Numerical Computation Guide
Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Intel is a registered trademark of Intel Corporation. PowerPC is a trademark of International Business Machines Corporation.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
Contents

Preface. .. xv

1. Introduction .. 1
 Floating-Point Environment 1

2. IEEE Arithmetic. 3
 IEEE Arithmetic Model 3
 What Is IEEE Arithmetic? 3
 IEEE Formats 5
 Storage Formats 5
 Single Format 6
 Double Format 8
 Double-Extended Format (SPARC and PowerPC) 12
 Double-Extended Format (Intel) 14
 Ranges and Precisions in Decimal Representation 18
 Underflow .. 22
 Underflow Thresholds 22
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Does IEEE Arithmetic Treat Underflow?</td>
<td>23</td>
</tr>
<tr>
<td>Why Gradual Underflow?</td>
<td>24</td>
</tr>
<tr>
<td>Error Properties of Gradual Underflow</td>
<td>25</td>
</tr>
<tr>
<td>Two Examples of Gradual Underflow Versus Store 0</td>
<td>28</td>
</tr>
<tr>
<td>Does Underflow Matter?</td>
<td>29</td>
</tr>
<tr>
<td>3. The Math Libraries</td>
<td>31</td>
</tr>
<tr>
<td>Standard Math Library</td>
<td>32</td>
</tr>
<tr>
<td>Additional Math Libraries</td>
<td>33</td>
</tr>
<tr>
<td>Sun Math Library</td>
<td>33</td>
</tr>
<tr>
<td>Optimized Libraries</td>
<td>35</td>
</tr>
<tr>
<td>Vector Math Library (SPARC only)</td>
<td>36</td>
</tr>
<tr>
<td>Single, Double, and Long Double Precision</td>
<td>37</td>
</tr>
<tr>
<td>IEEE Support Functions</td>
<td>38</td>
</tr>
<tr>
<td>ieee_functions(3m) and ieee_sun(3m)</td>
<td>38</td>
</tr>
<tr>
<td>ieee_values(3m)</td>
<td>40</td>
</tr>
<tr>
<td>ieee_flags(3m)</td>
<td>42</td>
</tr>
<tr>
<td>ieee_retrospective(3m)</td>
<td>44</td>
</tr>
<tr>
<td>nonstandard_arithmetic(3m)</td>
<td>46</td>
</tr>
<tr>
<td>Implementation Features of libm and libsunmath</td>
<td>47</td>
</tr>
<tr>
<td>About the Algorithms</td>
<td>47</td>
</tr>
<tr>
<td>Argument Reduction for Trigonometric Functions</td>
<td>48</td>
</tr>
<tr>
<td>Data Conversion Routines</td>
<td>49</td>
</tr>
<tr>
<td>Random Number Facilities</td>
<td>49</td>
</tr>
<tr>
<td>libc Support Functions</td>
<td>50</td>
</tr>
</tbody>
</table>
Base Conversion ... 50

4. **Exceptions and Exception Handling** 53
 - What Is an Exception? 54
 - Notes for Table 4-1 56
 - Detecting Exceptions 58
 - ieee_flags (3m) 59
 - Locating an Exception 61
 - Using the Debuggers to Locate an Exception 62
 - Using a Signal Handler to Locate an Exception .. 69
 - ieee_handler (3m) 70
 - Handling Exceptions 76
 - A. Examples ... 91

 A. **Examples** ... 91
 - IEEE Arithmetic 91
 - Examining Stored IEEE hexadecimal Representations ... 92
 - The Math Libraries 94
 - Random Number Generator 94
 - ieee_values .. 101
 - ieee_flags — Rounding Direction 104
 - Exceptions and Exception Handling 106
 - ieee_flags — Accrued Exceptions 106
 - ieee_handler — Trapping Exceptions 111
 - ieee_handler — Abort on Exceptions 119
 - Miscellaneous .. 120
 - sigfpe — Trapping Integer Exceptions 120
Contents

Relative Error and Ulps................................. 154
Guard Digits... 156
Cancellation... 157
Exactly Rounded Operations......................... 163
The IEEE Standard...................................... 167
Formats and Operations............................... 168
Special Quantities...................................... 175
NaNs.. 176
Exceptions, Flags and Trap Handlers................. 183
Systems Aspects.. 189
Instruction Sets.. 190
Languages and Compilers.............................. 192
Exception Handling..................................... 201
The Details.. 203
Rounding Error... 203
Binary to Decimal Conversion......................... 214
Errors In Summation.................................... 216
Summary.. 217
Acknowledgments....................................... 218
References.. 218
Theorem 14 and Theorem 8............................ 221
Theorem 14.. 221
Proof... 221
F. Standards Compliance............................... 227
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID History</td>
<td>227</td>
</tr>
<tr>
<td>IEEE 754 History</td>
<td>228</td>
</tr>
<tr>
<td>SVID Future Directions</td>
<td>228</td>
</tr>
<tr>
<td>SVID Implementation</td>
<td>229</td>
</tr>
<tr>
<td>General Notes on Exceptional Cases and <code>libm</code> Functions</td>
<td>231</td>
</tr>
<tr>
<td>Notes on <code>libm</code></td>
<td>232</td>
</tr>
<tr>
<td>LIA-1 Conformance</td>
<td>233</td>
</tr>
<tr>
<td>G. References</td>
<td>237</td>
</tr>
<tr>
<td>Chapter 2: “IEEE Arithmetic”</td>
<td>238</td>
</tr>
<tr>
<td>Chapter 3: “The Math Libraries”</td>
<td>239</td>
</tr>
<tr>
<td>Chapter 4: “Exceptions and Signal Handling”</td>
<td>240</td>
</tr>
<tr>
<td>Appendix B: “SPARC Behavior and Implementation”</td>
<td>240</td>
</tr>
<tr>
<td>Appendix D: “PowerPC Behavior and Implementation”</td>
<td>240</td>
</tr>
<tr>
<td>Standards</td>
<td>241</td>
</tr>
<tr>
<td>Test Programs</td>
<td>241</td>
</tr>
<tr>
<td>Glossary</td>
<td>243</td>
</tr>
<tr>
<td>Index</td>
<td>265</td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1</td>
<td>Single-Storage Format</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>Double-Storage Format</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>Double-Extended Format (SPARC and PowerPC)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Double-Extended Format (Intel)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Comparison of a Set of Numbers Defined by Digital and Binary Representation</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>Number Line</td>
<td>26</td>
</tr>
<tr>
<td>Figure B-1</td>
<td>SPARC Floating-Point Status Register</td>
<td>134</td>
</tr>
<tr>
<td>Figure E-1</td>
<td>Normalized numbers when $b = 2, p = 3, emin = -1, emax = 2$</td>
<td>154</td>
</tr>
<tr>
<td>Figure E-2</td>
<td>Flush To Zero Compared With Gradual Underflow</td>
<td>182</td>
</tr>
</tbody>
</table>
Tables

<p>| Table 2-1 | IEEE Formats and Language Types | 5 |
| Table 2-2 | Values Represented by Bit Patterns in IEEE Single Format | 6 |
| Table 2-3 | Bit Patterns in Single-Storage Format and their IEEE Values | 8 |
| Table 2-4 | Values Represented by Bit Patterns in IEEE Double Format | 10 |
| Table 2-5 | Bit Patterns in Double-Storage Format and their IEEE Values | 11 |
| Table 2-6 | Values Represented by Bit Patterns (SPARC and PowerPC) | 13 |
| Table 2-7 | Bit Patterns in Double-Extended Format (SPARC and PowerPC) | 14 |
| Table 2-8 | Values Represented by Bit Patterns (Intel) | 16 |
| Table 2-9 | Bit Patterns in Double-Extended Format and their Values (Intel) | 17 |
| Table 2-10 | Range and Precision of Storage Formats | 22 |
| Table 2-11 | Underflow Thresholds | 22 |
| Table 2-12 | (ulp) Values | 25 |
| Table 2-13 | Gaps Between Representable Single-Format Floating-Point Numbers | 26 |
| Table 3-1 | Contents of \texttt{libm} | 32 |
| Table 3-2 | Contents of \texttt{libsunmath} | 34 |
| Table 3-3 | Contents of \texttt{libmvec} | 36 |
| Table 3-4 | Calling Single, Double, and Quadruple Functions | 37 |
| Table 3-5 | <code>ieee_functions(3m)</code> | 38 |
| Table 3-6 | <code>ieee_sun(3m)</code> | 39 |
| Table 3-7 | Calling <code>ieee_functions</code> from FORTRAN | 39 |
| Table 3-8 | Calling <code>ieee_sun</code> from FORTRAN | 39 |
| Table 3-9 | IEEE Values: Single Precision | 40 |
| Table 3-10 | IEEE Values: Double Precision | 41 |
| Table 3-11 | IEEE Values: Quadruple Precision (SPARC and PowerPC) | 41 |
| Table 3-12 | IEEE Values: Double Extended Precision (Intel) | 42 |
| Table 3-13 | Parameter Values for <code>ieee_flags</code> | 43 |
| Table 3-14 | <code>ieee_flags</code> Input Values for the Rounding Direction | 44 |
| Table 3-15 | Interval for Single-Value Random Number Generators | 50 |
| Table 4-1 | IEEE Floating-Point Exceptions | 55 |
| Table 4-2 | Unordered Comparisons | 57 |
| Table 4-3 | Exception Bits | 60 |
| Table 4-4 | Types for Arithmetic Exceptions | 73 |
| Table A-1 | Some Debugging Commands (SPARC) | 125 |
| Table A-2 | Some Debugging Commands (Intel) | 126 |
| Table A-3 | Some Debugging Commands (PowerPC) | 126 |
| Table B-1 | SPARC Floating-Point Options | 132 |
| Table B-2 | Exception Handling Fields | 135 |
| Table E-1 | IEEE 754 Format Parameters | 169 |
| Table E-2 | IEEE 754 Special Values | 175 |
| Table E-3 | Operations That Produce a NaN | 177 |
| Table E-4 | Exceptions in IEEE 754* | 184 |</p>
<table>
<thead>
<tr>
<th>Table F-1</th>
<th>Exceptional Cases and \texttt{libm} Functions</th>
<th>229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table F-2</td>
<td>LIA-1 Conformance - Notation</td>
<td>234</td>
</tr>
</tbody>
</table>
Preface

Purpose

This manual describes the floating-point software and hardware for the SPARC®, Intel®, and PowerPC™ (processor-based system) architectures. It is primarily a reference manual designed to accompany Sun™ language products.

Certain aspects of the IEEE Standard for Binary Floating-Point Arithmetic are discussed in this manual. To learn about IEEE arithmetic, see the 18-page Standard. See Appendix G, “References,” on page 237, for a brief bibliography on IEEE arithmetic.

This guide describes the floating-point environment supported through a combination of software and hardware by the Solaris operating system running on SPARC, Intel, and PowerPC systems. This guide refers to compiler products that are components of the Sun WorkShop Compilers™ 4.2 release.

Operating Environments

Sun WorkShop Compilers 4.2, described here, run under Solaris 2.x operating environment for SPARC, Intel, and PowerPC systems.
Audience

This manual is written for those who develop, maintain, and port mathematical and scientific applications or benchmarks. Before using this manual, you should be familiar with the programming language used (FORTRAN, C, etc.), dbx (the source-level debugger), and the operating system commands and concepts.

Organization

- **Chapter 1, “Introduction,”** introduces the floating-point environment.
- **Chapter 2, “IEEE Arithmetic,”** describes the IEEE arithmetic model, IEEE formats, and underflow.
- **Chapter 3, “The Math Libraries,”** describes the mathematics libraries provided with Sun WorkShop Compilers 4.2.
- **Chapter 4, “Exceptions and Exception Handling,”** describes exceptions and shows how to detect, locate, and handle them.
- **Appendix A, “Examples,”** contains example programs.
- **Appendix B, “SPARC Behavior and Implementation,”** describes the floating-point hardware options for SPARC workstations.
- **Appendix C, “Intel Behavior and Implementation,”** lists Intel and SPARC compatibility issues related to the floating-point units used in Intel systems.
- **Appendix D, “PowerPC Behavior and Implementation,”** discusses features and compatibility issues specific to the floating-point arithmetic implemented in PowerPC systems.
- **Appendix E, “What Every Computer Scientist Should Know About Floating Point Arithmetic,”** is an edited reprint of a paper by David Goldberg that is a tutorial on floating-point arithmetic.
- **Appendix F, “Standards Compliance,”** discusses standards compliance.
- **Appendix G, “References,”** includes a list of references and related documentation.
- **“Glossary,”** contains a definition of terms.

The examples in this manual are in C and FORTRAN, but the concepts apply for either compiler on a SPARC, Intel, or PowerPC system.
The David Goldberg paper is now Appendix E, “What Every Computer Scientist Should Know About Floating Point Arithmetic,” in this guide.

Typographic Convention

The following table describes the typographic conventions used in this book.

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% You have mail.</td>
</tr>
</tbody>
</table>
| AaBbCc123 | What you type, contrasted with on-screen computer output | machine_name% su
Password: |
| AaBbCc123 | Command-line placeholder: replace with a real name or value | To delete a file, type rm filename. |
| AaBbCc123 | Book titles, new words or terms, or words to be emphasized | Read Chapter 6 in User’s Guide. These are called class options. You must be root to do this. |

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td>#</td>
</tr>
</tbody>
</table>
Introduction

Sun’s floating-point environment on SPARC, Intel, and PowerPC™, systems enables you to develop robust, high-performance, portable numerical applications. The floating-point environment can also help investigate unusual behavior of numerical programs written by others. These systems implement the arithmetic model specified by IEEE Standard 754 for Binary Floating Point Arithmetic. This manual explains how to use the options and flexibility provided by the IEEE Standard on these systems.

Floating-Point Environment

The floating-point environment consists of data structures and operations made available to the applications programmer by hardware, system software, and software libraries that together implement IEEE Standard 754. IEEE Standard 754 makes it easier to write numerical applications. It is a solid, well-thought-out basis for computer arithmetic that advances the art of numerical programming.

For example, the hardware provides storage formats corresponding to the IEEE data formats, operations on data in such formats, control over the rounding of results produced by these operations, status flags indicating the occurrence of IEEE numeric exceptions, and the IEEE-prescribed result when such an exception occurs in the absence of a user-defined handler for it. System software supports IEEE exception handling. The software libraries, including the math libraries, libm and libsunmath, implement functions such as \(\exp(x) \) and \(\sin(x) \) in a way that follows the spirit of IEEE Standard 754 with respect to the raising of exceptions. (When a floating-point arithmetic
operation has no well-defined result, the system communicates this fact to the user by raising an exception.) The math libraries also provide function calls that handle special IEEE values like Inf (infinity) or NaN (Not a Number).

The three constituents of the floating-point environment interact in subtle ways, and those interactions are generally invisible to the applications programmer. The programmer sees only the computational mechanisms prescribed or recommended by the IEEE standard. In general, this manual guides programmers to make full and efficient use of the IEEE mechanisms so that they can write application software effectively.

Many questions about floating-point arithmetic concern elementary operations on numbers. For example,

- What is the result of an operation when the infinitely precise result is not representable in the computer system?
- Are elementary operations like multiplication and addition commutative?

Another class of questions is connected to exceptions and exception handling. For example, what happens when you:

- Multiply two very large numbers?
- Divide by zero?
- Attempt to compute the square root of a negative number?

In some other arithmetics, the first class of questions might not have the expected answers, or the exceptional cases in the second class are treated the same: the program aborts on the spot; in some very old machines, the computation proceeds, but with garbage.

The IEEE Standard 754 ensures that operations yield the mathematically expected results with the expected properties. It also ensures that exceptional cases yield specified results, unless the user specifically makes other choices.

In this manual, there are references to terms like NaN or subnormal number. The “Glossary” on page 243, defines terms related to floating-point arithmetic.
This chapter discusses the IEEE Standard 754, the arithmetic model specified by the IEEE Standard for Binary Floating-Point Arithmetic. All SPARC, Intel, and PowerPC computers use IEEE arithmetic. All Sun compiler products support the features of IEEE arithmetic.

This chapter is organized into the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Arithmetic Model</td>
<td>3</td>
</tr>
<tr>
<td>IEEE Formats</td>
<td>5</td>
</tr>
<tr>
<td>Underflow</td>
<td>22</td>
</tr>
</tbody>
</table>

IEEE Arithmetic Model

This section describes the IEEE Standard 754 specification.

What Is IEEE Arithmetic?

The IEEE Standard 754 specifies:

- Two basic floating-point formats: *single* and *double*.

The IEEE single format has a precision of 24 bits (24-bit significands), and 32 bits overall. The IEEE double format has a precision of 53 bits, and 64 bits overall.
• Two classes of extended floating-point formats: *single extended* and *double extended*.

Any format in the class of IEEE double extended formats has a precision at least of 64 bits, and at least 79 bits overall.

• Accuracy requirements on floating-point operations: *add*, *subtract*, *multiply*, *divide*, *square root*, *remainder*, *round numbers in floating-point format to integer values*, *convert between different floating-point formats*, *convert between floating-point and integer formats*, and *compare*.

The remainder and compare operations must be exact. Each of the other operations must deliver to its destination the exact result, unless there is no such result; or that result does not fit in the destination’s format. In the latter case, the operation must minimally modify the exact result according to the rules of prescribed rounding modes, presented below, and deliver the result so modified to the operation’s destination.

• Accuracy, monotonicity and identity requirements for conversions between decimal strings and binary floating-point numbers in either of the basic floating-point formats.

For operands lying within specified ranges, these conversions must produce exact results, if possible, or minimally modify such exact results in accordance with the rules of the prescribed rounding modes. For operands not lying within the specified ranges, these conversions must produce results that differ from the exact result by no more than a specified tolerance that depends on the rounding mode.

• Five types of IEEE floating-point exceptions, and the conditions for indicating to the user the occurrence of exceptions of these types.

The five types of floating-point exceptions are *invalid operation*, *division by zero*, *overflow*, *underflow*, and *inexact*.

• Four rounding directions: *toward the nearest representable value*, with “even” values preferred whenever there are two nearest representable values; *toward −∞* (down); *toward +∞* (up); and *toward 0* (chop).

• Rounding precision; for example, if a system delivers results in double extended format, the user should be able to specify that such results are to be rounded to the precision of either basic format, with trailing zeros.
The Standard supports user handling of exceptions, rounding, and precision. Consequently, the Standard supports interval arithmetic, and diagnosis of anomalies. The IEEE Standard 754 makes it possible to standardize elementary functions like \(\exp \) and \(\cos \), to create very high-precision arithmetic, and to couple numerical and symbolic algebraic computation.

IEEE Standard 754 floating-point arithmetic offers users greater control over computation than does any other kind of floating-point arithmetic. The IEEE Standard 754 simplifies the task of writing numerically sophisticated, portable programs not only by imposing rigorous requirements on conforming implementations. The Standard also allows such implementations to provide refinements and enhancements to the Standard itself.

IEEE Formats

This section describes how floating-point data is stored in memory. It summarizes the precisions and ranges of the different IEEE storage formats.

Storage Formats

A floating-point format is a data structure specifying the fields that comprise a floating-point numeral, the layout of those fields, and their arithmetic interpretation. A floating-point storage format specifies how a floating-point format is stored in memory. The IEEE standard defines the formats, but it leaves to implementors the choice of storage formats.

Assembly language software sometimes relies on using the storage formats, but higher level languages usually deal only with the linguistic notions of floating-point data types. These types have different names in different high-level languages, and correspond to the IEEE formats as shown in Table 2-1.

<table>
<thead>
<tr>
<th>IEEE Precision</th>
<th>C, C++</th>
<th>FORTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>float</td>
<td>REAL or REAL*4</td>
</tr>
<tr>
<td>double</td>
<td>double</td>
<td>DOUBLE PRECISION or REAL*8</td>
</tr>
<tr>
<td>double extended</td>
<td>long double</td>
<td>REAL*16 [SPARC and PowerPC only]</td>
</tr>
</tbody>
</table>
IEEE Standard 754 specifies exactly the single and double floating-point formats, and it defines a class of extended formats for each of these two basic formats. The format called double extended in Table 2-1 is one of the class of double extended formats defined by the IEEE standard.

The following sections describe in detail each of the three storage formats used for the IEEE floating-point formats.

Single Format

The IEEE single format consists of three fields: a 23-bit fraction, \(f \); an 8-bit biased exponent, \(e \); and a 1-bit sign, \(s \). These fields are stored contiguously in one 32-bit word, as shown in Figure 2-1. Bits 0:22 contain the 23-bit fraction, \(f \), with bit 0 being the least significant bit of the fraction and bit 22 being the most significant; bits 23:30 contain the 8-bit biased exponent, \(e \), with bit 23 being the least significant bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31 contains the sign bit, \(s \).

Figure 2-1 Single-Storage Format

Table 2-2 shows the correspondence between the values of the three constituent fields \(s \), \(e \), and \(f \), on the one hand, and the value represented by the single-format bit pattern on the other; \(u \) means *don’t care*, that is, the value of the indicated field is irrelevant to the determination of the value of the particular bit patterns in single format.

Table 2-2 Values Represented by Bit Patterns in IEEE Single Format

<table>
<thead>
<tr>
<th>Single-Format Bit Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < (e) < 255</td>
<td>((-1)^s \times 2^{e-127} \times 1.f) (normal numbers)</td>
</tr>
<tr>
<td>(e = 0; f \neq 0)</td>
<td>((-1)^s \times 2^{-126} \times 0.f) (subnormal numbers)</td>
</tr>
<tr>
<td>(at least one bit in (f) is nonzero)</td>
<td></td>
</tr>
<tr>
<td>(e = 0; f = 0)</td>
<td>((-1)^s \times 0.0) (signed zero)</td>
</tr>
<tr>
<td>(all bits in (f) are zero)</td>
<td></td>
</tr>
</tbody>
</table>
Notice that when $e < 255$, the value assigned to the single format bit pattern is formed by inserting the binary radix point immediately to the left of the fraction’s most significant bit, and inserting an implicit bit immediately to the left of the binary point, thus representing in binary positional notation a mixed number (whole number plus fraction, wherein $0 \leq \text{fraction} < 1$).

The mixed number thus formed is called the *single-format significand*. The implicit bit is so named because its value is not explicitly given in the single-format bit pattern, but is implied by the value of the biased exponent field.

For the single format, the difference between a normal number and a subnormal number is that the leading bit of the significand (the bit to left of the binary point) of a normal number is 1, whereas the leading bit of the significand of a subnormal number is 0. Single-format subnormal numbers were called single-format denormalized numbers in IEEE Standard 754.

The 23-bit fraction combined with the implicit leading significand bit provides 24 bits of precision in single-format normal numbers.

Examples of important bit patterns in the single-storage format are shown in Table 2-3. The maximum positive normal number is the largest finite number representable in IEEE single format. The minimum positive subnormal number is the smallest positive number representable in IEEE single format. The minimum positive normal number is often referred to as the underflow.
threshold. (The decimal values for the maximum and minimum normal and subnormal numbers are approximate; they are correct to the number of figures shown.)

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Bit Pattern (Hex)</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0</td>
<td>00000000</td>
<td>0.0</td>
</tr>
<tr>
<td>− 0</td>
<td>80000000</td>
<td>−0.0</td>
</tr>
<tr>
<td>1</td>
<td>3f800000</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>40000000</td>
<td>2.0</td>
</tr>
<tr>
<td>maximum normal number</td>
<td>7f7effeff</td>
<td>3.40282347e+38</td>
</tr>
<tr>
<td>minimum positive normal number</td>
<td>00800000</td>
<td>1.17549435e−38</td>
</tr>
<tr>
<td>maximum subnormal number</td>
<td>007effeff</td>
<td>1.17549421e−38</td>
</tr>
<tr>
<td>minimum positive subnormal number</td>
<td>00000001</td>
<td>1.40129846e−45</td>
</tr>
<tr>
<td>+∞</td>
<td>7f800000</td>
<td>Infinity</td>
</tr>
<tr>
<td>−∞</td>
<td>ff800000</td>
<td>−Infinity</td>
</tr>
<tr>
<td>Not-a-Number</td>
<td>7fc00000</td>
<td>NaN</td>
</tr>
</tbody>
</table>

A NaN (Not a Number) can be represented with any of the many bit patterns that satisfy the definition of a NaN. The hex value of the NaN shown in Table 2-3 is just one of the many bit patterns that can be used to represent a NaN.

Double Format

The IEEE double format consists of three fields: a 52-bit fraction, f; an 11-bit biased exponent, e; and a 1-bit sign, s. These fields are stored contiguously in two successively addressed 32-bit words, as shown in Figure 2-2.

In the SPARC architecture, the higher address 32-bit word contains the least significant 32 bits of the fraction, while in the Intel and PowerPC architectures the lower address 32-bit word contains the least significant 32 bits of the fraction.
If we denote $f[31:0]$ the least significant 32 bits of the fraction, then bit 0 is the least significant bit of the entire fraction and bit 31 is the most significant of the 32 least significant fraction bits.

In the other 32-bit word, bits 0:19 contain the 20 most significant bits of the fraction, $f[51:32]$, with bit 0 being the least significant of these 20 most significant fraction bits, and bit 19 being the most significant bit of the entire fraction; bits 20:30 contain the 11-bit biased exponent, e, with bit 20 being the least significant bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31 contains the sign bit, s.

Figure 2-2 numbers the bits as though the two contiguous 32-bit words were one 64-bit word in which bits 0:51 store the 52-bit fraction, f; bits 52:62 store the 11-bit biased exponent, e; and bit 63 stores the sign bit, s.

The values of the bit patterns in these three fields determine the value represented by the overall bit pattern.
Table 2-4 shows the correspondence between the values of the bits in the three constituent fields, on the one hand, and the value represented by the double-format bit pattern on the other; *u* means *don’t care*, because the value of the indicated field is irrelevant to the determination of value for the particular bit pattern in double format.

Table 2-4 Values Represented by Bit Patterns in IEEE Double Format

<table>
<thead>
<tr>
<th>Double-Format Bit Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < e < 2047</td>
<td>((-1)^s \times 2^{e-1023} \times 1.f) (normal numbers)</td>
</tr>
<tr>
<td>e = 0; f ≠ 0</td>
<td>((-1)^s \times 2^{-1022} \times 0.f) (subnormal numbers)</td>
</tr>
<tr>
<td>(at least one bit in f is nonzero)</td>
<td></td>
</tr>
<tr>
<td>e = 0; f = 0</td>
<td>((-1)^s \times 0.0) (signed zero)</td>
</tr>
<tr>
<td>(all bits in f are zero)</td>
<td></td>
</tr>
<tr>
<td>s = 0; e = 2047; f = 0</td>
<td>+INF (positive infinity)</td>
</tr>
<tr>
<td>(all bits in f are zero)</td>
<td></td>
</tr>
<tr>
<td>s = 1; e = 2047; f = 0</td>
<td>–INF (negative infinity)</td>
</tr>
<tr>
<td>(all bits in f are zero)</td>
<td></td>
</tr>
<tr>
<td>s = u; e = 2047; f ≠ 0</td>
<td>NaN (Not-a-Number)</td>
</tr>
<tr>
<td>(at least one bit in f is nonzero)</td>
<td></td>
</tr>
</tbody>
</table>

Notice that when *e* < 2047, the value assigned to the double-format bit pattern is formed by inserting the binary radix point immediately to the left of the fraction’s most significant bit, and inserting an implicit bit immediately to the left of the binary point. The number thus formed is called the *significand*. The implicit bit is so named because its value is not explicitly given in the double-format bit pattern, but is implied by the value of the biased exponent field.

For the double format, the difference between a normal number and a subnormal number is that the leading bit of the significand (the bit to the left of the binary point) of a normal number is 1, whereas the leading bit of the significand of a subnormal number is 0. Double-format subnormal numbers were called double-format denormalized numbers in IEEE Standard 754.

The 52-bit fraction combined with the implicit leading significand bit provides 53 bits of precision in double-format normal numbers.

Examples of important bit patterns in the double-storage format are shown in Table 2-5. The bit patterns in the second column appear as two 8-digit hexadecimal numbers. For the SPARC architecture, the left one is the value of...
the lower addressed 32-bit word, and the right one is the value of the higher addressed 32-bit word, while for the Intel and PowerPC architectures, the left one is the higher addressed word, and the right one is the lower addressed word. The maximum positive normal number is the largest finite number representable in the IEEE double format. The minimum positive subnormal number is the smallest positive number representable in IEEE double format. The minimum positive normal number is often referred to as the underflow threshold. (The decimal values for the maximum and minimum normal and subnormal numbers are approximate; they are correct to the number of figures shown.)

Table 2-5 Bit Patterns in Double-Storage Format and their IEEE Values

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Bit Pattern (Hex)</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0</td>
<td>00000000 00000000</td>
<td>0.0</td>
</tr>
<tr>
<td>- 0</td>
<td>80000000 00000000</td>
<td>-0.0</td>
</tr>
<tr>
<td>1</td>
<td>3ff00000 00000000</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>40000000 00000000</td>
<td>2.0</td>
</tr>
<tr>
<td>max normal number</td>
<td>7fefffff ffffffff</td>
<td>1.7976931348623157×10^308</td>
</tr>
<tr>
<td>min positive normal number</td>
<td>00100000 00000000</td>
<td>2.2250738585072014×10^-308</td>
</tr>
<tr>
<td>max subnormal number</td>
<td>000fffff ffffffff</td>
<td>2.2250738585072009×10^-308</td>
</tr>
<tr>
<td>min positive subnormal number</td>
<td>00000000 00000001</td>
<td>4.9406564584124655×10^-324</td>
</tr>
<tr>
<td>+∞</td>
<td>7f800000 00000000</td>
<td>Infinity</td>
</tr>
<tr>
<td>-∞</td>
<td>fff00000 00000000</td>
<td>-Infinity</td>
</tr>
<tr>
<td>Not-a-Number</td>
<td>fff80000 00000000</td>
<td>NaN</td>
</tr>
</tbody>
</table>

A NaN (Not a Number) can be represented by any of the many bit patterns that satisfy the definition of NaN. The hex values of the NaN shown in Table 2-5 is just one of the many bit patterns that can be used to represent a NaN.
Double-Extended Format (SPARC and PowerPC)

These floating-point environment’s quadruple-precision format conforms to the IEEE definition of double-extended format. The quadruple-precision format occupies four 32-bit words and consists of three fields: a 112-bit fraction, \(f \); a 15-bit biased exponent, \(e \); and a 1-bit sign, \(s \). These are stored contiguously as shown in Figure 2-3.

In the SPARC architecture, the highest addressed 32-bit word contains the least significant 32-bits of the fraction, denoted \(f[31:0] \), while in the PowerPC architecture, the lowest addressed 32-bit word contains these bits. The next two 32-bit words (counting downwards on SPARC architecture and upwards on PowerPC architectures) contain \(f[63:32] \) and \(f[95:64] \), respectively. Bits 0:15 of the next word contain the 16 most significant bits of the fraction, \(f[111:96] \), with bit 0 being the least significant of these 16 bits, and bit 15 being the most significant bit of the entire fraction. Bits 16:30 contain the 15-bit biased exponent, \(e \), with bit 16 being the least significant bit of the biased exponent and bit 30 being the most significant; and bit 31 contains the sign bit, \(s \).

Figure 2-3 numbers the bits as though the four contiguous 32-bit words were one 128-bit word in which bits 0:111 store the fraction, \(f \); bits 112:126 store the 15-bit biased exponent, \(e \); and bit 127 stores the sign bit, \(s \).
The values of the bit patterns in the three fields \(f, e, \) and \(s \), determine the value represented by the overall bit pattern.

Table 2-6 shows the correspondence between the values of the three constituent fields and the value represented by the bit pattern in quadruple-precision format. \(u \) means don’t care, because the value of the indicated field is irrelevant to the determination of values for the particular bit patterns.

Table 2-6 Values Represented by Bit Patterns (SPARC and PowerPC)

<table>
<thead>
<tr>
<th>Double-Extended Bit Pattern (SPARC, PowerPC)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < e < 32767)</td>
<td>((-1)^s \times 2^{e-16383} \times 1.f) (normal numbers)</td>
</tr>
<tr>
<td>(e = 0, f \neq 0) (at least one bit in (f) is nonzero)</td>
<td>((-1)^s \times 2^{-16382} \times 0.f) (subnormal numbers)</td>
</tr>
<tr>
<td>(e = 0, f = 0) (all bits in (f) are zero)</td>
<td>((-1)^s \times 0.0) (signed zero)</td>
</tr>
<tr>
<td>(s = 0, e = 32767, f = 0) (all bits in (f) are zero)</td>
<td>+INF (positive infinity)</td>
</tr>
<tr>
<td>(s = 1, e = 32767; f = 0) (all bits in (f) are zero)</td>
<td>-INF (negative infinity)</td>
</tr>
<tr>
<td>(s = u, e = 32767, f \neq 0) (at least one bit in (f) is nonzero)</td>
<td>NaN (Not-a-Number)</td>
</tr>
</tbody>
</table>

Examples of important bit patterns in the quadruple-precision double-extended storage format are shown in Table 2-7. The bit patterns in the second column appear as four 8-digit hexadecimal numbers. For the SPARC architecture, the left-most number is the value of the lowest addressed 32-bit word, and the right-most number is the value of the highest addressed 32-bit word, while for the PowerPC architecture, the left number is the highest addressed word, and the right number is the lowest addressed word. The maximum positive normal number is the largest finite number representable in the quadruple precision format. The minimum positive subnormal number is the smallest positive number representable in the quadruple precision format. The minimum positive normal number is often referred to as the underflow.
threshold. (The decimal values for the maximum and minimum normal and subnormal numbers are approximate; they are correct to the number of figures shown.)

Table 2-7 Bit Patterns in Double-Extended Format (SPARC and PowerPC)

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Bit Pattern (SPARC and PowerPC)</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>00000000 00000000 00000000 00000000</td>
<td>0.0</td>
</tr>
<tr>
<td>-0</td>
<td>80000000 00000000 00000000 00000000</td>
<td>-0.0</td>
</tr>
<tr>
<td>1</td>
<td>3ffe0000 00000000 00000000 00000000</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>40000000 00000000 00000000 00000000</td>
<td>2.0</td>
</tr>
<tr>
<td>max normal</td>
<td>7ffe0000 ffffff ffffff ffffff ffffff</td>
<td>1.1897314953572317650857593266280070e+4932</td>
</tr>
<tr>
<td>min normal</td>
<td>00010000 00000000 00000000 00000000</td>
<td>3.3621031431209350626778173217526e−4932</td>
</tr>
<tr>
<td>max subnormal</td>
<td>0000ffe 00000000 00000000 00000000 00000000</td>
<td>3.3621031431209350626778173217520e−4932</td>
</tr>
<tr>
<td>min pos subnormal</td>
<td>00000000 00000000 00000000 00000000</td>
<td>6.475175119438025110924438958227646e−4966</td>
</tr>
<tr>
<td>+∞</td>
<td>7efe0000 00000000 00000000 00000000</td>
<td>+∞</td>
</tr>
<tr>
<td>−∞</td>
<td>ffe0000 00000000 00000000 00000000</td>
<td>−∞</td>
</tr>
<tr>
<td>Not-a-Number</td>
<td>7fe80000 00000000 00000000 00000000</td>
<td>NaN</td>
</tr>
</tbody>
</table>

The hex values of the NaNs shown in Table 2-7 are just two of the many bit patterns that can be used to represent NaNs.

Double-Extended Format (Intel)

This floating-point environment’s double-extended format conforms to the IEEE definition of double-extended formats. It consists of four fields: a 63-bit fraction, f; a 1-bit explicit leading significand bit, j; a 15-bit biased exponent, e; and a 1-bit sign, s.

In the family of Intel architectures, these fields are stored contiguously in ten successively addressed 8-bit bytes. However, the UNIX System V Application Binary Interface Intel 386 Processor Supplement (Intel ABI) requires that double-extended parameters and results occupy three consecutively addressed 32-bit words in the stack, with the most significant 16 bits of the highest addressed word being unused, as shown in Figure 2-4.
The lowest addressed 32-bit word contains the least significant 32 bits of the fraction, $f_{[31:0]}$, with bit 0 being the least significant bit of the entire fraction and bit 31 being the most significant of the 32 least significant fraction bits. In the middle addressed 32-bit word, bits 0:30 contain the 31 most significant bits of the fraction, $f_{[62:32]}$, with bit 0 being the least significant of these 31 most significant fraction bits, and bit 30 being the most significant bit of the entire fraction; bit 31 of this middle addressed 32-bit word contains the explicit leading significand bit, j.

In the highest addressed 32-bit word, bits 0:14 contain the 15-bit biased exponent, e, with bit 0 being the least significant bit of the biased exponent and bit 14 being the most significant; and bit 15 contains the sign bit, s. Although the highest order 16 bits of this highest addressed 32-bit word are unused by the family of Intel architectures, their presence is essential for conformity to the Intel ABI, as indicated above.

Figure 2-4 numbers the bits as though the three contiguous 32-bit words were one 96-bit word in which bits 0:62 store the 63-bit fraction, f; bit 63 stores the explicit leading significand bit, j; bits 64:78 store the 15-bit biased exponent, e; and bit 79 stores the sign bit, s.

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>$e_{[78:64]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>80</td>
<td>79 78 64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>$f_{[62:32]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f_{[31:0]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

Figure 2-4 Double-Extended Format (Intel)

The values of the bit patterns in the four fields f, j, e and s, determine the value represented by the overall bit pattern.
Table 2-8 shows the correspondence between the counting number values of the four constituent field and the value represented by the bit pattern. \textit{u} means \textit{don’t care}, because the value of the indicated field is irrelevant to the determination of value for the particular bit patterns.

\begin{table}[htb]
\centering
\begin{tabular}{|c|l|}
\hline
\textbf{Double-Extended Bit Pattern (Intel)} & \textbf{Value} \\
\hline
\textit{j} = 0, 0 < \textit{e} < 32767 & Unsupported \\
\textit{j} = 1, 0 < \textit{e} < 32767 & \((-1)^{\textit{s}} \times 2^{\textit{e} -16383} \times 1.\textbf{f}\) (normal numbers) \\
\textit{j} = 0, \textit{e} = 0; \textbf{f} \neq 0 & \((-1)^{\textit{s}} \times 2^{\textit{e} -16382} \times 0.\textbf{f}\) (subnormal numbers) \\
(at least one bit in \textbf{f} is nonzero) & \\
\textit{j} = 1, \textit{e} = 0 & \((-1)^{\textit{s}} \times 2^{\textit{e} -16382} \times 1.\textbf{f}\) (pseudo-denormal numbers) \\
\textit{j} = 0, \textit{e} = 0, \textbf{f} = 0 & (-1)^{\textit{s}} \times 0.0\) (signed zero) \\
(all bits in \textbf{f} are zero) & \\
\textit{j} = 1; \textit{s} = 0; \textit{e} = 32767; \textbf{f} = 0 & +INF (positive infinity) \\
(all bits in \textbf{f} are zero) & \\
\textit{j} = 1; \textit{s} = 1; \textit{e} = 32767; \textbf{f} = 0 & -INF (negative infinity) \\
(all bits in \textbf{f} are zero) & \\
\textit{j} = 1; \textit{s} = \textit{u}; \textit{e} = 32767; \textbf{f} = .uuuu — uu & QNaN (quiet NaNs) \\
\textit{j} = 1; \textit{s} = \textit{u}; \textit{e} = 32767; \textbf{f} = .0uuu — uu \neq 0 & SNaN (signaling NaNs) \\
(at least one of the \textit{u} in \textbf{f} is nonzero) & \\
\hline
\end{tabular}
\caption{Values Represented by Bit Patterns (Intel)}
\end{table}

Notice that bit patterns in double-extended format do \textit{not} have an implicit leading significand bit. The leading significand bit is given explicitly as a separate field, j, in the double-extended format. However, when \textit{e} \neq 0, any bit pattern with \textit{j} = 0 is unsupported in the sense that using such a bit pattern as an operand in floating-point operations provokes an invalid operation exception.

The union of the disjoint fields \textit{j} and \textbf{f} in the double extended format is called the \textit{significand}. When \textit{e} < 32767 and \textit{j} = 1, or when \textit{e} = 0 and \textit{j} = 0, the significand is formed by inserting the binary radix point between the leading significand bit, \textit{j}, and the fraction’s most significant bit.

For the double-extended format, the difference between a normal number and a subnormal number is that the explicit leading bit of the significand of a normal number is 1, whereas the explicit leading bit of the significand of a
subnormal number is 0 and the biased exponent field e must also be 0.
Subnormal numbers in double-extended format were called double-extended
format denormalized numbers in IEEE Standard 754.

Examples of important bit patterns in the double-extended storage format
appear in Table 2-9. The bit patterns in the second column appear as one
4-digit hexadecimal counting number, which is the value of the 16 least
significant bits of the highest addressed 32-bit word (recall that the most
significant 16 bits of this highest addressed 32-bit word are unused, so their
value is not shown), followed by two 8-digit hexadecimal counting numbers,
of which the left one is the value of the middle addressed 32-bit word, and the
right one is the value of the lowest addressed 32-bit word. The maximum
positive normal number is the largest finite number representable in the Intel
double-extended format. The minimum positive subnormal number is the
smallest positive number representable in the double-extended format. The
minimum positive normal number is often referred to as the underflow
threshold. (The decimal values for the maximum and minimum normal and
subnormal numbers are approximate; they are correct to the number of figures
shown.)

Table 2-9 Bit Patterns in Double-Extended Format and their Values (Intel)

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Bit Pattern (Intel)</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>0000 00000000 00000000</td>
<td>0.0</td>
</tr>
<tr>
<td>−0</td>
<td>8000 00000000 00000000</td>
<td>−0.0</td>
</tr>
<tr>
<td>1</td>
<td>3ffe 80000000 00000000</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>4000 80000000 00000000</td>
<td>2.0</td>
</tr>
<tr>
<td>max normal</td>
<td>7ffe 00000000 00000000</td>
<td>1.18973149535723176505e+4932</td>
</tr>
<tr>
<td>min positive normal</td>
<td>0001 80000000 00000000</td>
<td>3.36210314311209350626e−4932</td>
</tr>
<tr>
<td>max subnormal</td>
<td>0000 7ffe 00000000 00000000</td>
<td>3.36210314311209350608e−4932</td>
</tr>
<tr>
<td>min positive subnormal</td>
<td>0000 00000000 00000000 0000000001</td>
<td>3.64519953188247460253e−4951</td>
</tr>
<tr>
<td>+∞</td>
<td>7ffe 80000000 00000000</td>
<td>+∞</td>
</tr>
<tr>
<td>−∞</td>
<td>0000 80000000 00000000</td>
<td>−∞</td>
</tr>
<tr>
<td>quiet NaN with greatest fraction</td>
<td>7ffe 00000000 00000000 0000000001</td>
<td>QNaN</td>
</tr>
</tbody>
</table>
A NaN (Not a Number) can be represented by any of the many bit patterns that satisfy the definition of NaN. The hex values of the NaNs shown in Table 2-9 illustrate that the leading (most significant) bit of the fraction field determines whether a NaN is quiet (leading fraction bit = 1) or signaling (leading fraction bit = 0).

Ranges and Precisions in Decimal Representation

This section covers the notions of range and precision for a given storage format. It includes the ranges and precisions corresponding to the IEEE single and double formats, and to the implementations of IEEE double-extended format to SPARC, PowerPC, and Intel architectures. In explaining the notions of range and precision, reference is made to the IEEE single format.

The IEEE standard specifies that 32 bits be used to represent a floating point number in single format. Because there are only finitely many combinations of 32 zeroes and ones, only finitely many numbers can be represented by 32 bits.

One natural question is:

What are the decimal representations of the largest and smallest positive numbers that can be represented in this particular format?

Rephrase the question and introduce the notion of range:

What is the range, in decimal notation, of numbers that can be represented by the IEEE single format?

Taking into account the precise definition of IEEE single format, you can prove that the range of floating-point numbers that can be represented in IEEE single format (if restricted to positive normalized numbers) is as follows:

$$1.175\ldots \times (10^{-38}) \text{ to } 3.402\ldots \times (10^{+38})$$
A second question refers to the precision (or as many people refer to it, the accuracy, or the number of significant digits) of the numbers represented in a given format. These notions are explained by looking at some pictures and examples.

The IEEE standard for binary floating-point arithmetic specifies the set of numerical values representable in the single format. Remember that this set of numerical values is described as a set of binary floating-point numbers. The significand of the IEEE single format has 23 bits, which together with the implicit leading bit, yield 24 digits (bits) of (binary) precision.

You obtain a different set of numerical values by marking the numbers:

\[x = (x_1.x_2 x_3 \ldots x_q) \times (10^n) \]

(representable by \(q \) decimal digits in the significand) on the number line.

Figure 2-5 exemplifies this situation:

Figure 2-5 Comparison of a Set of Numbers Defined by Digital and Binary Representation
Notice that the two sets are different. Therefore, estimating the number q of significant decimal digits corresponding to 24 significant binary digits, requires reformulating the problem.

Reformulate the problem in terms of converting floating-point numbers between binary representations (the internal format used by the computer) and the decimal format (the format users are usually interested in). In fact, you may want to convert from decimal to binary and back to decimal, as well as convert from binary to decimal and back to binary.

It is important to notice that because the sets of numbers are different, conversions are in general inexact. If done correctly, converting a number from one set to a number in the other set results in choosing one of the two neighboring numbers from the second set (which one specifically is a question related to rounding).

Consider some examples. Assume you are trying to represent the number with the following decimal representation in IEEE single format:

$$x = x_1.x_2 x_3... x 10^n$$

In the above example, the information contained in x has to be coded in a 32-bit word. Generally, this might be impossible (if there are too many digits in x), for example, some of the information might not fit in 32 bits. For example, use:

$$y = 838861.2, z = 1.3$$

and run the following FORTRAN program:

```fortran
REAL Y, Z
Y = 838861.2
Z = 1.3
WRITE(*,40) Y
40 FORMAT("y: ",1PE18.11)
WRITE(*,50) Z
50 FORMAT("z: ",1PE18.11)
```

The output from this program should be similar to:

```
y:  8.38861187500E+05
z:  1.29999995232E+00
```
The difference between the value 8.388612×10^5 assigned to y and the value printed out is 0.000000125, which is seven decimal orders of magnitude smaller than y. The accuracy of representing y in IEEE single format is about 6 to 7 significant digits, or that y has about six significant digits if it is to be represented in IEEE single format.

Similarly, the difference between the value 1.3 assigned to z and the value printed out is 0.00000004768, which is eight decimal orders of magnitude smaller than z. The accuracy of representing z in IEEE single format is about 7 to 8 significant digits, or that z has about seven significant digits if it is to be represented in IEEE single format.

Now formulate the question:

Assume you convert a decimal floating point number a to its IEEE single format binary representation b, and then translate b back to a decimal number c; how many orders of magnitude are between a and $a - c$?

Rephrase the question:

What is the number of significant decimal digits of a in the IEEE single format representation, or how many decimal digits are to be trusted as accurate when one represents x in IEEE single format?

The number of significant decimal digits is always between 6 and 9, that is, at least 6 digits, but not more than 9 digits are accurate (with the exception of cases when the conversions are exact, when infinitely many digits could be accurate).

Conversely, if you convert a binary number in IEEE single format to a decimal number, and then convert it back to binary, generally, you need to use at least 9 decimal digits to ensure that after these two conversions you obtain the number you started from.
The complete picture is given in Table 2-10:

Table 2-10 Range and Precision of Storage Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Significant Digits (Binary)</th>
<th>Smallest Positive Normal Number</th>
<th>Largest Positive Number</th>
<th>Significant Digits (Decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>24</td>
<td>$1.175... \times 10^{-38}$</td>
<td>$3.402... \times 10^{+38}$</td>
<td>6-9</td>
</tr>
<tr>
<td>double</td>
<td>53</td>
<td>$2.225... \times 10^{-308}$</td>
<td>$1.797... \times 10^{+308}$</td>
<td>15-17</td>
</tr>
<tr>
<td>double extended (SPARC, PowerPC)</td>
<td>113</td>
<td>$3.362... \times 10^{-4932}$</td>
<td>$1.189... \times 10^{+4932}$</td>
<td>33-36</td>
</tr>
<tr>
<td>double extended (Intel)</td>
<td>64</td>
<td>$3.362... \times 10^{-4932}$</td>
<td>$1.189... \times 10^{+4932}$</td>
<td>18-21</td>
</tr>
</tbody>
</table>

Underflow

Underflow occurs, roughly speaking, when the result of an arithmetic operation is so small that it cannot be stored in its intended destination format without suffering a rounding error that is larger than usual.

Underflow Thresholds

Table 2-11 shows the underflow thresholds for single, double, and double-extended precision.

Table 2-11 Underflow Thresholds

<table>
<thead>
<tr>
<th>Destination Precision</th>
<th>Underflow Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>smallest normal number</td>
</tr>
<tr>
<td></td>
<td>largest subnormal number</td>
</tr>
<tr>
<td></td>
<td>1.17549435e−38</td>
</tr>
<tr>
<td></td>
<td>1.17549421e−38</td>
</tr>
<tr>
<td>double</td>
<td>smallest normal number</td>
</tr>
<tr>
<td></td>
<td>largest subnormal number</td>
</tr>
<tr>
<td></td>
<td>2.2250738585072014e−308</td>
</tr>
<tr>
<td></td>
<td>2.2250738585072009e−308</td>
</tr>
<tr>
<td>double-extended (SPARC, PowerPC)</td>
<td>smallest normal number</td>
</tr>
<tr>
<td></td>
<td>largest subnormal number</td>
</tr>
<tr>
<td></td>
<td>3.3621031431120935062626778173217526e−4932</td>
</tr>
<tr>
<td></td>
<td>3.3621031431120935062626778173217520e−4932</td>
</tr>
<tr>
<td>double-extended (Intel)</td>
<td>smallest normal number</td>
</tr>
<tr>
<td></td>
<td>largest subnormal number</td>
</tr>
<tr>
<td></td>
<td>3.3621031431120935062626778173217526e−4932</td>
</tr>
<tr>
<td></td>
<td>3.36210314311209350590e−4932</td>
</tr>
</tbody>
</table>
The positive subnormal numbers are those numbers between the smallest normal number and zero. Subtracting two (positive) tiny numbers that are near the smallest normal number might produce a subnormal number. Or, dividing the smallest positive normal number by two produces a subnormal result.

The presence of subnormal numbers provides greater precision to floating-point calculations that involve small numbers, although the subnormal numbers themselves have fewer bits of precision than normal numbers. Producing subnormal numbers (rather than returning the answer zero) when the mathematically correct result has magnitude less than the smallest positive normal number is known as gradual underflow.

There are several other ways to deal with such underflow results. One way, common in the past, was to flush those results to zero. This method is known as Store 0 and was the default on most mainframes before the advent of the IEEE Standard.

The mathematicians and computer designers who drafted IEEE Standard 754 considered several alternatives while balancing the desire for a mathematically robust solution with the need to create a standard that could be implemented efficiently.

How Does IEEE Arithmetic Treat Underflow?

IEEE Standard 754 chooses gradual underflow as the preferred method for dealing with underflow results. This method amounts to defining two representations for stored values, normal and subnormal.

Recall that the IEEE format for a normal floating-point number is:

\[-1]^s \times (2^{(e-bias)}) \times 1.f\]

where \(s\) is the sign bit, \(e\) is the biased exponent, and \(f\) is the fraction. Only \(s, e, f\) need to be stored to fully specify the number. Because the implicit leading bit of the significand is defined to be 1 for normal numbers, it need not be stored.

The smallest positive normal number that can be stored, then, has the negative exponent of greatest magnitude and a fraction of all zeros. Even smaller numbers can be accommodated by considering the leading bit to be zero rather than one. In the double-precision format, this effectively extends the minimum exponent from \(10^{-308}\) to \(10^{-324}\), because the fraction part is 52 bits long (roughly
16 decimal digits.) These are the subnormal numbers; returning a subnormal number (rather than flushing an underflowed result to zero) is gradual underflow.

Clearly, the smaller a subnormal number, the fewer nonzero bits in its fraction; computations producing subnormal results do not enjoy the same bounds on relative roundoff error as computations on normal operands. However, the key fact about gradual underflow is that its use implies:

- Underflowed results need never suffer a loss of accuracy any greater than that which results from ordinary roundoff error.
- Addition, subtraction, comparison, and remainder are always exact when the result is very small.

Recall that the IEEE format for a subnormal floating-point number is:

\[(-1)^s \times (2^{(-\text{bias} + 1)}) \times 0.f \]

where \(s \) is the sign bit, the biased exponent \(e \) is zero, and \(f \) is the fraction. Note that the implicit power-of-two bias is one greater than the bias in the normal format, and the implicit leading bit of the fraction is zero.

Gradual underflow allows you to extend the lower range of representable numbers. It is not smallness that renders a value questionable, but its associated error. Algorithms exploiting subnormal numbers have smaller error bounds than other systems. The next section provides some mathematical justification for gradual underflow.

Why Gradual Underflow?

