 85
Draft 7 Preliminary Specification. 86
CAE Specification 86
OM Class Definitions. e 87
Automated Connection Management..................... 88
Draft 7 Preliminary Specification. 88
CAE Specification 88
Session Argument with ACM Disabled 89

Contents Vii

viii

Draft 7 Preliminary Specification. 89

CAE Specification i, 89
Synchronous Operation With ACM Disabled. 89
Asynchronous Operation With ACM Disabled 90

Compliance Information and Product Limitations......... 91
Compliance Information. 91
Product Limitations. i 92

General 92

SECUNLY . .o 92

Session Object Attributes 93

Maximum Number of Sessions 93

Context Object Attributes. 93

Interface Objects. i 93

Using Loopback Mode 94

mp_validate _object() Function................... 94

mp_assoc_rsp() Function.......................... 95

mp_release_rsp() Function 95

mp_get_assoc_info() Function.................... 95

Solstice CMIP Programmer’s Guide—April 1996

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 6-1

Hierarchical Organization of Managers and Agents..

Managed Systems .

ISO Registration Tree ...,

Containment Hierarchy and Object Naming

Management Information Tree (MIT)

Scoping Algorithms

Global Architecture

OVEIVIEW. . .ot

Conceptual Model of Object Management (XOM)..........

Manager/Agent Interaction.

CMIS Interaction . .

XMP Sequencing State Diagram

Loopback through osimesd

Loopback through TransportLayer

Addressing Scheme

10
11
12
17
22
41
42
48
57
57
69

Solstice CMIP Programmer’s Guide—April 1996

Tables

Table P-1 TypographicConventionscovvvuan.. Xvii
Table P-2 Shell Prompts. o Xviii
Table 3-1 Derivation of C Identifiers.............. 24
Table 3-2 Attributes of CMIS-Get-Result Object 26
Table 3-3 Attributes of CMIS-Get-Result Object 27
Table 4-1 C Naming Conventionsoouiiiininennnnenn. 42
Table 4-2 CMIS SEIVICES. . . .ttt 44
Table 4-3 XMP FUNCLIONS. . .. oo 46
Table 5-1 Session Object Attributes 61
Table 5-2 Context Object Attributes. 63

Xi

xii

Solstice CMIP Programmer’s Guide—April 1996

Code Samples

Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 3-4
Code Example 3-5
Code Example 3-6
Code Example 3-7
Code Example 3-8

address.h
extract.c
objtool.c

put_desc()

Segment
Segment

Segment

FunctionSegment..................

ENDOBMacro Definition

imports.h
exports.c

imports.h

Segment
Segment

Segment

29
30
31
32
33
34
34
35

xiii

Xiv Solstice CMIP Programmer’s Guide—April 1996

Preface

This manual provides an introduction to the object management and
management protocols defined in the X/Open™ document set. Properties of
the Common Management Information Service (CMIS) interface are covered.
Code segments are provided to facilitate implementation of management
applications on top of the standard XMP interface. Information on the compile
and linking procedure is also included.

This manual is part of the document set for Solstice™ CMIP SDE. The other
documents contained in this set are:

® Solstice CMIP 8.2 Administrator’s Guide
® Solstice XOM Programming Reference
® Solstice XMP Programming Reference

Who Should Use This Book

This document is written for programmers with a working knowledge of CMIS
principles and concepts.

Reference documentation from X/Open Company Ltd. is included with this
release and is referenced frequently throughout this document.

XV

How This Book Is Organized

Xvi

The Solstice CMIP Programmer’s Guide is organized as follows:

Chapter 1, “Introduction to OSI Systems Management,” introduces the
object-oriented terminology used throughout this manual and describes the
concepts on which the Solstice CMIP is based.

Chapter 2, “Software Architecture Overview,” covers the software
architecture of the XMP/XOM structure.

Chapter 3, “Object Management (OM),” covers the object XOM management
application programming interface implementation.

Chapter 4, “Systems Management Protocol,” explains the facilities used to
develop applications using the XMP development environment.

Chapter 5, “XMP Development Concepts,” covers the procedures for building
XMP applications.

Chapter 6, “Addressing,” describes the local and addressing structuring.

Chapter 7, “Compiling and Linking Application Programs,” discusses the
library structure and Makefile process.

Appendix A, “Enhancements to Draft 7 Preliminary Specification,” describes
the primary enhancements to the XMP interface introduced since Draft 7 of the
preliminary specification and describes how to modify applications that
conform to Draft 7 so that they can be compiled and linked using Solstice
CMIP SDE.

Appendix B, “Compliance Information and Product Limitations,” describes
the related product compliance information.

“Glossary,” contains all of the terms used in object-oriented programming and
the XOM/XMP interface APl environment.

Solstice CMIP Programmer’s Guide—April 1996

Related Books

The following reference documents are helpful in understanding OSI

principles:

® Computer Networks (Second Edition) by Andrew S. Tanenbaum (Prentice-Hall
International Editions, 1988)

® OSI A Model for Computer Communications Standards by Uyless Black
(Prentice-Hall, 1991)

® Network Management Standards (The OSI, SNMP and CMOL Protocols) by
Uyless Black (McGraw-Hill on Computer Communications, 1992)

® SNMP, SNMPV2, and CMIP: The Practical Guide to Network-Management
Standards by William Stallings (Addison-Wesley, 1993)

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

Table P-1

Typographic Conventions

Typeface or
Symbol

Meaning

Example

AaBbCc123

AaBbCc123

AaBbCc123

AaBbCc123

The names of commands,
files, and directories;
on-screen computer output

What you type, contrasted
with on-screen computer
output

Command-line placeholder:

replace with a real name or
value

Book titles, new words or
terms, or words to be
emphasized

Edit your .login file.
Usels -a to list all files.
machine_name% You have mail.

machine_name% su
Password:

To delete a file, type rm filename.

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Preface

Xvii

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-2 Shell Prompts

Shell Prompt
C shell prompt machine_name%
C shell superuser prompt machine_name#

Bourne shell and Korn shell $
prompt

Bourne shell and Korn shell #
superuser prompt

Xviii Solstice CMIP Programmer’s Guide—April 1996

Overview

Introduction to OSI Systems
Management

1]

This chapter provides an introduction to the Open Systems Interconnection
(OSI) systems management model. It introduces the object-oriented
terminology used throughout this manual and describes the concepts on which
Solstice CMIP is based.

Overview page 1
Managed Systems page 2
Managed Objects page 3
Classes and Inheritance page 5
Object Containment Hierarchy page 9
Chapter Summary page 13

OSI systems management refers to a set of standards that defines object-oriented
network management in the OSI domain. It includes specifications for a
management service (CMIS), a management protocol (CMIP), a hierarchical
information database (MIT), and the data objects it contains.

OSI systems management is based on the hierarchical exchange of
management information between two entities—a manager and an agent. The
manager issues management directives and receives status reports; the agent

Il
[EEN

Managed Systems

responds to directives and issues status reports. The manager of a lower-level
system may simultaneously act as the agent of a higher-level system as shown
in Figure 1-1.

Higher-Level Manager

—— |

Lower-Level Manager Lower-Level Manager Lower-Level Manager
Agent Agent Agent Agent Agent

Figure 1-1 Hierarchical Organization of Managers and Agents

A managed system consists of one or more agent processes controlled by a
managing system as shown in Figure 1-2 on page 3. Each agent in a managed
system is responsible for carrying out management directives to control or
return information from system resources. There may be several managed
systems in a network.

Communication between managers and a managed system uses CMIP;
communication between agents and managed resources is based on a device-
dependent protocol. The implementation of a device-dependent protocol is
called an access method.

Solstice CMIP Programmer’s Guide—April 1996

[EEN
i

Managed system Managing system

X.25
o Ethernet
Resource Agent Application TCP/IP
osl Manager
Application
- | -
Device-dependent Common Management Information Protocol
access methods (CMIP)

Figure 1-2 Managed Systems

Managed Objects

A managed object is a software abstraction of a resource that can be managed
across an OSI network. Managed objects can be defined for hardware (such as
workstations, servers, printers, switches, multiplexers, and private branch
exchanges) or software (such as queuing programs, routing algorithms, and
buffer management routines).

A managed object is an encapsulation of the data associated with a resource,
combined with device-dependent software procedures (called object methods),
which implement the operations that can be performed on the data. The
modular form of a managed object allows new objects to be defined and old
objects to be deleted as required.

A managed object is fully defined by:

® Its attributes

® The management operations that can be performed on it

® Its behavior in response to a requested management operation

® The notifications it generates

Introduction to OSI Systems Management 3

Attributes

Operations

® The conditional packages it may include

® |ts position in the information hierarchy

The data elements that are encapsulated in a managed object are called
attributes. Each attribute corresponds to one of the characteristics of the system
resource that the managed object represents. An attribute has a name, a type,
and one or more values that reflect the current status of the associated resource.

For example, the managed object defined for a packet switch could have an
attribute that describes the operational state of the switch. The attribute named
operational state could be of type integer , and the valid values could
be disabled (0), enabled (1), inactive (2), or busy (3).

Attributes can be read to recover information about the associated resource or
modified to alter the current state of the associated resource.

The following management operations are defined by CMIS service primitives:
® CREATE- Creates a new managed object

® DELETE- Deletes a managed object

® GET- Obtains attribute values from the managed object

® SET- Modifies attribute values for a managed object

® ACTION- Performs an operation on a managed object

* EVENT-REPORT Sends an event report

® CANCEL-GET- Cancels outstanding GETrequest

The operations that can be performed on a managed object must form part of
its definition, which may also include the effect that these operations have on
related system resources. Note that the current state of a managed object may
determine the type of operations that can be performed on it at a given time.

The DELETE GET SET, and ACTION operations can be performed on multiple
objects.

Solstice CMIP Programmer’s Guide—April 1996

[EEN
i

Behavior

A managed object reacts to both internal and external events. Internal events
are associated with the managed resource or the object itself—for example, a
watchdog timer timing out. External events occur in response to a request
issued by a managing process in the form of CMIP messages.

The behavior of a managed object describes its response to these events and
the constraints placed upon it. This response is determined by the object
methods associated with the object, the current state of the object, the
dependencies between values of particular attributes, and the classification of
the object within the managed system.

Notifications

A managed object issues status reports, called notifications, in response to
internal and external events. Notifications may be transmitted to a managing
process in the form of CMIP messages or logged internally. The type of
notifications issued by a managed object and the conditions under which
notifications are issued form part of its definition.

Packages and Conditional Packages

A package is an indivisible set of specifications—for example, attributes, actions
and notifications. A conditional package is a set of specifications that are
optionally all present or all absent in a managed object. The conditions under
which a package is present are dependent on the characteristics of the resource
being managed.

Classes and Inheritance

Managed objects that exhibit similar characteristics are grouped into object
classes. Each managed object is therefore a specific instance of a class, and its
properties are consistent for all other object instances of that class. However,
the attributes of different class instances may possess different values.

Introduction to OSI Systems Management 5

The concept of object classes is similar to that of a template. An object class is
defined once and reused thereafter for all objects of the same class. In addition,
new classes can be defined in terms of existing classes. The new class is
referred to as a subclass of the class from which it is derived and may in turn
have subclasses of its own.

A subclass inherits some of its characteristics from the class from which it is
derived (also called its superclass). However, its characteristics can be extended
in one or more of the following ways:

®* Adding new attributes or modifying the properties of existing attributes

® Adding new operations or modifying the arguments or restrictions
associated with existing operations

®* Adding new notifications or modifying the arguments or restrictions
associated with existing notifications

The OSI systems management model does not allow a subclass to be derived
by the deletion of any of the characteristics of the superclass.

The ultimate superclass is the top object class, from which all other object classes
are derived. This object is specified by the OSI systems management model in
ITU-T X.720/1SO-10165-1 Management Information Model and contains
definitions for the attributes that are common to all object classes.

For example, the object class attribute, which is contained in every object
instance, is defined in the top object class.

ISO Registration Tree

Obiject classes are identified by registered object identifiers. The ISO
registration tree is a hierarchy of officially recognized object identifiers for
object classes, attribute definitions, actions, notifications, and packages. Each
object identifier is a sequence of integers that points to its location in the tree.

The part of the I1SO registration tree which relates to OSI systems management
is shown in Figure 1-3 on page 8. The key nodes are:

Solstice CMIP Programmer’s Guide—April 1996

[EEN
i

® joint-iso-ccitt
Allocated to all identifier values specified by joint agreement between ISO
and ITU (formerly CCITT).

®* ms(management specification)
Allocated to all identifier values specified by the OSI systems management
standards.

® smo (systems management overview)
Allocated to all identifiers specified by ITU-T X.701/1SO-10040 System
Management Overview.

® cmip (common management information protocol)
Allocated to all identifiers specified by ITU-T X.711/1S0O-9596-1 Common
Management Information Protocol Specification.

®* smf (system management functions)
Allocated to all identifiers specified by ITU-T X.730/1SO-10164-1 Object
Management Function.

® smi (structure of management information)
Allocated to all identifiers specified by ITU-T X.720/1SO-10165-1
Management Information Model.

The object identifier (OID) for the CMIP (versionl) protocol is therefore:
29.1.13

Introduction to OSI Systems Management 7

root

]

:
—| 2 | joint-iso-ccitt

| [
-Ile] 2]
o
[%)]
IB
. o

O
3
©

[EEN

XXXXX

versionl

0 | XXXX |
1 | aAssociateUserInfo |
2 | aAbortUserInfo |
3 | protocol |
4 | abstractSyntax |

function

smi

D iRammm—

H

Figure 1-3 ISO Registration Tree

Solstice CMIP Programmer’s Guide—April 1996

[EEN
i

Object Containment Hierarchy

In the OSI systems management model an object can include (or contain)
another. A containing object may, in turn, be contained in another object. A
superior object can contain more than one object, but a contained object can
only be contained in one superior object at a time. This last restriction forces a
tree structure on the containment hierarchy.

Object Naming

The naming scheme for managed objects is dependent on the containment
hierarchy. Each managed object class includes a naming attribute. The naming
attribute is chosen to ensure its value is unique for each managed object
instance amongst objects that are subordinate to the same superior. The
naming attribute and its value provide the relative distinguished name (RDN) of
an object instance. The RDN is expressed in an attribute value assertion (AVA) as
namingAttribute = "value". For example, if the naming attribute of an object class
is RouterName and its value for an instance is A, the RDN of the instance is
RouterName="A"

The name binding is the rule that provides the distinguished name (DN) of an
object instance. The DN of an object instance represents its unique location in
the containment hierarchy. It is a concatenation of the sequence of RDNSs from
the root of the containment hierarchy to the object. For example, consider a
port contained in a card, which is in turn contained in a router. The RDNs of
the objects are:

®* RouterName="RouterA" (for the router)
® CardName="Card0" (for the card)
® Portld="Port2" (for the port)

The DN of the port is
RouterName="RouterA",CardName="Card0",Portld="Port2" . This is
shown in Figure 1-4 on page 10.

Introduction to OSI Systems Management 9

Il
[EEN

Router A
RDN is RouterName="RouterA"

Router A contains Card 0
Card 0

RDN is CardName="Card0"

Card 0 contains Ports 1& 2
Port 1 Port 2

RDN is Portld="Port1" RDN is Portld="Port2"

DN is RouterName="RouterA",CardName="Card0",Portld="Port2"

Figure 1-4 Containment Hierarchy and Object Naming

Management Information Tree (MIT)

The management information tree (MIT) is a computational representation of
the object containment hierarchy. Such a representation allows an agent
application to locate or create data associated with an object identified by its
DN. The system object contains definitions for the attributes that are common to
all objects in the managed system. Each node represents an object entry that is
contained in the superior object, and each object entry contains the data
associated with a managed resource in the form of attributes, as shown in
Figure 1-5 on page 11.

