
Sun WorkShop TeamWare: Users Guide

Part No: 802-5953-10
Revision A, December 1996

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Solaris , and Sun WorkShop TeamWare, are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. xiii

1. QuickStart . 1

Basic Concepts . 1

Parent and Child Workspaces . 2

Source Code Control System . 3

Changing Names . 3

Versioning . 7

Freezepointing . 9

Distributed Make . 11

2. Introduction . 13

How to Use the Documentation Supplied with TeamWare . . . 14

3. Introduction to TeamWare Configuring 15

Coordinating the Work of Software Developers 15

Copy-Modify-Merge Model . 16

Copy-Modify-Merge Example . 18

iv Sun Workshop TeamWare Users Guide—December 1996

Default Configuring. 19

Workspace. 20

Copying Files between Workspaces 25

Resolving Conflicts . 33

4. Introduction to Merging . 35

Differences Defined . 36

Difference . 36

Current, Next, and Previous Difference 36

Resolved and Remaining Difference 36

Graphical Overview . 37

Merging Window. 37

Merging Glyphs . 37

5. Starting a Project . 41

Moving an Existing SCCS-Based Project to Sun Workshop
TeamWare . 41

Moving a Non-SCCS Software Development Project to Workshop
TeamWare . 42

Converting an RCS Project to Workshop TeamWare 42

Further User Notes . 43

Starting a New Software Development Project with Workshop
TeamWare . 43

Configuring a Workspace Hierarchy 44

File Transfer Considerations. 45

Product Release Considerations. 47

Coordinating Access to Source Files . 48

Contents v

Branches . 49

6. TeamWare Configuring User Interfaces 51

TeamWare Configuring Command-Line Interface. 52

TeamWare Configuring Graphical User Interface 53

Starting TeamWare Configuring. 53

TeamWare Configuring Windows . 54

Configuring Window. 55

Customizing the Configuring Program Using Properties . 57

Accelerators . 60

7. TeamWare Configuring Workspace . 61

The Workspace Metadata Directory . 62

Creating a Workspace . 64

Using Workspace Create . 64

Using the Bringover Create Transaction 64

Deleting a Workspace . 64

Moving and Renaming a Workspace. 65

A Note About Moving Workspaces. 65

Reparenting a Workspace . 66

Two Ways to Reparent Workspaces . 66

Reasons to Change a Workspace’s Parent. 67

Controlling Access to Workspaces . 71

Viewing and Changing Access Control Values 74

How to Notify Users of Changes to Workspaces 75

Viewing and Changing Notification Entries 76

vi Sun Workshop TeamWare Users Guide—December 1996

Notes About Registering Notification Events 77

Viewing Workspace Command History 78

Ensuring Consistency through Workspace Locking 80

Configuring Environment Variables . 81

The CODEMGR_WS Variable . 82

The CODEMGR_WSPATH Variable . 82

8. Copying Files between Workspaces . 83

Configuring Transaction Model . 83

General File Copying Information. 84

SCCS History Files. 85

Viewing Transaction Output . 85

Specifying Directories and Files for Transactions 85

Copying Files from a Parent to a Child Workspace (Bringover) 89

Creating a New Child Workspace (Bringover Create) 90

Notes about the Bringover Create Transaction 92

Updating an Existing Child Workspace (Bringover Update) 94

Notes about the Bringover Update Transaction. 96

Bringover Action Summary . 99

Copying Files from a Child to a Parent Workspace (Putback) . 99

Updating a Parent Workspace Using Putback 100

Notes about the Putback Transaction 102

Putback Action Summary . 104

Reversing Bringover and Putback Transactions with Undo. . . 105

Notes about the Undo Transaction . 106

Contents vii

How the Undo Transaction Works. 106

Renaming, Moving, or Deleting Files . 108

Renaming Files. 108

Deleting Files . 112

Notes about Renaming Files. 113

9. Resolving Conflicts. 115

Conflict Resolution Process . 115

Changing Names . 116

Detecting Conflicts. 116

Detecting Conflicts during Bringover Update Transactions 116

Preparing Files for Conflict Resolution 117

Resolving Conflicts . 117

Resolve Transaction . 118

10. Administering the Workspace . 123

Starting a Project with the Configuring Program 123

Moving an Existing Project. 123

Starting a New Project. 124

Structuring Your Workspace Hierarchy 124

File Transfer Considerations. 126

Product Release Considerations. 128

11. How the Configuring Program
Merges SCCS Files . 131

Merging Files That Do Not Conflict . 132

Merging Files That Conflict . 133

viii Sun Workshop TeamWare Users Guide—December 1996

An Example of Merging . 134

12. Configuring Example . 143

Creating Workspaces . 144

Putting Back Changes . 145

Updating a Workspace . 146

Resolving Conflicts . 147

13. Error and Warning Messages . 149

Error Messages . 150

Warnings Messages . 165

14. Performing Basic SCCS Functions with Versioning 171

Typical Sessions . 171

Changing Names . 172

Putting a Project Under SCCS Control 172

Working with a Project Under SCCS Control. 173

Getting Help on the GUI or the CLI 174

Commands: Manipulating Files . 174

Checking Out and Checking In Files. 175

Editing a Checked-Out File . 176

Checking in a New File . 176

Unchecking Out a File . 177

View Option: Changing Versioning Properties 177

Changing the Main File List Display. 177

Defining an Editor . 178

Changing the Double-Click Action . 178

Contents ix

Changing the History Graph Display 179

Changing the History Information Display 179

15. Starting and Loading Merging . 181

Changing Names . 182

Starting Merging from Sun WorkShop . 182

Starting Merging from Sun WorkShop TeamWare. 182

Loading Files from the Merging Window. 182

Starting Merging from the Command Line 183

Basic Startup Command . 184

Command-Line Synopsis . 184

Loading Two Files at Startup . 186

Loading Three Files at Startup . 187

Loading Files from a List File . 187

Saving the Output File . 188

16. Examining Differences. 189

Moving Between Differences . 189

Resolving Differences . 189

Automatic Merging . 190

An Example . 190

Starting Merging . 192

Examining Differences . 193

Saving Output File. 194

17. Introduction to FreezePointing. 197

Changing Names . 197

x Sun Workshop TeamWare Users Guide—December 1996

How FreezePointing Works . 198

Starting FreezePointing . 200

Creating a Freezepoint File . 201

Viewing or Modifying a Freezepoint File 202

Recreating (Extracting) a Source Hierarchy 202

Notes about Using FreezePointing . 204

Details about the Freezepoint File . 204

What is a SMID?. 205

Why are SMIDs Necessary? . 205

SMID/SID Translation . 205

Translating SIDs to SMIDs . 206

Translating SMIDS to SIDS . 206

18. Troubleshooting Versioning
and FreezePointing . 209

Troubleshooting Checklist . 209

Reporting Problems . 210

Error Messages . 210

 Display Problems . 211

19. Building Programs in Sun Workshop TeamWare 213

Building a TeamWare Target. 213

Building With Default Values . 214

Building With NonDefault Values . 214

Modifying a TeamWare Target . 215

Fixing Build Errors. 215

Contents xi

20. Using DistributedMake . 219

Basic Concept of Distributed Make . 219

Configuration Files . 220

The DMake Host . 220

The Build Server. 223

What You Should Know About DMake Before You Use It 223

DMake’s Impact on Makefiles . 223

How to Use DMake . 229

Notes . 230

Controlling DistributedMake Jobs. 230

Getting Help on the GUI or the CLI 231

21. Dealing With Release Matters . 233

Integrating Your Changes . 233

Performing Master Builds. 233

Establishing Nightly Builds . 234

Performing Releases . 234

Organizing a Release . 234

How the Release Process Works. 234

Index . 241

xii Sun Workshop TeamWare Users Guide—December 1996

xiii

Preface

Introduction
The Sun Workshop TeamWare Users Guide describes how to use the Sun Workshop
TeamWare code management tools. The concepts and information discussed
apply to both command line and graphical user interfaces.

Who Should Use This Book
Sun Workshop Teamware Users Guide is directed towards the software
developer, but also addresses integrators, administrators and release engineers
in their tasks involving code management.

As a software developer, you typically acquire code from a code integration
area or integration workspace. You then:

• Add new features to your program module
• Test and debug the program
• Put the code back in the implementation or integration workspace from

which it was acquired

The Configuring section of this guide is primarily addressed to the software
developer. It also addresses the needs of integrators, administrators, and
release engineers.

The Versioning and Freezepointing section of this guide explains how to use
Versioning for controlling files and monitoring changes on concurrent software
development projects. Versioning is a graphical user interface (GUI) to the

xiv Sun Workshop TeamWare Users Guide—December 1996

source code control system (SCCS). It also explains how to use Freezepointing,
a tool that allows you to create snapshots of a project at various key junctures.
These snapshots, or freezepoints, enable you to recreate the project at a
particular state in its development cycle. Use this section if you write programs
coded in ASCII text source. This sections assumes that you are familiar with
programming constructs and processes. You need not have previous
experience with SCCS.

The Building and DMake sections of this guide are a supplement to the
standard make documentation. They describe how to use Building and
Distributed Make to make the process of building programs more efficient. Use
these sections if you maintain programs using the make utility and wish to
speed up the build process. These sections also assume that you are familiar
with the standard make utility.

This manual assumes that you are familiar with the SunOS operating system,
the UNIX® source code control system (SCCS), and with general programming
terminology.

Compatibility
See the online readme file for specific operating environment information.

Before You Read This Book
You should have TeamWare installed on your system. See the Installing
Developer Products on Solaris manual for information on how to install the
TeamWare software.

How This Book Is Organized
Chapter 1, “QuickStart”—provides instructions for quickly getting started
using the TeamWare Code Management Tools.

Chapter 2, “Introduction”—provides a full introduction to the Sun WorkShop
TeamWare product, and provides you with ways to get the best information.

Chapter 3, “Introduction to TeamWare Configuring”—presents an overview of
the Configuring portion of TeamWare. Basic concepts are discussed that are
vital to understanding how Configuring works.

Preface xv

Chapter 4, “Introduction to Merging” —presents an overview of the Merging
portion of TeamWare, and describes the graphical interface.

Chapter 5, “Starting a Project” — presents information on how to start a new
project, and how to move existing work projects into the TeamWare
environment.

Chapter 6, “TeamWare Configuring User Interfaces”— describes the
Configuring user interfaces.

Chapter 7, “TeamWare Configuring Workspace”—describes the Configuring
workspace and the associated commands.

Chapter 8, “Copying Files between Workspaces”— describes the TeamWare
Configuring transactions used to transfer files between workspaces.

Chapter 9, “Resolving Conflicts”—explains how you resolve conflicts between
files in parent and child workspaces.

Chapter 10, “Administering the Workspace”—discusses those considerations to
be made when starting a project with the Configuring Program.

Chapter 11, “How the Configuring Program Merges SCCS Files”—describes
how TeamWare Configuring manipulates SCCS history files during file transfer
transactions.

Chapter 12, “Configuring Example”—contains an example that demonstrates
the TeamWare Configuring bringover, putback, and resolve transaction cycle.

Chapter 13, “Error and Warning Messages”—lists TeamWare Configuring error
messages and warnings. Each message is defined, and a possible remedy is
provided.

Chapter 14, “Performing Basic SCCS Functions with Versioning” —describes
common SCCS functions such as checking out and editing a file, checking in a
new file, and displaying delta differences, using the Versioning service. It
covers the basic operational tasks and walks you through step-by-step
instructions.

Chapter 15, “Starting and Loading Merging” —presents Merging, a tool that
allows you merge files to resolve conflicts. It provides an introduction to the
graphical interface and a tour of the command line options.

xvi Sun Workshop TeamWare Users Guide—December 1996

Chapter 16, “Examining Differences” — examines the process of using Merging
to resolve differences between files, including automatic merging, and
provides a detailed example.

Chapter 17, “Introduction to FreezePointing”—presents Freezepointing, a tool
that allows you to create snapshots of a project. It provides an overview of the
graphical interface and shows you how to use this tool in conjunction with the
other TeamWare development tools.

Chapter 18, “Troubleshooting Versioning and FreezePointing”—provides a
problem checklist to consider before calling the Sun Support hotline. It also
gives information on how to report a problem, as well as a list of error
messages—their meanings and what to do next.

Chapter 19, “Building Programs in Sun Workshop TeamWare”—presents a
discussion of the build process with specific targets, as well as hints on fixing
build errors.

Chapter 20, “Using DistributedMake”—describes DMake, a tool that allows
you to distribute builds overs several hosts concurrently. The operation of
DMake is described, and instructions given on how to distribute your build
efficiently.

Chapter 21, “Dealing With Release Matters”—provides a summary of the post-
build process, and points to a source for further help in handling release and
integration matters.

“Glossary”—provides a clear explanation of the special terms used in this
manual.

How to Get Help
This release of Sun WorkShop TeamWare includes a new documentation delivery
system as well as online manuals and video demonstrations. To find out more,
you can start in any of the following places:

• Online Help – A new help system containing extensive task-oriented,
context-sensitive help. To access the help, choose Help ➤ Help Contents.
Help menus are available in all Sun WorkShop TeamWare windows.

Preface xvii

• TeamWare Documentation – A set of online manuals. These manuals make
up the complete documentation set for Sun WorkShop TeamWare and are
available using AnswerBook™ or (at the user's option) using a browser. To
access the online manuals, choose Help ➤ TeamWare Manuals in any
TeamWare window.

• Video Demonstration – This demo provides a general overview of Sun
WorkShop TeamWare and describe how to use Sun WorkShop TeamWare
manage code. To access, choose Help ➤ Demos in the TeamWare main
window.

• Release Notes – The Release Notes contain general information about Sun
WorkShop TeamWare and specific information about software limitations and
bugs. To access the Release Notes, choose Help ➤ Release Notes.

Related Books
Sun WorkShop TeamWare provides comprehensive documentation. The
following books are available in online and printed forms (except where
noted).

Access online books by choosing Help ➤ Online Books or Help ➤ Sun
WorkShop TeamWare Contents from the main WorkShop Help menu. Many of
the Sun WorkShop TeamWare tools and utilities are linked to detailed, context-
sensitive, on-item help, which in turn is linked to the relevant sections of the
Sun WorkShop TeamWare help volume. This release of Sun WorkShop TeamWare
also provides a set of video demonstrations accessible from the main Sun
WorkShop TeamWare Help menu. Some documents are available with all Sun
WorkShop TeamWare products, others are not (as noted).

xviii Sun Workshop TeamWare Users Guide—December 1996

Sun WorkShop TeamWare Documentation

Manual Pages (man pages)—TeamWare has the following manual pages:

Ordering Additional Hardcopy Documentation
You can order additional copies of the hard copy documentation by calling
SunExpress at 1-800-USE-SUNX, or visiting their web page at

http://sunexpress.usec.sun.com

Sun WorkShop TeamWare:
Users Guide

(This book) Describes how to use all the tools in the
TeamWare toolset, for both the command-line interface
and the graphical user interface.

