
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

Performance Profiling Tools

Part No.: 802-5696-10
Revision A, December 1996

SunSoft, Inc.

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. vii

Typographic Conventions . viii

Shell Prompts in Command Examples. viii

Performance Profiling Tools . 1

Introduction. 1

prof —Generate the Profile of a Program 2

gprof —Generate a Call Graph Profile 4

tcov —Statement-Level Analysis . 7

Using the index.assist Program for Use With tcov . . 8

Creating Profiled Shared Libraries 11

Locking Files . 11

Reading Errors From tcov Subroutines 12

tcov Enhanced—Statement-level Analysis 13

Using the index.assist Program With tcov Enhanced 14

Creating Profiled Shared Libraries 16

iv Performance Profiling Tools

Locking Files . 16

Profile Feedback . 16

Environment Variables. 18

 Compiler Options . 18

 At the Runtime of an Instrumented Executable 20

Sample User Scenarios . 21

Index . 23

v

Figures
Figure 1 Sample prof Output . 3

Figure 2 Sample gprof Output . 6

Figure 3 Sample tcov Output . 9

Figure 4 tcov Basic Block Coverage . 10

vi Performance Profiling Tools

vii

Preface

This manual covers the prof (1), gprof (1), and tcov (1) profiling tools.

The lex (1), yacc (1), make(1S), and sccs (1) programming tools are described
in the Solaris™ programming documentation. The C-specific tools, cscope (1)
and lint (1), are described in the C User’s Guide.

The following tools may also be useful:

General Language Utilities
• fpversion (1)—(SPARC only) Prints information about the system’s CPU

and FPU
• version (1)—Displays version identification of the object file or binary

C-Oriented Tools
• cb (1)—Formats C programs to standard output with spacing and

indentation
• indent (1)—Indents and formats a C program source file
• cflow (1)—Generates C flowgraphs+
• ctrace (1)—Debugs a C program
• cxref (1)—Generates C program cross-references
• error (1)—Categorizes compiler error messages and inserts them at the

responsible source file lines

Use the man command to access these tools.

viii Performance Profiling Tools

Typographic Conventions
The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
 Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

1

Performance Profiling Tools

The tools discussed in this chapter have facilities for timing programs and
obtaining performance analysis data. Some tools work only with the C
programming language, while others work on modules written in any
language.

This document is organized into the following sections:

Introduction
Performance analysis tools provide a variety of analysis levels. Analysis levels
vary from simple timing of a command to a statement-by-statement analysis of
a program. Select the level of granularity based on the amount of detail and
optimization you wish to perform. Here are the performance analysis tools
available from the simplest to the most detailed:

prof

Generates a profile for the modules in a program, showing which modules
are most time-intensive. This tool is included with the Solaris operating
system environment.

Introduction page 1

prof—Generate the Profile of a Program page 2

gprof—Generate a Call Graph Profile page 4

tcov—Statement-Level Analysis page 7

tcov Enhanced—Statement-level Analysis page 13

Profile Feedback page 16

2 Performance Profiling Tools

gprof

Generates not only a profile, but also a call graph showing which modules
call other modules, and which modules are called by other modules. The
call graph can sometimes point out areas where removing calls can speed up
a program. This tool is included with the Solaris operating system
environment.

tcov

Generates a detailed statement-by-statement analysis of program modules.
There are two tcov implementations: the original tcov , and a new version
referred to as tcov Enhanced, which supports all compiler platforms.

Profile Feedback

A mechanism to gather information about the runtime behavior of your
program. The compiler uses this information to optimize your program.

prof —Generate the Profile of a Program
A profile of a program display assists in optimizing performance. Obtaining a
profile is the next step after simple timing (which you can do with the time (1)
utility). More detailed analysis is provided by the call-graph profile and the code
coverage tools described later.