10 Solstice CMIP Programmer’s Guide—April 1996

Scoping

< System Object)

Object Entry

Object Entry

Object Entry

Object Entry

Object Entry

Object Entry

Object Entry

Attribute

Attribute

Attribute

Name

Type

Value

Value

Figure 1-5 Management Information Tree (MIT)

The term scoping is used to describe the way in which one or more objects in

the MIT are selected to be the subject of a management operation. Scoping

defines a subtree within the containment hierarchy.

Scoping is defined with reference to the base managed object, which is the root
object for the scoped subtree. The scope of the subtree can include any one of

the following:

Introduction to OSI Systems Management

11

12

Filtering

The base managed object only

The nth-level subordinates of the base managed object

® The base managed object and all its subordinates to the nth-level

The base managed object and all its subordinates

These four scoping algorithms are illustrated in Figure 1-6.

Base managed object Base managed object
1st-level 1st-level
2nd-level 2nd-level
(% nth-level ﬁ nth-level

Base managed object only nth-level subordinates only

Base managed object Base managed object
1st-level 1st-level
2nd-level 2nd-level
ﬁ nth-level % nth-level

Base managed object and Base managed object
subordinates to nth-level and all subordinates

Figure 1-6 Scoping Algorithms

Filtering is used to select or reject scoped objects based on the presence, values,
or order of specific attributes. The filter is a Boolean expression, which may be
a single test or a combination of multiple tests.

Solstice CMIP Programmer’s Guide—April 1996

[EEN
i

Filters are specified in the request received from the managing process and are
applied as follows:

1. Scoping is used to select the objects to which the filter is to be applied.
2. The filter is applied to the attributes of each scoped object.

3. A subset of scoped objects is identified.

Linked Replies

Chapter Summary

When a management operation is applied to multiple objects, one response is
returned for each object selected in the request received from the managing
process. These responses are called linked replies because they refer to the same
request.

OSI systems management is based on the hierarchical exchange of
management information between managers and an agents. Communication
between managers and agents uses the common management information
protocol (CMIP).

A managed object is a software abstraction of a resource that can be managed
across an OSI network. It is an encapsulation of the data associated with a
resource, combined with device-dependent software procedures.

Managed objects that exhibit similar characteristics are grouped into object
classes. Each managed object is therefore a specific instance of a class, and its
properties are consistent for all other object instances of that class.

In the OSI systems management model, managed objects are organized in a
containment hierarchy, which has a tree structure. The naming scheme for
managed objects is dependent on the containment hierarchy. The distinguished
name (DN) of an object instance represents its unique location in the
containment hierarchy.

The management information tree (MIT) is a computational representation of
the object containment hierarchy. Such a representation allows an agent
application to locate or create data associated with an object identified by its
DN.

Introduction to OSI Systems Management 13

14

Solstice CMIP Programmer’s Guide—April 1996

Software Architecture Overview 2

This chapter describes the software architecture for the management protocol.
Flow diagrams are used to facilitate an understanding of the unique
terminology that is part of this development environment.

Overview of the Software Architecture page 15
XMP Services page 18
Management Communication Services (MCS) page 18
Common Management Information Service (CMIS) page 20
Chapter Summary page 20

Overview of the Software Architecture

The software contains the following modules:

* An XMP/XOM library that contains the implementation of the X/Open
XMP API.

® The Management Communication Service (MCS) is the entity that provides
connectionless access to the CMIS service.

® The Common Management Information Service (CMIS) is the entity that
provides the services and protocols specified in ISO-IS 9595/9596.

® The transport provider, which provides access to the peer-to-peer
communication.

15

16

As a performance enhancement, the MCS and CMIS entities are merged into a
single process called “osimcsd ™. This process resides in user space and
provides the communication mechanism between the XMP library and the
communication platform. This process is transparent to the XMP developer.
The communication mechanism (XMP library to osimcsd) is based on
InterProcess Communication (IPC). IPC messaging allows processes to send
and receive messages, and to queue messages for processing in an arbitrary
order. Unlike the file byte-stream model of data flow used for pipes, each IPC
message has an explicit length.

Figure 2-1 shows a diagram of three components: user process, osimcsd
process, and the transport provider. There is a clear division between the user
process (XMP library) and the Communication Management Information
Service (CMIS) provider.

Solstice CMIP Programmer’s Guide—April 1996

User Process

Network Management Application

XMP/XOM API

osimcsd Process

MCS

CMIS

User Space

Kernel Space

Communication Platform

Transport Provider

Figure 2-1

Global Architecture Overview

Software Architecture Overview

17

2

XMP Services

The XMP API is designed to provide access to both CMIP and the Simple
Network Management Protocol (SNMP).

Note — This release of the management protocol development environment
does not provide support for SNMP.

XMP is implemented on top of the MCS entity, as shown in Figure 2-1.
Additional programming information on XMP is provided in the following
chapters.

Note, you can control association allocation through the XMP interface or
allow the MCS to handle associations automatically.

Management Communication Services (MCS)

18

The MCS offers network management applications an easy way to use the
CMIS. As shown in Figure 2-1 on page 17, the MCS module is part of the
osimcsd process.

The primary function of the MCS is to provide connectionless CMIS service by
handling association management. When you use the MCS services, an
association does not have to be established prior to issuing an operation. Prior
to sending the operation, the MCS will handle the management of an
association. If an association is presently open to a remote application, the
MCS will use it to issue the requested operation. You can choose to bypass the
MCS’s association management control and use the XMP interface instead of
opening and closing associations.

If no association is open, the MCS will open the association before issuing the
requested operation. Once the operation is completed, the MCS will release the
association after a specified inactivity time. This inactivity time can be
configured, see Solstice CMIP 8.2 Administrator’s Guide.

The MCS entity handles the management associations. This implies that
responding to incoming requests does not require the OSI address of the
requestor. The invoke identifier associated with the operation allows the XMP
library and the osimcsd process to correlate indications and responses.

Solstice CMIP Programmer’s Guide—April 1996

2

Part of the MCS communication mechanism is User Context, Association Context,
and MCS Communication to the User. These three items are explained in the
following subsections.

User Context

The user context contains information that is related to a user’s registration
with the MCS: user capabilities, user role, default address, and default time-out
values.

A user context is freed whenever any of the following occurs:

® Registration is cancelled.
® Errors are encountered.
®* Administrative commands are received.

Association Context

An association context contains all information related to a CMISE association
such as, function negotiation units, application context, and remote address.
During the initialization process, the association context is established. An
association context cannot be shared by several MCS users.

The termination of an association and the release of the association context
occurs when the association is:

® Refused
®* Abnormally released (an Abort Indication is received from CMISE)
®* Released by the MCS, the remote CMISE user or both

MCS Communication to the User

When the MCS wants to communicate with an user, it checks the user status to
determine if it is ready. The message is sent immediately to the user, or it is
gueued for later delivery.

A communication message contains:

User context data
Flow control status
Interaction acceptance
User busy status

Software Architecture Overview 19

2

Common Management Information Service (CMIS)

Chapter Summary

20

CMIS provides services for performing management operations. The services
provided by the implementation are compliant with the 1SO-IS 9595/9596
version 2 standards. The services are divided into these categories:

® Management operation services

®* Management notification services

To communicate, any entity that uses CMIS services also needs to use
association services for establishing an application association.

CMIS also provides structuring facilities for:

® Multiple responses to confirmed operations that are linked through a
identification parameter

®* Management of multiple objects through a selected criteria of scoping and
filtering

Solstice CMIP provides XMP/XOM library access to the MCS and CMIS. The
integration with X/Open’s libraries and the application programming interface
allow service communication to be merged with the MCS/CMIP (osimcsd
process). The osimcsd communication mechanism uses InterProcess
Communication, where messages can be sent, received, and queued. The
primary function of the MCS is to provide connectionless CMIS service by
handling association management. Solstice CMIP SDE provides the developer
a choice of automatic MCS control of associations, or programmatic
manipulation through the XMP interface.

Solstice CMIP Programmer’s Guide—April 1996

Overview

Object Management (OM) 3

This chapter provides an overview of Object Management (OM), the
implementation of which is described in detail in Solstice XOM Programming
Reference.

Overview page 21
XOM Representation of ASN.1 page 27
Public and Private Objects page 28
Import/Export of Object Identifiers page 34
XOM Function Interface page 35
Storage Management page 36
Workspaces page 37
Chapter Summary page 37

The OM can create, modify, and delete complex information objects. This
environment provides developers with a uniform architecture model of
information based upon groups and classes.

Some of the terms used in this document, such as object and attribute, are used
in a different way when referring to parts of the management information.
Care has been taken to avoid confusion by using distinct names for each such
term. Note, there is a distinction between OM classes and managed object
classes and between OM attributes and managed object attributes. The OM

21

22

class and OM attribute construct the interface, while managed obiject class and
managed object attribute represent the managed information. The usage of the
term attribute denotes a managed object attribute, while the phrase OM
attribute denotes the OM construct.

The XOM API is designed to be used by one or more independent developers.
This API can be used with these services: X.400/MHS, X.500/Directory Service,
and X.700/CMIP. XAPIA provides access to X.400 service. XDS provides access
to X.500 service. XMP provides access to X.700 service. As illustrated in
Figure 3-1, each developer provides her own code to manipulate information
objects.

X.400 Message Handling System allows clients to manipulate message queues, to
send messages, and handle query search. X.500 Directory Service provides a
naming service. It manages names, associated attributes, and provides a
hierarchical architecture for naming. X.700 Management Framework outlines the
OSI network management model. The Common Management Information
Protocol (CMIP) is specified in recommendation X.711/1SO 9596. The Common
Management Information Service (CMIS) is specified in recommendation
X.710/1SO 9595.

Client

Service

¢ v ¢

Messaging Directory Management
Objects Objects Objects

(XAPIA) (XDS) (XMP)

Figure 3-1 Conceptual Model of Object Management (XOM)

Solstice CMIP Programmer’s Guide—April 1996

3

Throughout this chapter, the term interface denotes the OM API. The term
service denotes software that implements the interface, and client denotes
software that uses the interface. The service interface denotes the interface
realized by the service as a whole, and is used as a synonym for interface.

Note — The OM uses a structured view of information; however, it does not
incorporate all characteristics of other object-oriented programming
environments. For instance, the implementation functions that manipulate
objects are separate from the definitions of the object’s classes. Also, there is no
notion of encapsulation or hiding the information associated with objects,
although the interface hides the information representation.

Objects communicate between the client and service by using a sequence of
descriptors (C structures). Unlike the objects themselves, the representation of
such sequences is part of the OM interface specification.

All the C identifiers are mechanically derived from a generic, language-
independent interface as outlined below.

The binding specifies C identifiers for all elements of the interface so that
application programs written in C can access the MIB. These interface elements
include function names, typedef names, and constants.

All C language names are shown in italic typeface. A function is indicated by
following parentheses function(), and a constant is surrounded by braces
{CONSTANT}. The names of errors are surrounded by brackets [ERRORS].

The definitions of the C identifiers appear in the <xom.h> header file, which
contains definitions for the associated OM interface.

C Naming Conventions

The identifier for an element of the C interface is derived from the name of the
corresponding element of the generic interface. This depends on the element
type, as specified in Table 3-1 on page 24. The generic name is prefixed with
the character string in the second column of the table, alphabetic characters are
converted to the case in the third column, and an underscore () is substituted
for each hyphen (-) or space ().

Object Management (OM) 23

i
w

The prefixes “omP” and “OMP” are reserved for developers. The prefixes
“omX” and “OMX?” are reserved for the proprietary extension of the interface.
In all other respects, such extension is outside the scope of this document.

Note — Hyphens are translated everywhere to underscores. X/Open
Management Protocol functions pass most arguments by reference. The data
referenced by these arguments are modelled and manipulated in an object-
oriented fashion.

Table 3-1 Derivation of C Identifiers

Element Type Prefix Case Example Usage

Data type OM_ Lower OM_sint32

Data value OM_ Upper OM_TRUE

Data value (Class) OM_C_ Upper OM_C_ENCODING

Data value (Syntax) OM_S_ Upper OM_S_SYNTAX

Data value component (Structure member) none Lower anything from a structure
Function om_ Lower om_put ()

Function argument none Lower subject, type, etc.,
Function result none Lower success, network-error, etc.,
Macro OM_ Upper OM_OID_DESC
Reserved for use by implementors OMP any reserved for implementor
Reserved for use by implementors omP any reserved for implementor
Reserved for proprietary extension omX any

Reserved for proprietary extension OMX any

24 Solstice CMIP Programmer’s Guide—April 1996

w
1]

Package

Related classes are grouped into collections called packages. A package defines
the set of OM classes that are grouped together by the specification because
they are functionally related. A package is denoted by an ASN.1 object
identifier. This number uniquely identifies an object identifier. For example,
XMP specifies that a CMIS package be identified by the object identifier:

\x2a\x86'\x3a\x00\x88\x1a\x01\x02
See SunLink ASN.1 Compiler User’s Guide for additional information.

The closure of a package P is the set of classes that need to be supported in
order to be able to create all possible instances of all classes defined in P.

Package closure is formally defined in terms of class closure, which is the set of
classes that need to be supported in order to be able to create all possible
instances of a particular class.

More specifically, the closure of a class C, where C is used as a name qualifier, is a
set that consists of:

® The class C itself
® The closures of any subclasses of C defined in the same package as C

® The closures of the classes of all permitted subobjects of instances of C

The closure of a package P is the set of classes made up of the union of the
closures of all the classes defined in P.

For purposes of the generic interface, the definition of a package has the
following elements:

® The package’s name, which denotes the package’s object identifier
® The definitions of the one or more classes which make up the package

® The identification of zero or more concrete (an instance is permitted) classes
in the package to which the Create function applies (in every
implementation of the service)

® The identification of zero or more concrete classes in the package to which
the Encode function applies (in every implementation of the service)

® The explicit identification of the zero or more classes in other packages that
appear in the package’s closure (as a convenience to the reader)

Object Management (OM) 25

26

Object Attributes

Class

An object can have one or more attributes. An attribute definition consists of
the name of the attribute, a syntax, and the value of the specified syntax. For
example, the XOM definition of CMIS-Get-Result in Table 3-2 indicates that
this object can contain the XOM attributes: managed object class, managed object
instance, attribute list and current time. This definition indicates that the syntax
of the managed object class attribute is an XOM object and the syntax of current
time is generalized time. The Value Number specifies the number of times an
attribute can appear within an object. If the attribute can appear zero times,
then it is an optional attribute.

Table 3-2 Attributes of CMIS-Get-Result Object

OM Attribute Value Syntax Value Number
managed object class Object (Object Class) 0-1

managed object instance | Object (Object Instance) 0-1

current time String (Generalized Time) | 0-1

attribute list Object (Attribute) 0 - more

A definition of an XOM attribute contains the following:

Name of the attribute (OM Attribute)

Syntax of the attribute (Value Syntax)

Constraint on the length of a value syntax string (Value Length)
Constraint on the number of values (Value Number)

Default value that is used to initialize the attribute (Initial Value)

Each object is an instance of its class. A class is characterized by the types of the
attributes that appear as its instances. A class is denoted by an ASN.1 object
identifier. The object identifier that denotes a class is an attribute of every
instance of the class. As an aid to the discussion of classes, C1 and C2 are used
as class qualifiers. The types that may appear in an instance of one class, C1,
are often a superset of those that may appear in an instance of another class,
C2. When this is so, C2 may (but need not) be designated a subclass of C1,
making C1 a superclass of C2. If C1 is a superclass of no other superclass of C2,
C1 is called the immediate superclass of C2, and C2 an immediate subclass of C1.