Sun WorkShop TeamWare:
Solutions Guide

Provides an in-depth case study and eight scenario-
based topics to help you take full advantage of
TeamWare's features.

Sun WorkShop TeamWare
TeamWare Online Help

Provides succinct task-oriented information to help you
become familiar with the application. Help volume
includes video demonstrations.

Manual Pages (online only) Provide information about the TeamWare
command-line commands and utilities.

Table P-1 TeamWare Manual Pages

codemgr(1) rcs2ws(1) access_control(4)

codemgrtool(1) sccsmerge(1) args(4)

bringover(1) teamware(1) children(4)

def.dir.flp(1) twbuild(1) freezepointfile(4)

dmake(1) twconfig(1) notification(4)

filemerge(1) twfreeze(1) conflicts(4)

freezept(1) twmerge(1) history(4)

freezepttool(1) twversion(1) locks(4)

make(1) vertool(1) nametable(4)

maketool(1) workspace(1) parent(4)

putback(1) ws_undo(1) putback.cmt(4)

resolve(1)

Preface xix

Sun on the World Wide Web
World Wide Web (WWW) users can view Sun’s Developer Products site at the
following URL:

http://sun-www.EBay.Sun.COM:80/sunsoft/Developer-products/

This area is updated regularly and contains helpful information, including
current release and configuration tables, special programs, and success stories.

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Table P-2 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xx Sun Workshop TeamWare Users Guide—December 1996

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

1

QuickStart 1

Use this chapter to quickly get started using Sun WorkShop TeamWare™. For
more details, see the other parts of this guide. Also refer to the online help for
immediate assistance in completing specific tasks.

This chapter contains the following sections:

Basic Concepts
TeamWare is based on a concurrent development model called Copy-Modify-
Merge. Isolated (per developer) workspaces form the TeamWare model. A
workspace is a specially designated UNIX directory and its subdirectories.
With TeamWare, you copy source from a central workspace into your own
workspace, modify the source, and merge your changes with changes made by
other developers in the central workspace.

Besides providing isolated workspaces, TeamWare enables you to easily and
intelligently copy files between workspaces and then merge changes that exist
between corresponding files. The intelligent copy feature enables you to copy

Basic Concepts page 1

Versioning page 7

Freezepointing page 9

Distributed Make page 11

2 Sun Workshop TeamWare Users Guide—December 1996

1

project files in groups that you (or the project administrator) determine are
logically linked, and automatically determines differences between files in the
originating workspace and the destination workspace.

TeamWare further assists the concurrent development process by determining
whether differences exist between the files in the central workspace and your
workspace. If differences are found to exist, TeamWare commands prevent you
or another developer from copying over those changes; TeamWare then
provides sophisticated window-based tools that help you to merge these
differences.

Parent and Child Workspaces

When you copy files from a central workspace to create a new workspace, a
special relationship is created between the central workspace and the new one.
The central workspace is considered the parent of the newly created child
workspace. You can acquire files from any Configuring workspace in this
manner, and workspaces can have an unlimited number of children. The
portion of the file system that you copy from the parent workspace is
determined at the time you copy it. You can copy the entire contents of the
parent to the child, making it a clone of the parent, or you can copy only
portions of the file system hierarchy that are of interest to you. The TeamWare
Configuring transaction used to copy files from a parent workspace to a child
workspace is called Bringover.

When development and testing are complete in the child, you copy changes in
files that were modified or added in the child, back into the parent workspace.
Once the altered files are present in the parent, they can be copied by other
children or passed up another level to the parent’s parent workspace. The
TeamWare Configuring transaction for copying changes in files from a child
workspace to a parent workspace is called Putback.

If any of the files you attempt to put back are changed in both the parent and
child workspace, the files are in conflict. If this is the case, Configuring will
block the transaction. You must then use the Bringover transaction to bring
over the changed information from the parent and use the Resolve transaction
to resolve the conflict in the child workspace before you can put your work
back to the parent.

QuickStart 3

1

Source Code Control System

TeamWare Configuring acts only upon files under the source code control
system (SCCS). When considering Configuring file transfer transactions,
remember that source files are derived from SCCS deltas and are identified by
SCCS delta IDs (SIDs). When a file is copied by either a Putback or Bringover
transaction, Configuring acts upon (copies or merges) the file’s SCCS history
file (also known as the “s-dot-file”). How Configuring manipulates and merges
the history files is described in Chapter 11, “How the Configuring Program
Merges SCCS Files.”

Changing Names

The current release of TeamWare uses new command names, so Table 1-1
summarizes the correspondences for you. Note that the old commands still
work, however this manual uses the new commands and GUI names.

▼ Getting Started

You can use TeamWare Configuring through either a graphical user interface
(GUI) or command-line interface (CLI). The following procedures use the GUI.
For information about the CLI, refer to the bringover (1) and putback (1)
manual pages.

Note – Before you begin using TeamWare Configuring on your project, you
must know the path name of the workspace from which you are to bring over
your work.

Table 1-1 Correspondences Between Old and New TeamWare Commands

Old Command New Command Old Tool Name New GUI Name

codemgrtool twconfig, teamware CodeManager Configuring

vertool twversion VersionTool Versioning

filemerge twmerge FileMerge Merging

maketool twbuild MakeTool Building

freezepttool twfreeze FreezePoint Freezepointing

4 Sun Workshop TeamWare Users Guide—December 1996

1

▼ Creating a New Workspace

1. From a command prompt start the Configuring GUI:

2. If the workspace from which you must obtain your files is not
automatically loaded, load the workspace using the Load item from the
File menu.

3. Once you load the workspace, use the Bringover Create transaction to
create your own workspace. Your workspace is a child of the original
workspace. You initiate the transaction by dragging and dropping the
parent workspace icon into an open area of the pane. This activates the
Bringover Create version of the Transactions window.

4. In the Bringover Create Transactions window, enter the child workspace
path name in the text field labeled: To Child Workspace Directory.

5. In the Directories and Files text pane, create the list of directories and files
you wish to bring over to your workspace from the parent workspace.
Select all files to bring over by accepting the default “.” or choose File ➤

Add Files to create the Directories and Files list. Optionally: Select the
Preview option to verify your transaction before you actually transfer any
files.

6. Click on the Bringover button at the bottom of the window to initiate the
transaction.

7. View transaction output in the Transaction Output window.
For more information about the Bringover Create transaction, see “Creating
a New Child Workspace (Bringover Create)” on page 90.”

▼ Changing Files in the Child Workspace

1. To change files in a child workspace, you need to start Versioning. Refer
to “Starting Versioning” on page 7.

2. The files must then be checked out, edited, and checked back in under
SCCS. Refer to “Checking Files In and Out of SCCS” on page 8.

% twconfig &

QuickStart 5

1

▼ Putting Back Changes to the Parent

1. Update the parent workspace with the changes you make.
This Configuring transaction is called Putback.

2. Initiate Putback transactions by dragging and dropping your child
workspace icon onto the parent workspace icon. This step activates the
Putback version of the Transactions window.
Configuring automatically fills in the names of the parent and child
workspaces in the Putback Transaction window and includes the same
directories and files that you included when you created the child
workspace.

3. Type a comment in the Comments text window. Optionally: Select the
Preview option to verify your transaction before you transfer any files.

4. Click on the Putback button at the bottom of the window to initiate the
transaction.

5. Delete selected workspaces.

6. View transaction output in the Transaction Output window.
For more information about the Putback transaction, see “Updating a Parent
Workspace Using Putback” on page 100.”

▼ Updating the Child Workspace

If any of the files have changed in the parent since you brought them over, the
Putback transaction is blocked. In this case, you will have to use the Bringover
Update transaction to bring those changes into your child workspace.

1. Resolve any conflicts.

2. Test.

3. Put them back to the parent.
A popup window advises you that the transaction is blocked.

6 Sun Workshop TeamWare Users Guide—December 1996

1

4. Initiate the Bringover Update transaction by clicking on Bringover now in
the popup window. Optionally: Select the Preview option to verify your
transaction before you transfer any files.
This activates the Bringover Update version of the Transactions window. In
the Bringover Update Transactions window, Configuring automatically fills
in the names of the parent and child workspaces, and includes the same
directories and files that you included when you created the child
workspace.

5. Click on the Bringover button at the bottom of the window to initiate the
transaction.

6. View your transaction output in the Transaction Output window.
For more information about the Bringover Update transaction, see
“Updating an Existing Child Workspace (Bringover Update)” on page 94”.

▼ Resolving Conflicts

If any of the files you changed in your child workspace were also changed in
the parent workspace, they are in conflict. If Configuring discovers any conflicts
during the Bringover Update transaction, it automatically activates a popup
window advising you of this.

1. Initiate the Resolve transaction by clicking on Resolve now in the popup
window.
This step activates the Resolve version of the Transactions window.
Configuring automatically alters the workspace icon to alert you that a
workspace contains unresolved conflicts. Configuring automatically:

• Lists the path names of the files that are in conflict in the Resolve
Transaction window

• Starts the Merging program, loading the first file in the list

Merging displays two text files (the versions of the file from the parent and
child workspaces) for side-by-side comparison, each in a read-only
subwindow. Each version is shown in comparison (using glyphs) to the
version that existed before the changes were made. Beneath them, Merging
displays a subwindow that contains a merged version. The merged version
contains selected lines from either or both deltas.

Merging automatically merges the files for you in the bottom window. If
you disagree with the choices made by the program:

QuickStart 7

1

2. Use the Left and Right buttons to accept the changes found in the left or
right window.

3. When you merge the files, select the Save button to save the file.
If there are more files in the Transactions window conflict list, Configuring
automatically loads the next file in the list into Merging.

For more information about resolving conflicts and merging files, see
Chapter 9, “Resolving Conflicts”.

Versioning
Versioning is a GUI to SCCS that enables you to manipulate files and perform
SCCS functions without having to know SCCS commands. It provides a way to
check files in and out, and to display a file’s delta history and show differences
between deltas. With Versioning, you can do the following:

• Check out a version of the file for editing
• Check in files
• Retrieve copies of any version (delta) of a file
• Visually peruse the branches of an SCCS history file
• Back out changes to a checked-out copy
• Display differences between selected deltas using Merging
• Display the version log summarizing executed commands
• Create new SCCS files

▼ Starting Versioning

To start Versioning, enter the command as shown:

Note – Versioning can also be started directly from the Configuring GUI by
double-clicking on a workspace icon.

To use Versioning, select a file (or group of files) in the File List pane and
choose a menu item to operate on it. Commands are located in the:

• Commands menu

demo% twversion &

8 Sun Workshop TeamWare Users Guide—December 1996

1

• View menu
• File List pane floating menu

Following are two examples that describe how to use Versioning to check out
and check in files, and to view and compare a file’s delta history.

▼ Checking Files In and Out of SCCS

1. From a command prompt start Versioning:

2. If the directory that contains your file is not automatically loaded, you can
type the directory path name (followed by Return), in the Directory text
field.

3. Click on a file icon to select a file; use the ADJUST mouse button to
extend the selection.

4. Choose either Checkout ➤ Default or Checkout ➤ Check Out and Edit
from the Commands menu. As the files are checked out a check mark
appears in their icons.

5. When you are ready to check the files back in, select the file(s) and choose
Check In from the Commands menu.
 This activates the Check In popup window.

6. Enter a comment in the text window that describes your changes and click
on Check In to complete the check in process.
The check mark is removed from the file icon as the files are checked in.

▼ Viewing and Comparing a File’s Delta History

1. To view a graph of a file’s delta history, select the file’s icon in the main
window and choose File History from the View menu.

2. Select two deltas in the graph.

%twversion &

QuickStart 9

1

3. Choose Use Merging from the Differences menu.
Merging displays the two deltas side by side, marking differences with
glyphs. For more information about Merging, see Chapter 11, “How the
Configuring Program Merges SCCS Files” in this guide.

Freezepointing
During software development it is often useful to create freezepoints of your
work at key junctures. These freezepoints serve as “snapshots” of a project that
enable you to recreate the state of the project at key development points. With
the Freezepointing program, you preserve these freezepoints using small
storage resources. You can use Freezepointing through two functionally
equivalent user interfaces:

• Graphical user interface (twfreeze)
• Command-line interface (freezept)

The concepts discussed in this section apply to both the GUI and the CLI.
Descriptions and examples are included for the GUI only. For information on
the CLI, see the manual pages: twfreeze (1), freezept (1), and
freezepointfile (5).

Freezepointing enables you to create freezepoint files from Configuring
workspaces. Freezepointing files are text files that list the default deltas in
SCCS history files contained in the workspace. When you later recreate
(extract) the files, Freezepointing uses those entries as pointers back to the
original history files and to the delta that was the default at the time the
freezepoint file was created.

Note – The recreated files will not contain the original SCCS histories; only the
g-files represented by the default deltas from the original hierarchy are
recreated. The default delta is the delta that would be retrieved using the SCCS
get command with no options specified.

10 Sun Workshop TeamWare Users Guide—December 1996

1

▼ Starting the Freezepointing GUI

To start Freezepointing, at a shell command prompt type twfreeze followed
by the ampersand symbol (&):

▼ Creating and Extracting Freezepoints

1. From a command prompt start the Freezepointing GUI:

The pane below the Control area is used for both creating and extracting
freezepoints. Switch between the Create and Extract panes by choosing the
appropriate item from the Category menu. The Create pane is the default
and is displayed when you start Freezepointing.

2. Enter the path name of a freezepoint file.
Freezepointing automatically inserts the file name freezepoint.out .

3. Delete it and replace it with a path name of your choosing.

4. Enter the path name of the source workspace.
This is the workspace that you are “freezepointing.”

5. In the Directories and Files text window, compose a list of directories, or
files, or both that you wish to freezepoint.

6. Choose File ➤ Add Files to create the Directories and Files list

7. Click Create to execute.

8. To extract a freezepoint, choose Extract from the Category menu.
This changes the pane from Create to Extract.

9. Type the path name of an existing freezepoint file.

10. Specify the path name of the Destination Directory.
This the directory into which the newly extracted files are placed.

demo% twfreeze &

% twfreeze &

QuickStart 11

1

11. Click on Extract to execute.
For more information about Versioning, see Chapter 14, “Performing Basic
SCCS Functions with Versioning” in this guide.

Distributed Make
DistributedMake (DMake) marks the evolution of the make utility into a
powerful and flexible tool that permits you to take full advantage of the
potential of today’s networks and powerful multiprocessor workstations.
Using DMake, you can concurrently distribute the process of building large
projects, consisting of many programs, over a number of workstations and, in
the case of multiprocessor systems, over multiple CPUs.

You execute dmake on a DMake host and distribute jobs to build servers. You can
also distribute jobs to the DMake host, in which case it is also considered to be
a build server. DMake distributes jobs based on makefile targets that DMake
determines (based on your makefiles) can be built concurrently. You can use
any machine as a build server that meets the following requirements:

• From the DMake host (the machine you are using) you must be able to use
rsh , without being prompted for a password, to remotely execute
commands on the build server. For example:

Note – For more information about the rsh command see the rsh (1) man page
or the system AnswerBook.