For example, a C source file called index.assist.c produces a program
called index.assist . To compile a program for profiling, use either the -p or
-qp option to the compiler:

% cc -p -o index.assist index.assist.c

Now run the index.assist program. Each time it runs, profiling data is sent
to a file called mon.out at the end of the run. Every time you run the program
a new mon.out file is created, overwriting the old version. You then use the
prof command to interpret the results of the profile:

% index.assist
% ls mon.out
mon.out
% prof index.assist

Figure 1 on page 3 shows a sample prof output.

prof—Generate the Profile of a Program 3

Figure 1 Sample prof Output

This display points out that most of the program running time is spent in the
compare_strings routine; after that, most of the time is spent in the
_strlen library routine. To make improvements to this program, concentrate
on the compare_strings function.

%Time Seconds Cumsecs #Calls msecs/call Name

19.4 3.28 3.28 11962 0.27 compare_strings

15.6 2.64 5.92 32731 0.08 _strlen

12.6 2.14 8.06 4579 0.47 __doprnt

10.5 1.78 9.84 mcount

9.9 1.68 11.52 6849 0.25 _get_field

5.3 0.90 12.42 762 1.18 _fgets

4.7 0.80 13.22 19715 0.04 _strcmp

4.0 0.67 13.89 5329 0.13 _malloc

3.4 0.57 14.46 11152 0.05 _insert_index_entry

3.1 0.53 14.99 11152 0.05 _compare_entry

2.5 0.42 15.41 1289 0.33 lmodt

0.9 0.16 15.57 761 0.21 _get_index_terms

0.9 0.16 15.73 3805 0.04 _strcpy

0.8 0.14 15.87 6849 0.02 _skip_space

0.7 0.12 15.99 13 9.23 _read

0.7 0.12 16.11 1289 0.09 ldivt

0.6 0.10 16.21 1405 0.07 _print_index

.

. (The rest of the output is insignificant)

4 Performance Profiling Tools

Let’s interpret the results of the profiling run-through. The results are listed
under these column headings:

%Time—The percentage of the total runtime of the program consumed by
this routine.

Seconds —The total number of seconds accounted for by this function.

Cumsecs—A running sum of the number of seconds accounted for by this
function and those listed above it.

#Calls —The number of times this routine is called.

msecs/call —The number of milliseconds this routine consumes each time
it is called.

Name—The name of the routine.

What results can be derived from the profile data? The compare_strings
function consumes nearly 20% of the total time. To improve the runtime of
index.assist , either improve the algorithm that compare_strings uses, or
cut down the number of calls to compare_strings .

It is not obvious from the flat call graph that compare_strings is heavily
recursive, but you can deduce this by using the call graph profile described in
the next section. In this particular case, improving the algorithm also reduces
the number of calls.

gprof —Generate a Call Graph Profile
While the flat profile can provide valuable data for performance
improvements, sometimes the data obtained is not sufficient to point out
exactly where improvements can be made. A more detailed analysis can be
obtained by using the call graph profile to display a list identifying which
modules are called by other modules, and which modules call other modules.
Sometimes removing calls altogether can result in performance improvements.

Using the same index.assist program as an example, compile the program
for call graph profiling. Use the -xpg option to the C compiler or the -pg
option to other compilers:

% cc -xpg -o index.assist index.assist.c

gprof—Generate a Call Graph Profile 5

Now run the index.assist program as before. When a program is compiled
in this manner, each time it is run, call-graph profile data is sent to a file called
gmon.out at the end of the run. This file is re-created each time you run the
program. Use the gprof command to interpret the results of the profile. The
output from gprof is voluminous—it’s usually intended that you take the
summaries away and read them later. For that reason, redirect the output to a
file, /tmp/g.output :

% index.assist
% ls gmon.out
gmon.out
% gprof index.assist > /tmp/g.output

The output from gprof consists of two major items:

• The full call graph profile. Figure 2 on page 6 shows fragments of output
from a profiling run.

• The “flat” profile, similar to the summary the prof command supplies.