Solstice CMIP Programmer’s Guide—April 1996

3

There are two kinds of classes: concrete and abstract. Instances of a concrete
class are permitted, but instances of an abstract class are forbidden. An abstract
class may be defined as a superclass in order to share attributes between
classes, or simply to ensure that the class hierarchy is convenient for the
interface definition. An XOM class definition consist of:

Name of the class

Identification of the superclass (XOM has an inheritance scheme)
Definitions of the attributes specific to the class

Whether the class is abstract or concrete

XOM Representation of ASN.1

XOM provides a structural solution for representing complex ASN.1 syntax.
For example, in the X.700 CMIP Standards documentation, the GetResult
ASN.1 syntax is defined as follows:

GetResult ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectinstance Objectinstance OPTIONAL,
currentTime [5]IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6]IMPLICIT SET OF attribute OPTIONAL }

The XOM object corresponding to this ASN.1 representation is shown in
Table 3-3.

Table 3-3 Attributes of CMIS-Get-Result Object

OM Attribute Value Syntax Value Number
managed object class Obiject (Object Class) 0-1

managed object instance | Object (Object Instance) 0-1

current time String (Generalized Time) | 0-1

attribute list Obiject (Attribute) 0 - more

Note — All of the code segments given in the following sections were taken
from the complete programs located in /opt/SUNWconn/cmip/examples

Object Management (OM) 27

3

Public and Private Objects

28

The system management data abstract services consist of many data structures
designed to manipulate programming constructs. Public objects are
programmer-visible data structures that enable objects to be statically defined.
Private objects are private to the service and can only be accessed from
programs indirectly using interface functions.

Public Objects

A public object can be generated by a client or by a service.

® Client-generated public objects-correspond to XOM objects that are created by
the developer through normal language constructs. The developer is
responsible for managing any storage involved in the representation of the
object.

® Service-generated public objects-correspond to public objects that are generated
by the service (XOM/XMP). They are generated from specific calls to the
services. The management of the storage is handled by the service. The
om_delete() function must be used on service-generated public objects to
maintain storage consistency.

Client-Generated Public Object

Code Example 3-1 shows a static definition of a client-generated public object.
A public object is an array of descriptors. The first descriptor

(OM_descriptor) structure must provide the class of the object. The class can
be defined with the standard XOM macro OM_OID_DESQCwhich is defined in
xom.h .

The end of the array of the OM descriptors must be indicated with the null
descriptor. OM_NULL_DESCRIPTOR the standard macro for the null
descriptor.

Solstice CMIP Programmer’s Guide—April 1996

Keep in mind that the storage management must be done by the application.
Note that a client public object is not deleted when the workspace containing it
is deleted.

Code Example 3-1 address.h Segment

[* Declaration of the agent’s address */

OM_descriptor agentAddr[]= {

/*

*/

/7(-

The “OM_OID_DESC” macro is defined by XOM. It allows the
initialization of “OM_CLASS” attribute for public objects.

As a reminder, OM_CLASS attribute of a public object is used
to indicate the public object class. The “agentAddr”

structure corresponds to a public XOM object whose class

is MP_C_PRESENTATION_ADDRESS.

OM_OID_DESC(OM_CLASS, MP_C_PRESENTATION_ADDRESS),

An XOM object whose class is MP_C_PRESENTATION_ADDESS must
contain a network address (MP_N_ADDRESSES) attribute. By

default, the example is using RFC1006; therefore, the

network address is not used. The syntax of the network

address (MP_N_ADDRESSES,) attribute is defined as an octet

string. Note, the OM_STRING is a macro defined by XOM for

filling a “OM_String” structure.

{MP_N_ADDRESSES, OM_S_OCTET_STRING, {OM_STRING(*“)}},
The presentation selector (MP_P_SELECTOR) attribute is set

to “rfc0”

{MP_P_SELECTOR, OM_S_OCTET_STRING, {OM_STRING(“rfc0")}},

{MP_S_SELECTOR, OM_S_OCTET_STRING, {OM_STRING(“Prs")}},

{MP_T_SELECTOR, OM_S_OCTET_STRING, {OM_STRING(CMIP)},
The null descriptor indicates the end of the public object. */

OM_NULL_DESCRIPTOR};

Object Management (OM)

29

30

Service-Generated Public Object

Service-generated public objects are created by specific calls to the XOM API.
Calls to the om_get() function return a service-generated public object.
Code Example 3-2 segment illustrates the generation of a service public object.

Note that a service public object is not deleted when the workspace containing
it is deleted. The om_delete() function must be used to destroy service-
generated public objects.

Code Example 3-2 extract.c Segment

/*

* Extract the details of an attribute

*/

static void

extract_one_attribute(OM_public_object attribute)

{
OM _return_code ret;
OM_public_object attr_id, global_form;
OM_exclusions exclusions;
OM_type types[2];
OM_value_position total;
SysAttr_t attr;

exclusions = OM_EXCLUDE_ALL_BUT_THESE_TYPES |
OM_EXCLUDE_SUBOBJECTS;

types[0] = MP_ATTRIBUTE_ID;
types[1] = OM_NO_MORE_TYPES;

ret = om_get(attribute, exclusions, types, OM_FALSE, 0, 0,
&attr_id, &total);

CHECK_OM_CALL(“om_get MP_ATTRIBUTE_ID ”, ret);

types[0] = MP_GLOBAL_FORM;
types[1] = OM_NO_MORE_TYPES;

/* At this stage, attr_id is a generated service public object. */

ret = om_get(attr_id[0].value.object.object, exclusions, types,
OM_FALSE, 0, 0, &global_form, &total);

CHECK_OM_CALL(*om_get MP_GLOBAL_FORM ", ret)

Solstice CMIP Programmer’s Guide—April 1996

w
1]

Private Objects

Private objects are defined in an implementation-defined manner and cannot
be directly accessed by the developer, as is the case for public objects. The
contents of a private object can only be accessed through the XOM interface by
calling om_get(), om_put(), om_read(), om_remove(), or om_write()
Private objects can only be created through direct calls to the om_copy() or
om_create() routines of the XOM interface. When creating a private object,
you can specify default values that can be used to initialize some of the
attributes. Code Example 3-3 illustrates the use of private objects.

Code Example 3-3 objtool.c Segment

void
addGlobalFormClass(OM_workspace workspace, OM_private_object
obyj,
OM_type type, char *val)

{

OM_private_object class;

OM_return_code ret;

OM_descriptor desc[2];

OM_object source= (OM_object) desc;

/* Create an instance of type object class used to identify
* a managed object class
*

ret = om__create(MP_C_OBJECT_CLASS, OM_FALSE, workspace,
&class);
CHECK_OM_CALL(“om_create MP_C_OBJECT_CLASS", ret);

/* Add the global form of the attribute into the object class.
* This must be a registered object class identifier.
*/

put_desc(&desc[0], MP_GLOBAL_FORM,
OM_S_OBJECT_IDENTIFIER_STRING,

val, strlen(val));
ENDOBJ(desc[1]);

ret = om_put(class, OM_INSERT_AT_END, source, 0, 0, 0);
CHECK_OM_CALL(“om_put MP_C_OBJECT_CLASS, MP_GLOBAL_FORM", ret)

Object Management (OM) 31

i
w

/* Add the object class to the supplied object.*/
put_desc(&descl[0], type, OM_S_OBJECT, &class, 0);
ENDOBJ(desc[1]);

ret = om_put(obj, OM_INSERT_AT_END, source, 0, 0, 0);
CHECK_OM_CALL(“om_put MP_C_OBJECT_CLASS, MOC”, ret)

om_delete(class);

To add information to a private object, a list of descriptors that correspond to
the public representation of the information must be formatted. In the general
example program, there is a function put_desc() , that adds descriptors to a
private object. See Code Example 3-4 for the definition of put_desc()

Code Example 3-4 put_desc() Function Segment

void
put_desc(OM_descriptor *desc_ptr, OM_type type, OM_syntax syntax,
void *value, int len)
{
desc_ptr->type = type;
desc_ptr->syntax = syntax;
switch(syntax) {
case OM_S BOOLEAN:
desc_ptr->value.boolean = (* (OM_boolean *) value);
break;
case OM_S_ENUMERATION:
desc_ptr->value.enumeration = (*(OM_enumeration *) value);
break;
case OM_S INTEGER:
desc_ptr->value.integer = *(OM_integer *)value;
break;
case OM_S_OBJECT:
desc_ptr->value.object.object = * (OM_object *) value;
break;
case OM_S BIT_STRING:
case OM_S ENCODING:
case OM_S_GENERAL_STRING:
case OM_S_GENERALISED_TIME_STRING:
case OM_S_GRAPHIC_STRING:

32 Solstice CMIP Programmer’s Guide—April 1996

w
1]

case OM_S |A5_STRING:

case OM_S_NUMERIC_STRING:

case OM_S_OBJECT_DESCRIPTOR_STRING:

case OM_S_OBJECT_IDENTIFIER_STRING:

case OM_S OCTET_STRING:

case OM_S_PRINTABLE_STRING:

case OM_S_TELETEX_STRING:

case OM_S_UTC_TIME_STRING:

case OM_S_VIDEOTEX_STRING:

case OM_S VISIBLE_STRING:
desc_ptr->value.string.length =

(OM_element_position)len;

desc_ptr->value.string.elements = (void *)value;
break;

Code example 3-5 shows the ENDOBJmacro definition.

Code Example 3-5 ENDOBJMacro Definition

#define ENDOBJ(attr) \
attr/**/.type=OM_NO_MORE_TYPES; \
attr/**/.syntax=OM_S_NO_MORE_SYNTAXES; \
attr/**/.value.string.length = 0; \
attr/**/.value.string.elements = 0;

Using a private object may, in some circumstances, introduce an associated
overhead. For instance, GetArg is an object used for formatting a get request.
One attribute of GetArg , scope , is defined as an XOM object. Therefore, to set
the scope of a get request using a private object requires four function calls:

® Create a scope object with om_create()

® Write the scope level in the scope object with om_put()

® Create the GetArg object with om_create()

® Put the scope object into the GetArg object with om_put()

However, using XOM private objects can clean up an application and free you
from the burden of memory management. Abnormal memory consumption is
very easy to track when using private and service-generated public objects.

Object Management (OM) 33

3

Import/Export of Object Identifiers

34

Object identifiers are used to identify a number of things in XOM. For example,
a unique object identifier is associated with each class definition.

Code Example 3-6 is from the imports.h include file; it shows some object
identifier string definitions.

Code Example 3-6 imports.h ~ Segment

#define OMP_O_MP_C_ACTION_ERROR\
2001% “\053\014\002\207\161\002\001\002\217\121"
#define OMP_O_MP_C_ACTION_ERROR_INFO\

[¥2002*/ “\053\014\002\207\161\002\001\002\217\122"

A specific structure is provided by XOM to handle object identifiers. The
structure defined in xom.h file is OM_object_identifier . All of the API
functions dealing with class identifiers request a OM_object_identifier
structure. This means that a constant definition of object identifier cannot be
directly used. Instead, variables of type OM_object_identifier must be
used. There is no restriction on the length of object identifiers.

Specific macros are defined by XOM in order to derive a variable of type
OM_object_identifier from an object identifier string:

* OM_EXPORT(MP_C_ATTRIBUTE)defines the variable MP_C_ATTRIBUTE
that is of type OM_object_identifier . Note that
OMP_O_MP_C_ATTRIBUT®bject identifier string) should have been
previously defined as a string constant. Code Example 3-7 illustrates an
example of this type.

The OM_EXPORTmMacro defines variables and can be used only once for a
specific object identifier in an entire application.

In the example program, the export definitions are gathered in a compilation
unit called exports.c . The compilation unit is then linked with the entire
application.

Code Example 3-7 exports.c Segment

OM_EXPORT(MP_C_ATTRIBUTE)
OM_EXPORT(MP_C_ATTRIBUTE_ID)
OM_EXPORT(MP_C_BASE_MANAGED_OBJECT _ID)
OM_EXPORT(MP_C_CMIS_GET_ARGUMENT)
OM_EXPORT(MP_C_CMIS_GET_RESULT)

Solstice CMIP Programmer’s Guide—April 1996

3

The OM_IMPORTmMacro must be used in any compilation unit that refers to an
object identifier.

®* OM_IMPORT(MP_C_ATTRIBUTE}imports the external declaration of the
variable MP_C_ATTRIBUTHENto this file.

In the example program, the import statements are placed in the include file
imports.h and are imported into each compilation unit. Refer to
Code Example 3-8.

Code Example 3-8 imports.h ~ Segment

OM_IMPORT(MP_C_ATTRIBUTE)
OM_IMPORT(MP_C_ATTRIBUTE_ID)
OM_IMPORT(MP_C_BASE_MANAGED_OBJECT_ID)
OM_IMPORT(MP_C_CMIS_GET_ARGUMENT)
OM_IMPORT(MP_C_CMIS_GET_RESULT)

XOM Function Interface

The following functions are provided in the XOM interface:

om_copy—create a new private object that is an exact, but independent
copy of an existing private object

om_copy_value —place or replace a string in one private object with a copy
of a string in another private object. This handles segments of a string.

om_create —creates a new private object that is an instance of a particular
class

om_decode —creates a new private object that contains the decoded form of
an existing private object. This function is used to decode an encoded object.

om_delete —delete an instance of a private object or public service
generated object

om_encode —create a new private object that contains the encoded form of
an existing private object. This function is used to encode a decoded obiject.

om_get —create a public copy of a particular part of a private object with
certain characteristics

om_instance —determine whether or not an object is an instance of a
particular class or any of its subclasses

Object Management (OM) 35

i
w

Storage Management

36

om_put —insert or replace, in one private object, a copy of the attribute
value of another public or private object

om_read —read a segment of a string in a private object
om_remove—remove values of a particular attribute of a private object

om_write —write a segment of a string into a private object

An object occupies storage. The storage occupied by a public object is directly
accessible to the client, while the storage occupied by a private object is not.

The storage an object occupies is allocated and released by the client if the
object is client-generated, or by the service if the object is service-generated or
private.

An object is accessed through an object handle. An object handle is the means
by which the client supplies an object to the service as an argument of an
interface function, and the service returns an object to the client as the result of
an interface function. A public object handle is simply a pointer to the data
structure containing the object attributes. A private object handle is a pointer to
a data structure whose layout is implementation-specific and is unknown to
the client. The client accesses a private object only through the XOM API
functions.

The client creates a client-generated public object by using normal
programming language constructs. The client is responsible for managing any
storage involved.

The service creates service-generated public objects when om_get() is called
and allocates any necessary storage. The client destroys a service-generated
public object and releases the storage by applying the om_delete() function.

At any point in time, a private object is either accessible or inaccessible to the
client. An object is accessible if the client possesses a valid object handle for it.
The object is inaccessible if the client does not possess an object handle, or the
handle is invalid. Should the client designate an inaccessible object as an
argument, the effect on the service’s subsequent behavior is undefined.

Solstice CMIP Programmer’s Guide—April 1996

3

Workspaces

Chapter Summary

The service makes a private object accessible by returning an object handle as
the result of a function in this or another (application-specific) interface. The
client makes such an object inaccessible by applying the om_delete()

function to it, or by supplying it as an argument of any other function that,
according to the specification, makes the argument inaccessible.

A private object is also destroyed when the workspace containing it is
destroyed. A service-generated public object is unaffected by the destruction of
the workspace that generated it. A client-generated public object is not
associated with a workspace.

The storage occupied by a service-generated public object must not be changed
by the client, and the effect of doing so is undefined. This includes all values
(strings, subobjects, integers, and so on). However, it is possible to use a value
that is a private subobject as an argument to an interface function that modifies
the subobject.