• The bin directory in which the DMake software is installed must be
accessible from the build server.

Note – For more information see the share (1M) and mount (1M) man pages or
the system AnswerBook.

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

12 Sun Workshop TeamWare Users Guide—December 1996

1

• The bin directory in which the DMake software is installed must be in your
execution path when you rsh to the build server. Be sure this directory is
added to the PATH variable in your .cshrc file (or equivalent), not in your
.login file. You can verify this as follows:

• The source hierarchy you are building must be accessible from the build
server.

From the DMake host you can control which build servers are used and how
many DMake jobs are allotted to each build server. The number of DMake jobs
that can run on a given build server can also be limited on that server.

For more information about DMake see Chapter 20, “Using DistributedMake.”

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

13

Introduction 2

Sun Workshop TeamWare (TeamWare) is a source management product that
provides you and your team with:

• software configuration management
• version control
• change control
• integration support
• release support

You can access TeamWare through the command-line interface (CLI) or
through several graphical-user interfaces (GUIs). The GUIs and a description
of what they do is in the following table:

Table 2-1 TeamWare GUI Descriptions

Configuring Software configuration management, previously called
CodeManager.

Versioning Version control. Versioning is a GUI for SCCS. Previously
called VersionTool.

Building Serial, parallel, or distributed make. Building is a GUI for the
make utility. Previously called Maketool

Freezepointing Obtaining a snapshot or freezepoint. Previously called
FreezePoint.

Merging Selectively merging two files. Previously called FileMerge.

14 Sun Workshop TeamWare Users Guide—December 1996

2

How to Use the Documentation Supplied with TeamWare
There are several kinds of documentation provided with TeamWare. Each kind
of documentation is designed to help you use TeamWare more easily. An
explanation of the TeamWare documentation is provided in the following table.

Refer to “How to Get Help” on page xvi of the Preface to see how to access the
various types of information.

Table 2-2 TeamWare Documentation

Type of Documentation Best Use

Online help Read online help when you want quick information on how to complete
a task with TeamWare. For example, if you want to know how to set up
a workspace using a GUI, use online help.

Online books
 •Sun Workshop TeamWare Users Guide

 •Sun Workshop TeamWare Solutions Guide

Read the Workshop TeamWare Users Guide (this book) if you want detailed
information about TeamWare use.

Read the Workshop TeamWare Solutions Guide to see how others have used
TeamWare to be more productive.

On-Item Help (spot help) Read on-item (spot) help to find out about menus and window displays
in the GUIs.

Manual pages (man pages) Read the manual pages when you want quick information about
completing a task with the CLI. For example, if you want to know how
to set up a workspace using the CLI, use man pages.

Video View the video to quickly get an idea of how to use all of TeamWare.

15

Introduction to TeamWare
Configuring 3

This chapter contains the following sections:

Coordinating the Work of Software Developers
Managing large programming projects involves coordinating the work of
developers who share common and interdependent files.

If developers have private copies of the source code, the changes they make to
the source base are difficult to track when all of the code is finally (or even
periodically) merged. Often the incompatible changes are subtle, and they can
affect the entire project. Preparing the code for a final build and release can be
difficult.

One solution is to allow serial access to the common files, one developer at a
time. This approach eliminates conflicts due to changes that are made
simultaneously. Unfortunately, this approach produces a productivity
bottleneck because only one programmer at a time has access to the code.

Developers often change the way source files are grouped and used to build
the intermediate and final product. A developer must know what source files,
header files, and libraries are required to build a particular program. Often a
developer copies a set of files, then later finds that it is incomplete. Only after

Coordinating the Work of Software Developers page 15

Copy-Modify-Merge Model page 16

Default Configuring page 19

16 Sun Workshop TeamWare Users Guide—December 1996

3

repeated failed attempts to build the program is the developer able to
determine which files are required to successfully build the program. Also,
changes not only occur to files, but often to the file system structure as well.
New files and directories are constantly created, renamed, and deleted.

Maintaining a consistent, buildable set of sources in preparation for a product
release is also difficult on a large software project. When developers integrate
their work directly into the mainline source hierarchy, a set of sources that built
correctly one day can be made incompatible the next.

Another problem common to large software projects is the inability to recreate
the product at a certain stage of development (for example, a past release).
Preserving source code deltas becomes difficult when different copies of files
are changed concurrently. Developers generally do not take the time to apply
more than one delta. To accurately represent concurrent development, SCCS
branch deltas must be used. When deltas are collapsed together, or when
parallel deltas are represented sequentially, the true history of the file is lost.

Sometimes development of a feature is begun for a given release and later
(often quite near the release date) a decision is made to include the feature in a
different release. Backing out the changes and then including them in a
different release can be difficult.

Copy-Modify-Merge Model
Sun WorkShop TeamWare assists in the development and release of large
software projects. TeamWare is based on a concurrent development model
called Copy-Modify-Merge. Isolated (per developer) workspaces form the basis
of the TeamWare Configuring model. With TeamWare Configuring, you (the
developer) copy source you want to change from a central workspace into your
own workspace, modify the source to your liking, and then merge your changes
with changes made by other developers in the central workspace.

Note – A workspace is simply a specially designated SunOS™ directory and its
subdirectories.

The inconvenience of merging changes is outweighed by the productivity
increase that results from developers working concurrently. TeamWare
Configuring is designed to minimize (and in some cases, eliminate) the
inconvenience of merging changes.

Introduction to TeamWare Configuring 17

3

Besides providing isolated workspaces, TeamWare Configuring enables you to
easily and “intelligently” copy files between workspaces and then merge
changes that exist between corresponding files. Configuring’s “intelligent”
copy feature enables you to copy project files in groups that you (or the project
administrator) determine are logically linked; it also automatically determines
for you whether differences exist between the files in the originating
workspace and the destination workspace.

You copy project files from a central workspace into your own private
workspace, make changes to files (or the file system), and then copy your
changes back to the central workspace. You can group source files, header
files, libraries, and so on, together in logical units that are copied in unison;
TeamWare Configuring further assists the concurrent development process by
determining whether differences exist between the files in the originating
workspace and the destination workspace. If differences are found to exist,
Configuring prevents you (or another developer) from copying over those
changes. Configuring then provides sophisticated window-based tools that
help you to merge these differences.

18 Sun Workshop TeamWare Users Guide—December 1996

3

Copy-Modify-Merge Example

The following is a Copy-Modify-Merge concurrent development model
employed by TeamWare Configuring. This example describes a common
software development scenario where two developers are working
simultaneously on the same or related parts of a project.

Table 3-1

• Both you and Developer x copy
the same file from the project
integration area to your separate
work areas.

• Developer x changes the file and
copies the changed file back into
the integration area.

Integration

area

Dev x’s work areaYour work

Integration

area

Dev x’s work areaYour work

Introduction to TeamWare Configuring 19

3

Default Configuring
TeamWare Configuring can be customized in ways that modify its default
behavior; many of those customizations are discussed in Chapter 7,
“TeamWare Configuring Workspace.” All source files in a Configuring project
are maintained under the UNIX SCCS. TeamWare Configuring only copies files
that are under SCCS. Within your workspaces, you use SCCS in the normal way.
For example, you:

• Create files
• Create deltas
• Edit files
• Add comments
• Check in files using SCCS commands

• You modify the same file in your
work area and attempt to copy the
file back into the integration area.
TeamWare Configuring blocks
your attempt to copy since it
would overwrite Developer x’s
changes.

• Configuring informs you of the
conflicting changes and you copy
the file containing Developer x’s
changes from the integration area
to your work area.

• With Configuring’s assistance, you
resolve the conflicts, merge the
changes, test the changes, and
successfully copy the file back to
the integration area.

Table 3-1

Integration

area

Dev x’s work areaYour work

Integration

area

Dev x’s work areaYour work

Integration

area

Dev x’s work areaYour work

20 Sun Workshop TeamWare Users Guide—December 1996

3

SCCS history files are in SCCS subdirectories, as they would be if the project
were not using Configuring. When you copy files between workspaces and
merge files that have changed, TeamWare Configuring manages SCCS history
files for you, preserving all comments and deltas.

Workspace

The workspace is the basis of the Configuring system. The workspace provides
the isolation in which developers work concurrently with other developers
programming in other workspaces. Project files are propagated between
workspaces by Configuring commands. The workspace is a directory and its
subdirectory hierarchy. When the workspace is created, Configuring creates a
special subdirectory under the workspace, called Codemgr_wsdata, to store
workspace information.

A Configuring project is created in a top-level workspace from which all others
are derived. When other workspaces are created from the original workspace,
the original file system hierarchy is recreated to form the new workspace. In
the following example, work is begun by a developer in a workspace whose
top-level directory is boatspex . The workspace exists under the directory
/usr/src/ws .

Introduction to TeamWare Configuring 21

3

Figure 3-1 Project File System Hierarchy

If you are assigned to work on the Boatspex project you create a copy of the
original workspace in a file system of your choice; the workspace portion of
the file system in the new workspace is identical to that of the original
workspace. If you create the new workspace in your home directory, it
appears something like Figure 3-2.

Note – If you were only working on a portion of the project, you could copy
only that portion.

include/

Makefile
lib.mk

libboat.a

ratios.h
store.h

boatfileMakefile
bin.mk
show

show.c
show.o

stats
stats.c
stats.o

bin/ demo/ lib/

update/

Makefile
update

update.c
update.o

add.c
add.o
del.c
del.o

Makefile
disp21.c
disp21.o
sa2disp.c
sa2disp.0

Makefile
store.c
store.o

ratios/ store/

boatspex.mk

/

usr/

src/

ws/

boatspex/

Codemgr_wsdata/

access_control
args

backup/
children
conflicts
history
locks

nametable
parent

Configuring
Workspace

22 Sun Workshop TeamWare Users Guide—December 1996

3

Figure 3-2 Your New Workspace

The directories previous the workspace directory (boatspex) are variable.
They change depending on where in the file system you locate the workspace.
Below the workspace directory, the file system is a duplicate of the original
workspace.

Parent and Child Relationship

When you copy files from a workspace to create a new workspace, a special
relationship is created between the original workspace and the new one. The
original workspace is considered the parent of the newly created child
workspace. You can acquire files from any Configuring workspace in this
manner, and workspaces can have an unlimited number of children. The

include/

Makefile
lib.mk

libboat.a

ratios.h
store.h

boatfileMakefile
bin.mk
show

show.c
show.o

stats
stats.c
stats.o

bin/ demo/ lib/

update/

Makefile
update

update.c
update.o

add.c
add.o
del.c
del.o

Makefile
disp21.c
disp21.o
sa2disp.c
sa2disp.0

Makefile
store.c
store.o

ratios/ store/

boatspex.mk

/

home/

myhome/

boatspex/Configuring
Workspace

Codemgr_wsdata/

access_control
args

backup/
children
conflicts
history
locks

nametable
parent

Introduction to TeamWare Configuring 23

3

portion of the file system that you copy from the parent workspace is
determined at the time you copy it. You can copy the entire contents of the
parent to the child, making it a clone of the parent, or you can copy only
portions of the file system hierarchy that are of interest to you. The
Configuring transaction used to copy files from a parent workspace to a child
workspace is called Bringover.

Note – If you use the Bringover transaction to copy files to a workspace that
does not already exist, the transaction creates a new child workspace and then
copies files to it. This special case is called a Bringover Create transaction. You
use the Bringover Update transaction to update an existing child workspace.

The parent and child relationship is special because project data is exchanged
only between parent and child workspaces. All files contained in a child
workspace were either brought over from a parent workspace or created in the
child workspace. When development and testing are complete in the child, you
can copy the files that were modified or added in the child back into the parent
workspace. Once the altered files are present in the parent, they can be copied
by other children or passed up another level to the parent’s parent workspace.
The Configuring transaction for copying files from a child workspace to a
parent workspace is called Putback.

Note – Unless the child is itself a parent, in which case new files can also be
copied to it from its children.

Workspace hierarchies are formed by repeating Bringover transactions to create
child workspaces. The hierarchy of parent and child workspaces forms a
pathway through which data is moved throughout the project.

In the following example, a project is originally created in a workspace and
then a three-level workspace hierarchy is created by means of the Bringover
transaction. The original workspace is considered to be the parent of the
integration workspace and, conversely, the integration workspace is considered
to be the child of the original workspace. Developers (Jon, Jack, and Jill) then
use the Bringover Create transaction, shown in Figure 3-3 on page 24 to create
child workspaces from the integration workspace, which forms a three-tiered
hierarchy of workspaces.

24 Sun Workshop TeamWare Users Guide—December 1996

3

Figure 3-3 Using the Bringover Create Transaction to Create a Workspace Hierarchy

In this hierarchy, files can be disseminated from Jon’s workspace to its
“sibling” workspaces owned by Jack and Jill. Jon uses the Putback transaction
to copy modified files from his workspace into the common parent (step 1) and
then Jack and Jill use the Bringover Update transaction to copy the files from
the parent into their workspaces (step 2), shown in Figure 3-4.

Figure 3-4 Copying Files between Workspaces

WS

WS

Jack

WS

Jon

WS

Jill

WS

Original Project Workspace

Integration Workspace

21 2

WS

Jill

WS

Jack

WS

Jon

WS

WS

Introduction to TeamWare Configuring 25

3

Reparenting

Parent and child relationships can be changed. Configuring permits child
workspaces to be “reparented” to new parent workspaces. Reasons that you
might want to reparent a workspace include the following:

• To reorganize workspace hierarchies
• To populate a new project hierarchy (new top-level workspace)
• To move a feature into a new release
• To apply a bug fix to multiple releases

Refer to “Reparenting a Workspace” for more information.

Codemgr_wsdata Directory

Every Configuring workspace contains a directory named Codemgr_wsdata
that is a subdirectory of the workspace top-level (root) directory. This
directory contains text files that Configuring uses to log its actions, and store
temporary and permanent data. You can view and alter these files using
standard text utilities. Refer to “The Workspace Metadata Directory” for more
information.

Modifying Files

Since Configuring workspaces are simply directories within the SunOS file
system, all your usual tools and utilities can be used on files and directories in
workspaces. Your normal edit/compile/debug process is not altered by
Configuring.

Copying Files between Workspaces

Once you make and test modifications in a child workspace, you must
disseminate them to the rest of the developers working on the project and
ultimately to an integration/release workspace.

Every developer in a project needs up-to-date data with which to work. If a
modification is made to a module in one part of the project, it could have
profound implications for the testing of a different module in another part of
the project. Perhaps even more important is the sharing of information
between developers working on the same or closely related modules.

26 Sun Workshop TeamWare Users Guide—December 1996

3

Newly modified files (or groups of files) are transferred between parents and
children up and down the workspace hierarchy in order to keep workspaces
consistent. The decision as to when the data is ready for dissemination is, of
course, left to the developer’s discretion.