The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as some other arithmetic models do. Rather, subnormal numbers eliminate underflow as a cause for concern for a variety of computations (typically, multiply followed by add). For a more detailed discussion, see “Underflow and the Reliability of Numerical Software” by James Demmel and “Combatting the Effects of Underflow and Overflow in Determining Real Roots of Polynomials” by S. Linnainmaa.
The presence of subnormal numbers in the arithmetic means that untrapped underflow (which implies loss of accuracy) cannot occur on addition or subtraction. If \(x \) and \(y \) are within a factor of two, then \(x - y \) is error-free. This is critical to a number of algorithms that effectively increase the working precision at critical places in algorithms.

In addition, gradual underflow means that errors due to underflow are no worse than usual roundoff error. This is a much stronger statement than can be made about any other method of handling underflow, and this fact is one of the best justifications for gradual underflow.

Error Properties of Gradual Underflow

Most of the time, floating-point results are rounded:

\[
\text{computed result} = (\text{true result}) \pm \text{roundoff}
\]

In IEEE arithmetic, with rounding mode to nearest,

\[
0 \leq \text{roundoff} \leq \frac{1}{2} \text{ulp}
\]

of the computed result.

\(ulp \) is an acronym for Unit in the Last Place. The least significant bit of the fraction of a number in its standard representation, is the last place. If the roundoff error is less than or equal to one half unit in the last place, then the calculation is correctly rounded.

For example, the \(ulp \) for each floating point data type would be as shown in Table 2-12:

Table 2-12 ulp Values

<table>
<thead>
<tr>
<th>Precision</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>(2^{-23} \sim 1.192092896e-07)</td>
</tr>
<tr>
<td>double</td>
<td>(2^{-52} \sim 2.2204460492503108e-16)</td>
</tr>
<tr>
<td>Intel double extended</td>
<td>(2^{-11} \sim 1.92592994438723585305597794258492732e-34)</td>
</tr>
</tbody>
</table>
Recall that only a finite set of numbers can be exactly represented in any computer arithmetic. As the magnitudes of numbers get smaller and approach zero, the gap between neighboring representable numbers never widens but narrows. Conversely, as the magnitude of numbers gets larger, the gap between neighboring representable numbers widens.

For example, imagine you are using a binary arithmetic that has only 3 bits of precision. Then, between any two powers of 2, there are $2^3 = 8$ representable numbers, as shown in Figure 2-6.

![Figure 2-6 Number Line](image)

The number line shows how the gap between numbers doubles from one exponent to the next.

In the IEEE single format, the difference in magnitude between the two smallest positive subnormal numbers is approximately 10^{-45}, whereas the difference in magnitude between the two largest finite numbers is approximately 10^{31}!

In Table 2-13, \texttt{nextafter(x, +\infty)} denotes the next representable number after \(x \) as you move along the number line towards \(+\infty\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>\texttt{nextafter(x, +\infty)}</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.4012985e-45</td>
<td>1.4012985e-45</td>
</tr>
<tr>
<td>1.1754944e-38</td>
<td>1.1754945e-38</td>
<td>1.4012985e-45</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0000001</td>
<td>1.1920929e-07</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0000002</td>
<td>2.3841858e-07</td>
</tr>
<tr>
<td>16.000000</td>
<td>16.000002</td>
<td>1.9073486e-06</td>
</tr>
</tbody>
</table>
Any conventional set of representable floating-point numbers has the property that the worst effect of one inexact result is to introduce an error no worse than the distance to one of the representable neighbors of the computed result. When subnormal numbers are added to the representable set and gradual underflow is implemented, the worst effect of one inexact or underflowed result is to introduce an error no greater than the distance to one of the representable neighbors of the computed result.

In particular, in the region between zero and the smallest normal number, the distance between any two neighboring numbers equals the distance between zero and the smallest subnormal number. The presence of subnormal numbers eliminates the possibility of introducing a roundoff error that is greater than the distance to the nearest representable number.

Because no calculation incurs roundoff error greater than the distance to any of the representable neighbors of the computed result, many important properties of a robust arithmetic environment hold, including these three:

- $x \neq y \iff x - y \neq 0$
- $(x-y) + y = x$, to within a rounding error in the larger of x and y
- $1/(1/x) = x$, when x is a normalized number, implying $1/x \neq 0$

An alternative underflow scheme is `Store 0`, which flushes underflow results to zero. `Store 0` violates the first and second properties whenever $x-y$ underflows. Also, `Store 0` violates the third property whenever $1/x$ underflows.

Let λ represent the smallest positive normalized number, which is also known as the underflow threshold. Then the error properties of gradual underflow and `Store 0` can be compared in terms of λ.

- **Gradual underflow:** $|\text{error}| < \frac{1}{2} \text{ulp in } \lambda$
- **Store 0:** $|\text{error}| \approx \lambda$

Table 2-13 Gaps Between Representable Single-Format Floating-Point Numbers (Continued)

<table>
<thead>
<tr>
<th>x</th>
<th>nextafter(x, +∞)</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.00000</td>
<td>128.00002</td>
<td>1.5258789e−05</td>
</tr>
<tr>
<td>1.000000e+20</td>
<td>1.0000001e+20</td>
<td>8.7960930e+12</td>
</tr>
<tr>
<td>9.9999997e+37</td>
<td>1.0000001e+38</td>
<td>1.0141205e+31</td>
</tr>
</tbody>
</table>

IEEE Arithmetic
There is a significant difference between $\frac{1}{2}$ unit in the last place of λ, and λ itself.

Two Examples of Gradual Underflow Versus Store 0

The following are two well-known mathematical examples. The first example is an inner product.

```c
sum = 0;
for (i = 0; i < n; i++) {
    sum = sum + a[i] * y[i];
}
result = sum / n;
```

With gradual underflow, result is as accurate as roundoff allows. In Store 0, a small but nonzero sum could be delivered that looks plausible but is wrong in nearly every digit. However, in fairness, it must be admitted that to avoid just these sorts of problems, clever programmers scale their calculations if they are able to anticipate where minuteness might degrade accuracy.

The second example, deriving a complex quotient, isn’t amenable to scaling:

$$a + i \cdot b = \frac{p + i \cdot q}{r + i \cdot s}, \text{ assuming } |r/s| \leq 1$$

$$= \frac{(p \cdot (r/s) + q) + i (q \cdot (r/s) - p)}{s + r \cdot (r/s)}$$

It can be shown that, despite roundoff, the computed complex result differs from the exact result by no more than what would have been the exact result if $p + i \cdot q$ and $r + i \cdot s$ each had been perturbed by no more than a few ulps. This error analysis holds in the face of underflows, except that when both a and b underflow, the error is bounded by a few ulps of $|a + i \cdot b|$. Neither conclusion is true when underflows are flushed to zero.

This algorithm for computing a complex quotient is robust, and amenable to error analysis, in the presence of gradual underflow. A similarly robust, easily analyzed, and efficient algorithm for computing the complex quotient in the face of Store 0 does not exist. In Store 0, the burden of worrying about low-level, complicated details shifts from the implementor of the floating-point environment to its users.
The class of problems that succeed in the presence of gradual underflow, but fail with Store 0, is larger than the fans of Store 0 may realize. Many frequently used numerical techniques fall in this class:

- Linear equation solving
- Polynomial equation solving
- Numerical integration
- Convergence acceleration
- Complex division

Does Underflow Matter?

Despite these examples, it can be argued that underflow rarely matters, and so, why bother? However, this argument turns upon itself.

In the absence of gradual underflow, user programs need to be sensitive to the implicit inaccuracy threshold. For example, in single precision, if underflow occurs in some parts of a calculation, and Store 0 is used to replace underflowed results with 0, then accuracy can be guaranteed only to around 10^{-31}, not 10^{-38}, the usual lower range for single-precision exponents.

This means that programmers need to implement their own method of detecting when they are approaching this inaccuracy threshold, or else abandon the quest for a robust, stable implementation of their algorithm.

Some algorithms can be scaled so that computations don’t take place in the constricted area near zero. However, scaling the algorithm and detecting the inaccuracy threshold can be difficult and time-consuming for each numerical program.
This chapter describes the math libraries provided with Sun WorkShop Compilers. Some attention is given to IEEE supporting functions and to functions that convert data between IEEE and non-IEEE formats.

Some information can also be obtained from the man page `Intro(3)`.

This chapter has the following organization:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Math Library</td>
<td>32</td>
</tr>
<tr>
<td>Additional Math Libraries</td>
<td>33</td>
</tr>
<tr>
<td>Single, Double, and Long Double Precision</td>
<td>37</td>
</tr>
<tr>
<td>IEEE Support Functions</td>
<td>38</td>
</tr>
<tr>
<td>Implementation Features of libm and libsunmath</td>
<td>47</td>
</tr>
<tr>
<td>libc Support Functions</td>
<td>50</td>
</tr>
</tbody>
</table>
Standard Math Library

The libm math library contains the functions required by the various standards to which the Solaris operating system conforms. This library is bundled with the Solaris operating system in two forms: libm.a, the static version, and libm.so, the shared version.

The default directories for a standard installation of libm are:

```plaintext
/opt/SUNWspro/SC4.2/lib/libm.a
/opt/SUNWspro/lib/libm.so
/usr/lib/libm.a
/usr/lib/libm.so
```

The default directories for standard installation of the header files for libm are:

```plaintext
/usr/include/floatingpoint.h
/usr/include/math.h
/usr/include/sys/ieeefp.h
```

Table 3-1 lists the functions in libm with the names used for calling them from a C program.

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic functions</td>
<td>cbrt, hypot, sqrt</td>
</tr>
<tr>
<td>Elementary transcendental</td>
<td>asin, acos, atan, atan2, asinh,</td>
</tr>
<tr>
<td>functions</td>
<td>acosh, atanh</td>
</tr>
<tr>
<td></td>
<td>exp, expm1, pow,</td>
</tr>
<tr>
<td></td>
<td>log, log1p, log10,</td>
</tr>
<tr>
<td></td>
<td>sin, cos, tan, sinh, cosh, tanh</td>
</tr>
<tr>
<td>Higher transcendental</td>
<td>bessel(j0, j1, jn, y0, y1, yn),</td>
</tr>
<tr>
<td>functions</td>
<td>erf, erfc, gamma, lgamma,</td>
</tr>
<tr>
<td></td>
<td>gamma_r, lgamma_r</td>
</tr>
<tr>
<td>Integral rounding functions</td>
<td>ceil, floor, rint</td>
</tr>
</tbody>
</table>
Note that the functions \texttt{gamma_r} and \texttt{lgamma_r} are reentrant versions of \texttt{gamma} and \texttt{lgamma}.

\textbf{Additional Math Libraries}

\textit{Sun Math Library}

The library \texttt{libsunmath} is part of the libraries supplied with all Sun language products. The library \texttt{libsunmath} contains a set of functions that were incorporated in previous versions of \texttt{libm} from Sun.

The default directories for a standard installation of \texttt{libsunmath} are:

```
/opt/SUNWspro/SC4.2/lib/libsunmath.a
/opt/SUNWspro/lib/libsunmath.so
```

The default directories for standard installation of the header files for \texttt{libsunmath} are:

```
/opt/SUNWspro/SC4.2/include/cc/sunmath.h
/opt/SUNWspro/SC4.2/include/f77/f77Floatingpoint.h
```

\begin{table}[h]
\begin{tabular}{|l|l|}
\hline
Type & Function Name \\
\hline
IEEE standard recommended functions & \texttt{抄ysign, fmod, ilogb, nextafter, remainder, scalbn, fabs} \\
IEEE classification functions & \texttt{isnan finite} \\
Old style floating-point functions & \texttt{logb, scalb, significand} \\
Error handling routine (user-defined) & \texttt{matherr} \\
\hline
\end{tabular}
\caption{Contents of \texttt{libm} (Continued)}
\end{table}

1. On Solaris systems, this function is provided in the C library \texttt{libc}.

Note that the functions \texttt{gamma_r} and \texttt{lgamma_r} are reentrant versions of \texttt{gamma} and \texttt{lgamma}.
Table 3-2 lists the functions in *libsunmath*; the names are those used for calling the double precision version of functions from a C program.

Table 3-2 Contents of *libsunmath*

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions from</td>
<td>single, extended and quadruple precision available, except for matherr</td>
<td></td>
</tr>
<tr>
<td>Table 3-1</td>
<td>exp2, exp10,</td>
<td></td>
</tr>
<tr>
<td>Elementary</td>
<td>log2,</td>
<td></td>
</tr>
<tr>
<td>transcendental</td>
<td>sincos</td>
<td></td>
</tr>
<tr>
<td>functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>asind, acosd, atand, atan2d,</td>
<td></td>
</tr>
<tr>
<td>(degree arguments/values)</td>
<td>sind, cosd, sincosd, tand</td>
<td></td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>asinpi, acospi, atanpi, atan2pi,</td>
<td></td>
</tr>
<tr>
<td>scaled in π</td>
<td>sinpi, cosp, sincosp, tanpi</td>
<td></td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>asinp, acosp, atanp,</td>
<td></td>
</tr>
<tr>
<td>with double precision π</td>
<td>sinp, cosp, sincosp, tanp</td>
<td></td>
</tr>
<tr>
<td>Trigonometric functions</td>
<td>asinp, acosp, atanp,</td>
<td></td>
</tr>
<tr>
<td>argument reduction</td>
<td>sinp, cosp, sincosp, tanp</td>
<td></td>
</tr>
<tr>
<td>Financial functions</td>
<td>annuity, compound</td>
<td></td>
</tr>
<tr>
<td>Integral rounding</td>
<td>aint, anint,</td>
<td></td>
</tr>
<tr>
<td>functions</td>
<td>irint, nint</td>
<td></td>
</tr>
<tr>
<td>IEEE standard</td>
<td>signbit</td>
<td></td>
</tr>
<tr>
<td>recommended functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE classification</td>
<td>fp_class, isinf, isnormal, issubnormal, iszero</td>
<td>functions</td>
</tr>
<tr>
<td>Functions that supply</td>
<td>*min_subnormal, max_subnormal,</td>
<td></td>
</tr>
<tr>
<td>useful IEEE values</td>
<td>*min_normal, max_normal,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infinity, signaling_nan, quiet_nan</td>
<td></td>
</tr>
<tr>
<td>Random number</td>
<td>d_addran_, d_addrns_, d_lcran_, d_lcrans_,</td>
<td></td>
</tr>
<tr>
<td>generators</td>
<td>d_shufrans_, i_addran_, i_addrns_,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i_lcran_, i_lcrans_, i_shufrans_, r_addran_,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r_addrns_, r_lcran_, r_lcrans_,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r_shufrans_, u_addrns, u_lcrans_,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>u_shufrans_</td>
<td></td>
</tr>
<tr>
<td>Data conversion</td>
<td>convert_external</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Computation Guide
Optimized Libraries

Optimized versions of some of the routines in libm are provided in the library libmopt. On SPARC and Intel systems, optimized versions of some of the support routines in libc are provided in the library libcopt. Finally, on SPARC and PowerPC systems, alternate forms of some libc support routines are provided in libcx.

The default directories for a standard installation of libmopt, libcopt, and libcx are:

/opt/SUNWspro/SC4.2/libmopt.a

/opt/SUNWspro/SC4.2/lib/libcopt.a (SPARC and Intel only)

/opt/SUNWspro/SC4.2/lib/libcx.a (SPARC and PowerPC only)

The routines contained in libcopt are not intended to be called by the user directly. Instead, they replace support routines in libc that are used by the compiler.

The routines contained in libmopt replace corresponding routines in libm. The libmopt versions are generally noticeably faster. Note that unlike the libm versions, which can be configured to provide any of ANSI/POSIX, SVID, X/Open, or IEEE-style treatment of exceptional cases, the libmopt routines only support IEEE-style handling of these cases. (See Appendix F, “Standards Compliance.”) To see which libm routines have counterparts in libmopt, use the nm command to search for all global symbols defined in libmopt.a.

Table 3-2 Contents of libsunnmath (Continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control rounding mode and floating-point exception flags</td>
<td>ieee_flags</td>
</tr>
<tr>
<td>Floating-point trap handling</td>
<td>ieee_handler,sigfpe</td>
</tr>
<tr>
<td>Show status</td>
<td>ieee_retrospective</td>
</tr>
<tr>
<td>Toggle hardware between standard and nonstandard modes</td>
<td>standard_arithmetic,</td>
</tr>
<tr>
<td>(advisory)</td>
<td>nonstandard_arithmetic</td>
</tr>
</tbody>
</table>
Both libmopt and libcopt may be linked with a program by specifying the
-xlibmopt flag at link time. Note that the SunOS 5.x C compiler, however,
does not accept the -xlibmopt flag. To use both libmopt and libcopt with
the Solaris 2.x C compiler, link with both -lmopt and -lcopt.

SPARC and Power PC: On Solaris 2.x, libcxt contains faster versions of the
128-bit quadruple precision floating point arithmetic support routines. These
routines are not intended to be called directly by the user; instead, they are
called by the compiler. On Solaris 2.x, the Fortran 77 compiler links with
libcxt automatically unless the -nocx flag is used, but the C compiler does
not automatically link with libcxt. To use libcxt with C programs, link with
-lcx. (Note: A shared version of libcxt, called libcxt.so.1, is also provided.
This version can be preloaded at run time by setting the environment variable
LD_PRELOAD to the full path name of the libcxt.so.1 file.)

Vector Math Library (SPARC only)

On SPARC systems running the Solaris 2.x operating environment, the library
libmvec provides routines that evaluate common mathematical functions for
an entire vector of arguments.

The default directory for a standard installation of libmvec is:

```
/opt/SUNWspro/SC4.2/lib/libmvec

/opt/SUNWpro/SC4.2/lib/libmvec_mt.a
```

Table 3-3 lists the functions in libmvec. Note that only double precision
versions of these functions are available.

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic functions</td>
<td>vhypot_, vz_abs_</td>
</tr>
<tr>
<td>Exponential and</td>
<td>vexp_, vlog_, vpow_</td>
</tr>
<tr>
<td>related functions</td>
<td>vz_exp_, vz_log_, vz_pow_</td>
</tr>
<tr>
<td>Trigonometric</td>
<td>vatan_, vatan2_, vcos_,</td>
</tr>
<tr>
<td>functions</td>
<td>vsin_, vsincos_</td>
</tr>
</tbody>
</table>
Note that libmvec_mt.a provides parallel versions of the vector functions that rely on multiprocessor parallelization. To use libmvec_mt.a, you must have an Sun WorkShop license and link with -xparallel.

See the libmvec(3m) manual page for more information.

Single, Double, and Long Double Precision

Most numerical functions are available in single, double, and long-double precision. Examples of calling different precision versions from different languages are shown in Table 3-4.

<table>
<thead>
<tr>
<th>Language</th>
<th>Single</th>
<th>Double</th>
<th>Quadruple</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, C++</td>
<td>#include <sunmath.h></td>
<td>#include <math.h></td>
<td>#include <sunmath.h></td>
</tr>
<tr>
<td></td>
<td>float x,y,z;</td>
<td>double x,y,z;</td>
<td>long double x,y,z;</td>
</tr>
<tr>
<td></td>
<td>x = sinf(y);</td>
<td>x = sin(y);</td>
<td>x = sinl(y);</td>
</tr>
<tr>
<td></td>
<td>x = fmodf(y,z);</td>
<td>x = fmod(y,z);</td>
<td>x = fmodl(y,z);</td>
</tr>
<tr>
<td></td>
<td>x = max_normalf();</td>
<td>x = max_normal();</td>
<td>x = max_normall();</td>
</tr>
<tr>
<td></td>
<td>x = r_addran_();</td>
<td>#include <sunmath.h></td>
<td>double x,y,z;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = max_normal();</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x = d_addran_();</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORTRAN</th>
<th>REAL x,y,z</th>
<th>REAL*8 x,y,z</th>
<th>REAL*16 x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x = sin(y)</td>
<td>x = sin(y)</td>
<td>x = sin(y)</td>
</tr>
<tr>
<td></td>
<td>x = r_fmod(y,z)</td>
<td>x = d_fmod(y,z)</td>
<td>x = q_fmod(y,z)</td>
</tr>
<tr>
<td></td>
<td>x = r_max_normal()</td>
<td>x = d_max_normal()</td>
<td>x = q_max_normal()</td>
</tr>
<tr>
<td></td>
<td>x = r_addran()</td>
<td>x = d_addran()</td>
<td>x = d_addran()</td>
</tr>
</tbody>
</table>

In C, names of single-precision functions are formed by appending f to the double-precision name, and names of quadruple-precision functions are formed by adding l. Because FORTRAN calling conventions differ, libsunmath provides r__, d__, and q__ versions for single, double, and quadruple precision functions, respectively. FORTRAN intrinsic functions can be called by the generic name for all three precisions.

Not all functions have q__ versions. Refer to math.h and sunmath.h for names and definitions of libm and libsunmath functions.
In FORTRAN programs, remember to declare r... functions as real, d... functions as double precision, and q... functions as real*16. Otherwise, type mismatches may result.

Note – The Intel version of FORTRAN supports real and double precision only; it does not support REAL*16. The Intel version of C, however, supports long double.

IEEE Support Functions

This section describes the IEEE recommended functions, the functions that supply useful values, ieee_flags, ieee_retrospective, and standard_arithmetic and nonstandard_arithmetic. Refer to Chapter 4, “Exceptions and Exception Handling,” for more information on the functions ieee_flags and ieee_handler.

ieee_functions(3m) and ieee_sun(3m)

The functions described by ieee_functions(3m) and ieee_sun(3m) provide capabilities either required by the IEEE standard or recommended in its appendix. These are implemented as efficient bit mask operations.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>math.h</td>
<td>Header file</td>
</tr>
<tr>
<td>copysign(x,y)</td>
<td>x with y’s sign bit</td>
</tr>
<tr>
<td>fabs(x)</td>
<td>Absolute value of x</td>
</tr>
<tr>
<td>fmod(x, y)</td>
<td>Remainder of x with respect to y</td>
</tr>
<tr>
<td>ilogb(x)</td>
<td>Base 2 unbiased exponent of x in integer format</td>
</tr>
<tr>
<td>nextafter(x,y)</td>
<td>Next representable number after x, in the direction y</td>
</tr>
<tr>
<td>remainder(x,y)</td>
<td>Remainder of x with respect to y</td>
</tr>
<tr>
<td>scalbn(x,n)</td>
<td>$x \times 2^n$</td>
</tr>
</tbody>
</table>
remainder \((x, y)\) is the operation specified in IEEE Standard 754-1985. The difference between \(\text{remainder}(x, y)\) and \(\text{fmod}(x, y)\) is that the sign of the result returned by \(\text{remainder}(x, y)\) might not agree with the sign of either \(x\) or \(y\), whereas \(\text{fmod}(x, y)\) always returns a result whose sign agrees with \(x\). Both functions return exact results and do not generate inexact exceptions.

Table 3-6 \text{ieee_sun(3m)}

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{sunmath.h}</td>
<td>Header file</td>
</tr>
<tr>
<td>\text{fp_class(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{isinf(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{isnormal(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{issubnormal(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{iszero(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{signbit(x)}</td>
<td>Classification function</td>
</tr>
<tr>
<td>\text{nonstandard_arithmetic(void)}</td>
<td>Toggle hardware</td>
</tr>
<tr>
<td>\text{standard_arithmetic(void)}</td>
<td>Toggle hardware</td>
</tr>
<tr>
<td>\text{ieee_retrospective(*f)}</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-7 Calling \text{ieee_functions} from FORTRAN

<table>
<thead>
<tr>
<th>IEEE Function</th>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Quadruple Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{copysign}(x,y)</td>
<td>\text{t=r_copysign}(x,y)</td>
<td>\text{z=d_copysign}(x,y)</td>
<td>\text{z=q_copysign}(x,y)</td>
</tr>
<tr>
<td>\text{ilogb}(x)</td>
<td>\text{i=ir_ilogb}(x)</td>
<td>\text{i=id_ilogb}(x)</td>
<td>\text{i=iq_ilogb}(x)</td>
</tr>
<tr>
<td>\text{nextafter}(x,y)</td>
<td>\text{t=r_nextafter}(x,y)</td>
<td>\text{z=d_nextafter}(x,y)</td>
<td>\text{z=q_nextafter}(x,y)</td>
</tr>
<tr>
<td>\text{scalbn}(x,n)</td>
<td>\text{t=r_scalbn}(x,n)</td>
<td>\text{z=d_scalbn}(x,n)</td>
<td>\text{z=q_scalbn}(x,n)</td>
</tr>
<tr>
<td>\text{signbit(x)}</td>
<td>\text{i=ir_signbit}(x)</td>
<td>\text{i=id_signbit}(x)</td>
<td>\text{i=iq_signbit}(x)</td>
</tr>
</tbody>
</table>

Table 3-8 Calling \text{ieee_sun} from FORTRAN

<table>
<thead>
<tr>
<th>IEEE Function</th>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Quadruple Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{signbit(x)}</td>
<td>\text{i=ir_signbit}(x)</td>
<td>\text{i=id_signbit}(x)</td>
<td>\text{i=iq_signbit}(x)</td>
</tr>
</tbody>
</table>
Note – You must declare `d_function` as double precision and `q_function` as REAL*16 in the FORTRAN program that uses them.

IEEE values (3m)

IEEE values like infinity, NaN, maximum and minimum positive floating-point numbers are provided by the functions described by the `ieee_values(3m)` man page. Table 3-9, Table 3-10, Table 3-11, and Table 3-12 show the decimal values and hexadecimal IEEE representations of the values provided by `ieee_values(3m)` functions.

Table 3-9 IEEE Values: Single Precision

<table>
<thead>
<tr>
<th>IEEE value</th>
<th>Decimal value</th>
<th>hexadecimal representation</th>
<th>C, C++ FORTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>max normal</td>
<td>3.40282347e+38</td>
<td>7f7fffffff</td>
<td><code>r = max_normalf();</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_max_normal()</code></td>
</tr>
<tr>
<td>min normal</td>
<td>1.17549435e−38</td>
<td>00800000</td>
<td><code>r = min_normalf();</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_min_normal()</code></td>
</tr>
<tr>
<td>max subnormal</td>
<td>1.17549421e−38</td>
<td>007fffffff</td>
<td><code>r = max_subnormalf();</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_max_subnormal()</code></td>
</tr>
<tr>
<td>min subnormal</td>
<td>1.40129846e−45</td>
<td>00000001</td>
<td><code>r = min_subnormalf();</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_min_subnormal()</code></td>
</tr>
<tr>
<td>∞</td>
<td>Infinity</td>
<td>7f800000</td>
<td><code>r = infinityf();</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_infinity()</code></td>
</tr>
<tr>
<td>quiet NaN</td>
<td>NaN</td>
<td>7fffffff</td>
<td><code>r = quiet_nanf(0);</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_quiet_nan(0)</code></td>
</tr>
<tr>
<td>signaling NaN</td>
<td>NaN</td>
<td>7f800001</td>
<td><code>r = signaling_nanf(0);</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>r = r_signaling_nan(0)</code></td>
</tr>
</tbody>
</table>
Table 3-10 IEEE Values: Double Precision

<table>
<thead>
<tr>
<th>IEEE value</th>
<th>Decimal Value</th>
<th>hexadecimal representation</th>
<th>C, C++ FORTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>max normal</td>
<td>1.7976931348623157e+308</td>
<td>7fefffffffffffff</td>
<td>d = max_normal();</td>
</tr>
<tr>
<td>min normal</td>
<td>2.2250738585072014e−308</td>
<td>00100000 00000000</td>
<td>d = d_min_normal();</td>
</tr>
<tr>
<td>max subnormal</td>
<td>2.2250738585072009e−308</td>
<td>000ffffff ffffffff</td>
<td>d = max_subnormal();</td>
</tr>
<tr>
<td>min subnormal</td>
<td>4.9406564584124654e−324</td>
<td>00000000 00000001</td>
<td>d = min_subnormal();</td>
</tr>
<tr>
<td>Infinity</td>
<td></td>
<td>7ff00000 00000000</td>
<td>d = infinity();</td>
</tr>
<tr>
<td>quiet NaN</td>
<td>NaN</td>
<td>7ff80000 00000000</td>
<td>d = quiet_nan(0);</td>
</tr>
<tr>
<td>signaling NaN</td>
<td>NaN</td>
<td>7ff00000 00000001</td>
<td>d = signaling_nan(0);</td>
</tr>
</tbody>
</table>

Table 3-11 IEEE Values: Quadruple Precision (SPARC and PowerPC)

<table>
<thead>
<tr>
<th>IEEE value</th>
<th>Decimal value</th>
<th>hexadecimal representation</th>
<th>C, C++ FORTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>max normal</td>
<td>1.1897314953572317650857593266280070e+4932</td>
<td>7fffffff ffffffff ffffffff</td>
<td>q = max_normal();</td>
</tr>
<tr>
<td>min normal</td>
<td>3.362103143112093506262678173217526e−4932</td>
<td>00010000 00000000 00000000 00000000</td>
<td>q = q_min_normal();</td>
</tr>
<tr>
<td>max subnormal</td>
<td>3.362103143112093506262678173217520e−4932</td>
<td>00000000 00000000 00000000 00000000</td>
<td>q = q_max_subnormal();</td>
</tr>
<tr>
<td>min subnormal</td>
<td>6.4751751194380251109244389582276466e−4966</td>
<td>00000000 00000000 00000000 00000000</td>
<td>q = q_min_subnormal();</td>
</tr>
<tr>
<td>Infinity</td>
<td>Infinity</td>
<td>7ffe0000 00000000 00000000 00000000</td>
<td>q = infinityl();</td>
</tr>
<tr>
<td>quiet NaN</td>
<td>NaN</td>
<td>7ffe8000 00000000 00000000 00000000</td>
<td>q = quiet_nanl(0);</td>
</tr>
<tr>
<td>signaling NaN</td>
<td>NaN</td>
<td>7ffe0000 00000000 00000000 00000000</td>
<td>q = signaling_nanl(0);</td>
</tr>
</tbody>
</table>

The Math Libraries
Table 3-12 IEEE Values: Double Extended Precision (Intel)

<table>
<thead>
<tr>
<th>IEEE value</th>
<th>Decimal value hexadecimal representation (80 bits)</th>
<th>C, C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>max normal</td>
<td>1.18973149535723176505e+4932 7ffe ffffffff ffffffff</td>
<td>x = max_normall();</td>
</tr>
<tr>
<td>min positive normal</td>
<td>3.36210314311209350626e-4932 0001 80000000 00000000</td>
<td>x = min_normall();</td>
</tr>
<tr>
<td>max subnormal</td>
<td>3.36210314311209350608e-4932 0000 7fffffff eeeeee</td>
<td>x = max_subnormall();</td>
</tr>
<tr>
<td>min positive subnormal</td>
<td>1.82259976594123730126e-4951 0000 00000000 00000000</td>
<td>x = min_subnormall();</td>
</tr>
<tr>
<td>infinity</td>
<td>Infinity 7ffe 80000000 00000000</td>
<td>x = infinityl();</td>
</tr>
<tr>
<td>quiet NaN</td>
<td>NaN 7ffe c0000000 00000000</td>
<td>x = quiet_nanl(0);</td>
</tr>
<tr>
<td>signaling NaN</td>
<td>NaN 7ffe 80000000 00000000</td>
<td>x = signaling_nanl(0);</td>
</tr>
</tbody>
</table>

ieee Flags (3m)

ieee Flags (3m) is the recommended interface to:

- Query or set rounding direction mode
- Query or set rounding precision mode
- Examine, clear, or set accrued exception flags

The syntax for a call to *ieee Flags (3m)* is:

```
i = ieee Flags(action, mode, in, out);
```
The ASCII strings that are the possible values for the parameters are shown in Table 3-13:

Table 3-13 Parameter Values for ieee_flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C or C++ Type</th>
<th>All Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>char *</td>
<td>get, set, clear, clearall</td>
</tr>
<tr>
<td>mode</td>
<td>char *</td>
<td>direction, precision, exception</td>
</tr>
<tr>
<td>in</td>
<td>char *</td>
<td>nearest, tozero, negative, positive, extended, double, single, inexact, division, underflow, overflow, invalid, all, common</td>
</tr>
<tr>
<td>out</td>
<td>char **</td>
<td>nearest, tozero, negative, positive, extended, double, single, inexact, division, underflow, overflow, invalid, all, common</td>
</tr>
</tbody>
</table>

The ieee_flags(3m) man page describes the parameters in complete detail.

Some of the arithmetic features that can be modified by using ieee_flags are covered in the following paragraphs. Chapter 4 contains more information on ieee_flags and IEEE exception flags.

When mode is “direction”, the specified action applies to the current rounding direction. The possible rounding directions are: round towards nearest, round towards zero, round towards +∞, or round towards −∞. The IEEE default rounding direction is round towards nearest. This means that when the mathematical result of an operation lies halfway between two representable numbers, the one nearest to the mathematical result is delivered as the result. If the mathematical result lies halfway between the two representable numbers, then round to nearest mode specifies round to the nearest even number (final bit is zero.)

Rounding towards zero is the way many pre-IEEE computers work, and corresponds mathematically to truncating the result. For example, if 2/3 is rounded to 6 decimal digits, the result is .666667 when the rounding mode is round towards nearest, but .666666 when the rounding mode is round towards zero.
When using `ieee_flags` to examine, clear, or set the rounding direction, possible values for the four input parameters are shown in Table 3-14.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible value (mode is direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>get, set, clear, clearall</td>
</tr>
<tr>
<td>in</td>
<td>nearest, tozero, negative, positive</td>
</tr>
<tr>
<td>out</td>
<td>nearest, tozero, negative, positive</td>
</tr>
</tbody>
</table>

When `mode` is “precision”, the specified action applies to the current rounding precision. On Intel, the possible rounding precisions are: single, double, and extended. The default rounding precision is extended; in this mode, arithmetic operations that deliver a result to a floating point register round their result to the full 64-bit precision of the extended double register format. When the rounding precision is single or double, arithmetic operations that deliver a result to a floating point register round their result to 24 or 53 significant bits, respectively. Although most programs produce results that are at least as accurate, if not more so, when extended rounding precision is used, some programs that require strict adherence to the semantics of IEEE arithmetic will not work correctly in extended rounding precision mode and must be run with the rounding precision set to single or double as appropriate.

Rounding precision cannot be set on systems using SPARC or PowerPC processors. On these systems, calling `ieee_flags` with `mode = “precision”` has no effect on computation.

Finally, when `mode` is “exception”, the specified action applies to the current IEEE exception flags. See Chapter 4, “Exceptions and Exception Handling”, for more information about using `ieee_flags` to examine and control the IEEE exception flags.

ieee_retrospective(3m)

The `libsunmath` function `ieee_retrospective` prints information about unrequited exceptions and nonstandard IEEE modes. It reports:

- Outstanding exceptions.
- Enabled traps.
- If rounding direction or precision is set to other than the default.
• If nonstandard arithmetic is in effect. The necessary information is obtained from the hardware floating-point status register.

ieee_retrospective prints information about exception flags that are raised, and exceptions for which a trap is enabled. These two distinct, if related, pieces of information should not be confused. If an exception flag is raised, then that exception occurred at some point during program execution. If a trap is enabled for an exception, then the exception may not have actually occurred (but if it had, a SIGFPE signal would have been delivered). The ieee_retrospective message is meant to alert you about exceptions that may need to be investigated (if the exception flag is raised), or to remind you that exceptions may have been handled by a signal handler (if the exception’s trap is enabled.) Chapter 4, “Exceptions and Exception Handling,” discusses exceptions, signals, and traps, and shows how to investigate the cause of a raised exception.

ieee_retrospective can be called anytime, but it is usually called before exit points. Programs compiled with f77 call ieee_retrospective on exit by default.

The syntax for calling this function is:

C, C++ ieee_retrospective(fp);

FORTRAN call ieee_retrospective()

For the C function, the argument fp specifies the file to which the output will be written. The FORTRAN function always prints output on stderr.

The following example shows four of the six ieee_retrospective warning messages:

```
Note: IEEE floating-point exception flags raised:
      Inexact; Underflow;
Rounding direction toward zero
IEEE floating-point exception traps enabled:
      overflow;
See the Numerical Computation Guide, ieee_flags(3M),
      ieee_handler(3M), ieee_sun(3m)
```
A warning message appears only if tripping is enabled or an exception was raised.

You can suppress ieee_retrospective messages from FORTRAN programs by one of three methods. One approach is to clear all outstanding exceptions, disable traps, and restore round-to-nearest, extended precision, and standard modes before the program exits. To do this, call ieee_flags, ieee_handler, and standard_arithmetic as follows:

```fortran
character*8 out
i = ieee_flags('clearall', '', '', out)
call ieee_handler('clear', 'all', 0)
call standard_arithmetic()
```

Note – Clearing outstanding exceptions without investigating their cause is not recommended.

Another way to avoid seeing ieee_retrospective messages is simply to redirect stderr to a file. Of course, this method should not be used if the program sends output other than ieee_retrospective messages to stderr.

The third approach is to include a dummy ieee_retrospective function in the program, for example:

```fortran
subroutine ieee_retrospective
  return
end
```

nonstandard_arithmetic(3m)

As discussed in Chapter 2, “IEEE Arithmetic,” IEEE arithmetic handles underflowed results using gradual underflow. On some SPARC systems, gradual underflow is often implemented partly with software emulation of the arithmetic. If many calculations underflow, this may cause performance degradation.

To obtain some information about whether this is a case in a specific program, you can use ieee_retrospective or ieee_flags to determine if underflow exceptions occur, and check the amount of system time used by the
program. If a program spends an unusually large amount of time in the operating system, and raises underflow exceptions, gradual underflow may be the cause. In this case, using non-IEEE arithmetic may speed up program execution.

The function \texttt{nonstandard_arithmetic} causes underflowed results to be flushed to zero on those SPARC implementations that have a mode in hardware in which flushing to zero is faster. The trade-off for speed is accuracy, because the benefits of gradual underflow are lost.

The function \texttt{standard_arithmetic} resets the hardware to use the default IEEE arithmetic. Both functions have no effect on implementations that provide only the default IEEE 754 style of arithmetic—SuperSPARC is such an implementation.

\section*{Implementation Features of \texttt{libm} and \texttt{libsunmath}}

This section describes implementation features of \texttt{libm} and \texttt{libsunmath}:

\begin{itemize}
 \item Argument reduction using infinitely precise π, and trigonometric functions scaled in π.
 \item Data conversion routines for converting floating-point data between IEEE and non-IEEE formats.
 \item Random number generators.
\end{itemize}

\section*{About the Algorithms}

The elementary functions in \texttt{libm} and \texttt{libsunmath} on SPARC and PowerPC systems are implemented with an ever-changing combination of table-driven and polynomial/rational approximation algorithms. Some elementary functions in \texttt{libm} and \texttt{libsunmath} on Intel systems are implemented using the elementary function kernel instructions provided in the Intel instruction set; other functions are implemented using the same table-driven or polynomial/rational approximation algorithms used on SPARC and PowerPC.

Both the table-driven and polynomial/rational approximation algorithms for the common elementary functions in \texttt{libm} and the common single precision elementary functions in \texttt{libsunmath} deliver results that are accurate to within one unit in the last place (ulp). On SPARC and PowerPC, the common quadruple precision elementary functions in \texttt{libsunmath} deliver results that
are accurate to within one ulp, except for the expm1l and log1pl functions, which deliver results accurate to within two $ulps$. These error bounds have been obtained by direct analysis of the algorithms. Users may also test the accuracy of these routines using BeEF, the Berkeley Elementary Function test programs, developed by Z. Alex Liu and available from netlib in the ucbtest package.

Argument Reduction for Trigonometric Functions

Trigonometric functions for radian arguments outside the range $[-\pi/4,\pi/4]$ are usually computed by reducing the argument to the indicated range by subtracting integral multiples of $\pi/2$.

Because π is not a machine-representable number, it must be approximated. The error in the final computed trigonometric function depends on the rounding errors in argument reduction (with an approximate π as well as the rounding), and approximation errors in computing the trigonometric function of the reduced argument. Even for fairly small arguments, the relative error in the final result may be dominated by the argument reduction error, while even for fairly large arguments, the error due to argument reduction may be no worse than the other errors.

There is widespread misapprehension that trigonometric functions of all large arguments are inherently inaccurate, and all small arguments relatively accurate. This is based on the simple observation that large enough machine-representable numbers are separated by a distance greater than π.

There is no inherent boundary at which computed trigonometric function values suddenly become bad, nor are the inaccurate function values useless. Provided that the argument reduction is done consistently, the fact that the argument reduction is performed with an approximation to π is practically undetectable, because all essential identities and relationships are as well preserved for large arguments as for small.

`libm` and `libsunmath` trigonometric functions use an “infinitely” precise π for argument reduction. The value $2/\pi$ is computed to 916 hexadecimal digits and stored in a lookup table to use during argument reduction.

The group of functions sinpi, cospi, tanpi (see Table 3-2 on page 34), scales the input argument by π to avoid inaccuracies introduced by range reduction.
Data Conversion Routines

In *libm* and *libsunmath*, there is a flexible data conversion routine,
convert_external, used to convert binary floating-point data between IEEE
and non-IEEE formats.

Formats supported include those used by SPARC (IEEE), IBM PC, VAX®, IBM
S/370, and Cray®.

Refer to the man page on *convert_external*(3m) for an example of taking
data generated on a Cray, and using the function *convert_external* to
convert the data into the IEEE format expected on SPARC systems.

Random Number Facilities

There are two facilities for generating uniform pseudo-random numbers,
addrans(3m) and *lcrans*(3m). *addrans* is a table-driven additive random
number generator, and *lcrans* is a linear congruential random number
generator.

In addition, *shufrans*(3m) shuffles a set of pseudo-random numbers to
provide even more randomness for applications that need it.

The functions in *addrans* (3m) are generally more efficient but their theory is
not as refined as those in *lcrans* (3m). Refer to the article “Random Number
Generators: Good Ones Are Hard To Find”, by S. Park and K. Miller,
Communications of the ACM, October 1988, for a discussion of the theoretical
properties of these algorithms. Additive random number generators are
discussed in Volume 2 of Knuth’s *The Art of Computer Programming*.

The random number generators are available in four versions, for the four data
types: signed integer, unsigned integer, single precision floating-point, and
double precision floating-point. These functions can be used in two ways: to
generate random numbers one at a time (one per function call), or to generate
arrays of random numbers (one array per function call.)
When using \texttt{addrans} and \texttt{lcrans} to provide variates one at a time, they are constrained to the intervals shown in Table 3-15.

Table 3-15 Interval for Single-Value Random Number Generators

<table>
<thead>
<tr>
<th>Type</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Signed integer</td>
<td>(-2147483648)</td>
<td>(2147483647)</td>
</tr>
<tr>
<td>Unsigned integer</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>Single precision floating point</td>
<td>0.0</td>
<td>0.9999999403953552246</td>
</tr>
<tr>
<td>Double precision floating point</td>
<td>0.0</td>
<td>0.9999999999999998890</td>
</tr>
</tbody>
</table>

That is, these are the upper and lower bounds over which the data is uniformly distributed. These bounds cannot be altered.

However, if \texttt{addrans} or \texttt{lcrans} are used to generate arrays of data, the upper and lower bounds of the interval over which the data is uniformly distributed can be controlled.

Appendix A, “Examples,” on page 91, shows an example that uses \texttt{addrans} to generate an array of 1000 random numbers, uniformly distributed over the interval, \([0, 3.7e-9]\).

\textbf{libc Support Functions}

This section describes the base conversion feature for \texttt{libc} support (applicable only to the Solaris operating environment).

\textit{Base Conversion}

Base conversion is used by I/O routines, like \texttt{printf} and \texttt{scanf} in C, and \texttt{read}, \texttt{write}, and \texttt{print} in FORTRAN. For these functions you need conversions between numbers representations in bases 2 and 10:

- Base conversion from base 10 to base 2 is occurs when reading in a number in conventional decimal notation and storing it in internal binary format.
- Base conversion from base 2 to base 10 is occurs when printing an internal binary value as an ASCII string of decimal digits.
The algorithms for base conversion are now table driven as well. These algorithms yield correctly-rounded base conversion routines. In addition to improved accuracy, table-driven algorithms reduce the worst-case times for correctly-rounded base conversion.

Base conversion is not too difficult for integer formats but gets more complicated when floating point is involved; as with other floating-point operations, rounding errors occur.

For instance, on conversion from internal floating point to an external decimal representation, the mathematical problem to be solved in default rounding mode is as follows:

In the case of `printf %f` or FORTRAN F format with n digits after the decimal point:

Given integers i and e, find an integer J such that

$$|i \times 2^{e} \times 10^{n} - J| \leq 0.5$$

In the case of `printf %e` or FORTRAN E format with n significant digits:

Given integers i and e, find integers J and E such that

$$|i \times 2^{e} - J \times 10^{E}| \leq 0.5 \times 10^{E}$$

and

$$10^{(n-1)} \leq J \leq 10^{n} - 1$$

In both cases, distinguish exact conversions, and round halfway cases to nearest even.

Correct rounding is required by the IEEE Standard 754. The standard requires correct rounding for typical numbers whose magnitudes range from 10^{-44} to 10^{+44}, but permits slightly incorrect rounding for larger exponents—the Sun table-driven algorithm for rounding is accurate through the entire range. (See section 5.6 of IEEE Standard 754.)

Exceptions and Exception Handling

This chapter describes IEEE floating-point exceptions and shows how to detect, locate, and handle them.

This chapter is organized into the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Is an Exception?</td>
<td>54</td>
</tr>
<tr>
<td>Detecting Exceptions</td>
<td>58</td>
</tr>
<tr>
<td>Locating an Exception</td>
<td>61</td>
</tr>
<tr>
<td>Handling Exceptions</td>
<td>76</td>
</tr>
</tbody>
</table>

The floating point environment provided by Sun WorkShop Compilers 4.2 and the Solaris operating system on SPARC, Intel, and PowerPC systems supports all of the exception handling facilities required by the IEEE standard as well as many of the recommended optional facilities. One objective of these facilities is explained in the IEEE 854 Standard (IEEE 854, page 18):

... to minimize for users the complications arising from exceptional conditions. The arithmetic system is intended to continue to function on a computation as long as possible, handling unusual situations with reasonable default responses, including setting appropriate flags.

To achieve this objective, the standards specify default results for exceptional operations and require that an implementation provide status flags, which may be sensed, set, or cleared by a user, to indicate that exceptions have occurred. The standards also recommend that an implementation provide a means for a program to trap (i.e., interrupt normal control flow) when an exception occurs.
The program can optionally supply a trap handler that handles the exception in an appropriate manner, for example by providing an alternate result for the exceptional operation and resuming execution. This chapter lists the exceptions defined by IEEE 754 along with their default results and describes the features of the floating point environment that support status flags, trapping, and exception handling.

What Is an Exception?

It is hard to define exceptions. To quote W. Kahan,

An arithmetic exception arises when an attempted atomic arithmetic operation has no result that would be acceptable universally. The meanings of atomic and acceptable vary with time and place. (See Handling Arithmetic Exceptions by W. Kahan.)

For example, an exception arises when a program attempts to take the square root of a negative number. (This example is one case of an invalid operation exception.) When such an exception occurs, the system responds in one of two ways:

- If the exception’s trap is disabled (the default case), the system records the fact that the exception occurred and continues executing the program using the default result specified by IEEE 754 for the excepting operation.
- If the exception’s trap is enabled, the system generates a SIGFPE signal. If the program has installed a SIGFPE signal handler, the system transfers control to that handler; otherwise, the program aborts.

IEEE 754 defines five basic types of floating point exceptions: invalid operation, division by zero, overflow, underflow and inexact. The first three (invalid, division, and overflow) are sometimes collectively called common exceptions. These exceptions can seldom be ignored when they occur. ieee_handler(3m) gives an easy way to trap on common exceptions only. The other two exceptions (underflow and inexact) are seen more often—in fact, most floating point operations incur the inexact exception—and they can usually, though not always, be safely ignored.
Table 4-1 condenses information found in IEEE Standard 754-1985. It describes the five floating-point exceptions and the default response of an IEEE arithmetic environment when these exceptions are raised.

Table 4-1 IEEE Floating-Point Exceptions

<table>
<thead>
<tr>
<th>IEEE Exception</th>
<th>Reason Why This Arises</th>
<th>Example</th>
<th>Default Result When Trap is Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid operation</td>
<td>An operand is invalid for the operation about to be performed.</td>
<td>(\sqrt{-x}) for (x > 0)</td>
<td>Quiet NaN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{fp_op}(\text{signaling_NaN}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0 \times \infty)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0 / 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\infty / \infty)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x \ \text{REM} \ 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unordered comparison (see note (1))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid conversions (see note (2))</td>
<td></td>
</tr>
<tr>
<td>Division by zero</td>
<td>Divisor is zero, and dividend is a finite nonzero number, or, more generally, when an exact infinite result is delivered by an operation on finite operands.</td>
<td>(x \ / \ 0) for (x \neq 0, 2^{\infty}) or NaN</td>
<td>Correctly signed infinity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1_{\text{sign}}(0))</td>
<td></td>
</tr>
<tr>
<td>Overflow</td>
<td>Correctly rounded result is larger in magnitude than the largest number in the destination precision (that is, the range of the exponent is exceeded.)</td>
<td>Double precision: MAXDOUBLE + 1.0e294 (\exp(709.8))</td>
<td>Depends on rounding mode (RM), and the sign of the intermediate result:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single precision: (float)MAXDOUBLE (\expf(88.8))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{MAXFLOAT} + 1.0e32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\expf(88.8))</td>
<td></td>
</tr>
</tbody>
</table>
Notes for Table 4-1

1. Unordered comparison: Any pair of floating-point values can be compared, even if they are not of the same format. Four mutually exclusive relations are possible: less than, greater than, equal, or unordered. Unordered means that at least one of the operands is a \(\text{NaN} \) (not a number).

 Every \(\text{NaN} \) compares “unordered” with everything, including itself. Table 4-2 shows which predicates cause the invalid operation exception when the relation is unordered.

Table 4-1 IEEE Floating-Point Exceptions (Continued)

<table>
<thead>
<tr>
<th>IEEE Exception</th>
<th>Reason Why This Arises</th>
<th>Example</th>
<th>Default Result When Trap is Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underflow</td>
<td>Underflow occurs whenever a nonzero result computed, as though the exponent range and the precision were unbounded, lies strictly between (\pm 2^{E_{\text{min}}}) (see note (3)).</td>
<td>Double precision: nextafter(min_normal, -(\infty)) nextafter(min_subnormal, -(\infty)) MINDOUBLE/3.0 exp(-708.5) Single precision: (float)MINDOUBLE nextafterf(MINFLOAT, -(\infty)) expf(-87.4)</td>
<td>Subnormal or zero</td>
</tr>
<tr>
<td>Inexact</td>
<td>Rounded result of a valid operation is different from the infinitely precise result.</td>
<td>2.0 / 3.0 (float)1.12345678 log(1.1) MAXDOUBLE + MAXDOUBLE, when no overflow trap</td>
<td>The result of the operation (rounded, overflowed, or underflowed, as the case may be)</td>
</tr>
</tbody>
</table>
2. Invalid conversion: Attempt to convert NaN or infinity to an integer, or integer overflow on conversion from floating-point format.

3. E_{min}: the minimum exponent is -126, -1022 and -16382, for IEEE single, double, and extended precisions. See Chapter 2, “IEEE Arithmetic,” for a description of the IEEE floating-point formats.

4. The Intel floating point environment provides another exception not mentioned in the IEEE standards: the denormal operand exception. This exception is raised whenever a floating point operation is performed on a subnormal number.

5. Exceptions are prioritized in the following order: invalid (highest priority), overflow, division, underflow, inexact, denormal (Intel only having lowest priority).

The only combinations of exceptions that can occur simultaneously are overflow with inexact and underflow with inexact (and denormal operand on Intel). If trapping on overflow, underflow, and inexact is enabled, the overflow and underflow traps take precedence over the inexact trap; they all take precedence over a denormal operand trap on Intel.

Table 4-2 Unordered Comparisons

<table>
<thead>
<tr>
<th>Predicates</th>
<th>math</th>
<th>c, c++</th>
<th>f77</th>
<th>Invalid Exception if unordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>==</td>
<td>.EQ.</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>≠</td>
<td>!=</td>
<td>.NE.</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>></td>
<td>></td>
<td>.GT.</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>≥</td>
<td>>=</td>
<td>.GE.</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td><</td>
<td><</td>
<td>.LT.</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>≤</td>
<td><=</td>
<td>.LE.</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>
Detecting Exceptions

As required by the IEEE standard, the floating point environments on SPARC, Intel, and PowerPC systems provide status flags that record the occurrence of floating point exceptions. These flags can be tested by a program in order to detect which exceptions have occurred. The flags can also be explicitly set and cleared. The `ieee_flags` function provides one way to access these flags.

SPARC

Each exception has two flags associated with it, current and accrued. The current exception flags always indicate the exceptions raised by the last floating point instruction to complete execution. These flags are also accumulated (i.e., “or”-ed) into the accrued exception flags thereby providing a record of all untrapped exceptions that have occurred since the program began execution or since the accrued flags were last cleared by the program. (When a floating point instruction incurs a trapped exception, the instruction is not considered to have completed execution, and the current and accrued flags are unchanged.) Both the current and accrued exception flags are contained in the floating point status register, `%fsr`.