The output from gprof contains an explanation of what the various parts of
the summary mean. gprof also identifies the granularity of the sampling:

granularity: each sample hit covers 4 byte(s) for 0.14% of 14.74
seconds

6 Performance Profiling Tools

This is part of the call graph profile:

Figure 2 Sample gprof Output

called/total parents

index %time self descendents called+self name index

called/total children

0.00 14.47 1/1 start [1]

[2] 98.2 0.00 14.47 1 _main [2]

0.59 5.70 760/760 _insert_index_entry [3]

0.02 3.16 1/1 _print_index [6]

0.20 1.91 761/761 _get_index_terms [11]

0.94 0.06 762/762 _fgets [13]

0.06 0.62 761/761 _get_page_number [18]

0.10 0.46 761/761 _get_page_type [22]

0.09 0.23 761/761 _skip_start [24]

0.04 0.23 761/761 _get_index_type [26]

0.07 0.00 761/820 _insert_page_entry [34]

10392 _insert_index_entry [3]

0.59 5.70 760/760 _main [2]

[3] 42.6 0.59 5.70 760+10392 _insert_index_entry [3]

0.53 5.13 11152/11152 _compare_entry [4]

0.02 0.01 59/112 _free [38]

0.00 0.00 59/820 _insert_page_entry [34]

10392 _insert_index_entry [3]

tcov—Statement-Level Analysis 7

Assuming there are 761 lines of data in the input file to the index.assist
program, the following conclusions can be drawn:

• fgets is called 762 times. The last call to fgets returns an end-of-file.

• The insert_index_entry function is called 760 times from main .

• In addition to the 760 times insert_index_entry is called from main,
insert_index_entry also calls itself 10,392 times.
insert_index_entry is heavily recursive.

• compare_entry (which is called from insert_index_entry) is called
11,152 times, which is equal to 760+10,392 times. There is one call to
compare_entry for every time insert_index_entry is called. This is as
it should be. If there were a discrepancy in the number of calls, you could
suspect some problem in the program logic.

• insert_page_entry is called 820 times in total: 761 times from main
while the program is building index nodes, and 59 times from
insert_index_entry . This frequency indicates there are 59 duplicated
index entries, so their page number entries are linked into a chain with the
index nodes. The duplicate index entries are then freed; hence the 59 calls to
free() .

tcov —Statement-Level Analysis
tcov gives line-by-line information on how a program executes. It produces a
copy of the source file, annotated to show which lines are used and how often.
It also summarizes information about basic blocks.

tcov works with both C and C++ programs, but tcov does not support files
that contain #line or #file directives. tcov does not enable test coverage
analysis of the code in the #include header files. Applications compiled with
-xa (C), -a (other compilers), and +d (C++) run slower than normal. The +d
option inhibits expansion of C++ inline functions, and updating the .d file for
each execution takes considerable time.

8 Performance Profiling Tools

Using the index.assist Program for Use With tcov

Using the index.assist program, compile for use with tcov . To compile a
program for code coverage, use the -xa option to the C compiler, or the -a
option of other compilers:

% cc -xa -o index.assist index.assist.c

The C compiler generates an index.assist.d file, containing database
entries for the basic blocks present in index.assist.c . When the program
index.assist is run till completion, the compiler updates the
index.assist.d file. The count of basic blocks cannot exceed the value
represented by an unsigned int .

The index.assist.d file is created in the directory specified by the
environment variable TCOVDIR, which is set as follows:

In a Bourne Shell:

$ TCOVDIR=directory
$ export TCOVDIR

In a C Shell:

% setenv TCOVDIR directory

If TCOVDIR is not set, index.assist.d is created in the current directory.

Having compiled index.assist.c , run index.assist .

Now, run tcov to produce a file containing the summaries of execution counts
for each statement in the program. tcov uses the index.assist.d file to
generate an index.assist.tcov file containing an annotated list of your
code. The output shows the number of times each source statement is
executed. At the end of the file, there is a short summary.