The Putback and Bringover transactions are generally applied to groups of files
so that files need not be specified individually. Configuring provides the
means for you (or your project administrator) to specify groupings of files that
should logically be copied together. Three examples of this type of grouping
are as follows:

• Directories
• Files required to build a particular program
• All of the child workspace

How files are grouped for Bringover and Putback transactions between
workspaces is discussed in detail in Chapter 8, “Copying Files between
Workspaces.”

Bringover and Putback transactions are always initiated from within the child
workspace. Both transactions are viewed from the perspective of the child
workspace—not the parent’s.

Source Code Control System Files

When considering Bringover and Putback transactions, remember that source
files are derived from SCCS deltas and are identified by SCCS delta IDs (SIDs).
When a file is copied by either a Putback or Bringover transaction, Configuring
is manipulating the file’s SCCS history file (also known as the s-dot-file).

When a file is copied from one workspace to another, Configuring decides how
to manipulate the SCCS history file used to derive the file. If the file does not
exist in the target workspace, Configuring copies the history file from the
source workspace to the target. In the more complicated case—when the file
(and thus the SCCS history file) exists in both the source and the target—the
SCCS history files must be merged to maintain the file’s delta, administrative,
and comment history.

Remember, files consist of both the file derived from the latest delta and its
predecessors by the SCCS get command and the SCCS history file from which
it is derived. When files are copied from workspace to workspace, SCCS
history files are adjusted appropriately.

Introduction to TeamWare Configuring 27

3

Bringover and Putback Transactions
When you initiate a Bringover Update or Putback transaction, Configuring
must make a number of determinations before taking any action. Copying files
indiscriminately from one workspace to another could overwrite work that
you or another developer want to keep. Configuring must check all files
specified for transfer to determine where they stand in relationship to each
corresponding file in the other workspace.

For example, suppose a file was modified in the parent (perhaps put back from
another child) since it was last brought over into your child. You have
modified your copy of the same file in your child workspace. When you
attempt to put back that file (or a group of files that contains that file) from
your child workspace to the parent, Configuring will not allow your Putback
transaction to proceed because it would cause the revised version of the file in
the parent to be overwritten by the version of the file from your child. In this
case, Configuring blocks your attempt to put back the files into the parent and
informs you of the conflicting change.

When a Putback or Bringover Update transaction is blocked, none of the files
in the group are copied, even those that don’t conflict.

The conflicts between your versions of the files and the versions in the parent
must be resolved in your (child) workspace. Conflicts are always resolved in the
child workspace to preserve the integrity of the parent.

You use the Bringover Update transaction to copy the conflicting files from the
parent to your workspace, and using Configuring’s merge tool, you merge
your changes with those made by the other developer. After testing the
changes you then put back the merged files to the parent workspace.

Relationships between Files in Parent and Child Workspaces

The previous example describes only one of four possible states of relationship
that can exist between corresponding files in parent and child workspaces. The
relationship between files in parent and child workspaces governs the way that
Configuring behaves when you attempt to copy files via Putback and
Bringover Update transactions. Following are descriptions of the four cases
and the action Configuring takes in each case:

28 Sun Workshop TeamWare Users Guide—December 1996

3

Figure 3-5 Keeping Work Synchronized

• Both you and Developer x bring over
the same file to your workspaces.

• Developer x changes the file and puts
the changed file back into the parent.

Parent

WS

Dev x

WS

You

WS

Parent

WS

Dev x

WS

You

WS

Introduction to TeamWare Configuring 29

3

Case 1
Neither the files in the parent nor the corresponding files in the child have
been modified since they were put back into the parent or brought over into
the child

• You change the same file in your
workspace and attempt to put the file
back into the parent. Configuring
blocks the Putback.

• Configuring notifies you of the
conflicting changes and you bring the
file over to your workspace (actually,
the SCCS history files are merged).

• You resolve the conflict, test the
changes and successfully put back the
file back tothe parent workspace.

Figure 3-5 (Continued)Keeping Work Synchronized

Parent

WS

Dev x

WS

You

WS

Parent

WS

Dev x

WS

You

WS

Parent

WS

Dev x

WS

You

WS

30 Sun Workshop TeamWare Users Guide—December 1996

3

In this case no action is required by Configuring in either case. The files are
exactly the same in both the parent and child.

Case 2
The specified files were not modified in the parent since they were brought
over from the parent into the child or put back from the child into the
parent.The corresponding files were modified in the child.

In this case when you use the Putback transaction to copy the file to the parent,
the changed files are updated from the child into the parent, replacing the
corresponding files in the parent. This new data is available for acquisition by
other children of that parent or to be further propagated up to the parent’s
parent workspace.

When you use the Bringover Update command in this case, no action is taken
because copying the file from the parent would overwrite changes made in the
child.

Introduction to TeamWare Configuring 31

3

Case 3
One or more files in the parent were modified since their corresponding files
were brought over into the child or put back into the parent from that child.
The corresponding files in the child were not modified.

In this case the parent’s copy of the file being put back from the child was
modified (probably by one of its other children) since it was last brought over
to the child; the corresponding file in the child was not modified since it was
last brought over into the child.

When Configuring detects this situation during the Putback transaction, it
cannot update the parent workspace until the child workspace is updated by
means of the Bringover Update transaction. Even if the changes are in files that
you have not altered (remember you’re copying groups of files), they might
impact the changes you have made. In this case, the Putback transaction is
blocked and the user is notified. It is the user’s responsibility to execute the
Bringover Update transaction in order to update the child workspace.

Case 4
Corresponding files were modified in both the parent and child workspaces.

This is the most complicated of the four cases. Configuring cannot allow the
file to be put back from the child into the parent because the transaction will
obscure modifications there. Likewise, Configuring cannot allow the file to be
brought over from the parent into the child because the transaction will
overwrite modifications there.

As in case 3 above, Configuring blocks the Putback transaction and notifies the
user. When the user attempts to update the child workspace by means of the
Bringover transaction, Configuring detects that the file in the child has also

32 Sun Workshop TeamWare Users Guide—December 1996

3

been changed; the file cannot be updated without overwriting the newly
created work in the child. In this case Configuring merges the parent and child
SCCS history files for the conflicting file in the child workspace.

Configuring merges the parent and child SCCS history files together in the
child workspace; the SIDs that were created in the child are renamed and
placed on an SCCS branch off of the current line of work brought down from
the parent. Although it is a branch, the child’s SCCS version tree remains the
default for any additional deltas so that work on the file may proceed in the
child as if nothing had changed.The merge process places all needed deltas in
the SCCS history file so that the conflicting files can be merged at the user’s
discretion. All SCCS comments are preserved in this process since the entire
SCCS delta history is preserved.

At this point the conflict between the parent and child versions of the file is
still open. Work can continue on the branch that contains the deltas created in
the child; any new deltas will be added to the branch. However, the user must
resolve the conflict before the group of files that contain the conflicting file(s) can
successfully be put back to the parent. Conflict resolution is discussed in the next
section.

Files changed

Files changed

Action - Block Putback and notify
user that update is required

Child

Parent

WS

WS

Putback

Files changed

Files changed

Action - Merge files in
the child and notify user
of conflict

Child

Parent

WS

WS

Bringover

Introduction to TeamWare Configuring 33

3

Summary

The following two tables summarize, first, the action taken by Configuring
during a Putback transaction in each of the four cases described above and
secondly, for the Bringover transaction.

Resolving Conflicts

During the Putback transaction, Configuring may determine that a file in the
parent has been modified since it was last put back from that child or brought
over into the child. In that case it blocks the Putback so that the changes are
not overwritten and then notifies the user of the potential conflict.

Generally the owner of the child workspace will then attempt to update the
child by bringing over the changed file. If, during the Bringover Update
transaction, Configuring determines that the corresponding file in the child has
also been modified since it was last brought over, a conflict exists.

Table 3-2 Putback Transaction

Case File in Parent File in Child Action by Configuring

1 Unchanged Unchanged None

2 Unchanged Changed Update file in parent

3 Changed Unchanged Block Putback, notify user

4 Changed Changed Block Putback, notify user

Table 3-3 Bringover Transaction

Case File in Parent File in Child Action by Configuring

1 Unchanged Unchanged None

2 Unchanged Changed None

3 Changed Unchanged Update child (extend SCCS
files)

4 Changed Changed Merge SCCS history files
and notify user of conflict

34 Sun Workshop TeamWare Users Guide—December 1996

3

Conflicts arise when corresponding files in both the parent and child have been
modified. If Configuring were to overwrite either of the files, a loss of data
would result. Before the specified file can be put back or brought over the user
must resolve any conflicts.

When Configuring detects a conflict during the Bringover Update transaction,
as described in the previous section, it then does the following:

• Merges the parent and child SCCS history files for the conflicting files in the
child workspace

• Notifies the user of the conflict

• Assists the user in resolving the conflict

Note – All conflicts are resolved from within the child workspace and from the
perspective of the child workspace.

In the case of most conflicts, the options available to the user for resolving
conflicts are:

• Install the latest delta from the parent as the resolved version in the child.

• Accept the latest delta from the child as the resolved version of the file.
Since it has been through the resolve process, its Putback transaction will no
longer be blocked in the parent.

• Merge the contents of latest delta from the parent with that of the child.

Configuring provides tools that aid in resolving conflicts, however, the
conflicts must be resolved by the user. Refer to Chapter 9, “Resolving
Conflicts,” for a detailed discussion about conflict resolution.

35

Introduction to Merging 4

This chapter deals with the basic concept of Merging files, and is organized
into the following sections:

For explicit details on using Merging, together with an example, see
Chapter 15, “Starting and Loading Merging."

Merging loads and displays two text files for side-by-side comparison, each in
a read-only text pane. Merging marks lines that differ between the two files
and displays a merged version in a third text pane. When automatically
activated, the merged version contains two types of lines:

• Lines that are common to both input files (these lines always appear in the
output file)

• Marked lines that are different in each file (these lines appear as the result of
the default automerge process)

You can edit the merged version and save it as an output file.

At the time you load the two files to be merged, you can also specify a third
file, called the ancestor of the two files (which are called its descendants). When
you have specified an ancestor file, Merging marks lines in the descendants

Differences Defined page 36

Graphical Overview page 37

36 Sun Workshop TeamWare Users Guide—December 1996

4

that are different from the ancestor and produces a merged file based on all
three files. To automatically merge (automerge) the two input files, you must
specify an ancestor file.

Differences Defined
Merging operates on differences between files. Although you probably have a
good intuitive grasp of what a difference is, the following describes how
Merging recognizes and classifies differences.

Difference

When Merging discovers a line that differs between the two files to be merged
(or between either of the two files and the ancestor), it marks with glyphs the
lines in the two files. Together, these marked lines are called a difference. While
Merging is focusing on a difference, it highlights the glyphs.

Current, Next, and Previous Difference

The difference on which Merging is focusing at any given time is called the
current difference. The difference that appears immediately later in the file is
called the next difference; the difference that appears immediately earlier in the
file is called the previous difference.

Resolved and Remaining Difference

A difference is resolved if either you or Merging accept the changes to a line.
Differences are resolved one of two ways:

While focusing on a difference, you can accept a line from one of the original
files, or you can edit the merged version by hand. When you indicate that you
are satisfied with your changes (by clicking on a command button), the current
difference is then resolved.

If the Auto Merge feature is on, Merging resolves differences automatically. For
more information on how Merging resolves differences, see the discussion in
“Merging Glyphs."

Introduction to Merging 37

4

After a difference is resolved, Merging identifies it by changing its associated
glyphs from solid to outline font. Merging then automatically advances to the
next difference (if the Auto Advance property is on) or moves to the difference
of your choice.

A remaining difference is one that has not yet been resolved.

Graphical Overview
The graphical interface for Merging consists of one main window, in which
you do most of your work, and pop-up windows for handling files and setting
properties. Descriptions of the graphical interface are found in the online help.
Pull down the Help menu on the upper right of the Merging menu bar to
access Help Contents.

Merging Window

The Merging window at startup shows the left and right text panes at the top
displaying the files to be compared; the text pane at the bottom displays a
merged version of the two files that you can edit.

Merging Glyphs

When files are loaded in the text panes, glyphs appear to indicate the
disparities. There is a difference between two files being merged without a
common ancestor, and two files that have a common ancestor (this case is
actually a three-way merge). The meaning of the glyphs in each case is slightly
different, as explained below.

Two Input Files

When only two files have been loaded into Merging, lines in each file are
marked by glyphs to indicate when they differ from corresponding lines in the
other file:

• If two lines are identical, no glyph is displayed.

• If two lines are different, a vertical bar (|) is displayed next to the line in
each input text pane, and the different characters are highlighted.

38 Sun Workshop TeamWare Users Guide—December 1996

4

• If a line appears in one file but not in the other, a plus sign (+) is displayed
next to the line in the file where it appears, and the different characters are
highlighted.

Three Input Files

When an ancestor file has been specified for the two files to be merged, lines in
each descendant are marked according to their relationship to the
corresponding lines in the common ancestor:

• If a line is identical in all three files, no glyph is displayed.

• If a line is not in the ancestor but was added to one or both of the
descendants, a plus sign (+) is displayed next to the line in the file where the
line was added, and the different characters are highlighted.

• If a line is present in the ancestor but was removed from one or both of the
descendants, a minus sign (-) is displayed next to the line in the file from
which the line was removed, and the different characters are highlighted
and in strikethrough.

• If a line is in the ancestor but has been changed in one or both of the
descendants, a vertical bar (|) is displayed next to the line in the file where
the line was changed, and the different characters are highlighted.

Resolved differences are marked by glyphs in outline font.

Table 4-1 summarizes the automerging algorithm. Ancestor is the version of a
text line that is in the ancestor file; Change 1 is a change to that line in one of
the descendants; Change 2 is another change, different from Change 1. Only
when a line is changed differently in the left and right descendants does
automerging fail.

Table 4-1 Automerging Rules Summary

Left Descendant Right Descendant Automerged Line

Ancestor Ancestor Ancestor

Change 1 Ancestor Change 1

Ancestor Change 2 Change 2

Change 1 Change 1 Change 1

Change 1 Change 2 No Automerge

Introduction to Merging 39

4

When Merging automatically resolves a difference, it changes the glyphs to
outline font. Merging lets you examine automatically resolved differences to be
sure that it has made the correct choices.

You can disable automatic merging in the Properties window. When automatic
merging is disabled, Merging constructs a merged file using only lines that are
identical in all three files and relies on you to resolve the differences.

If you do not specify an ancestor file, Merging has no reference with which to
compare a difference between the two input files. Consequently, Merging
cannot determine which line in a difference is likely to represent the desired
change. The result of an automerge with no ancestor is the same as disabling
automatic merging: Merging constructs a merged file using only lines that are
identical in both input files and relies on you to resolve differences.