The service maintains private objects in workspaces. A workspace is a
repository for instances of classes in the closures of one or more packages
associated with the workspace. The implementations of the OM interface
functions may differ from one workspace to another. A package may be
associated with any number of workspaces. The OM package is implicitly
associated with every workspace. Other packages may be explicitly associated
with a workspace when it is defined with mp_negotiate

The interface includes functions for effectively copying and moving objects
from one workspace to another, provided that the object’s classes are
associated with both. How workspaces are created, made known to the client
and destroyed is outside the scope of this document. In all cases, destroying a
workspace effectively applies the om_delete() function to each private object
it contains.

The OM API can be used to create, delete, and modify complex information
objects. However, there is a difference between OM classes and managed object
classes and between OM attributes and managed object attributes. The OM
attribute constructs the interface, while managed object class and managed

Object Management (OM) 37

38

object attributes provide the MIS access provision. The XOM interface provides
twelve functions to manipulate objects: om_copy, om_copy_value ,
om_create , om_decode, om_delete , om_encode, om_get, om_instance ,
om_put, om_read , om_remove, and om_write

Objects communicate with the client and service using descriptors (C
structures). A descriptor is a data structure which is used to represent an OM
attribute type and a single value. The interface element includes function
names, typedef names, and constants.

Packages within the XOM are defined by ASN.1 object identifiers.

An object can contain one or more attributes. For instance, an object of class
CMIS-Get-Result contains the attributes managed object class, managed object
instance, attribute list, and current time. The XOM class is characterized by the
type of attributes that can appear in its instances and as previously stated a
class is denoted by the ASN.1 object identifier. There are two types of classes:
concrete and abstract. A concrete class permits an OM instance to occur, while
an abstract class forbids an instance to occur.

XOM objects are a way to represent ASN.1 syntaxes. Public and private objects
are data structures that provide a service to other programs that wish to
manipulate and access other systems management data abstraction services.
Public and private objects are further defined into a groups of service-
generated public object, service-generated private object, client-generated
public object, and client-generated private objects.

Storage management of objects is accomplished through the manipulation of
object handles. The storage an object occupies is allocated and released by the
client if the object is client-generated or by the service (through the
om_delete() function) if the object is service-generated, or private.

A workspace is a repository for instances of classes in the closures of one or
more packages associated with the workspace. The OM package is implicitly
associated with every workspace. Whenever a workspace is destroyed, the
om_delete() function is applied to each private object.

Solstice CMIP Programmer’s Guide—April 1996

Overview

Systems Management Protocol 4

This chapter provides an overview of the Management Protocols described in
detail in Solstice XMP Programming Reference.

Overview page 39
CMIS Services page 44
Function Calls page 45
Function Sequencing page 49
Implementation Specific Enhancements page 50
Chapter Summary page 52

The X/Open Management Protocol (XMP) library is used in conjunction with
the X/Open Object Management (XOM) library to provide an object-oriented
network management application programming interface. This implementation
is designed to offer services that are limited to the Common Management
Interface Protocol (CMIP), as defined in the ISO-IS 9595/9596 specification
standard.

This interface defines the communication to the Management Information
Service (MIS) which is based on the Common Management Information
Service (CMIS) and Common Management Information Protocol (CMIP) (ITU
X.710 and X.711, ISO 9595 and 9596-1) standards.

39

40

The interface uses the generic systems management concepts defined by ISO
and supports the model defined in the Structure of Management Information
(SMI).

The interface also provides access to the MIS, which is abstracted in terms of
notifications and operations on managed objects. It offers service primitives
that correspond to the abstract services of the CMIS and the Simple Network
Management Protocol (SNMP) of the Internet community.

The Management Information Base (MIB) is a conceptual repository of all

management information. The MIB is modelled as a collection of managed
objects; programs can access the managed objects through the interface to

make queries, updates, or to generate reports.

Management services are modelled as specific managed objects, termed
management support objects, which provide the services.

Access to MIS is done through the managed object in conjunction with the
implementation of the general-purpose XOM as stated in the previous chapter.

All C language names are shown in italic typeface. A function is indicated by
following parentheses function(), and a constant is surrounded by braces
{CONSTANT}. The names of errors are surrounded by brackets [ERRORS].

® <xmp.h> contains common definitions for the access to the Management
Communication Service.

® <xmp_cmis.h> contains specific definitions that reflect the Abstract
Services of the Common Management Information Service along with the
ASN.1 productions of the related protocol (CMIP).

The Manager and Agent

A network management system consists of manager and agent processes. In the
simplest form, a network management system really contains nothing more
than protocols that convey information about network elements back and forth
between various agents in the system and the manager processes. The MIB
database is shared between the manager and agent to provide information
about the managed network elements.

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

® Manager—directs the operations of the agent

* Agent—reports to the manager on the status of managed network elements
and receives directions from the manager on actions it is to perform on these
elements

®* MIB—is used by both the manager and agent processes to determine the
structure and content of management information

A conceptual overview of the interaction between a manager and agent is
shown in Figure 4-1.

Performing Management Operations

Management Commands for both manager and agent
> >
Manager Management Responses Agent . Notifications emitted MIB
4 Notifications Managed
Resources
XMP API
CMIP
MIS Provider — _—— D MIS Provider
SNMP

Figure 4-1 Manager/Agent Interaction

The XMP interface provides access to all facilities provided by the MIS
Provider. This is “symmetrical” in the sense that it can be used to implement
management programs acting in manager or agent roles. It supports:

®* A management program acting as a manager accessing managed
information from an agent.

®* A management program acting as an agent interacting with a manager by
receiving operation requests and sending back responses or event reports.

Systems Management Protocol 41

The interface sends requests on the invoker side and receives indications on the
performer side within a management interaction. If the service is confirmed,
the performer can send back responses that will be received as confirmations by
the invoker. This communication path is shown in Figure 4-2.

— Request Indications ——— P
MIS Provider MIS Provider
--— Confirmation Response '

Confirmed Service Non Confirmed Service

Figure 4-2 CMIS Interaction

C Naming Convention

The interface uses part of the C public namespace for its facilities. All
identifiers start with the letters mp, MP, or OMP. See Table 4-1 for more details
of the conventions used. The interface reserves all identifiers starting with the
letters mpP for Private (that is, internal) use by interface implementations. It
also reserves all identifiers starting with the letters mpX or MPX for
vendor-specific extensions of the interface. You should not use any identifier
starting with these letters.

The OSI-Abstract-Data Manipulation API uses similar, though not identical,
naming conventions. All its identifiers are prefixed by the letters OM or om.

Table 4-1 C Naming Conventions

Element Type Prefix Example Usage

Functions mp_ mp_initialize

Error “problem” values MP_E_ MP_E BAD_ADDRESS
Enumeration tags (except errors) MP_T_ MP_T_NORMAL

OM class names MP_C_ MP_C_ABORT_ARGUMENT
OM value length limits MP_VL_ See below paragraphs

OM value number limits MP_VN_ See below paragraphs

Other constants MP_ See below paragraphs

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

Table 4-1 C Naming Conventions (Continued)

Element Type Prefix Example Usage
Reserved for implementors mpP Reserved for developer
Reserved for interface extensions mpX

Reserved for interface extensions MPX

A complete list of all identifiers used (except those beginning mpP, mpX, MPX
or OMP) is provided in Solstice XMP Programming Reference. No
implementation of the interface will use any other public identifiers. A public
identifier is any name except those reserved in section 4.1.2.1 of the ISO C
Standard. The public namespace is the set of all possible public identifiers.

The C identifiers are derived from the language-independent hames used
throughout this document by a mechanical process that depends on the kind of
name:

Interface function names are made entirely of lowercase letters and are
prefixed by mp_. For example, Get-Req() would become mp_get_req().

C function parameters are derived from the argument and result names by
making them entirely of lowercase letters. In addition, the names of results
have _return added as a suffix. Thus the argument Name becomes name, and
the result Operation-Notification becomes operation_notification_return.

OM class names are made entirely of uppercase letters and are prefixed by
MP_C_; therefore, Get-Result becomes MP_C_GET_RESULT. The symbolic
OM class names are strictly those used in the abstract syntax ASN.1 of the
CMIP except that names containing multiple words are separated with
hyphens.

Enumeration tags are derived from the name of the corresponding OM type
and syntax by prefixing with MP_. The case of letters is left unchanged.
Thus Enum(Synchronization) becomes MP_Synchronization.

Enumeration constants, except errors, are made entirely of uppercase letters
and are prefixed by MP_T, thus Atomic becomes MP_T_ATOMIC.

The name of an OM attribute is local to its OM class. Therefore, the same
name of an OM attribute may appear in different OM classes. For example,
OM attribute filter is defined in both OM classes Get-Argument and
Set-Argument. Independent-language attribute filter appears as

Systems Management Protocol 43

Il
I

CMIS Services

44

MP_FILTER in C-language. The symbolic OM attribute names are strictly
those used in the abstract syntax ASN.1 of the CMIP with the exception that
names containing multiple words are separated with hyphens.

® Errors are treated as a special case. Constants that are the possible values of
the OM attribute Error-Status of a subclass of the OM class Error are made
entirely of uppercase letters and are prefixed by MP_E_. Thus
no-such-object-instance becomes MP_E_NO_SUCH_OBJECT_INSTANCE.

® The constants in the Value Length and Value Number columns of the OM class
definition tables are also assigned identifiers. (They have no names in the
language-independent specification.) The upper limit in one of these
columns is not “1” (one), it is given a name consisting of the OM attribute
name, prefixed by MP_VL_ for value length or MP_VN_ for value numbers.

® The sequence of octets for each object identifier is also assigned an identifier
for internal use by certain OM macros. These identifiers are all upper case
and are prefixed by OMP_O .

The communication of management information occurs between the manager
and agent. This is illustrated in Figure 4-1. The OSI service for systems
management is CMIS. Table 4-2 defines the CMIS services.

Table 4-2 CMIS Services

CMIS Services Type

M-ACTION confirmed/non-confirmed
M-CREATE confirmed
M-CANCEL-GET confirmed

M-DELETE confirmed
M-EVENT-REPORT confirmed/non-confirmed
M-GET confirmed

M-SET confirmed/non-confirmed

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

Function Calls

XMP functions are divided into these service groups:
® Registration service

mp_bind/mp_unbind establishes/releases a session between
XMP and user

® CMIS services
mp_create_req and mp_create_rsp
mp_delete_req and mp_delete_rsp
mp_get_req and mp_get_rsp
mp_set_req and mp_set_rsp
mp_cancel_get req and mp_cancel_get_rsp
mp_action_req and mp_action_rsp
mp_event_report_req and mp_event_report_rsp
® Asynchronous services

mp_receive gets indications and confirmations of
previous asynchronous operations

mp_wait waits for incoming (indication or
confirmation) messages

mp_abandon discards reception of pending
asynchronous result

*XMP specific services

mp_error_message gives a full description of an error detected
by the XMP library

mp_get_assoc_info retrieves negotiated connection values

mp_get_last_error retrieves the secondary return code of the

most recent function call, communications
or system error.

mp_validate_object analyses an OM-Object and returns
Bad-Argument details if necessary

mp_initialize allocates a workspace for the session

Systems Management Protocol 45

Il
I

mp_shutdown

mp_negotiate
® Association control services

mp_abort_req

mp_assoc_req

mp_assoc_rsp

mp_release_req

mp_release_rsp

releases the workspace at end of the
session

negotiates the profile of the user

aborts a management session that is either
connected or partially connected

requests the creation of a management
association

replies to a request to create a management
association

requests the release of a management
association

replies to a request to release a
management association

The example XMP programs are located in the directory

/opt/SUNWconn/cmip/examples

. These examples encompass the full set of

XMP functionality such as synchronous/asynchronous modes and simple
manager/agent code. Figure 4-3 on page 48 illustrates the state machine for the
XMP function sequencing rules. Each state is represented in a box. These are
individual interactions and are not global to the entire session.

Table 4-3 XMP Functions

Function

Description

mp_abandon
mp_abort_req
mp_action_req
mp_action_rsp
mp_assoc_req
mp_assoc_rsp
mp_bind
mp_cancel_get_req

mp_cancel_get_rsp

Abandons the local results of a pending asynchronously executing operation.

Aborts a management association

Requests managed objects to perform an action.

Replies to a previously requested confirmed action.

Requests the creation of a management association.

Replies to a previously requested operation to create a management association.

Opens a management session.

Cancels the result of a pending get operation.

Replies to a previously requested cancel-get operation.

46

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

Table 4-3 XMP Functions (Continued)

Function

Description

mp_create_req
mp_create_rsp
mp_delete_req
mp_delete_rsp
mp_event_report_req
mp_event_report_rsp
mp_get_assoc_info
mp_get_last_error
mp_get_req
mp_get_rsp
mp_initialize
mp_negotiate
mp_receive
mp_release_req
mp_release_rsp
mp_set_req
mp_set_rsp
mp_shutdown
mp_unbind
mp_validate_object

mp_wait

Requests a create for a new managed object instance.

Replies to a previously requested create operation.

Requests the deletion of a managed object instance.

Replies to a previously requested delete operation.

Requests to report a notification emitted by an object.

Replies to a previously reported notification.

Retrieves negotiated connection values.

Retrieves additional error information.

Requests to retrieve management information.

Replies to a previously requested get operation.

Performs the necessary initialization of the interface.

Performs the negotiation features of the interface

Used to retrieve inbound messages.

Requests the release of a management association.

Replies to a previously requested operation to release a management association.
Requests to change attribute values of managed object instances.

Replies to a previously requested set operation.

Deletes a workspace and the associated resources.

Terminates the given management session.

Returns an object that indicates the cause of a Bad-Argument return by an XMP function.

Waits for activity on one or more sessions.

Systems Management Protocol 47

mp_initialize

Workspace
Uninitialized
(uninit)

v

mp_shutdown

Workspace .
Initialized mp_negotiate
(init)
mp_bind mp_unbind
linked reply v | linked reply
i Session Operation
,: 8utstatndlng j Initialized indication
peration (init) Received
(OUTOP) (OPIND)
mp_abandon
mp_receive (conf) / mp_action_rsp
) return (sync no conf) mp_receive mp_create_rsp
mp_action_req mp_delete_rsp
mp_create_req mp_get_rsp
mp_delete_req mp_set_rsp
mp_gett_req IDLE ~———— mp_cancel_get_rsp
mp_set_req return (no conf)
< |
mp_receive return (sync no conf)
mp_receive (conf)
receive (no conf) mp_event_report_req mp_abandon
mp_event_report_rsp - - -
Received .
Notification ﬁgﬁsﬂt?;?(;ﬂg
Indication
(NOTIND) (OUTNOT)

48

Figure 4-3 XMP Sequencing State Diagram

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

Function Sequencing

A minimum set of rules are necessary when using the interface services. These
rules must be followed by the management programs to ensure that the
interface functions are called in the relevant sequence. If these rules are not
adhered to by the management program, the XMP API returns a library error.

XMP requires that the following general rules be followed:

Initialize the workspace with the mp_initialize() function.

Declare the list of Object Management (OM) packages that are supported
with the mp_negotiate() function (optional).

Use the mp_bind() function for opening sessions.

Note — A session identifies a particular link from the application program to
the System Management Services provider (osimcsd). The session is passed as
the first argument to most interface functions.

Perform all the management interaction with the CMIS service interface
functions.

Upon the completion of management operations, close all the associated
sessions by using the mp_unbind() function.

Discard the workspace with the mp_shutdown() function. If you do not
close all the sessions before the management application terminates, the
XMP API will automatically close and release the remaining resources.

When you call the mp_bind() function, you have two alternatives:

1.

If you want to bind using the default session, an OSI address must
correspond to the default session. This is done with cmiptool . See Solstice
CMIP 8.2 Administrator’s Guide for more information.

Note that only one call to mp_bind() using the default session can be
performed on a system. If you initiate an additional call to mp_bind() with
the default session, an error will occur until the default session is closed.
Keep in mind, it is not possible to have two applications with the same
address simultaneously open.