% index.assist
% ls *.d
index.assist.d

% tcov index.assist.c
% ls *.tcov
index.assist.tcov

tcov—Statement-Level Analysis 9

Figure 3 shows a small fragment of the C code from one of the modules of
index.assist —the module in question is the insert_index_entry
function called so recursively.

Figure 3 Sample tcov Output

The insert_index_entry function is called 11,152 times, as determined in
the output from gprof . The numbers to the side of the C code show how many
times each statement was executed.

struct index_entry *
11152 -> insert_index_entry(node, entry)

structindex_entry *node;
struct index_entry *entry;
{

int result;
int level;

result = compare_entry(node, entry);
if (result == 0) { /* exact match */

/* Place the page entry for the duplicate */
/* into the list of pages for this node */

59 -> insert_page_entry(node, entry->page_entry);
free(entry);
return(node);
}

11093 -> if (result > 0) /* node greater than new entry -- */
/* move to lesser nodes */

3956 -> if (node->lesser != NULL)
3626 -> insert_index_entry(node->lesser, entry);

else {
330 -> node->lesser = entry;

return (node->lesser);
}
else /* node less than new entry -- */

/* move to greater nodes */
7137 -> if (node->greater != NULL)
6766 -> insert_index_entry(node->greater, entry);

else {
371 -> node->greater = entry;

return (node->greater);
}

}

10 Performance Profiling Tools

Following is the summary tcov placed at the end of index.assist.tcov :

Figure 4 tcov Basic Block Coverage

A program compiled for code coverage analysis can be run multiple times
(with potentially varying input); tcov can be used on the program after each
run to compare behavior.

 Top 10 Blocks

 Line Count

240 21563

241 21563

245 21563

251 21563

250 21400

244 21299

255 20612

257 16805

123 12021

124 11962

77 Basic blocks in this file

55 Basic blocks executed

71.43 Percent of the file executed

439144 Total basic block executions

5703.17 Average executions per basic block

tcov—Statement-Level Analysis 11

Creating Profiled Shared Libraries

It is possible to create a profiled shareable library and use it in place of one
where binaries have already been linked. Include the -xa (C) or
-a (other compilers) option when creating the shareable libraries.
For example:

%cc -G -xa -o foo.so.1 foo.o

This command includes a copy of the tcov profiling subroutines in the
shareable libraries, so that clients of the library do not need to relink. If a client
of the library is also linked for profiling, then the version of the tcov
subroutines used by the client is used to profile the shareable library.

Locking Files

tcov uses a simple file-locking mechanism for updating the block coverage
database in the .d files. It employs a single file, /tmp/tcov.lock , for this
purpose. Consequently, only one executable compiled with -xa (C) or -a
(other compilers) should be running on the system. If the execution of the
program compiled with the -xa (or -a) option is manually terminated, then
the /tmp/tcov.lock file has to be deleted manually.

Files compiled with the -xa or -a option call the profiling tools subroutines
automatically when a program is linked for tcov profiling. At program exit,
these subroutines combine the information collected at runtime for file xyz.f
with the existing profiling information stored in file xyz.d . To ensure this
information is not corrupted by several people simultaneously running a
profiled binary, a xyz.d.lock lock file is created for xyz.d for the duration of
the update. If there are any errors in opening or reading xyz.d or its lock file,
or if there are inconsistencies between the runtime information and the stored
information, then the information stored in xyz.d is not changed.

An edit and recompile of xyz.d may change the number of counters in xyz.d .
This is detected if an old profiled binary is run.

If too many people are running a profiled binary, the lock cannot be obtained.
An error message similar to the following is displayed after a delay of several
seconds:

12 Performance Profiling Tools

tcov_exit: Failed to create lock file
'/tmp_mnt/net/rbbb/export/home/src/newpattern/foo.d.lock'
for coverage data file
'/tmp_mnt/net/rbbb/export/home/src/newpattern/foo.d'
after 5 tries. Is somebody else running this binary?

The stored information is not updated. This locking is safe across a network.
Since locking is performed on a file-by-file basis, other files may be correctly
updated.