PowerPC

The FPSCR (Floating-point Status and Control Register) provides flags for each of the five IEEE floating-point exceptions. In addition, this register provides separate flags that correspond to specific conditions under which the invalid operation exception is raised: execution of a floating-point operation with a signaling NaN operand, subtraction of two infinities with like signs, division of infinity by infinity, division of zero by zero, multiplication of zero by infinity, ordered comparison involving a NaN, invalid conversion to an integer format, square root of a negative number, and software request. (On some PowerPC systems, the software request bit can be set by software to indicate an invalid operation condition not associated with a specific floating-point instruction.) When an invalid operation exception occurs, the flag corresponding to the specific condition that caused the exception is set and remains set until explicitly cleared by the user. The invalid operation exception summary flag, which is the “or” of the specific invalid operation flags, likewise remains set until all of the specific invalid operation flags are explicitly cleared by the user.
Intel

The SW (Status Word) provides flags for accrued exceptions as well as flags for the status of the floating-point stack.

ieee_flags(3m)

The syntax for a call to ieee_flags(3m) is:

\[i = \text{ieee_flags}(\text{action, mode, in, out}); \]

A program can test, set, or clear the accrued exception status flags using the ieee_flags function by supplying the string "exception" as the second argument. For example, to clear the overflow exception flag from FORTRAN, write:

```
character*8 out
call ieee_flags('clear', 'exception', 'overflow', out)
```

To determine whether an exception has occurred from C or C++, use:

```
i = ieee_flags("get", "exception", in, out);
```

When the action is "get", the string returned in `out` is:

- "not available" — if information on exceptions is not available
- "" (an empty string) — if there are no accrued exceptions or, in the case of Intel, the denormal operand is the only accrued exception
- the name of the exception named in the third argument, `in`, if that argument names an exception that has occurred
- otherwise, the name of the highest priority exception that has occurred.

For example, in the FORTRAN call:

```
character*8 out
i = ieee_flags('get', 'exception', 'division', out)
```
the string returned in `out` is "division" if the division-by-zero exception has occurred; otherwise it is the name of the highest priority exception that has occurred. Note that `in` is ignored unless it names a particular exception; for example, the argument "all" is ignored in the C call:

```c
i = ieee_flags("get", "exception", "all", out);
```

Besides returning the name of an exception in `out`, `ieee_flags` returns an integer value that combines all of the exception flags currently raised. This value is the bitwise “or” of all the accrued exception flags, where each flag is represented by a single bit as shown in Table 4-3. The positions of the bits corresponding to each exception are given by the `fp_exception_type` values defined in the file `sys/ieeefp.h`. (Note that these bit positions are machine-dependent and need not be contiguous.)

Table 4-3 Exception Bits

<table>
<thead>
<tr>
<th>Exception</th>
<th>Bit Position</th>
<th>Accrued Exception Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>invalid</td>
<td><code>fp_invalid</code></td>
<td><code>i & (1 << fp_invalid)</code></td>
</tr>
<tr>
<td>overflow</td>
<td><code>fp_overflow</code></td>
<td><code>i & (1 << fp_overflow)</code></td>
</tr>
<tr>
<td>division</td>
<td><code>fp_division</code></td>
<td><code>i & (1 << fp_division)</code></td>
</tr>
<tr>
<td>underflow</td>
<td><code>fp_underflow</code></td>
<td><code>i & (1 << fp_underflow)</code></td>
</tr>
<tr>
<td>inexact</td>
<td><code>fp_inexact</code></td>
<td><code>i & (1 << fp_inexact)</code></td>
</tr>
<tr>
<td>denormalized</td>
<td><code>fp_denormalized</code></td>
<td><code>i & (1 << fp_denormalized)</code> (Intel only)</td>
</tr>
</tbody>
</table>
This fragment of a C or C++ program shows one way to decode the return value.

```
/*
 * Decode integer that describes all accrued exceptions.
 * fp_inexact etc. are defined in <sys/ieeefp.h>
 */

char *out;
int invalid, division, overflow, underflow, inexact;

code = ieee_flags("get", "exception", ",", &out);
printf("out is %s, code is %d, in hex: 0x%08X\n", 
       out, code, code);
inexact = (code >> fp_inexact) & 0x1;
division = (code >> fp_division) & 0x1;
underflow = (code >> fp_underflow) & 0x1;
overflow = (code >> fp_overflow) & 0x1;
invalid = (code >> fp_invalid) & 0x1;
printf("%d %d %d %d %d \n", invalid, division, overflow, 
       underflow, inexact);
```

Locating an Exception

Often, programmers do not write programs with exceptions in mind, so when an exception is detected, the first question asked is: Where did the exception occur? Of course, one way to locate where an exception occurs is to test the exception flags at various points throughout a program, but to isolate an exception precisely by this approach can require many tests and carry a significant overhead.

An easier way to determine where an exception occurs is to enable its trap. When an exception whose trap is enabled occurs, the Solaris operating system notifies the program by sending a **SIGFPE** signal (see the `signal(5)` manual page). Thus, by enabling trapping for an exception, you can determine where the exception occurs either by running under a debugger and stopping on receipt of a **SIGFPE** signal or by establishing a **SIGFPE** handler that prints the address of the instruction where the exception occurred. Note that trapping must be enabled for an exception to generate a **SIGFPE** signal; when trapping is disabled and an exception occurs, the corresponding flag is set and execution continues with the default result specified in Table 4-1, but no signal is delivered.
Using the Debuggers to Locate an Exception

This section gives examples showing how to use dbx (source-level debugger) and adb (assembly-level debugger) to investigate the cause of a floating-point exception and locate the instruction that raised it. Recall that in order to use the source-level debugging features of dbx, programs should be compiled with the -g flag. Refer to the WorkShop: Command-Line Utilities guide, the chapters on debugging, for more information.

Consider the following program:

```
program ex
  double precision x, y, routine
  x = -4.2d0
  y = routine(x)
  print *, x, y
end

double precision function routine(x)
  double precision x
  routine = sqrt(x) - 1.0d0
  return
end
```

Compiling and running this program produces:

```
-4.2000000000000 NaN
Note: IEEE floating-point exception flags raised:
    Inexact; Invalid Operation;
See the Numerical Computation Guide, ieee_flags(3M)
```

To determine the cause of the invalid operation exception, you can recompile with the -ftrap option to enable trapping on invalid operations and use either dbx or adb to locate the site at which a SIGFPE signal is delivered. Alternatively, you can use adb or dbx without recompiling the program by linking with a startup routine that enables the invalid operation trap or by manually enabling the trap.
Using dbx to Locate the Instruction Causing an Exception

The simplest way to locate the code that causes a floating-point exception is to recompile with the \(-g\) and \(-ftrap\) flags and then use dbx to track down the location where the exception occurs. First, recompile the program as follows:

```
example% f77 -g -ftrap=invalid ex.f
```

Compiling with \(-g\) allows you to use the source-level debugging features of dbx. Specifying \(-ftrap=invalid\) causes the program to run with trapping enabled for invalid operation exceptions.

Next, invoke dbx, issue the `catch fpe` command to stop when a SIGFPE is issued, and run the program. The result is:

```
example% dbx a.out
Reading symbolic information for a.out
Reading symbolic information for rtld /usr/lib/ld.so.1
Reading symbolic information for libF77.so.3
Reading symbolic information for libsunmath.so.1
Reading symbolic information for libm.so.1
Reading symbolic information for libc.so.1
Reading symbolic information for libdl.so.1
(dbx) catch fpe
(dbx) run
Running: a.out
(process id 17516)
signal FPE (invalid floating point operation) in routine at line 10 in file "ex.f"
  10     routine = sqrt(x) - 1.0d0
(dbx) print x
x = -4.2
(dbx)
```

The output shows that the exception occurred in the `routine` function as a result of attempting to take the square root of a negative number.
Using `adb` to Locate the Instruction Causing an Exception

You can also use `adb` to identify the cause of an exception, although `adb` can’t locate the source file and line number as `dbx` can. Again, the first step is to recompile with `-ftrap`:

```
example% f77 -ftrap=invalid ex.f
```

Now invoke `adb` and run the program. When an invalid operation exception occurs, `adb` stops at an instruction following the one that caused the exception. To find the instruction that caused the exception, disassemble several instructions and look for the last floating point instruction prior to the instruction at which `adb` has stopped. On SPARC, the result might resemble the following transcript.

```
example% adb a.out
:r
SIGFPE 8: numerical exception (invalid floating point operation) stopped at    routine_+0x20:  ldd     [%l0], %f2
routine_+0x10:  ld      [%l0 + 0x4], %f3
               fsqrtd %f2, %f4
               sethi %hi(0x11c00), %l0
               or      %l0, 0x1d8, %l0
               ldd     [%l0], %f2
               <f2=F
               -4.200000000000002e+00
```

The output shows that the exception was caused by an `fsqrtd` instruction. Examining the source register shows that the exception was a result of attempting to take the square root of a negative number.

On Intel, because instructions do not have a fixed length, finding the correct
address from which to disassemble the code may involve some trial and error. In this example, the exception occurs close to the beginning of a function, so we can disassemble from there. The following might be a typical result.

```
example% adb a.out
:r
SIGFPE: Arithmetic Exception (invalid floating point operation)
stopped at routine_+0x13: faddp %st,%st(1)
routine_?
routine_:        pushl %ebp
                 movl %esp,%ebp
                 subl $0x24,%esp
                 fldl $0x8048b88
                 movl 0x8(%ebp),%eax
                 fldl (%eax)
                 fsqrt
                 faddp %st,%st(1)

0x80387 chip is present.
cw  0x137e
sw  0x3000
cssel 0x17 ipoff 0x8acd         datasel 0x1f dataoff 0x0

st[0]  -4.2000000000000001776356839         VALID
st[1]   -1.0                                 VALID
st[2]    +0.0                               EMPTY
st[3]    +0.0                               EMPTY
st[4]    +0.0                               EMPTY
st[5]    +0.0                               EMPTY
st[6]    +0.0                               EMPTY
st[7]    +0.0                               EMPTY
```

The output reveals that the exception was caused by a `fsqrt` instruction; examination of the floating point registers reveals that the exception was a result of attempting to take the square root of a negative number.

On PowerPC, `adb` always stops on the instruction immediately after the one that causes a trap, as the following sample session shows. The example also shows, however, that locating an invalid square root operation on PowerPC can be more difficult than locating a similar exception on SPARC or Intel.
because current PowerPC processors do not provide a floating point square root instruction in hardware. Finding the root cause of the exception, therefore, requires more diligence.

First, locate the instruction that caused the exception and examine the source registers:

```
example% adb a.out
:r
SIGFPE: Arithmetic Exception (invalid floating point operation) stopped at __ieee754_sqrt+0x7c:  b __ieee754_sqrt+0x2a0
__ieee754_sqrt+782i __ieee754_sqrt+0x78: fdiv %fl,%f0%f0
__ieee754_sqrt+0x7c:  b __ieee754_sqrt+0x2a0
$x
F0:    +0.0000000e+00  -4.2000000e+00  -NaN
F3:    -NaN           -NaN           -NaN
F6:    -NaN           -NaN           -NaN
F9:    -NaN           -NaN           -NaN
F12:   -NaN           -NaN           -NaN
F15:   -NaN           -NaN           -NaN
F18:   -NaN           -NaN           -NaN
F21:   -NaN           -NaN           -NaN
F24:   -NaN           -NaN           -NaN
F27:   -NaN           -NaN           -NaN
F30:   -NaN           -4.2000000e+00
```

The preceding output indicates that the exception occurred as a result of attempting to divide 0/0. The function name __ieee754_sqrt, however, suggests that the exception arose in a subroutine to compute a square root. A stack backtrace confirms that __ieee754_sqrt was called from __d_sqrt,
which is the internal name for the function d_sqrt. We set a breakpoint at the location where __d_sqrt is called, rerun the program, and determine the argument passed to it:

```
$c
__ieee754_sqrt() + 7c
sqrt() + 2c
__d_sqrt() + 14
routine_() + 14
MAIN_() + 44
main() + 44
routine_+10:b
:R
breakpoint        routine+0x10:  bl  __d_sqrt
<3/F
GPB.driver.x:
GPB.driver.x:  -4.2000000000000002e+00
```

The preceding output shows that the exception was caused by attempting to take the square root of a negative number.

Enabling Traps Without Recompilation

In the preceding examples, trapping on invalid operation exceptions was enabled by recompiling the main subprogram with the -ftrap flag. In some cases, recompiling the main program may not be possible, so you may need to resort to other means to enable trapping. There are several ways to do this.

If the object files and libraries that comprise the program are available, you can enable trapping merely by relinking the program with an appropriate initialization routine. First, create a C source file similar to the following.

```
#include <ieeefp.h>

#pragma init (trapinvalid)

void trapinvalid()
{
    volatile FP_X_INV et al are defined in ieeefp.h */
    fpsetmask(FP_X_INV);
}
```
Now compile this file to create an object file and link the original program with this object file:

```
example% cc -c init.c
example% f77 ex.o init.o
example% a.out
Floating point exception 7, invalid operand, occurred at address 8048afd.
Abort
```

Even if relinking is not possible, you can still enable traps manually while running `dbx` or `adb` by directly modifying the floating point status register. This can be somewhat tricky because the Solaris operating system does not enable the floating point unit until the first time it is used within a program, at which point the floating point status register is reset with all traps disabled. Thus, you cannot manually enable trapping until after the program has executed at least one floating point instruction.
In our example, the floating point unit has already been accessed by the time the routine function is called, so we can set a breakpoint on entry to that function, enable trapping on invalid operation exceptions, instruct dbx to stop on the receipt of a SIGFPE signal, and continue execution. On SPARC, the steps are as follows.

```
example% dbx a.out
Reading symbolic information for a.out
Reading symbolic information for rtld /usr/lib/ld.so.1
Reading symbolic information for libF77.so.3
Reading symbolic information for libsunmath.so.1
Reading symbolic information for libm.so.1
Reading symbolic information for libc.so.1
Reading symbolic information for libdl.so.1
(dbx) stop in routine_
(dbx) stop in routine_
(dbx) run
Running: a.out
(process id 6631)
stopped in routine_ at 0x10c00
0x000010c00: routine_: save %sp, -0x68, %sp
(dbx) assign $fsr=0x08000000
(dbx) catch fpe
(dbx) cont
signal FPE (invalid floating point operation) in routine_ at 0x10c20
0x00010c20: routine_+0x0020: ldd [%l0], %f2
```

Using a Signal Handler to Locate an Exception

The previous section presented several methods for enabling trapping at the outset of a program in order to locate the first occurrence of an exception. In contrast, you can isolate any particular occurrence of an exception by enabling trapping within the program itself. If you enable trapping but do not install a SIGFPE handler, the program will abort on the next occurrence of the trapped exception. Alternatively, if you install a SIGFPE handler, the next occurrence of the trapped exception will cause the system to transfer control to the handler, which can then print diagnostic information, such as the address of
the instruction where the exception occurred, and either abort or resume execution. (In order to resume execution with any prospect for a meaningful outcome, the handler may need to supply a result for the exceptional operation as described in the next section.)

You can use `ieee_handler` to simultaneously enable trapping on any of the five IEEE floating-point exceptions and either request that the program abort when the specified exception occurs or establish a `SIGFPE` handler. You can also install a `SIGFPE` handler using one of the lower-level functions `sigfpe(3), signal(3c), or sigaction(2);` however, these functions do not enable trapping as `ieee_handler` does. (Remember that a floating point exception triggers a `SIGFPE` signal only when its trap is enabled.)

`ieee_handler (3m)`

The syntax of a call to `ieee_handler` is:

```c
i = ieee_handler(action, exception, handler)
```

The two input parameters `action` and `exception` are strings. The third input parameter, `handler`, is of type `sigfpe_handler_type`, which is defined in `floatingpoint.h` (or `f77_floatingpoint.h` for FORTRAN programs).

The three input parameters can take the following values:

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>C or C++ Type</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>char *</td>
<td>get, set, clear</td>
</tr>
<tr>
<td>exception</td>
<td>char *</td>
<td>invalid, division, overflow, underflow, inexact, all, common</td>
</tr>
<tr>
<td>handler</td>
<td>sigfpe_handler_type</td>
<td>user-defined routine, SIGFPE_DEFAULT, SIGFPE_IGNORE, SIGFPE_ABORT</td>
</tr>
</tbody>
</table>

When the requested action is "set", `ieee_handler` establishes the handling function specified by `handler` for the specified `exception`. The handling function may be `SIGFPE_DEFAULT` or `SIGFPE_IGNORE`, both of which select the default IEEE behavior, `SIGFPE_ABORT`, which causes the program to abort on the occurrence of any of the named exceptions, or the address of a user-
supplied subroutine, which causes that subroutine to be invoked (with the parameters described in the sigaction(2) manual page for a signal handler installed with the SA_SIGINFO flag set) when any of the named exceptions occurs. If the handler is SIGFPE_DEFAULT or SIGFPE_IGNORE, ieee_handler also disables trapping on the specified exceptions; for any other handler, ieee_handler enables trapping.

When the requested action is "clear", ieee_handler revokes whatever handling function is currently installed for the specified exception and disables its trap. (This is the same as "set"ing SIGFPE_DEFAULT.) The third parameter is ignored when action is "clear".

For both the "set" and "clear" actions, ieee_handler returns 0 if the requested action is available and a nonzero value otherwise.

When the requested action is "get", ieee_handler returns the address of the handler currently installed for the specified exception (or SIGFPE_DEFAULT, if no handler is installed).

The following examples show a few code fragments illustrating the use of ieee_handler. This C code causes the program to abort on division by zero:

```c
#include <sunmath.h>
if (ieee_handler("set", "division", SIGFPE_ABORT) != 0)
  printf("ieee trapping not supported here \n");
```

Here is the equivalent FORTRAN code:

```fortran
#include <f77_floatingpoint.h>
i = ieee_handler('set', 'division', SIGFPE_ABORT)
if(i.ne.0) print *, 'ieee trapping not supported here'
```

This C fragment restores IEEE default exception handling for all exceptions:

```c
#include <sunmath.h>
if (ieee_handler("clear", "all", 0) != 0)
  printf("could not clear exception handlers\n");
```
Here is the same action in FORTRAN:

```fortran
i = ieee_handler('clear', 'all', 0)
if (i.ne.0) print *, 'could not clear exception handlers'
```

Reporting an Exception from a Signal Handler

When a SIGFPE handler installed via ieee_handler is invoked, the operating system provides additional information indicating the type of exception that occurred, the address of the instruction that caused it, and the contents of the machine’s integer and floating point registers. The handler can examine this information and print a message identifying the exception and the location at which it occurred.

To access the information supplied by the system, declare the handler as follows. (The remainder of this chapter presents sample code in C; see Appendix A, “Examples,” for examples of SIGFPE handlers in FORTRAN.)

```c
#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}
```

When the handler is invoked, the `sig` parameter contains the number of the signal that was sent. Signal numbers are defined in `sys/signal.h`; the SIGFPE signal number is 8.

The `sip` parameter points to a structure that records additional information about the signal. For a SIGFPE signal, the relevant members of this structure are `sip->si_code` and `sip->si_addr` (see `sys/siginfo.h`). The significance of these members depends on the system and on what event triggered the SIGFPE signal.
The `sip->si_code` member is one of the `SIGFPE` signal types listed in Table 4-4. (The tokens shown are defined in `sys/machsig.h`.)

Table 4-4 Types for Arithmetic Exceptions

<table>
<thead>
<tr>
<th>SIGFPE Type</th>
<th>IEEE Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPE_INTDIV</td>
<td></td>
</tr>
<tr>
<td>FPE_INTOVF</td>
<td></td>
</tr>
<tr>
<td>FPE_FLTRES</td>
<td>inexact</td>
</tr>
<tr>
<td>FPE_FLTDIV</td>
<td>division</td>
</tr>
<tr>
<td>FPE_FLTUND</td>
<td>underflow</td>
</tr>
<tr>
<td>FPE_FLTINV</td>
<td>invalid</td>
</tr>
<tr>
<td>FPE_FLTOVF</td>
<td>overflow</td>
</tr>
</tbody>
</table>

As the table shows, each type of IEEE floating point exception has a corresponding `SIGFPE` signal type. Integer division by zero (FPE_INTDIV) and integer overflow (FPE_INTOVF) are also included among the `SIGFPE` types, but because they are not IEEE floating point exceptions you cannot install handlers for them via `ieee_handler`. (You can install handlers for these `SIGFPE` types via `sigfpe(3)`; note, though, that integer division by zero is either ignored or generates `SIGILL` on PowerPC systems, and integer overflow is ignored on all SPARC, Intel, and PowerPC systems. On SPARC and Intel systems, special instructions can cause the delivery of a `SIGFPE` signal of type FPE_INTOVF, but Sun compilers do not generate these instructions.)

For a `SIGFPE` signal corresponding to an IEEE floating point exception, the `sip->si_code` member indicates which exception occurred on SPARC and PowerPC systems, while on Intel systems it indicates the highest priority exception whose flag is raised (excluding the denormal operand flag). The `sip->si_addr` member holds the address of the instruction that caused the exception on SPARC and PowerPC systems, and on Intel systems it holds the address of the instruction at which the trap was taken (usually the next floating point instruction following the one that caused the exception).

Finally, the `uap` parameter points to a structure that records the state of the system at the time the trap was taken. The contents of this structure are system-dependent; see `sys/reg.h` for definitions of some of its members.
Using the information provided by the operating system, we can write a SIGFPE handler that reports the type of exception that occurred and the address of the instruction that caused it. The following example shows such a handler.

```c
#include <stdio.h>
#include <sys/ieeefp.h>
#include <sunmath.h>
#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    unsigned code, addr;

    #ifdef i386
        unsigned sw;
        sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status & ~uap->uc_mcontext.fpregs.fp_reg_set.fpship_state.state[0];
        if (sw & (1 << fp_invalid))
            code = FPE_FLTINV;
        else if (sw & (1 << fp_division))
            code = FPE_FLTDIV;
        else if (sw & (1 << fp_overflow))
            code = FPE_FLTOVF;
        else if (sw & (1 << fp_underflow))
            code = FPE_FLTOVF;
        else if (sw & (1 << fp_inexact))
            code = FPE_FLTRES;
        else
            code = 0;
        addr = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[3];
    #else
        code = sip->si_code;
        addr = (unsigned) sip->si_addr;
    #endif
    fprintf(stderr, "fp exception %x at address %x\n", code, addr);
}
```
int main()
{
 double x;

 /* trap on common floating point exceptions */
 if (ieee_handler("set", "common", handler) != 0)
 printf("Did not set exception handler\n");

 /* cause an underflow exception (will not be reported) */
 x = min_normal();
 printf("min_normal = %g\n", x);
 x = x / 13.0;
 printf("min_normal / 13.0 = %g\n", x);

 /* cause an overflow exception (will be reported) */
 x = max_normal();
 printf("max_normal = %g\n", x);
 x = x * x;
 printf("max_normal * max_normal = %g\n", x);
 ieee_retrospective(stderr);
 return 0;
}

On SPARC and PowerPC systems, the output from this program resembles the following:

min_normal = 2.22507e-308
min_normal / 13.0 = 1.7116e-309
max_normal = 1.79769e+308
fp exception 4 at address 10d0c
max_normal * max_normal = 1.79769e+308
Note: IEEE floating-point exception flags raised:
 Inexact; Underflow;
IEEE floating-point exception traps enabled:
 overflow; division by zero; invalid operation;
See the Numerical Computation Guide, ieee_flags(3M),
 ieee_handler(3M)
On Intel systems, the operating system saves a copy of the accrued exception flags and then clears them before invoking a SIGFPE handler. Unless the handler takes steps to preserve them, the accrued flags are lost once the handler returns. Thus, the output from the preceding program does not indicate that an underflow exception was raised:

Note that the instruction that causes the exception need not deliver the IEEE default result when trapping is enabled: in the preceding outputs, the value reported for max_normal * max_normal is not the default result for an operation that overflows (i.e., a correctly signed infinity). In general, a SIGFPE handler must supply a result for an operation that causes a trapped exception in order to continue the computation with meaningful values. The next section shows how this can be done.

Handling Exceptions

Historically, most numerical software has been written without regard to exceptions (for a variety of reasons), and many programmers have become accustomed to environments in which exceptions cause a program to abort immediately. Now, some high-quality software packages such as LAPACK are being carefully designed to avoid exceptions such as division by zero and invalid operations and to scale their inputs aggressively to preclude overflow and potentially harmful underflow. Neither of these approaches to dealing with exceptions is appropriate in every situation, however: ignoring exceptions can pose problems when one person writes a program or subroutine that is intended to be used by someone else (perhaps someone who does not have access to the source code), and attempting to avoid all exceptions can require many defensive tests and branches and carry a significant cost (see Demmel and Li, “Faster Numerical Algorithms via Exception Handling”, IEEE Trans. Comput. 43 (1994), pp. 983–992.)
The default exception response, status flags, and optional trapping facility of
IEEE arithmetic are intended to provide a third alternative: continuing a
computation in the presence of exceptions and either detecting them after the
fact or intercepting and handling them as they occur. As noted above,
\texttt{ieee_flags} can be used to detect exceptions after the fact, and
\texttt{ieee_handler} can be used to enable trapping and install a \texttt{SIGFPE} handler
to intercept exceptions as they occur. In order to continue the computation,
however, the IEEE standard recommends that a trap handler be able to provide
a result for the operation that incurred an exception. In the Solaris operating
system, this can be accomplished using the \texttt{uap} parameter supplied to a signal
handler.

Recall that a signal handler may be declared in C as follows:

```c
#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}
```

When a \texttt{SIGFPE} signal handler is invoked as a result of a trapped floating
point exception, the \texttt{uap} parameter points to a data structure that contains a
copy of the machine's integer and floating point registers as well as other
system-dependent information describing the exception. If the signal handler
returns normally, the saved data are restored and the program resumes
execution at the point at which the trap was taken. Thus, by accessing and
decoding the information in the data structure that describes the exception and
possibly modifying the saved data, a \texttt{SIGFPE} handler can substitute a user-
supplied value for the result of an exceptional operation and continue
computation. As an illustration, the following examples show how to
substitute a scaled result for an operation that underflows or overflows.

\textit{Substituting IEEE Trapped Under/Overflow Results}

The IEEE standard recommends that when underflow and overflow are
trapped, the system should provide a way for a trap handler to substitute an
exponent-wrapped result, i.e., a value that agrees with what would have been the
rounded result of the operation that underflowed or overflowed except that the
exponent is wrapped around the end of its usual range, thereby effectively scaling the result by a power of two. The scale factor is chosen to map underflowed and overflowed results as nearly as possible to the middle of the exponent range so that subsequent computations will be less likely to underflow or overflow further. By keeping track of the number of underflows and overflows that occur, a program can scale the final result to compensate for the exponent wrapping. This under/overflow “counting mode” can be used to produce accurate results in computations that would otherwise exceed the range of the available floating point formats. (See P. Sterbenz, *Floating-Point Computation.*)

On SPARC, when a floating point instruction incurs a trapped exception, the system leaves the destination register unchanged. Thus, in order to substitute the exponent-wrapped result, an under/overflow handler must decode the instruction, examine the operand registers, and generate the scaled result itself. The following example shows a handler that performs these steps. (In order to use this handler with code compiled for UltraSPARC systems, compile the handler on a Solaris 2.x and define the preprocessor token *V8PLUS.*)

```c
#include <stdio.h>
#include <ieeefp.h>
#include <math.h>
#include <sunmath.h>
#include <siginfo.h>
#include <ucontext.h>
#ifdef V8PLUS
#include <assert.h>
#include <sys/procfs.h>
#define FPxreg(x)  ((prxregset_t*)uap->uc_mcontext.xrs.xrs_ptr)->pr_un.pr_v8p.pr_xfr.pr_regs[(x)]
#endif
#define FPreg(x)   uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[(x)]

/*
 * Supply the IEEE 754 default result for trapped under/overflow
 */
void
ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)
{
    unsigned    instr, opf, rs1, rs2, rd;
    long double qs1, qs2, qd, qscl;
    double      ds1, ds2, dd, dscl;
```
float fs1, fs2, fd, fscl;

/* get the instruction that caused the exception */
instr = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

/* extract the opcode and source and destination register numbers */
opf = (instr >> 5) & 0x1ff;
rs1 = (instr >> 14) & 0x1f;
rs2 = instr & 0x1f;
rd = (instr >> 25) & 0x1f;

/* get the operands */
switch (opf & 3) {
 case 1: /* single precision */
 fs1 = *(float*)&FPreg(rs1);
 fs2 = *(float*)&FPreg(rs2);
 break;
 case 2: /* double precision */
 #ifdef V8PLUS
 if (rs1 & 1)
 {
 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
 ds1 = *(double*)&FPxreg(rs1 & 0x1e);
 }
 else
 {
 ds1 = *(double*)&FPreg(rs1);
 if (rs2 & 1)
 {
 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
 ds2 = *(double*)&FPxreg(rs2 & 0x1e);
 }
 }
 #else
 {
 ds1 = *(double*)&FPreg(rs1);
 ds2 = *(double*)&FPreg(rs2);
 break;
 }
 #endif
 else
 {
 ds1 = *(double*)&FPreg(rs1);
 ds2 = *(double*)&FPreg(rs2);
 }
 case 3: /* quad precision */
 #ifdef V8PLUS
 if (rs1 & 1)
 {
 #endif
 #else
 ds1 = *(double*)&FPreg(rs1);
 ds2 = *(double*)&FPreg(rs2);
 #endif
 break;
}

 Exceptions and Exception Handling
assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
qs1 = *(long double*)&FPxreg(rs1 & 0x1e);
}
else
qs1 = *(long double*)&FPreg(rs1);
if (rs2 & 1)
{
assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
qs2 = *(long double*)&FPxreg(rs2 & 0x1e);
}
else
qs2 = *(long double*)&FPreg(rs2);
#else
qs1 = *(long double*)&FPreg(rs1);
qs2 = *(long double*)&FPreg(rs2);
#endif
break;
}

/* set up scale factors */
if (sip->si_code == FPE_FLTOVF) {
 fscl = scalbnf(1.0f, -96);
dsc1 = scalbn(1.0, -768);
 qscl = scalbnl(1.0, -12288);
} else {
 fscl = scalbnf(1.0f, 96);
dsc1 = scalbn(1.0, 768);
 qscl = scalbnl(1.0, 12288);
}

/* disable traps and generate the scaled result */
fpsetmask(0);
switch (opf) {
 case 0x41: /* add single */
 fd = fscl * (fscl * fs1 + fscl * fs2);
 break;
 case 0x42: /* add double */
 dd = dscl * (dscl * ds1 + dscl * ds2);
 break;
 case 0x43: /* add quad */
 qd = qscl * (qscl * qs1 + qscl * qs2);
 break;

}
case 0x45: /* subtract single */
 fd = fsl * (fsl - fsl * fsl);
 break;

case 0x46: /* subtract double */
 dd = dsl * (dsl - dsl * dsl);
 break;

case 0x47: /* subtract quad */
 qd = qsl * (qsl - qsl * qsl);
 break;

case 0x49: /* multiply single */
 fd = (fsl * fsl) * (fsl * fsl);
 break;

case 0x4a: /* multiply double */
 dd = (dsl * dsl) * (dsl * dsl);
 break;

case 0x4b: /* multiply quad */
 qd = (qsl * qsl) * (qsl * qsl);
 break;

case 0x4d: /* divide single */
 fd = (fsl / fsl) / (fsl / fsl);
 break;

case 0x4e: /* divide double */
 dd = (dsl / dsl) / (dsl / dsl);
 break;

case 0x4f: /* divide quad */
 qd = (qsl / qsl) / (qsl / qsl);
 break;

case 0xc6: /* convert double to single */
 fd = (float) (fsl * fsl);
 break;

case 0xc7: /* convert quad to single */
 fd = (float) (fsl * fsl);
 break;

case 0xcb: /* convert quad to double */
dd = (double) (dscl * (dscl * qsl));
break;
}
/* store the result in the destination */
if (opf & 0x80) {
/* conversion operation */
if (opf == 0xcb) {
/* convert quad to double */
#ifdef V8PLUS
if (rd & 1)
{
 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
 (double)&FPxreg(rd & 0x1e) = dd;
}
else
 (double)&FPreg(rd) = dd;
#else
 (double)&FPreg(rd) = dd;
#endif
#else
 (double)&FPreg(rd) = dd;
#endif
} else {
/* arithmetic operation */
switch (opf & 3) {
 case 1: /* single precision */
 (float)&FPreg(rd) = fd;
 break;
 case 2: /* double precision */
#ifdef V8PLUS
 if (rd & 1)
 assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
 (double)&FPxreg(rd & 0x1e) = dd;
 else
 (double)&FPreg(rd) = dd;
#else
 (double)&FPreg(rd) = dd;
#endif
 break;
 case 3: /* quad precision */

```c
#ifdef V8PLUS
    if (rd & 1)
    {
        assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);
        *(long double*)&FPxreg(rd & 0x1e) = qd;
    }
    else
        *(long double*)&FPreg(rd & 0x1e) = qd;
#else
    *(long double*)&FPreg(rd & 0x1e) = qd;
#endif
    break;
}
}

int
main()
{
    volatile float  a, b;
    volatile double  x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);
    ieee_handler("set", "overflow", ieee_trapped_default);

    a = b = 1.0e30f;
    a *= b; /* overflow; will be wrapped to a moderate number */
    printf("%g\n", a);
    a /= b;
    printf("%g\n", a);
    a /= b; /* underflow; will wrap back */
    printf("%g\n", a);

    x = y = 1.0e300;
    x *= y; /* overflow; will be wrapped to a moderate number */
    printf("%g\n", x);
    x /= y;
    printf("%g\n", x);
    x /= y; /* underflow; will wrap back */
    printf("%g\n", x);

    ieee_retrospective(stdout);
    return 0;
}
```

Exceptions and Exception Handling 83
The output from the preceding program is:

```
159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
Note: IEEE floating-point exception traps enabled:
  underflow;  overflow;
See the Numerical Computation Guide, ieee_handler(3M)
```

On Intel, the floating point hardware provides the exponent-wrapped result when a floating point instruction incurs a trapped underflow or overflow and its destination is a register. When trapped underflow or overflow occurs on a floating point store instruction, however, the hardware traps without completing the store (and without popping the stack, if the store instruction is a store-and-pop). Thus, in order to implement counting mode, an under/overflow handler must generate the scaled result and fix up the stack when a trap occurs on a store instruction. The following example illustrates such a handler. Note that the sample program must be compiled with the following inline template file, which supplies dummy functions that force traps to be taken in proper sequence.

```
# include <stdio.h>
# include <ieeefp.h>
# include <math.h>
# include <sunmath.h>
# include <siginfo.h>
# include <ucontext.h>

/* offsets into the saved fp environment */
#define CW 0 /* control word */
```
#define SW 1 /* status word */
#define TW 2 /* tag word */
#define OP 4 /* opcode */
#define EA 5 /* operand address */

#define FPenv(x) uap->uc_mcontext.fpregs.fp_reg_set.
fpchip_state.state[(x)]

#define FPreg(x) *(long double *)(10*(x)+(char*)&uap->
uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[7])

void ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)
{
 double dscl;
 float fscl;
 unsigned sw, op, top;
 int mask, e;

 /* preserve flags for untrapped exceptions */
 sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status;
 FPenv(SW) |= (sw & (FPenv(CW) & 0x3f));

 /* if the excepting instruction is a store, scale the stack
 * top, store it, and pop the stack if need be */
 fpsetmask(0);
 op = FPenv(OP) >> 16;
 switch (op & 0x7f8) {
 case 0x110:
 case 0x118:
 case 0x150:
 case 0x158:
 case 0x190:
 case 0x198:
 fscl = scalbnf(1.0f, (sip->si_code == FPE_FLTOVF) ?
-96 : 96);
 *(float *)FPenv(EA) = (FPreg(0) * fscl) * fscl;
 if (op & 8) {
 /* pop the stack */
 FPreg(0) = FPreg(1);
 FPreg(1) = FPreg(2);
 FPreg(2) = FPreg(3);
 }
 }
FPreg(3) = FPreg(4);
FPreg(4) = FPreg(5);
FPreg(5) = FPreg(6);
FPreg(6) = FPreg(7);
top = (FPenv(SW) >> 10) & 0xe;
FPenv(TW) |= (3 << top);
top = (top + 2) & 0xe;
FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);
}
break;
case 0x510:
case 0x518:
case 0x550:
case 0x558:
case 0x590:
case 0x598:
 dscl = scalbn(1.0, (sip->si_code == FPE_FLTOVF) ? -768 : 768);
 *(double *)FPenv(EA) = (FPreg(0) * dscl) * dscl;
 if (op & 8) {
 /* pop the stack */
 FPreg(0) = FPreg(1);
 FPreg(1) = FPreg(2);
 FPreg(2) = FPreg(3);
 FPreg(3) = FPreg(4);
 FPreg(4) = FPreg(5);
 FPreg(5) = FPreg(6);
 FPreg(6) = FPreg(7);
 top = (FPenv(SW) >> 10) & 0xe;
 FPenv(TW) |= (3 << top);
 top = (top + 2) & 0xe;
 FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);
 }
break;
}
}
extern float dummyf(float);
extern double dummy(double);

int main()
{
 volatile float a, b;
As on SPARC, the output from the preceding program on Intel is:

```
159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
```

Note: IEEE floating-point exception traps enabled:

- underflow
- overflow

See the Numerical Computation Guide, ieee_handler(3M)
On PowerPC, the floating point hardware supplies the exponent-wrapped result for a floating point instruction that incurs a trapped underflow or overflow. An under/overflow handler need not take any action to provide the scaled result, as the following example shows.

```c
#include <stdio.h>
#include <sunmath.h>

void ieee_trapped_default()
{
}

int main()
{
    volatile float a, b;
    volatile double x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);
    ieee_handler("set", "overflow", ieee_trapped_default);

    a = b = 1.0e30f;
    a *= b;
    printf( "%g\n", a );
    a /= b;
    printf( "%g\n", a );
    a /= b;
    printf( "%g\n", a );

    x = y = 1.0e300;
    x *= y;
    printf( "%g\n", x );
    x /= y;
    printf( "%g\n", x );
    x /= y;
    printf( "%g\n", x );

    ieee_retrospective(stdout);
    return 0;
}
As expected, the output is:

```
159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1

Note: IEEE floating-point exception traps enabled:
 underflow; overflow;
See the Numerical Computation Guide, ieee_handler(3M)
```
Examples

This appendix provides examples of how to accomplish some popular tasks. The examples are written either in FORTRAN or ANSI C, and many depend on the current version of libm and libsunmath. These examples were tested with the current C and FORTRAN compilers in the Solaris operating environment.

This appendix is organized into the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Arithmetic</td>
<td>91</td>
</tr>
<tr>
<td>The Math Libraries</td>
<td>94</td>
</tr>
<tr>
<td>Exceptions and Exception Handling</td>
<td>106</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>120</td>
</tr>
</tbody>
</table>

IEEE Arithmetic

This section shows how to examine the stored IEEE hexadecimal representation of floating-point numbers.
Examining Stored IEEE hexadecimal Representations

These examples show a way of examining the hexadecimal representation of floating-point numbers. Note that you can also use the debuggers to look at the hexadecimal representation of stored data, as well as write programs based on other ideas.

The following C program prints a double-precision approximation to pi and single-precision infinity:

```c
#include <math.h>
#include <sunmath.h>

main() {
 union {
 float flt;
 unsigned un;
 } r;
 union {
 double dbl;
 unsigned un[2];
 } d;

 /* double precision */
 d.dbl = M_PI;
 (void) printf("DP Approx pi = %08x %08x = %18.17e \n",
 d.un[0], d.un[1], d.dbl);

 /* single precision */
 r.flt = infinityf();
 (void) printf("Single Precision %8.7e : %08x \n",
 r.flt, r.un);

 exit(0);
}
```

The output of this program looks like (SPARC):

```
DP Approx pi = 400921fb 54442d18 = 3.14159265358979312e+00
Single Precision Infinity: 7f800000
```
And from FORTRAN:

```fortran
program print_ieee_values
 implicit real*16 (q)
 implicit double precision (d)
 implicit real (r)

 real*16 z
 double precision x
 real r

 z = q_min_normal()
 write(*,7) z, z
 7 format('min normal, quad: ',1pe47.37e4,/,' in hex ','z32.32')

 x = d_min_normal()
 write(*,14) x, x
 14 format('min normal, double: ',1pe23.16,' in hex ','z16.16')

 r = r_min_normal()
 write(*,27) r, r
 27 format('min normal, single: ',1pe14.7,' in hex ','z8.8')

end
```

(Intel) Intel does not support quadruple precision; real*16. To run the FORTRAN example on Intel, delete the real*16 declaration and the q_min_normal() function that calculates and prints the quadruple precision value.

```fortran
implicit real*16 (q)
...
 z = q_min_normal()
 write(*,7) z, z
 7 format('min normal, quad: ',1pe47.37e4,/,' in hex ','z32.32')
```
The corresponding output looks like (SPARC):

```
min normal, quad: 3.3621031431120935062626778173217526026E-4932
 in hex 00010000000000000000000000000000
min normal, double:2.2250738585072014-308 in hex 0010000000000000
min normal, single:1.1754944E-38 in hex 00800000
```

**The Math Libraries**

In this section are a few examples that use functions from the math library.

**Random Number Generator**

The following example calls a random number generator to generate an array of numbers, and uses a timing function to measure the time it takes to compute the EXP of the given numbers:

```
#include "generic.h"

#define SIZE 400000

program example
c
implicit GENERIC (a-h,o-z)
GENERIC x(SIZE), y, lb, ub
real time(2), u1, u2
c
compute EXP on random numbers in [-ln2/2,ln2/2]
lb = -0.3465735903
ub = 0.3465735903
c
generate array of random numbers
```

```c
#ifdef DP
#define GENERIC double precision
#else
#define GENERIC real
#endif
```
Note that compilation must be done using either the -DDP or -DSP flag. The suffix is F instead of f so that the preprocessor is invoked automatically.

This example shows how to use d_addrans to generate blocks of random data uniformly distributed over a user-specified range:

```c
/*
 * test SIZE*LOOPS random arguments to sin in the range
 * [0, threshold] where
 * threshold = 3E300000000000000 (3.72529029846191406e-09)
 */

#include <math.h>
#include <sunmath.h>
#define SIZE 10000
```
#define LOOPS 100

main()
{
  double x[SIZE], y[SIZE];
  int i, j, n;
  double lb, ub;
  union {
    unsigned u[2];
    double d;
  } upperbound;
  upperbound.u[0] = 0x3e300000;
  upperbound.u[1] = 0x00000000;

  /* initialize the random number generator */
  d_init_addrans_();

  /* test (SIZE * LOOPS) arguments to sin */
  for (j = 0; j < LOOPS; j++) {
    /* generate a vector, x, of length SIZE,
       of random numbers to use as
       input to the trig functions. */
    n = SIZE;
    ub = upperbound.d;
    lb = 0.0;
    d_addrans_(x, &n, &lb, &ub);
    
    for (i = 0; i < n; i++)
      y[i] = sin(x[i]);

    /* is sin(x) == x?  It ought to, for tiny x. */
    for (i = 0; i < n; i++)
      if (x[i] != y[i])
        printf(" OOPS: %d sin(%18.17e)=%18.17e \n", i, x[i], y[i]);
  }

  printf(" comparison ended; no differences\n");
This FORTRAN example uses some functions recommended by the IEEE standard:

```fortran
ieee_retrospective_();
exit(0);
}
```

/*
Demonstrate how to call 5 of the more interesting IEEE recommended functions from fortran. These are implemented with "bit-twiddling", and so are as efficient as you could hope. The IEEE standard for floating-point arithmetic doesn't require these, but recommends that they be included in any IEEE programming environment.

For example, to accomplish

```
y = x * 2**n,
```
since the hardware stores numbers in base 2,
shift the exponent by n places.

Refer to

- ieee_functions(3m)
- libm_double(3f)
- libm_single(3f)

The 5 functions demonstrated here are:

- ilogb(x): returns the base 2 unbiased exponent of x in integer format
- signbit(x): returns the sign bit, 0 or 1
- copysign(x,y): returns x with y's sign bit
- nextafter(x,y): next representable number after x, in the direction y
- scalbn(x,n): x * 2**n

<table>
<thead>
<tr>
<th>function</th>
<th>double precision</th>
<th>single precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ilogb(x)</td>
<td>i = id_ilogb(x)</td>
<td>i = ir_ilogb(r)</td>
</tr>
<tr>
<td>signbit(x)</td>
<td>i = id_signbit(x)</td>
<td>i = ir_signbit(r)</td>
</tr>
<tr>
<td>copysign(x,y)</td>
<td>x = d_copysign(x,y)</td>
<td>r = r_copysign(r,s)</td>
</tr>
<tr>
<td>nextafter(x,y)</td>
<td>z = d_nextafter(x,y)</td>
<td>r = r_nextafter(r,s)</td>
</tr>
</tbody>
</table>
```fortran
scalbn(x,n) x = d_scalbn(x,n) r = r_scalbn(r,n)
*
#include <values.h>

program ieee_functions_demo
implicit double precision (d)
implicit real (r)
double precision x, y, z, direction
real r, s, t, r_direction
integer i, scale

print *
print *, 'DOUBLE PRECISION EXAMPLES:'
print *

x = 32.0d0
i = id_ilogb(x)
write(*,1) x, i
1 format(' The base 2 exponent of ', F4.1, ' is ', I2)

x = -5.5d0
y = 12.4d0
z = d_copysign(x,y)
write(*,2) x, y, z
2 format(F5.1, ' was given the sign of ', F4.1, * ' and is now ', F4.1)

x = -5.5d0
i = id_signbit(x)
print *, 'The sign bit of ', x, ' is ', i

x = MINDOUBLE
direction = -d_infinity()
y = d_nextafter(x, direction)
write(*,3) x
3 format(' Starting from ', 1PE23.16, * ' the next representable number ')
write(*,4) direction, y
4 format(' towards ', F4.1, ' is ', 1PE23.16)

x = MINDOUBLE
direction = 1.0d0
```

Examples

```fortran
 y = d_nextafter(x, direction)
 write(*,3) x
 write(*,4) direction, y

 x = 2.0d0
 scale = 3
 y = d_scalbn(x, scale)
 write (*,5) x, scale, y
 format(' Scaling ', F4.1, ' by 2**', I1, ' is ', F4.1)
 print *

print *, 'SINGLE PRECISION EXAMPLES:'
print *

 r = 32.0
 i = ir_ilogb(r)
 write (*,1) r, i

 r = -5.5
 i = ir_signbit(r)
 print *, 'The sign bit of ', r, ' is ', i

 r = -5.5
 s = 12.4
 t = r_copysign(r,s)
 write (*,2) r, s, t

 r = r_min_subnormal()
 r_direction = -r_infinity()
 s = r_nextafter(r, r_direction)
 write(*,3) r
 write(*,4) r_direction, s

 r = r_min_subnormal()
 r_direction = 1.0e0
 s = r_nextafter(r, r_direction)
 write(*,3) r
 write(*,4) r_direction, s

 r = 2.0
 scale = 3
 s = r_scalbn(r, scale)
 write (*,5) r, scale, y
```
print *
end

The output from this program looks like:

DOUBLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is 5
-5.5 was given the sign of 12.4 and is now 5.5
The sign bit of -5.5000000000000 is 1
Starting from 4.9406564584124654-324, the next representable number towards -Inf is 0.0000000000000000E+00
Starting from 4.9406564584124654-324, the next representable number towards 1.0 is 9.8813129168249309-324
Scaling 2.0 by 2**3 is 16.0

SINGLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is 5
The sign bit of -5.5000 is 1
-5.5 was given the sign of 12.4 and is now 5.5
Starting from 1.4012984643248171E-45, the next representable number towards -Inf is 0.0000000000000000E+00
Starting from 1.4012984643248171E-45, the next representable number towards 1.0 is 2.8025969286496341E-45
Scaling 2.0 by 2**3 is 16.0

Note: IEEE floating-point exception flags raised: Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)
This C program calls several of the ieee_values(3m) functions:

```c
#include <math.h>
#include <sunmath.h>

main()
{
 double x;
 float r;

 x = quiet_nan(0);
 printf("quiet NaN: %.16e = %08x %08x \n",
 x, ((int *) &x)[0], ((int *) &x)[1]);

 x = nextafter(max_subnormal(), 0.0);
 printf("nextafter(max_subnormal,0) = %.16e
",
 x, ((int *) &x)[0], ((int *) &x)[1]);

 r = min_subnormalf();
 printf("single precision min subnormal = %.8e = %08x
",
 r, ((int *) &r)[0]);

 exit(0);
}
```

When linking, you use both -lm and -lsunmath.

The output is similar to (SPARC):

```
quiet NaN: NaN = 7fffffff fffffff
nextafter(max_subnormal,0) = 2.2250738585072004e-308
 = 00000000 ffffffff
single precision min subnormal = 1.40129846e-45 = 00000001
```
(Intel and PowerPC) The output is similar to:

quiet NaN: NaN = ffffffff 7fffffff
nextafter(max_subnormal,0) = 2.2250738585072004e-308
       = ffffffff 00000000
single precision min subnormal = 1.40129846e-45 = 00000001

FORTRAN programs that use ieee_values functions should take care to declare the function’s type (SPARC):

```
program print_ieee_values
 c
 c the purpose of the implicit statements is to insure
 c that the f77_floatingpoint pseudo-intrinsic
 c functions are declared with the correct type
 c
 implicit real*16 (q)
 implicit double precision (d)
 implicit real (r)
 real*16 z, zero, one
 double precision x
 real r
 c
 zero = 0.0
 one = 1.0
 z = q_nextafter(zero, one)
 x = d_infinity()
 r = r_max_normal()
 c
 print *, z
 print *, x
 print *, r
 c
 end
```
(Intel) Intel does not support quadruple precision; real*16. To run the FORTRAN example on Intel, delete the real*16 declarations, the assignment of zero and one, the q_nextafter() function, and the statement to print z.

```
implicit real*16 (q)
...
real*16 z, zero, one
...
zero = 0.0
one = 1.0
z = q_nextafter(zero, one)
...
print *, z
```

The output is similar to (SPARC):

```
6.4751751194380251109244389582276466-4966
Infinity
3.40282E+38
```
The following example demonstrates how to set the rounding mode to *round towards zero*:

```c
#include <math.h>
main() {
 int i;
 double x, y;
 char *out_1, *out_2, *dummy;

 /* get prevailing rounding direction */
 i = ieee_flags("get", "direction", "", &out_1);

 x = sqrt(.5);
 printf("With rounding direction %s, \n", out_1);
 printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
 ((int *) &x)[0], ((int *) &x)[1], x);

 /* set rounding direction */
 if (ieee_flags("set", "direction", "tozero", &dummy) != 0)
 printf("Not able to change rounding direction!\n");
 i = ieee_flags("get", "direction", "", &out_2);

 x = sqrt(.5);
 /*
 * restore original rounding direction before printf, since
 * printf is also affected by the current rounding direction
 */
 if (ieee_flags("set", "direction", out_1, &dummy) != 0)
 printf("Not able to change rounding direction!\n");
 printf("\nWith rounding direction %s,\n", out_2);
 printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
 ((int *) &x)[0], ((int *) &x)[1], x);

 exit(0);
}
```
The output of this short program shows the effects of rounding towards zero:

```bash
demo% cc rounding_direction.c -lm
demo% a.out
With rounding direction nearest,
 sqrt(.5) = 0x3fe6a09e 0x667f3bcd = 7.071067811865476e-01

With rounding direction tozero,
 sqrt(.5) = 0x3fe6a09e 0x667f3bcc = 7.071067811865475e-01
demo%
```

(Intel and PowerPC) The output of this short program shows the effects of rounding towards zero:

```bash
demo% cc rounding_direction.c -lm
demo% a.out
With rounding direction nearest,
 sqrt(.5) = 0x667f3bcd 0x3fe6a09e = 7.071067811865476e-01

With rounding direction tozero,
 sqrt(.5) = 0x667f3bcc 0x3fe6a09e = 7.071067811865475e-01
demo%
```

Set rounding direction towards zero from a FORTRAN program:

```fortran
program ieee_flags_demo
 character*16 out
 i = ieee_flags(’set’, ’direction’, ’tozero’, out)
 if (i.ne.0) print *, ’not able to set rounding direction’
 i = ieee_flags(’get’, ’direction’, ’’, out)
 print *, ’Rounding direction is: ’, out
end
```
Exceptions and Exception Handling

IEEE Flags — Accrued Exceptions

Generally, a user program examines or clears the accrued exception bits. Here is a C program that examines the accrued exception flags:

```c
#include <sunmath.h>
#include <sys/ieeefp.h>

main()
{
 int code, inexact, division, underflow, overflow, invalid;
 double x;
 char *out;

 /* cause an underflow exception */
 x = max_subnormal() / 2.0;

 /* this statement insures that the previous */
 /* statement is not optimized away */
 printf("x = %g\n", x);

 /* find out which exceptions are raised */
 code = ieee_flags("get", "exception", "", &out);

 /* decode the return value */
 inexact = (code >> fp_inexact) & 0x1;
 underflow = (code >> fp_underflow) & 0x1;
 division = (code >> fp_division) & 0x1;
 overflow = (code >> fp_overflow) & 0x1;
 invalid = (code >> fp_invalid) & 0x1;

 /* "out" is the raised exception with the highest priority */
 printf("Highest priority exception is: %s\n", out);
}
```

Rounding direction is: tozero
Note: Rounding direction toward zero.
See the Numerical Computation Guide, ieee_flags(3M)
The output from running this program:

```c
/* The value 1 means the exception is raised, */
/* 0 means it isn’t. */
printf("%d %d %d %d %d\n", invalid, overflow, division,
 underflow, inexact);

exit(0);
```

```bash
demo% a.out
x = 1.11254e-308
Highest priority exception is: underflow
0 0 0 1 1
Note:IEEE floating-point exception flags raised:
 Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)
```
The same can be done from FORTRAN:

```fortran
/*
A FORTRAN example that:
 * causes an underflow exception
 * uses ieee_flags to determine which exceptions are raised
 * decodes the integer value returned by ieee_flags
 * clears all outstanding exceptions
Remember to save this program in a file with the suffix .F, so that the c preprocessor is invoked to bring in the header file f77_floatingpoint.h.
*/
#include <f77_floatingpoint.h>
program decode_accrued_exceptions
 double precision x
 integer accrued, inx, div, under, over, inv
 character*16 out
 double precision d_max_subnormal

 c Cause an underflow exception
 x = d_max_subnormal() / 2.0

 c Find out which exceptions are raised
 accrued = ieee_flags('get', 'exception', '', out)

 c Decode value returned by ieee_flags using bit-shift intrinsics
 inx = and(rshift(accrued, fp_inexact) , 1)
 under = and(rshift(accrued, fp_underflow) , 1)
 div = and(rshift(accrued, fp_division) , 1)
 over = and(rshift(accrued, fp_overflow) , 1)
 inv = and(rshift(accrued, fp_invalid) , 1)

 c The exception with the highest priority is returned in "out"
 print *, "Highest priority exception is ", out

 c The value 1 means the exception is raised; 0 means it is not
 print *, inv, over, div, under, inx

 c Clear all outstanding exceptions
 i = ieee_flags('clear', 'exception', 'all', out)
end
```
The output is as follows:

```
Highest priority exception is underflow
0 0 0 1 1
```

(Intel) While it is unusual for a user program to set exception flags, it can be done. This is demonstrated in the following C example.