40 Sun Workshop TeamWare Users Guide—December 1996

4

41

Starting a Project 5

When you begin to use Sun Workshop TeamWare, you are probably moving an
existing software development project to TeamWare or you may be starting a
new software development project. This chapter contains information about:

Moving an Existing SCCS-Based Project to Sun Workshop TeamWare
To move an existing SCCS-based software project to TeamWare do the
following:

1. Ensure that all SCCS history files (s-dot files) are in directories named
SCCS and that these files are directly beneath directories containing
source files.
Configuring works only on files under SCCS version control.

2. Be sure that your project directory structure is current and organized.

3. Execute the Create Workspace command item in the File menu, specifying
the top-level directory as your workspace. The Create Workspace
command creates the Codemgr_wsdata directory under the top-level
directory.

Moving a Non-SCCS Software Development Project to Workshop TeamWare page 42

Starting a New Software Development Project with Workshop TeamWare page 43

Product Release Considerations page 47

42 Sun Workshop TeamWare Users Guide—December 1996

5

4. Begin using the Bringover Create transaction to form a workspace
hierarchy. See “Configuring a Workspace Hierarchy” on page 44 for
guidelines regarding workspace hierarchies.

If your project is structured so that compilation units can be easily grouped on
a directory basis during transfer operations, you can use the default
Configuring FLP. See “Grouping Files for Transfer Using File List Programs”
on page 86 for a description of the default FLPs.

If your project requires files to be grouped for transfer operations in special
ways, you will have to write your own FLP(s).

Moving a Non-SCCS Software Development Project to Workshop TeamWare
To move an existing project into Workshop TeamWare do the following:

1. Use the Create Workspace command item in the File menu to create your
project’s top-level directory (with its Codemgr_wsdata directory)

2. Traverse to the directory where the existing development files live.

3. Start Workshop Versioning and select Check In New.
Select the files you want to include in the development project, and enter an
initial comment.

Converting an RCS Project to Workshop TeamWare
rcs2ws is a program that produces a CodeManager workspace from an RCS
source hierarchy. It converts a project developed in RCS (Revision Control
System) and works its way down through the hierarchy to convert the RCS
files to SCCS.

rcs2ws operates on RCS files under the parent directory and converts them to
SCCS files, then puts the resulting SCCS files into a workspace. If a workspace
doesn’t already exist, it will be created. The parent directory hierarchy is
unaffected by rcs2ws .

To convert files, rcs2ws invokes the RCS co command and the SCCS admin ,
get and delta commands. These commands will be found using the user’s
PATH variable. If the SCCS commands can’t be found, then they will be sought
in the /usr/ccs/bin directory.

Starting a Project 43

5

▼ How to Use rcs2ws

1. Type rcs2ws -p [parentdir] -n [files or directory] at the prompt.
The the -p option is required to name the RCS source hierarchy , the -n
option allows you to see what would be done withouut actually doing
anything. This will specify the value of the shell environment variable as
CODEMGR_WS. If the current directory is contained within a workspace, the
containing workspace is used as the child workspace. If workspace does not
exist, rcs2ws will create it.

If you wish to designate the child workspace, use the -w option. See man
rcs2ws (1). If all is as you wish, go on to Step 2.

2. Reenter the rcs2ws command using only the -p option.

Normally, SCCS gets (g-files) are extracted after the files are converted from
RCS. If you want to halt the process, do the conversion using the -g option.
(rcs2ws -g)

Further User Notes
• The “.” directory may be used to specify that every RCS file under parentdir

should be converted.

• Relative files names are interpreted as being relative to parentdir.

• Directories are searched recursively.

• rcs2ws does not convert RCS keywords to SCCS keywords. Keywords are
treated as text in the SCCS delta.

• CODEMGR_WS variable contains the name of a user’s default workspace. The
workspace specified by CODEMGR_WS is automatically used if the -w option
is not specified.

Starting a New Software Development Project with Workshop TeamWare
To start a new project with Workshop TeamWare do the following:

1. Use the Create Workspace command item in the File menu to create your
project’s top-level directory (with its Codemgr_wsdata directory)

44 Sun Workshop TeamWare Users Guide—December 1996

5

2. Proceed as you would to set up an SCCS-based development hierarchy.
Ensure that all SCCS history files (“s-dot-file”) are in directories named
SCCS located directly beneath directories that contain source files.

3. Begin using the Bringover Create transaction to form a workspace
hierarchy. See “Configuring a Workspace Hierarchy” on page 44, for
guidelines regarding workspace hierarchies.

4. The default Configuring FLP groups files recursively by directory; if you
intend to use that FLP, be sure to arrange files in compilation units
accordingly. If your project requires that files be grouped differently
during transfer, be sure to arrange your project hierarchy in such a way
that it works well with the FLP(s) you will create.

Configuring a Workspace Hierarchy

How you configure a project workspace influences the inter-workspace file-
transfer process and the way you prepare product releases. This section will
help you choose the workspace hierarchy best suited for your project. You can
change any decisions you make now regarding workspace hierarchies by using
the Configuring workspace reparenting feature. See “Reparenting a
Workspace” on page 66 for details. You can also refer to the Sun WorkShop
TeamWare: Solutions Guide for examples.

A workspace hierarchy is a chain of parent and child workspaces that is two or
more layers deep. The number of layers in a hierarchy bears no relation to the
number of workspaces comprising it. A parent workspace and its child
comprise two layers. A parent workspace and three children also comprise two

Starting a Project 45

5

layers. A parent workspace and its child and grandchild comprise three layers.
Figure 5-1 depicts a “flat” (three-tiered) hierarchy, and Figure 5-2 shows a
“multitiered” (four-tiered) hierarchy.

Figure 5-1 A “Flat” (Three-Tiered) Hierarchy

Figure 5-2 A “Multitiered” (Four-Tiered) Hierarchy

File Transfer Considerations

The way in which you set up your workspace hierarchy can have an impact on
the transfer of files up and down the hierarchy.

Product

Integration

Development

Product

Integration

Development

Subintegration

46 Sun Workshop TeamWare Users Guide—December 1996

5

File System Accessibility

In order to transfer (Bringover/Putback) files between workspaces, both the
parent and the child must be mounted on the same file system. The
automounter can be used to connect file systems.

Flat Hierarchy vs. Multitiered Hierarchy

To properly design your workspace, you need to be aware of the advantages
and disadvantages of flat and multitiered hierarchies.

Advantages of a Flat Hierarchy
A flat workspace hierarchy is one in which many developers put back files to a
single integration workspace. The advantage of a flat hierarchy is that all
developers have immediate access to one another’s work. The moment that
Jack (a developer) puts back his work to the integration workspace, Jon
(another developer) can use the Bringover Update transaction to have
immediate access to the changes made by Jack.

Disadvantages of a Flat Hierarchy
The disadvantage of a flat hierarchy is that time is often wasted because the
integration workspace changes frequently, requiring developers to do frequent
Bringover transactions, builds, and tests in order to keep their source base up-
to-date. There is a cumulative effect of doing Putback transactions; the first
developer to do a Putback resolves only one set of changes, the next developer
resolves two, and so on till the last developer, who must resolve all of the
changes that have been made within her development group.

Advantages of a Multitiered Hierarchy
The amount of time required for a developer to put her work back to the
integration workspace can be sharply reduced by interposing a tier of
subintegration workspaces between the integration and development level
workspaces.

Whenever a developer puts back work to an integration workspace, there is
some chance that the next developer to do a Putback transaction will not be
able to put back their changes until they bring over the earlier changes, rebuild
the modules, and test the new changes with their own—the more Putbacks that
occur the higher the potential for conflict.

Starting a Project 47

5

When many developers work on a project, the Bringover, rebuild, test cycle can
become onerous and time consuming. If smaller groups of developers working
on related portions of code integrate into a subintegration workspace, that
workspace will be more stable and require fewer builds and less testing. Of
course when the subintegration workspaces are themselves put back to their
common integration area, changes made in the other development workspaces
will have to be integrated. Experience has shown, however, that doing larger
integrations, less frequently, is more efficient.

Disadvantages of a Multitiered Hierarchy
The disadvantages of multiplying subintegration workspaces are as follows:

• Each new workspace consumes disk space.

• Developers who ought regularly to be looking at one another’s work may
find it harder to do so because they do not put back to the same integration
workspace

• Integration of the subintegration workspaces to the higher integration
workspace can become more complicated than more frequent, smaller
integrations.

Product Release Considerations
When you plan your project hierarchy structure, consider how you plan to
release your product. There are a number of ways that you can structure
workspace hierarchies to facilitate the preparation of major, minor, and patch
releases. The following discussion presents some ideas for you to consider;
your product may not lend itself to this model, or your product may have
considerations that suggest an alternate scheme. The Sun WorkShop TeamWare:
Solutions Guide presents several ways to structure project hierarchies.

You should consider dedicating a workspace as a product release staging area
for each release. “Hang” the release workspace off a top-level “product”
workspace. The product workspace should be located hierarchically above the
workspaces in which normal development integration is done. Locating the
product workspace this way permits you to begin development of your next
release without corrupting the current release.

48 Sun Workshop TeamWare Users Guide—December 1996

5

After the files are transferred to the product workspace, you use the Bringover
transaction to transfer the files down to the release workspace. The release
workspace can be used to make masters and can serve as an area in which to
save work for subsequent releases if necessary.

Figure 5-3 shows a hierarchy that contains a product workspace and release
workspaces for six different releases.

Figure 5-3 Hierarchy with Product and Release Workspaces

Note – You can use the reparenting feature to transfer data between release
workspaces directly. See “A Reparenting Example” on page 68 for details.
Refer also to the Sun WorkShop TeamWare: Solutions Guide for workspace
hierarchy strategies.

Coordinating Access to Source Files
Coordinating write access to source files is important when changes will be
made by several people. Maintaining a record of file updates allows you to
determine when and why changes were made.

The source code control system (SCCS) allows you to control write access to
source files and monitor changes made to those files. The SCCS allows only
one user at a time to update a file, and it records all changes in a history file.

Product

2.1

2.0

2.2

1.0

1.21.1

Starting a Project 49

5

Versioning is a GUI to SCCS. Versioning allows you to manipulate files and
perform most of the basic SCCS functions without having to know SCCS
commands. It provides an intuitive method for checking files in and out, as
well as displaying and moving through the history branches.

With Versioning, you can do the following:

• Check in files under SCCS
• Check out and lock a version of the file for editing
• Retrieve copies of any version of the file from SCCS history
• Visually peruse the branches of an SCCS history file
• Back out changes to a checked-out copy
• Inquire about the availability of a file for editing
• Inquire about differences between selected versions using Filemerge
• Display the version log summarizing executed commands

Versioning helps you perform these tasks and expedites the progress of
concurrent development projects.

Branches

You can picture the deltas applied to an SCCS file as nodes of a tree with the
initial version of the file as the root. The root delta is numbered 1.1 by default.
These two parts of the SCCS delta ID (SID) are the release and level numbers.
Successive deltas (nodes) are named 1.2, 1.3, and so forth. This structure is
called the trunk of the SCCS delta tree. It represents the normal sequential
development of an SCCS file.

It may be necessary to create an alternative branch on the tree. Branches can be
used to keep track of alternate versions developed in parallel, such as for bug
fixes.

The SID for a branch delta consists of four parts: the release and level numbers
and the branch and sequence numbers, or release.level.branch.sequence. The
branch number is assigned to each branch that is a descendant of a particular
trunk delta; the first branch is 1, the next 2, and so on. The sequence number is
assigned, in order, to each delta on a particular branch. Thus, 1.3.1.1 identifies
the first delta of the first branch derived from delta 1.3. A second branch to this
delta would be numbered 1.3.2.1 and so on.

50 Sun Workshop TeamWare Users Guide—December 1996

5

The concepts of branching can be extended to any delta in the tree. The branch
component is assigned in the order of creation on the branch, independent of
its location relative to the trunk. Thus, a branch delta can always be identified
from its name. While the trunk delta can be identified from the branch delta’s
name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta.

For example, if delta 1.3 has one branch, all deltas on that branch will be
named 1.3.n. If a delta on this branch has another branch emanating from it, all
deltas on the new branch will be named 1.3.2.n. The only information that can
be derived from the name of delta 1.3.2.2 is that it is usually the second
chronological delta on the second chronological branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta
1.3.2.2 all of the deltas between it and its trunk ancestor (1.3).

51

TeamWareConfiguring User
Interfaces 6

You can work with TeamWare Configuring in two ways:

• Use the command-line interface (CLI).
• Use the Configuring graphical user interface (GUI).

Both interfaces are included with TeamWare to accommodate different
computing styles. Complete TeamWare Configuring functionality is
implemented in both interfaces. The interfaces can be used interchangeably.
You can simultaneously use the GUI for some functions and the CLI for others.
Both interfaces employ the same underlying Configuring functionality and
command structure; the difference is an easy-to-use, graphical, interface for the
GUI.

The concepts in this chapter generally apply to both the GUI and the CLI.
Except in cases where there are special considerations regarding the CLI,
descriptions and examples are included for the GUI only—information specific
to the CLI can be obtained online through the manual pages. The remainder of
this chapter is an introduction to the Configuring CLI and GUI.

This chapter is organized as follows:

TeamWare Configuring Command-Line Interface page 52

TeamWare Configuring Graphical User Interface page 53

Starting TeamWare Configuring page 53

52 Sun Workshop TeamWare Users Guide—December 1996

6

TeamWare Configuring Command-Line Interface
The TeamWare Configuring CLI is accessible from any Solaris shell. The CLI is
useful when you are not working on a window-based system.

Like SCCS commands, all CLI commands may be executed through a central
“umbrella” command. The individual commands may also be executed directly
by specifying the individual command name.

The umbrella command codemgr enables you to list Configuring commands
(Code Example 6-1). You can list Configuring commands with their use
summaries by executing teamwarewithout specifying any arguments. You can
achieve the same results by executing codemgr with the help subcommand.
Code Example 6-1 codemgr Umbrella Command

To use the umbrella command to execute commands, type codemgr followed
by the name of the subcommand you wish to execute. For example:

You can also execute the commands directly (without typing codemgr). For
example:

Note – You must use the individual command name when you access
TeamWare manual pages.

example% codemgr
bringover ...
codemgrtool
help
putback ...
resolve ...
ws_undo
workspace

% codemgr bringover -w my_child -p their_parent /usr/ws/project

% bringover -w my_child -p their_parent /usr/ws/project

TeamWare Configuring User Interfaces 53

6

TeamWare provides several ways to reduce typing long command-lines,
including environment variables and argument files that store previously
specified arguments. See the respective manual pages for details.

TeamWare Configuring Graphical User Interface
The TeamWare GUI (Configuring) is a tool that enables you to view workspace
hierarchies and to execute menu-based commands on workspaces and their
contents. Key features include the following:

• Graphical display of workspaces in a Workspace Graph pane. This feature
enables users to:
• Conveniently view workspace hierarchies.
• Use the mouse to select workspace icons.
• Execute menu-based commands on selected workspaces and their

contents.
• Menu lists that reduce the need for you to remember and type command

names, options, and arguments.
• Facilities to customize the GUI to meet your individual style and needs.
• Online Help to assist you at all levels, including explanation of error

messages.