The profiling subroutines attempt to deal with automounted file systems that
have become unaccessible. They still fail if the file system containing a
coverage data file is mounted with different names on different machines, or if
the user running the profiled binary does not have permission to write to
either the coverage data file or the directory containing it. Be sure all the
directories are uniformly named and writable by anyone expected to run the
binary.

Reading Errors From tcov Subroutines

The following error messages occur from tcov subroutines:

tcov_exit: Could not open coverage data file
' coverage data file name' because
' system error message string'.

The user running the binary lacks permission to read or write to the coverage
data file. The problem also occurs if the coverage data file has been deleted.

tcov_exit: Could not write coverage data file
' coverage data file name' because
' system error message string'.

The user running the binary lacks permission to write to the directory
containing the coverage data file. The problem also occurs if the directory
containing the coverage data file is not mounted on the machine where the
binary is being run.

tcov_exit: Failed to create lock file ' lock file name' for
coverage data file ' coverage data file name' after 5 tries. Is
someone else running this executable?

tcov Enhanced—Statement-level Analysis 13

Too many users are trying to update a coverage data file at the same time. The
problem also occurs if a machine has crashed while a coverage data file is
being updated, leaving behind a lock file. In the event of a crash, the longer of
the two files should be used as the post-crash coverage data file. Manually
remove the lock file.

tcov_exit: Stdio failure, probably no memory left.

No memory is available, and the standard I/O package will not work. You
cannot update the coverage data file at this point.

tcov_exit: Coverage data file path name too long (length
characters) ' coverage data file name'.

The lock file name contains six more characters than the coverage data file
name; therefore, the derived lock file name may not be legal.

tcov_exit: Coverage data file ' coverage data file name' is too
short. Is it out of date?

A library or binary with tcov profiling enabled is simultaneously being run,
edited, and recompiled. The old binary expects a coverage data file of a certain
size, but the editing often changes that. If the compiler creates a new coverage
data file at the same time the old binary is trying to update the old coverage
data file, the binary may see an apparently empty or corrupt coverage file.

tcov Enhanced—Statement-level Analysis
tcov Enhanced gives line-by-line information on how a program executes. It
produces a copy of the source file, annotated to show which lines are used and
how often. It also gives a summary of information about basic blocks. tcov
Enhanced works with both C and C++ source files.

The original tcov does not support files with #line or #file directives. tcov
does not enable test coverage analysis of the code in the #include header
files. Applications compiled with -xa (C), -a (other compilers), and +d (C++)
run slower than norma. The +d option inhibits expansion of C++ inline
functions, and updating the .d file for each execution takes considerable time.

tcov Enhanced overcomes some of the shortcomings of the original tcov . In
particular, functionality has been modified to provide more complete support
for C++. tcov Enhanced supports code found in #include header files and

14 Performance Profiling Tools

corrects a flaw that obscured coverage numbers for template classes and
functions. In addition, tcov Enhanced runtime is more efficient than the
original tcov runtime. Finally, tcov Enhanced is supported for all the
platforms the compilers support.

Using the index.assist Program With tcov Enhanced

For a description of how to use the index.assist program for the original
tcov see “Using the index.assist Program for Use With tcov” on page 8.

tcov Enhanced has the same basic user model as the original tcov :

1. Compile a program for a tcov Enhanced experiment.

2. Run the experiment.

3. Analyze results using tcov(1) .

The index.assist program can be used to illustrate the operation of tcov
Enhanced. To compile a program for code coverage for tcov Enhanced, use the
-xprofile=tcov option (for all compilers):

% cc -xprofile=tcov -o index.assist index.assist.c

tcov Enhanced, unlike tcov , does not produce a .d file. The coverage data file
is not created until the program is run. Then one coverage data file is produced
as opposed to one file for each module compiled for coverage analysis.