```c
#include <sys/ieeefp.h>
/*
 * from <sys/ieeefp.h>, the exceptions according to bit number are
 * fp_invalid = 0,
 * fp_denormalized = 1,
 * fp_division = 2,
 * fp_overflow = 3,
 * fp_underflow = 4,
 * fp_inexact = 5
 */

main()
{
 int code;
 char *out;

 if (ieee_flags("clear", "exception", "all", &out) != 0)
 printf("could not clear exceptions\n");
 if (ieee_flags("set", "exception", "division", &out) != 0)
 printf("could not set exception\n");
 code = ieee_flags("get", "exception", "", &out);
 printf("out is: %s , fp exception code is: %X \n", out, code);

 exit(0);
}
```
SPARC. For a SPARC machine, the exception flags have the following definitions:

```c
/*
 * from <sys/ieeefp.h>, the exceptions according to bit number are
 * fp_inexact = 0,
 * fp_division = 1,
 * fp_underflow = 2,
 * fp_overflow = 3,
 * fp_invalid = 4
 */
```

(Intel) The output of the Intel C example is:

```
out is: division, fp exception code is: 2
```
ieee_handler — *Trapping Exceptions*

**Note** – The examples below only apply to the Solaris operating environment.

Here is a FORTRAN program that installs a signal handler to locate an exception (for SPARC and PowerPC systems only):

```fortran
program demo

c declare signal handler function
external fp_exc_hdl
double precision d_min_normal
double precision x

c set up signal handler
i = ieee_handler('set', 'common', fp_exc_hdl)
if (i.ne.0) print *, 'ieee trapping not supported here'

c cause an underflow exception (it will not be trapped)
x = d_min_normal() / 13.0
print *, 'd_min_normal() / 13.0 = ', x

c cause an overflow exception
c the value printed out is unrelated to the result
x = 1.0d300*1.0d300
print *, '1.0d300*1.0d300 = ', x

c the floating-point exception handling function

c integer function fp_exc_hdl(sig, sip, uap)
integer sig, code, addr
character label*16

c The structure /siginfo/ is a translation of siginfo_t
c from <sys/siginfo.h>

c structure /fault/
 integer address
end structure

structure /siginfo/
 integer si_signo
```

*Examples*
integer si_code
integer si_errno
record /fault/ fault
end structure

record /siginfo/ sip

c See <sys/machsig.h> for list of FPE codes
c Figure out the name of the SIGFPE
code = sip.si_code
if (code.eq.3) label = 'division'
if (code.eq.4) label = 'overflow'
if (code.eq.5) label = 'underflow'
if (code.eq.6) label = 'inexact'
if (code.eq.7) label = 'invalid'
addr = sip.fault.address

write (*,77) code, label, addr
77 format ('floating-point exception code ', i2, ',', *       a17, ',', ' at address ', z8 )

The output is:

d_min_normal() / 13.0 = 1.7115952757748-309
floating-point exception code 4, overflow , at address
1131C
1.0d300*1.0d300 = 1.0000000000000+300
Note: IEEE floating-point exception flags raised:
  Inexact; Underflow;
IEEE floating-point exception traps enabled:
  overflow; division by zero; invalid operation;
See the Numerical Computation Guide, ieee_handler(3M),
  ieee_flags(3M)

(SPARC) Here is a somewhat more complex C example:

/*
 * Generate the 5 IEEE exceptions: invalid, division,
 * overflow, underflow and inexact.
 * Trap on any floating point exception, print a message,
Examples

113

* and continue.
* 
* Note that you could also inquire about raised exceptions by
  
  * i = ieee("get","exception","",&out);
  * where out contains the name of the highest exception 
  * raised, and i can be decoded to find out about all the 
  * exceptions raised.
  */

#include <sunmath.h>
#include <signal.h>
#include <siginfo.h>
#include <ucontext.h>

extern void trap_all_fp_exc(int sig, siginfo_t *sip, ucontext_t *uap);

main()
{
  double   x, y, z;
  char     *out;

  /*
   * Use ieee_handler to establish "trap_all_fp_exc"
   * as the signal handler to use whenever any floating
   * point exception occurs.
   */

  if (ieee_handler("set", "all", trap_all_fp_exc) != 0)
    printf(" IEEE trapping not supported here.
  
  /* disable trapping (uninteresting) inexact exceptions */
  if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)
    printf("Trap handler for inexact not cleared.

    /* raise invalid */
  if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf(" could not clear exceptions\n")
    printf("1. Invalid: signaling_nan(0) * 2.5\n");
    x = signaling_nan(0);
    y = 2.5;
    z = x * y;

    /* raise division */
  if (ieee_flags("clear", "exception", "all", &out) != 0)
printf(" could not clear exceptions\n");
printf("2. Div0: 1.0 / 0.0\n");
x = 1.0;
y = 0.0;
z = x / y;

/* raise overflow */
if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf(" could not clear exceptions\n");
printf("3. Overflow: -max_normal() - 1.0e294\n");
x = -max_normal();
y = -1.0e294;
z = x + y;

/* raise underflow */
if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf(" could not clear exceptions\n");
printf("4. Underflow: min_normal() * min_normal()\n");
x = min_normal();
y = x;
z = x * y;

/* enable trapping on inexact exception */
if (ieee_handler("set", "inexact", trap_all_fp_exc) != 0)
    printf("Could not set trap handler for inexact.\n");

/* raise inexact */
if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf(" could not clear exceptions\n");
printf("5. Inexact: 2.0 / 3.0\n");
x = 2.0;
y = 3.0;
z = x / y;

/* don't trap on inexact */
if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)
    printf(" could not reset inexact trap\n");

/* check that we're not trapping on inexact anymore */
if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf(" could not clear exceptions\n");
printf("6. Inexact trapping disabled; 2.0 / 3.0\n");
x = 2.0;
y = 3.0;
z = x / y;
/* find out if there are any outstanding exceptions */
ieee_retrospective();

/* exit gracefully */
exit(0);
}

void trap_all_fp_exc(int sig, siginfo_t *sip, ucontext_t *uap) {
    char *label = "undefined";

    /* see /usr/include/sys/machsig.h for SIGFPE codes */
    switch (sip->si_code) {
    case FPE_FLTRES:
        label = "inexact";
        break;
    case FPE_FLTDIV:
        label = "division";
        break;
    case FPE_FLTUND:
        label = "underflow";
        break;
    case FPE_FLTINV:
        label = "invalid";
        break;
    case FPE_FLTOVF:
        label = "overflow";
        break;
    }

    printf("signal %d, sigfpe code %d: %s exception at address %x\n",
            sig, sip->si_code, label, sip->_data._fault._addr);
}
The output is similar to the following:

1. Invalid: signaling_nan(0) * 2.5
   signal 8, sigfpe code 7: invalid exception at address 10da8
2. Div0: 1.0 / 0.0
   signal 8, sigfpe code 3: division exception at address 10e44
3. Overflow: -max_normal() - 1.0e294
   signal 8, sigfpe code 4: overflow exception at address 10ee8
4. Underflow: min_normal() * min_normal()
   signal 8, sigfpe code 5: underflow exception at address 10f80
5. Inexact: 2.0 / 3.0
   signal 8, sigfpe code 6: inexact exception at address 1106c
6. Inexact trapping disabled; 2.0 / 3.0
Note: IEEE floating-point exception traps enabled:
   underflow; overflow; division by zero; invalid operation;
See the Numerical Computation Guide, ieee_handler(3M)

(SPARC) The following program shows how you can use ieee_handler and the include files to modify the default result of certain exceptional situations:

```c
/*
 * Cause a division by zero exception and use the
 * signal handler to substitute MAXDOUBLE (or MAXFLOAT)
 * as the result.
 *
 * compile with the flag -Xa
 */
#include <values.h>
#include <siginfo.h>
#include <ucontext.h>

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap);

main() {
 double x, y, z;
 float r, s, t;
 char *out;

 /*
 * Use ieee_handler to establish division_handler as the
 * signal handler to use for the IEEE exception division.
 */
```
Examples

```c
if (ieee_handler("set","division",division_handler)!=0) {
 printf(" IEEE trapping not supported here.\n");
}

/* Cause a division-by-zero exception */
x = 1.0;
y = 0.0;
z = x / y;

/* Check to see that the user-supplied value, MAXDOUBLE, * is indeed substituted in place of the IEEE default * value, infinity. */
printf("double precision division: %g/%g = %g \n",x,y,z);

/* Cause a division-by-zero exception */
r = 1.0;
s = 0.0;
t = r / s;

/* Check to see that the user-supplied value, MAXFLOAT, * is indeed substituted in place of the IEEE default * value, infinity. */
printf("single precision division: %g/%g = %g \n",r,s,t);

ieee_retrospective_();
exit(0);
}

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap) {
 int inst;
 unsigned rd, mask, single_prec=0;
 float f_val = MAXFLOAT;
 double d_val = MAXDOUBLE;
 long *f_val_p = (long *) &f_val;

 /* Get instruction that caused exception. */
 inst = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;
```
As expected, the output is:

```c
/*
 * Decode the destination register. Bits 29:25 encode the
 * destination register for any SPARC floating point
 * instruction.
 */
mask = 0x1f;
rd = (mask & (inst >> 25));

/*
 * Is this a single precision or double precision
 * instruction? Bits 5:6 encode the precision of the
 * opcode; if bit 5 is 1, it's sp, else, dp.
 */
mask = 0x1;
single_prec = (mask & (inst >> 5));

/* put user-defined value into destination register */
if (single_prec) {
 uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[rd] = f_val_p[0];
} else {
 uap->uc_mcontext.fpregs.fpu_fr.fpu_dregs[rd/2] = d_val;
}
```

double precision division: 1/0 = 1.79769e+308
single precision division: 1/0 = 3.40282e+38
Note: IEEE floating-point exception traps enabled:
    division by zero;
See the Numerical Computation Guide, ieee_handler(3M)
**ieee_handler — Abort on Exceptions**

You can use `ieee_handler` to force a program to abort in case of certain floating-point exceptions:

```c
#include <f77_floatingpoint.h>
program abort
 c
 ieee = ieee_handler('set', 'division', SIGFPE_ABORT)
 if (ieee .ne. 0) print *, ' ieee trapping not supported'
 r = 14.2
 s = 0.0
 r = r/s
 c
 print *, 'you should not see this; system should abort'
 c
end
```
Miscellaneous

**sigfpe — Trapping Integer Exceptions**

The previous section showed examples of using `ieee_handler`. In general, when there is a choice between using `ieee_handler` or `sigfpe`, the former is recommended.

**Note** – SIGFPE is available only in the Solaris operating environment.

(SPARC) There are instances, such as trapping integer arithmetic exceptions, when `sigfpe` is the handler to be used. The following example traps on integer division by zero:

```c
/* Generate the integer division by zero exception */

#include <siginfo.h>
#include <ucontext.h>
#include <signal.h>

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap);

main() {
 int a, b, c;

 /*
 * Use sigfpe(3) to establish "int_handler" as the signal handler
 * to use on integer division by zero
 */

 /*
 * Integer division-by-zero aborts unless a signal
 * handler for integer division by zero is set up
 */

 sigfpe(FPE_INTDIV, int_handler);

 a = 4;
 b = 0;
 c = a / b;
 printf("%d / %d = %d\n\n", a, b, c);
 */
```
Calling FORTRAN from C

Here is a simple example of a C driver calling FORTRAN subroutines. Refer to the appropriate C and FORTRAN manuals for more information on working with C and FORTRAN. The following is the C driver (save it in a file named driver.c):

```c
exit(0);
}

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap) {
 printf("Signal %d, code %d, at addr %x\n",
 sig, sip->si_code, sip->data._fault._addr);

 /*
 * Increment the program counter; the operating system does this
 * automatically for floating-point exceptions but not for
 * integer division by zero.
 */
 uap->uc_mcontext.gregs[REG_PC] =
 uap->uc_mcontext.gregs[REG_nPC];
}

/*
 * a demo program that shows:
 * 1. how to call f77 subroutine from C, passing an array argument
 * 2. how to call single precision f77 function from C
 * 3. how to call double precision f77 function from C
 */

extern int demo_one_(double *);
extern float demo_two_(float *);
extern double demo_three_(double *);

main()
{
 double array[3][4];
 float f, g;
 double x, y;
 int i, j;
```
for (i = 0; i < 3; i++)
    for (j = 0; j < 4; j++)
        array[i][j] = i + 2*j;

g = 1.5;
y = g;

/* pass an array to a fortran function (print the array) */
demo_one_(&array[0][0]);
printf(" from the driver\n");
for (i = 0; i < 3; i++) {
    for (j = 0; j < 4; j++)
        printf(" array[\%d][\%d] = \%e\n",
               i, j, array[i][j]);
    printf("\n");
}

/* call a single precision fortran function */
f = demo_two_(&g);
printf(" f = sin(g) from a single precision fortran function\n");
printf(" f, g: \%8.7e, \%8.7e\n", f, g);
printf("\n");

/* call a double precision fortran function */
x = demo_three_(&y);
printf(" x = sin(y) from a double precision fortran function\n");
printf(" x, y: \%18.17e, \%18.17e\n", x, y);

ieee_retrospective_();
exit(0);
Save the FORTRAN subroutines in a file named drivee.f:

```fortran
subroutine demo_one(array)
 double precision array(4,3)
 print *, 'from the fortran routine:'
 do 10 i =1,4
 do 20 j = 1,3
 print *, ' array[', i, ', ', j, '] = ', array(i,j)
 end
 print *
 continue
10 continue
return
end

real function demo_two(number)
 real number
 demo_two = sin(number)
 return
end

double precision function demo_three(number)
 double precision number
 demo_three = sin(number)
 return
end
```

Then, perform the compilation and linking:

```bash
cc -c driver.c
f77 -c drivee.f
 demo_one:
 demo_two:
 demo_three:
f77 -o driver driver.o drivee.o
```
The output looks like this:

```
from the fortran routine:
 array[1][1] = 0.
 array[1][2] = 1.0000000000000
 array[1][3] = 2.0000000000000

 array[2][1] = 2.0000000000000
 array[2][2] = 3.0000000000000
 array[2][3] = 4.0000000000000

 array[3][1] = 4.0000000000000
 array[3][2] = 5.0000000000000
 array[3][3] = 6.0000000000000

 array[4][1] = 6.0000000000000
 array[4][2] = 7.0000000000000
 array[4][3] = 8.0000000000000

from the driver
 array[0][0] = 0.000000e+00
 array[0][1] = 2.000000e+00
 array[0][2] = 4.000000e+00
 array[0][3] = 6.000000e+00

 array[1][0] = 1.000000e+00
 array[1][1] = 3.000000e+00
 array[1][2] = 5.000000e+00
 array[1][3] = 7.000000e+00

 array[2][0] = 2.000000e+00
 array[2][1] = 4.000000e+00
 array[2][2] = 6.000000e+00
 array[2][3] = 8.000000e+00

f = sin(g) from a single precision fortran function
 f, g: 9.9749500e-01, 1.5000000e+00

x = sin(y) from a double precision fortran function
 x, y: 9.9749498660405446e-01, 1.50000000000000000e+00
```
A Few Useful Debugging Commands

Table A-1 shows examples of debugging commands for the SPARC architecture.

<table>
<thead>
<tr>
<th>Action</th>
<th>dbx</th>
<th>adb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set breakpoint</td>
<td>stop in myfunct</td>
<td>myfunct:b</td>
</tr>
<tr>
<td>at function</td>
<td>stop at 29</td>
<td>23a8:b</td>
</tr>
<tr>
<td>at line number</td>
<td></td>
<td>main+0x40:b</td>
</tr>
<tr>
<td>at absolute address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at relative address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run until breakpoint met</td>
<td>run</td>
<td>:r</td>
</tr>
<tr>
<td>Examine source code</td>
<td>list</td>
<td>&lt;pc,10?ia</td>
</tr>
<tr>
<td>Examine a fp register</td>
<td>examine &amp;$f0/X</td>
<td>&lt;f0=X</td>
</tr>
<tr>
<td>IEEE single precision</td>
<td>print $f0</td>
<td>&lt;f0=f</td>
</tr>
<tr>
<td>decimal equivalent</td>
<td>examine &amp;$f0/2X</td>
<td>&lt;f0=X; &lt;f1=X</td>
</tr>
<tr>
<td>IEEE double precision</td>
<td>print $f0f1</td>
<td>&lt;f0=F</td>
</tr>
<tr>
<td>decimal equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examine all fp registers</td>
<td>examine &amp;$f0/32X</td>
<td>$x for f0-f15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X for f16-f31</td>
</tr>
<tr>
<td>Examine all registers</td>
<td>examine &amp;$g0/64X</td>
<td>$r; $s; $X</td>
</tr>
<tr>
<td>Examine fp status register</td>
<td>examine &amp;$fsr/X</td>
<td>&lt;fsr=X</td>
</tr>
<tr>
<td>Put single precision 1.0 in f0</td>
<td>assign $f0=1.0</td>
<td>3f8000000&gt;f0</td>
</tr>
<tr>
<td>Put double prec 1.0 in f0/f1</td>
<td>assign $f0f1=1.0</td>
<td>3ff000000&gt;0&gt;f1</td>
</tr>
<tr>
<td>Continue execution</td>
<td>cont</td>
<td>:c</td>
</tr>
<tr>
<td>Single step</td>
<td>step (or next)</td>
<td>:s</td>
</tr>
<tr>
<td>Exit the debugger</td>
<td>quit</td>
<td>$q</td>
</tr>
</tbody>
</table>
Table A-2 shows examples of debugging commands for the Intel architecture.

### Table A-2  Some Debugging Commands (Intel)

<table>
<thead>
<tr>
<th>Action</th>
<th>dbx</th>
<th>adb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set breakpoint</td>
<td>stop in myfunct</td>
<td>myfunct:b</td>
</tr>
<tr>
<td>at function</td>
<td>stop at 29</td>
<td></td>
</tr>
<tr>
<td>at line number</td>
<td>23a8:b</td>
<td></td>
</tr>
<tr>
<td>at absolute address</td>
<td>main+0x40:b</td>
<td></td>
</tr>
<tr>
<td>at relative address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run until breakpoint met</td>
<td>run</td>
<td>:r</td>
</tr>
<tr>
<td>Examine source code</td>
<td>list</td>
<td>&lt;pc,10?ia</td>
</tr>
<tr>
<td>Examine fp registers</td>
<td>print $st0</td>
<td>$x</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>print $st7</td>
<td></td>
</tr>
<tr>
<td>Examine all registers</td>
<td>examine &amp;$gs/19X</td>
<td>$r</td>
</tr>
<tr>
<td>Examine fp status register</td>
<td>examine &amp;$fstat/X</td>
<td>&lt;fstat=X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or $x</td>
</tr>
<tr>
<td>Continue execution</td>
<td>cont</td>
<td>:c</td>
</tr>
<tr>
<td>Single step</td>
<td>step (or next)</td>
<td>:s</td>
</tr>
<tr>
<td>Exit the debugger</td>
<td>quit</td>
<td>$q</td>
</tr>
</tbody>
</table>

Table A-3 shows examples of debugging commands for the PowerPC architecture.

### Table A-3  Some Debugging Commands (PowerPC)

<table>
<thead>
<tr>
<th>Action</th>
<th>dbx</th>
<th>adb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set breakpoint</td>
<td>stop in myfunct</td>
<td>myfunct:b</td>
</tr>
<tr>
<td>at function</td>
<td>stop at 29</td>
<td></td>
</tr>
<tr>
<td>at line number</td>
<td>23a8:b</td>
<td></td>
</tr>
<tr>
<td>at absolute address</td>
<td>main+0x40:b</td>
<td></td>
</tr>
<tr>
<td>at relative address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run until breakpoint met</td>
<td>run</td>
<td>:r</td>
</tr>
<tr>
<td>Examine source code</td>
<td>list</td>
<td>&lt;pc,10?ia</td>
</tr>
<tr>
<td>Examine a fp register</td>
<td>examine &amp;$f0/2X</td>
<td>&lt;f0=F</td>
</tr>
<tr>
<td>IEEE double precision</td>
<td>print $f0</td>
<td></td>
</tr>
<tr>
<td>decimal equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following examples show two ways to set a breakpoint at the beginning of the code corresponding to a routine `myfunction` in adb. First you can say:

```
myfunction:b
```

Second, you can determine the absolute address that corresponds to the beginning of the piece of code corresponding to `myfunction`, and then set a break at that absolute address:

```
myfunction=X
23a8
23a8:b
```

The main in FORTRAN programs is known as `MAIN_` to adb. To set a breakpoint at a FORTRAN main in adb:

```
MAIN_:b
```

When examining the contents of floating-point registers, the hex value shown by the `dbx` command `x` is the base-16 representation, not the number’s decimal representation. For SPARC, the `adb` commands `$x` and `$X` display both the hexadecimal representation, and the decimal value. For Intel and PowerPC, the `adb` command `$x` displays only the decimal value. For SPARC, the double precision values show the decimal value next to the odd-numbered register.

Table A-3  Some Debugging Commands (PowerPC)  (Continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>dbx</th>
<th>adb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examine all fp registers</td>
<td>examine <code>&amp;$f0/64X</code></td>
<td><code>x</code></td>
</tr>
<tr>
<td>Examine all registers</td>
<td>examine <code>&amp;$r0/159X</code></td>
<td><code>$r; $x</code></td>
</tr>
<tr>
<td>Examine fp status register</td>
<td>examine <code>&amp;$fp/scr/X</code></td>
<td><code>&lt;fp/scr=X</code></td>
</tr>
<tr>
<td>Put single precision 1.0 in f0</td>
<td>assign <code>$f0 = 1.0</code></td>
<td></td>
</tr>
<tr>
<td>Continue execution</td>
<td><code>cont</code></td>
<td><code>:c</code></td>
</tr>
<tr>
<td>Single step</td>
<td><code>step (or next)</code></td>
<td><code>:s</code></td>
</tr>
<tr>
<td>Exit the debugger</td>
<td><code>quit</code></td>
<td><code>$q</code></td>
</tr>
</tbody>
</table>
Because the operating system disables the floating-point unit until it is first used by a process, you cannot modify the floating-point registers until they have been accessed by the program being debugged.

(SPARC) When displaying floating point numbers, you should keep in mind that the size of registers is 32 bits, a single precision floating-point number occupies 32 bits (hence it fits in one register), and double precision floating-point numbers occupy 64 bits (therefore two registers are used to hold a double precision number). In the hexadecimal representation 32 bits correspond to 8 digit numbers. In the following snapshot of FPU registers displayed with adb, the display is organized as follows:

<name of fpu register> <IEEE hex value> <single precision> <double precision>

(SPARC) The third column holds the single precision decimal interpretation of the hexadecimal pattern shown in the second column. The fourth column interprets pairs of registers. For example, the fourth column of the f11 line interprets f10 and f11 as a 64-bit IEEE double precision number.

(SPARC) Because f10 and f11 are used to hold a double precision value, the interpretation (on the f10 line) of the first 32 bits of that value, 7ff00000, as +NaN, is irrelevant. The interpretation of all 64 bits, 7ff00000 00000000, as +Infinity, happens to be the meaningful translation.
The `adb` command `sx`, that was used to display the first 16 floating-point data registers, also displayed `fsr` (the floating-point status register):

```
$\text{x}
\begin{array}{ll}
\text{fsr} & 40020 \\
\text{f0} & 400921fb +2.1426990e+00 \\
\text{f1} & 54442d18 +3.3702806e+12 +3.1415926535897931e+00 \\
\text{f2} & 2 +2.8025969e-45 \\
\text{f3} & 0 +0.0000000e+00 +4.2439915819305446e-314 \\
\text{f4} & 40000000 +2.0000000e+00 \\
\text{f5} & 0 +0.0000000e+00 \\
\text{f6} & 3de0b460 +1.0971904e-01 \\
\text{f7} & 0 +0.0000000e+00 +1.2154188766544394e-10 \\
\text{f8} & 3de0b460 +1.0971904e-01 \\
\text{f9} & 0 +0.0000000e+00 +1.2154188766544394e-10 \\
\text{f10} & 7ff00000 +NaN \\
\text{f11} & 0 +0.0000000e+00 +Infinity \\
\text{f12} & ffffffff -NaN \\
\text{f13} & ffffffff -NaN -NaN \\
\text{f14} & ffffffff -NaN \\
\text{f15} & ffffffff -NaN -NaN \\
\end{array}
```

The corresponding output on Intel looks like:

```
$\text{x}
\begin{array}{ll}
\text{80387 chip is present.} \\
\text{cw} & 0x137f \\
\text{sw} & 0x3920 \\
\text{cssel} & 0x17 \ \text{ipoff} \ 0x2d93 \ \text{datasel} \ 0x1f \ \text{dataoff} \ 0x5740 \\
\text{st[0]} & +3.2499998079071044921875 e-1 \ \text{VALID} \\
\text{st[1]} & +5.653913324347954903441968 e73 \ \text{EMPTY} \\
\text{st[2]} & +2.00000000000000881784197 \ \text{EMPTY} \\
\text{st[3]} & +1.8073218308074056016047 e-1 \ \text{EMPTY} \\
\text{st[4]} & +7.9180300235748291015625 e-1 \ \text{EMPTY} \\
\text{st[5]} & +4.20163904927233234 e-13 \ \text{EMPTY} \\
\text{st[6]} & +4.20163904927233234 e-13 \ \text{EMPTY} \\
\text{st[7]} & +2.7224992132186949185636 \ \text{EMPTY} \\
\end{array}
```

**Note**—(Intel) `cw` is the control word; `sw` is the status word.
This chapter discusses issues related to the floating-point units used in SPARC workstations and describes a way to determine which code generation flags are best suited for a particular workstation.

This appendix has the following organization:

<table>
<thead>
<tr>
<th>Floating-point Hardware</th>
<th>page 131</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpversion(1) Function — Finding Information About the FPU</td>
<td>page 138</td>
</tr>
</tbody>
</table>

### Floating-point Hardware

This section describes details of SPARC implementation of IEEE exceptions. See the *SPARC Architecture Manual*, Version 8, Appendix N “SPARC IEEE 754 Implementation Recommendations” for a brief description of what happens when a trap is taken, the distinction between trapped and untrapped underflow, and recommended possible courses of action for SPARC implementations that choose to provide non-IEEE (nonstandard) arithmetic mode.

Many SPARC systems have floating-point units derived from cores developed by TI or Weitek.

- **TI family** — includes the TI8847 and the TMS390C602A
- **Weitek family** — includes the 1164/1165, the 3170, and 3171
These two families of FPUs have been licensed to other workstation vendors, so chips from other semiconductor manufacturers may be found in SPARC workstations.

Table B-1 lists the hardware floating-point implementations used by SPARC workstations. Because the SPARC architecture defines the instruction set implemented by a SPARC floating-point unit, the chips differ more in the technology used to construct them than in functionality.

Table B-1  SPARC Floating-Point Options

<table>
<thead>
<tr>
<th>FPU</th>
<th>Description</th>
<th>Appropriate for Machines</th>
<th>Notes</th>
<th>Compilation Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI 8847-based FPU</td>
<td>TI 8847; controller from Fujitsu or LSI</td>
<td>Sun-4/1xx, Sun-4/2xx, Sun-4/3xx, Sun-4/4xx, SPARCstation 1 (4/60)</td>
<td>1989. Most SPARCstation 1 workstations have Weitek 3170</td>
<td>-xcg89</td>
</tr>
<tr>
<td>Weitek 3170-based FPU</td>
<td>SPARCstation 1 (4/60), SPARCstation 1+ (4/65)</td>
<td></td>
<td>1989, 1990</td>
<td>-xcg89</td>
</tr>
<tr>
<td>TI 602a</td>
<td>SPARCstation 2 (4/75)</td>
<td></td>
<td>1990</td>
<td>-xcg89</td>
</tr>
<tr>
<td>Weitek 3172-based FPU</td>
<td>SPARCstation SLC (4/20), SPARCstation IPC (4/40)</td>
<td></td>
<td>1990</td>
<td>-xcg89</td>
</tr>
<tr>
<td>Weitek 8601 or Fujitsu 86903</td>
<td>Integrated CPU and FPU</td>
<td>SPARCstation IPX (4/50), SPARCstation ELC (4/25)</td>
<td>1991; IPX uses 40 MHz CPU/FPU; ELC uses 33 MHz</td>
<td>-xcg89</td>
</tr>
<tr>
<td>Cypress 602</td>
<td>Resides on Mbus Module</td>
<td>SPARCserver 6xx</td>
<td>1991</td>
<td>-xcg89</td>
</tr>
<tr>
<td>TI TMS390S10</td>
<td>microSPARC</td>
<td>SPARCstation LX (4/30)</td>
<td>1992</td>
<td>-xcg92</td>
</tr>
<tr>
<td>TI TMS390S10</td>
<td>microSPARC</td>
<td>SPARCclassic (4/15)</td>
<td>1992</td>
<td>-xcg92</td>
</tr>
</tbody>
</table>

The SuperSPARC and SuperSPARC+ FPUs implement the floating-point instruction set defined in the *SPARC Architecture Manual* Version 8 in hardware, except the quad precision instructions. Exceptional cases are handled in hardware.

The microSPARC FPUs implement SPARC Architecture Manual Version 8 floating-point instruction set in hardware, except FsMULd and quad precision instructions. Thus, for single-precision complex variables, use `-xcg89` instead of `-xcg92` for microSPARC FORTRAN programs.

Any unimplemented floating-point instruction causes a trap to the system kernel. The system kernel then emulates the unimplemented instruction. Similarly, running on a system with no FPU or disabled FPU, emulates the floating-point instructions in software. Usually this causes a severe performance degradation.

The default code generation switch is `-xcg89`. The `-xcg89` and `-xcg92` flags are for `cc` and `f77`. (A more complete list of hardware targets is available by using the `-xtarget=` option; see the Fortran and C user’s guides for more information.)

In accord with RISC (reduced instruction set computer) philosophy, complicated instructions such as the transcendental math functions are not implemented in hardware.

### Table B-1  SPARC Floating-Point Options (Continued)

<table>
<thead>
<tr>
<th>FPU</th>
<th>Description</th>
<th>Appropriate for Machines</th>
<th>Notes</th>
<th>Compilation Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI TMS390Z50</td>
<td>SuperSPARC or SuperSPARC+</td>
<td>SPARCServer 1000 SPARCCenter 2000</td>
<td>1992, 1993</td>
<td><code>-xcg92</code></td>
</tr>
<tr>
<td>TI TMS390Z50 or Cypress 602</td>
<td>SuperSPARC or Cypress SPARC</td>
<td>SPARCSystem 6xxMP</td>
<td>1992, 1993</td>
<td><code>-xcg92</code></td>
</tr>
<tr>
<td>Weitek 1164/1165-based FPU or no FPU</td>
<td>Kernel emulates floating-point instructions</td>
<td>Obsolete</td>
<td>Slow; not recommended</td>
<td><code>-xcg89</code> or <code>-xcg92</code></td>
</tr>
</tbody>
</table>
Handling Subnormal Results

On the TI-derived FPUs, a combined ALU and multiplier unit, the ALU wraps subnormal results whether SIGFPE has been enabled or not. (A wrapped number is created by multiplying the correct result by a constant power of two, prior to rounding.) But this wrapped result is never seen by software, because destination registers are never changed when traps occur. The correct subnormal result is computed by system software. The TI 8847 chip can be operated in nonstandard underflow mode, which forces all subnormal inputs and outputs to be flushed to zero without system software intervention.

In IEEE gradual underflow mode, if a wrapped result is produced by the multiplier, the result is passed to the ALU and unwrapped.

The TI 8847-based FPU nonstandard mode corresponds better to the intent of providing fast processing of small results than does the nonstandard mode of the Weitek 1164/1165-based FPU, which treats subnormal operands, but not results, as zero.

Status and Control Registers

The SPARC FPU has status and control registers associated with it: the floating-point status register (FSR) and the floating-point queue (FQ) set of control registers. Kernel software uses the FQ to recover from floating-point exceptions.

The floating-point status register (FSR) contains FPU mode and status information. The FSR is visible to user processes, and most fields can be written as well. The SPARC assembler and debugger know it as %fsr. Examples of %fsr use can be found in the file named libmil, containing in-line templates.

Figure B-1 shows the bit assignments of the Floating-Point Status Register.

<table>
<thead>
<tr>
<th>RD</th>
<th>u</th>
<th>TEM</th>
<th>NS</th>
<th>res</th>
<th>ver</th>
<th>ftt</th>
<th>gne</th>
<th>u</th>
<th>fcc</th>
<th>aexc</th>
<th>cexc</th>
</tr>
</thead>
</table>

Figure B-1  SPARC Floating-Point Status Register
The fields relevant to exception handling are TEM, NS, aexc, and cexc as shown in Table B-2.

Table B-2  Exception Handling Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Corresponding bits in register</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM, trap enable mask</td>
<td>NVM 27 OFM 26 UFM 25 DZM 24 NXM 23</td>
</tr>
<tr>
<td>NS, non standard floating-point</td>
<td>NS 22</td>
</tr>
<tr>
<td>aexc, accrued exception bits</td>
<td>nva 9 ofa 8 ufa 7 dza 6 nxa 5</td>
</tr>
<tr>
<td>cexc, current exception bits</td>
<td>nvc 4 ofc 3 ufc 2 dzc 1 nxc 0</td>
</tr>
</tbody>
</table>

The trap enable masks, the bit that indicates nonstandard floating-point, and the exception bits are either on or off. The low-order bit is bit 0.

The current exception bits are updated by the hardware when each floating-point operation successfully completes.

Handling Floating-point Exceptions

There are two cases when the hardware does not successfully complete a floating-point operation:

- Operation is unimplemented (such as, the unimplemented \( f_{sqrt}[sd] \) on Weitek 1164/1165-based FPUs)
- Hardware is unable to deliver the correct result

In these cases, the process traps to the kernel, which emulates the floating-point operation and updates the FSR and destination registers.

If a floating-point exception results in a trap, then the destination floating-point register, the floating-point condition codes, \( fcc \), and the aexc fields remain unchanged. The cexc field is updated to show which exception caused the trap. (If the trap is caused by an unfinished or unimplemented floating point operation, instead of by one of the IEEE 754 floating point exceptions, then cexc is also unchanged.)
If the exception does not result in a trap, then the destination register, \( fcc \), \( aexc \) and \( cexc \) are updated to their new values.

The following pseudo-code summarizes the handling of IEEE traps. Note that the \( aexc \) field can normally only be cleared by software.

```plaintext
FPop generates an IEEE exception;
texc ← IEEE exceptions generated by this FPopp;
if (texc and TEM) = 0
 then(aexc ← (aexc or texc); cexc = texc; f[] ← result;
 fcc ← fcc_result)
else (cause fp_exception_trap)
```

Handling Gradual Underflow

In floating-point environments built on the architecture of some of the SPARC processors (TI TMS390Z5 and TI TMS390S10), and the Intel family, gradually underflowed results are almost always calculated by the floating-point unit in the CPU or coprocessor. Therefore, gradual underflow is much less likely to cause a performance degradation than it is when implemented in software. (For more information about gradual underflow, see the discussion of “Underflow” in Chapter 2, “IEEE Arithmetic,” on page 3.)

If an application encounters frequent underflows, you may want to determine how much system time the application is using by timing the program execution with the `time` command.

```
demo% /bin/time myprog > myprog.output
305.3 real 32.4 user 271.9 sys
```

To determine if underflows occurred in an application, you can use the math library function `ieee_retrospective` to check whether or not the underflow exception flag is raised when the program exits. FORTRAN programs call `ieee_retrospective` by default and C and C++ programs need to call `ieee_retrospective` prior to any exit points.
The function `ieee_retrospective` prints a message similar to the following to standard error, `stderr`:

```
Note: IEEE floating-point exception flags raised:
 Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)
```

The math library provides two functions to help programs toggle between standard underflow mode and nonstandard underflow mode. A call to `nonstandard_arithmetic` turns off IEEE gradual underflow (if applicable), and a call to `standard_arithmetic` restores IEEE behavior.

| C, C++             | `nonstandard_arithmetic();`
|                   | `standard_arithmetic();`
| FORTRAN            | `call nonstandard_arithmetic()`
|                   | `call standard_arithmetic()`

You should use `nonstandard_arithmetic` with caution, because it causes the loss of the accuracy benefits of gradual underflow.

**Nonstandard Arithmetic and Kernel Emulation (SPARC)**

There are several ways to set the FPU to nonstandard mode: compile with `-fast` or `-fnonstd` or invoke `nonstandard_arithmetic()` from inside the program.

Not all SPARC implementations provide a nonstandard mode. Trying to set it on implementations that do not provide it is ignored. For the SPARC implementations that provide a fast or nonstandard mode, setting the FPU to this mode means that some or all underflowed results (and/or operands) are flushed to zero. If for some reason a floating point operation that would underflow is interrupted (for example, it is in the queue when a context switch occurs), it is later emulated by kernel software, which always uses standard IEEE arithmetic.

Nonstandard mode is not emulated by the kernel because its behavior is undefined, and implementation-dependent. Thus, under unusual circumstances, it could happen that an executable that sets the FPU to nonstandard mode *might* produce slightly varying results depending on system load. This behavior has *not* been observed. It affects only those
programs that are very sensitive to whether or not a particular computation (from among millions) was handled with gradual underflow or with abrupt underflow.

fpversion(1) Function — Finding Information About the FPU

The utility fpversion(1), distributed with the unbundled compilers, identifies the installed CPU and FPU and estimates their clock speeds.

The fpversion(1) function determines the CPU and FPU type by interpreting the identification information stored by the CPU and FPU. The fpversion function is installed with the unbundled compilers, and is usually located in the same directory as the unbundled compilers.

On a SPARCStation™ 2 workstation, the information returned from fpversion is similar to this example (there might be differences depending on configuration, of course):

```
demo% fpversion
A SPARC-based CPU is available.
CPU's clock rate appears to be approximately 39.3 MHz.
The clock rate is probably 40.0 Mz.

Sun-4 floating-point controller version 2 found.
A TI TMS390C602A-based FPU is available.
FPU's frequency appears to be approximately 38.6 MHz.
The clock rate is probably 40.0 Mz.

Use "-xcg89" floating-point option.
Hostid = 0x67003A21.
```

Note that fpversion is not instantaneous. Indeed, fpversion might take about a minute of user time to run—this is deliberate. fpversion determines the approximate clock rates for the CPU and FPU by timing a loop that executes simple instructions that run in a predictable amount of time.

The loop is executed relatively many times to assure that the timing measurements and clock rate estimates are correct.
Floating-Point Hardware—Disable/Enable

It is possible to disable the Floating-Point Unit (FPU) on a SPARC workstation. This might be useful when trying to establish that the FPU is faulty. The probability of faulty hardware is far exceeded by the probability of programming error, and so the following examples should be used with extreme caution.

Floating-point hardware can be disabled/enabled in software by running the following scripts as root.

To disable the FPU:

```bash
#!/bin/sh -
script to turn the FPU off
#
adb -k -w /kernel/unix /dev/mem <<!
fpu_exists/W0
!
```

It can be enabled again this way:

```bash
#!/bin/sh -
script to turn the FPU on
#
adb -k -w /kernel/unix /dev/mem <<!
fpu_exists/W1
!
```

These scripts can be run in normal multi-user mode without rebooting, but you should avoid running them if any processes that use floating-point instructions are executing.
$B$
This appendix discusses Intel and SPARC compatibility issues related to the floating-point units used in Intel machines.

The hardware is 80386, 80486, and Pentium™ microprocessors from Intel and compatible microprocessors from other manufacturers. While great effort went into compatibility with the SPARC platform, several differences exist.

On Intel:

- real*16 is not implemented in FORTRAN.

- The floating-point registers are 80-bits wide. Because intermediate results of arithmetic computations can be in extended precision, computation results can differ. The -fstore flag minimizes these discrepancies. However, using the -fstore flag introduces a penalty in performance.

- Each time a single or double precision floating-point number is loaded or stored, a conversion to or from double extended precision occurs. Thus loads and stores of floating-point numbers can cause exceptions.

- Gradual underflow is implemented entirely in hardware. There is no nonstandard mode.

- The fpversion utility is not provided.
C
This appendix describes implementation and compatibility issues related to the floating-point units used in PowerPC processors. See “PowerPC Architecture, First Edition” as well as the PowerPC 603 and 604 User’s Manuals for further information on PowerPC implementations.

Floating-Point Operations in the PowerPC Architecture

In addition to instructions for conventional unary and binary floating-point operations such as addition, subtraction, multiplication, division, floating-point to integer conversion, negation, absolute value, and comparison, the PowerPC architecture includes several instructions that perform variations of a ternary operation sometimes called a “fused multiply-add”.

A fused multiply-add operation consists of a product and sum, \(a \times b + c\), computed with only one final rounding; the intermediate product \(a \times b\) is not rounded. Because of this, the evaluation of an expression involving such a product and sum (for example, in an inner product or saxpy) can produce different results depending on whether the compiler generates a fused multiply-add instruction or a sequence of two instructions, a multiply followed by an add. Typically, the expression evaluated using a fused multiply-add operation will be at least as accurate, and possibly more accurate than the expression evaluated using separate multiply and add instructions, since the latter will incur two rounding errors rather than one. In fact, some codes can be written specifically to exploit the accuracy of the fused multiply-add. As is often true in numerical software, however, there are exceptions: some programs that expect each arithmetic operation to be rounded to working
precision may function incorrectly when fused multiply-add instructions are used. The \texttt{-xarch=ppc_nofma} flag can be used to disable the generation of fused multiply-add instructions so that such programs can function correctly.

Two of the fused multiply-add instructions, the \texttt{fnmadd} and \texttt{fnmsub} instructions, negate their result, producing \(-(a \times b + c)\) and \(c - a \times b\) respectively. Note, however, that when an expression that does not produce an exactly representable result is evaluated in either round-to-positive-infinity or round-to-negative-infinity mode, the negation of the result does not produce the same value as the evaluation of the negated expression. (That is, if \(x\) is the result of evaluating expression \(a\) rounding toward positive infinity, \(-x\) is the result of evaluating \(-a\) rounding toward negative infinity.) Thus, when directed rounding modes are used, as in interval arithmetic, for example, care must be taken to avoid inadvertently reversing the sense of rounding by negation. Since the compiler cannot tell that a directed rounding mode is in effect, it may interpret an expression as involving a negation in order to issue a negated fused multiply-add instruction (for performance reasons); to avoid this problem, the \texttt{-xarch=ppc_nofma} flag should be used to disable generation of fused multiply-add instructions when directed rounding modes are used.

\section*{Floating-Point Status and Control Register}

The PowerPC floating-point unit includes a floating-point status and control register (FPSCR) that contains flags that reflect the current state of the floating-point unit as well as mode bits that control its operation. (Some of these flags and mode bits implement features required or recommended by the IEEE standard.) The FPSCR is accessible to user-level code either via the IEEE support functions such as \texttt{ieee_flags} (see Chapter 3, “The Math Libraries”) or from assembly language subroutines that can use special PowerPC instructions to read and modify it.

The PowerPC Architecture manual shows the bit assignments of the Floating-Point Status and Control Register. Note that the floating-point exception trap enable bits (VE, OE, UE, ZE, XE), the non-IEEE mode bit (NI), and the rounding mode bits (RN) are control bits: modifying these bits can alter the behavior of the floating-point unit for subsequent operations. The remaining bits, namely the exception summary bits, accrued exception bits, fraction rounded and fraction inexact bits, and result flags, are status bits: they record information about results computed in previous operations.
Floating-point Exceptions and Unimplemented Floating-Point Instructions

When a floating-point exception occurs and the corresponding trap enable bits not set, the untrapped default result specified by IEEE 754 is delivered to the destination register, the corresponding exception bit in the FPSCR is set (causing the overall exception summary bit and, in the case of an invalid operation exception, the invalid operation exception summary bit, also to be set), and execution continues.

When a floating-point exception occurs and the corresponding trap enable bit is set, if the exception is underflow, overflow, or inexact, a trapped default result specified by IEEE 754 is delivered to the destination register before a trap is taken. (Regardless of the exception type, the corresponding exception bit in the FPSCR is also set, causing the overall exception summary bit, the enabled exception summary bit, and, in the case of an invalid operation exception, the invalid operation exception summary bit to be set.) Thus a user trap handler sees the floating-point registers in the ucontext structure with the trapped default result already stored in the destination of the trapping instruction; if this destination is the same as one of the operand registers, that operand will not be available to the user trap handler.

The PowerPC 603 and 604 floating-point units implement all the floating-point instructions in the 32-bit PowerPC architecture except the $\textsf{fsqrt}$ and $\textsf{fsqrts}$ instructions. Since the Solaris kernel currently does not emulate unimplemented PowerPC instructions, attempting to execute an instruction that is not implemented in hardware results in an illegal instruction trap. Normally this causes the user’s program to abort; alternatively, the user can install a SIGILL signal handler and handle the trap accordingly. Note that the compiler never generates $\textsf{fsqrt}$ or $\textsf{fsqrts}$ instructions itself, however, so unless a program includes user-supplied assembly code with these instructions, there is no need to install a SIGILL handler to emulate them.

Gradual Underflow

The PowerPC 603 and 604 all handle subnormal operands and results entirely in hardware. The NI (non-IEEE) mode bit in the FPSCR is ignored on the 603. On the 604, the NI mode bit may be used to obtain flush-to-zero treatment of underflow, but there is no performance benefit in doing so. For this reason, the $\textsf{-fns}$ compiler flag and the $\textsf{nonstandard_arithmetic}$ function in $\textsf{libsunmath}$ (see Chapter 3, “The Math Libraries”) have no effect on PowerPC systems.
Example: Using Fused Multiply-Add

The following code illustrates the explicit use of fused multiply-add operations to achieve better accuracy than a separate multiply and add. This C++ code implements the basic operations for a data type `ddouble` that simulates arithmetic with roughly twice the precision of `double`. To use this code, compile the C++ routines below together with the following inline template. (Do not use the `-fsimple` option.)