Note – TeamWare windows, menus, and buttons are documented online using
the Help feature. With Help, you can obtain information regarding any object
on the screen. Therefore, this section does not discuss these objects in detail;
rather, it serves as a guide to other aspects of Configuring. Throughout the rest
of this chapter, Configuring tasks such as Bringover and Putback transactions
and conflict resolution are discussed in detail.

Starting TeamWare Configuring
To start TeamWare Configuring, at a shell command prompt type twconfig
followed by the ampersand symbol (&) as shown. After a moment, the
Configuring window appears.

demo% twconfig &
demo%

54 Sun Workshop TeamWare Users Guide—December 1996

6

TeamWare Configuring Windows

Configuring consists of a base window and a number of pop-up windows.
Within this base window is a menu bar from which you can choose commands,
menu items, and window items to help you accomplish your tasks. The online
Help contains a full explanation of TeamWare Configuring Windows.

You navigate the file system with point-and-click windows. Select files and
directories by moving the mouse pointer over icons and clicking SELECT. You
can make multiple selections using two different methods:

• Use the ADJUST mouse button to extend the selection to multiple files or
directories.

• Press SELECT in an open area of the pane and drag a bounding box
diagonally until the desired group of icons is enclosed, then release SELECT.

When you make your selection, select the button at the bottom of the chooser
window to make your choice effective. You can also choose a file or directory
by typing its name in the Name text field and selecting the Add Files to List
button (or typing Return).

You can navigate down through the file system hierarchy by double-clicking
SELECT on any directory icon. To move hierarchically upward, double-click
SELECT on the directory icon. To move directly to a directory, enter its path
name in the Name text field and select the Load Directory button.

Note – Mouse button action is different in the Motif/CDE interfaces. To make
a selection, click the left mouse button to select the first item, then extend the
selection by clicking the left mouse button on another item while pressing the
Shift key (this action is called Shift-SELECT). If you press Shift-SELECT on an
item that is already selected, that item is deselected.

Note – A check mark in a file icon indicates that the file is checked out from
SCCS.

TeamWare Configuring User Interfaces 55

6

Configuring Window

When you start the Configuring program, the base window appears. In
working with Configuring, you select workspace icons in the Workspace
Graph pane and then choose commands that act upon the selected workspaces
and the files they contain.

Workspace Graph Pane

In the Workspace Graph pane each workspace is represented by a workspace
icon. Parent and child relationships are depicted by lines connecting
workspaces. The path name of the workspace top-level (root) directory is
displayed beneath the icon.

Loading Workspaces into the Workspace Graph Pane
When Configuring is started, it checks the directory (or directories) specified
by the environment variable CODEMGR_WSPATH to determine if it contains any
workspaces. If workspaces are found, they are loaded into the Workspace
Graph pane. If CODEMGR_WSPATH is not set, Configuring attempts to load
workspaces from the directory in which it was started. To load additional
workspaces, use the Load Workspaces window from the File menu.

Layout
Workspace hierarchy graphs are automatically created in the Workspace Graph
pane by the Configuring program as you load workspaces (using the Load
menu). Hierarchies are displayed either vertically or horizontally starting from
the upper-left corner and distributed to the right as space permits. You can
choose the orientation using the Orientation item form the View menu. Vertical
orientation is the default. Layout is done automatically—you are not able to
change the layout by moving icons with the mouse.

Workspace Name Fields
Beneath the workspace icon is a text field that contains the name of the
workspace root directory. You can choose to have workspace names displayed
one of two ways:

• Using the absolute (full) path name of the root directory
• Using the truncated (short) name of root directory

56 Sun Workshop TeamWare Users Guide—December 1996

6

Choose the display style you prefer using the Name item from the View menu.

You can change the path name of a workspace by editing the name text field.

Dragging and Dropping Workspace Icons
You can accomplish two types of operations by directly manipulating icons on
the Workspace Graph pane. You can “drag and drop” workspace icons to
initiate both Bringover and Putback transactions and to reparent workspaces.

• Interworkspace transactions—If you select and drag a workspace and drop
it on top of another icon, the Configuringprogram will initiate one of the
following transactions: Bringover Create, Bringover Update, Putback. You
determine which transaction is initiated by which icon you drag, and where
you drag it; Table 6-1 summarizes these actions. For more information about
interworkspace transactions, see “Copying Files between Workspaces” on
page 83.

• Reparenting—To use the drag and drop facility to change a workspace’s
parent, press and hold the SHIFT key while you select and drag the
workspace icon on top of its new parent’s icon. If you drag the icon to an
open area of the Workspace Graph pane, the workspace will be orphaned
(have no parent). The display is automatically adjusted to reflect the new
relationship. For more information about reparenting workspaces, see
“Reparenting a Workspace” on page 66.

Note – You are prompted to confirm the reparent operation.

Table 6-1 Workspace Drag and Drop Action

Drag: To: Action

Any workspace icon Open area Activate Bringover Create
transaction window

Parent workspace icon Child workspace icon Activate Bringover Update
transaction window

Child workspace icon Parent workspace icon Activate Putback
transaction window

Any workspace icon A nonrelated (not a parent
or child) workspace icon

Activate pop-up notice to
determine actions

TeamWare Configuring User Interfaces 57

6

Double-Click Action
When you double-click the SELECT mouse button when the pointer is over a
workspace icon, the TeamWare utility Versioning is automatically started (with
the selected workspace automatically loaded). See Versioning online Help and
the section in this manual on Versioning for instructions on using Versioning.

If you double-click SELECT when the pointer is over the icon of a workspace
that contains unresolved conflicts, Configuring automatically activates the
Resolve transaction window. Conflicted files from the selected workspace are
automatically loaded and ready for processing.

You can customize Configuring double-click behavior using the Configuring
pop-up window under the Properties button.

Configuring Window Control Area

See online Help for detailed descriptions of Configuring Windows.

Customizing the Configuring Program Using Properties

Using the Tool Properties window, you can customize the behavior of:

• Configuring window functions
• Bringover/Putback transactions
• Resolve transaction

You activate the Tool Properties window by choosing the Configuring item
from the Options menu. The Category menu on the Properties window enables
you to switch between the Configuring, Bringover/Putback, and Resolve
panes.

Configuring Defaults Files

When you change Configuring behavior using the Tool Properties window,
you can use the Set Default button to preserve the changes in defaults files in
your home directory. The defaults files are consulted by Configuring when it is
started, your changes are used as the default values.

Changes made in the Resolve pane of the Tool Properties window are written
to the file ~/.codemgr_resrc . This file is a standard SunOS runtime
configuration file.

58 Sun Workshop TeamWare Users Guide—December 1996

6

Changes made in the Configuring and Bringover/Putback panes of the Tool
Properties window are written to the file ~/.codemgrtoolrc . This file is an
OpenWindows XDefaults format file.

Configuring Pane

The Configuring pane of the Tool Properties window enables you to change the
behavior of the Configuring base window. The specific properties are described
in Table 6-2.

Table 6-2 Configuring Tool Properties

Property Description

Default Directory Directory to which Configuring actions are relative.

Double-click Action Specify the commands you want launched when you double-
click SELECT on: standard workspace icons, icons of
workspaces that contain conflicts. Specify the path names
required to execute the commands based on the current
working directory and your search path. By default, the
standard workspace command is Versioning (vertool); by
default, the Resolve Transaction window (<resolve_pane >)
is activated for conflicted workspaces.

Load Workspaces Select this check box if you want the parent and children of
workspaces you load in the Workspace Graph pane
automatically loaded with them. By default this box is not
checked.

Orientation Choose the Horizontal setting if you want the workspace
hierarchy displayed horizontally from left to right in the
Workspace Graph pane. Choose the Vertical setting if you want
workspace hierarchy displayed vertically from top to bottom.
By default the Vertical setting is in effect. This property
corresponds to the Orientation item on the View menu in the
main Configuring window.

Workspace Names Choose the Short setting if you want workspaces labelled with
the shortest possible name in the Workspace Graph pane.
Choose Full if you want workspaces labelled with absolute
path names. By default the Full setting is in effect. This
property corresponds to the Names item on the View menu in
the main Configuring window.

TeamWare Configuring User Interfaces 59

6

Bringover/Putback Pane

The Bringover/Putback pane of the Tool Properties window enables you to
change the behavior of the Bringover and Putback panes of the Transactions
window. The specific properties are described in Table 6-3.

Resolve Pane

The Resolve pane of the Tool Properties window enables you to change the
behavior of the Resolve pane of the Transaction window. The specific
properties are described in Table 6-4.

Table 6-3 Bringover/Putback Tool Properties

Property Description

Auto Load Causes Configuring to reread the Codemgr_wsdata/args
file and load it into the File List pane whenever a new
workspace is selected. You might choose to deselect this
property when you want to use the same file list for a
number of transactions involving different workspaces.

Auto Display Automatically displays the Transaction Output window
during transaction execution.

Auto Bringover Update If a Putback transaction is blocked, automatically initiates a
Bringover transaction to update the child workspace.

Table 6-4 Resolve Tool Properties

Property Description

Start Merging (auto load) Causes Merging(FileMerge) to start automatically
when the Resolve transaction pane is chosen.

Auto Advance Causes the next file in the list to be automatically
loaded into Merging after the current file is
resolved.

60 Sun Workshop TeamWare Users Guide—December 1996

6

Accelerators

Table 6-5 summarizes the various accelerators available for Configuring
functions.

Prompt for Checkin Comments A default comment is automatically supplied
during checkin after you resolve a file. This
property causes you to be prompted for an
additional comment that is appended to the
standard comment.

Use Existing Merging If this property is set, an already running Merging
process is reused during subsequent resolve
operations.

Auto Save (when no
unresolved diffs)

If this property is set, and all the changes in the file
can be “automerged,” the files will also be saved
and checked in; you need not select the Merging
Save button.

Table 6-5 Summary of Configuring Accelerators

Accelerator Action
Where to Find More Information

Drag and drop
workspace icon

Activate Bringover/Putback
transaction window

“Dragging and Dropping
Workspace Icons”

SHIFT + drag and drop
workspace icon

Reparent workspace “Dragging and Dropping
Workspace Icons”

Click SELECT on
workspace icon name
field

Rename workspace “Workspace Name Fields”

Double-click SELECT
on workspace icon

Launch a tool. User
configurable, Versioning is
the default

““Double-Click Action”

Double-click SELECT
on an icon of a
workspace that
contains conflicts

Launch a tool. User
configurable, Resolve
window is the default

“Double-Click Action”

Table 6-4 Resolve Tool Properties (Continued)

Property Description

61

TeamWare Configuring Workspace 7

As discussed in Chapter 3, “Introduction to TeamWare Configuring“, the
workspace forms the basis of the Configuring system. The workspace provides
isolation in which you (a developer) work in parallel with other developers
programming in other workspaces. For an introduction to the Configuring
workspace, refer to “Workspace” on page 20 of this manual.

This chapter discusses specific aspects of workspaces and the Configuring
commands you use to configure, create, manipulate, and administer them, and
contains the following sections:

The Workspace Metadata Directory page 62

Creating a Workspace page 64

Deleting a Workspace page 64

Moving and Renaming a Workspace page 65

Reparenting a Workspace page 66

Controlling Access to Workspaces page 71

How to Notify Users of Changes to Workspaces page 75

Viewing Workspace Command History page 78

Ensuring Consistency through Workspace Locking page 80

Configuring Environment Variables page 81

62 Sun Workshop TeamWare Users Guide—December 1996

7

The Workspace Metadata Directory
A Configuring workspace is a directory hierarchy that contains a directory
named Codemgr_wsdata in its root directory. the Configuring program stores
data (metadata) about that workspace in Codemgr_wsdata . Configuring
commands use the presence or absence of this directory to determine whether
a directory is a workspace.

All data stored in the Codemgr_wsdata directory is contained in ASCII text
files that can be edited by users. Table 7-1 briefly describes each of the files and
directories contained in the metadata directory. Information regarding the
format of these files is available in the man(4) page for each file.

Table 7-1 Contents of the Codemgr_wsdata Metadata Directory

File/Dir Name Description

access_control The access_control file contains information that controls
which users are allowed to execute Configuring transactions and
commands for a given a workspace. When workspaces are
created, a default access control file is also created. See Section ,
“Controlling Access to Workspaces,” on page 71.

args The args file is maintained by the Configuring Bringover and
Putback transaction commands and contains a list of file,
directory, and FLP arguments. Initially, the args file contains the
arguments specified when the workspace was created. If you
explicitly specify arguments during subsequent Bringover or
Putback transactions, the commands determine if the new
arguments are more encompassing than the arguments already
in the args file; if they are, the new arguments replace the old.

backup/ The backup directory is used to store information that
Configuring uses to “undo” a Bringover or Putback transaction.
See Section , “Reversing Bringover and Putback Transactions
with Undo,” on page 105.

children The children file contains a list of the workspace’s child
workspaces. The names of child workspaces are entered into the
workspace’s children file during the Bringover Create
transaction. Configuring consults this file to obtain the list of
child workspaces. When you delete, move, or reparent a
workspace, Configuring updates the children file in its parent.

TeamWare Configuring Workspace 63

7

conflicts The conflicts file contains a list of files in that workspace that
are currently in conflict. See Chapter 9, “Resolving Conflicts,” for
more information about conflicts and how to resolve them.

history The history file is a historical log of transactions and updated
files that affect a workspace. See “Viewing Workspace Command
History” on page 78 for more information.

locks To assure consistency, Configuring locks workspaces during
Bringover, Putback and Undo transactions. Locks are recorded in
the locks file in each workspace; Configuring consults that file
before acting in a workspace. See “Ensuring Consistency
through Workspace Locking” on page 80.

nametable The nametable file contains a table of SCCS file names (path
names relative to that workspace) and a unique number
represented as four 32-bit hexadecimal words. Each entry in the
table is terminated by a newline character. The nametable file is
used by Configuring during Bringover and Putback to accelerate
the processing of files that have been renamed. If this file is not
available, Configuring rebuilds it automatically during the next
Putback or Bringover transaction. See “Renaming, Moving, or
Deleting Files” on page 108.

notification The notification file is edited by users to register notification
requests. This facility permits Configuring to detect events that
involve that workspace and to send electronic mail messages in
response to the event. See Section , “How to Notify Users of
Changes to Workspaces,” on page 75.

parent The parent file contains the path name of the workspace’s
parent workspace and is created by the Bringover Create
transaction, or by the Reparent command if the workspace was
originally created with the Create Workspace command (and
thus had no parent). Configuring consults this file to determine a
workspace’s parent. When you delete, move, or reparent a
workspace, Configuring updates the parent file in its children.

putback.cmt The putback.cmt file is a cache of the text of the comment from
the last blocked Putback transaction. When a Putback transaction
is blocked, the comment is discarded. Configuring caches the
comment in putback.cmt so that you can retrieve the original
text when you reexecute the transaction.