Having compiled index.assist.c , you can run index.assist

%index.assist

% ls -dF *.profile

index.assist.profile/

% ls *.profile

tcovd

By default, the name of the directory where the tcovd file is stored is derived
from the name of the executable. Furthermore, that directory is created in the
directory the executable was run in (the original tcov created the .d files in
the directory where the modules were compiled).

tcov Enhanced—Statement-level Analysis 15

The directory where the tcovd file is stored is also known as the “profile
bucket.” The profile bucket can be overridden by using the SUN_PROFDATA
environment variable. This may be useful if the name of the executable is not
the same as the value in argv[0] (for example, the invocation of the
executable was through a symbolic link with a different name).

You can also override the directory where the profile bucket is created. To
specify a location different from the run directory, specify the path using the
SUN_PROFDATA_DIR environment variable.Absolute or relative pathnames can
be specified in this variable. Relative pathnames are relative to the program’s
current working directory at program completion.

TCOVDIR is supported as a synonym for SUN_PROFDATA_DIR for backward
compatibility. Any setting of SUN_PROFDATA_DIR causes TCOVDIR to be
ignored. If both SUN_PROFDATA_DIR and TCOVDIR are set, a warning is
displayed when the profile bucket is generated. SUN_PROFDATA_DIR takes
precedence over TCOVDIR. The variables are used at runtime by a program
compiled with -xprofile=tcov, and are used by the tcov command.

Note – This scheme is also used by the profile feedback mechanism.

Now that some coverage data has been produced, you can generate a report
that relates the raw data back to the source files:

% tcov -x index.profile index.assist.c

% ls *.tcov

index.assist.c.tcov

The output of this report is identical to the one from the previous example (for
the original tcov).

16 Performance Profiling Tools

Creating Profiled Shared Libraries

Creating shared libraries for use with tcov Enhanced is accomplished by
using the analogous compiler options:

% cc -G -xprofile=tcov -o foo.so.1 doo.o

Locking Files

tcov Enhanced uses a simple file-locking mechanism for updating the block
coverage data file. It employs a single file created in the same directory as the
tcovd file. The file name is tcovd.temp.lock . If execution of the program
compiled for coverage analysis is manually terminated, then the lock file must
be deleted manually.

The locking scheme does an exponential back-off if there is a contention for the
lock. If, after five tries, the tcov runtime cannot acquire the lock, it gives up
and the data is lost for that run. In this case, the following message is
displayed:

tcov_exit: temp file exists, is someone else running this
executable?

Profile Feedback
Profile Feedback and tcov share a common way of collecting and recording
data, which includes placing their output in the same directory and using the
same environment variables to control where the profile output goes and what
it is called. The profile bucket specifies the directory where the profile output is
generated (both tcov profile output and Profile Feedback output).

Compile the program with tcov or Profile Feedback collection turned on, and
run the program. At exit, the running program generates a profile bucket. If a
previous profile bucket exists, the program uses that profile bucket. If a profile
bucket does not exist, it creates the profile bucket.

The default profile bucket the program creates is named after the executable
with a “.profile ” extension and is created in the place where the executable
is run. Therefore, if you are in /home/joe , and run a program called
/usr/bin/xyz , the default behavior is to create a profilebucket called
xyz.profile in /home/joe .

Profile Feedback 17

There are two ways to override the default:

1. Specify the exact profile bucket you want generated on the compile line.

The running executable honors the specification even in the presence of
environment variables. This is only done for Profile Feedback.

2. Use the environment variables to change the profile bucket.

There are two ways to change the profile bucket:

a. Change the name of the profile bucket using the environment variable
SUN_PROFDATA.

b. Change the directory where the profile-bucket is placed, which can be
controlled with SUN_PROFDATA_DIR.

The environment variables override the default location and name of the
profile bucket. Both can be overridden independently.

For example, if you only choose to set SUN_PROFDATA_DIR, the profile
bucket will go into the directory where you set SUN_PROFDATA_DIR. The
default name (which is the executable name followed by a “.profile ”)
will still be the name used for the profile bucket.