```plaintext
.inline fmsub,0
fmsub %f1,%f1,%f2,%f3
.end
```

```plaintext
#include <math.h>

class ddouble
{
 public:
 double hi, lo;
};

// This algorithm is adapted from one devised by Prof. W. Kahan
// in 1989. The following copyright notice appeared on the
// original.
//
// (C) W. Kahan 1989
//
// NOTICE:
// Copyrighted programs may not be translated, used, nor
// reproduced without the author’s permission. Normally that
// permission is granted freely for academic and scientific
// purposes subject to the following three requirements:
// 1. This NOTICE and the copyright notices must remain
// attached to the programs and their translations.
// 2. Users of such a program should regard themselves as
// voluntary participants in the author’s researches and
// so are obliged to report their experience with the program
// back to the author.
// 3. Neither the author nor the institution that employs him
// will be held responsible for the consequences of using a
// program for which neither has received payment.
// Would-be commercial users of these programs must correspond
```
// with the author to arrange terms of payment and warranty.

double operator +(ddouble x, ddouble y)
{
    ddouble z;
    double H, h, T, t, S, s, e, f;

    S = x.hi + y.hi;
    T = x.lo + y.lo;
    e = S - x.hi;
    f = T - x.lo;
    s = (y.hi - e) + (x.hi - (S - e));
    t = (y.lo - f) + (x.lo - (T - f));
    H = S + (s + T);
    h = (s + T) + (S - H);
    z.hi = H + (t + h);
    z.lo = (t + h) + (H - z.hi);
    return z;
}

ddouble operator -(ddouble x, ddouble y)
{
    ddouble z;

    z.hi = -y.hi;
    z.lo = -y.lo;
    return x + z;
}

// The following algorithms are adapted from those published
// by T. J. Dekker in "A Floating Point Technique for Extending

extern "C" {
extern double fmsub(double, double, double);
};

ddouble operator *(ddouble x, ddouble y)
{
    ddouble z;
    double C, c;

    C = x.hi * y.hi;
    c = fmsub(x.hi, y.hi, C) + (x.hi * y.lo + x.lo * y.hi);
```c
z.hi = C + c;
z.lo = c + (C - z.hi);
return z;
}

double operator /(double x, double y)
{
 double z;
 double C, c, U, u;
 C = x.hi / y.hi;
 U = C * y.hi;
 u = fmsub(C, y.hi, U);
 c = (((x.hi - U) - u) + x.lo - C * y.lo) / y.hi;
 z.hi = C + c;
 z.lo = c + (C - z.hi);
 return z;
}

double sqrt(double x)
{
 double z;
 double C, c, U, u;
 C = sqrt(x.hi);
 U = C * C;
 u = fmsub(C, C, U);
 c = (((x.hi - U) - u) + x.lo) / (C + C);
 z.hi = C + c;
 z.lo = c + (C - z.hi);
 return z;
}
```
What Every Computer Scientist Should Know About Floating Point Arithmetic


This appendix has the following organization:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>150</td>
</tr>
<tr>
<td>Introduction</td>
<td>150</td>
</tr>
<tr>
<td>Rounding Error</td>
<td>151</td>
</tr>
<tr>
<td>The IEEE Standard</td>
<td>167</td>
</tr>
<tr>
<td>Systems Aspects</td>
<td>189</td>
</tr>
<tr>
<td>The Details</td>
<td>203</td>
</tr>
<tr>
<td>Summary</td>
<td>217</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>218</td>
</tr>
<tr>
<td>References</td>
<td>218</td>
</tr>
<tr>
<td>Theorem 14 and Theorem 8</td>
<td>221</td>
</tr>
</tbody>
</table>
Abstract

Floating-point arithmetic is considered an esoteric subject by many people. This is rather surprising because floating-point is ubiquitous in computer systems. Almost every language has a floating-point datatype; computers from PC’s to supercomputers have floating-point accelerators; most compilers will be called upon to compile floating-point algorithms from time to time; and virtually every operating system must respond to floating-point exceptions such as overflow. This paper presents a tutorial on those aspects of floating-point that have a direct impact on designers of computer systems. It begins with background on floating-point representation and rounding error, continues with a discussion of the IEEE floating-point standard, and concludes with numerous examples of how computer builders can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: General — instruction set design; D.3.4 [Programming Languages]: Processors — compilers, optimization; G.1.0 [Numerical Analysis]: General — computer arithmetic, error analysis, numerical algorithms (Secondary) D.2.1 [Software Engineering]: Requirements/Specifications — languages; D.3.4 Programming Languages]: Formal Definitions and Theory — semantics; D.4.1 Operating Systems]: Process Management — synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception, floating-point, floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error, rounding error, rounding mode, ulp, underflow.

Introduction

Builders of computer systems often need information about floating-point arithmetic. There are, however, remarkably few sources of detailed information about it. One of the few books on the subject, Floating-Point Computation by Pat Sterbenz, is long out of print. This paper is a tutorial on those aspects of floating-point arithmetic (floating-point hereafter) that have a direct connection to systems building. It consists of three loosely connected parts. The first Section, “Rounding Error,” on page 151, discusses the implications of using different rounding strategies for the basic operations of addition, subtraction, multiplication and division. It also contains background information on the
two methods of measuring rounding error, \textit{ulps} and \textit{relative error}. The second part discusses the IEEE floating-point standard, which is becoming rapidly accepted by commercial hardware manufacturers. Included in the IEEE standard is the rounding method for basic operations. The discussion of the standard draws on the material in the Section, “Rounding Error,” on page 151. The third part discusses the connections between floating-point and the design of various aspects of computer systems. Topics include instruction set design, optimizing compilers and exception handling.

I have tried to avoid making statements about floating-point without also giving reasons why the statements are true, especially since the justifications involve nothing more complicated than elementary calculus. Those explanations that are not central to the main argument have been grouped into a section called “The Details,” so that they can be skipped if desired. In particular, the proofs of many of the theorems appear in this section. The end of each proof is marked with the $\blacksquare$ symbol; when a proof is not included, the $\blacksquare$ appears immediately following the statement of the theorem.

### Rounding Error

Squeezing infinitely many real numbers into a finite number of bits requires an approximate representation. Although there are infinitely many integers, in most programs the result of integer computations can be stored in 32 bits. In contrast, given any fixed number of bits, most calculations with real numbers will produce quantities that cannot be exactly represented using that many bits. Therefore the result of a floating-point calculation must often be rounded in order to fit back into its finite representation. This rounding error is the characteristic feature of floating-point computation. “Relative Error and Ulps” on page 154 describes how it is measured.

Since most floating-point calculations have rounding error anyway, does it matter if the basic arithmetic operations introduce a little bit more rounding error than necessary? That question is a main theme throughout this section. “Guard Digits” on page 156 discusses \textit{guard} digits, a means of reducing the error when subtracting two nearby numbers. Guard digits were considered sufficiently important by IBM that in 1968 it added a guard digit to the double precision format in the System/360 architecture (single precision already had a guard digit), and retrofitted all existing machines in the field. Two examples are given to illustrate the utility of guard digits.
The IEEE standard goes further than just requiring the use of a guard digit. It gives an algorithm for addition, subtraction, multiplication, division and square root, and requires that implementations produce the same result as that algorithm. Thus, when a program is moved from one machine to another, the results of the basic operations will be the same in every bit if both machines support the IEEE standard. This greatly simplifies the porting of programs. Other uses of this precise specification are given in “Exactly Rounded Operations” on page 163.

Floating-point Formats

Several different representations of real numbers have been proposed, but by far the most widely used is the floating-point representation. Floating-point representations have a base \( \beta \) (which is always assumed to be even) and a precision \( p \). If \( \beta = 10 \) and \( p = 3 \) then the number 0.1 is represented as \( 1.00 \times 10^{-1} \). If \( \beta = 2 \) and \( p = 24 \), then the decimal number 0.1 cannot be represented exactly but is approximately \( 1.10011001100110011001101 \times 2^{-4} \). In general, a floating-point number will be represented as \( \pm d.dd \ldots d \times \beta^e \), where \( d.dd \ldots d \) is called the significand and has \( p \) digits. More precisely \( \pm d_0, d_1, d_2, \ldots d_{p-1} \times \beta^e \) represents the number

\[
\pm \left( d_0 + d_1 \beta^{-1} + \ldots + d_{p-1} \beta^{-(p-1)} \right) \beta^e, \quad (0 \leq d_i < \beta)
\]

(1)

The term floating-point number will be used to mean a real number that can be exactly represented in the format under discussion. Two other parameters associated with floating-point representations are the largest and smallest allowable exponents, \( e_{\text{max}} \) and \( e_{\text{min}} \). Since there are \( \beta^p \) possible significands, and \( e_{\text{max}} - e_{\text{min}} + 1 \) possible exponents, a floating-point number can be encoded in

\[
\left\lceil \log_2 (e_{\text{max}} - e_{\text{min}} + 1) \right\rceil + \left\lceil \log_2 (\beta^p) \right\rceil + 1
\]

---

1. Examples of other representations are floating slash and signed logarithm [Matula and Kornerup 1985; Swartzlander and Alexopoulos 1975].

2. This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa.
bits, where the final +1 is for the sign bit. The precise encoding is not important for now.

There are two reasons why a real number might not be exactly representable as a floating-point number. The most common situation is illustrated by the decimal number 0.1. Although it has a finite decimal representation, in binary it has an infinite repeating representation. Thus when $\beta = 2$, the number 0.1 lies strictly between two floating-point numbers and is exactly representable by neither of them. A less common situation is that a real number is out of range, that is, its absolute value is larger than $\beta \times \beta^{emax}$ or smaller than $1.0 \times \beta^{emin}$.

Most of this paper discusses issues due to the first reason. However, numbers that are out of range will be discussed in “Infinity” on page 177 and “Denormalized Numbers” on page 180.

Floating-point representations are not necessarily unique. For example, both $0.01 \times 10^1$ and $1.00 \times 10^{-1}$ represent 0.1. If the leading digit is nonzero ($d_0 \neq 0$ in equation (1) above), then the representation is said to be normalized. The floating-point number $1.00 \times 10^{-1}$ is normalized, while $0.01 \times 10^1$ is not. When $\beta = 2$, $p = 3$, $emin = -1$ and $emax = 2$ there are 16 normalized floating-point numbers, as shown in Figure E-1. The bold hash marks correspond to numbers whose significand is 1.00. Requiring that a floating-point representation be normalized makes the representation unique. Unfortunately, this restriction makes it impossible to represent zero! A natural way to represent 0 is with $1.0 \times \beta^{emin-1}$, since this preserves the fact that the numerical ordering of nonnegative real numbers corresponds to the lexicographic ordering of their floating-point representations.¹ When the exponent is stored in a $k$ bit field, that means that only $2^k - 1$ values are available for use as exponents, since one must be reserved to represent 0.

Note that the $\times$ in a floating-point number is part of the notation, and different from a floating-point multiply operation. The meaning of the $\times$ symbol should be clear from the context. For example, the expression $(2.5 \times 10^{-3}) \times (4.0 \times 10^2)$ involves only a single floating-point multiplication.

¹. This assumes the usual arrangement where the exponent is stored to the left of the significand.
Relative Error and Ulps

Since rounding error is inherent in floating-point computation, it is important to have a way to measure this error. Consider the floating-point format with $\beta = 10$ and $p = 3$, which will be used throughout this section. If the result of a floating-point computation is $3.12 \times 10^{-2}$, and the answer when computed to infinite precision is .0314, it is clear that this is in error by 2 units in the last place. Similarly, if the real number .0314159 is represented as $3.14 \times 10^{-2}$, then it is in error by .159 units in the last place. In general, if the floating-point number $d.d\ldots d \times \beta^e$ is used to represent $z$, then it is in error by $|d.d\ldots d - (z/\beta')|/\beta^{p-1}$ units in the last place.\textsuperscript{1,2} The term ulps will be used as shorthand for “units in the last place.” If the result of a calculation is the floating-point number nearest to the correct result, it still might be in error by as much as .5 ulp. Another way to measure the difference between a floating-point number and the real number it is approximating is relative error, which is simply the difference between the two numbers divided by the real number. For example the relative error committed when approximating 3.14159 by $3.14 \times 10^0$ is $.00159/3.14159 \approx .0005$.

To compute the relative error that corresponds to .5 ulp, observe that when a real number is approximated by the closest possible floating-point number $d.dd\ldots dd \times \beta'$, the error can be as large as $0.00\ldots00\beta'\times \beta'$, where $\beta'$ is the digit $\beta/2$, there are $p$ units in the significand of the floating point number, and $p$ units of 0 in the significand of the error. This error is $((\beta/2)\beta^p) \times \beta'$. Since

---

1. Unless the number $z$ is larger than $\beta^{emax+1}$ or smaller than $\beta^{emin}$. Numbers which are out of range in this fashion will not be considered until further notice.

2. Let $z'$ be the floating point number that approximates $z$. Then $|d.d\ldots d - (z/\beta')|/\beta^{p-1}$ is equivalent to $|z'-z|/ulp(z')$. (See Numerical Computation Guide for the definition of ulp(z')). A more accurate formula for measuring error is $|z'-z|/ulp(z)$. -- Ed.
numbers of the form \( d.d\ldots d \times \beta^e \) all have the same absolute error, but have values that range between \( \beta^e \) and \( \beta \times \beta^e \), the relative error ranges between \((\beta/2)\beta^p \times \beta^e / \beta^e \) and \((\beta/2)\beta^p \times \beta^e / \beta^{e+1} \). That is,

\[
\frac{1}{2} \beta^{-p} \leq \frac{1}{2} \text{ulp} \leq \frac{\beta}{2} \beta^{-p}
\]

In particular, the relative error corresponding to .5 ulp can vary by a factor of \( \beta \). This factor is called the \textit{wobble}. Setting \( \epsilon = (\beta/2)\beta^p \) to the largest of the bounds in (2) above, we can say that when a real number is rounded to the closest floating-point number, the relative error is always bounded by \( \epsilon \), which is referred to as \textit{machine epsilon}.

In the example above, the relative error was \( .00159/3.14159 = .0005 \). In order to avoid such small numbers, the relative error is normally written as a factor times \( \epsilon \), which in this case is \( \epsilon = (\beta/2)\beta^p = 5(10)^{-3} = .005 \). Thus the relative error would be expressed as \((.00159/3.14159)/.005) \epsilon \approx 0.1 \epsilon \).

To illustrate the difference between ulps and relative error, consider the real number \( x = 12.35 \). It is approximated by \( \tilde{x} = 1.24 \times 10^1 \). The error is 0.5 ulps, but the relative error is 0.8\( \epsilon \). Next consider the computation \( 8 \tilde{x} \). The exact value is \( 8x = 98.8 \), while the computed value is \( 8\tilde{x} = 9.92 \times 10^1 \). The error is now 4.0 ulps, but the relative error is still 0.8\( \epsilon \). The error measured in ulps is 8 times larger, even though the relative error is the same. In general, when the base is \( \beta \), a fixed relative error expressed in ulps can wobble by a factor of up to \( \beta \). And conversely, as equation (2) above shows, a fixed error of .5 ulps results in a relative error that can wobble by \( \beta \).

The most natural way to measure rounding error is in ulps. For example rounding to the nearest floating-point number corresponds to an error of less than or equal to .5 ulp. However, when analyzing the rounding error caused by various formulas, relative error is a better measure. A good illustration of this is the analysis on page 204. Since \( \epsilon \) can overestimate the effect of rounding to the nearest floating-point number by the wobble factor of \( \beta \), error estimates of formulas will be tighter on machines with a small \( \beta \).

When only the order of magnitude of rounding error is of interest, ulps and \( \epsilon \) may be used interchangeably, since they differ by at most a factor of \( \beta \). For example, when a floating-point number is in error by \( n \) ulps, that means that the number of contaminated digits is \( \log_\beta n \). If the relative error in a computation is \( n\epsilon \), then

\[
\text{contaminated digits} = \log_\beta n.
\]
Guard Digits

One method of computing the difference between two floating-point numbers is to compute the difference exactly and then round it to the nearest floating-point number. This is very expensive if the operands differ greatly in size. Assuming \( p = 3 \), \( 2.15 \times 10^{12} - 1.25 \times 10^{-5} \) would be calculated as

\[
\begin{align*}
x &= 2.15 \times 10^{12} \\
y &= .000000000000000125 \times 10^{12} \\
x - y &= 2.1499999999999999875 \times 10^{12}
\end{align*}
\]

which rounds to \( 2.15 \times 10^{12} \). Rather than using all these digits, floating-point hardware normally operates on a fixed number of digits. Suppose that the number of digits kept is \( p \), and that when the smaller operand is shifted right, digits are simply discarded (as opposed to rounding). Then \( 2.15 \times 10^{12} - 1.25 \times 10^{-5} \) becomes

\[
\begin{align*}
x &= 2.15 \times 10^{12} \\
y &= 0.00 \times 10^{12} \\
x - y &= 2.15 \times 10^{12}
\end{align*}
\]

The answer is exactly the same as if the difference had been computed exactly and then rounded. Take another example: \( 10.1 - 9.93 \). This becomes

\[
\begin{align*}
x &= 1.01 \times 10^{1} \\
y &= 0.99 \times 10^{1} \\
x - y &= .02 \times 10^{1}
\end{align*}
\]

The correct answer is .17, so the computed difference is off by 30 ulps and is wrong in every digit! How bad can the error be?

**Theorem 1**

Using a floating-point format with parameters \( \beta \) and \( p \), and computing differences using \( p \) digits, the relative error of the result can be as large as \( \beta - 1 \).

**Proof**

A relative error of \( \beta - 1 \) in the expression \( x - y \) occurs when \( x = 1.00\ldots0 \) and \( y = .\rho\rho\ldots\rho \), where \( \rho = \beta - 1 \). Here \( y \) has \( p \) digits (all equal to \( \rho \)). The exact difference is \( x - y = \beta^p \). However, when computing the answer using only \( p \)
digits, the rightmost digit of $y$ gets shifted off, and so the computed difference is $\beta^{-p+1}$. Thus the error is $\beta^{-p} - \beta^{-p+1} = \beta^{-p} (\beta - 1)$, and the relative error is $\beta^{-p}(\beta - 1)/\beta^{-p} = \beta - 1$.

When $\beta=2$, the relative error can be as large as the result, and when $\beta=10$, it can be 9 times larger. Or to put it another way, when $\beta=2$, equation (3) above shows that the number of contaminated digits is $\log_2(1/\epsilon) = \log_2(2^p) = p$. That is, all of the $p$ digits in the result are wrong! Suppose that one extra digit is added to guard against this situation (a guard digit). That is, the smaller number is truncated to $p + 1$ digits, and then the result of the subtraction is rounded to $p$ digits. With a guard digit, the previous example becomes

$$
\begin{align*}
x &= 1.010 \times 10^1 \\
y &= 0.993 \times 10^1 \\
x - y &= .017 \times 10^1
\end{align*}
$$

and the answer is exact. With a single guard digit, the relative error of the result may be greater than $\epsilon$, as in $110 - 8.59$.

$$
\begin{align*}
x &= 1.10 \times 10^2 \\
y &= .085 \times 10^2 \\
x - y &= 1.015 \times 10^2
\end{align*}
$$

This rounds to 102, compared with the correct answer of 101.41, for a relative error of .006, which is greater than $\epsilon = .005$. In general, the relative error of the result can be only slightly larger than $\epsilon$. More precisely,

**Theorem 2**

If $x$ and $y$ are floating-point numbers in a format with parameters $\beta$ and $p$, and if subtraction is done with $p + 1$ digits (i.e. one guard digit), then the relative rounding error in the result is less than $2\epsilon$.

This theorem will be proven in “Rounding Error” on page 203. Addition is included in the above theorem since $x$ and $y$ can be positive or negative.

**Cancellation**

The last section can be summarized by saying that without a guard digit, the relative error committed when subtracting two nearby quantities can be very large. In other words, the evaluation of any expression containing a subtraction (or an addition of quantities with opposite signs) could result in a relative error...
so large that all the digits are meaningless (Theorem 1). When subtracting nearby quantities, the most significant digits in the operands match and cancel each other. There are two kinds of cancellation: catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding errors. For example in the quadratic formula, the expression \( b^2 - 4ac \) occurs. The quantities \( b^2 \) and \( 4ac \) are subject to rounding errors since they are the results of floating-point multiplications. Suppose that they are rounded to the nearest floating-point number, and so are accurate to within \( .5 \text{ ulp} \). When they are subtracted, cancellation can cause many of the accurate digits to disappear, leaving behind mainly digits contaminated by rounding error. Hence the difference might have an error of many \( \text{ulps} \). For example, consider \( b = 3.34, \ a = 1.22, \) and \( c = 2.28 \). The exact value of \( b^2 - 4ac \) is \( .0292 \). But \( b^2 \) rounds to 11.2 and \( 4ac \) rounds to 11.1, hence the final answer is \( .1 \) which is an error by 70 \( \text{ulps} \), even though 11.2 - 11.1 is exactly equal to \( .1 \). The subtraction did not introduce any error, but rather exposed the error introduced in the earlier multiplications.

Benign cancellation occurs when subtracting exactly known quantities. If \( x \) and \( y \) have no rounding error, then by Theorem 2 if the subtraction is done with a guard digit, the difference \( x - y \) has a very small relative error (less than \( 2\epsilon \)).

A formula that exhibits catastrophic cancellation can sometimes be rearranged to eliminate the problem. Again consider the quadratic formula

\[
r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]

When \( b^2 \gg ac \), then \( b^2 - 4ac \) does not involve a cancellation and

\[\sqrt{b^2 - 4ac} \approx |a| \]. But the other addition (subtraction) in one of the formulas will have a catastrophic cancellation. To avoid this, multiply the numerator and denominator of \( r_1 \) by

\[b - \sqrt{b^2 - 4ac}\]

1. 700, not 70. Since \(.1 - .0292 = .0708\), the error in terms of ulp(0.0292) is 708 ulps. -- Ed.
(and similarly for $r_2$) to obtain

$$r_1 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}, \quad r_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$$  \hfill (5)$$

If $b^2 > 4ac$ and $b > 0$, then computing $r_1$ using formula (4) will involve a cancellation. Therefore, use (5) for computing $r_1$ and (4) for $r_2$. On the other hand, if $b < 0$, use (4) for computing $r_1$ and (5) for $r_2$.

The expression $x^2 - y^2$ is another formula that exhibits catastrophic cancellation. It is more accurate to evaluate it as $(x - y)(x + y)$. Unlike the quadratic formula, this improved form still has a subtraction, but it is a benign cancellation of quantities without rounding error, not a catastrophic one. By Theorem 2, the relative error in $x - y$ is at most $2\epsilon$. The same is true of $x + y$. Multiplying two quantities with a small relative error results in a product with a small relative error (see “Rounding Error” on page 203).

In order to avoid confusion between exact and computed values, the following notation is used. Whereas $x - y$ denotes the exact difference of $x$ and $y$, $x \circledcirc y$ denotes the computed difference (i.e., with rounding error). Similarly $\oplus$, $\otimes$, and $\oslash$ denote computed addition, multiplication, and division, respectively. All caps indicate the computed value of a function, as in $\ln(x)$ or $\sqrt{x}$. Lower case functions and traditional mathematical notation denote their exact values as in $\ln(x)$ and $\sqrt{x}$.

Although $(x \ominus y) \otimes (x \oplus y)$ is an excellent approximation to $x^2 - y^2$, the floating-point numbers $x$ and $y$ might themselves be approximations to some true quantities $\hat{x}$ and $\hat{y}$. For example, $\hat{x}$ and $\hat{y}$ might be exactly known decimal numbers that cannot be expressed exactly in binary. In this case, even though $x \ominus y$ is a good approximation to $x - y$, it can have a huge relative error compared to the true expression $\hat{x} - \hat{y}$, and so the advantage of $(x + y)(x - y)$ over $x^2 - y^2$ is not as dramatic. Since computing $(x + y)(x - y)$ is about the same amount of work as computing $x^2 - y^2$, it is clearly the preferred form in this case. In general, however, replacing a catastrophic cancellation by a benign one is not worthwhile if the expense is large because the input is often (but not

---

1. Although the expression $(x - y)/(x + y)$ does not cause a catastrophic cancellation, it is slightly less accurate than $x^2 - y^2$ if $x > y$ or $x < y$. In this case, $(x - y)/(x + y)$ has three rounding errors, but $x^2 - y^2$ has only two since the rounding error committed when computing the smaller of $x^2$ and $y^2$ does not affect the final subtraction.
always) an approximation. But eliminating a cancellation entirely (as in the quadratic formula) is worthwhile even if the data are not exact. Throughout this paper, it will be assumed that the floating-point inputs to an algorithm are exact and that the results are computed as accurately as possible.

The expression $x^2 - y^2$ is more accurate when rewritten as $(x - y)(x + y)$ because a catastrophic cancellation is replaced with a benign one. We next present more interesting examples of formulas exhibiting catastrophic cancellation that can be rewritten to exhibit only benign cancellation.

The area of a triangle can be expressed directly in terms of the lengths of its sides $a$, $b$, and $c$ as

$$A = \sqrt{s(s-a)(s-b)(s-c)}, \text{ where } s = \frac{(a+b+c)}{2}$$

(6)

Suppose the triangle is very flat; that is, $a = b + c$. Then $s = a$, and the term $(s-a)$ in eq. (6) subtracts two nearby numbers, one of which may have rounding error. For example, if $a = 9.0$, $b = c = 4.53$, then the correct value of $s$ is 9.03 and $A$ is 2.342... . Even though the computed value of $s$ (9.05) is in error by only 2 ulps, the computed value of $A$ is 3.04, an error of 70 ulps.

There is a way to rewrite formula (6) so that it will return accurate results even for flat triangles [Kahan 1986]. It is

$$A = \sqrt{\frac{(a + b + c)(c - (a-b))(c + (a-b))(a + (b-c))}{4}}, \ a \geq b \geq c$$

(7)

If $a$, $b$, and $c$ do not satisfy $a \geq b \geq c$, simply rename them before applying (7). It is straightforward to check that the right-hand sides of (6) and (7) are algebraically identical. Using the values of $a$, $b$, and $c$ above gives a computed area of 2.35, which is 1 ulp in error and much more accurate than the first formula.

Although formula (7) is much more accurate than (6) for this example, it would be nice to know how well (7) performs in general.
Theorem 3

The rounding error incurred when using (7) to compute the area of a triangle is at most $11\varepsilon$, provided that subtraction is performed with a guard digit, $e \leq .005$, and that square roots are computed to within $1/2$ ulp.

The condition that $e < .005$ is met in virtually every actual floating-point system. For example when $\beta = 2$, $p \geq 8$ ensures that $e < .005$, and when $\beta = 10$, $p \geq 3$ is enough.

In statements like Theorem 3 that discuss the relative error of an expression, it is understood that the expression is computed using floating-point arithmetic. In particular, the relative error is actually of the expression

\[
\text{SQRT}((a \oplus (b \ominus c)) \odot (c \ominus (a \ominus b)) \odot (c \ominus (a \ominus b)) \odot (a \oplus (b \ominus c))) \ominus 4
\]

Because of the cumbersome nature of (8), in the statement of theorems we will usually say the computed value of $E$ rather than writing out $E$ with circle notation.

Error bounds are usually too pessimistic. In the numerical example given above, the computed value of (7) is 2.35, compared with a true value of 2.34216 for a relative error of $0.7\varepsilon$, which is much less than $11\varepsilon$. The main reason for computing error bounds is not to get precise bounds but rather to verify that the formula does not contain numerical problems.

A final example of an expression that can be rewritten to use benign cancellation is $(1 + x)^n$, where $x \ll 1$. This expression arises in financial calculations. Consider depositing $100$ every day into a bank account that earns an annual interest rate of $6\%$, compounded daily. If $n = 365$ and $i = .06$,

the amount of money accumulated at the end of one year is $100 \frac{(1 + i/n)^n - 1}{i/n}$ dollars. If this is computed using $\beta = 2$ and $p = 24$, the result is $37615.45$ compared to the exact answer of $37614.05$, a discrepancy of $1.40$. The reason for the problem is easy to see. The expression $1 + i/n$ involves adding $1$ to $.0001643836$, so the low order bits of $i/n$ are lost. This rounding error is amplified when $1 + i/n$ is raised to the $n$th power.
The troublesome expression \((1 + i/n)^n\) can be rewritten as \(e^{\ln(1 + i/n)}\), where now the problem is to compute \(\ln(1 + x)\) for small \(x\). One approach is to use the approximation \(\ln(1 + x) = x\), in which case the payment becomes \$37617.26, which is off by \$3.21 and even less accurate than the obvious formula. But there is a way to compute \(\ln(1 + x)\) very accurately, as Theorem 4 shows [Hewlett-Packard 1982]. This formula yields \$37614.07, accurate to within two cents!

Theorem 4 assumes that \(\text{LN}(x)\) approximates \(\ln(x)\) to within \(1/2\ \text{ulp}\). The problem it solves is that when \(x\) is small, \(\text{LN}(1 \oplus x)\) is not close to \(\ln(1 + x)\) because \(1 \oplus x\) has lost the information in the low order bits of \(x\). That is, the computed value of \(\ln(1 + x)\) is not close to its actual value when \(x \ll 1\).

**Theorem 4**

If \(\ln(1 + x)\) is computed using the formula

\[
\ln(1 + x) = \begin{cases} 
  x & \text{for } 1 \oplus x = 1 \\
  x \frac{\ln(1+x)}{(1+x) - 1} & \text{for } 1 \oplus x \neq 1
\end{cases}
\]

the relative error is at most \(5\varepsilon\) when \(0 \leq x < \frac{3}{4}\), provided subtraction is performed with a guard digit, \(e < 0.1\), and \(\ln\) is computed to within \(1/2\ \text{ulp}\).

This formula will work for any value of \(x\) but is only interesting for \(x \ll 1\), which is where catastrophic cancellation occurs in the naive formula \(\ln(1 + x)\). Although the formula may seem mysterious, there is a simple explanation for why it works. Write \(\ln(1 + x)\) as \(x \left( \frac{\ln(1 + x)}{x} \right) = x \mu(x)\). The left hand factor can be computed exactly, but the right hand factor \(\mu(x) = \ln(1 + x)/x\) will suffer a large rounding error when adding 1 to \(x\). However, \(\mu\) is almost constant, since \(\ln(1 + x) = x\). So changing \(x\) slightly will not introduce much error. In other words, if \(\tilde{x} = x\), computing \(x \mu(\tilde{x})\) will be a good approximation to \(x \mu(x) = \ln(1 + x)\). Is there a value for \(\tilde{x}\) for which \(\tilde{x}\) and \(\tilde{x} + 1\) can be computed...
accurately? There is; namely $\tilde{x} = (1 \oplus x) \ominus 1$, because then $1 + \tilde{x}$ is exactly equal to $1 \oplus x$.

The results of this section can be summarized by saying that a guard digit guarantees accuracy when nearby precisely known quantities are subtracted (benign cancellation). Sometimes a formula that gives inaccurate results can be rewritten to have much higher numerical accuracy by using benign cancellation; however, the procedure only works if subtraction is performed using a guard digit. The price of a guard digit is not high, because it merely requires making the adder one bit wider. For a 54 bit double precision adder, the additional cost is less than 2%. For this price, you gain the ability to run many algorithms such as the formula (6) for computing the area of a triangle and the expression $\ln(1 + x)$. Although most modern computers have a guard digit, there are a few (such as Cray® systems) that do not.

**Exactly Rounded Operations**

When floating-point operations are done with a guard digit, they are not as accurate as if they were computed exactly then rounded to the nearest floating-point number. Operations performed in this manner will be called *exactly rounded*. The example immediately preceding Theorem 2 shows that a single guard digit will not always give exactly rounded results. The previous section gave several examples of algorithms that require a guard digit in order to work properly. This section gives examples of algorithms that require exact rounding.

So far, the definition of rounding has not been given. Rounding is straightforward, with the exception of how to round halfway cases; for example, should 12.5 round to 12 or 13? One school of thought divides the 10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7, 8, 9} round up; thus 12.5 would round to 13. This is how rounding works on Digital Equipment Corporation’s VAX™ computers. Another school of thought says that since numbers ending in 5 are halfway between two possible roundings, they should round down half the time and round up the other half. One way of obtaining this 50% behavior to require that the rounded result has its least significant

---

1. Also commonly referred to as *correctly rounded*. -- Ed.
digit be even. Thus 12.5 rounds to 12 rather than 13 because 2 is even. Which of these methods is best, round up or round to even? Reiser and Knuth [1975] offer the following reason for preferring round to even.

**Theorem 5**

Let \( x \) and \( y \) be floating-point numbers, and define \( x_0 = x \), \( x_1 = (x_0 \oplus y) \oplus y \), ..., \( x_n = (x_{n-1} \oplus y) \oplus y \). If \( \oplus \) and \( \ominus \) are exactly rounded using round to even, then either \( x_n = x \) for all \( n \) or \( x_n = x_1 \) for all \( n \geq 1 \).

To clarify this result, consider \( \beta = 10 \), \( p = 3 \) and let \( x = 1.00 \), \( y = -.555 \). When rounding up, the sequence becomes \( x_0 \oplus y = 1.56 \), \( x_1 = 1.56 \ominus .555 = 1.01 \), \( x_1 \ominus y = 1.01 \ominus .555 = 1.57 \), and each successive value of \( x_n \) increases by .01, until \( x_n = 9.45 \) (\( n \leq 845 \)). Under round to even, \( x_n \) is always 1.00. This example suggests that when using the round up rule, computations can gradually drift upward, whereas when using round to even the theorem says this cannot happen. Throughout the rest of this paper, round to even will be used.

One application of exact rounding occurs in multiple precision arithmetic. There are two basic approaches to higher precision. One approach represents floating-point numbers using a very large significand, which is stored in an array of words, and codes the routines for manipulating these numbers in assembly language. The second approach represents higher precision floating-point numbers as an array of ordinary floating-point numbers, where adding the elements of the array in infinite precision recovers the high precision floating-point number. It is this second approach that will be discussed here. The advantage of using an array of floating-point numbers is that it can be coded portably in a high level language, but it requires exactly rounded arithmetic.

The key to multiplication in this system is representing a product \( xy \) as a sum, where each summand has the same precision as \( x \) and \( y \). This can be done by splitting \( x \) and \( y \). Writing \( x = x_h + x_l \) and \( y = y_h + y_l \), the exact product is \( xy = x_h y_h + x_h y_l + x_l y_h + x_l y_l \). If \( x \) and \( y \) have \( p \) bit significands, the summands will also have \( p \) bit significands provided that \( x_{p/2} y_{p/2} \) can be represented using \( \lfloor p/2 \rfloor \) bits. When \( p \) is even, it is easy to find a splitting. The number \( x_0 x_1 \ldots x_{p-1} \) can be written as the sum of \( x_0 x_1 \ldots x_{p/2-1} \) and \( 0.0 \ldots 0x_{p/2} \ldots x_{p-1} \). When \( p \) is odd, this simple splitting method won’t work.

1. When \( n = 845 \), \( x_n = 9.45 \), \( x_n + 0.555 = 10.0 \), and \( 10.0 - 0.555 = 9.45 \). Therefore, \( x_n = x_{845} \) for \( n > 845 \).
An extra bit can, however, be gained by using negative numbers. For example, if \( \beta = 2, \ p = 5, \) and \( x = .10111, \) \( x \) can be split as \( x_h = .11 \) and \( x_l = -.00001. \) There is more than one way to split a number. A splitting method that is easy to compute is due to Dekker [1971], but it requires more than a single guard digit.

**Theorem 6**

Let \( p \) be the floating-point precision, with the restriction that \( p \) is even when \( \beta > 2, \) and assume that floating-point operations are exactly rounded. Then if \( k = \lfloor p/2 \rfloor \) is half the precision (rounded up) and \( m = \beta^k + 1, \) \( x \) can be split as \( x = x_h + x_l, \) where \( x_h = (m \otimes x) \ominus (m \otimes x \ominus x), \) \( x_l = x \ominus x_h, \) and each \( x_i \) is representable using \( \lfloor p/2 \rfloor \) bits of precision.

To see how this theorem works in an example, let \( \beta = 10, \ p = 4, \ b = 3.476, \ a = 3.463, \) and \( c = 3.479. \) Then \( b^2 - ac \) rounded to the nearest floating-point number is \( .03480, \) while \( b \otimes b = 12.08, a \otimes c = 12.05, \) and so the computed value of \( b^2 - ac \) is \(.03. \) This is an error of 480 ulps. Using Theorem 6 to write \( b = 3.5 - .024, \) \( a = 3.5 - .037, \) and \( c = 3.5 - .021, \) \( b^2 \) becomes \( 3.5^2 - 2 \times 3.5 \times .024 + .024^2. \) Each summand is exact, so \( b^2 = 12.25 - .168 + .000576, \) where the sum is left unevaluated at this point. Similarly, \( ac = 3.5^2 - (3.5 \times .037 + 3.5 \times .021) + .037 \times .021 = 12.25 - .2030 +.000777. \) Finally, subtracting these two series term by term gives an estimate for \( b^2 - ac \) of \( .03480, \) which is identical to the exactly rounded result. To show that Theorem 6 really requires exact rounding, consider \( p = 3, \) \( \beta = 2, \) and \( x = 7. \) Then \( m = 5, \ mx = 35, \) and \( m \otimes x = 32. \) If subtraction is performed with a single guard digit, then \( (m \otimes x) \ominus x = 28. \) Therefore, \( x_h = 4 \) and \( x_l = 3, \) hence \( x_l \) is not representable with \( \lfloor p/2 \rfloor = 1 \) bit.

As a final example of exact rounding, consider dividing \( m \) by 10. The result is a floating-point number that will in general not be equal to \( m/10. \) When \( \beta = 2, \) multiplying \( m/10 \) by 10 will miraculously restore \( m, \) provided exact rounding is being used. Actually, a more general fact (due to Kahan) is true. The proof is ingenious, but readers not interested in such details can skip ahead to Section “The IEEE Standard,” on page 167.

**Theorem 7**

When \( \beta = 2, \) if \( m \) and \( n \) are integers with \( |m| < 2^{p - 1} \) and \( n \) has the special form \( n = 2^i + 2^j, \) then \( (m \ominus n) \otimes n = m, \) provided floating-point operations are exactly rounded.
Proof

Scaling by a power of two is harmless, since it changes only the exponent, not the significand. If \( q = m/n \), then scale \( n \) so that \( 2^{p-1} \leq n < 2^p \) and scale \( m \) so that \( \frac{1}{2} < q < 1 \). Thus, \( 2^{p-2} < m < 2^p \). Since \( m \) has \( p \) significant bits, it has at most one bit to the right of the binary point. Changing the sign of \( m \) is harmless, so assume that \( q > 0 \).

If \( \tilde{q} = m \neq n \), to prove the theorem requires showing that

\[
|n\tilde{q} - m| \leq \frac{1}{4} \tag{9}
\]

That is because \( m \) has at most 1 bit right of the binary point, so \( n\tilde{q} \) will round to \( m \). To deal with the halfway case when \( |n\tilde{q} - m| = \frac{1}{4} \), note that since the initial unscaled \( m \) had \( |m| < 2^{p-1} \), its low-order bit was 0, so the low-order bit of the scaled \( m \) is also 0. Thus, halfway cases will round to \( m \).

Suppose that \( q = .q_1q_2 \ldots \), and let \( \hat{q} = .q_1q_2 \ldots q_{\tilde{p}}1 \). To estimate \( |n\tilde{q} - m| \), first compute \( |\hat{q} - q| = |N/2^{p+1} - m/n| \), where \( N \) is an odd integer. Since \( n = 2^i + 2^j \) and \( 2^{p-1} \leq n < 2^p \), it must be that \( n = 2^{p-1} + 2^k \) for some \( k \leq p - 2 \), and thus

\[
|\hat{q} - q| = \frac{|nN - 2^{p+1}m|}{n2^p + 1} = \frac{(2^{p-1} - k + 1)N - 2^{p+1} - k m}{n2^p + 1 - k}.
\]

The numerator is an integer, and since \( N \) is odd, it is in fact an odd integer. Thus, \( |\hat{q} - q| \geq 1/(n2^{p+1-k}) \). Assume \( q < \hat{q} \) (the case \( q > \hat{q} \) is similar). Then \( n\tilde{q} < m \), and

\[
|m-n\tilde{q}| = m-n\tilde{q} = n(q-\tilde{q}) = n(q-(\hat{q} - 2^{p-1})) \leq n(2^{p-1} - \frac{1}{n2^p + 1 - k})
\]

\[
= (2^{p-1} + 2^k)2^{-1} + 2^{-1} + 2^k = \frac{1}{4}
\]

This establishes (9) and proves the theorem. \( \Box \)

1. Notice that in binary, \( q \) cannot equal \( \hat{q} \). – Ed.

Numerical Computation Guide
The theorem holds true for any base $\beta$, as long as $2^i + 2^j$ is replaced by $\beta^i + \beta^j$. As $\beta$ gets larger, however, denominators of the form $\beta^i + \beta^j$ are farther and farther apart.

We are now in a position to answer the question, Does it matter if the basic arithmetic operations introduce a little more rounding error than necessary? The answer is that it does matter, because accurate basic operations enable us to prove that formulas are “correct” in the sense they have a small relative error. “Cancellation” on page 157 discussed several algorithms that require guard digits to produce correct results in this sense. If the input to those formulas are numbers representing imprecise measurements, however, the bounds of Theorems 3 and 4 become less interesting. The reason is that the benign cancellation $x - y$ can become catastrophic if $x$ and $y$ are only approximations to some measured quantity. But accurate operations are useful even in the face of inexact data, because they enable us to establish exact relationships like those discussed in Theorems 6 and 7. These are useful even if every floating-point variable is only an approximation to some actual value.

**The IEEE Standard**

There are two different IEEE standards for floating-point computation. IEEE 754 is a binary standard that requires $\beta = 2$, $p = 24$ for single precision and $p = 53$ for double precision [IEEE 1987]. It also specifies the precise layout of bits in a single and double precision. IEEE 854 allows either $\beta = 2$ or $\beta = 10$ and unlike 754, does not specify how floating-point numbers are encoded into bits [Cody et al. 1984]. It does not require a particular value for $p$, but instead it specifies constraints on the allowable values of $p$ for single and double precision. The term *IEEE Standard* will be used when discussing properties common to both standards.

This section provides a tour of the IEEE standard. Each subsection discusses one aspect of the standard and why it was included. It is not the purpose of this paper to argue that the IEEE standard is the best possible floating-point standard but rather to accept the standard as given and provide an introduction to its use. For full details consult the standards themselves [IEEE 1987; Cody et al. 1984].

---

2. Left as an exercise to the reader: extend the proof to bases other than 2. -- Ed.
Formats and Operations

Base

It is clear why IEEE 854 allows $\beta = 10$. Base ten is how humans exchange and think about numbers. Using $\beta = 10$ is especially appropriate for calculators, where the result of each operation is displayed by the calculator in decimal.

There are several reasons why IEEE 854 requires that if the base is not 10, it must be 2. “Relative Error and Ulps” on page 154 mentioned one reason: the results of error analyses are much tighter when $\beta$ is 2 because a rounding error of $0.5$ ulp wobbles by a factor of $\beta$ when computed as a relative error, and error analyses are almost always simpler when based on relative error. A related reason has to do with the effective precision for large bases. Consider $\beta = 16$, $p = 1$ compared to $\beta = 2$, $p = 4$. Both systems have 4 bits of significand.

Consider the computation of $15/8$. When $\beta = 2$, 15 is represented as $1.111 \times 2^3$, and $15/8$ as $1.111 \times 2^0$. So $15/8$ is exact. However, when $\beta = 16$, 15 is represented as $F \times 16^0$, where $F$ is the hexadecimal digit for 15. But $15/8$ is represented as $1 \times 16^0$, which has only one bit correct. In general, base 16 can lose up to 3 bits, so that a precision of $p$ hexadecimal digits can have an effective precision as low as $4p - 3$ rather than $4p$ binary bits. Since large values of $\beta$ have these problems, why did IBM choose $\beta = 16$ for its system/370? Only IBM knows for sure, but there are two possible reasons. The first is increased exponent range. Single precision on the system/370 has $\beta = 16$, $p = 6$. Hence the significand requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the exponent and one for the sign bit. Thus the magnitude of representable numbers ranges from about $16^{-2^6}$ to about $16^{2^{26}} = 2^{28}$. To get a similar exponent range when $\beta = 2$ would require 9 bits of exponent, leaving only 22 bits for the significand. However, it was just pointed out that when $\beta = 16$, the effective precision can be as low as $4p - 3 = 21$ bits. Even worse, when $\beta = 2$ it is possible to gain an extra bit of precision (as explained later in this section), so the $\beta = 2$ machine has 23 bits of precision to compare with a range of $21 - 24$ bits for the $\beta = 16$ machine.

Another possible explanation for choosing $\beta = 16$ has to do with shifting. When adding two floating-point numbers, if their exponents are different, one of the significands will have to be shifted to make the radix points line up, slowing down the operation. In the $\beta = 16$, $p = 1$ system, all the numbers between 1 and 15 have the same exponent, and so no shifting is required when adding any of
the \( \binom{15}{2} = 105 \) possible pairs of distinct numbers from this set. However, in the \( \beta = 2, p = 4 \) system, these numbers have exponents ranging from 0 to 3, and shifting is required for 70 of the 105 pairs.

In most modern hardware, the performance gained by avoiding a shift for a subset of operands is negligible, and so the small wobble of \( \beta = 2 \) makes it the preferable base. Another advantage of using \( \beta = 2 \) is that there is a way to gain an extra bit of significance.\(^1\) Since floating-point numbers are always normalized, the most significant bit of the significand is always 1, and there is no reason to waste a bit of storage representing it. Formats that use this trick are said to have a hidden bit. It was already pointed out in “Floating-point Formats” on page 152 that this requires a special convention for 0. The method given there was that an exponent of \( e_{\min} - 1 \) and a significand of all zeros represents not \( 1.0 \times 2^{e_{\min} - 1} \), but rather 0.

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits for the exponent, and 23 bits for the significand. However, it uses a hidden bit, so the significand is 24 bits \( (p = 24) \), even though it is encoded using only 23 bits.

**Precision**

The IEEE standard defines four different precisions: single, double, single-extended, and double-extended. In 754, single and double precision correspond roughly to what most floating-point hardware provides. Single precision occupies a single 32 bit word, double precision two consecutive 32 bit words. Extended precision is a format that offers at least a little extra precision and exponent range (Table E-1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>( p )</td>
<td>24</td>
</tr>
<tr>
<td>( e_{\max} )</td>
<td>127</td>
</tr>
</tbody>
</table>

---

1. This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes this idea to Konrad Zuse.
The IEEE standard only specifies a lower bound on how many extra bits extended precision provides. The minimum allowable double-extended format is sometimes referred to as 80-bit format, even though the table shows it using 79 bits. The reason is that hardware implementations of extended precision normally don’t use a hidden bit, and so would use 80 rather than 79 bits.¹

The standard puts the most emphasis on extended precision, making no recommendation concerning double precision, but strongly recommending that Implementations should support the extended format corresponding to the widest basic format supported, …

One motivation for extended precision comes from calculators, which will often display 10 digits, but use 13 digits internally. By displaying only 10 of the 13 digits, the calculator appears to the user as a “black box” that computes exponentials, cosines, etc. to 10 digits of accuracy. For the calculator to compute functions like exp, log and cos to within 10 digits with reasonable efficiency, it needs a few extra digits to work with. It isn’t hard to find a simple rational expression that approximates log with an error of 500 units in the last place. Thus computing with 13 digits gives an answer correct to 10 digits. By keeping these extra 3 digits hidden, the calculator presents a simple model to the operator.

¹ According to Kahan, extended precision has 64 bits of significand because that was the widest precision across which carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan 1988].
Extended precision in the IEEE standard serves a similar function. It enables libraries to efficiently compute quantities to within about .5 ulp in single (or double) precision, giving the user of those libraries a simple model, namely that each primitive operation, be it a simple multiply or an invocation of log, returns a value accurate to within about .5 ulp. However, when using extended precision, it is important to make sure that its use is transparent to the user. For example, on a calculator, if the internal representation of a displayed value is not rounded to the same precision as the display, then the result of further operations will depend on the hidden digits and appear unpredictable to the user.

To illustrate extended precision further, consider the problem of converting between IEEE 754 single precision and decimal. Ideally, single precision numbers will be printed with enough digits so that when the decimal number is read back in, the single precision number can be recovered. It turns out that 9 decimal digits are enough to recover a single precision binary number (see “Binary to Decimal Conversion” on page 214). When converting a decimal number back to its unique binary representation, a rounding error as small as 1 ulp is fatal, because it will give the wrong answer. Here is a situation where extended precision is vital for an efficient algorithm. When single-extended is available, a very straightforward method exists for converting a decimal number to a single precision binary one. First read in the 9 decimal digits as an integer $N$, ignoring the decimal point. From Table E-1, $p \geq 32$, and since $10^9 < 2^{32} \approx 4.3 \times 10^9$, $N$ can be represented exactly in single-extended. Next find the appropriate power $10^P$ necessary to scale $N$. This will be a combination of the exponent of the decimal number, together with the position of the (up until now) ignored decimal point. Compute $10^{|P|}$. If $|P| \leq 13$, then this is also represented exactly, because $10^{13} = 2^{13} 5^{13}$, and $5^{13} < 2^{32}$. Finally multiply (or divide if $p < 0$) $N$ and $10^{|P|}$. If this last operation is done exactly, then the closest binary number is recovered. “Binary to Decimal Conversion” on page 214 shows how to do the last multiply (or divide) exactly. Thus for $|P| \leq 13$, the use of the single-extended format enables 9 digit decimal numbers to be converted to the closest binary number (i.e. exactly rounded). If $|P| > 13$, then single-extended is not enough for the above algorithm to always compute the exactly rounded binary equivalent, but Coonen [1984] shows that it is enough to guarantee that the conversion of binary to decimal and back will recover the original binary number.
If double precision is supported, then the algorithm above would be run in double precision rather than single-extended, but to convert double precision to a 17 digit decimal number and back would require the double-extended format.

**Exponent**

Since the exponent can be positive or negative, some method must be chosen to represent its sign. Two common methods of representing signed numbers are sign/magnitude and two's complement. Sign/magnitude is the system used for the sign of the significand in the IEEE formats: one bit is used to hold the sign, the rest of the bits represent the magnitude of the number. The two’s complement representation is often used in integer arithmetic. In this scheme, a number in the range $[-2^{p-1}, 2^{p-1} - 1]$ is represented by the smallest nonnegative number that is congruent to it modulo $2^p$.

The IEEE binary standard does not use either of these methods to represent the exponent, but instead uses a biased representation. In the case of single precision, where the exponent is stored in 8 bits, the bias is 127 (for double precision it is 1023). What this means is that if $k$ is the value of the exponent bits interpreted as an unsigned integer, then the exponent of the floating-point number is $k - 127$. This is often called the unbiased exponent to distinguish from the biased exponent $k$.

Referring to Table E-1 on page 169, single precision has $e_{\text{max}} = 127$ and $e_{\text{min}} = -126$. The reason for having $|e_{\text{min}}| < e_{\text{max}}$ is so that the reciprocal of the smallest number ($1/2^{e_{\text{min}}}$) will not overflow. Although it is true that the reciprocal of the largest number will underflow, underflow is usually less serious than overflow. “Base” on page 168 explained that $e_{\text{min}} - 1$ is used for representing 0, and “Special Quantities” on page 175 will introduce a use for $e_{\text{max}} + 1$. In IEEE single precision, this means that the biased exponents range between $e_{\text{min}} - 1 = -127$ and $e_{\text{max}} + 1 = 128$, whereas the unbiased exponents range between 0 and 255, which are exactly the nonnegative numbers that can be represented using 8 bits.
Operations

The IEEE standard requires that the result of addition, subtraction, multiplication and division be exactly rounded. That is, the result must be computed exactly and then rounded to the nearest floating-point number (using round to even). "Guard Digits" on page 156 pointed out that computing the exact difference or sum of two floating-point numbers can be very expensive when their exponents are substantially different. That section introduced guard digits, which provide a practical way of computing differences while guaranteeing that the relative error is small. However, computing with a single guard digit will not always give the same answer as computing the exact result and then rounding. By introducing a second guard digit and a third sticky bit, differences can be computed at only a little more cost than with a single guard digit, but the result is the same as if the difference were computed exactly and then rounded [Goldberg 1990]. Thus the standard can be implemented efficiently.

One reason for completely specifying the results of arithmetic operations is to improve the portability of software. When a program is moved between two machines and both support IEEE arithmetic, then if any intermediate result differs, it must be because of software bugs, not from differences in arithmetic. Another advantage of precise specification is that it makes it easier to reason about floating-point. Proofs about floating-point are hard enough, without having to deal with multiple cases arising from multiple kinds of arithmetic. Just as integer programs can be proven to be correct, so can floating-point programs, although what is proven in that case is that the rounding error of the result satisfies certain bounds. Theorem 4 is an example of such a proof. These proofs are made much easier when the operations being reasoned about are precisely specified. Once an algorithm is proven to be correct for IEEE arithmetic, it will work correctly on any machine supporting the IEEE standard.

Brown [1981] has proposed axioms for floating-point that include most of the existing floating-point hardware. However, proofs in this system cannot verify the algorithms of sections, “Cancellation” on page 157 and, “Exactly Routed Operations” on page 163, which require features not present on all hardware. Furthermore, Brown’s axioms are more complex than simply defining operations to be performed exactly and then rounded. Thus proving theorems from Brown’s axioms is usually more difficult than proving them assuming operations are exactly rounded.
There is not complete agreement on what operations a floating-point standard should cover. In addition to the basic operations +, -, $\times$ and $/$, the IEEE standard also specifies that square root, remainder, and conversion between integer and floating-point be correctly rounded. It also requires that conversion between internal formats and decimal be correctly rounded (except for very large numbers). Kulisch and Miranker [1986] have proposed adding inner product to the list of operations that are precisely specified. They note that when inner products are computed in IEEE arithmetic, the final answer can be quite wrong. For example sums are a special case of inner products, and the sum $(2 \times 10^{-30} + 10^{30}) - 10^{30}$ is exactly equal to $10^{-30}$, but on a machine with IEEE arithmetic the computed result will be $-10^{-30}$. It is possible to compute inner products to within 1 ulp with less hardware than it takes to implement a fast multiplier [Kirchner and Kulish 1987].

All the operations mentioned in the standard are required to be exactly rounded except conversion between decimal and binary. The reason is that efficient algorithms for exactly rounding all the operations are known, except conversion. For conversion, the best known efficient algorithms produce results that are slightly worse than exactly rounded ones [Coonen 1984].

The IEEE standard does not require transcendental functions to be exactly rounded because of the table maker’s dilemma. To illustrate, suppose you are making a table of the exponential function to 4 places. Then $\exp(1.626) = 5.0835$. Should this be rounded to 5.083 or 5.084? If $\exp(1.626)$ is computed more carefully, it becomes 5.08350. And then 5.083500. And then 5.0835000. Since exp is transcendental, this could go on arbitrarily long before distinguishing whether $\exp(1.626)$ is 5.083500...0ddd or 5.0834999...9ddd. Thus it is not practical to specify that the precision of transcendental functions be the same as if they were computed to infinite precision and then rounded. Another approach would be to specify transcendental functions algorithmically. But there does not appear to be a single algorithm that works well across all hardware architectures. Rational approximation, CORDIC, and large tables

1. Some arguments against including inner product as one of the basic operations are presented by Kahan and LeBlanc [1985].
2. Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product per clockcycle. The additionally needed hardware compares to the multiplier array needed anyway for that speed.
3. CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing transcendental functions that uses mostly shifts and adds (i.e., very few multiplications and divisions) [Walther 1971]. It is the method additionally needed hardware compares to the multiplier array needed anyway for that speed. Used on both the Intel 8087 and the Motorola 68881.
are three different techniques that are used for computing transcendentials on contemporary machines. Each is appropriate for a different class of hardware, and at present no single algorithm works acceptably over the wide range of current hardware.

Special Quantities

On some floating-point hardware every bit pattern represents a valid floating-point number. The IBM System/370 is an example of this. On the other hand, the VAX™ reserves some bit patterns to represent special numbers called reserved operands. This idea goes back to the CDC 6600, which had bit patterns for the special quantities INDEFINITE and INFINITY.

The IEEE standard continues in this tradition and has NaNs (Not a Number) and infinities. Without any special quantities, there is no good way to handle exceptional situations like taking the square root of a negative number, other than aborting computation. Under IBM System/370 FORTRAN, the default action in response to computing the square root of a negative number like -4 results in the printing of an error message. Since every bit pattern represents a valid number, the return value of square root must be some floating-point number. In the case of System/370 FORTRAN, $\sqrt{-4} = 2$ is returned. In IEEE arithmetic, a NaN is returned in this situation.

The IEEE standard specifies the following special values (see Table E-2): ±0, denormalized numbers, ±∞ and NaNs (there is more than one NaN, as explained in the next section). These special values are all encoded with exponents of either $e_{\text{max}} + 1$ or $e_{\text{min}} - 1$ (it was already pointed out that 0 has an exponent of $e_{\text{min}} - 1$).

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Fraction</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e = e_{\text{min}} - 1$</td>
<td>$f = 0$</td>
<td>±0</td>
</tr>
<tr>
<td>$e = e_{\text{min}} - 1$</td>
<td>$f \neq 0$</td>
<td>$0.f \times 2^{e_{\text{min}}}$</td>
</tr>
<tr>
<td>$e_{\text{min}} \leq e \leq e_{\text{max}}$</td>
<td>—</td>
<td>$1.f \times 2^{e}$</td>
</tr>
<tr>
<td>$e = e_{\text{max}} + 1$</td>
<td>$f = 0$</td>
<td>$\infty$</td>
</tr>
<tr>
<td>$e = e_{\text{max}} + 1$</td>
<td>$f \neq 0$</td>
<td>NaN</td>
</tr>
</tbody>
</table>
NaNs

Traditionally, the computation of $0/0$ or $\sqrt{-1}$ has been treated as an unrecoverable error which causes a computation to halt. However, there are examples where it makes sense for a computation to continue in such a situation. Consider a subroutine that finds the zeros of a function $f$, say \texttt{zero}(f). Traditionally, zero finders require the user to input an interval $[a, b]$ on which the function is defined and over which the zero finder will search. That is, the subroutine is called as \texttt{zero}(f, a, b). A more useful zero finder would not require the user to input this extra information. This more general zero finder is especially appropriate for calculators, where it is natural to simply key in a function, and awkward to then have to specify the domain. However, it is easy to see why most zero finders require a domain. The zero finder does its work by probing the function $f$ at various values. If it probed for a value outside the domain of $f$, the code for $f$ might well compute $0/0$ or $\sqrt{-1}$, and the computation would halt, unnecessarily aborting the zero finding process.

This problem can be avoided by introducing a special value called \texttt{NaN}, and specifying that the computation of expressions like $0/0$ and $\sqrt{-1}$ produce \texttt{NaN}, rather than halting. A list of some of the situations that can cause a \texttt{NaN} are given in Table E-3. Then when \texttt{zero}(f) probes outside the domain of $f$, the code for $f$ will return \texttt{NaN}, and the zero finder can continue. That is, \texttt{zero}(f) is not “punished” for making an incorrect guess. With this example in mind, it is easy to see what the result of combining a \texttt{NaN} with an ordinary floating-point number should be. Suppose that the final statement of $f$ is \texttt{return((-b + sqrt(d))/(2*a))}. If $d < 0$, then $f$ should return a \texttt{NaN}. Since $d < 0$, \texttt{sqrt(d)} is a \texttt{NaN}, and $-b + \texttt{sqrt(d)}$ will be a \texttt{NaN}, if the sum of a \texttt{NaN}
and any other number is a NaN. Similarly if one operand of a division
operation is a NaN, the quotient should be a NaN. In general, whenever a NaN
participates in a floating-point operation, the result is another NaN.

Table E-3  Operations That Produce a NaN

<table>
<thead>
<tr>
<th>Operation</th>
<th>NaN Produced By</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>(\infty + (-\infty))</td>
</tr>
<tr>
<td>x</td>
<td>0 (\times) (\infty)</td>
</tr>
<tr>
<td>/</td>
<td>0/0, (\infty/\infty)</td>
</tr>
<tr>
<td>REM</td>
<td>x REM 0, (\infty) REM y</td>
</tr>
<tr>
<td>(\sqrt{\phantom{0}})</td>
<td>(\sqrt{x}) (when (x &lt; 0))</td>
</tr>
</tbody>
</table>

Another approach to writing a zero solver that doesn’t require the user to
input a domain is to use signals. The zero-finder could install a signal handler
for floating-point exceptions. Then if \(f\) was evaluated outside its domain and
raised an exception, control would be returned to the zero solver. The problem
with this approach is that every language has a different method of handling
signals (if it has a method at all), and so it has no hope of portability.

In IEEE 754, NaNs are often represented as floating-point numbers with the
exponent \(\epsilon_{\text{max}} + 1\) and nonzero significands. Implementations are free to put
system-dependent information into the significand. Thus there is not a unique
NaN, but rather a whole family of NaNs. When a NaN and an ordinary floating-
point number are combined, the result should be the same as the NaN operand.
Thus if the result of a long computation is a NaN, the system-dependent
information in the significand will be the information that was generated when
the first NaN in the computation was generated. Actually, there is a caveat to
the last statement. If both operands are NaNs, then the result will be one of
those NaNs, but it might not be the NaN that was generated first.

Infinity

Just as NaNs provide a way to continue a computation when expressions like
\(0/0\) or \(\sqrt{-1}\) are encountered, infinities provide a way to continue when an
overflow occurs. This is much safer than simply returning the largest
representable number. As an example, consider computing $\sqrt{x^2 + y^2}$, when $\beta = 10, p = 3, \text{ and } e_{\text{max}} = 98$. If $x = 3 \times 10^{70}$ and $y = 4 \times 10^{70}$, then $x^2$ will overflow, and be replaced by $9.99 \times 10^{98}$. Similarly $y^2$, and $x^2 + y^2$ will each overflow in turn, and be replaced by $9.99 \times 10^{98}$. So the final result will be

$$\sqrt{9.99 \times 10^{98}} = 3.16 \times 10^{49},$$

which is drastically wrong: the correct answer is $5 \times 10^{70}$. In IEEE arithmetic, the result of $x^2$ is $\infty$, as is $y^2$, $x^2 + y^2$ and $\sqrt{x^2 + y^2}$. So the final result is $\infty$, which is safer than returning an ordinary floating-point number that is nowhere near the correct answer.\(^1\)

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, however, returns infinity: $1/0 = \infty$, $-1/0 = -\infty$. The reason for the distinction is this: if $f(x) \to 0$ and $g(x) \to 0$ as $x$ approaches some limit, then $f(x)/g(x)$ could have any value. For example, when $f(x) = \sin x$ and $g(x) = x$, then $f(x)/g(x) \to 1$ as $x \to 0$. But when $f(x) = 1 - \cos x$, $f(x)/g(x) \to 0$. When thinking of $0/0$ as the limiting situation of a quotient of two very small numbers, $0/0$ could represent anything. Thus in the IEEE standard, $0/0$ results in a NaN. But when $c > 0$, $f(x) \to c$, and $g(x) \to 0$, then $f(x)/g(x) \to \pm \infty$, for any analytic functions $f$ and $g$. If $g(x) < 0$ for small $x$, then $f(x)/g(x) \to -\infty$, otherwise the limit is $+\infty$. So the IEEE standard defines $c/0 = \pm \infty$, as long as $c \neq 0$. The sign of $\infty$ depends on the signs of $c$ and 0 in the usual way, so that $-10/0 = -\infty$, and $-10/-0 = +\infty$. You can distinguish between getting $\infty$ because of overflow and getting $\infty$ because of division by zero by checking the status flags (which will be discussed in detail in section “Flags” on page 188). The overflow flag will be set in the first case, the division by zero flag in the second.

The rule for determining the result of an operation that has infinity as an operand is simple: replace infinity with a finite number $x$ and take the limit as $x \to \infty$. Thus $3/\infty = 0$, because $\lim_{x \to \infty} 3/x = 0$. Similarly, $4 - \infty = -\infty$, and

$$\sqrt{\infty} = \infty.\text{ When the limit doesn’t exist, the result is a NaN, so }\infty/\infty \text{ will be a NaN (Table E-3 on page 177 has additional examples). This agrees with the reasoning used to conclude that }0/0 \text{ should be a NaN.}$$

When a subexpression evaluates to a NaN, the value of the entire expression is also a NaN. In the case of $\pm \infty$ however, the value of the expression might be an ordinary floating-point number because of rules like $1/\infty = 0$. Here is a

\(^1\) Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to $\infty$, it is possible to change the default (see “Rounding Modes” on page 187)
practical example that makes use of the rules for infinity arithmetic. Consider computing the function \( x/(x^2 + 1) \). This is a bad formula, because not only will it overflow when \( x \) is larger than \( \sqrt{\beta \beta^e_{\text{min}}/2} \), but infinity arithmetic will give the wrong answer because it will yield 0, rather than a number near \( 1/x \). However, \( x/(x^2 + 1) \) can be rewritten as \( 1/(x + x^3) \). This improved expression will not overflow prematurely and because of infinity arithmetic will have the correct value when \( x = 0 \): \( 1/(0 + 0^3) = 1/(0 + \infty) = 1/\infty = 0 \). Without infinity arithmetic, the expression \( 1/(x + x^3) \) requires a test for \( x = 0 \), which not only adds extra instructions, but may also disrupt a pipeline. This example illustrates a general fact, namely that infinity arithmetic often avoids the need for special case checking; however, formulas need to be carefully inspected to make sure they do not have spurious behavior at infinity (as \( x/(x^2 + 1) \) did).

**Signed Zero**

Zero is represented by the exponent \( e_{\text{min}} - 1 \) and a zero significand. Since the sign bit can take on two different values, there are two zeros, +0 and -0. If a distinction were made when comparing +0 and -0, simple tests like \( \text{if } (x = 0) \) would have very unpredictable behavior, depending on the sign of \( x \). Thus the IEEE standard defines comparison so that +0 = -0, rather than -0 < +0. Although it would be possible always to ignore the sign of zero, the IEEE standard does not do so. When a multiplication or division involves a signed zero, the usual sign rules apply in computing the sign of the answer. Thus \( 3(+0) = +0 \), and \( +0/-3 = -0 \). If zero did not have a sign, then the relation \( 1/(1/x) = x \) would fail to hold when \( x = \pm\infty \). The reason is that \( 1/-\infty \) and \( 1/+\infty \) both result in 0, and 1/0 results in \( +\infty \), the sign information having been lost. One way to restore the identity \( 1/(1/x) = x \) is to only have one kind of infinity, however that would result in the disastrous consequence of losing the sign of an overflowed quantity.

Another example of the use of signed zero concerns underflow and functions that have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to define \( \log 0 = -\infty \) and log \( x \) to be a \( \text{NaN} \) when \( x < 0 \). Suppose that \( x \) represents a small negative number that has underflowed to zero. Thanks to signed zero, \( x \) will be negative, so log can return a \( \text{NaN} \). However, if there were no signed zero, the log function could not distinguish an underflowed negative number from 0, and would therefore have to return \( -\infty \). Another example of a function with a discontinuity at zero is the signum function, which returns the sign of a number.
Probably the most interesting use of signed zero occurs in complex arithmetic.

To take a simple example, consider the equation \( \sqrt{1/z} = 1/(\sqrt{z}) \). This is certainly true when \( z \geq 0 \). If \( z = -1 \), the obvious computation gives

\[
\sqrt{1/(-1)} = \sqrt{-1} = i \quad \text{and} \quad 1/(\sqrt{-1}) = 1/i = -i.
\]

Thus,

\[
\sqrt{1/z} \neq 1/(\sqrt{z})! \quad \text{The problem can be traced to the fact that square root is multi-valued, and there is no way to select the values so that it is continuous in the entire complex plane. However, square root is continuous if a branch cut consisting of all negative real numbers is excluded from consideration. This leaves the problem of what to do for the negative real numbers, which are of the form \(-x + i0\), where \( x > 0 \). Signed zero provides a perfect way to resolve this problem. Numbers of the form \( x + i(+0) \) have one sign \( (i\sqrt{x}) \) and numbers of the form \( x + i(-0) \) on the other side of the branch cut have the other sign \( (-i\sqrt{x}) \). In fact, the natural formulas for computing \( \sqrt{\cdot} \) will give these results.}

Back to \( \sqrt{1/z} = 1/(\sqrt{z}) \). If \( z = 1 = -1 + i0 \), then \( 1/z = 1/(1 + i0) = ((-1 - i0)/((-1 + i0)(-1 - i0)) = (-1 - i0)/((-1)^2 - 0^2) = -1 + i(-0) \), and so

\[
\sqrt{1/z} = \sqrt{-1 + i(-0)} = -i, \quad \text{while} \quad 1/(\sqrt{z}) = 1/i = -i. \]

Thus IEEE arithmetic preserves this identity for all \( z \). Some more sophisticated examples are given by Kahan [1987]. Although distinguishing between +0 and -0 has advantages, it can occasionally be confusing. For example, signed zero destroys the relation \( x = y \Leftrightarrow 1/x = 1/y \), which is false when \( x = +0 \) and \( y = -0 \). However, the IEEE committee decided that the advantages of utilizing the sign of zero outweighed the disadvantages.

**Denormalized Numbers**

Consider normalized floating-point numbers with \( \beta = 10, p = 3, \) and \( e_{\min} = -98 \). The numbers \( x = 6.87 \times 10^{-97} \) and \( y = 6.81 \times 10^{-97} \) appear to be perfectly ordinary floating-point numbers, which are more than a factor of 10 larger than the smallest floating-point number \( 1.00 \times 10^{-98} \). They have a strange property,
however: \( x \not\approx y = 0 \) even though \( x \neq y \)! The reason is that \( x - y = .06 \times 10^{-97} = 6.0 \times 10^{-99} \) is too small to be represented as a normalized number, and so must be flushed to zero. How important is it to preserve the property

\[
   x = y \Leftrightarrow x - y = 0
\]  

(10)

It’s very easy to imagine writing the code fragment,

\[
   \text{if } (x \neq y) \text{ then } z = 1/(x-y),
\]

and much later having a program fail due to a spurious division by zero. Tracking down bugs like this is frustrating and time consuming. On a more philosophical level, computer science textbooks often point out that even though it is currently impractical to prove large programs correct, designing programs with the idea of proving them often results in better code. For example, introducing invariants is quite useful, even if they aren’t going to be used as part of a proof. Floating-point code is just like any other code: it helps to have provable facts on which to depend. For example, when analyzing formula (6), it was very helpful to know that \( x/2 < y < 2x \Rightarrow x \not\approx y = x - y \). Similarly, knowing that (10) is true makes writing reliable floating-point code easier. If it is only true for most numbers, it cannot be used to prove anything.

The IEEE standard uses denormalized\(^1\) numbers, which guarantee (10), as well as other useful relations. They are the most controversial part of the standard and probably accounted for the long delay in getting 754 approved. Most high performance hardware that claims to be IEEE compatible does not support denormalized numbers directly, but rather traps when consuming or producing denormals, and leaves it to software to simulate the IEEE standard.\(^2\)

The idea behind denormalized numbers goes back to Goldberg [1967] and is very simple. When the exponent is \( e_{\text{min}} \), the significand does not have to be normalized, so that when \( \beta = 10, p = 3 \) and \( e_{\text{min}} = -98 \), \( 1.00 \times 10^{-98} \) is no longer the smallest floating-point number, because \( 0.98 \times 10^{-98} \) is also a floating-point number.

---

1. They are called subnormal in 854, denormal in 754.
2. This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow often run noticeably slower on hardware that uses software traps.
There is a small snag when $\beta = 2$ and a hidden bit is being used, since a number with an exponent of $e_{\text{min}}$ will always have a significand greater than or equal to 1.0 because of the implicit leading bit. The solution is similar to that used to represent 0, and is summarized in Table E-2 on page 175. The exponent $e_{\text{min}}$ is used to represent denormals. More formally, if the bits in the significand field are $b_1, b_2, \ldots, b_{p-1}$, and the value of the exponent is $e$, then when $e > e_{\text{min}} - 1$, the number being represented is $1.b_1b_2\ldots b_{p-1} \times 2^e$ whereas when $e = e_{\text{min}} - 1$, the number being represented is $0.b_1b_2\ldots b_{p-1} \times 2^{e+1}$. The +1 in the exponent is needed because denormals have an exponent of $e_{\text{min}}$ not $e_{\text{min}} - 1$.

Recall the example of $\beta = 10, p = 3, e_{\text{min}} = -98, x = 6.87 \times 10^{-97}$ and $y = 6.81 \times 10^{-97}$ presented at the beginning of this section. With denormals, $x - y$ does not flush to zero but is instead represented by the denormalized number $.6 \times 10^{-96}$. This behavior is called gradual underflow. It is easy to verify that (10) always holds when using gradual underflow.

Figure E-2 illustrates denormalized numbers. The top number line in the figure shows normalized floating-point numbers. Notice the gap between 0 and the smallest normalized number $1.0 \times \beta^{e_{\text{min}}}$. If the result of a floating-point calculation falls into this gulf, it is flushed to zero. The bottom number line shows what happens when denormals are added to the set of floating-point numbers. The “gulf” is filled in, and when the result of a calculation is less than $1.0 \times \beta^{e_{\text{min}}}$, it is represented by the nearest denormal. When denormalized numbers are added to the number line, the spacing between adjacent floating-point numbers varies in a regular way: adjacent spacings are either the same length or differ by a factor of $\beta$. Without denormals, the spacing abruptly changes from $\beta^{-p + 1} \beta^{e_{\text{min}}}$ to $\beta^{e_{\text{min}}}$, which is a factor of
$\beta^{-1}$, rather than the orderly change by a factor of $\beta$. Because of this, many algorithms that can have large relative error for normalized numbers close to the underflow threshold are well-behaved in this range when gradual underflow is used.

Without gradual underflow, the simple expression $x - y$ can have a very large relative error for normalized inputs, as was seen above for $x = 6.87 \times 10^{-97}$ and $y = 6.81 \times 10^{-97}$. Large relative errors can happen even without cancellation, as the following example shows [Demmel 1984]. Consider dividing two complex numbers, $a + ib$ and $c + id$. The obvious formula

$$
\frac{a + ib}{c + id} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} \cdot i
$$

suffers from the problem that if either component of the denominator $c + id$ is larger than $\sqrt{\beta \beta_{\text{min}}^e / 2}$, the formula will overflow, even though the final result may be well within range. A better method of computing the quotients is to use Smith’s formula:

$$
\frac{a + ib}{c + id} = \begin{cases} 
\frac{a + b (d/c)}{c + d (d/c)} + i \frac{b - a (d/c)}{c + d (d/c)} & \text{if } |d| < |c| \\
\frac{b + a (c/d)}{d + c (c/d)} + i \frac{-a + b (c/d)}{d + c (c/d)} & \text{if } |d| \geq |c|
\end{cases}
$$

(11)

Applying Smith’s formula to $(2 \cdot 10^{-98} + i 10^{-98})/(4 \cdot 10^{-98} + i (2 \cdot 10^{-98}))$ gives the correct answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero, an error of 100 ulps. It is typical for denormalized numbers to guarantee error bounds for arguments all the way down to $1.0 \times \beta_{\text{min}}^e$.

Exceptions, Flags and Trap Handlers

When an exceptional condition like division by zero or overflow occurs in IEEE arithmetic, the default is to deliver a result and continue. Typical of the default
results are NaN for 0/0 and $\sqrt{-1}$, and $\infty$ for 1/0 and overflow. The preceding sections gave examples where proceeding from an exception with these default values was the reasonable thing to do. When any exception occurs, a status flag is also set. Implementations of the IEEE standard are required to provide users with a way to read and write the status flags. The flags are “sticky” in that once set, they remain set until explicitly cleared. Testing the flags is the only way to distinguish 1/0, which is a genuine infinity from an overflow.

Sometimes continuing execution in the face of exception conditions is not appropriate. “Infinity” on page 177 gave the example of $x/(x^2 + 1)$. When $x > \sqrt{\beta \beta^{e_{\text{min}}}/2}$, the denominator is infinite, resulting in a final answer of 0, which is totally wrong. Although for this formula the problem can be solved by rewriting it as $1/(x + x^3)$, rewriting may not always solve the problem. The IEEE standard strongly recommends that implementations allow trap handlers to be installed. Then when an exception occurs, the trap handler is called instead of setting the flag. The value returned by the trap handler will be used as the result of the operation. It is the responsibility of the trap handler to either clear or set the status flag; otherwise, the value of the flag is allowed to be undefined.

The IEEE standard divides exceptions into 5 classes: overflow, underflow, division by zero, invalid operation and inexact. There is a separate status flag for each class of exception. The meaning of the first three exceptions is self-evident. Invalid operation covers the situations listed in Table E-3 on page 177, and any comparison that involves a NaN. The default result of an operation that causes an invalid exception is to return a NaN, but the converse is not true. When one of the operands to an operation is a NaN, the result is a NaN but no invalid exception is raised unless the operation also satisfies one of the conditions in Table E-3 on page 177.¹

Table E-4  Exceptions in IEEE 754*

<table>
<thead>
<tr>
<th>Exception</th>
<th>Result when traps disabled</th>
<th>Argument to trap handler</th>
</tr>
</thead>
<tbody>
<tr>
<td>overflow</td>
<td>$\pm \infty$ or $\pm x_{\text{max}}$</td>
<td>round($x2^{e}$)</td>
</tr>
<tr>
<td>underflow</td>
<td>$0$, $\pm 2^{e_{\text{min}}}$ or denormal</td>
<td>round($x2^{e}$)</td>
</tr>
<tr>
<td>divide by zero</td>
<td>$\infty$</td>
<td>operands</td>
</tr>
</tbody>
</table>

¹
E

<table>
<thead>
<tr>
<th>x</th>
<th>(e_{\text{max}})</th>
</tr>
</thead>
</table>
|\(\begin{array}{c}
\text{invalid} \\
\text{inexact}
\end{array}\)| \(\begin{array}{c}
\text{NaN} \\
\text{round}(x)
\end{array}\)| \(\begin{array}{c}
\text{operands} \\
\text{round}(x)
\end{array}\)

*\(x\) is the exact result of the operation, \(\alpha = 192\) for single precision, 1536 for double, and
\(x_{\text{max}} = 1.11 \ldots 11 \times 2^{e_{\text{max}}}\).

The inexact exception is raised when the result of a floating-point operation is not exact. In the \(B = 10, p = 3\) system, \(3.5 \odot 4.2 = 14.7\) is exact, but \(3.5 \odot 4.3 = 15.0\) is not exact (since \(3.5 \cdot 4.3 = 15.05\)), and raises an inexact exception. “Binary to Decimal Conversion” on page 214 discusses an algorithm that uses the inexact exception. A summary of the behavior of all five exceptions is given in Table E-4.

There is an implementation issue connected with the fact that the inexact exception is raised so often. If floating-point hardware does not have flags of its own, but instead interrupts the operating system to signal a floating-point exception, the cost of inexact exceptions could be prohibitive. This cost can be avoided by having the status flags maintained by software. The first time an exception is raised, set the software flag for the appropriate class, and tell the floating-point hardware to mask off that class of exceptions. Then all further exceptions will run without interrupting the operating system. When a user resets that status flag, the hardware mask is re-enabled.

**Trap Handlers**

One obvious use for trap handlers is for backward compatibility. Old codes that expect to be aborted when exceptions occur can install a trap handler that aborts the process. This is especially useful for codes with a loop like

1. No invalid exception is raised unless a “trapping” NaN is involved in the operation. See section 6.2 of IEEE Std 754-1985. -- Ed.
do $S$ until ($x >= 100$). Since comparing a NaN to a number with $<, \leq, >, \geq, or =$ (but not $\neq$) always returns false, this code will go into an infinite loop if $x$ ever becomes a NaN.

There is a more interesting use for trap handlers that comes up when computing products such as $\prod_{i=1}^{n} x_i$ that could potentially overflow. One solution is to use logarithms, and compute $\exp(\sum \log x_i)$ instead. The problem with this approach is that it is less accurate, and that it costs more than the simple expression $\prod x_i$ even if there is no overflow. There is another solution using trap handlers called over/underflow counting that avoids both of these problems [Sterbenz 1974].

The idea is as follows. There is a global counter initialized to zero. Whenever the partial product $p_k = \prod_{i=1}^{k} x_i$ overflows for some $k$, the trap handler increments the counter by one and returns the overflowed quantity with the exponent wrapped around. In IEEE 754 single precision, $e_{\text{max}} = 127$, so if $p_k = 1.45 \times 2^{130}$, it will overflow and cause the trap handler to be called, which will wrap the exponent back into range, changing $p_k$ to $1.45 \times 2^{-62}$ (see below). Similarly, if $p_k$ underflows, the counter would be decremented, and negative exponent would get wrapped around into a positive one. When all the multiplications are done, if the counter is zero then the final product is $p_n$. If the counter is positive, the product overflowed, if the counter is negative, it underflowed. If none of the partial products are out of range, the trap handler is never called and the computation incurs no extra cost. Even if there are over/underflows, the calculation is more accurate than if it had been computed with logarithms, because each $p_k$ was computed from $p_{k-1}$ using a full precision multiply. Barnett [1987] discusses a formula where the full accuracy of over/underflow counting turned up an error in earlier tables of that formula.

IEEE 754 specifies that when an overflow or underflow trap handler is called, it is passed the wrapped-around result as an argument. The definition of wrapped-around for overflow is that the result is computed as if to infinite precision, then divided by $2^a$, and then rounded to the relevant precision. For underflow, the result is multiplied by $2^a$. The exponent $a$ is 192 for single precision and 1536 for double precision. This is why $1.45 \times 2^{130}$ was transformed into $1.45 \times 2^{-62}$ in the example above.
Rounding Modes

In the IEEE standard, rounding occurs whenever an operation has a result that is not exact, since (with the exception of binary decimal conversion) each operation is computed exactly and then rounded. By default, rounding means round toward nearest. The standard requires that three other rounding modes be provided, namely round toward 0, round toward +\(\infty\), and round toward -\(\infty\). When used with the convert to integer operation, round toward -\(\infty\) causes the convert to become the floor function, while round toward +\(\infty\) is ceiling. The rounding mode affects overflow, because when round toward 0 or round toward -\(\infty\) is in effect, an overflow of positive magnitude causes the default result to be the largest representable number, not +\(\infty\). Similarly, overflows of negative magnitude will produce the largest negative number when round toward +\(\infty\) or round toward 0 is in effect.

One application of rounding modes occurs in interval arithmetic (another is mentioned in “Binary to Decimal Conversion” on page 214). When using interval arithmetic, the sum of two numbers \(x\) and \(y\) is an interval \([\tilde{z}, \tilde{z}]\), where \(\tilde{z}\) is \(x \oplus y\) rounded toward -\(\infty\), and \(\tilde{z}\) is \(x \oplus y\) rounded toward +\(\infty\). The exact result of the addition is contained within the interval \([\hat{z}, \hat{z}]\). Without rounding modes, interval arithmetic is usually implemented by computing

\[
\hat{z} = (x \oplus y) \cdot (1 - \epsilon)\quad\text{and}\quad\tilde{z} = (x \oplus y) \cdot (1 + \epsilon),
\]

where \(\epsilon\) is machine epsilon.\(^1\) This results in overestimates for the size of the intervals. Since the result of an operation in interval arithmetic is an interval, in general the input to an operation will also be an interval. If two intervals \([\hat{x}, \hat{x}]\), and \([\tilde{y}, \tilde{y}]\), are added, the result is \([\tilde{z}, \tilde{z}]\), where \(\tilde{z}\) is \(x \oplus y\) with the rounding mode set to round toward -\(\infty\), and \(\tilde{z}\) is \(\tilde{x} \oplus \tilde{y}\) with the rounding mode set to round toward +\(\infty\).

When a floating-point calculation is performed using interval arithmetic, the final answer is an interval that contains the exact result of the calculation. This is not very helpful if the interval turns out to be large (as it often does), since the correct answer could be anywhere in that interval. Interval arithmetic makes more sense when used in conjunction with a multiple precision floating-point package. The calculation is first performed with some precision \(p\). If interval arithmetic suggests that the final answer may be inaccurate, the computation is redone with higher and higher precisions until the final interval is a reasonable size.

\(^1\) \(\tilde{z}\) may be greater than \(\tilde{z}\) if both \(x\) and \(y\) are negative. – Ed.
Flags

The IEEE standard has a number of flags and modes. As discussed above, there is one status flag for each of the five exceptions: underflow, overflow, division by zero, invalid operation and inexact. There are four rounding modes: round toward nearest, round toward $+\infty$, round toward 0, and round toward $-\infty$. It is strongly recommended that there be an enable mode bit for each of the five exceptions. This section gives some simple examples of how these modes and flags can be put to good use. A more sophisticated example is discussed in “Binary to Decimal Conversion” on page 214.

Consider writing a subroutine to compute $x^n$, where $n$ is an integer. When $n > 0$, a simple routine like