Table 7-1 Contents of the Codemgr_wsdata Metadata Directory (Continued)

File/Dir Name Description

64 Sun Workshop TeamWare Users Guide—December 1996

7

Creating a Workspace
You can create a workspace in one of two ways:

• Explicitly by means of the Create Workspace item in the File menu on the
main Configuring window

• Implicitly by using the Bringover Create transaction to copy files into a
nonexistent child workspace, in which case the child workspace is created
and then populated with the files specified as part of the transaction

Using Workspace Create

The Workspace Create item in the Configuring File menu is used to create new
workspaces. Type the name of the new workspace’s root (top-level) directory
in the Workspace Directory text field and click on the Create Workspace
button.

If the workspace you are creating already exists as a directory hierarchy,
Configuring converts it to a workspace by simply adding the
Codemgr_wsdata directory in the root directory and displaying its icon in the
Workspace Graph Pane.

If the directory does not already exist, Configuring creates both the root
directory and the Codemgr_wsdata directory.

Using the Bringover Create Transaction

Use the Bringover Create transaction (on the Transactions menu) to copy files
from a parent workspace to a nonexistent child workspace; the child is
automatically created as part of the transaction. See “Creating a New Child
Workspace (Bringover Create)” on page 90 for details.

The online Help provides further assistance in Creating New Workspaces. To
access the help, choose Help ➤ Help Contents ➤ Starting a Project.

Deleting a Workspace
You delete workspaces by selecting their icons in the Workspace Graph Pane
and then invoking the Delete ⇒ item from the Configuring Edit menu.

Two menu items are provided that delete workspaces:

TeamWare Configuring Workspace 65

7

• Sources and Codemgr_wsdata Directory

Recursively deletes the contents of the workspaces.

• Codemgr_wsdata Directory only

Changes their status to nonworkspace directories by deleting only the
Codemgr_wsdata directory and removing their icons from the Workspace
Graph Pane.

In either of these cases Configuring automatically updates records in parent
and child workspaces to reflect the deletion of the workspace.

When you choose the Sources and Codemgr_wsdata Directory command, you
are prompted to confirm your decision.

Moving and Renaming a Workspace
Since workspaces are directories, you move them by changing their path
names. There are two ways that you can move/rename a workspace:

• By editing its name in the Workspace Graph pane

Select the name field by moving the pointer over a portion of the text and
click SELECT. This selects the text for editing. Use standard text editing to
change the name; type Return to enter your changes. Click SELECT in an
empty portion of the pane to deselect the text.

• By using the Rename command item from the Configuring Edit menu

The path name of the selected workspace is changed to the name that you
type in the New Workspace Name text field.

In addition to changing the workspace path name, both methods also update
the appropriate data files in the parent and child workspaces to contain the
new name. These data files are discussed in “The Workspace Metadata
Directory” on page 62.

A Note About Moving Workspaces

Caution – Do not use the SunOS mv command to rename or move workspaces.

66 Sun Workshop TeamWare Users Guide—December 1996

7

The Configuring Rename command updates files in the workspace’s parent
and children, as well as logging the event in the Codemgr_wsdata/history
file.

If you inadvertently use the mv command to move/rename a workspace and
discover that it has become “disconnected” from its parent and children, you
can use the Rename command to reconnect it.

For example, if you used the mv command to rename a workspace from A to B:

1. Use the Rename command to rename B to C.
This causes Configuring to update the workspace’s new name (C) in the
parent and child workspaces. To save time, be sure to use a path name on
the same device.

2. Use the Rename command to change C back to B.
Everything should be reconnected.

Reparenting a Workspace
As discussed in Chapter 3, “Introduction to TeamWare Configuring,” “Parent
and Child Relationship” on page 22, the parent/child relationship is the thread
that connects the workspace hierarchy. Configuring provides the means for
you to change this relationship at your discretion.

This section discusses how you can explicitly change a workspace’s parent. It is
also possible for you to implicitly change a workspace parent “on the fly” (for
the duration of a single command) by specifying the new parent’s path name
as part of a Bringover Update or Putback transaction. See the descriptions of
the Bringover Update and Putback transactions in “Copying Files between
Workspaces” on page 83 for more information.

The following sections describe:

• Two methods that you can use to change a workspace’s parent
• Some reasons why you might want to change a workspace’s parent
• An example of using the rename feature

Two Ways to Reparent Workspaces

This section describes two completely equivalent ways to reparent workspaces.

TeamWare Configuring Workspace 67

7

Drag and Drop Workspace Icons

You can change a workspace’s parent by selecting its icon in the Workspace
Graph Pane, pressing and holding the SHIFT key, and dragging it on top of its
new parent’s icon. The display is automatically adjusted to reflect the new
relationship.

Note – You are prompted to confirm the change.

You may also “orphan” a workspace by selecting its icon, pressing SHIFT, and
dragging it to an open area on the Workspace Graph. The workspace no longer
has a parent: the display is automatically adjusted to reflect its new status.

The Parent Command

You can change a workspace’s parent by selecting its icon in the Workspace
Graph Pane and then choosing the Parent command item from the Edit menu.
This activates the Parent pop-up window.

When the window is initially activated, the New Parent Workspace Directory
text field contains the name of the current parent; edit that line so that it
contains the name of the new parent file. Click SELECT on the Parent button.
The Workspace Graph Pane is automatically adjusted to reflect the new
relationship.

If you do not specify a parent workspace in the New Parent Workspace
Directory text field, the workspace is orphaned—it has no parent. The
Workspace Graph Pane is automatically adjusted to reflect its new status.

Reasons to Change a Workspace’s Parent

Reasons why you might want to permanently or temporarily change a
workspace parent are as follows:

• To populate a new project hierarchy (new top-level workspace)

You may be completing Release 1 of your product and see the need to begin
work on Release 2. In this case you might:
• Create a new (empty) Release 2 workspace by means of the Create

Workspace command item.

68 Sun Workshop TeamWare Users Guide—December 1996

7

• Use either of the two methods described above to make the Release 2
workspace the new parent of the Release 1 workspace.

• Use the Putback transaction to copy files to the Release 2 workspace.
• Reparent the Release 1 workspace to its original parent.

• To move a feature into a new release

If a feature intended for a particular release is not completed in time, the
workspace in which the feature was being developed can be reparented to
the following release’s integration workspace. A similar use of reparenting
is described in the example in the next section.

• To apply a bug fix to multiple releases.

The workspace in which work was done to correct a bug is reparented from
hierarchy to hierarchy; the Configuring Putback transaction is used to
incorporate the changes into the new parent. An example of this use of
reparenting is included in the next section.

• To reorganize workspace hierarchies
• You can add additional levels to the hierarchy.
• You can remove levels from the hierarchy (do not specify a new parent

during reparenting).
• You can reorganize workspace branches within the project hierarchy.

• To adopt an orphan workspace if its Codemgr_wsdata/parent file is
deleted

If, for some reason a file is orphaned (for example, its parent is corrupted or
its own Codemgr_wsdata/parent file deleted) you can use the reparenting
feature to restore its parentage.

A Reparenting Example

Often a bug is fixed in a version of a product and a patch release is made to
distribute the fixed code. The code that was fixed must usually be incorporated
into the next release of the product as well. If the product is developed using
Configuring, the patch can be incorporated relatively simply by means of
reparenting.

In the following example, a patch is developed to fix a bug in Release 1.0 of a
product. The patch must be incorporated into Release 2.0, which has begun
development.

TeamWare Configuring Workspace 69

7

1. The workspace in which the patch was developed (or the workspace from
which it is released) is cloned by means of the Bringover Create transaction.
The reason the workspace is cloned is that it will be altered by its interaction
with its new parent (Bringover transaction to synchronize it with its new
parent).

2. Either of the two reparenting methods are used to change the cloned
workspace’s parent from 1.0patch to 2.0 . (Figure 7-1)

Figure 7-1 Patch Workspace Reparented to New Release

3. The workspace is then updated from its new parent, and any new work is
brought over from 2.0 . (Figure 7-2A)

4. The fixes made for the patch are merged in patch with the files from 2.0
and are put back into the 2.0 workspace where they are now available to
workspace 2.0child . (Figure 7-2B)

70 Sun Workshop TeamWare Users Guide—December 1996

7

Figure 7-2 Files Brought Over, Merged, and Incorporated into the New Release

5. Files are brought over to 2.0child , and patch is deleted by means of the
Delete ⇒ Sources and Metadata item from the Edit menu. (Figure 7-3)

Figure 7-3 Patched Files Brought Over into 2.0child ; patch Deleted

For more detailed examples of reparenting, refer to Sun WorkShop TeamWare:
Solutions Guide, in particular, workspace hierarchy strategies.

TeamWare Configuring Workspace 71

7

Controlling Access to Workspaces
Configuring permits you to control the access that users have to your
workspaces. Table 7-2 lists and describes the eight types of access over which
you can exercise control.

Prior to taking any of the actions listed above, the Configuring program
consults a file in the Codemgr_wsdata directory named access_control to
determine whether the user taking the action has access permission to the
workspace for that purpose. The access_control file is a text file that
contains a list of the eight operations and corresponding values that stipulate
who is permitted to perform those operations. The access_control file is
automatically created at the time the workspace is created and is owned by the
creator of the workspace.

Table 7-2 Operations Over Which You Have Access Control

Type of Access Description

bringover-from Controls which users may bring over files from this
workspace

bringover-to Controls which users may bring over files to this
workspace

putback-from Controls which users may put back files from this
workspace

putback-to Controls which users may put back files to this
workspace

undo Controls which users may “undo” commands executed
in this workspace

workspace-delete Controls which users may delete this workspace

workspace-move Controls which users may move this workspace

workspace-reparent Controls which users may reparent this workspace

workspace-reparent-to Controls which users may reparent other workspaces to
this workspace

72 Sun Workshop TeamWare Users Guide—December 1996

7

To view and change access permissions, use the Options menu. Choose the
Workspace item, then use the Category button to choose the Access Control
pane of the Workspace Properties pop-up window (see “Viewing and
Changing Access Control Values” on page 74).

Table 7-3 shows the default contents of access_control after you create a
workspace:

Note – Creator permission indicates that Creator’s login name appears.

Table 7-3 Default Access Control Permissions

Operation Permissions

bringover-from

bringover-to creator

putback-from

putback-to

undo

workspace-delete creator

workspace-move creator

workspace-reparent creator

workspace-reparent-to

TeamWare Configuring Workspace 73

7

You can express which users have or do not have access to a workspace in a
number of ways. Table 7-4 shows all of the value types you can specify to
control access to your workspaces and what the entries mean.

Note – If a user is listed as having both access permission and restriction, the
first reference is used.

Note – Performance may degrade when net groups are included in the access
control file. The time required to look up group membership can add several
seconds to the execution of a given operation.

Table 7-4 Workspace Access Control Values

Value Meaning

@engineering All users in the net group named engineering can
execute this operation

-@engineering No users from the net group named engineering
can execute this operation. Note that “- ” denotes
negation.

@special -user2 @engineering All users in the net groups special and
engineering can execute the operation; user2
cannot (unless user2 is in the special netgroup).
“- ” denotes negation.

user1 user2 The users user1 and user2 can execute the
operation.

“-” No user can execute the operation.

creator Only the user who created the workspace can
execute the operation. Note that the creator’s login
name actually appears.

(no entry) Any user may execute the operation.

74 Sun Workshop TeamWare Users Guide—December 1996

7

Viewing and Changing Access Control Values

▼ To view the access control status of a workspace, do the
following:

1. Select a workspace icon in the base window Workspace Graph pane.

2. Choose the Workspace item from the Options button menu.

▼ To change the access control status of a workspace, do the
following:

1. Select a workspace icon in the base window Workspace Graph pane.

2. Choose the Workspace item from the Options button menu.

3. Use the SELECT mouse button to select an access line in the global Access
Control list, then select the Edit button to activate the Access Control Edit
pop-up.
The operation you selected before clicking on the Edit button is
automatically selected for you.

4. Optionally, use the Operation menu in the Access Control Edit pop-up to
select an operation type.

5. Choose the type of permission you wish to allow:
• None: No users have permission
• All: All users have permission
• Specify: Use the Permissions list to construct a list of users and

netgroups that are to be granted or denied permission

6. If you choose to specify individual and/or group permissions, construct
your entry using:
• The Name text field to enter the name of the user or netgroup
• The Type setting to specify whether the entry is a user or a netgroup
• The Access setting to specify whether the specified user/netgroup is

granted or denied permission

7. Select the Insert button to enter your entry into the Permissions list.

8. Select the Apply button to enter your selection into the global Access
Control list.

TeamWare Configuring Workspace 75

7

9. In the Workspace Properties pop-up, select the Set Default button to write
the changes to the access_control file.

How to Notify Users of Changes to Workspaces
You can request Configuring to notify you (through an electronic mail
message) when a variety of Configuring events occur in a workspace.
Notification requests are entered in the file named notification in the
Codemgr_wsdata directory.

A notification request consists of the following items:

• An address to which mail is sent.
• The event for which you want notification triggered.
• An optional list of directories and files whose changes of status trigger

notification. The list is bracketed by BEGIN/END statements.

The following is an example of a notification file that contains three
requests:

In the first entry, the user chip@mach1 requests to be notified when the file
dir1/foo.cc and any file in the directory dir2 (path names are relative to
the workspace root directory) are brought over to the workspace.

Note – File and directory entries for each event are bracketed by BEGIN/END
statements. An empty list, a missing list, or a list that consists of only the “.”
character indicate that all files and directories in the workspace are registered
for notification.

chip@mach1 bringover-to
BEGIN
dir1/foo.cc
dir2
END
biff@mach2 bringover-to putback-to
BEGIN
.
END
biff@mach2 workspace-move

76 Sun Workshop TeamWare Users Guide—December 1996

7

In the second entry, user biff@mach2 requests to be notified when any file in
the workspace is brought over to, or put back to, the workspace. The “.”
character represents all files in the workspace.

In the third entry, biff@mach2 requests to be notified if the workspace is
moved. Events that involve entire workspaces (delete, move, reparent) do not
accept directory/file lists.

Table 7-5 lists the events for which you can register notification requests:

Viewing and Changing Notification Entries

To view and change notification entries, select a workspace icon in the
Workspace Graph pane and choose the Workspace item from the base window
Options menu. Use the Category menu to choose the Notification pane. The
requests contained in the notification file described on the previous page
will be similar to those displayed in the Workspace Properties pop-up.

Table 7-5 Notification Events

Event Name Description

bringover-from Send mail whenever files are brought over from the
workspace in which the notification file is located.

bringover-to Send mail whenever files are brought over to the
workspace in which the notification file is located.

putback-from Send mail whenever files are put back from the workspace
in which the notification file is located.

putback-to Send mail whenever files are put back to the workspace in
which the notification file is located.

undo Send mail whenever a transaction is “undone” in the
workspace in which the notification file is located.

workspace-delete Send mail if the workspace in which the notification file is
located is deleted.

workspace-move Send mail if the workspace in which the notification file is
located is moved.

workspace-reparent Send mail if the workspace in which the notification file is
reparented.

workspace-reparent-to Send mail if the workspace becomes the new parent of an
existing workspace.