There are two forms of directories you can specify by using
SUN_PROFDATA_DIR on the Profile Feedback compile line: absolute pathnames
(which start with a ‘/’), and relative pathnames. If you use an absolute
pathname, the profile bucket is dropped into that directory. If you specify a
relative pathname, then it is relative to the current working directory where the
executable is being run.

For example, if you are in /home/joe and run a program called
/usr/bin/xyz with SUN_PROFDATA_DIR set to .. , then the profile bucket is
called /home/joe/../xyz.profile . The value specified in the environment
variable was relative, and therefore, it was relative to /home/joe . Also, the
default profile bucket name is used, which is named after the executable.

The previous version of tcov (enabled by compiling with the -xa or -a flag)
used an environment variable called TCOVDIR. TCOVDIR specified the
directory where the tcov counter files go to instead of next to the source files.
We have retained compatibility with this environment variable, in that the new
SUN_PROFDATA_DIR environment variable behaves like the TCOVDIR
environment variable. If both variables are set, a warning is output and
SUN_PROFDATA_DIR takes precedence over TCOVDIR.

18 Performance Profiling Tools

Environment Variables

SUN_PROFDATA

Can be used to specify the name of the profile bucket at runtime.The value of
this variable is always appended to the value of SUN_PROFDATA_DIR if both
variables are set.

SUN_PROFDATA_DIR

Can be used to specify the name of the directory containing the profile bucket.
It is used at runtime and in the tcov command.

TCOVDIR

TCOVDIR is supported as a synonym for SUN_PROFDATA_DIR to maintain
backward compatibility. Any setting of SUN_PROFDATA_DIR causes TCOVDIR
to be ignored. If both SUN_PROFDATA_DIR and TCOVDIR are set, a warning is
displayed when the profile bucket is generated.

TCOVDIR is used at runtime by a program compiled with -xprofile=tcov
and it is used by the tcov command.

 Compiler Options

These rules must be followed when using Profile Feedback compiler options:

1. The optimization level should 2 or greater.

2. For -xprofile=collect and -xprofile=use , you must use the same
command-line options.

3. Source code changes are not allowed between the collect and use Profile
Feedback phases.

-xprofile=collect [: nameopt]

This flag instructs the compiler to instrument the code for Profile Feedback
data collection.

nameopt specifies a name for the generated profile bucket. It is not a path name
to the profile bucket, but the actual name. nameopt can name an absolute or
relative profile bucket.

Profile Feedback 19

If nameopt is not specified, the default output profile bucket is placed in the
current working directory. It is given the same name as the executable with a
.profile extension.

If nameopt is specified, the profile bucket is called nameopt . If nameopt is a
relative pathname to the profile bucket, it is generated relative to the current
working directory.

If nameopt is specified, it should be a path to the profile bucket. The compiler
does not change the user specified name of the profile bucket. If nameopt is an
absolute name, it is used as specified; otherwise nameopt is relative to the
current working directory.

If nameopt is specified, the environment variables do not affect it. The compiler
uses nameopt as the name of the profile bucket.

-xprofile=use [: nameopt]

This flag instructs the compiler to use Profile Feedback data that was collected
from a program instrumented to collect this data.

If nameopt is not specified, the default profile bucket name the compiler uses is
a.out.profile in the current working directory.

If nameopt is specified, it should be a path to the profile bucket. The compiler
does not change the user specified name of the profile bucket. If nameopt is an
absolute name, it is used as specified; otherwise nameopt is relative to the
current working directory.

If nameopt is specified, the environment variables do not affect it. The compiler
uses nameopt as the name of the profile-bucket.

-xprofile=tcov

This flag instructs the compiler to instrument the code for tcov data collection.
It does not create any user-visible files at compile time, unlike the previous
version of tcov , which created coverage files at compile time.

20 Performance Profiling Tools

 At the Runtime of an Instrumented Executable

All relative path names start at the current working directory of the program,
which includes the environment variables and the directory names specified on
the command line.

For -xprofile=collect and -xprofile=tcov

By default the profile bucket is called <argv[0] >.profile in the current
directory.