```c
PositivePower(x,n) {
 while (n is even) {
 x = x*x
 n = n/2
 }
 u = x
 while (true) {
 n = n/2
 if (n==0) return u
 x = x*x
 if (n is odd) u = u*x
 }
```

If $n < 0$, then a more accurate way to compute $x^n$ is not to call `PositivePower(1/x, -n)` but rather `1/PositivePower(x, -n)`, because the first expression multiplies $n$ quantities each of which have a rounding error from the division (i.e., $1/x$). In the second expression these are exact (i.e., $x$), and the final division commits just one additional rounding error.

Unfortunately, there is a slight snag in this strategy. If `PositivePower(x, -n)` underflows, then either the underflow trap handler will be called, or else the underflow status flag will be set. This is incorrect, because if $x^n$ underflows, then $x^n$ will either overflow or be in range. But since the IEEE

1. It can be in range because if $x < 1$, $n < 0$ and $x^n$ is just a tiny bit smaller than the underflow threshold $2^{e_{\min}}$, then $x^n \approx 2^{e_{\min}} < 2^{e_{\max}}$, and so may not overflow, since in all IEEE precisions, $e_{\min} < e_{\max}$.
standard gives the user access to all the flags, the subroutine can easily correct for this. It simply turns off the overflow and underflow trap enable bits and saves the overflow and underflow status bits. It then computes 1/PositivePower(x, -n). If neither the overflow nor underflow status bit is set, it restores them together with the trap enable bits. If one of the status bits is set, it restores the flags and redoes the calculation using PositivePower(1/x, -n), which causes the correct exceptions to occur.

Another example of the use of flags occurs when computing arccos via the formula arccos(x) = 2 arctan(1 - x) / (1 + x). If arctan(∞) evaluates to π/2, then arccos(-1) will correctly evaluate to 2 arctan(∞) = π, because of infinity arithmetic. However, there is a small snag, because the computation of (1 - x)/(1 + x) will cause the divide by zero exception flag to be set, even though arccos(-1) is not exceptional. The solution to this problem is straightforward. Simply save the value of the divide by zero flag before computing arccos, and then restore its old value after the computation.

**Systems Aspects**

The design of almost every aspect of a computer system requires knowledge about floating-point. Computer architectures usually have floating-point instructions, compilers must generate those floating-point instructions, and the operating system must decide what to do when exception conditions are raised for those floating-point instructions. Computer system designers rarely get guidance from numerical analysis texts, which are typically aimed at users and writers of software, not at computer designers. As an example of how plausible design decisions can lead to unexpected behavior, consider the following BASIC program.

```basic
q = 3.0/7.0
if q = 3.0/7.0 then print "Equal":
 else print "Not Equal"
```

When compiled and run using Borland’s Turbo Basic on an IBM PC, the program prints Not Equal! This example will be analyzed in the next section, “Instruction Sets.”
Incidentally, some people think that the solution to such anomalies is never to compare floating-point numbers for equality, but instead to consider them equal if they are within some error bound $E$. This is hardly a cure-all because it raises as many questions as it answer. What should the value of $E$ be? If $x < 0$ and $y > 0$ are within $E$, should they really be considered to be equal, even though they have different signs? Furthermore, the relation defined by this rule, $a \sim b \iff |a - b| < E$, is not an equivalence relation because $a \sim b$ and $b \sim c$ does not imply that $a \sim c$.

### Instruction Sets

It is quite common for an algorithm to require a short burst of higher precision in order to produce accurate results. One example occurs in the quadratic formula $(b \pm \sqrt{b^2 - 4ac})/2a$. As discussed on page 212, when $b^2 = 4ac$, rounding error can contaminate up to half the digits in the roots computed with the quadratic formula. By performing the subcalculation of $b^2 - 4ac$ in double precision, half the double precision bits of the root are lost, which means that all the single precision bits are preserved.

The computation of $b^2 - 4ac$ in double precision when each of the quantities $a$, $b$, and $c$ are in single precision is easy if there is a multiplication instruction that takes two single precision numbers and produces a double precision result. In order to produce the exactly rounded product of two $p$-digit numbers, a multiplier needs to generate the entire $2p$ bits of product, although it may throw bits away as it proceeds. Thus, hardware to compute a double precision product from single precision operands will normally be only a little more expensive than a single precision multiplier, and much cheaper than a double precision multiplier. Despite this, modern instruction sets tend to provide only instructions that produce a result of the same precision as the operands.1

If an instruction that combines two single precision operands to produce a double precision product was only useful for the quadratic formula, it wouldn’t be worth adding to an instruction set. However, this instruction has many other uses. Consider the problem of solving a system of linear equations,

---

1. This is probably because designers like “orthogonal” instruction sets, where the precisions of a floating-point instruction are independent of the actual operation. Making a special case for multiplication destroys this orthogonality.
\[ a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \]
\[ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \]
\[ \cdots \]
\[ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \]

which can be written in matrix form as \( Ax = b \), where

\[
A = \begin{pmatrix}
  a_{11} & a_{12} & \cdots & a_{1n} \\
  a_{21} & a_{22} & \cdots & a_{2n} \\
  \vdots & \vdots & \ddots & \vdots \\
  a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]

Suppose that a solution \( x^{(1)} \) is computed by some method, perhaps Gaussian elimination. There is a simple way to improve the accuracy of the result called \textit{iterative improvement}. First compute

\[ \xi = Ax^{(1)} - b \]  
(12)

and then solve the system

\[ Ay = \xi \]  
(13)

Note that if \( x^{(1)} \) is an exact solution, then \( \xi \) is the zero vector, as is \( y \). In general, the computation of \( \xi \) and \( y \) will incur rounding error, so \( Ay = \xi = Ax^{(1)} - b = A(x^{(1)} - x) \), where \( x \) is the (unknown) true solution. Then \( y = x^{(1)} - x \); so an improved estimate for the solution is

\[ x^{(2)} = x^{(1)} - y \]  
(14)
The three steps (12), (13), and (14) can be repeated, replacing \( x^{(i)} \) with \( x^{(2)} \), and \( x^{(2)} \) with \( x^{(3)} \). This argument that \( x^{(i + 1)} \) is more accurate than \( x^{(i)} \) is only informal. For more information, see [Golub and Van Loan 1989].

When performing iterative improvement, \( \xi \) is a vector whose elements are the difference of nearby inexact floating-point numbers, and so can suffer from catastrophic cancellation. Thus iterative improvement is not very useful unless \( \xi = Ax^{(i)} - b \) is computed in double precision. Once again, this is a case of computing the product of two single precision numbers \( (A \text{ and } x^{(i)}) \), where the full double precision result is needed.

To summarize, instructions that multiply two floating-point numbers and return a product with twice the precision of the operands make a useful addition to a floating-point instruction set. Some of the implications of this for compilers are discussed in the next section.

Languages and Compilers

The interaction of compilers and floating-point is discussed in Farnum [1988], and much of the discussion in this section is taken from that paper.

Ambiguity

Ideally, a language definition should define the semantics of the language precisely enough to prove statements about programs. While this is usually true for the integer part of a language, language definitions often have a large grey area when it comes to floating-point. Perhaps this is due to the fact that many language designers believe that nothing can be proven about floating-point, since it entails rounding error. If so, the previous sections have demonstrated the fallacy in this reasoning. This section discusses some common grey areas in language definitions, including suggestions about how to deal with them.

Remarkably enough, some languages don’t clearly specify that if \( x \) is a floating-point variable (with say a value of \( 3.0/10.0 \)), then every occurrence of (say) \( 10.0 \times x \) must have the same value. For example Ada, which is based on Brown’s model, seems to imply that floating-point arithmetic only has to satisfy Brown’s axioms, and thus expressions can have one of many possible values. Thinking about floating-point in this fuzzy way stands in sharp
contrast to the IEEE model, where the result of each floating-point operation is precisely defined. In the IEEE model, we can prove that \((3.0/10.0) * 10.0\) evaluates to 3 (Theorem 7). In Brown’s model, we cannot.

Another ambiguity in most language definitions concerns what happens on overflow, underflow and other exceptions. The IEEE standard precisely specifies the behavior of exceptions, and so languages that use the standard as a model can avoid any ambiguity on this point.

Another grey area concerns the interpretation of parentheses. Due to roundoff errors, the associative laws of algebra do not necessarily hold for floating-point numbers. For example, the expression \((x+y)+z\) has a totally different answer than \(x+(y+z)\) when \(x = 10^{30}, y = -10^{30}\) and \(z = 1\) (it is 1 in the former case, 0 in the latter). The importance of preserving parentheses cannot be overemphasized. The algorithms presented in theorems 3, 4 and 6 all depend on it. For example, in Theorem 6, the formula \(x_h = mx - (mx - x)\) would reduce to \(x_h = x\) if it weren’t for parentheses, thereby destroying the entire algorithm. A language definition that does not require parentheses to be honored is useless for floating-point calculations.

Subexpression evaluation is imprecisely defined in many languages. Suppose that \(ds\) is double precision, but \(x\) and \(y\) are single precision. Then in the expression \(ds + x*y\) is the product performed in single or double precision? Another example: in \(x + m/n\) where \(m\) and \(n\) are integers, is the division an integer operation or a floating-point one? There are two ways to deal with this problem, neither of which is completely satisfactory. The first is to require that all variables in an expression have the same type. This is the simplest solution, but has some drawbacks. First of all, languages like Pascal that have subrange types allow mixing subrange variables with integer variables, so it is somewhat bizarre to prohibit mixing single and double precision variables. Another problem concerns constants. In the expression \(0.1*x\), most languages interpret 0.1 to be a single precision constant. Now suppose the programmer decides to change the declaration of all the floating-point variables from single to double precision. If 0.1 is still treated as a single precision constant, then there will be a compile time error. The programmer will have to hunt down and change every floating-point constant.

The second approach is to allow mixed expressions, in which case rules for subexpression evaluation must be provided. There are a number of guiding examples. The original definition of C required that every floating-point expression be computed in double precision [Kernighan and Ritchie 1978]. This leads to anomalies like the example at the beginning of this section. The
expression $3.0/7.0$ is computed in double precision, but if $q$ is a single-precision variable, the quotient is rounded to single precision for storage. Since $3/7$ is a repeating binary fraction, its computed value in double precision is different from its stored value in single precision. Thus the comparison $q = 3/7$ fails. This suggests that computing every expression in the highest precision available is not a good rule.

Another guiding example is inner products. If the inner product has thousands of terms, the rounding error in the sum can become substantial. One way to reduce this rounding error is to accumulate the sums in double precision (this will be discussed in more detail in “Optimizers” on page 197). If $d$ is a double precision variable, and $x[]$ and $y[]$ are single precision arrays, then the inner product loop will look like $d = d + x[i] * y[i]$. If the multiplication is done in single precision, than much of the advantage of double precision accumulation is lost, because the product is truncated to single precision just before being added to a double precision variable.

A rule that covers both of the previous two examples is to compute an expression in the highest precision of any variable that occurs in that expression. Then $q = 3.0/7.0$ will be computed entirely in single precision$^1$ and will have the boolean value true, whereas $d = d + x[i] * y[i]$ will be computed in double precision, gaining the full advantage of double precision accumulation. However, this rule is too simplistic to cover all cases cleanly. If $dx$ and $dy$ are double precision variables, the expression $y = x + \text{single}(dx-dy)$ contains a double precision variable, but performing the sum in double precision would be pointless, because both operands are single precision, as is the result.

A more sophisticated subexpression evaluation rule is as follows. First assign each operation a tentative precision, which is the maximum of the precisions of its operands. This assignment has to be carried out from the leaves to the root of the expression tree. Then perform a second pass from the root to the leaves. In this pass, assign to each operation the maximum of the tentative precision and the precision expected by the parent. In the case of $q = 3.0/7.0$, every leaf is single precision, so all the operations are done in single precision. In the case of $d = d + x[i] * y[i]$, the tentative precision of the multiply operation is single precision, but in the second pass it gets promoted to double precision.

---

1. This assumes the common convention that $3.0$ is a single-precision constant, while $3.000$ is a double precision constant.
because its parent operation expects a double precision operand. And in $y = x + \text{single}(dx-dy)$, the addition is done in single precision. Farnum [1988] presents evidence that this algorithm is not difficult to implement.

The disadvantage of this rule is that the evaluation of a subexpression depends on the expression in which it is embedded. This can have some annoying consequences. For example, suppose you are debugging a program and want to know the value of a subexpression. You cannot simply type the subexpression to the debugger and ask it to be evaluated, because the value of the subexpression in the program depends on the expression it is embedded in. A final comment on subexpressions: since converting decimal constants to binary is an operation, the evaluation rule also affects the interpretation of decimal constants. This is especially important for constants like 0.1 which are not exactly representable in binary.

Another potential grey area occurs when a language includes exponentiation as one of its built-in operations. Unlike the basic arithmetic operations, the value of exponentiation is not always obvious [Kahan and Coonen 1982]. If $**$ is the exponentiation operator, then $(-3)**3$ certainly has the value -27. However, $(-3.0)**3.0$ is problematic. If the $**$ operator checks for integer powers, it would compute $(-3.0)**3.0$ as $-3.0^3 = -27$. On the other hand, if the formula $x^y = e^{y \log x}$ is used to define $**$ for real arguments, then depending on the log function, the result could be a NaN (using the natural definition of $\log(x) = \text{NaN}$ when $x < 0$). If the FORTRAN CLOG function is used however, then the answer will be -27, because the ANSI FORTRAN standard defines $\text{CLOG}(-3.0)$ to be $i\pi + \log 3$ [ANSI 1978]. The programming language Ada avoids this problem by only defining exponentiation for integer powers, while ANSI FORTRAN prohibits raising a negative number to a real power.

In fact, the FORTRAN standard says that

Any arithmetic operation whose result is not mathematically defined is prohibited...

Unfortunately, with the introduction of $\pm\infty$ by the IEEE standard, the meaning of not mathematically defined is no longer totally clear cut. One definition might be to use the method shown in section “Infinity” on page 177. For example, to determine the value of $a^b$, consider non-constant analytic functions $f$ and $g$ with the property that $f(x) \to a$ and $g(x) \to b$ as $x \to 0$. If $f(x)^{g(x)}$ always approaches the same limit, then this should be the value of $a^b$. This definition would set $2^- = \infty$ which seems quite reasonable. In the case of $1.0^z$, when $f(x) = 1$ and $g(x) = 1/x$ the limit approaches 1, but when $f(x) = 1 - x$ and $g(x) = 1/x$ the limit
is $e^1$. So $1.0^\infty$, should be a NaN. In the case of $0^0$, $f(x)^{g(x)} = e^{g(x) \log f(x)}$. Since $f$ and $g$ are analytic and take on the value 0 at 0, $f(x) = a_1 x + a_2 x^2 + \ldots$ and $g(x) = b_1 x + b_2 x^2 + \ldots$. Thus $\lim_{x \to 0} g(x) \log f(x) = \lim_{x \to 0} x \log(x(a_1 + a_2 x + \ldots)) = \lim_{x \to 0} x \log(a_1 x) = 0$. So $f(x)^{g(x)} \to e^0 = 1$ for all $f$ and $g$, which means that $0^0 = 1.1$.

Using this definition would unambiguously define the exponential function for all arguments, and in particular would define $(-3.0)^{**}3.0$ to be -27.

**The IEEE Standard**

Section, “The IEEE Standard,” discussed many of the features of the IEEE standard. However, the IEEE standard says nothing about how these features are to be accessed from a programming language. Thus, there is usually a mismatch between floating-point hardware that supports the standard and programming languages like C, Pascal or FORTRAN. Some of the IEEE capabilities can be accessed through a library of subroutine calls. For example the IEEE standard requires that square root be exactly rounded, and the square root function is often implemented directly in hardware. This functionality is easily accessed via a library square root routine. However, other aspects of the standard are not so easily implemented as subroutines. For example, most computer languages specify at most two floating-point types, while the IEEE standard has four different precisions (although the recommended configurations are single plus single-extended or single, double, and double-extended). Infinity provides another example. Constants to represent $\pm \infty$ could be supplied by a subroutine. But that might make them unusable in places that require constant expressions, such as the initializer of a constant variable.

A more subtle situation is manipulating the state associated with a computation, where the state consists of the rounding modes, trap enable bits, trap handlers and exception flags. One approach is to provide subroutines for reading and writing the state. In addition, a single call that can atomically set a new value and return the old value is often useful. As the examples in “Flags” on page 188 show, a very common pattern of modifying IEEE state is to change

---

1. The conclusion that $0^0 = 1$ depends on the restriction that $f$ be nonconstant. If this restriction is removed, then letting $f$ be the identically 0 function gives 0 as a possible value for $\lim_{x \to 0} f(x) ^{x}$, and so $0^0$ would have to be defined to be a trait.

2. In the case of $0^0$, plausibility arguments can be made, but the convincing argument is found in “Concrete Mathematics” by Graham, Knuth and Patashnik, and argues that $0^0 = 1$ for the binomial theorem to work.

-- Ed.
it only within the scope of a block or subroutine. Thus the burden is on the programmer to find each exit from the block, and make sure the state is restored. Language support for setting the state precisely in the scope of a block would be very useful here. Modula-3 is one language that implements this idea for trap handlers [Nelson 1991].

There are a number of minor points that need to be considered when implementing the IEEE standard in a language. Since $x - x = +0$ for all $x$,\(^1\) $(+0) - (+0) = +0$. However, $- (+0) = -0$, thus $-x$ should not be defined as $0 - x$. The introduction of NaNs can be confusing, because a NaN is never equal to any other number (including another NaN), so $x = x$ is no longer always true. In fact, the expression $x \neq x$ is the simplest way to test for a NaN if the IEEE recommended function \texttt{isnan} is not provided. Furthermore, NaNs are unordered with respect to all other numbers, so $x \leq y$ cannot be defined as $not \ x > y$. Since the introduction of NaNs causes floating-point numbers to become partially ordered, a compare function that returns one of $<$, $=$, $>$, or unordered can make it easier for the programmer to deal with comparisons.

Although the IEEE standard defines the basic floating-point operations to return a NaN if any operand is a NaN, this might not always be the best definition for compound operations. For example when computing the appropriate scale factor to use in plotting a graph, the maximum of a set of values must be computed. In this case it makes sense for the max operation to simply ignore NaNs.

Finally, rounding can be a problem. The IEEE standard defines rounding very precisely, and it depends on the current value of the rounding modes. This sometimes conflicts with the definition of implicit rounding in type conversions or the explicit \texttt{round} function in languages. This means that programs which wish to use IEEE rounding can’t use the natural language primitives, and conversely the language primitives will be inefficient to implement on the ever increasing number of IEEE machines.

**Optimizers**

Compiler texts tend to ignore the subject of floating-point. For example Aho et al. [1986] mentions replacing $x/2.0$ with $x*0.5$, leading the reader to assume that $x/10.0$ should be replaced by $0.1*x$. However, these two expressions do

\(^1\) Unless the rounding mode is round toward $-\infty$, in which case $x - x = -0$. 

---

*What Every Computer Scientist Should Know About Floating Point Arithmetic*
not have the same semantics on a binary machine, because 0.1 cannot be represented exactly in binary. This textbook also suggests replacing \( x \times y - x \times z \) by \( x \times (y - z) \), even though we have seen that these two expressions can have quite different values when \( y = z \). Although it does qualify the statement that any algebraic identity can be used when optimizing code by noting that optimizers should not violate the language definition, it leaves the impression that floating-point semantics are not very important. Whether or not the language standard specifies that parenthesis must be honored, \((x+y)+z\) can have a totally different answer than \(x+(y+z)\), as discussed above. There is a problem closely related to preserving parentheses that is illustrated by the following code:

```c
eps = 1;
do eps = 0.5*eps; while (eps + 1 > 1);
```

This is designed to give an estimate for machine epsilon. If an optimizing compiler notices that \( eps + 1 > 1 \iff eps > 0 \), the program will be changed completely. Instead of computing the smallest number \( x \) such that \( 1 \oplus x \) is still greater than \( x \) \( (x = e = \beta^{-p}) \), it will compute the largest number \( x \) for which \( x / 2 \) is rounded to 0 \( (x = \beta^{e_{\text{min}}}) \). Avoiding this kind of “optimization” is so important that it is worth presenting one more very useful algorithm that is totally ruined by it.

Many problems, such as numerical integration and the numerical solution of differential equations involve computing sums with many terms. Because each addition can potentially introduce an error as large as 0.5 \( \text{ulp} \), a sum involving thousands of terms can have quite a bit of rounding error. A simple way to correct for this is to store the partial summand in a double precision variable and to perform each addition using double precision. If the calculation is being done in single precision, performing the sum in double precision is easy on most computer systems. However, if the calculation is already being done in double precision, doubling the precision is not so simple. One method that is sometimes advocated is to sort the numbers and add them from smallest to largest. However, there is a much more efficient method which dramatically improves the accuracy of sums, namely
Theorem 8 (Kahan Summation Formula)

Suppose that $\Sigma_{j=1}^{N} x_j$ is computed using the following algorithm

\[
S = X[1]; \\
C = 0; \\
for j = 2 to N 
    \{ 
      Y = X[j] - C; 
      T = S + Y; 
      C = (T - S) - Y; 
      S = T; 
    \}
\]

Then the computed sum $S$ is equal to $\Sigma x_j (1 + \delta_j) + O(N\epsilon^2) \Sigma |x_j|$, where $(|\delta_j| \leq 2\epsilon)$.

Using the naive formula $\Sigma x_j$, the computed sum is equal to $\Sigma x_j (1 + \delta_j)$ where $|\delta_j| < (n-j)e$. Comparing this with the error in the Kahan summation formula shows a dramatic improvement. Each summand is perturbed by only $2\epsilon$, instead of perturbations as large as $ne$ in the simple formula. Details are in, “Errors In Summation” on page 216.

An optimizer that believed floating-point arithmetic obeyed the laws of algebra would conclude that $C = [T-S] - Y = [(S+Y)-S] - Y = 0$, rendering the algorithm completely useless. These examples can be summarized by saying that optimizers should be extremely cautious when applying algebraic identities that hold for the mathematical real numbers to expressions involving floating-point variables.

Another way that optimizers can change the semantics of floating-point code involves constants. In the expression $1.0E-40*x$, there is an implicit decimal to binary conversion operation that converts the decimal number to a binary constant. Because this constant cannot be represented exactly in binary, the inexact exception should be raised. In addition, the underflow flag should to be set if the expression is evaluated in single precision. Since the constant is inexact, its exact conversion to binary depends on the current value of the IEEE rounding modes. Thus an optimizer that converts $1.0E-40$ to binary at compile time would be changing the semantics of the program. However, constants like 27.5 which are exactly representable in the smallest available precision can be safely converted at compile time, since they are always exact,
cannot raise any exception, and are unaffected by the rounding modes.
Constants that are intended to be converted at compile time should be done
with a constant declaration, such as `const pi = 3.14159265`.

Common subexpression elimination is another example of an optimization that
can change floating-point semantics, as illustrated by the following code