Systems Management Protocol 49

2. If you want to bind to a specific session, an address must be provided. This
address must correspond to a valid address; otherwise, the call to
mp_bind() will fail with an error code “bad address”. You can check the
validity of an address with cmiptrace . See Solstice CMIP 8.2 Administrator’s
Guide for more information.

Implementation Specific Enhancements

50

The following enhancements to the XMP specification are specific to the
Solstice implementation of these protocols. Applications that do not take
advantage of these enhancements are still supported.

mp_negotiate() Function

The following implementation-specific features can be negotiated using the
mp_negotiate() function. The object identifiers for these features are defined
in the header file <cmip/xmp.h> . These features are disabled by default.

#define OMP_O_MP_ONE_FD_PER_SESSION "\x2a\x86\x3a\x00\x88\x1a\x06\x01\x03"

If this implementation-specific feature is enabled, each session has its own file
descriptor. If this implementation-specific feature is disabled, all sessions share
the same file descriptor. In either case, the file descriptor is set in the
file-Descriptor attribute of the session object. One use of file descriptors is
explained in “Managing Multiple Event Types” on page 64.

#define OMP_O_MP_ANY_APP_CONTEXT "\x2a\x86\x3a\x00\x88\x1a\x06\x01\x04"

If this implementation-specific feature is enabled, then any application context
can be specified in the application-Context attribute of the acse-Args attribute
object of the session object. For outgoing associations, the application context is
sent in the associate request PDU. Only associate request PDUs that contain a
valid application context are accepted by incoming associations. By default,
only the ISO, NMEFand TMNapplication contexts can be specified in the session
object.

Solstice CMIP Programmer’s Guide—April 1996

DS
1]

mp_wait()

Function

The mp_wait() function has been extended to include an additional value for
the timeout parameter, which specifies how long (in milliseconds) the function
waits for activity on one or more sessions. If this parameter is set to 0, the
mp_wait() function waits indefinitely for activity on the session.

With the implementation-specific enhancement, the timeout parameter can also
be set to —1 in which case, the mp_wait() function returns immediately if
there is no activity on the session. This can be used as a polling mode to check
for activity.

proprietary-Args Attribute of Session Object

The session object can contain the implementation-specific attribute
proprietary-Args, which is identified by MP_PROPRIETARY_ARGS the header
<cmip/xmp.h>

Each proprietary-Args object can contain the following attributes, and each
attribute can appear zero or one times:

® inactivity-Timer (MP_INACTIVITY_TIMER)
If present, this attribute sets the inactivity timer for the session. The value is
an unsigned integer, specified in seconds. If this attribute is not present, the
system-wide activity timer, which is configured using cmiptool , is used.

Setting the inactivity-Timer attribute to zero (0) disables the inactivity timer.
In this case, the association remains open until closed explicitly.

® hind-State (MP_BIND_STATE
Shows the current state of the session and can have value MP_T_UNBOUNar
MP_T_BOUND

® connect-State (MP_CONNECT_STATE
Shows the current state of the session and can have value
MP_T_UNCONNECTED MP_T_PARTLY_CONNECTED MP_T_CONNECTED

Normally the attributes bind-State and connect-State should not be modified as
they are used internally by the XMP library. Sessions can be created using
mp_bind() without defining these attributes.

Systems Management Protocol 51

Il
I

AE Titles

Chapter Summary

52

However, these attributes can optionally be combined to specify that a session
will be bound to the next incoming association, and no other. In this case, the
user must perform the following steps:

1. Before calling mp_bind() , create a session object with the bind-State and
connect-State attributes defined.

bind-State = MP_T_UNBOUND | MP_T_SINGLE_ASSOC
connect-State = MP_T_UNCONNECTED | MP_T_SINGLE_ASSOC

2. Pass the session object in the call to mp_bind()

Any attempt to set the attributes to an invalid value (for example,
MP_T_BOUNDwill cause the call to mp_bind() to fail.

An AE title can be specified in the requestor-Title and responder-Title
attributes of the session object. AE titles are in object identifier form—that is,
Form2 AE titles.

The osimcsd daemon can multiplex associations based on the AE title. This
means that multiple associations can be established with the same presentation
selector, provided they have different AE titles.

The XMP interface is defined by a series of standards that determines how
communication to the MIS is handled. This access is done through
notifications and operations on managed objects. Corresponding services for
CMIS and SNIMP are available in the XMP interface.

The interface to the C programming language is handled through specific
identifiers that denote the XMP API. Function names are prefixed with mp_in
lower case. Arguments also use the lower-case nomenclature for identification
purposes. Errors are treated as special case and are communicated in
upper-case with the prefix MP_E

Solstice CMIP Programmer’s Guide—April 1996

4

Management information between the manager and agent is done through the
CMIS services. This service provides an operations notification communication
link using M-ACTION, M-CREATE M-CANCEL-GETM-DELETE
M-EVENT-REPORTM-GET and M-SET. These operations allow access to
managed information from an agent and the management program.

The XMP functions are divided into these groups: registration services, CMIS
services, asynchronous services, XMP specific services, and association control
services. Each group provides full XMP functionality in workspace operations.
Function sequencing rules require that the workspace be initialized, declare the
list of object management packages, use bind() to open a session, perform
management interaction, close all associated sessions with unbind() , and
discard workspace with shutdown()

Systems Management Protocol 53

54

Solstice CMIP Programmer’s Guide—April 1996

XMP Development Concepts 5

This chapter covers XMP/XOM development and other fundamental concepts
associated with Solstice CMIP. All the necessary components for application
development and object management are discussed.

Overview page 55
Synchronous and Asynchronous Operations page 58
Access Control page 59
Error Codes page 59
Session Objects page 60
Context Objects page 62
Managing Multiple Event Types page 64
Packages page 65
Chapter Summary page 65

Overview

Initial Declaration

The environment containing the XOM obijects is referred to as the workspace.
Applications using XOM must create a workspace. This is done through a call
to mp_initialize() . Refer to the Chapter 3, “Object Management (OM)” for
additional details on the workspace creation process.

55

Once the workspace is initialized, the application can open a session by calling
mp_bind()

Connection Management

The Management Communication Service (MCS), which is implemented in the
osimcsd process, automatically handles the associations between agents and
managers. If the MCS association management is used, the XMP interface does
not access the stack when the mp_bind() function is invoked. This means that
access to the OSI stack is deferred until a management operation or
management notification is received.

When an inactivity time-out occurs, associations controlled by the MCS are
released without any notification to the XMP user.

Responder Versatility

You can change the responder in each function call using the same session.
This facility gives the XMP developer the opportunity to perform any
operation or notification with an agent or manager in the same work session.

Loopback Facility

The loopback feature allows communication between two management
applications above the MCS without requiring a CMIS association. This saves
resources and communication time. The loopback mode is transparent to both
the requestor and acceptor.

A loopback is typically used for a configuration of an agent and a manager in
the same system.

Each time the MCS establishes an association, it will first test if the target
address is local. If so, a simulation of an association is implemented. Every
request sent later to the destination address will be passed directly to the
proper application.

MCS loopback occurs at the osimcsd level as shown in Figure 5-1 on page 57.
This can be configured by cmiptool . See Solstice CMIP 8.2 Administrator’s
Guide for more information. Also, loopback can occur at the transport layer as
shown in Figure 5-2 on page 57, if MCS loopback is not enabled.

Solstice CMIP Programmer’s Guide—April 1996

o1
1]

Local manager Local agent

A

osimcsd process

Figure 5-1 Loopback through osimcsd

Since underlying protocol layers are not used in MCS loopback mode, the MCS
service interactions are routed without being fully checked. This could lead to
a different reaction to service violations compared to a regular CMISE-based
transfer.

Local manager Local agent

¢ !

osimcsd process

Presentation layer

Session layer

¢ !
!
¢ !

Transport layer

Figure 5-2 Loopback through Transport Layer

XMP Development Concepts 57

5

Synchronous and Asynchronous Operations

58

The synchronous or asynchronous mode of each requested operation or
notification is specified and determined by the value of the asynchronous
attribute in the context object. The context object is passed by the interface
function. If the value of the asynchronous attribute is false, the operations will be
synchronous.

Synchronous

During a synchronous operation or notification, the calling function is blocked
until the service is complete. Note that a CMIS operation may have multiple
responses. You may specify a time-limit or size-limit after which several
responses can be returned. The function can return under the following
conditions:

®* When all the responses have been received in a specified period
® When the time limit occurs

® When the limit on the number of responses is reached by XMP

Asynchronous

In an asynchronous operation, the XMP function that is called immediately
returns an identifier. This identifier can be used later to receive responses or to
abandon the operation. This unique identifier is used to match the response to
the request.

Results from the call are received with the mp_receive() function. This
function returns one of the following values:

® nothing —if no response or request has been received.

®* incoming —if an incoming request/notification is received from the peer.
® outstanding —if no response has been received.

* completed —if the complete response has been received.

® partial —in the case of multiple replies where only a subset of the
responses have been received.

Solstice CMIP Programmer’s Guide—April 1996

o1
1]

Access Control

Error Codes

There are no specific access restrictions in the XMP library. Access control is the
responsibility of the agent or manager application. External access control, as
defined by the XOM class external, is allowed.

A typical function call will return a success or a failure code. A successful
function call returns the specified appropriate attributes. Any other reply
indicates a failure.

Unbind/Shutdown Errors

When a request containing a scoping specification is received by the agent, it
may send multiple responses to the manager application. If the agent
application calls mp_shutdown() or mp_unbind() before sending the last
response indicating the end of the linked replies, the manager application will
receive an error message indicating that the agent has terminated the work
session.

The returned error constants for mp_shutdown are:
* MP_NO_WORKSPACE

* MP_INSUFFICIENT_RESOURCES

mp_unbind can return a system-error or one of the following library-errors:
® bad-class

® bad-session

® miscellaneous

® session-terminated

mp_unbind can return the following error codes:

* MP_NO_WORKSPACE

* MP_INVALID_SESSION

® MP_INSUFFICIENT_RESOURCES

XMP Development Concepts 59

1]l
o1

Session Objects

60

Asynchronous Mode Errors

When multiple replies are possible, the following errors can occur when a
function is used in asynchronous mode:

Library Error TIME-LIMIT-EXCEEDED—indicates that the request has timed
out; however, any replies that have been received will be returned by XMP.

Library Error SIZE-LIMIT-REACHED—indicates that the maximum number
of replies specified by the XMP user has been reached. The extra replies will
be discarded.

Service Error MULTIPLE-REPLY-ERRORS—indicates that among all the
replies there is an error.

A session is the link between the XMP API and the application. A session is
initialized with the mp_bind() function.

mp_bind() returns a session object that contains all the parameters for the
session. This function is called in one of two ways:

® Without a session object, XMP will use the default session and return the
default session parameters in the session object

® With a session object that has parameter values set, XMP will use the
parameters to setup the session

Multiple concurrent sessions can be used. The maximum number of concurrent
sessions in a workspace is 16. The maximum number of workspaces in a
process is 16. This means that a single UNIX process can open up to 256
sessions simultaneously. A complete set of guidelines can be found in Solstice
XMP Programming Reference.

The rules of a session are defined as follows:

® A session can be restricted to allow interoperation only with a designated
management application. If these descriptors are omitted in the session
object, the session allows interoperation with any application.

Note — A descriptor is a data structure that is used to represent an object
management attribute type and a single value.

Solstice CMIP Programmer’s Guide—April 1996

5

® Once initiated, no attribute of the session object can be changed: XOM
utilities will refuse all user updates.

® If different from the default session, the session parameter provided to the
mp_bind() function must be compliant with the XOM definition of the
session object class. In particular the file descriptor attribute must be
provided. The value should be MP_NO_VALID_FILE_DESCRIPTOR

The definition of the session class, as supported by the implementation, is
listed in Table 5-1.

Table 5-1 Session Object Attributes

OM Attribute Syntax Value Length Value | Number Value | Initial Value
requester-Address Object (Address) — Oorl —
requestor-Title Obiject (Title) — Oorl —

role Integer — Oor1l see below
file-Descriptor Integer — 1 see below
presentation-Layer-Args Object (Presentation-Layer-Args) | — Oorl —
acse-Args Object (Asce-Args) — Oorl —
cmip-Assoc-Args Object (Cmip-Assoc-Args) — Oorl —
standard-Externals Object (Standard-Externals) — Oorl —

Default Session Object Attributes

The defined structure for the default session object are:

®* No requestor address

This is the default local address that has been configured with cmiptool
See Solstice CMIP 8.2 Administrator’s Guide for more information.

®* No requestor title
Performs both manager roles (managing/monitoring) and agent
(performing/reporting)
File descriptor set to MP_NO_VALID_FILE_DESCRIPTOR
acse-Args specify
* no responder address
* no responder title

XMP Development Concepts 61

1]l
o1

Context Objects

62

* no authentication information
« application context set to 1SO (obj id <2.9.0.0.2>)
* no user-info

® cmip-Assoc-Args specifies
* no access control
® A functional unit that describes the maximum profile of a CMIS user:
» Multiple-object-selection, filter operations, multiple-replies, and cancel-get
operations are allowed.
* no user-info

® Standard-Externals is NULL (no SMASE user data)

The context object defines a number of parameters that are common to many
XMP function calls. All of these parameters are collected into a particular OM
object so that the parameters don’t have to be passed one-by-one to the XMP
functions. The default OM attribute values can be used instead of building
your own context object.

Various administrative details are contained in the context object. These
include: synchronous or asynchronous mode, the size limit of the response,
confirmed or unconfirmed mode, and priority of the request.

If an attribute is defined in both the session and context object, the context
attribute value takes precedence over the session attribute value. This rule
applies to the responder-address, responder-title, and access-control attributes.

If the time limit and size limit attributes are provided with negative values, or
if the values exceed the allowed range, the context object is rejected and the
request/response is refused with the code BAD_CONTEXT

The context object must contain the attributes priority, asynchronous, and mode.
The mode attribute is only meaningful for the action, set, and event requests.
Table 5-2 lists the attributes for context objects.

Solstice CMIP Programmer’s Guide—April 1996

o1
1]

Table 5-2 Context Object Attributes
Common Arguments
OM Attribute Value Syntax Value Length | Value Number | Initial Value
extensions Object(Extension) - 0 or more -
Service Controls
access-Control Object(Access-Control) - 0-1 -
connection-ld Integer - 0-1 -
mode Enum(Mode) - 1 confirmed
priority Enum(Priority) - 1 medium
responder-Address Object(Address) - 0-1 -
responder-Title Object(Title) - 0-1 -
Local Controls
asynchronous Boolean - 1 false
size-Limit Integer - 0-1 -
time-Limit Integer - 0-1 -

Default Context Object Attributes

The defined structure for the default context object is:

No extension is supported.
No access control value.
The mode of the request is confirmed.
The priority of the request is medium.
No responder address.
No responder title.
The synchronous mode is used.
The size limit is set to the constant XMP_DEFAULT_SIZE_LIMIT, which
allows a minimum number of linked replies.

® No time limit. The system-wide activity timer, which is configured using

cmiptool

, is used.

XMP Development Concepts

63

Restrictions

The following context attributes are not supported:

® Extension
® Priority

If these attributes are provided, syntax analysis will be performed on them. If
the analysis fails, the XMP API will reject the object and return an error
BAD_CONTEXT

Managing Multiple Event Types

64

If your applications need to process several types of events, you can use the
select() or poll() system call followed by the mp_wait() command to
obtain the correct session to pass to the mp_receive() function.

To manage multiple event types:

1. Use the poll() or select() system call to obtain file descriptors on
which an event has occurred.

2. If the active file descriptor corresponds to one or more sessions (that is, a
CMIP event) pass the list of sessions to the mp_wait() function.
The result of this function call is a list of active sessions. You can omit this
step if you have implemented one file descriptor per session as described in
“mp_negotiate() Function” on page 50.