If you set SUN_PROFDATA, the profile bucket is called $SUN_PROFDATA,
wherever it is located.

If you set SUN_PROFDATA_DIR, the profile bucket is placed in the specified
directory.

SUN_PROFDATA and SUN_PROFDATA_DIR are independent. If both are
specified, the profile bucket name is generated by using SUN_PROFDATA_DIR
to find the profile bucket and, SUN_PROFDATA is used to name the profile
bucket in that directory.

A UNIX process can change its current working directory during the
execution of a program. The current working directory used to generate the
profile bucket is the current working directory of the program at exit. In the
rare case where a program actually does change its current working directory
during execution, the environment variables can easily control where the
profile bucket is generated.

For a Program Compiled With -xprofile=collect: nameopt

If nameopt is specified by the user, then it is used for the name of the profile
bucket. None of the environment variables have any effect if nameopt is used.
This option is used to make sure the Profile Feedback data goes into a single
profile bucket no matter what the environment of the program being used
looks like. This is useful for groups trying to put an executable in a common
area for many people to use and collect data on.

Profile Feedback 21

tcov Program

The -xprofile-bucket option specifies the name of the profil -bucket to use
for the tcov analysis. SUN_PROFDATA_DIR or TCOVDIR are prepended to this
argument, if they are set.

Sample User Scenarios

1. To profile different programs over a period of time, and have a private
directory where the profile buckets are created:
• Set SUN_PROFDATA_DIR to your private directory and leave it set.
• Make sure this private directory is writable.

2. To collect data from two different sets of runs by using the same binary:
• Set SUN_PROFDATA to the name of a specific profile bucket that will be

created, if necessary.
• Run your program repeatedly with different inputs.
• Set SUN_PROFDATA to a different name.
• Run your program repeatedly on a different set of inputs.
• Unset the SUN_PROFDATA variable.

3. To profile multiple executables in the same directory:
• Compile your program with only -xprofile=collect . By default, the

profile data for each individual program goes into a separate profile
bucket, each named after a different executable.

4. To make sure the output of your profile run always goes to a certain
directory without using environment variables:
• Compile your program with -xprofile=collect :<my profile-bucket>.
• Run your program. Tthe output goes to the specified profile bucket.
• Recompile your program with -xprofile=use :<my profile-bucket> to use

this data.

For example:

a. Compile your program with -xprofile=collect .

b. Specify where you would like the output to go.

% cc -xprofile=collect:/home/bar/run1.profile -o xyz xyz.c -x04

c. Run your program.

22 Performance Profiling Tools

The profile bucket /home/bar/run1.profile is created.

% xyz

d. Recompile your program to use the profile information.

% cc -xprofile=use:/home/bar/run1.profile -o xyz xyz.c -x04

5. To examine the new version of tcov after you have TCOVDIR set in your
environment:
• Compile your program (called xyz , for example) with -xprofile=tcov .
• Run xyz, the output goes to $TCOVDIR/xyz.profile .
• Run the tcov command:

tcov -x xyz.profile filename.c,

The output from tcov will be in filename.c.tcov.

23

Index

C
call graph profile, 4 to 7

G
gprof

description, 2
generate a call graph profile, 4
sample output, 5

gprof (1), 4 to 7

I
index.assist (profiling sample

program), 2
introduction, 1

P
performance analysis, 1 to 13

gprof command, 4 to 7
levels of, 1
prof command, 2 to 4
tcov command, 7 to 13

prof
description, 1
generate profile of a program, 2
sample output, 2

prof (1), 2 to 4

profiling
compile a program, 2
shared libraries, 11

T
tcov

 Enhanced, 13
 locking files, 11
description, 2
error messages, 12
sample output, 9
statement-level analysis, 7

tcov (1), 7 to 13
TCOVDIR, 8

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, et SunSoft sont des marques déposées ou enregistrées de Sun Microsystems, Inc.
aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou
enregistrées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