```c
C = A*B;
RndMode = Up
D = A*B;
```

Although `A*B` may appear to be a common subexpression, it is not because the
rounding mode is different at the two evaluation sites. Three final examples:

- `x = x` cannot be replaced by the boolean constant `true`, because it fails when `x`
is a NaN; `-x = 0 - x` fails for `x = +0`; and `x < y` is not the opposite of `x ≥ y`, because
NaNs are neither greater than nor less than ordinary floating-point numbers.

Despite these examples, there are useful optimizations that can be done on
floating-point code. First of all, there are algebraic identities that are valid for
floating-point numbers. Some examples in IEEE arithmetic are `x + y = y + x`,
`2 × x = x + x`, `1 × x = x`, and `0.5 × x = x/2`. However, even these simple identities
can fail on a few machines such as CDC and Cray supercomputers. Instruction
scheduling and in-line procedure substitution are two other potentially useful
optimizations.

As a final example, consider the expression `dx = x*y`, where `x` and `y` are single
precision variables, and `dx` is double precision. On machines that have an
instruction that multiplies two single precision numbers to produce a double
precision number, `dx = x*y` can get mapped to that instruction, rather than
compiled to a series of instructions that convert the operands to double and
then perform a double to double precision multiply.

Some compiler writers view restrictions which prohibit converting `(x + y) + z`
to `x + (y + z)` as irrelevant, of interest only to programmers who use unportable
tricks. Perhaps they have in mind that floating-point numbers model real
numbers and should obey the same laws that real numbers do. The problem
with real number semantics is that they are extremely expensive to implement.
Every time two `n` bit numbers are multiplied, the product will have `2n` bits.

---

1. The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in that they use the
   inexpensive jump to subroutine call rather than the slower `CALLS` and `CALLG` instructions.
Every time two \( n \) bit numbers with widely spaced exponents are added, the number of bits in the sum is \( n + \) the space between the exponents. The sum could have up to \((e_{\text{max}} - e_{\text{min}}) + n\) bits, or roughly \(2e_{\text{max}} + n\) bits. An algorithm that involves thousands of operations (such as solving a linear system) will soon be operating on numbers with many significant bits, and be hopelessly slow. The implementation of library functions such as \(\sin\) and \(\cos\) is even more difficult, because the value of these transcendental functions aren’t rational numbers. Exact integer arithmetic is often provided by lisp systems and is handy for some problems. However, exact floating-point arithmetic is rarely useful.

The fact is that there are useful algorithms (like the Kahan summation formula) that exploit the fact that \((x + y) + z \neq x + (y + z)\), and work whenever the bound

\[
a \oplus b = (a + b)(1 + \delta)
\]

holds (as well as similar bounds for -, \(\times\) and \(/\)). Since these bounds hold for almost all commercial hardware, it would be foolish for numerical programmers to ignore such algorithms, and it would be irresponsible for compiler writers to destroy these algorithms by pretending that floating-point variables have real number semantics.

### Exception Handling

The topics discussed up to now have primarily concerned systems implications of accuracy and precision. Trap handlers also raise some interesting systems issues. The IEEE standard strongly recommends that users be able to specify a trap handler for each of the five classes of exceptions, and “Trap Handlers” on page 185, gave some applications of user defined trap handlers. In the case of invalid operation and division by zero exceptions, the handler should be provided with the operands, otherwise, with the exactly rounded result. Depending on the programming language being used, the trap handler might be able to access other variables in the program as well. For all exceptions, the trap handler must be able to identify what operation was being performed and the precision of its destination.

The IEEE standard assumes that operations are conceptually serial and that when an interrupt occurs, it is possible to identify the operation and its operands. On machines which have pipelining or multiple arithmetic units,
when an exception occurs, it may not be enough to simply have the trap handler examine the program counter. Hardware support for identifying exactly which operation trapped may be necessary.

Another problem is illustrated by the following program fragment.

\[
\begin{align*}
x &= y \times z; \\
z &= x \times w; \\
a &= b + c; \\
d &= a / x;
\end{align*}
\]

Suppose the second multiply raises an exception, and the trap handler wants to use the value of \(a\). On hardware that can do an add and multiply in parallel, an optimizer would probably move the addition operation ahead of the second multiply, so that the add can proceed in parallel with the first multiply. Thus when the second multiply traps, \(a = b + c\) has already been executed, potentially changing the result of \(a\). It would not be reasonable for a compiler to avoid this kind of optimization, because every floating-point operation can potentially trap, and thus virtually all instruction scheduling optimizations would be eliminated. This problem can be avoided by prohibiting trap handlers from accessing any variables of the program directly. Instead, the handler can be given the operands or result as an argument.

But there are still problems. In the fragment

\[
\begin{align*}
x &= y \times z; \\
z &= a + b;
\end{align*}
\]

the two instructions might well be executed in parallel. If the multiply traps, its argument \(z\) could already have been overwritten by the addition, especially since addition is usually faster than multiply. Computer systems that support the IEEE standard must provide some way to save the value of \(z\), either in hardware or by having the compiler avoid such a situation in the first place.

W. Kahan has proposed using \textit{presubstitution} instead of trap handlers to avoid these problems. In this method, the user specifies an exception and the value he wants to be used as the result when the exception occurs. As an example, suppose that in code for computing \((\sin x)/x\), the user decides that \(x = 0\) is so rare that it would improve performance to avoid a test for \(x = 0\), and instead handle this case when a 0/0 trap occurs. Using IEEE trap handlers, the user would write a handler that returns a value of 1 and install it before computing
sin x/x. Using presubstitution, the user would specify that when an invalid operation occurs, the value 1 should be used. Kahan calls this presubstitution, because the value to be used must be specified before the exception occurs. When using trap handlers, the value to be returned can be computed when the trap occurs.

The advantage of presubstitution is that it has a straightforward hardware implementation. As soon as the type of exception has been determined, it can be used to index a table which contains the desired result of the operation. Although presubstitution has some attractive attributes, the widespread acceptance of the IEEE standard makes it unlikely to be widely implemented by hardware manufacturers.

The Details

A number of claims have been made in this paper concerning properties of floating-point arithmetic. We now proceed to show that floating point is not black magic, but rather is a straightforward subject whose claims can be verified mathematically. This section is divided into three parts. The first part presents an introduction to error analysis, and provides the details for Section , “Rounding Error,” on page 151. The second part explores binary to decimal conversion, filling in some gaps from Section , “The IEEE Standard,” on page 167. The third part discusses the Kahan summation formula, which was used as an example in Section , “Systems Aspects,” on page 189.

Rounding Error

In the discussion of rounding error, it was stated that a single guard digit is enough to guarantee that addition and subtraction will always be accurate (Theorem 2). We now proceed to verify this fact. Theorem 2 has two parts, one for subtraction and one for addition. The part for subtraction is

---

1. The difficulty with presubstitution is that it requires either direct hardware implementation, or continuable floating point traps if implemented in software. -- Ed.
Theorem 9
If $x$ and $y$ are positive floating-point numbers in a format with parameters $\beta$ and $p$, and if subtraction is done with $p + 1$ digits (i.e. one guard digit), then the relative rounding error in the result is less than $\left(\frac{\beta}{2} + 1\right)\beta^{-p} = \left(1 + \frac{2}{\beta}\right)e \leq 2e$.

Proof
Interchange $x$ and $y$ if necessary so that $x > y$. It is also harmless to scale $x$ and $y$ so that $x$ is represented by $x_{p_0} x_{p_1} \ldots x_{p_{p-1}} \times \beta^0$. If $y$ is represented as $y_{p_0} y_{p_1} \ldots y_{p_{p-1}}$, then the difference is exact. If $y$ is represented as $0.y_1 \ldots y_{p'}$, then the guard digit ensures that the computed difference will be the exact difference rounded to a floating-point number, so the rounding error is at most $e$. In general, let $y = 0.0 \ldots 0 y_{k+1} \ldots y_{k+p'}$ and $\bar{y}$ be $y$ truncated to $p + 1$ digits. Then

$$y - \bar{y} < (\beta - 1)(\beta^{p-1} + \beta^{p-2} + \ldots + \beta^{p-k})$$

(15)

From the definition of guard digit, the computed value of $x - y$ is $x - \bar{y}$ rounded to be a floating-point number, that is, $(x - \bar{y}) + \delta$, where the rounding error $\delta$ satisfies

$$|\delta| \leq (\beta/2)\beta^p.$$  

(16)

The exact difference is $x - y$, so the error is $(x - y) - (x - \bar{y} + \delta) = \bar{y} - y + \delta$. There are three cases. If $x - y \geq 1$ then the relative error is bounded by

$$\frac{\bar{y} - y + \delta}{1} \leq \beta^p [(\beta - 1)(\beta^{p-1} + \ldots + \beta^k) + \beta/2] < \beta^p(1 + \beta/2)$$

(17)

Secondly, if $x - \bar{y} < 1$, then $\delta = 0$. Since the smallest that $x - y$ can be is

$$1.0 - 0.\left(\frac{k}{0 \ldots 0}\right)\left(\frac{p}{\rho \ldots \rho}\right) > (\beta - 1)(\beta^{p-1} + \ldots + \beta^k),$$

where $\rho = \beta - 1$,

in this case the relative error is bounded by
The final case is when \( x - y < 1 \) but \( x - y \geq 1 \). The only way this could happen is if \( x - y = 1 \), in which case \( \delta = 0 \). But if \( \delta = 0 \), then (18) applies, so that again the relative error is bounded by \( \beta^{p-1} \). \( \beta^{p-1} \) is achieved for \( x = 1 + 2^{2-p} \) and \( y = 2^{1-p} - 2^{1-2p} \) in the limit as \( p \to \infty \). When adding numbers of the same sign, a guard digit is not necessary to achieve good accuracy, as the following result shows.

**Theorem 10**

If \( x \geq 0 \) and \( y \geq 0 \), then the relative error in computing \( x + y \) is at most \( 2\epsilon \), even if no guard digits are used.

**Proof**

The algorithm for addition with \( k \) guard digits is similar to that for subtraction. If \( x \geq y \), shift \( y \) right until the radix points of \( x \) and \( y \) are aligned. Discard any digits shifted past the \( p + k \) position. Compute the sum of these two \( p + k \) digit numbers exactly. Then round to \( p \) digits.

We will verify the theorem when no guard digits are used; the general case is similar. There is no loss of generality in assuming that \( x \geq y \geq 0 \) and that \( x \) is scaled to be of the form \( d.dd...d \times \beta^0 \). First, assume there is no carry out. Then the digits shifted off the end of \( y \) have a value less than \( \beta^{p+1} \), and the sum is at least 1, so the relative error is less than \( \beta^{p+1}/1 = 2\epsilon \). If there is a carry out, then the error from shifting must be added to the rounding error of \( \frac{1}{2} \beta^{-p+2} \). The sum is at least \( \beta \), so the relative error is less than

\[
\frac{y - \bar{y} + \delta}{(\beta - 1)(\beta^{-1} + \ldots + \beta^{-k})} < \frac{(\beta - 1)\beta^{-p}(\beta^{-1} + \ldots + \beta^{-k})}{(\beta - 1)(\beta^{-1} + \ldots + \beta^{-k})} = \beta^{-p} \quad (18)
\]

When \( \beta = 2 \), the bound is exactly \( 2\epsilon \), and this bound is achieved for \( x = 1 + 2^{2-p} \) and \( y = 2^{1-p} - 2^{1-2p} \) in the limit as \( p \to \infty \).
It is obvious that combining these two theorems gives Theorem 2. Theorem 2 gives the relative error for performing one operation. Comparing the rounding error of $x^2 - y^2$ and $(x + y)(x - y)$ requires knowing the relative error of multiple operations. The relative error of $x \oplus y$ is $\delta_1 = \frac{[(x \ominus y) - (x - y)]}{(x - y)}$, which satisfies $|\delta_1| \leq 2e$. Or to write it another way

$$x \ominus y = (x - y) (1 + \delta_1), \quad |\delta_1| \leq 2e \quad (19)$$

Similarly

$$x \ominus y = (x + y) (1 + \delta_2), \quad |\delta_2| \leq 2e \quad (20)$$

Assuming that multiplication is performed by computing the exact product and then rounding, the relative error is at most .5 $\text{ulp}$, so

$$u \otimes v = uv (1 + \delta_3), \quad |\delta_3| \leq e \quad (21)$$

for any floating-point numbers $u$ and $v$. Putting these three equations together (letting $u = x \ominus y$ and $v = x \ominus y$) gives

$$(x \ominus y) \otimes (x \ominus y) = (x - y) (1 + \delta_1) (x + y) (1 + \delta_2) (1 + \delta_3) \quad (22)$$

So the relative error incurred when computing $(x - y)(x + y)$ is

$$\frac{(x \ominus y) \otimes (x \ominus y) - (x^2 - y^2)}{(x^2 - y^2)} = (1 + \delta_1) (1 + \delta_2) (1 + \delta_3) - 1 \quad (23)$$

This relative error is equal to $\delta_1 + \delta_2 + \delta_3 + \delta_1\delta_2 + \delta_1\delta_3 + \delta_2\delta_3 + \delta_1\delta_2\delta_3$, which is bounded by $5e + 8e^2$. In other words, the maximum relative error is about 5 rounding errors (since $e$ is a small number, $e^2$ is almost negligible).
A similar analysis of \((x \otimes x) \ominus (y \otimes y)\) cannot result in a small value for the relative error, because when two nearby values of \(x\) and \(y\) are plugged into \(x^2 - y^2\), the relative error will usually be quite large. Another way to see this is to try and duplicate the analysis that worked on \((x \ominus y) \otimes (x \oplus y)\), yielding

\[
(x \otimes x) \ominus (y \otimes y) = [x^2(1 + \delta_1) - y^2(1 + \delta_2)] (1 + \delta_3) \\
= ((x^2 - y^2) (1 + \delta_1) + (\delta_1 - \delta_2)y^2) (1 + \delta_3)
\]

When \(x\) and \(y\) are nearby, the error term \((\delta_1 - \delta_2)y^2\) can be as large as the result \(x^2 - y^2\). These computations formally justify our claim that \((x - y)(x + y)\) is more accurate than \(x^2 - y^2\).

We next turn to an analysis of the formula for the area of a triangle. In order to estimate the maximum error that can occur when computing with (7), the following fact will be needed.

**Theorem 11**

If subtraction is performed with a guard digit, and \(y/2 \leq x \leq 2y\), then \(x - y\) is computed exactly.

**Proof**

Note that if \(x\) and \(y\) have the same exponent, then certainly \(x \ominus y\) is exact. Otherwise, from the condition of the theorem, the exponents can differ by at most 1. Scale and interchange \(x\) and \(y\) if necessary so that \(0 \leq y \leq x\), and \(x\) is represented as \(x_0.x_1 \ldots x_{p-1}\) and \(y\) as \(0.y_1 \ldots y_p\). Then the algorithm for computing \(x \ominus y\) will compute \(x - y\) exactly and round to a floating-point number. If the difference is of the form \(0.d_1 \ldots d_p\), the difference will already be \(p\) digits long, and no rounding is necessary. Since \(x \leq 2y\), \(x - y \leq y\), and since \(y\) is of the form \(0.d_1 \ldots d_p\), so is \(x - y\).

When \(\beta > 2\), the hypothesis of Theorem 11 cannot be replaced by \(y/\beta \leq x \leq \beta y\); the stronger condition \(y/2 \leq x \leq 2y\) is still necessary. The analysis of the error in \((x - y)(x + y)\), immediately following the proof of Theorem 10, used the fact that the relative error in the basic operations of addition and subtraction is small (namely equations (19) and (20)). This is the most common kind of error analysis. However, analyzing formula (7) requires something more, namely Theorem 11, as the following proof will show.
Theorem 12

If subtraction uses a guard digit, and if $a, b$ and $c$ are the sides of a triangle ($a \geq b \geq c$), then the relative error in computing

$$(a + (b + c))(c - (a - b))(c + (a - b))(a + (b - c))$$

is at most $16\varepsilon$, provided $\varepsilon < .005$.

Proof

Let’s examine the factors one by one. From Theorem 10,

$$b \oplus c = (b + c)(1 + \delta_1),$$

where $\delta_1$ is the relative error, and $|\delta_1| \leq 2\varepsilon$. Then the value of the first factor is:

$$(a \oplus (b \oplus c)) = (a + (b \oplus c))(1 + \delta_2) = (a + (b + c)(1 + \delta_1))(1 + \delta_2),$$

and thus:

$$\begin{align*}
(a + b + c)(1 - 2\varepsilon)^2 &\leq \left[ a + (b + c)(1 - 2\varepsilon) \right] \cdot (1 - 2\varepsilon) \\
&\leq a \oplus (b \oplus c) \\
&\leq \left[ a + (b + c)(1 + 2\varepsilon) \right] \cdot (1 + 2\varepsilon) \\
&\leq (a + b + c)(1 + 2\varepsilon)^2
\end{align*}$$

This means that there is an $\eta_1$ so that:

$$(a \oplus (b \oplus c)) = (a + b + c)(1 + \eta_1)^2, \quad |\eta_1| \leq 2\varepsilon. \quad (24)$$

The next term involves the potentially catastrophic subtraction of $c$ and $a \ominus b$, because $a \ominus b$ may have rounding error. Because $a, b$ and $c$ are the sides of a triangle, $a \leq b + c$, and combining this with the ordering $c \leq b$ gives $a \leq b + c \leq 2b \leq 2a$. So $a - b$ satisfies the conditions of Theorem 11. This means that $a - b = a \ominus b$ is exact, hence $c \ominus (a - b)$ is a harmless subtraction which can be estimated from Theorem 9 to be:

$$(c \ominus (a \ominus b)) = (c - (a - b))(1 + \eta_2), \quad |\eta_2| \leq 2\varepsilon \quad (25)$$

The third term is the sum of two exact positive quantities, so:

$$(c \oplus (a \ominus b)) = (c + (a - b))(1 + \eta_3), \quad |\eta_3| \leq 2\varepsilon \quad (26)$$
Finally, the last term is

\[(a \oplus (b \ominus c)) = (a + (b - c)) (1 + \eta_4)^2, \ |\eta_4| \leq 2\epsilon,\]  

(27)

using both Theorem 9 and Theorem 10. If multiplication is assumed to be exactly rounded, so that \(x \otimes y = xy(1 + \zeta)\) with \(|\zeta| \leq \epsilon\), then combining (24), (25), (26) and (27) gives

\[\begin{align*}
(a \oplus (b \ominus c)) (c \ominus (a \ominus b)) (a \oplus (b \ominus c)) \\
\leq (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) \ E
\end{align*}\]

where

\[E = (1 + \eta_1)^2 (1 + \eta_2) (1 + \eta_3) (1 + \eta_4)^2 (1 + \zeta_1)(1 + \zeta_2) (1 + \zeta_3)\]

An upper bound for \(E\) is \((1 + 2\epsilon)^6(1 + \epsilon)^3\), which expands out to \(1 + 15\epsilon + O(\epsilon^2)\). Some writers simply ignore the \(O(\epsilon^2)\) term, but it is easy to account for it. Writing \((1 + 2\epsilon)^6(1 + \epsilon)^3 = 1 + 15\epsilon + \epsilon R(\epsilon), R(\epsilon)\) is a polynomial in \(\epsilon\) with positive coefficients, so it is an increasing function of \(\epsilon\). Since \(R(.005) = .505, R(\epsilon) < 1\) for all \(\epsilon < .005\), and hence

\[E \leq (1 + 2\epsilon)^6(1 + \epsilon)^3 < 1 + 16\epsilon.\]  

To get a lower bound on \(E\), note that \(1 - 15\epsilon - \epsilon R(\epsilon) < E,\) and so when \(\epsilon < .005, 1 - 16\epsilon < (1 - 2\epsilon)^6(1 - \epsilon)^3\). Combining these two bounds yields \(1 - 16\epsilon < E < 1 + 16\epsilon.\) Thus the relative error is at most \(16\epsilon.\)

Theorem 12 certainly shows that there is no catastrophic cancellation in formula (7). So although it is not necessary to show formula (7) is numerically stable, it is satisfying to have a bound for the entire formula, which is what Theorem 3 of “Cancellation” on page 157 gives.

Proof of Theorem 3

Let

\[q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))\]

and

\[Q = (a \oplus (b \ominus c)) \otimes (c \ominus (a \ominus b)) \otimes (c \oplus (a \ominus b)) \otimes (a \oplus (b \ominus c)).\]
Then, Theorem 12 shows that $Q = q(1 + \delta)$, with $\delta \leq 16\varepsilon$. It is easy to check that

$$1 - 0.52|\delta| \leq \sqrt{1 - |\delta|} \leq \sqrt{1 + |\delta|} \leq 1 + 0.52|\delta| \quad (28)$$

provided $\delta \leq .04/(.52)^2 = .15$, and since $|\delta| \leq 16\varepsilon \leq 16(.005) = .08$, $\delta$ does satisfy the condition. Thus $\sqrt{Q} = \sqrt{q(1 + \delta)} = \sqrt{q(1 + \delta_1)}$, with $|\delta_1| \leq .52 |\delta| \leq 8.5\varepsilon$. If square roots are computed to within $.5$ ulp, then the error when computing $\sqrt{Q}$ is $(1 + \delta_1)(1 + \delta_2)$, with $|\delta_2| \leq \varepsilon$. If $\beta = 2$, then there is no further error committed when dividing by 4. Otherwise, one more factor $1 + \delta_3$ with $|\delta_3| \leq \varepsilon$ is necessary for the division, and using the method in the proof of Theorem 12, the final error bound of $(1 + \delta_1)(1 + \delta_2)(1 + \delta_3)$ is dominated by $1 + \delta_4$, with $|\delta_4| \leq 11\varepsilon$. ■

To make the heuristic explanation immediately following the statement of Theorem 4 precise, the next theorem describes just how closely $\mu(x)$ approximates a constant.

**Theorem 13**

If $\mu(x) = \ln(1 + x)/x$, then for $0 \leq x \leq \frac{3}{4}$, $\frac{1}{2} \leq \mu(x) \leq 1$ and the derivative satisfies

$$|\mu'(x)| \leq \frac{1}{2}.$$  

**Proof**

Note that $\mu(x) = 1 - x/2 + x^2/3 - \ldots$ is an alternating series with decreasing terms, so for $x \leq 1$, $\mu(x) \geq 1 - x/2 \geq 1/2$. It is even easier to see that because the series for $\mu$ is alternating, $\mu(x) \leq 1$. The Taylor series of $\mu'(x)$ is also alternating, and if $x \leq \frac{3}{4}$ has decreasing terms, so $-\frac{1}{2} \leq \mu'(x) \leq -\frac{1}{2} + 2x/3$, or $\frac{1}{2} \leq \mu'(x) \leq 0$, thus $|\mu'(x)| \leq \frac{1}{2}$. ■
Proof of Theorem 4

Since the Taylor series for $\ln(1 + x)$ is an alternating series, $0 < x - \ln(1 + x) < x^2/2$, so the relative error incurred when approximating $\ln(1 + x)$ by $x$ is bounded by $x/2$. If $1 \oplus x = 1$, then $|x| < \varepsilon$, so the relative error is bounded by $\varepsilon/2$.

When $1 \oplus x \neq 1$, define $\hat{x}$ via $1 \oplus x = 1 + \hat{x}$. Then since $0 \leq x < 1$, $(1 \oplus x) \ominus 1 = \hat{x}$. If division and logarithms are computed to within $\frac{1}{2} \text{ulp}$, then the computed value of the expression $\ln(1 + x) / ((1 + x) - 1)$ is

\[
\frac{\ln(1 \oplus x)}{(1 \oplus x) \ominus 1} = \frac{\ln(1 + \hat{x})}{(1 + \hat{x})} = \frac{\mu(\hat{x})(1 + \delta_1)(1 + \delta_2)}{(1 + \delta_1)(1 + \delta_2)}
\]

(29)

where $|\delta_1| \leq \varepsilon$ and $|\delta_2| \leq \varepsilon$. To estimate $\mu(\hat{x})$, use the mean value theorem, which says that

\[
\mu(\hat{x}) - \mu(x) = (\hat{x} - x)\mu'(\xi)
\]

(30)

for some $\xi$ between $x$ and $\hat{x}$. From the definition of $\hat{x}$, it follows that $|\hat{x} - x| \leq \varepsilon$, and combining this with Theorem 13 gives $|\mu(\hat{x}) - \mu(x)| \leq \varepsilon/2$, or $|\mu(\hat{x})/\mu(x) - 1| \leq \varepsilon / (2 |\mu(x)|) \leq \varepsilon$ which means that $\mu(\hat{x}) = \mu(x)(1 + \delta_2)$, with $|\delta_2| \leq \varepsilon$. Finally, multiplying by $x$ introduces a final $\delta_4$, so the computed value of $x \ln(1 \oplus x) / ((1 \oplus x) \ominus 1)$ is

\[
x \frac{\ln(1 + x)}{(1 + x) - 1} (1 + \delta_1)(1 + \delta_2)(1 + \delta_3)(1 + \delta_4).
\]

It is easy to check that if $\varepsilon < 0.1$, then $(1 + \delta_1)(1 + \delta_2)(1 + \delta_3)(1 + \delta_4) = 1 + \delta$, with $|\delta| \leq 5\varepsilon$. ❑
An interesting example of error analysis using formulas (19), (20) and (21) occurs in the quadratic formula \((- b \pm \sqrt{b^2 - 4ac}) / 2a\). “Cancellation” on page 157, explained how rewriting the equation will eliminate the potential cancellation caused by the \pm operation. But there is another potential cancellation that can occur when computing \(d = b_2 - 4ac\). This one cannot be eliminated by a simple rearrangement of the formula. Roughly speaking, when \(b^2 = 4ac\), rounding error can contaminate up to half the digits in the roots computed with the quadratic formula. Here is an informal proof (another approach to estimating the error in the quadratic formula appears in Kahan [1972]).

If \(b^2 = 4ac\), rounding error can contaminate up to half the digits in the roots computed with the quadratic formula \((- b \pm \sqrt{b^2 - 4ac}) / 2a\).

Proof: Write \((b \otimes b) \otimes (4a \otimes c) = (b^2(1 + \delta_1) - 4ac(1 + \delta_2))(1 + \delta_3)\), where \(|\delta_i| \leq \epsilon\). Using \(d = b^2 - 4ac\), this can be rewritten as \((d(1 + \delta_1) - 4ac(\delta_2 - \delta_1))(1 + \delta_3)\). To get an estimate for the size of this error, ignore second order terms in \(\delta_i\), in which case the absolute error is \(d(\delta_1 + \delta_3) - 4ac\delta_4\), where \(|\delta_4| = |\delta_1 - \delta_2| \leq 2\epsilon\). Since \(d \approx 4ac\), the first term \(d(\delta_1 + \delta_3)\) can be ignored. To estimate the second term, use the fact that \(ax^2 + bx + c = a(x - r_1)(x - r_2)\), so \(ar_1r_2 = c\). Since

\[b^2 = 4ac,\] then \(r_1 = r_2\), so the second error term is \(4ac\delta_4 \approx 4a^2r_1\delta_4^2\). Thus the computed value of \(\sqrt{d}\) is \(\sqrt{d + 4a^2r_1^2\delta_4} \). The inequality

\[p - q \leq \sqrt{p^2 - q^2} \leq \sqrt{p^2 + q^2} \leq p + q,\ p \geq q > 0\]

shows that \(\sqrt{d + 4a^2r_1^2\delta_4} \approx \sqrt{d + E}\), where \(|E| \leq \sqrt{4a^2r_1^2|\delta_4|}\), so the absolute error in \(\sqrt{d/2a}\) is about \(r_1\sqrt{\delta_4}\). Since \(\delta_4 = \beta^p\), \(\sqrt{\delta_4} \approx \beta^{-p/2}\), and thus the absolute error of \(r_1\sqrt{\delta_4}\) destroys the bottom half of the bits of the roots \(r_1 = r_2\). In other words, since the calculation of the roots involves computing with

1. In this informal proof, assume that \(\beta = 2\) so that multiplication by 4 is exact and doesn’t require a \(\delta_i\).
Finally, we turn to the proof of Theorem 6. It is based on the following fact, which is proven in “Theorem 14 and Theorem 8” on page 221.

**Theorem 14**

Let \(0 < k < p,\) and set \(m = \beta^k + 1,\) and assume that floating-point operations are exactly rounded. Then \((m \odot x) \oplus (m \odot x \odot x)\) is exactly equal to \(x\) rounded to \(p - k\) significant digits. More precisely, \(x\) is rounded by taking the significand of \(x,\) imagining a radix point just left of the \(k\) least significant digits and rounding to an integer.

**Proof of Theorem 6**

By Theorem 14, \(x_h\) is \(x\) rounded to \(p - k = \lfloor p/2 \rfloor\) places. If there is no carry out, then certainly \(x_h\) can be represented with \(\lfloor p/2 \rfloor\) significant digits.

Suppose there is a carry-out. If \(x = x_0 x_1 \ldots x_{p-1} \times \beta^e,\) then rounding adds 1 to \(x_{p-k-1},\) and the only way there can be a carry-out is if \(x_{p-k-1} = \beta - 1,\) but then the low order digit of \(x_h\) is \(1 + x_{p-k-1} = 0,\) and so again \(x_h\) is representable in \(\lfloor p/2 \rfloor\) digits.

To deal with \(x_l,\) scale \(x\) to be an integer satisfying \(\beta^{p-1} \leq x \leq \beta^p - 1.\) Let

\[
x = \bar{x}_h + \bar{x}_l\]

where \(\bar{x}_h\) is the \(p - k\) high order digits of \(x,\) and \(\bar{x}_l\) is the \(k\) low order digits. There are three cases to consider. If \(\bar{x}_l < (\beta/2) \beta^{k-1},\) then rounding \(x\) to \(p - k\) places is the same as chopping and \(x_h = \bar{x}_h,\) and \(x_l = \bar{x}_l.\)

Since \(\bar{x}_l\) has at most \(k\) digits, if \(p\) is even, then \(\bar{x}_l\) has at most \(k = \lfloor p/2 \rfloor = \lfloor p/2 \rfloor\) digits. Otherwise, \(\beta = 2\) and \(\bar{x}_l < 2^{k-1}\) is representable with \(k - 1 \leq \lfloor p/2 \rfloor\) significant bits. The second case is when \(\bar{x} > (\beta/2) \beta^{k-1},\) and \(\bar{x}_l = \beta^{k-1} \bar{x}_l + \bar{x}_h,\) and

\[
(\sqrt{d}) / (2a),\]

and this expression does not have meaningful bits in the position corresponding to the lower order half of \(r,\) then the lower order bits of \(r\) cannot be meaningful. \(\blacksquare\)
then computing $x_h$ involves rounding up, so $x_h = \bar{x}_h + \beta^i$, and

$$x_i = x - x_h = x - \bar{x}_h - \beta^k = \bar{x}_l - \beta^k.$$

Once again, $\bar{x}_l$ has at most $k$ digits, so is representable with $\lfloor p/2 \rfloor$ digits. Finally, if $\bar{x}_l = (\beta/2)^{k-1}$, then $x_h = \bar{x}_h$ or $\bar{x}_h + \beta^k$ depending on whether there is a round up. So $x_i$ is either $(\beta/2)^{k-1}$ or $(\beta/2)^{k-1} - \beta^k = -\beta^k/2$, both of which are represented with 1 digit.

Theorem 6 gives a way to express the product of two working precision numbers exactly as a sum. There is a companion formula for expressing a sum exactly. If $|x| \geq |y|$ then $x + y = (x \oplus y) + (x \ominus (x \oplus y)) \ominus y$ [Dekker 1971; Knuth 1981, Theorem C in section 4.2.2]. However, when using exactly rounded operations, this formula is only true for $\beta = 2$, and not for $\beta = 10$ as the example $x = .99998$, $y = .99997$ shows.

**Binary to Decimal Conversion**

Since single precision has $p = 24$, and $2^{24} < 10^8$, you might expect that converting a binary number to 8 decimal digits would be sufficient to recover the original binary number. However, this is not the case.

**Theorem 15**

*When a binary IEEE single precision number is converted to the closest eight digit decimal number, it is not always possible to uniquely recover the binary number from the decimal one. However, if nine decimal digits are used, then converting the decimal number to the closest binary number will recover the original floating-point number.*

**Proof**

Binary single precision numbers lying in the half open interval $[10^3, 2^{10}) = [1000, 1024)$ have 10 bits to the left of the binary point, and 14 bits to the right of the binary point. Thus there are $(2^{10} - 10^3)2^{14} = 393,216$ different binary numbers in that interval. If decimal numbers are represented with 8 digits, then there are $(2^{10} - 10^3)10^4 = 240,000$ decimal numbers in the same interval. There is no way that 240,000 decimal numbers could represent 393,216 different binary numbers. So 8 decimal digits are not enough to uniquely represent each single precision binary number.
To show that 9 digits are sufficient, it is enough to show that the spacing between binary numbers is always greater than the spacing between decimal numbers. This will ensure that for each decimal number \( N \), the interval \([N - \frac{1}{2} \text{ulp}, N + \frac{1}{2} \text{ulp}]\) contains at most one binary number. Thus each binary number rounds to a unique decimal number which in turn rounds to a unique binary number.

To show that the spacing between binary numbers is always greater than the spacing between decimal numbers, consider an interval \([10^n, 10^n + 1]\). On this interval, the spacing between consecutive decimal numbers is \(10^{n+1} - 9\). On \([10^n, 2^m]\), where \( m \) is the smallest integer so that \(10^n < 2^m\), the spacing of binary numbers is \(2^m - 2^m\), and the spacing gets larger further on in the interval. Thus it is enough to check that \(10^{n+1} - 9 < 2^m - 2^m\). But in fact, since \(10^n < 2^m\), then \(10^{n+1} - 9 = 10^n10 - 9 < 2^m10^8 < 2^m2^{-24}\).

The same argument applied to double precision shows that 17 decimal digits are required to recover a double precision number.

Binary-decimal conversion also provides another example of the use of flags. Recall from “Precision” on page 169, that to recover a binary number from its decimal expansion, the decimal to binary conversion must be computed exactly. That conversion is performed by multiplying the quantities \( N \) and \(10^{13}\) (which are both exact if \( p < 13 \)) in single-extended precision and then rounding this to single precision (or dividing if \( p < 0 \); both cases are similar). Of course the computation of \( N \cdot 10^{13}\) cannot be exact; it is the combined operation \(\text{round}(N \cdot 10^{13})\) that must be exact, where the rounding is from single-extended to single precision. To see why it might fail to be exact, take the simple case of \( \beta = 10, p = 2 \) for single, and \( p = 3 \) for single-extended. If the product is to be 12.51, then this would be rounded to 12.5 as part of the single-extended multiply operation. Rounding to single precision would give 12. But that answer is not correct, because rounding the product to single precision should give 13. The error is due to double rounding.

By using the IEEE flags, double rounding can be avoided as follows. Save the current value of the inexact flag, and then reset it. Set the rounding mode to round-to-zero. Then perform the multiplication \( N \cdot 10^{13}\). Store the new value of the inexact flag in \(\text{ixflaq}\), and restore the rounding mode and inexact flag. If \(\text{ixflaq} = 0\), then \( N \cdot 10^{13}\) is exact, so \(\text{round}(N \cdot 10^{13})\) will be correct down to the last bit. If \(\text{ixflaq} = 1\), then some digits were truncated, since round-to-zero always truncates. The significand of the product will look like

---

*What Every Computer Scientist Should Know About Floating Point Arithmetic* 215
1.b₁...b₂₂b₂₃...b₃₁. A double rounding error may occur if b₂₂ ...b₃₁ = 10...0. A simple way to account for both cases is to perform a logical OR of ixfлаг with b₃₁. Then round(N ⋅ 1₀|P|) will be computed correctly in all cases.

Errors In Summation

“Optimizers” on page 197, mentioned the problem of accurately computing very long sums. The simplest approach to improving accuracy is to double the precision. To get a rough estimate of how much doubling the precision improves the accuracy of a sum, let s₁ = x₁, s₂ = s₁ ⊕ x₂, ..., sₙ = sₙ₋₁ ⊕ xₙ. Then sₙ = (1 + δ) (sₙ₋₁ + xₙ), where |δₙ| ≤ ε, and ignoring second order terms in δ gives

\[
 sₙ = \sum_{j=1}^{n} x_j \left( 1 + \sum_{k=j}^{n} \delta_k \right) = \sum_{j=1}^{n} x_j + \sum_{j=1}^{n} x_j \left( \sum_{k=j}^{n} \delta_k \right)
\]  

(31)

The first equality of (31) shows that the computed value of \( \Sigma x_j \) is the same as if an exact summation was performed on perturbed values of \( x_j \). The first term \( x₁ \) is perturbed by \( nε \), the last term \( xₙ \) by only \( ε \). The second equality in (31) shows that error term is bounded by \( nεΣ|x_j| \). Doubling the precision has the effect of squaring \( ε \). If the sum is being done in an IEEE double precision format, \( 1/ε = 10^{16} \), so that \( nε « 1 \) for any reasonable value of \( n \). Thus, doubling the precision takes the maximum perturbation of \( nε \) and changes it to \( nε^2 « ε \). Thus the \( 2ε \) error bound for the Kahan summation formula (Theorem 8) is not as good as using double precision, even though it is much better than single precision.

For an intuitive explanation of why the Kahan summation formula works, consider the following diagram of the procedure.
Each time a summand is added, there is a correction factor $C$ which will be applied on the next loop. So first subtract the correction $C$ computed in the previous loop from $X_j$, giving the corrected summand $Y$. Then add this summand to the running sum $S$. The low order bits of $Y$ (namely $Y_l$) are lost in the sum. Next compute the high order bits of $Y$ by computing $T - S$. When $Y$ is subtracted from this, the low order bits of $Y$ will be recovered. These are the bits that were lost in the first sum in the diagram. They become the correction factor for the next loop. A formal proof of Theorem 8, taken from Knuth [1981] page 572, appears in Section , “Theorem 14 and Theorem 8.”

**Summary**

It is not uncommon for computer system designers to neglect the parts of a system related to floating-point. This is probably due to the fact that floating-point is given very little (if any) attention in the computer science curriculum. This in turn has caused the apparently widespread belief that floating-point is not a quantifiable subject, and so there is little point in fussing over the details of hardware and software that deal with it.
This paper has demonstrated that it is possible to reason rigorously about floating-point. For example, floating-point algorithms involving cancellation can be proven to have small relative errors if the underlying hardware has a guard digit, and there is an efficient algorithm for binary-decimal conversion that can be proven to be invertible, provided that extended precision is supported. The task of constructing reliable floating-point software is made much easier when the underlying computer system is supportive of floating-point. In addition to the two examples just mentioned (guard digits and extended precision), Section , “Systems Aspects,” on page 189 of this paper has examples ranging from instruction set design to compiler optimization illustrating how to better support floating-point.

The increasing acceptance of the IEEE floating-point standard means that codes that utilize features of the standard are becoming ever more portable. Section , “The IEEE Standard,” on page 167, gave numerous examples illustrating how the features of the IEEE standard can be used in writing practical floating-point codes.

Acknowledgments

This article was inspired by a course given by W. Kahan at Sun Microsystems from May through July of 1988, which was very ably organized by David Hough of Sun. My hope is to enable others to learn about the interaction of floating-point and computer systems without having to get up in time to attend 8:00 a.m. lectures. Thanks are due to Kahan and many of my colleagues at Xerox PARC (especially John Gilbert) for reading drafts of this paper and providing many useful comments. Reviews from Paul Hilfinger and an anonymous referee also helped improve the presentation.

References


**Theorem 14 and Theorem 8**

This section contains two of the more technical proofs that were omitted from the text.

**Theorem 14**

Let $0 < k < p$, and set $m = \beta^k + 1$, and assume that floating-point operations are exactly rounded. Then $(m \odot x) \oplus (m \odot x \ominus x)$ is exactly equal to $x$ rounded to $p - k$ significant digits. More precisely, $x$ is rounded by taking the significand of $x$, imagining a radix point just left of the $k$ least significant digits, and rounding to an integer.

**Proof**

The proof breaks up into two cases, depending on whether or not the computation of $mx = \beta^k x + x$ has a carry-out or not.

Assume there is no carry out. It is harmless to scale $x$ so that it is an integer. Then the computation of $mx = x + \beta^k x$ looks like this:

```
 aa...aabb...bb
+aa...aabb...bb
 zz ... zzbb...bb
```

where $x$ has been partitioned into two parts. The low order $k$ digits are marked $b$ and the high order $p - k$ digits are marked $a$. To compute $m \odot x$ from $mx$ involves rounding off the low order $k$ digits (the ones marked with $b$) so

$$m \odot x = mx - x \mod(\beta^k) + r\beta^k$$  \hspace{1cm} (32)
The value of \( r \) is 1 if \( .\overline{bb} \ldots \overline{b} \) is greater than \( \frac{1}{2} \) and 0 otherwise. More precisely

\[
\begin{align*}
    r &= 1 \text{ if } a\cdot\overline{b}b \ldots \overline{b} \text{ rounds to } a + 1, \\
    &= 0 \text{ otherwise.} \tag{33}
\end{align*}
\]

Next compute \( m \odot x - x = mx - x \mod(\beta^k) + r\beta^k - x = \beta^k(x + r) - x \mod(\beta^k) \). The picture below shows the computation of \( m \odot x - x \) rounded, that is, \((m \odot x) \ominus x\). The top line is \( \beta^k(x + r) \), where \( \overline{b} \) is the digit that results from adding \( \epsilon \) to the lowest order digit \( b \).

\[
\begin{array}{c}
aa\ldots\overline{aab}b\overline{B}00\ldots00 \\
\downarrow \\
-\overline{bb}\ldots\overline{b}
\end{array}
\]

\[
\begin{array}{c}
zz \ldots zz00\ldots00 \\
\end{array}
\]

If \( .\overline{bb} \ldots \overline{b} < \frac{1}{2} \) then \( r = 0 \), subtracting causes a borrow from the digit marked \( \overline{B} \), but the difference is rounded up, and so the net effect is that the rounded difference equals the top line, which is \( \beta^kx \). If \( .\overline{bb} \ldots \overline{b} > \frac{1}{2} \) then \( r = 1 \), and 1 is subtracted from \( \overline{b} \) because of the borrow, so again the result is \( \beta^kx \). Finally consider the case \( .\overline{bb} \ldots \overline{b} = \frac{1}{2} \). If \( r = 0 \) then \( \overline{b} \) is even, \( z \) is odd, and the difference is rounded up, giving \( \beta^kx \). Similarly when \( r = 1 \), \( \overline{b} \) is odd, \( z \) is even, the difference is rounded down, so again the difference is \( \beta^kx \). To summarize

\[
(m \odot x) \ominus x = \beta^kx \tag{34}
\]

Combining equations (32) and (34) gives

\[
(m \odot x) - (m \odot x \ominus x) = x - x \mod(\beta^k) + \rho \beta^k. \]

The result of performing this computation is

\[
\begin{array}{c}
r00\ldots00 \\
\end{array}
\]

\[
\begin{array}{c}
+ aa\ldots\overline{aab}b\ldots\overline{b} \end{array}
\]
The rule for computing \( r \), equation (33), is the same as the rule for rounding \( a...ab...b \) to \( p-k \) places. Thus computing \( mx - (mx - x) \) in floating-point arithmetic precision is exactly equal to rounding \( x \) to \( p-k \) places, in the case when \( x + \beta^k x \) does not carry out.

When \( x + \beta^k x \) does carry out, then \( mx = \beta^k x + x \) looks like this:

\[
\begin{array}{c}
aa...aabb...bb \\
\hline
+ \ aa...aabb...bb \\
\hline
zz...zzbb...bb
\end{array}
\]

Thus, \( m \odot x = mx - x \mod(\beta^k) + w\beta^k \), where \( w = -Z \) if \( Z < \beta/2 \), but the exact value of \( w \) is unimportant. Next, \( m \odot x - x = \beta^k x - x \mod(\beta^k) + w\beta^k \). In a picture

\[
\begin{array}{c}
aa...aabb...bb00...00 \\
- \ bb...bb \\
+ \ w \\
\hline
zz ... zZbb ... bb^1
\end{array}
\]

Rounding gives \( (m \odot x) \odot x = \beta^k x + w\beta^k - r\beta^k \), where \( r = 1 \) if \( bb...b > 1/2 \) or \( bb...b = 1/2 \) and \( b_0 = 1 \). Finally, \( (m \odot x) - (m \odot x \odot x) = mx - x \mod(\beta^k) + w\beta^k \). And once again, \( r = 1 \) exactly when rounding \( a...ab...b \) to \( p-k \) places involves rounding up. Thus Theorem 14 is proven in all cases.
**Theorem 8 (Kahan Summation Formula)**

Suppose that $\sum_{j=1}^{N} x_j$ is computed using the following algorithm

```plaintext
S = X[1];
C = 0;
for j = 2 to N {
 Y = X[j] - C;
 T = S + Y;
 C = (T - S) - Y;
 S = T;
}
```

Then the computed sum $S$ is equal to $S = \sum x_j (1 + \delta_j) + O(N\varepsilon^2) \sum |x_j|$, where $|\delta_j| \leq 2\varepsilon$.

**Proof**

First recall how the error estimate for the simple formula $\sum x_j$ went. Introduce $s_0 = x_1, s_i = (1 + \delta_i) (s_{i-1} + x_i)$. Then the computed sum is $s_n$, which is a sum of terms, each of which is an $x_j$ multiplied by an expression involving $\delta_j$'s. The exact coefficient of $x_1$ is $(1 + \delta_2)(1 + \delta_3) \ldots (1 + \delta_n)$, and so by renumbering, the coefficient of $x_2$ must be $(1 + \delta_3)(1 + \delta_4) \ldots (1 + \delta_n)$, and so on. The proof of Theorem 8 runs along exactly the same lines, only the coefficient of $x_1$ is more complicated. In detail $s_0 = c_0 = 0$ and

\[
\begin{align*}
y_k &= x_k \odot c_{k-1} = (x_k - c_{k-1}) (1 + \eta_k) \\
s_k &= s_{k-1} \odot y_k = (s_{k-1} + y_k) (1 + \sigma_k) \\
c_k &= (s_k \odot s_{k-1}) \odot y_k = [(s_k - s_{k-1}) (1 + \gamma_k) - y_k] (1 + \delta_k)
\end{align*}
\]
where all the Greek letters are bounded by $\varepsilon$. Although the coefficient of $x_1$ in $s_k$ is the ultimate expression of interest, it turns out to be easier to compute the coefficient of $x_1$ in $s_k - c_k$ and $c_k$. When $k = 1$,

\[ c_1 = (s_1(1 + \gamma_1) - y_1)(1 + \delta_1) \]
\[ = y_1((1 + s_1) (1 + \gamma_1) - 1) (1 + \delta_1) \]
\[ = x_1(s_1 + \gamma_1 + s_1 \gamma_1) (1 + \delta_1) (1 + h_1) \]
\[ s_1 - c_1 = x_1[(1 + s_1) - (s_1 + \gamma_1 + s_1 \gamma_1)(1 + \delta_1)](1 + h_1) \]

Calling the coefficients of $x_1$ in these expressions $C_k$ and $S_k$ respectively, then

\[ C_1 = 2\varepsilon + O(\varepsilon^2) \]
\[ S_1 = + \eta_1 - \gamma_1 + 4\varepsilon^2 + O(\varepsilon^3) \]

To get the general formula for $S_k$ and $C_k$, expand the definitions of $s_k$ and $c_k$, ignoring all terms involving $x_i$ with $i > 1$ to get

\[ s_k = (s_{k-1} + y_k)(1 + \sigma_k) \]
\[ = [s_{k-1} + (x_k - c_{k-1}) (1 + \eta_k)](1 + \sigma_k) \]
\[ = [(s_{k-1} - c_{k-1}) - \eta_k c_k - 1](1 + \sigma_k) \]
\[ c_k = [s_k - s_{k-1}](1 + \gamma_k) - y_k](1 + \delta_k) \]
\[ = \left[\left((s_{k-1} - c_{k-1}) - \eta_k c_k\right)\right](1 + \sigma_k) - s_{k-1}(1 + \gamma_k) + c_{k-1}(1 + \eta_k)(1 + \delta_k) \]
\[ = \left[\left((s_{k-1} - c_{k-1})\sigma_k - \eta_k c_k\right)\right](1 + \gamma_k) + c_{k-1}(1 + \eta_k)(1 + \delta_k) \]
\[ = \left[\left((s_{k-1} - c_{k-1})\sigma_k\right)\gamma_k + c_{k-1}\right](1 + \delta_k) \]
\[ s_k - c_k = ((s_{k-1} - c_{k-1}) - \eta_k c_k)(1 + \sigma_k) \]
\[ - [(s_{k-1} - c_{k-1})\sigma_k + c_{k-1}\gamma_k + \eta_k(\sigma_k + \gamma_k + \sigma_k \gamma_k)](1 + \delta_k) \]
\[ \begin{align*}
E &= (s_{k-1} - c_{k-1})((1 + \sigma_k)(1 + \gamma_k)(1 + \delta_k)) \\
    &\quad + c_{k-1}(-\eta_k(1 + \sigma_k) + (\gamma_k + \eta_k(\sigma_k + \gamma_k + \sigma_k\gamma_k)) (1 + \delta_k)) \\
    &= (s_{-1} - c_{-1}) (1 - \sigma_k(\gamma_k + \delta_k + \gamma_k\delta_k)) \\
    &\quad + c_{k-1} - [\eta_k + \gamma_k + \eta_k(\gamma_k + \sigma_k\gamma_k) + (\gamma_k + \eta_k(\sigma_k + \gamma_k + \sigma_k\gamma_k))\delta_k] \\
\end{align*} \]

Since \( S_k \) and \( C_k \) are only being computed up to order \( \epsilon^2 \), these formulas can be simplified to

\[ \begin{align*}
C_k &= (\sigma_k + O(\epsilon^2))S_{k-1} + (-\gamma_k + O(\epsilon^2))C_{k-1} \\
S_k &= ((1 + 2\epsilon^2 + O(\epsilon^3))S_{k-1} + (2\epsilon + O(\epsilon^2))C_{k-1} \\
\end{align*} \]

Using these formulas gives

\[ \begin{align*}
C_2 &= \sigma_2 + O(\epsilon^2) \\
S_2 &= 1 + \eta_1 - \gamma_1 + 10\epsilon^2 + O(\epsilon^3) \\
\end{align*} \]

and in general it is easy to check by induction that

\[ \begin{align*}
C_k &= \sigma_k + O(\epsilon^2) \\
S_k &= 1 + \eta_1 - \gamma_1 + (4k+2)\epsilon^2 + O(\epsilon^3) \\
\end{align*} \]

Finally, what is wanted is the coefficient of \( x_1 \) in \( s_k \). To get this value, let \( x_{n+1} = 0 \), let all the Greek letters with subscripts of \( n+1 \) equal 0, and compute \( s_{n+1} \). Then \( s_{n+1} = s_n - \epsilon \) and the coefficient of \( x_1 \) in \( s_n \) is less than the coefficient in \( s_{n+1} \), which is \( S_n = 1 + \eta_1 - \gamma_1 + (4n+2)\epsilon^2 = (1 + 2\epsilon + O(n\epsilon^2)) \). \( \blacksquare \)
Standards Compliance

The compilers, header files, and libraries in the Sun WorkShop Compilers products for Solaris support multiple standards: System V Interface Definition (SVID), Edition 3, X/Open and ANSI C. Accordingly, the mathematical library \texttt{libm} and related files have been modified so that C programs comply with the standards. Users’ programs are usually not affected, because the differences primarily involve exception handling.

This appendix has the following organization:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID History</td>
<td>227</td>
</tr>
<tr>
<td>IEEE 754 History</td>
<td>228</td>
</tr>
<tr>
<td>SVID Future Directions</td>
<td>228</td>
</tr>
<tr>
<td>SVID Implementation</td>
<td>229</td>
</tr>
</tbody>
</table>

SVID History

To understand the differences between exception handling according to SVID and the point of view represented by the IEEE Standard, it is necessary to review the circumstances under which both developed. Many of the ideas in SVID trace their origins to the early days of UNIX, when it was first implemented on mainframe computers. These early environments have in common that rational floating-point operations \(+, -, \times, /\) are atomic machine instructions, while \texttt{sqrt}, conversion to integral value in floating-point format, and elementary transcendental functions are subroutines composed of many atomic machine instructions.
Because these environments treat floating-point exceptions in varied ways, uniformity could only be imposed by checking arguments and results in software before and after each atomic floating-point instruction. Because this has too great an impact on performance, SVID does not specify the effect of floating-point exceptions such as division by zero or overflow.

Operations implemented by subroutines are slow compared to single atomic floating-point instructions; extra error checking of arguments and results has little performance impact; so such checking is required by the SVID. When exceptions are detected, default results are specified, \texttt{errno} is set to \texttt{EDOM} for improper operands, or \texttt{ERANGE} for results that overflow or underflow, and the function \texttt{matherr()} is called with a record containing details of the exception. This costs little on the machines for which UNIX was originally developed, but the value is correspondingly small because the far more common exceptions in the basic operations +, -, *, and / are completely unspecified.

**IEEE 754 History**

The IEEE Standard explicitly states that compatibility with previous implementations was not a goal. Instead, an exception handling scheme was developed with efficiency and users’ requirements in mind. This scheme is uniform across the simple rational operations (+, -, *, and /), and more complicated operations such as remainder, square root, and conversion between formats. Although the Standard does not specify transcendental functions, the framers of the Standard anticipated that the same exception handling scheme would be applied to elementary transcendental functions in conforming systems.

Elements of IEEE exception handling include suitable default results and interruption of computation only when requested in advance.

**SVID Future Directions**

The current SVID, (“Edition 3” or “SVR4”), identifies certain directions for future development. One of these is compatibility with the IEEE Standard. In particular a future version of the SVID replaces references to \texttt{ HUGE}, intended to be a large finite number, with \texttt{ HUGE\_VAL}, which is infinity on IEEE systems. \texttt{ HUGE\_VAL}, for instance, is returned as the result of floating-point overflows.
The values returned by `libm` functions for input arguments that raise exceptions are those in the IEEE column in Table F-1 on page 229. In addition, `errno` no longer needs to be set.

### SVID Implementation

The following `libm` functions provide operand or result checking corresponding to SVID. The `sqrt` function is the only function that does not conform to SVID when called from a C program that uses the `libm` in-line expansion templates through `-xlibmil`, because this causes the hardware instruction for square root, `fsqrt[sd]`, to be used in place of a function call.

#### Table F-1 Exceptional Cases and `libm` Functions

<table>
<thead>
<tr>
<th>Function</th>
<th><code>errno</code></th>
<th><code>error message</code></th>
<th>SVID</th>
<th>X/Open</th>
<th>IEEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>`acos(</td>
<td>x</td>
<td>&gt;1)`</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>0.0</td>
</tr>
<tr>
<td><code>acosh(x&lt;1)</code></td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>`asin(</td>
<td>x</td>
<td>&gt;1)`</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
</tr>
<tr>
<td><code>atan2((+-0,+-0)</code></td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>`atanh(</td>
<td>x</td>
<td>&gt;1)`</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
</tr>
<tr>
<td><code>atanh(+1)</code></td>
<td>EDOM/ERANGE</td>
<td>SING</td>
<td>+infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>cosh overflow</code></td>
<td>ERANGE</td>
<td>-</td>
<td>HUGE</td>
<td></td>
<td>infinity</td>
</tr>
<tr>
<td><code>exp overflow</code></td>
<td>ERANGE</td>
<td>-</td>
<td>HUGE</td>
<td></td>
<td>infinity</td>
</tr>
<tr>
<td><code>exp underflow</code></td>
<td>ERANGE</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td><code>fmod(x,0)</code></td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td><code>gamma(0 or -integer)</code></td>
<td>EDOM</td>
<td>SING</td>
<td>HUGE</td>
<td></td>
<td>infinity</td>
</tr>
<tr>
<td><code>gamma overflow</code></td>
<td>ERANGE</td>
<td>-</td>
<td>HUGE</td>
<td></td>
<td>infinity</td>
</tr>
<tr>
<td><code>hypot overflow</code></td>
<td>ERANGE</td>
<td>-</td>
<td>HUGE</td>
<td></td>
<td>infinity</td>
</tr>
<tr>
<td>`j0(</td>
<td>x</td>
<td>&gt; X_TLOSS)`</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
</tr>
<tr>
<td>`j1(</td>
<td>x</td>
<td>&gt; X_TLOSS)`</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
</tr>
<tr>
<td>`jn(</td>
<td>x</td>
<td>&gt; X_TLOSS)`</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
</tr>
<tr>
<td>Function</td>
<td>errno</td>
<td>error message</td>
<td>SVID</td>
<td>X/Open</td>
<td>IEEE</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>lgamma(0 or -integer)</td>
<td>EDOM</td>
<td>SING</td>
<td>HUGE</td>
<td>HUGE_VAL</td>
<td>infinity</td>
</tr>
<tr>
<td>lgamma overflow</td>
<td>ERANGE</td>
<td>-</td>
<td>HUGE</td>
<td>HUGE_VAL</td>
<td>infinity</td>
</tr>
<tr>
<td>log(0)</td>
<td>EDOM/ERANGE</td>
<td>SING</td>
<td>-HUGE (EDOM)</td>
<td>-HUGE_VAL (ERANGE)</td>
<td>-infinity</td>
</tr>
<tr>
<td>log(x&lt;0)</td>
<td>EDOM/ERANGE</td>
<td>DOMAIN</td>
<td>-HUGE (EDOM)</td>
<td>-HUGE_VAL (ERANGE)</td>
<td>NaN</td>
</tr>
<tr>
<td>log10(0)</td>
<td>EDOM/ERANGE</td>
<td>SING</td>
<td>-HUGE (EDOM)</td>
<td>-HUGE_VAL (ERANGE)</td>
<td>-infinity</td>
</tr>
<tr>
<td>log10(x&lt;0)</td>
<td>EDOM/ERANGE</td>
<td>DOMAIN</td>
<td>-HUGE (EDOM)</td>
<td>-HUGE_VAL (ERANGE)</td>
<td>NaN</td>
</tr>
<tr>
<td>log1p(-1)</td>
<td>EDOM/ERANGE</td>
<td>SING</td>
<td>-HUGE (EDOM)</td>
<td>-HUGE_VAL (ERANGE)</td>
<td>-infinity</td>
</tr>
<tr>
<td>log1p(x&lt;-1)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>pow(0,0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>0.0</td>
<td>1.0 (no error)</td>
<td>1.0 (no error)</td>
</tr>
<tr>
<td>pow(NaN,0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>1.0 (no error)</td>
</tr>
<tr>
<td>pow(0,-)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>0.0</td>
<td>-HUGE_VAL</td>
<td>+infinity</td>
</tr>
<tr>
<td>pow(neg, non-integer)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>0.0</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>pow overflow</td>
<td>ERANGE</td>
<td>-</td>
<td>+-HUGE</td>
<td>+-HUGE_VAL</td>
<td>+infinity</td>
</tr>
<tr>
<td>pow underflow</td>
<td>ERANGE</td>
<td>-</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
</tr>
<tr>
<td>remainder(x,0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>scalb overflow</td>
<td>ERANGE</td>
<td>-</td>
<td>+HUGE_VAL</td>
<td>+HUGE_VAL</td>
<td>+infinity</td>
</tr>
<tr>
<td>scalb underflow</td>
<td>ERANGE</td>
<td>-</td>
<td>+0.0</td>
<td>+0.0</td>
<td>+0.0</td>
</tr>
<tr>
<td>sinh overflow</td>
<td>ERANGE</td>
<td>-</td>
<td>+HUGE</td>
<td>+HUGE_VAL</td>
<td>+infinity</td>
</tr>
<tr>
<td>sqrt(x&lt;0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>0.0</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>y0(0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>-infinity</td>
</tr>
<tr>
<td>y0(x&lt;0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>NaN</td>
</tr>
<tr>
<td>y0(x &gt; X_TLOSS)</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
<td>0.0</td>
<td>correct answer</td>
</tr>
<tr>
<td>y1(0)</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>-infinity</td>
</tr>
</tbody>
</table>
Table F-1  Exceptional Cases and \texttt{libm} Functions (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>errno</th>
<th>error message</th>
<th>SVID</th>
<th>X/Open</th>
<th>IEEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_1(x&lt;0) )</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>NaN</td>
</tr>
<tr>
<td>( y_1(x &gt; X_TLOSS) )</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
<td>0.0</td>
<td>correct answer</td>
</tr>
<tr>
<td>( y_n(n,0) )</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>-infinity</td>
</tr>
<tr>
<td>( y_n(n,x&lt;0) )</td>
<td>EDOM</td>
<td>DOMAIN</td>
<td>-HUGE</td>
<td>-HUGE_VAL</td>
<td>NaN</td>
</tr>
<tr>
<td>( y_n(n, x &gt; X_TLOSS) )</td>
<td>ERANGE</td>
<td>TLOSS</td>
<td>0.0</td>
<td>0.0</td>
<td>correct answer</td>
</tr>
</tbody>
</table>

General Notes on Exceptional Cases and \texttt{libm} Functions

Table F-1 lists all the \texttt{libm} functions affected by the standards. The value \( X\_TLOSS \) is defined in \texttt{<values.h>}. SVID requires \texttt{<math.h>} to define \texttt{HUGE} as \texttt{MAXFLOAT}, which is approximately 3.4e+38. \texttt{HUGE\_VAL} is defined as infinity in \texttt{libc}. \texttt{errno} is a global variable accessible to C and C++ programs.

\texttt{<errno.h>} defines 120 or so possible values for \texttt{errno}; the two used by the math library are \texttt{EDOM} for domain errors and \texttt{ERANGE} for range errors. See \texttt{intro(3)} and \texttt{perror(3)}.

- The ANSI C compiler switches \(-Xt\), \(-Xa\), \(-Xc\), \(-Xs\), among other things, control the level of standards compliance that is enforced by the compiler. Refer to \texttt{cc(1)} for a description of these switches.

- As far as \texttt{libm} is concerned, \(-Xt\) and \(-Xa\) cause SVID and X/Open behavior, respectively. \(-Xc\) corresponds to strict ANSI C behavior.

An additional switch \(-<x>libmieee\), when specified, returns values in the spirit of IEEE 754. The default behavior for \texttt{libm} and \texttt{libsunmath} is to be SVID-compliant on SunOS 5.x.

- For strict ANSI C (\(-Xc\)), \texttt{errno} is set always, \texttt{matherr()} is not called, and the X/Open value is returned.

- For SVID (\(-Xt\) or \(-Xs\)), the function \texttt{matherr()} is called with information about the exception. This includes the value that is the default SVID return value.
A user-supplied `matherr()` could alter the return value; see `matherr(3m)`. If there is no user-supplied `matherr()`, `libm` sets `errno`, possibly prints a message to standard error, and returns the value listed in the SVID column of Table F-1 on page 229.

- For X/Open (`-Xa`), the behavior is the same as for the SVID, in that `matherr()` is invoked and `errno` set accordingly. However, no error message is written to standard error, and the X/Open return values are the same as IEEE return values in many cases.
- For the purposes of `libm` exception handling, `-Xs` behaves the same as `-Xt`. That is, programs compiled with `-Xs` use the SVID compliant versions of the `libm` functions listed in Table F-1 on page 229.
- For efficiency, programs compiled with in-line hardware floating-point do not do the extra checking required to set `EDOM` or call `matherr()` if `sqrt` encounters a negative argument. `NaN` is returned for the function value in situations where `EDOM` might otherwise be set.

Thus, C programs that replace `sqrt()` function calls with `fsqrt[sd]` instructions conform to the IEEE Floating-Point Standard, but may no longer conform to the error handling requirements of the System V Interface Definition.

**Notes on `libm`**

SVID specifies two floating-point exceptions, PLOSS (partial loss of significance) and TLOSS (total loss of significance). Unlike `sqrt(-1)`, these have no inherent mathematical meaning, and unlike `exp(+10000)`, these do not reflect inherent limitations of a floating-point storage format.

PLOSS and TLOSS reflect instead limitations of particular algorithms for `fmod` and for trigonometric functions that suffer abrupt declines in accuracy at definite boundaries.

Like most IEEE implementations, the `libm` algorithms do not suffer such abrupt declines, and so do not signal PLOSS. To satisfy the dictates of SVID compliance, the Bessel functions do signal TLOSS for large input arguments, although accurate results can be safely calculated.

The implementations of `sin`, `cos`, and `tan` treat the essential singularity at infinity like other essential singularities by returning a `NaN` and setting `EDOM` for infinite arguments.
Likewise SVID specifies that $f_{\text{mod}}(x,y)$ is be zero if $x/y$ overflows, but the libm implementation of $f_{\text{mod}}$, derived from the IEEE remainder function, does not compute $x/y$ explicitly and hence always delivers an exact result.

**LIA-1 Conformance**


The C and Fortran-77 compilers (cc and f77) contained in the Sun WorkShop Compilers 4.2 release for Solaris conform to LIA-1 in the following senses (paragraph letters correspond to those in LIA-1 section 8):

a. TYPES (LIA 5.1): The LIA-1 conformant types are C int and Fortran INTEGER. Other types may conform as well, but they are not specified here. Further specifications for specific languages await language bindings to LIA-1 from the cognizant language standards organizations.

b. PARAMETERS (LIA 5.1):