3. Pass each active session to the mp_receive() function.
The Session object you specify in each call to mp_receive() = must be one of
the active sessions returned by the call to mp_wait() in Step 2.

Solstice CMIP Programmer’s Guide—April 1996

o1
1]

Packages

Related classes are grouped into a collection called a package. There are two
packages of interest in the XMP interface: Common Management Service and
CMIS Management Service.

Common Management Service Package

The common management service package includes classes for XMP error
management and classes common to SNMP and CMIP. Some of the object
management classes defined in this package are not supported in this
implementation of XMP:

Community Name access control subclass
Entity Name title subclass

Network-Address address subclass (SNMP)
CMOT-system-id definition

SNMP Object Name (SNMP package)

Name and Relative Name (XDS definition)
Name-String as Name subclass (XDS definition)

CMIS Management Service Package

Chapter Summary

The CMIS management service package contains a collection of XOM class
definitions that represent CMIS services.

The environment which contains the objects is defined as a workspace. Any
application using XOM must create a workspace with the function call
mp_initialize() . Once this has been done, a session must be opened with a
mp_bind()

The MCS transparently handles the association service by hiding the
communication establishment. Before issuing any CMIS operation or
notification, the MCS controls the remote 1/0 operation. Automatic association
control is very helpful to developers; however, programmatic manipulation
control is available through the XMP interface.

XMP Development Concepts 65

66

Loopback through osimcsd provides a method of communication between the
manager and agent without using the CMIS association. This is usually used in
a local system configuration where the underlying OSI layers are not used.
However, loopback through the transport layer provides communication to the
presentation, session, and transport layers.

Synchronous and asynchronous operations provide an attribute checking
procedure that verifies an identifier for appropriate responses. The identifier is
a unique value that is handled by mp_receive()

Accessing the XMP library is done with the manager and agent application;
however, an external method through the XOM is also supported. Functions
return a success or failure code. An error code in the asynchronous mode of
operation can specify a library error of: TIME-LIMIT-EXCEEDED ,
SIZE-LIMIT-REACHED , and MULTIPLE-REPLY-ERRORS

A session is defined as a link between the XMP API and the application. It is
initialized with mp_bind() . Multiple concurrent session is supported to a
maximum number of 16. It can be used as an acting manager, that is, invoker
of management operations and performer of management notifications. The
same acting principle is true for the agent.

The context object emphasizes the number of parameters common to XMP
function calls. Applications can assume that an object of OM context created
with default values from its attributes will work with the interface. The
constant MP_DEFAULT_CONTEXEN be used as an argument to the interface
functions instead of creating an OM object with default values.

There are two packages important to Solstice CMIP, CMS and CMIS. The CMS
service package provides XMP classes with an error management, while the
CMIS service package contains a collection of XOM class definitions.

Solstice CMIP Programmer’s Guide—April 1996

Remote Addressing

Addressing 6

This chapter describes situations where an application has to provide local and
remote addressing.

Remote Addressing page 67
Local Addressing page 68
Chapter Summary page 70

Addressing a remote network management application can be done in two
ways:

® Specialized session

® Specialized context

Specialized Session

When you open a session with mp_bind() , you can specify a remote
management application with the responder address and/or responder title
attribute. These attributes must be provided in the acse-Args of the session
object. Any operation requested that does not contain one or more of these
attributes is sent by the MCS to the default local OSI address.

Note that this default address is configured with cmiptool . For more
information, see Solstice CMIP 8.2 Administrator’s Guide.

67

1]l
(@)

Specialized Context

Local Addressing

68

If the responder address and/or responder title is specified in the context
object, the underlying MCS will attempt to send the request to the given
address. Note, that if these attributes are defined in the context object, they
take precedence over the attribute values in the session object. If a connection
cannot be established, the XMP function will return the bad address with an
error code.

Each application must have a different Presentation Service Access Point
(PSAP) address that consists of:

® Presentation Selector (PSEL)

® Session Selector (SSEL)

®* Transport Selector (TSEL)

® Network Service Access Point (NSAP)

Refer to Solstice CMIP 8.2 Administrator’s Guide for actual configuration
information.

Figure 6-1 illustrates the address of two applications in a restricted static
configuration. The following addresses are listed in PSEL/SSEL/TSEL/NSAP
format:

AppA/Prs/CMIP/TrsAddr
AppB/Prs/CMIP/TrsAddr

Solstice CMIP Programmer’s Guide—April 1996

Application A

Application B

MCS

CMISE

AppA

AppB

Presentation/ACSE/ROSE

Figure 6-1 Addressing Scheme

Addressing

Prs
Session
CMIP User Space
Stack Kernel Space
Transport
TrsAddr

69

6

Chapter Summary

70

The network locations of management program instances are referenced by
addresses. Addressing a remote management application can be accomplished
in one of two ways: specialized session and specialized context.

A specialized session is opened with a call to mp_bind() . The remote
managed application can be specified with a responder address, or responder
title, or both. One of these attributes must be provided in the session object.

The specialized context is specific to the context object. Attributes that are
defined in the context object take precedence over the session object.

Solstice CMIP Programmer’s Guide—April 1996

Library Contents

Compilingand Linking Application
Programs {

This chapter describes how to compile and link network management
applications with the XMP/XOM libraries. It includes instructions for
compiling and running the example programs supplied with Solstice CMIP
SDE.

Library Contents page 71
Include File Structure page 72
Compile and Link Procedure page 72
Example Makefile page 73
Running the Example Programs page 74

Applications must be linked with the libraries that provide the XMP and XOM
functions. These libraries are provided as shared libraries. The library files are
contained in the /opt/SUNWconn/lib directory. They are:

® Jibxmp.so provides the services defined in the XMP API

® Jibxom.so contains the XOM object management library

71

5

Include File Structure

The XOM and XMP include files are defined in the specification. The include
files are located in /opt/SUNWconn/include/cmip

® xom.h

This header defines the types, symbols, macros for objects, and declarations
for the available services.

® xomi.h

This header defines the types, symbols, macros for objects, and declarations
for the available services.

® xmp.h

This header declares the interface functions and the structures that pass
information between those functions. Constants that are used by the
functions and structures are also defined.

® xmp_cmis.h

This header declares the interface functions and the structures that pass
information between those functions. Constants that are used by the
functions and structures is also defined.

Note — All of these files can be used with ANSI C and C++ compilers.

Compile and Link Procedure

72

To compile and link the include files for XMP/XOM, you must add the
following to your Makefile

CFLAGS += -l/lopt/SUNWconn/include
LDFLAGS += -L/opt/SUNWconn/lib -Ixmp -Ixom -R/opt/SUNWconn/lib

Solstice CMIP Programmer’s Guide—April 1996

\l
1]

Example Makefile

The following is an example of a Makefile used to compile and link the
manager and agent example applications provided with Solstice CMIP SDE.

HEHHHH AR

Global variables
R T
CDEBUGFLAGS= -DSVR4 -O
CC=cc $(CDEBUGFLAGS)

OSIAM=/opt/SUNWconn
INC=-1$(OSIAM)/include
OBJ_UTI= contexts.o exports.o objtools.o system.o
OBJ_MAN-= getarg.o extract.o
OBJ_AGT= getres.o
EXE= manager agent
all: includes exec
includes: address.h system.h imports.h macros.h
clean: clean_obj clean_exec
@echo “Cleaning ‘pwd"”
veryclean: clean
@rm -rf .??* core *~ *% *.BAK
exec: $(EXE)
clean_obj:
@rm -f $(OBJ_UTI) $(OBJ_AGT) $(OBJ_MAN) $(OBJI_XVIEW)
$(EXE:%=%.0)
clean_exec:
@rm -f $(EXE)
.c.0: $(INCLUDES)
$(CC) $(INC) -c $<
manager:
3.c $(OBJ_UTI) $(OBJI_MAN)
$(LIB_XMP:%=%$(0SIAM)/lib/lib%.a)
$(CC) $@.c $(INC) -0 $@ $(OBJ_UTI) $(OBJ_MAN) \
-L$(OSIAM)/lib $(LIB_XMP:%=-1%)
agent:
$$@.c $(OBJI_UTI) $(OBJI_AGT)
$(LIB_XMP:%=$(0SIAM)/lib/lib%.a)
$(CC) $@.c $(INC) -0 $@ $(OBJI_UTI) $(OBI_AGT) \
-L$(OSIAM)/lib $(LIB_XMP:%=-1%)

Compiling and Linking Application Programs

73

5

Running the Example Programs

74

Example 1

Example programs are provided with Solstice CMIP SDE. Each one consists of
a manager and an agent application that communicate through the osimcsd
process and the transport provider. You can run these programs without the
transport provider, using loopback mode, provided the manager and agent are
running on the same machine.

Note — Before compiling and linking any of the examples, copy the contents of
the directory containing the example to another location. The file access
permissions of the directories under /opt/SUNWconn do not allow ordinary
users to run make.

This example returns and displays information about the machine on which
the agent application is running. It is located in:

lopt/SUNWconn/cmip/examples/xmp

The manager application performs the following tasks:

1. Gets the address of a remote agent to query

2. Sends a get request to the agent

3. Waits for a response

4. Displays the message received from the agent

5. Shuts down the API and resets

The agent application performs the following tasks:

1. Performs an mp_bind()

2. Waits for an incoming request from a manager

3. If the incoming request is a get request, returns a linked-get response

4. Returns to wait state

Solstice CMIP Programmer’s Guide—April 1996

\l
1]

Compiling and Linking

The make command is used to build both the manager and the agent
applications. The Makefile is shown in “Example Makefile” on page 73.

To compile and link the example programs:

1. Copy the example files to another directory.

prompt% cp /opt/SUNWconn/cmip/examples/xmp/* <dest_dir>

2. Change to the destination directory (<dest_dir>).

prompt% cd <dest_dir>

3. Compile and link the agent application.

prompt% make cmipagent

4. Compile and link the manager application.

prompt% make cmipmanager

Running Example 1

You must start the agent application before the manager application. If you are
not running the transport provider, you must start the agent and the manager
on the same machine and enable loopback mode.

By default, the manager and agent run locally in loopback mode over a
TCP/IP (RFC 1006) connection.

The agent has a default address: PSEL=rfcO , SSEL=Prs
The manager has a default address: PSEL=rfcl , SSEL=Prs

Note that if you set the environment variable CMIP_ASYNGCthe cmipmanager
application will send its Get request in asynchronous mode.

Compiling and Linking Application Programs 75

76

To start the agent using the default address:

prompt% <dest_dir>/cmipagent
Performing mp_initialize()
Performing mp_hbind()

Agent : iteration 1
Performing mp_wait()

To start the manager using the default address:

prompt% <dest_dir>/cmipmanager

On the agent side, you will see the following series of events:

Performing mp_initialize()
Performing mp_bind()

Agent : iteration 1
Performing mp_wait()
Performing mp_receive()
Performing mp_get_rsp()

Agent : iteration 2
Performing mp_wait()

Solstice CMIP Programmer’s Guide—April 1996

\l
1]

On the manager side, you will see the following series of events:

Performing mp_initialize()
Performing mp_bind()
Performing mp_get_req()
Results of mp_get_req()

The remote system is called papyrus

The system was manufactured by Sun_Microsystems

Number of processors configured is 1

Number of processors currently online is 1

CPUinfo : Processor 0, a40 MHz sparc CPU + sparc FPU, is online.
The size of physical memory (in Mbytes) is 48

System supports POSIX version 1

Performing mp_unbind()
Performing mp_shutdown()

cmipmanager: done at Fri Jul 8 18:16:43 1994

The manager application stops automatically when it has completed its request
and received a response. You must stop the agent explicitly by typing Ctrl-C

Compiling and Linking Application Programs 77

78

You can alter the default address for the agent and the manager by entering the
following command-line options:

Note — The session selector cannot be changed.

Address of Local Application

—N<addr> . local network service access point
—T<tsel> . local transport selector
—P<psel> . local presentation selector

Address of Remote Application

—n<addr> : remote network service access point
—t <tsel> : remote transport selector
—p<psel> . remote presentation selector

All addresses that are entered in hexadecimal must be preceded by 0x.
For example:

To set up a connection over TCP/IP (RFC 1006) with loopback mode disabled,
you must specify the agent address when you start the manager, even if the
agent is running locally.

On the agent side, type:

prompt% <dest_dir>/cmipagent

On the manager side type:

prompt% <dest_dir>/cmipmanager —n Ox <tcp/ip address>

The TCP/IP address of the agent application is displayed in the bottom right
corner of cmiptool running on the machine on which the agent is started. It
must be entered exactly as it appears in cmiptool , preceded by Ox.

Solstice CMIP Programmer’s Guide—April 1996

7

Example 2

To set up a connection over CLNP, where the agent listens on PSEL=tp40 and
the manager listens on PSEL=tp45 .

On the agent side, type:

prompt% <dest_dir>/cmipagent —P tp40 —N 0x49 <local>01

On the manager side, type:

prompt% <dest_dir>/cmipmanager —N 0x49 <local>01 —P tp45
—n 0x49 <remote>01 —p tp40

This example returns a linked-get response that shows a number of different
object types. The information returned is always the same, regardless of the
system on which the example is launched. The example is located in:

lopt/SUNWconn/cmip/examples/xmp2

The manager application performs the following tasks:

1. Gets the address of a remote agent to query

2. Sends a get request to the agent

3. Waits for a response

4. Displays the message received from the agent

5. Shuts down the API

The agent application performs the following tasks:

1. Performs an mp_bind()

2. Waits for an incoming request from a manager

3. Returns a linked-get response containing static information

4. Shuts down the API

Compiling and Linking Application Programs 79

80

Compiling and Linking

The make command is used to build both the manager and the agent
applications.

To compile and link the example programs:

1. Copy the example files to another directory.

prompt% cp /opt/SUNWconn/cmip/examples/xmp2/* <dest_dir>

2. Change to the destination directory (<dest_dir>).

prompt% cd <dest_dir>

3. Compile and link the agent application.

prompt% make ex_agent

4. Compile and link the manager application.

prompt% make ex_manager

Running Example 2

You must start the agent application before the manager application. If you are
not running the transport provider, you must start the agent and the manager

on the same machine and enable loopback mode.

By default, the manager and agent run in loopback mode over a CLNP (LLC1)
connection. Both the agent and the manager take the default XMP address
defined using cmiptool if no other address is specified; therefore, you must
change the address of one of these applications if they are running on the same

machine.

Solstice CMIP Programmer’s Guide—April 1996

\l
1]

To start the agent using the default address:

prompt% <dest_dir>/ex_agent

On the agent side, you will see the values used to initialize the agent, followed
by the list of objects that will be returned in response to a get request from the
manager.

To start the manager using the default address:

prompt% <dest_dir>/ex_manager

On the manager side, you will see the values used to initialize the manager,
followed by the get request sent to the agent and the list of objects returned.
This should be identical to the list of objects displayed by the agent.

You can alter the default address for the agent and the manager by entering the
following command-line options:

Note — The session selector cannot be changed.

Address of Local Application

—N<addr> . local network service access point
—T<tsel> . local transport selector
—P<psel> : local presentation selector

Address of Remote Application

—n<addr> . remote network service access point
—t <tsel> . remote transport selector
—p<psel> . remote presentation selector

All addresses that are entered in hexadecimal must be preceded by 0x.

Compiling and Linking Application Programs 81

82

Example 3

For example:

To set up a connection over CLNP, where the agent listens on PSEL=tp40 and
the manager listens on PSEL=tp45 .

On the agent side, type:

prompt% <dest_dir>/ex_agent —P tp40 —N 0x49 <local>01

On the manager side, type:

prompt% <dest_dir>/ex_manager —N 0x49 <local>01 —P tp45
—n 0x49 <remote>01 —p tp40

This example demonstrates the use of the XMP association management
primitives (for example, mp_assoc_req() , mp_assoc_rsp()). The example
is located in:

lopt/SUNWconn/cmip/examples/xmp

Compiling and Linking

The make command is used to build both the manager and the agent
applications.

To compile and link the example programs:

1. Copy the example files to another directory.

prompt% cp /opt/'SUNWconn/cmip/examples/xmp/* <dest_dir>

2. Change to the destination directory (<dest_dir>).

prompt% cd <dest_dir>

Solstice CMIP Programmer’s Guide—April 1996

\l
1]

3. Compile and link the agent and manager applications.

prompt% make assoc

Running Example 3

You must start the agent application before the manager application. If you are
not running the transport provider, you must start the agent and the manager
on the same machine and enable loopback mode.

To start the agent using the default address:

prompt% <dest_dir>/assoc_agent

To start the manager using the default address:

prompt% <dest_dir>/assoc_manager

Compiling and Linking Application Programs 83

84

Solstice CMIP Programmer’s Guide—April 1996

Error Handling

Enhancementsto Draft 7
Preliminary Specification A

Solstice CMIP SDE 8.2 and SunLink CMIP 8.1 conform to the X/Open CAE
Specification: System Management Protocol (XMP) API, which supersedes Draft 7
of the preliminary specification. A previous release of this product, SunLink
CMIP 8.0, conforms to the older revision of the specification. This appendix
describes how to modify applications that were developed in accordance with
Draft 7 of the X/Open Management Protocol (XMP) API so that they can be
recompiled and linked using Solstice CMIP SDE.

Error Handling page 85
OM Class Definitions page 87
Automated Connection Management page 88

Interface functions now return integer values instead of OM private objects
(with three integer exceptions). This removes the need to overload the return
value with either integers or pointers, and allows programmers to make quick,
high-level decisions based on integer return codes. The interface has been
extended to provide new functions in this area.

85

86

Draft 7 Preliminary Specification

Every function returns a status value that is either zero (success) or an error.

An error can be either an integer constant or an error object. If it is an error
object, it can be of either class Bad-argument , or one of the subclasses of class
error—Communications-Error , Library-Error , CMIS-Service-Error ,
or System-Error . An error object reports the base error in the problem
attribute and an additional error value in the parameter attribute.

The Receive function (mp_receive) can return a Communications-Error or
Service-Error in the Operation-Notification-Status parameter.

CAE Specification

Every function returns a status value that is either zero (success) or non-zero
(error).

If the error returned is MP_E_COMMUNICATIONS PROBLEM
MP_E_BROKEN_SESSIQNr MP_E_SYSTEMhe Get-Last-Error function
(mp_get_last_error) can be used to get an additional integer error value in
the parameter attribute.

If the error is MP_E_BAD_ARGUMENTe Validate-Object function
(mp_validate_object) can be used to return an object that contains the
details of the bad argument. The object returned is of class Bad-Argument
which is equivalent to the same class in Draft 7.

Service errors are no longer reported as the return code of the function. They
are reported in the Result parameter of the mp_get_req() function, for
example. In this case, the function will return zero (success) and it is the
responsibility of the application to check the Result parameter to see if it
contains a result (for synchronous calls), invoke id (for asynchronous calls), or
an error and to react accordingly.

The Receive function (mp_receive) can return a Service-Error in the
Result-or-Argument parameter.

Solstice CMIP Programmer’s Guide—April 1996

>
1]

OM Class Definitions

Modifications have been made to the OM class definitions in order to bring
them into alignment with the relevant standards. In addition, the following
changes have been introduced:

There are fewer attributes in the Session object, because some attributes have
been moved into sub-objects. For example, Responder-Address and
Responder-Title have been moved into the Acse-Args sub-object.

The Access-Control class has been renamed External-AC . This class
appears as an attribute in all arguments to requests (get , set , create
delete , action). For example, CMIS-Get-Argument and
CMIS-Set-Argument

In CMIS-Get-Result() , CMIS-Set-Result() , CMIS-Create-Result() ,
and CMIS-Create-Argument() the attribute-List attribute is now a

Setof-Attribute object, which contains one more objects.

In CMIS-Filter() , the and and or attributes are now Setof-CMIS-Filter
objects, which contain one or more objects.

In CMIS-Get-List-Error() , the get-Info-List attribute is now a
Setof-Get-Info-Status object, which contains one or more objects.
In CMIS-Set-List-Error() , the set-Info-List attribute is now a
Setof-Set-Info-Status object, which contains one or more objects.

In CMIS-Set-Argument() , the modification-List attribute is now a
Modification-List object, which contains one or more objects.

In Object-Instance() , the local-DN attribute is now a DS-DNobject, not a
DS-RDNobiject.

Enhancements to Draft 7 Preliminary Specification 87

=A

Automated Connection Management

The XMP interface now provides support for connection management
applications. If automated connection management is disabled, applications
are responsible for the establishment and release of associations. The interface
has been extended to provide new functions in this area:

* Abort-req()

® Assoc-req()

® Assoc-rsp()

® Get-Assoc-Info()
® Release-req()

® Release-rsp()

Draft 7 Preliminary Specification

The preliminary specification does not allow applications to negotiate the
Automatic Connection Management parameter; therefore associations are
always managed by the entity that implements the protocol—for example, the
osimcs daemon in the case of SunLink CMIP 8.0.

CAE Specification

The CAE specification allows applications to negotiate the Automatic
Connection Management parameter; therefore automatic connection
management can be disabled. In this case, the application is responsible for
managing all associations. Automatic Connection Management is enabled by
default.

88 Solstice CMIP Programmer’s Guide—April 1996

>
1]

Session Argument with ACM Disabled

If automatic connection management (ACM) is disabled, the session argument
to XMP functions after an association is established must be the session object
returned in Assoc-Result.

Draft 7 Preliminary Specification

Draft 7 of the preliminary specification did not allow ACM to be disabled;
therefore the session argument was always the private object returned from
mp_bind()

CAE Specification

The CAE specification allows automatic connection management (ACM) to be
disabled. If ACM is disabled, the session argument to XMP functions after an
association is established must be the session object returned in Assoc-Result.
This object is returned to the user by mp_assoc_req() , mp_assoc_rsp() ,
or through an MP_ASSOC_CNprimitive received by mp_receive()

Synchronous Operation With ACM Disabled

To obtain the session argument to XMP functions for synchronous operations
with ACM disabled:

1. Call mp_bind() to bind to the session.
The result of this function call is a Bound-Session object that contains the
bound session.

2. Call mp_assoc_req() to request the creation of a management
association.
The Session object you specify in this function call must be the Bound-Session
object returned by the call to mp_bind() in Step 1. The result of this
function call is an Assoc-Result object that contains the connected session.

3. Call the appropriate XMP function to execute the required CMIS
primitive.
The Session object you specify in this function call must be the session
contained in the Assoc-Result object returned by the call to
mp_assoc_req() in Step 2.

Enhancements to Draft 7 Preliminary Specification 89

90

Asynchronous Operation With ACM Disabled

To obtain the session argument to XMP functions for asynchronous operations
with ACM disabled:

1.

Call mp_bind() to bind to the session.
The result of this function call is a Bound-Session object that contains the
bound session.

Call mp_assoc_req() to request the creation of a management
association.

The Session object you specify in this function call must be the Bound-Session
object returned by the call to mp_bind() in Step 1. The results of this
function call are:

» A partially-connected session
< An Invoke-ID integer that identifies the management operation

Call mp_wait() to wait for the availability of management messages
from the bound session.

The Bound_session_list you specify in this function call must include the
Bound-Session object returned by the call to mp_bind() in Step 1.

Call mp_receive() to retrieve the completed result of the
asynchronously executed management operation.

The Session object you specify in this function call must be the Bound-Session
object returned by the call to mp_bind() in Step 1. Among the results of
this function call are:

* An Assoc-Result object that contains a fully-connected session.

« An Invoke-ID integer that identifies the management operation. It is the
same as the Invoke-1D integer returned by the call to mp_assoc _req() in
Step 2

Call the appropriate XMP function to execute the required CMIS
primitive.

The Session object you specify in this function call must be the Assoc-Result
object returned by the call to mp_receive() in Step 4.

Solstice CMIP Programmer’s Guide—April 1996

Compliance Informationand
Product Limitations B

This appendix lists the standards and specifications with which Solstice CMIP
8.2 complies. It also details the specific limitations to this implementation of
these specifications.

‘ Compliance Information page 91
‘ Product Limitations page 92

Compliance Information

The CMIP protocol implementation conforms to the following specifications:

® |SO-1S-9595 Version 2 Common Management Information Service (CMIS)
(CCITT X.710)

® 1SO-1S-9596 Version 2 Common Management Information Protocol (CMIP)
(CCITT X.711)

® SO 10040 Systems Management Overview
(CCITT X.701)

® |SO 10165-1 Structure of Management Information (SMI)
(CCITT X.720)

® 1SO 10165-4 Guidelines for the Definition of Managed Objects (GDMO)
(CCITT X.722)

91

1]l
0w

Product Limitations

General

Security

92

The application programming interface to Solstice CMIP conforms to the
following X/Open CAE Specifications:

® Systems Management—Management Protocols (XMP) API dated March 1994.
® OSI-Abstract-Data Manipulation (XOM) API dated November 1991.

Note the following specific limitations to the Solstice implementation of CMIP
and XMP:

Solstice CMIP supports the Common Management Service (CMS) package and
the CMIS Management Service package only. The workspace cannot be
extended to support the SNMP package.

Packages used inside XMP return features that are supported by the OM
package negotiation definition. Support for the following features is not
provided in this product release:

® SNMP Object Class Definition

® SNMP Communication Stack

® DMI Object Class Definition

* Encoding/Decoding of CMIS and SNMP OM Objects
® Get_next_req service

® Local Automatic Name Resolution

® Use of XDS Features

XMP does not provide a security mechanism. This is application dependent;
the access control structure can be used to implement security for the manager
or agent application.

Solstice CMIP Programmer’s Guide—April 1996

0w
1]

Session Object Attributes

A session represents the link between a user and the XMP API. The session
object contains a set of parameters for the link between the XMP API and the
given user.

Maximum Number of Sessions

XMP supports multiple concurrent sessions with different users. The
maximum number of concurrent sessions in a workspace is 16. The maximum
number of workspaces in a process is 16. This means that a single UNIX
process can open up to 256 sessions simultaneously. This limit is an internal
parameter of the XMP implementation.

XMP does not use the Requestor Address session attribute. If this attribute is
provided to the mp_bind() function, it is syntactically checked by the XMP
API; however, the information it carries is not used by the XMP API. When the
XMP API detects an erroneous attribute syntax, an error object is returned to
the XMP user with the code BAD_ SESSION

Context Object Attributes

The XMP API does not use the following context attributes:
® Extension
® Priority

If these attributes are provided, syntactic analysis will be performed on them.
If the analysis fails, the XMP API will reject the object and return the error
BAD_CONTEXT

Interface Objects

The following XOM classes are not supported by the XMP API:
® Community Name as Access Control subclass

® Entity Name as Title subclass

® Kerberos-Ticket as Access Control subclass

® User-Password as Access Control subclass

Compliance Information and Product Limitations 93

94

® Network-Address as Address subclass (SNMP)
® CMOT-system-id definition

® SNMP Object Name (SNMP package)

® Nameand Relative Name (XDS definition)

® Name-String as Name subclass (XDS definition)

Using Loopback Mode

When loopback mode is enabled (the default condition), communication that is
looped back—that is, communication between a manager and agent on the
same machine—does not support the following Sun-specific features:

® The optional OMP_O_MP_ANY_APP_CONTHEXature to mp_negotiate().

® The MP_T_SINGLE_ASSOGQlag passed in the session object to mp_bind() ,
which specifies that the next incoming association should be accepted.

mp_validate object() Function

In the Solstice implementation of XMP, the mp_validate_object() function
cannot be used to validate an OM object in advance of an XMP function call;
however, it can be used to return information following an XMP function
call—for example, mp_get_req() —that fails with a Bad-Argument return
code.

The Bad-Argument object returned by the mp_validate_object() function
cannot be deleted using om_delete() because it is service generated, and any
attempt to do so will result in an error. This object will be deleted by the next
function call.

Note that you should not need to validate an OM object in advance of a
function call, because the SunLink implementation of XMP prevents the
creation of syntactically incorrect objects. The om_create() , om_put() , and
om_copy() functions all return an error code and display a description of the
problem if the private object that would be created as a result of the call is
malformed.

Solstice CMIP Programmer’s Guide—April 1996

0w
1]

mp_assoc_rsp() Function

The response parameter passed to the mp_assoc_rsp() function must be a
private object. This allows a session object to be inserted and returned to the
user. If a public object is passed as the response parameter, the function call will
fail with the message: Library Error: Not Supported

mp_release_rsp() Function

The mp_release_rsp() can only be used to acknowledge a release; therefore
it is not possible to refuse an association release.

mp_get_assoc_info() Function

The mp_get_assoc_info() function defined by the X/Open CAE Specification:
System Management Protocol (XMP) API, is not fully implemented in Solstice
CMIP. Only the responder-address and responder-title of the ACSE_args object
are returned.

If automatic connection management is not used, all information that could be
returned by the mp_get_assoc_info() function is available in the session
returned in the Assoc-Result object. The Assoc-Result object is returned to the
user by mp_assoc_req() , mp_assoc_rsp() , or through an MP_ASSOC_CNF
primitive received by mp_receive()

Compliance Information and Product Limitations 95

96

Solstice CMIP Programmer’s Guide—April 1996

Abstract class

active object

actor

Association Context

attribute

base class

Glossary

A class that has no instances, it can be written with the expectation that its
subclasses will add to its structure and behavior, usually by completing the
implementation of its (typically) incomplete methods.

An object that encompasses its own thread of control.

An object that can both operate upon other objects but is never operated upon
by other objects. An agent is usually created to do some work on behalf of an
actor or another agent.

The association context contains all information related to the CMISE association
such as, function negotiation units, application context, and remote address.

Object management uses the term attribute to denote a managed object
construct.

This is the most generalized class in a class structure. Most applications have
many such base classes. Some languages define a primitive base class, which
serves as the ultimate superclass of all classes.

97

behavior
Behavior dictates how an object acts and reacts, in terms of its state changes
and message passing.

blocking object
This is a passive object whose semantics are guaranteed in the presence of
multiple threads of control.

class
A set of objects that share a common structure and a common behavior. The
terms class and type are usually (but not always) interchangeable; a class is a
slightly different concept than type, in that it emphasizes the importance of
hierarchies of classes.

class category
A collection of classes, some of which are visible to other class categories, and
others of which are hidden.

class diagram
This is part of the object-oriented design notation, used to show the existence
of classes and their relationships in the logical design of a system. A class
diagram may represent all or part of the class structure of a system.

class structure
The “kind of” hierarchy of a system; a graph whose vertices represent classes
and whose arcs represent relationships among these classes. The class structure
of a system is represented by a set of class diagrams.

class variable
A placeholder for part of the state of a class. Collectively, the class variables of
a class constitute its structure. A class variable is shared by all instances of the
same class.

client
An object that uses the resources of another, either by operating upon it or by
referencing its state.

Common Management Information Protocol (CMIP)
CMIP provides services that allow two OSI management service users to set up
actions to be performed on managed objects, to change attributes of the objects,
and to report the status of the managed objects.

98 Solstice CMIP Programmer’s Guide—April 1996

Common Management Information Service (CMIS)

CMIS is the entity that provides the services and protocols specified in ISO-1S
9595/9596.

connectionless service/protocol

concurrency

concurrent objects

constructor

container class

context

context objects

A service/protocol in which individual data units, messages, or packets are
transferred one after the other without any relation to one another, without
prior connection setup or subsequent take-down; usually, with a high
probability (but no guarantee) of delivery, no sequencing, flow, or error control
This is similar to unregistered letters in a postal system. OSI recognizes the
concept of a connectionless service/protocol at layers 2 through 7, though it is
not actually defined at each layer.