```c
#include <values.h> /* defines MAXINT */
define TRUE 1
#define FALSE 0
#define BOUNDED TRUE
#define MODULO TRUE
#define MAXINT 2147483647
#define MININT -2147483648
logical bounded, modulo
integer maxint, minint
parameter (bounded = .TRUE.)
parameter (modulo = .TRUE.)
parameter (maxint = 2147483647)
parameter (minint = -2147483648)
```

d. DIV/REM/MOD (LIA 5.1.3):

C / and %, and Fortran / and mod(), provide DIVTI(x,y) and REMTI(x,y). Also, modAl(x,y) is available with this code:

```c
int modAI(int x, int y) {
```
int t = x % y;
if (y < 0 && t > 0)
    t -= y;
else if (y > 0 && t < 0)
    t += y;
return t;
}

or this:

integer function modaI(x, y)
intrinsic x, y, t
  t = mod(x, y)
  if (y .lt. 0 .and. t .gt. 0) t = t - y
  if (y .gt. 0 .and. t .lt. 0) t = t + y
  modaI = t
return
end

i. NOTATION (LIA 5.1.3): The following table shows the notation by which the LIA integer operations may be realized.

<table>
<thead>
<tr>
<th>LIA</th>
<th>C</th>
<th>Fortran if different</th>
</tr>
</thead>
<tbody>
<tr>
<td>addI(x,y)</td>
<td>x+y</td>
<td></td>
</tr>
<tr>
<td>subI(x,y)</td>
<td>x-y</td>
<td></td>
</tr>
<tr>
<td>mulI(x,y)</td>
<td>x*y</td>
<td></td>
</tr>
<tr>
<td>divtI(x,y)</td>
<td>x/y</td>
<td></td>
</tr>
<tr>
<td>remtI(x,y)</td>
<td>x%y</td>
<td>mod(x,y)</td>
</tr>
<tr>
<td>modaI(x,y)</td>
<td>see above</td>
<td></td>
</tr>
<tr>
<td>negI(x)</td>
<td>-x</td>
<td></td>
</tr>
<tr>
<td>absI(x)</td>
<td>#include &lt;stdlib.h&gt;</td>
<td>abs(x)</td>
</tr>
<tr>
<td></td>
<td>abs(x)</td>
<td></td>
</tr>
<tr>
<td>signI(x)</td>
<td>#define signI(x) (x &gt; 0 ? 1 : 0)</td>
<td>see below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 : (x &lt; 0 ? -1 : 0))</td>
</tr>
</tbody>
</table>
The following code shows the Fortran notation for `signI(x)`.

```fortran
integer function signi(x)
 integer x, t
 if (x .gt. 0) t=1
 if (x .lt. 0) t=-1
 if (x .eq. 0) t=0
 return
end
```

The following code shows the Fortran notation for `signI(x)`.

```fortran
integer function signi(x)
 integer x, t
 if (x .gt. 0) t=1
 if (x .lt. 0) t=-1
 if (x .eq. 0) t=0
 return
end
```

Table F-2  LIA-1 Conformance - Notation

<table>
<thead>
<tr>
<th>LIA</th>
<th>C</th>
<th>Fortran if different</th>
</tr>
</thead>
<tbody>
<tr>
<td>eql(x,y)</td>
<td>x==y</td>
<td>x.eq.y</td>
</tr>
<tr>
<td>neq(x,y)</td>
<td>x!=y</td>
<td>x.ne.y</td>
</tr>
<tr>
<td>lssl(x,y)</td>
<td>x&lt;y</td>
<td>x.lt.y</td>
</tr>
<tr>
<td>leq(x,y)</td>
<td>x&lt;=y</td>
<td>x.le.y</td>
</tr>
<tr>
<td>gtr(x,y)</td>
<td>x&gt;y</td>
<td>x.gt.y</td>
</tr>
<tr>
<td>geq(x,y)</td>
<td>x&gt;=y</td>
<td>x.ge.y</td>
</tr>
</tbody>
</table>

j. EXPRESSION EVALUATION: By default, when no optimization is specified, expressions are evaluated in int (C) or INTEGER (Fortran) precision. Parentheses are respected. The order of evaluation of associative unparenthesized expressions such as `a + b + c` or `a * b * c` is not specified.

k. METHOD OF OBTAINING PARAMETERS: Include the definitions above in the source code.

n. NOTIFICATION: Integer exceptions are `x/0` and `x%0` or `mod(x,0)`. By default, these exceptions generate `SIGFPE` on SPARC and Intel and `SIGILL` on PowerPC. When no signal handler is specified for `SIGFPE` or `SIGILL`, the process terminates and dumps memory.

o. SELECTION MECHANISM: `signal(3)` or `signal(3F)` may be used to enable user exception handling for `SIGFPE` or `SIGILL`. 
F
These manuals contain information on Sun compilers:

Fortran 77 Language Reference
Fortran User’s Guide
Fortran Programmer’s Guide
Fortran Library Reference
C User’s Guide
Making the Transition to ANSI C
C++ User’s Guide
C++ Library Reference
Tools.h++ Class Library Reference
Pascal User’s Guide
Pascal Reference Manual

The following manual provides more information about SPARC floating-point hardware:


The remaining references are organized by chapter. Information on obtaining Standards documents and test programs is included at the end.
Chapter 2: “IEEE Arithmetic”


Sterbenz, P, Floating-Point Computation, Prentice-Hall, Englewood Cliffs, NJ, 1974. (Out of print; most university libraries have copies.)

Stevenson, D. et al., Cody, W., Hough, D. Coonen, J., various papers proposing and analyzing a draft standard for binary floating-point arithmetic, IEEE Computer, March 1981.

See also the references noted at the end of Appendix E.

Chapter 3: “The Math Libraries”


Coonen, J.T., Contributions to a Proposed Standard for Binary Floating-Point Arithmetic, PhD Dissertation, University of California, Berkeley, 1984.


Tang, Peter Ping Tak, Table-driven Implementations of the Exponential Function EXPM1 in IEEE Floating-Point Arithmetic, Preprint MCS-P125-0290, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, February, 1990.


Chapter 4: “Exceptions and Signal Handling”


Appendix B: “SPARC Behavior and Implementation”

The following manufacturer’s documentation provides more information about the floating-point hardware and main processor chips. It is organized by system architecture.


Weitek, WTL 3170 Floating Point Coprocessor: Preliminary Data, 1988, published by Weitek Corporation, 1060 E. Arques Avenue, Sunnyvale, CA 94086.


Appendix D: “PowerPC Behavior and Implementation”

The following manufacturer’s documentation provides more information about the floating-point hardware implemented in PowerPC processors:


Standards


System V Application Binary Interface (ABI), AT&T (1-800-432-6600), 1989.

SPARC System V ABI Supplement (SPARC ABI), AT&T (1-800-432-6600), 1990.


Test Programs

A number of test programs for floating-point arithmetic and math libraries are available from netlib in the ucbtest package. These programs include versions of Paranoia, Z. Alex Liu's Berkeley Elementary Function test program, the IEEE test vectors, and programs based on number-theoretic methods developed by Prof. W. Kahan that generate hard test cases for correctly rounded multiplication, division, and square root.

To obtain ucbtest, either ftp to netlib.att.com and retrieve the file netlib/fp/ucbtest.tar.gz or, from a web browser, access the URL http://netlib.att.com/netlib/fp/index.html.
This glossary describes computer floating-point arithmetic terms. It also describes terms and acronyms associated with parallel processing.

**accuracy**

Accuracy is a measure of the extent to which a result is affected by error. Contrast with precision. For example, “the result is accurate to six decimal places” implies that all the errors incurred while calculating the result are not large enough to change the sixth decimal place of the result.

**array processing**

A number of processors working simultaneously, each handling one element of the array, so that a single operation can apply to all elements of the array in parallel.

**associativity**

See cache, direct mapped cache, fully associative cache, set associative cache.

**asynchronous control**

Computer control behavior where a specific operation is begun upon receipt of an indication (signal) that a particular event has occurred. Asynchronous control relies on synchronization mechanisms called locks to coordinate processors. See mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.
backplane

See *MBus, multiprocessor bus, XDBus*.

barrier

A synchronization mechanism for coordinating tasks even when data accesses are not involved. A barrier is analogous to a gate. Processors or threads operating in parallel reach the gate at different times, but none can pass through until all processors reach the gate. For example, suppose at the end of each day, all bank tellers are required to tally the amount of money that was deposited, and the amount that was withdrawn. These totals are then reported to the bank vice president, who must check the grand totals to verify debits equal credits. The tellers operate at their own speeds; that is, they finish totaling their transactions at different times. The barrier mechanism prevents tellers from leaving for home before the grand total is checked. If debits do not equal credits, all tellers must return to their desks to find the error. The barrier is removed after the vice president obtains a satisfactory grand total.

biased exponent

The sum of the base-2 exponent and a constant (bias) chosen to make the stored exponent's range non-negative. For example, the exponent of 2^{-100} is stored in IEEE single precision format as (-100) + (single precision bias of 127) = 27.

binade

The interval between any two consecutive powers of two.

blocked state

A thread is waiting for a resource or data; such as, return data from a pending disk read, or waiting for another thread to unlock a resource.

bound threads

For Solaris threads, a thread permanently assigned to a particular LWP is called a bound thread. Bound threads can be scheduled on a real-time basis in strict priority with respect to all other active threads in the system, not only within a process. An LWP is an entity that can be scheduled with the same default scheduling priority as any UNIX process.

cache

Small, fast, hardware-controlled memory that acts as a buffer between a processor and main memory. Cache contains a copy of the most recently used memory locations—addresses and contents—of instructions and data. Every
address reference goes first to cache. If the desired instruction or data is not in cache, a cache miss occurs. The contents are fetched across the bus from main memory into the CPU register specified in the instruction being executed and a copy is also written to cache. It is likely that the same location will be used again soon, and, if so, the address is found in cache, resulting in a cache hit. If a write to that address occurs, the hardware not only writes to cache, but can also generate a write-through to main memory.

Cache for the SuperSPARC processor is organized into the following hierarchy:

- First-level instruction cache. The 20Kbytes, on-chip, instruction cache fetches up to four instructions per cycle without memory wait states.
- First-level data cache. The 16Kbytes, on-chip, data cache handles one 64-bit load or store per cycle.
- Second-level external cache. The 1Mbyte (optional 2Mbytes) external cache is optimized to handle high bandwidth burst data transfers between the processor and cache.

Tables 1, 2, and 3 summarize the characteristics of the SuperSPARC cache.

<table>
<thead>
<tr>
<th>SPARCServer Type</th>
<th>Total Cache</th>
<th>Associativity</th>
<th>Block Size</th>
<th>Sub-blocks</th>
<th>Write Policy</th>
<th>Bus Type &amp; Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS10 (no ext cache)</td>
<td>20Kbytes</td>
<td>5-way</td>
<td>64 bytes</td>
<td>2</td>
<td>write-back</td>
<td>MBus / circuit switched</td>
</tr>
<tr>
<td>SS10 (ext cache)</td>
<td>20Kbytes</td>
<td>5-way</td>
<td>64 bytes</td>
<td>2</td>
<td>write-through</td>
<td>MBus / circuit switched</td>
</tr>
<tr>
<td>SS1000</td>
<td>20KByte</td>
<td>5-way</td>
<td>64 bytes</td>
<td>2</td>
<td>write-through</td>
<td>XDBus / packet switched</td>
</tr>
<tr>
<td>SS2000</td>
<td>20Kbytes</td>
<td>5-way</td>
<td>64 bytes</td>
<td>2</td>
<td>write-through</td>
<td>XDBus / packet switched</td>
</tr>
</tbody>
</table>
A program does not access all of its code or data at once with equal probability. Having recently accessed information in cache increases the probability of finding information locally without having to access memory. The principle of

cache locality

See associativity, circuit switching, direct mapped cache, fully associative cache, MBus, packet switching, set associative cache, write-back, write-through, XDBus.
locality states that programs access a relatively small portion of their address space at any instant of time. There are two different types of locality: temporal and spatial.

Temporal locality (locality in time) is the tendency to reuse recently accessed items. For example, most programs contain loops, so that instructions and data are likely to be accessed repeatedly. Temporal locality retains recently accessed items closer to the processor in cache rather than requiring a memory access. See cache, competitive-caching, false sharing, write-invalidate, write-update.

Spatial locality (locality in space) is the tendency to reference items whose addresses are close to other recently accessed items. For example, accesses to elements of an array or record show a natural spatial locality. Caching takes advantage of spatial locality by moving blocks (multiple contiguous words) from memory into cache and closer to the processor. See cache, competitive-caching, false sharing, write-invalidate, write-update.

chaining

A hardware feature of some pipeline architectures that allows the result of an operation to be used immediately as an operand for a second operation, simultaneously with the writing of the result to its destination register. The total cycle time of two chained operations is less than the sum of the stand-alone cycle times for the instructions. For example, the TI 8847 supports chaining of consecutive fadd, fsub, and fmul (of the same precision). Chained fadd/fmul requires 12 cycles, while consecutive unchained fadd/fmul requires 17 cycles.

circuit switching

A mechanism for caches to communicate with each other as well as with main memory. A dedicated connection (circuit) is established between caches or between cache and main memory. While a circuit is in place no other traffic can travel over the bus.

coherence

In systems with multiple caches, the mechanism that ensures that all processors see the same image of memory at all times.

common exceptions

The three floating point exceptions overflow, invalid, and division are collectively referred to as the common exceptions for the purposes of ieee_flags(3m) and ieee_handler(3m). They are called common exceptions because they are commonly trapped as errors.
**competitive-caching**

Competitive-caching maintains cache coherence by using a hybrid of write-invalidate and write-update. Competitive-caching uses a counter to age shared data. Shared data is purged from cache based on a least-recently-used (LRU) algorithm. This can cause shared data to become private data again, thus eliminating the need for the cache coherency protocol to access memory (via backplane bandwidth) to keep multiple copies synchronized. See cache, cache locality, false sharing, write-invalidate, write-update.

**concurrency**

The execution of two or more active threads or processes in parallel. On a uniprocessor apparent concurrence is accomplished by rapidly switching between threads. On a multiprocessor system true parallel execution can be achieved. See asynchronous control, multiprocessor system, thread.

**concurrent processes**

Processes that execute in parallel in multiple processors or asynchronously on a single processor. Concurrent processes can interact with each other, and one process can suspend execution pending receipt of information from another process or the occurrence of an external event. See process, sequential processes.

**condition variable**

For Solaris threads, a condition variable enables threads to atomically block until a condition is satisfied. The condition is tested under the protection of a mutex lock. When the condition is false, a thread blocks on a condition variable and atomically releases the mutex waiting for the condition to change. When another thread changes the condition, it can signal the associated condition variable to cause one or more waiting threads to wake up, reacquire the mutex, and re-evaluate the condition. Condition variables can be used to synchronize threads in this process and other processes if the variable is allocated in memory that is writable and shared among the cooperating processes and have been initialized for this behavior.

**context switch**

In multitasking operating systems, such as the SunOS operating system, processes run for a fixed time quantum. At the end of the time quantum, the CPU receives a signal from the timer, interrupts the currently running process, and prepares to run a new process. The CPU saves the registers for the old process, and then loads the registers for the new process. Switching from the old process state to the new is known as a context switch. Time spent switching...
contexts is system overhead; the time required depends on the number of registers, and on whether there are special instructions to save the registers associated with a process.

**control flow model**

The von Neumann model of a computer. This model specifies flow of control; that is, which instruction is executed at each step of a program. All Sun workstations are instances of the von Neumann model. See data flow model, demand-driven dataflow.

**critical region**

An indivisible section of code that can only be executed by one thread at a time and is not interruptible by other threads; such as, code that accesses a shared variable. See mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

**critical resource**

A resource that can only be in use by at most one thread at any given time. Where several asynchronous threads are required to coordinate their access to a critical resource, they do so by synchronization mechanisms. See mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

**data flow model**

This computer model specifies what happens to data, and ignores instruction order. That is, computations move forward by nature of availability of data values instead of the availability of instructions. See control flow model, demand-driven dataflow.

**data race**

In multithreading, a situation where two or more threads simultaneously access a shared resource. The results are indeterminate depending on the order in which the threads accessed the resource. This situation, called a data race, can produce different results when a program is run repeatedly with the same input. See mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

**deadlock**

A situation that can arise when two (or more) separately active processes compete for resources. Suppose that process P requires resources X and Y and requests their use in that order at the same time that process Q requires resources Y and X and asks for them in that order. If process P has acquired
resource X and simultaneously process Q has acquired resource Y, then neither process can proceed—each process requires a resource that has been allocated to the other process.

**default result**

The value that is delivered as the result of a floating-point operation that caused an exception.

**demand-driven dataflow**

A task is enabled for execution by a processor when its results are required by another task that is also enabled; such as, a graph reduction model. A graph reduction program consists of reducible expressions that are replaced by their computed values as the computation progresses through time. Most of the time, the reductions are done in parallel—nothing prevents parallel reductions except the availability of data from previous reductions. See *control flow model*, *data flow model*.

**denormalized number**

Older nomenclature for subnormal number.

**direct mapped cache**

A direct mapped cache is a one-way set associative cache. That is, each cache entry holds one block and forms a single set with one element. See *cache*, *cache locality*, *false sharing*, *fully associative cache*, *set associative cache*, *write-invalidate*, *write-update*.

**distributed memory architecture**

A combination of local memory and processors at each node of the interconnect network topology. Each processor can directly access only a portion of the total memory of the system. Message passing is used to communicate between any two processors, and there is no global, shared memory. Therefore, when a data structure must be shared, the program issues send/receive messages to the process that owns that structure. See *interprocess communication*, *message passing*.

**double precision**

Using two words to represent a number in order to keep or increase precision. On SPARC workstations, double precision is the 64-bit IEEE double precision.
exception

An arithmetic exception arises when an attempted atomic arithmetic operation has no result that is acceptable universally. The meanings of atomic and acceptable vary with time and place.

exponent

The component of a floating-point number that signifies the integer power to which the base is raised in determining the value of the represented number.

false sharing

A condition that occurs in cache when two unrelated data accessed independently by two threads reside in the same block. This block can end up ‘ping-ponging’ between caches for no valid reason. Recognizing such a case and rearranging the data structure to eliminate the false sharing greatly increases cache performance. See cache, cache locality.

floating-point number system

A system for representing a subset of real numbers in which the spacing between representable numbers is not a fixed, absolute constant. Such a system is characterized by a base, a sign, a significand, and an exponent (usually biased). The value of the number is the signed product of its significand and the base raised to the power of the unbiased exponent.

fully associative cache

A fully associative cache with $m$ entries is an $m$-way set associative cache. That is, it has a single set with $m$ blocks. A cache entry can reside in any of the $m$ blocks within that set. See cache, cache locality, direct mapped cache, false sharing, set associative cache, write-invalidate, write-update.

gradual underflow

When a floating-point operation underflows, return a subnormal number instead of 0. This method of handling underflow minimizes the loss of accuracy in floating-point calculations on small numbers.

hidden bits

Extra bits used by hardware to ensure correct rounding, not accessible by software. For example, IEEE double precision operations use three hidden bits to compute a 56-bit result that is then rounded to 53 bits.
IEEE Standard 754

The standard for binary floating-point arithmetic developed by the Institute of Electrical and Electronics Engineers, published in 1985.

in-line template

A fragment of assembly language code that is substituted for the function call it defines, during the inlining pass of ProCompilers. Used (for example) by the math library in in-line template files (libm.il) in order to access hardware implementations of trigonometric functions and other elementary functions from C programs.

interconnection network topology

Interconnection topology describes how the processors are connected. All networks consist of switches whose links go to processor-memory nodes and to other switches. There are four generic forms of topology: star, ring, bus, and fully-connected network. Star topology consists of a single hub processor with the other processors directly connected to the single hub, the non-hub processors are not directly connected to each other. In ring topology all processors are on a ring and communication is generally in one direction around the ring. Bus topology is noncyclic, with all nodes connected; consequently, traffic travels in both directions, and some form of arbitration is needed to determine which processor can use the bus at any particular time. In a fully-connected (crossbar) network, every processor has a bidirectional link to every other processor.

Commercially-available parallel processors use multistage network topologies. A multistage network topology is characterized by 2-dimensional grid, and boolean n-cube.

interprocess communication

Message passing among active processes. See circuit switching, distributed memory architecture, MBus, message passing, packet switching, shared memory, XDBus.

IPC

See interprocess communication.
light-weight process

Solaris threads are implemented as a user-level library, using the kernel’s threads of control, that are called light-weight processes (LWPs). In Solaris 2.2 and above, a process is a collection of LWPs that share memory. Each LWP has the scheduling priority of a UNIX process and shares the resources of that process. LWPs coordinate their access to the shared memory by using synchronization mechanisms such as locks. An LWP can be thought of as a virtual CPU that executes code or system calls. The threads library schedules threads on a pool of LWPs in the process, in much the same way as the kernel schedules LWPs on a pool of processors. Each LWP is independently dispatched by the kernel, performs independent system calls, incurs independent page faults, and runs in parallel on a multiprocessor system. The LWPs are scheduled by the kernel onto the available CPU resources according to their scheduling class and priority.

lock

A mechanism for enforcing a policy for serializing access to shared data. A thread or process uses a particular lock in order to gain access to shared memory protected by that lock. The locking and unlocking of data is voluntary in the sense that only the programmer knows what must be locked. See data race, mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

LWP

See light-weight process.

MBus

MBus is a bus specification for a processor/memory/IO interconnect. It is licensed by SPARC International to several silicon vendors who produce interoperating CPU modules, IO interfaces and memory controllers. MBus is a circuit-switched protocol combining read requests and response on a single bus. MBus level I defines uniprocessor signals; MBus level II defines multiprocessor extensions for the write-invalidate cache coherence mechanism.

memory

A medium that can retain information for subsequent retrieval. The term is most frequently used for referring to a computer’s internal storage that can be directly addressed by machine instructions. See cache, distributed memory, shared memory.
message passing

In the distributed memory architecture, a mechanism for processes to communicate with each other. There is no shared data structure in which they deposit messages. Message passing allows a process to send data to another process and for the intended recipient to synchronize with the arrival of the data.

MIMD

See Multiple Instruction Multiple Data, shared memory.

mt-safe

In Solaris 2.2 and above, function calls inside libraries are either mt-safe or not mt-safe; mt-safe code is also called “re-entrant” code. That is, several threads can simultaneously call a given function in a module and it is up to the function code to handle this. The assumption is that data shared between threads is only accessed by module functions. If mutable global data is available to clients of a module, appropriate locks must also be made visible in the interface. Furthermore, the module function cannot be made re-entrant unless the clients are assumed to use the locks consistently and at appropriate times. See single-lock strategy.

Multiple Instruction Multiple Data

System model where many processors can be simultaneously executing different instructions on different data. Furthermore, these processors operate in a largely autonomous manner as if they are separate computers. They have no central controller, and they typically do not operate in lock-step fashion. Most real world banks run this way. Tellers do not consult with one another, nor do they perform each step of every transaction at the same time. Instead, they work on their own, until a data access conflict occurs. Processing of transactions occurs without concern for timing or customer order. But customers A and B must be explicitly prevented from simultaneously accessing the joint AB account balance. MIMD relies on synchronization mechanisms called locks to coordinate access to shared resources. See mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

multiple read single write

In a concurrent environment, the first process to access data for writing has exclusive access to it, making concurrent write access or simultaneous read and write access impossible. However, the data can be read by multiple readers.
**multiprocessor**

See *multiprocessor system*.

**multiprocessor bus**

In a shared memory multiprocessor machine each CPU and cache module are connected together via a bus that also includes memory and IO connections. The bus enforces a cache coherency protocol. See *cache*, *coherence*, *Mbus*, *XDBus*.

**multiprocessor system**

A system in which more than one processor can be active at any given time. While the processors are actively executing separate processes, they run completely asynchronously. However, synchronization between processors is essential when they access critical system resources or critical regions of system code. See *critical region*, *critical resource*, *multithreading*, *uniprocessor system*.

**multitasking**

In a uniprocessor system, a large number of threads appear to be running in parallel. This is accomplished by rapidly switching between threads.

**multithreading**

Applications that can have more than one thread or processor active at one time. Multithreaded applications can run in both uniprocessor systems and multiprocessor systems. See *bound thread*, *mt-safe*, *single-lock strategy*, *thread*, *unbound thread*, *uniprocessor*.

**mutex lock**

Synchronization variable to implement the mutual exclusion mechanism. See *condition variable*, *mutual exclusion*.

**mutual exclusion**

In a concurrent environment, the ability of a thread to update a critical resource without accesses from competing threads. See *critical region*, *critical resource*.

**NaN**

Stands for Not a Number. A symbolic entity that is encoded in floating-point format.
normal number

In IEEE arithmetic, a number with a biased exponent that is neither zero nor maximal (all 1’s), representing a subset of the normal range of real numbers with a bounded small relative error.

packet switching

In the shared memory architecture, a mechanism for caches to communicate with each other as well as with main memory. In packet switching, traffic is divided into small segments called packets that are multiplexed onto the bus. A packet carries identification that enables cache and memory hardware to determine whether the packet is destined for it or to send the packet on to its ultimate destination. Packet switching allows bus traffic to be multiplexed and unordered (not sequenced) packets to be put on the bus. The unordered packets are reassembled at the destination (cache or main memory). See cache, shared memory.

paradigm

A model of the world that is used to formulate a computer solution to a problem. Paradigms provide a context in which to understand and solve a real-world problem. Because a paradigm is a model, it abstracts the details of the problem from the reality, and in doing so, makes the problem easier to solve. Like all abstractions, however, the model can be inaccurate because it only approximates the real world. See Multiple Instruction Multiple Data, Single Instruction Multiple Data, Single Instruction Single Data, Single Program Multiple Data.

parallel processing

In a multiprocessor system, true parallel execution is achieved where a large number of threads or processes can be active at one time. See concurrency, multiprocessor system, multithreading, uniprocessor.

parallelism

See concurrent processes, multithreading.

pipeline

If the total function applied to the data can be divided into distinct processing phases, different portions of data can flow along from phase to phase; such as a compiler with phases for lexical analysis, parsing, type checking, code generation and so on. As soon as the first program or module has passed the
lexical analysis phase, it can be passed on to the parsing phase while the lexical analyzer starts on the second program or module. See *array processing, vector processing*.

**Pipelining**

A hardware feature where operations are reduced to multiple stages, each of which takes (typically) one cycle to complete. The pipeline is filled when new operations can be issued each cycle. If there are no dependencies among instructions in the pipe, new results can be delivered each cycle. Chaining implies pipelining of dependent instructions. If dependent instructions cannot be chained, when the hardware does not support chaining of those particular instructions, then the pipeline stalls.

**Precision**

A quantitative measure of the density of representable numbers. “IEEE double precision format specifies 53 bits of precision” implies that the relative representation error in the normal range is bounded by $2^{-52}$.

**Process**

A unit of activity characterized by a single sequential thread of execution, a current state, and an associated set of system resources.

**Quiet NaN**

A NaN (not a number) that propagates through almost every arithmetic operation without raising new exceptions.

**Radix**

The base number of any system of numbers. For example, 2 is the radix of a binary system, and 10 is the radix of the decimal system of numeration. SPARC workstations use radix-2 arithmetic; IEEE Std 754 is a radix-2 arithmetic standard.

**Round**

Inexact results must be rounded up or down to obtain representable values. When a result is rounded up, it is increased to the next representable value. When rounded down, it is reduced to the preceding representable value.

**Roundoff Error**

The error introduced when a real number is rounded to a machine-representable number. Most floating-point calculations incur roundoff error. For any one floating-point operation, IEEE Std 754 specifies that the result shall not incur more than one rounding error.
**Semaphore lock**

Synchronization mechanism for controlling access to critical resources by cooperating asynchronous threads. See `semaphore`.

**Semaphore**

A special-purpose data type introduced by E. W. Dijkstra that coordinates access to a particular resource or set of shared resources. A semaphore has an integer value (that cannot become negative) with two operations allowed on it. The signal (v or up) operation increases the value by one, and in general indicates that a resource has become free. The wait (p or down) operation decreases the value by one, when that can be done without the value going negative, and in general indicates that a free resource is about to start being used. See `semaphore lock`.

**Sequential processes**

Processes that execute in such a manner that one must finish before the next begins. See `concurrent processes`, `process`.

**Set associative cache**

In a set associative cache, there are a fixed number of locations (at least two) where each block can be placed. A set associative cache with n locations for a block is called an n-way set associative cache. An n-way set associative cache consists of more than one set, each of which consists of n blocks. A block can be placed in any location (element) of that set. Increasing the associativity level (number of blocks in a set) increases the cache hit rate. See `cache`, `cache locality`, `false sharing`, `write-invalidate`, `write-update`.

**Shared memory architecture**

In a bus-connected multiprocessor system, processes or threads communicate through a global memory shared by all processors. This shared data segment is placed in the address space of the cooperating processes between their private data and stack segments. Subsequent tasks spawned by `fork()` copy all but the shared data segment in their address space. Shared memory requires program language extensions and library routines to support the model.

**Signaling NaN**

A NaN (not a number) that raises the invalid operation exception whenever it appears as an operand.
significand
The component of a floating-point number that is multiplied by a signed power of the base to determine the value of the number. In a normalized number, the significand consists of a single nonzero digit to the left of the radix point and a fraction to the right.

SIMD
See Single Instruction Multiple Data.

Single Instruction Multiple Data
System model where there are many processing elements, but they are designed to execute the same instruction at the same time; that is, one program counter is used to sequence through a single copy of the program. SIMD is especially useful for solving problems that have lots of data that needs to be updated on a wholesale basis; such as numerical calculations that are regular. Many scientific and engineering applications (such as, image processing, particle simulation, and finite element methods) naturally fall into the SIMD paradigm. See array processing, pipeline, vector processing.

Single Instruction Single Data
The conventional uniprocessor model, with a single processor fetching and executing a sequence of instructions that operate on the data items specified within them. This is the original von Neumann model of the operation of a computer.

single precision
Using one computer word to represent a number.

Single Program Multiple Data
A form of asynchronous parallelism where simultaneous processing of different data occurs without lock-step coordination. In SPMD, processors can execute different instructions at the same time; such as, different branches of an if-then-else statement.

single-lock strategy
In the single-lock strategy, a thread acquires a single, application-wide mutex lock whenever any thread in the application is running and releases the lock before the thread blocks. The single-lock strategy requires cooperation from all
modules and libraries in the system to synchronize on the single lock. Because only one thread can be accessing shared data at any given time, each thread has a consistent view of memory. This strategy is quite effective in a uniprocessor, provided shared memory is put into a consistent state before the lock is released and that the lock is released often enough to allow other threads to run. Furthermore, in uniprocessor systems, concurrency is diminished if the lock is not dropped during most I/O operations. The single-lock strategy cannot be applied in a multiprocessor system.

**SISD**

See *Single Instruction Single Data*.

**snooping**

The most popular protocol for maintaining cache coherency is called snooping. Cache controllers monitor or snoop on the bus to determine whether or not the cache contains a copy of a shared block.

For reads, multiple copies can reside in the cache of different processors, but because the processors need the most recent copy, all processors must get new values after a write. See *cache, competitive-caching, false sharing, write-invalidate, write-update*.

For writes, a processor must have exclusive access to write to cache. Writes to unshared blocks do not cause bus traffic. The consequence of a write to shared data is either to invalidate all other copies or to update the shared copies with the value being written. See *cache, competitive-caching, false sharing, write-invalidate, write-update*.

**spin lock**

Threads use a spin lock to test a lock variable over and over until some other task releases the lock. That is, the waiting thread spins on the lock until the lock is cleared. Then, the waiting thread sets the lock while inside the critical region. After work in the critical region is complete, the thread clears the spin lock so another thread can enter the critical region. The difference between a spin lock and a mutex is that an attempt to get a mutex held by someone else will block and release the LWP; a spin lock does not release the LWP. See *mutex lock*.

**SPMD**

See *Single Program Multiple Data*.
stderr

Standard Error is the Unix file pointer to standard error output. This file is opened when a program is started.

Store 0

Flushing the underflowed result of an arithmetic operation to zero.

subnormal number

In IEEE arithmetic, a nonzero floating point number with a biased exponent of zero. The subnormal numbers are those between zero and the smallest normal number.

thread

A flow of control within a single UNIX process address space. Solaris threads provide a light-weight form of concurrent task, allowing multiple threads of control in a common user-address space, with minimal scheduling and communication overhead. Threads share the same address space, file descriptors (when one thread opens a file, the other threads can read it), data structures, and operating system state. A thread has a program counter and a stack to keep track of local variables and return addresses. Threads interact through the use of shared data and thread synchronization operations. See bound thread, light-weight processes, multithreading, unbound thread.

topology

See interconnection network topology.

two’s complement

The radix complement of a binary numeral, formed by subtracting each digit from 1, then adding 1 to the least significant digit and executing any required carries. For example, the two’s complement of 1101 is 0011.

ulp

Stands for unit in last place. In binary formats, the least significant bit of the significand, bit 0, is the unit in the last place.

ulp(x)

Stands for ulp of x truncated in working format.

unbound threads

For Solaris threads, threads scheduled onto a pool of LWPs are called unbound threads. The threads library invokes and assigns LWPs to execute runnable threads. If the thread becomes blocked on a synchronization mechanism (such
as a mutex lock) the state of the thread is saved in process memory. The threads library then assigns another thread to the LWP. See bound thread, multithreading, thread.

**underflow**

A condition that occurs when the result of a floating-point arithmetic operation is so small that it cannot be represented as a normal number in the destination floating-point format with only normal roundoff.

**uniprocessor system**

A uniprocessor system has only one processor active at any given time. This single processor can run multithreaded applications as well as the conventional single instruction single data model. See multithreading, single instruction single data, single-lock strategy.

**vector processing**

Processing of sequences of data in a uniform manner, a common occurrence in manipulation of matrices (whose elements are vectors) or other arrays of data. This orderly progression of data can capitalize on the use of pipeline processing. See array processing, pipeline.

**word**

An ordered set of characters that are stored, addressed, transmitted and operated on as a single entity within a given computer. In the context of SPARC workstations, a word is 32 bits.

**wrapped number**

In IEEE arithmetic, a number created from a value that otherwise overflows or underflows by adding a fixed offset to its exponent to position the wrapped value in the normal number range. Wrapped results are not currently produced on SPARC workstations.

**write-back**

Write policy for maintaining coherency between cache and main memory. Write-back (also called copy back or store in) writes only to the block in local cache. Writes occur at the speed of cache memory. The modified cache block is written to main memory only when the corresponding memory address is referenced by another processor. The processor can write within a cache block multiple times and writes it to main memory only when referenced. Because every write does not go to memory, write-back reduces demands on bus bandwidth. See cache, coherence, write-through.
write-invalidate
Maintains cache coherence by reading from local caches until a write occurs. To change the value of a variable the writing processor first invalidates all copies in other caches. The writing processor is then free to update its local copy until another processor asks for the variable. The writing processor issues an invalidation signal over the bus and all caches check to see if they have a copy; if so, they must invalidate the block containing the word. This scheme allows multiple readers, but only a single writer. Write-invalidate use the bus only on the first write to invalidate the other copies; subsequent local writes do not result in bus traffic, thus reducing demands on bus bandwidth. See cache, cache locality, coherence, false sharing, write-update.

write-through
Write policy for maintaining coherency between cache and main memory. Write-through (also called store through) writes to main memory as well as to the block in local cache. Write-through has the advantage that main memory has the most current copy of the data. See cache, coherence, write-back.

write-update
Write-update, also known as write-broadcast, maintains cache coherence by immediately updating all copies of a shared variable in all caches. This is a form of write-through because all writes go over the bus to update copies of shared data. Write-update has the advantage of making new values appear in cache sooner, which can reduce latency. See cache, cache locality, coherence, false sharing, write-invalidate.

XDBus
The XDBus specification uses low-impedance GTL (Gunning Transceiver Logic) transceiver signalling to drive longer backplanes at higher clock rates. XDBus supports a large number of CPUs with multiple interleaved memory banks for increased throughput. XDBus uses a packet switched protocol with split requests and responses for more efficient bus utilization. XDBus also defines an interleaving scheme so that one, two or four separate bus data paths can be used as a single backplane for increased throughput. XDBus supports write-invalidate, write-update and competitive-caching coherency schemes, and has several congestion control mechanisms. See cache, coherence, competitive-caching, write-invalidate, write-update.
Index

A
abort on exception
  C example, 119
accuracy, 232
  floating-point operations, 4
  significant digits (number of), 19
  threshold, 29
adb, 62
addtrans
  random number utilities, 49
argument reduction
  trigonometric functions, 48

B
base conversion
  base 10 to base 2, 50
  base 2 to base 10, 50
  formatted I/O, 50
Bessel functions, 232

c
C driver
  example, call FORTRAN subroutines from C, 121
clock speed, 138

compiler option
  -XA
    X/Open behavior for libm, 231
  -Xt
    SVID behavior for libm, 231
conversion between number sets, 20
  conversions between decimal strings and
  binary floating-point numbers, 4
convert_external
  binary floating-point, 49
  data conversion, 49

D
data types
  relation to IEEE formats, 5
dbx, 62
decimal representation
  maximum positive normal number, 18
  minimum positive normal number, 18
  precision, 18
  ranges, 18
double-precision representation
  C example, 92
  FORTRAN example, 93
errno.h
define values for errno, 231
examine the accrued exception bits
C example, 106
examine the accrued exception flags
C example, 108

f77_floatingpoint.h
define handler types
FORTRAN, 70
-fast, 137
floating-point
exceptions list, 4
rounding direction, 4
rounding precision, 4
tutorial, 149
floating-point accuracy
decimal strings and binary floating-point numbers, 4
floating-point exceptions, 2, 135
abort on exceptions, 119
accrued exception bits, 106
common exceptions, 54
default result, 55
definition, 54
flags, 58
accrued, 58
current, 58
ieee_functions, 39
ieee_retrospective, 45
list of exceptions, 54
priority, 57
trap precedence, 57
floating-point options, 132
floating-point queue (FQ), 134
floating-point status register (FSR), 129, 134
floating-point unit, 139
disable on SPARC, 139
enable on SPARC, 139
floating-point unit (FPU), 132, 133
floatingpoint.h
define handler types
C and C++, 70
flush to zero (see Store 0), 23
fmod, 232
-fnonstd, 137
fpversion, 138
generate an array of numbers
FORTRAN example, 94
Goldberg paper, 149
abstract, 150
acknowledgments, 218
details, 203
IEEE standard, 167
IEEE standards, 163
introduction, 150
references, 218
rounding error, 151
summary, 217
systems aspects, 189
gradual underflow
error properties, 25
HUGE
compatibility with IEEE standard, 228
HUGE_VAL
compatibility with IEEE standard, 228
IEEE double extended format
biased exponent
x86 architecture, 14
bit-field assignment
x86 architecture, 14
fraction
x86 architecture, 14
Inf
   SPARC architecture, 13
   x86 architecture, 16
NaN
   x86 architecture, 18
normal number
   SPARC architecture, 13
   x86 architecture, 16
quadruple precision
   SPARC architecture, 12
sign bit
   x86 architecture, 15
significand
   explicit leading bit
   x86 architecture, 14
subnormal number
   SPARC architecture, 13
   x86 architecture, 16
IEEE double format
   biased exponent, 8
   bit patterns and equivalent values, 10
   denormalized number, 8
   fraction, 8
   storage on SPARC, 8
   storage on x86, 8
   implicit bit, 10
   Inf, infinity, 10
NaN, not a number, 11
   normal number, 10
   precision, 10
   sign bit, 9
   significand, 10
   subnormal number, 10
IEEE formats
   relation to language data types, 5
IEEE single format
   biased exponent, 6
   biased exponent, implicit bit, 7
   bit assignments, 6
   bit patterns and equivalent values, 7
   bit-field assignment, 6
   denormalized number, 7
   fraction, 6
   Inf, positive infinity, 7
mixed number, significand, 7
NaN, not a number, 8
normal number
   maximum positive, 7
   normal number bit pattern, 6
   precision, normal number, 7
   sign bit, 6
   subnormal number bit pattern, 6
IEEE Standard 754
   double extended format, 4
   double format, 3
   single format, 3
ieee_flags, 42
   accrued exception flag, 42
   examine accrued exception bits
      C example, 106
   rounding direction, 42
   rounding precision, 42, 44
   set exception flags
      C example, 109
   truncate rounding, 43
ieee_functions
   bit mask operations, 38
   floating-point exceptions, 39
ieee_handler, 70
   abort on exception
      FORTRAN example, 119
   example, calling sequence, 63
   trap on common exceptions, 54
   trap on exception
      C example, 111
ieee_retrospective
   check underflow exception flag, 137
   floating-point exceptions, 44
   floating-point status register
      (FSR), 45
   getting information about
      nonstandard IEEE
      modes, 44
   getting information about
      outstanding exceptions, 44
   nonstandard_arithmetic in
      effect, 45
precision, 44
rounding, 44
suppress exception messages, 46

\texttt{ieee\_sun}
IEEE classification functions, 38

\texttt{ieee\_values}
- quadruple-precision values, 40
- representing floating-point values, 40
- representing Inf, 40
- representing NaN, 40
- representing normal number, 40
- single-precision values, 40

\texttt{ieee\_values} functions
C example, 101
Inf, 2, 229
- default result of divide by zero, 55

\textbf{L}
\texttt{lcrans}
random number utilities, 49

\texttt{libm}
SVID compliance, 229

\texttt{libm}
default directories
- executables, 32
- header files, 32
- list of functions, 32
- standard installation, 32

\texttt{libm} functions
- double precision, 37
- quadruple precision, 37
- single precision, 37

\texttt{libmil} (see also in-line templates), 134, 229

\texttt{libsunmath}
default directories
- executables, 33
- header files, 33
- list of functions, 34
- standard installation, 33

\textbf{M}
\texttt{MAXFLOAT}, 231

\textbf{N}
NaN, 2, 14, 229, 232
nonstandard\_arithmetic, 137
- turn off IEEE gradual underflow, 137
underflow, 46
- gradual, 46
normal number
- maximum positive, 7
- minimum positive, 23, 27
number line
- binary representation, 19
- decimal representation, 19
- powers of 2, 26

\textbf{O}
operating system math library
- \texttt{libm.a}, 32
- \texttt{libm.so}, 32

\textbf{P}
pi
- infinitely precise value, 48
PowerPC
- bit pattern values, 13
- double format, 8
- double-extended format, 12
- IEEE arithmetic, 3
- quad-precision values, 41
- ranges and precisions, 18
- the FPSCR register, 58
- underflow thresholds, 22

\textbf{Q}
quadruple-precision representation
- FORTRAN example, 93
quiet NaN
- default result of invalid operation, 55
random number generators, 94
random number utilities
   shufrans, 49
represent double-precision value
   C example, 92
   FORTRAN example, 94
represent single-precision value
   C example, 92
rounding direction, 4, 25
   C example, 104
   ulp (unit in the last place), 25
rounding precision, 4
roundoff error
   accuracy
   loss of, 24

set exception flags
   C example, 109
shufrans
   shuffle pseudo-random numbers, 49
single format, 6
single precision representation
   C example, 92
SPARC
   FPU, 139
square root instruction, 135, 229
standard_arithmetic
   turn on IEEE behavior, 137
Store 0, 23
   flush underflow results, 27, 28
subnormal number, 27, 134
floating-point calculations, 23
SVID behavior of libm
   -Xt compiler option, 231
SVID exceptions
   errno set to EDOM
   improper operands, 228
   errno set to ERANGE
   overflow or underflow, 228
   matherr, 228
PLOSS, 232
TLOSS, 232
System V Interface Definition (SVID), 227

trap, 133
   abort on exception, 119
   ieee_retrospective, 45
trap on exception
   C example, 111, 112
trap on floating-point exceptions
   C example, 111
trigonometric functions
   argument reduction, 48

underflow
   floating-point calculations, 22
   gradual, 23, 134
   nonstandard_arithmetic, 46
   threshold, 27
underflow thresholds
   double extended precision, 22
   double precision, 22
   single precision, 22
unordered comparison
   floating-point values, 56
   NaN, 56

values.h
   define error messages, 231

X/Open behavior of libm
   -Xa compiler option, 231
   -Xt compiler option, 231
   -Xa, 231
   -Xc, 231
   -xs, 231
   -xt, 231
X_TLOSS, 231