The property that distinguishes an active object from one that is not active.
Concurrency is one of the fundamental elements of the object model.

An active object whose semantics are guaranteed in the presence of multiple
threads of control.

An operation that creates an object and/or initializes its state.

A class whose instances are collections of other objects. Container classes may
denote homogeneous collections (all of the objects in the collection are of the
same class) or heterogeneous collections (each of the objects in the collection
may be of a different class, although all must share a common superclass).
Container classes are most often defined as generic or parameterized classes,
with some parameter designating the class of the contained objects.

The context defines the characteristics of the management interaction that are
specific to a particular management operation/notification.

This is an XOM object that contains context data which defines the
characteristics of management interaction.

Glossary 99

descriptor

dynamic binding

encapsulation

entity

field

function

hierarchy

information hiding

100

A descriptor is a defined data structure that is used to represent an object
management attribute type and a single value. The structure has three
components: type, syntax, and value.

Binding denotes the association of a name (such as a variable declaration) with
a class; dynamic binding is a binding in which the name/class association is
not made until the object designated by the name is created (at execution time).

The process of hiding all of the details of an object that do not contribute to its
essential characteristics; typically, the structure of an object is hidden, as well
as the implementation of its methods. The terms encapsulation and information
hiding are usually interchangeable. Encapsulation is one of the fundamental
elements of the object model.

An OSI term referring to a component that implements a protocol at some
level. Entities are defined in all seven layers. They can be reached through the
SAPs of the immediately inferior layer and offer SAPs to entities of the
immediately superior layer.

A repository for part of the state of an object; collectively, the fields of an object
constitute its structure. The terms field, instance variable, member object and slot
are interchangeable.

In the context of a requirements analysis, a single, outwardly visible and
testable behavior.

A ranking or ordering of abstractions. The two most common hierarchies in a
complex system include its class structure (the kind of hierarchy) and its object
structure (the part of hierarchy); hierarchies may also be found in the module
and process architectures of a complex system. Hierarchy is one of the
fundamental elements of the object model.

The process of hiding all the details of an object that do not contribute to its
essential characteristics; typically, the structure of an object is hidden, as well
as the implementation of its methods.

Solstice CMIP Programmer’s Guide—April 1996

inheritance

A relationship among classes, wherein one class shares the structure or
behavior defined in one (single inheritance) or more (multiple inheritance)
other classes. Inheritance defines a kind of hierarchy among classes in which a
subclass inherits from one or more superclasses; a subclass typically augments
or redefines the existing structure and behavior of its superclasses.

InterProcess Communication (IPC)

instance

instance variable

interface

levels of abstraction

IPC messaging allows processes to send and receive messages, and to queue
messages for processing in an arbitrary order. Unlike the file byte-stream
model of data flow used for pipes, each IPC message has an explicit length.

An instance has state, behavior, and identity. The structure and behavior of
similar instances are defined in their common class. The term instance and
object are interchangeable.

A repository for part of the state of an object. Collectively, the instance
variables of an object constitute its structure. The terms fields, instance variable,
member object, and slot are interchangeable.

The outside view of a class, object, or module, which emphasizes its
abstraction while hiding its structure and the secrets of its behavior.

The relative ranking of abstractions in a class structure, object structure,
module architecture, or process architecture. In terms of its part of hierarchy, a
given abstraction is at a higher high level of abstraction than others if it builds
upon the others; in terms of their kind of hierarchy, high-level abstractions are
generalized, and low-level abstractions are specialized.

Management Communication Service (MCS)

The MCS is the entity that provides connectionless CMIS service by handling
association management.

Management Information Base (MIB)

The MIB is a conceptual repository of all management information, which is a
modelled collection of managed objects that programs can access through the
interface in order to make queries, updates, or reports.

Glossary 101

member function

member object

message

method

object

object management (OM)

object management attribute

object management class

102

An operation upon object, defined as part of the declaration of a class; all
member functions are operations, but not all operations are member functions.
The terms member function and methods are usually interchangeable. In some
languages, a member function stands alone and may be refined, but serves as
part of the implementation of a generic function or virtual function, both of
which may be redefined in a subclass.

A repository for part of the state of an object; collectively, the member objects
of an object constitute its structure. The terms field, instance variable, member
object, and slot are interchangeable.

An operation that one object performs upon another. The terms message,
methods, and operation are usually interchangeable.

An operation upon an object, defined as part of the declaration of a class; all
methods are operations, but not all operations are methods. The terms
message, method, and operation are usually interchangeable. In some
languages, a method stands alone and may be redefined in a subclass; in other
languages, a method may not be redefined, but serves as part of the
implementation of a generic function or a virtual function, both of which may
be redefined in a subclass.

An object has state, behavior, and identity; the structure and behavior of
similar objects are defined in their common class. The terms instance and object
are interchangeable.

In X/Open’s definition of managed objects, an object can be created, modified,
and deleted with this mechanism.

An object management attribute is an arbitrary category where a specific value
is placed.

An object management class is a category of managed object, it determines the
object management attributes that may be present in the managed object, and
details of constraints.

Solstice CMIP Programmer’s Guide—April 1996

object model

object structure

object-oriented programming

osimcsd

package

package closure

peer-to-peer

polymorphism

The collection of principles that form the foundation of object-oriented design;
a software engineering paradigm emphasizing the principles of abstraction,
encapsulation, modularity, hierarchy, typing, concurrency, and persistence.

The “part of” hierarchy of a system; a set of graphs whose vertices represent
objects and whose arcs represent relationships among those objects. An object
diagram may represent all or part of the object structure of a system.

A method of implementation in which programs are organized as cooperative
collections of objects, each of which represents an instance of some class, and
whose classes are all members of a hierarchy of classes united through
inheritance relationships. In such programs, classes are generally viewed as
static, whereas objects typically have more dynamic nature, which is
encouraged by the existence of dynamic binding and polymorphism.

This is a process that resides in the user space of Solstice CMIP. It provides the
communication mechanism between the XMP library and transport provider.

A package is a set of object management classes that are grouped together
because they are functionally related, for example, SNMP service package.

A package closure is the set of classes that need to be supported in order to
create all possible instances classes defined in the package. Hence, an object
management class may be defined to have an object management attribute
whose value is a managed object of an object management class that is defined
in some other package, but within the same package-closure.

A relationship in which both parties are equal in stature (control and capability
are evenly distributed).

A concept in type theory, according to which a name (such as a variable
declaration) may devote objects to many different classes that are related by
some common superclass; thus, any object denoted by this name is able to
respond to some common set of operations in different ways.

Glossary 103

private
A declaration that forms part of the interface of a class, object, or module; what
is declared as private is not visible to any other classes, objects, or modules.

private objects
Private objects are held in data structures that are private to the service and
can only be accessed from programs indirectly using interface functions. They
are of particular use for structures that are infrequently manipulated by
programs being passed by reference to the service. This allows private objects
to be manipulated efficiently. An example, objects in the XMP session object.

protected
A declaration that forms part of the interface of a class, object, or module, but
that is not visible to any other classes, objects, or modules except those that
represent subclasses.

protocol
The ways in which an object may act and react, constituting the entire static
and dynamic outside view of the object; the protocol of an object defines the
envelope of the object’s allowable behavior.

public

A declaration that forms part of the interface of a class, object, or module, and
that is visible to all other classes, objects, and modules that have visibility to it.

public object
Public objects are represented by data structures that are manipulated directly
using programming language constructs. Use of public objects simplifies
programming by direct access and enabling objects to be statically defined,
where appropriate. Programs can efficiently access public objects.

Remote Procedure Call (RPC)
A set of network protocols that allow a node to call procedures that are being
executed on a remote machine.

Request (RQ)
A message unit that signals initiation of a particular action or protocol.

Response (RSP)
A message unit that acknowledges receipt of a request; a response consists of a
response header, a response unit, or both.

104 Solstice CMIP Programmer’s Guide—April 1996

scoping

sequential object

Service-Access-Point (SAP)

session

session object

slot

state

state space

static binding

This term describes the selection of a set of the managed objects in an MIT to
which a filter is to be applied. For example, OSI network management permits
the definition of levels of managed objects. The base object is the higher-level
identifier in the identification tree.

A passive object whose semantics are guaranteed only in the presence of a
single thread control.

The point at which services are provided by an n-entity to an n+1 entity, in a
layered communication system.

A session identifies if the agent or manager will be sent a management
operation/notification. This management request contains Bind-Arguments
such as, the name of the requestor.

This is an XOM object that contains session data on the agent and manager.

A repository for part of the state of an object; collectively, the slots of an object
constitute its structure. The terms field, instance variable, member object, and slot
are interchangeable.

One of the possible conditions in which an object may exist, characterized by

definite qualities that are distinct from other quantities; at any given point in

time, the state of an object encompasses all of the (usually static) properties of
the object and current (usually dynamic) values of each of these properties.

An enumeration of all the possible states of an object. The state space of a
software object encompasses an indefinite yet finite number of possible
(although not always desirable nor expected) states.

Binding denotes the association of a name (such as a variable declaration) with
a class; static binding is a binding in which the name/class association is made
when the name is declared (at compile time) but before the creation of the
object that the name designates.

Glossary 105

strongly typed

structure

subclass

superclass

thread of control

type

typing

User Context

106

A characteristic of a programming language, according to which all
expressions are guaranteed to be type-consistent.

The concrete representation of the state of an object. An object does not share
its state with any other object, although all objects of the same class do share
the same representation of their state

A class that inherits from one or more classes, which are called its immediate
superclass.

The class from which another class inherits, the inheriting class is referred to as
a subclass.

A single process, the start of a thread of control is not the root from which
independent dynamic action within a system occurs; a given system may have
many simultaneous threads of control, some of which may dynamically come
into existence and then cease to exist. Systems executing across multiple CPUs
allow for true concurrent threads of control, whereas systems running on
single CPU can only achieve the illusion of concurrent threads of control.

The definition of the domain of allowable values that an object may possess
and the set of operations that may be performed upon the object. The terms
class and type are usually (but not always) interchangeable; a type is a slightly
different concept than a class, in that it emphasizes the importance of enforcing
the type of the object.

The enforcement of the class of an object, which prevents objects of different
types from being interchanged or, at the most, allows them to be interchanged
only in very restricted ways. Typing is one of the fundamental elements of the
object model.

The user context contains information that is related to a user’s registration
such as, user capabilities, user role, default address, and default time-out
values.

Solstice CMIP Programmer’s Guide—April 1996

workspace
A workspace is allocated storage that contains one or more package-closures,
together with an implementation of the systems management data abstraction
services. It supports all the OM classes of OM objects in the package-closure.

Glossary 107

108 Solstice CMIP Programmer’s Guide—April 1996

Index

A

abstraction, 3,13
access method, 2
ACM (automated connection
management), 88, 89

agent, 1,13
algorithms, 12
arguments, 6
association context, 19
association management, 18
asynchronous operation, 58
attribute

defined, 4

of managed object, 3

of managed resource, 10
attribute for default session object, 61
attribute value assertion (AVA), 9
attributes for context objects, 62
automated connection management

(ACM), 88, 89

AVA (attribute value assertion), 9

B

bad address, 50
base managed object, 11
behavior, 3,5

block diagram
Addressing Schema, 69
Global Architecture Overview, 17
Loopback to osimcs, 57
Loopback to Transport Layer, 57

Boolean expression, 12

C

CFLAGS 72

characteristics, 4

classification, 5

CMIP (common management information

protocol), 1
messages, 5
CMIS (common management information
service), 1, 15,20
service primitives, 4
common management information
protocol (CMIP), 1
messages, 5

common management information service
(CMIS), 1,15,20
service primitives, 4
common management service package, 65
compile, 72
concurrent sessions, 60
conditional package, 4,5

109

110

connection management, 56
constraints, 5
containment hierarchy, 9, 10, 13
context object, 62

default, 63

current status, 4
current time, 26

D

default context object, 63
default session object, 61
definition of the session class, 61
dependencies, 5
device-dependent protocol, 2
directives, 2

distinguished name (DN), 9

E

encapsulation, 3,13
entry, in management information tree
(MIT), 10
error
MULTIPLE-REPLY-ERRORS, 60
SIZE-LIMIT-REACHED, 60
TIME-LIMIT-EXCEEDED, 60

error codes, 59
external events, 5

F
filter, 12

H

hierarchy, object containment, 9, 10, 13
higher-level system, 2

|

inactivity time, 18
include files, 72
information hierarchy, 4

Solstice CMIP Programmer’s Guide—April 1996

inheritance, managed object class, 6

instance, 5, 13

Inter Process Communication (IPC), 16

internal events, 5

International Telecommunications Union
(ITU-T), 7

IPC (Inter Process Communication), 16

ISO registration tree, 6

ITU-T (International Telecommunications
Union), 7

ITU-T X.701/1SO-10040 System
Management Overview, 7

ITU-T X.711/1SO-9596-1 Common
Management Information
Protocol Specification, 7

ITU-T X.720/1S0O-10165-1 Management
Information Model, 6,7

ITU-T X.730/1SO-10164-1 Object
Management Function, 7

L

LDFLAGS 72
libxmp.so , 71
libxom.so , 71
limitation

context object attributes, 93
interface objects, 93
security, 92
session object attributes, 93
linked replies, 13
loopback, 56
lower-level system, 2

M

managed
object, 3,13
resource, 10
system, 2, 10
management
directives, 1
operation, 3,13

protocol, 1
service, 1
management communication service
(MCS), 15, 18, 56
management information tree (MIT), 10,
13
nodes, 10
management service, common, 65
manager, 1, 13
managing
process, 5,13
MCS (management communication
service), 15, 18,56
messages, CMIP, 5
MIT (management information tree), 10
mp_abandon() function, 45
mp_abort_req() function, 46
mp_assoc_req() function, 46
mp_assoc_rsp() function, 46
mp_bind() function, 45
rules for, 49
mp_error_message()
mp_get_assoc_info()
mp_get_last_error()
mp_initialize()
mp_negotiate() function, 46
mp_receive() function, 45
mp_release_req() function, 46
mp_release_rsp() function, 46
mp_shutdown() function, 46
mp_unbind() function, 45
mp_validate_object() function, 45
mp_wait() function, 45

function, 45
function, 45
function, 45

function, 45,55

N

name binding, 9

name, of attribute, 4

naming attribute, 9

nodes, management information tree
(MIT), 10

notification, 3,5

Index

@)

object
class, 5, 13
containment hierarchy, 9, 10, 13
definition, 3
entries, 10
instance, 5, 6, 13
method, 3,5
naming, 9, 13
system, 10
top class, 6
object identifier (OID), 6,7
Open Systems Interconnection (OSI)
systems management model, 1
operations, 4, 13
OSI (Open Systems Interconnection)
systems management model, 1
osimecsd process, 16

P

package, 5
conditional, 4,5

protocol
device-dependent, 2
management, 1

R

registration tree, 6

relative distinguished name (RDN), 9
responder address attribute, 67
restrictions, 6

rules for mp_bind() , 49

S
scoped objects, 13
scoping, 11

search algorithms, 12
service primitives, 4
session, 60

session class definition, 61

111

session objects, 60

shared libraries, 71
software abstraction, 3, 13
Specialized Session, 67
subclass, 6

subtree, 11

superclass, 6

superior object, 10
synchronous operation, 58
system object, 10

systems management model, 1

T

top object class, 6
type, of attribute, 4

U

user context, 19

\Y4

values, of attribute, 4

W

workspace, 55

X

XMP
functions, 45
services, 18

112 Solstice CMIP Programmer’s Guide—April 1996