TeamWare Configuring Workspace 77

7

Use the items in the Edit menu to modify, create and delete notification entries.
Choosing the Entry and Create menu items activates the Notification Edit
pop-up.

To create a new request, choose (with no items selected) the Create item in the
Edit menu. The Notifications Edit pop-up is activated—use this window to
specify the following request information:

• The mail address to which notification mail is sent

• The event about which notification mail is sent

• The files the notification event applies to:
• Any file in the workspace (All)
• Specific directories and/or files (Specify). If you choose to specify

files/directories, create the list of directories and files in the Files text
pane. To create the list, activate the Add Files chooser by clicking on the
Add files to List button. Delete files from the list using the Delete button.

Modify an existing entry, by selecting it in the Notification pane of the
Workspace Properties pop-up and choosing the Entry item from the Edit menu.
Use the Notification Edit pop-up to modify the entry.

Apply changes to the Notification Edit pop-up changes to the global
Notification list, by clicking on the Apply button.

Apply changes to the notifications file, by clicking on the Set Default
button in the Workspace Properties pop-up.

Notes About Registering Notification Events
• The following events involve entire workspaces and thus do not require a

directory/file list:
• workspace-delete
• workspace-move
• workspace-reparent
• workspace-reparent-to

• When a directory is specified in the list, all files hierarchically beneath it are
automatically registered.

• The mail address can be any valid mail address, including aliases.

78 Sun Workshop TeamWare Users Guide—December 1996

7

Viewing Workspace Command History
Configuring commands are logged in the text file Codemgr_wsdata/history .
Commands that affect a single workspace are logged only in that workspace;
interworkspace transactions are logged in both the source and destination
workspaces.

Note – Although command entries are logged in both the source and
destination workspaces, the list of changed files is entered only in the
destination directory.

You can view the contents of this file to track or reconstruct changes that have
been made to a workspace over time. Log entries consist of the underlying
command-line entries and do not correspond to GUI menu item names. If you
have any questions about the meaning or syntax of a command, refer to its man
page for details. Table 7-6 lists the GUI operations and the corresponding CLI
command that is entered in the history log.

Note – In active workspaces, the Codemgr_wsdata/history file can grow
very quickly. You may want to periodically prune the file to reduce its size.

Table 7-6 Corresponding GUI and CLI Commands

GUI Menu Item Corresponding CLI Command

Create Workspace workspace create

Rename workspace move

Parent workspace parent

Bringover Create bringover

Bringover Update bringover

Putback putback

Undo ws_undo

Resolve resolve

TeamWare Configuring Workspace 79

7

The following portion of a history file was generated during a Bringover
Update transaction; entries are described in Table 7-7. This entry is taken from
the history file in the child; the corresponding entry in the parent is identical
except that file status messages are not included.

COMMAND bringover -w /home/sponge3/larryh/ws/man_pages -p
/home/sponge3/larryh/ws/manpages man trans/man

 update: man/Makefile
 update: man/man5/access_control.5
 create: man/man5/notification.5
 create: man/man1/codemgr.1
 rename from: man/man1/def.dir.flg.1
 to: man/man1/def.dir.flp.1
 update: man/man1/def.dir.flp.1
 create: man/man1/codemgrtool.1
 rename from: man/man1/fileresolve.1
 to: deleted_files/man/man1/fileresolve.1
 update children’s name history:

deleted_files/man/man1/fileresolve.1
 rename from: man/man1/resolve_tty.1
 to: deleted_files/man/man1/resolve_tty.1
 update: deleted_files/man/man1/resolve_tty.1
 create: trans/man/man1/codemgr_acquire.1
 create: trans/man/man1/codemgr_prepare.1
CWD /tmp_mnt/home/sponge3/larryh/temp
RELEASE Beta 1.0
HOST croak
USER larryh
PARENT_WORKSPACE (/home/sponge3/larryh/ws/manpages)
(sponge:/export/home/sponge3/larryh/ws/manpages)
CHILD_WORKSPACE (/home/sponge3/larryh/ws/man_pages)
(sponge:/export/home/sponge3/larryh/ws/man_pages)
START (Mon Jul 13 13:31:16 1992 PDT) (Mon Jul 13 20:31:16 1992 GMT)
END (Mon Jul 13 13:32:08 1992 PDT) (Mon Jul 13 20:32:08 1992 GMT)
STATUS 0

80 Sun Workshop TeamWare Users Guide—December 1996

7

Ensuring Consistency through Workspace Locking
To assure consistency, the Configuring transactions—Bringover, Undo, and
Putback—lock workspaces while they are working in them. These locks only
affect Configuring transactions; other commands such as SCCS programs, are

Table 7-7 History File Entry Descriptions

Entry Description

COMMAND Underlying command line issued for the
operation. File status messages as displayed
in the Transaction Output window are
included only in the destination workspace
history file.

CWD Name of the current working directory when
the command was executed.

RELEASE Release number of the TeamWare software

HOST Name of the system from which the
command was executed.

USER Login name of the user who executed the
command.

PARENT_WORKSPACE The path name of the parent workspace
specified in two formats: host-specific and
machine:pathname.

CHILD_WORKSPACE The path name of the child workspace
specified in two formats: host-specific and
machine:pathname.

START Time the command started execution, both
locally and as measured by Greenwich Mean
Time (GMT).

END Time the command completed execution,
both locally and as measured by Greenwich
Mean Time (GMT).

STATUS Exit status of the command: 0 = Normal
completion, any other value indicates an
error condition, warning, or other status.

TeamWare Configuring Workspace 81

7

not affected. Locks are recorded in the Codemgr_wsdata/locks file in each
workspace; the Configuring transaction commands consult that file before
acting in a workspace. Two types of locks are used:

• A read-lock is used when a command must assure that a workspace does not
change while it is examining its contents.

Read-locks may be obtained concurrently by a number of commands; no
Configuring command can write to the workspace while a read-lock is in
force. A read-lock is obtained during a Bringover transaction in the parent
when its files are examined in preparation for copying to the child, and
during a Putback transaction in the child when its files are examined in
preparation for copying to the parent.

• A write-lock is used when a command must assure that a workspace does
not change while it is writing to it.

Only one write-lock may be obtained for a workspace at any time. When a
write-lock is in force, only the Configuring command that owns the lock can
write to the workspace; other commands cannot obtain read-locks from the
workspace. A write-lock is obtained during a Bringover transaction for the
child when files are copied into it, and during a Putback transaction for the
parent when files are copied into it.

If a Configuring command is unable to remove its lock after completion (for
example, the system crashes), you must remove the lock yourself before
Configuring commands will again be able to read and/or write in the
workspace. You can use the Configuring GUI to view and delete active locks
for a workspace, or you can edit the file directly.

To view and delete locks using the Configuring GUI, select a workspace icon
from the Workspace Graph pane and choose the Workspace item from the main
Props menu. Use the Category menu to choose the Locks pane.

To delete locks, select the line that contains the lock and click on the Delete
button. To apply the deletion to the locks file, click on the Set Default button.

Configuring Environment Variables
Configuring consults environment variables to direct some of its actions.

82 Sun Workshop TeamWare Users Guide—December 1996

7

The CODEMGR_WS Variable

If you do not explicitly specify a workspace as the focus of a Configuring
command, many of the commands will consult the shell environment variable
CODEMGR_WSto determine a default workspace as the focus of their action. If
you have a workspace that is the primary focus of your work, use of the
variable will allow you to execute the commands without specifying the
workspace argument.

The CODEMGR_WSPATH Variable

When it is started, Configuring automatically loads workspaces from directory
path names specified in the CODEMGR_WSPATH variable.

83

Copying Files between Workspaces 8

Chapter 3, “Introduction to TeamWare Configuring", describes copying files up
and down the parent/child hierarchy. This chapter describes how you use
Configuring to copy files.

The chapter covers the following topics:

An example demonstrating these transactions can be found in Chapter 12,
“Configuring Example” on page 143.

Configuring Transaction Model
Configuring is designed so that all interworkspace transactions (Bringover
Create, Bringover Update, Putback, Undo, and Resolve) are based upon the
same user model; that model is described in Figure 8-1. The ways in which the
transactions differ are described later in this chapter (the Resolve transaction is
described in Chapter 9, “Resolving Conflicts”).

Configuring Transaction Model page 83

General File Copying Information page 84

Copying Files from a Parent to a Child Workspace (Bringover) page 89

Copying Files from a Child to a Parent Workspace (Putback) page 99

Reversing Bringover and Putback Transactions with Undo page 105

Renaming, Moving, or Deleting Files page 108

84 Sun Workshop TeamWare Users Guide—December 1996

8

Figure 8-1 Configuring Transaction Model

General File Copying Information
This section contains background information about copying files between
workspaces.

Copying Files between Workspaces 85

8

SCCS History Files

When considering Configuring file transfer transactions, it is important to
remember that source files are actually derived from SCCS deltas and are
identified by SCCS delta IDs (SIDs). When a file is said to be copied by either a
Putback or Bringover transaction, Configuring actually acts upon (copies or
merges) the file’s SCCS history file (also known as the “s-dot-file”).

The means by which Configuring manipulates and merges the history files is
described in detail in Chapter 11, “How the Configuring Program Merges
SCCS Files.” For specific technical information, refer to sccsfile (4).

Viewing Transaction Output

Output from Configuring transaction commands is viewed in the Transaction
Output window. This window is activated automatically when you invoke one
of the transactions. You can also activate it yourself by choosing the Show
Output button in any of the Transactions window layouts. Check the online
Help for details on TeamWare windows.

Note – Configuring transactions are implemented through command-line
based programs; some portion of the output contains messages related to the
command-line implementation. This manual describes only messages that
apply to the actual transactions. If you are interested in more information
about the underlying command-line based programs, please refer to the
appropriate man pages.

Specifying Directories and Files for Transactions

When you copy files between parent and child workspaces using the Bringover
and Putback transactions, you must specify the directories and files you wish
included in the transaction. The Bringover Create, Bringover Update, and
Putback layouts of the Transactions window contain a File List pane. The File
List pane is a scrolling text window in which you construct the list of file and
directory names to be included in the transaction. You can accept the default
“.” convention to bringover or putback all files in a workspace.

86 Sun Workshop TeamWare Users Guide—December 1996

8

Grouping Files for Transfer Using File List Programs

In addition to explicitly specifying files for transfer, you can execute programs
that generate that list for you — such a program is called a File List Program (or
FLP). An FLP generates a list of files to stdout ; the Bringover and Putback
transactions read the list of files from stdout and include them in the
transaction.

Configuring is shipped with a default FLP named def.dir.flp . The FLP
def.dir.flp recursively lists the names of files that are under SCCS control
in directories that you specify in the File List pane (see next section). The files
generated by this (or any) FLP are included for transfer with files that you also
specify in the File List pane.

If you want to use your own FLPs during a transaction, you can specify their
path names in the File List pane. The File List pane is used for both specifying
file/directory lists and for specifying FLPs. Use the abbreviated menu
immediately above the pane to change between the two modes. Add FLPs to
the list using the point-and-click chooser window that is activated by choosing
the Add FLPs to List item in the File menu (located below the File List pane).
See “Add Files Chooser” on page 88 for more information.

Note – You can create your own FLPs that generate lists of files that are useful
for your project.

Constructing Directory and File Lists in the File List Pane

Configuring attempts to provide you with a useful initial list of directories and
files in the File List pane. You are free to modify the list in any way you wish.
The initial list is constructed differently for each type of transaction:

Bringover Create The initial list is empty.

Bringover Update The initial list is retrieved from the Codemgr_wsdata/args
file in the child workspace. This file contains a list of arguments
specified during previous Bringover and Putback transactions.

Putback The initial list is retrieved from the Codemgr_wsdata/args
file in the child workspace. This file contains a list of arguments
specified during previous Bringover and Putback transactions.

Copying Files between Workspaces 87

8

Every workspace contains a Codemgr_wsdata/args file that is maintained by
the Configuring Bringover and Putback transaction commands. The args file
contains a list of file, directory, and FLP arguments. Initially, the args file
contains the arguments specified when the workspace was created. If you
explicitly specify arguments during subsequent Bringover or Putback
transactions, Configuring determines if the new arguments are more
encompassing than the arguments already in the args file; if the new
arguments are of a wider scope, the new arguments replace the old.

Note – You can edit the args file at any time to change its contents.

Selecting Files in the File List Pane
Once a list of files and directories exists in the File List pane, you can include
or exclude any of them for a given transaction. To be included in a transaction,
the file or directory name must be selected. You can select or deselect any
number of names by moving the pointer over them and clicking SELECT. You
can select or deselect the entire list by choosing the Select List or Unselect List
items from the Edit menu.

Loading and Saving Default Lists
You can reload the default list from the workspace args file at any time by
choosing the “Load List from Defaults” item from the File menu. This feature is
useful if you find that you’ve made changes to the list that you do not want to
keep; you can use Load List from Defaults to revert the list to its default state.

If you change the default list and wish to make the new list the default in the
workspace args file, choose the “Save List to Defaults” item from the File
menu. This is especially useful if you have eliminated files or directories from
the list. If you add files, Configuring automatically adds them to the args file
for you as part of a Bringover or Putback transaction.

Changing the Contents of the File List Pane
You add files and directories to the File List pane by using the point-and-click,
Configuring Chooser. See “Add Files Chooser” on page 88 for details.

You delete files and directories from the File List pane using:

• The Clear List and Delete items from the Edit menu
• The Clear All Choices item from the File List pane pop-up menu

88 Sun Workshop TeamWare Users Guide—December 1996

8

Note – You can specify the “.” directory as the sole item in the file list to
designate that the entire workspace be copied to the child. Enter the “.”
character using the Name text field in the Configuring Chooser.

Add Files Chooser
You can use the Add Files chooser to conveniently add directories and files to
the Transaction window File List pane. The Configuring chooser is a pop-up
window that contains a point-and-click chooser pane that you can use to
search for and select directories and files. Activate the chooser window using
the Add Files to List item in the File menu.

Note – The Configuring Chooser is also used to add FLPs to the File List pane.
The appropriate version of the chooser is automatically invoked when you
change the File List pane mode using the abbreviated menu immediately above
the pane.

Use the chooser to navigate down through the file system hierarchy by double-
clicking SELECT on any directory icon. Double-click SELECT on the directory
icon to move hierarchically upward in the file system. To move directly to a
directory, enter its path name in the Name text field and select the Load
Directory button.

Note – The chooser does not permit you to navigate outside of the workspace
file system.

To add a file or directory to the File List pane:

Copying Files between Workspaces 89

8

1. Select files and directories by moving the pointer over any file or directory
icon and clicking SELECT.
You can extend the selection to include any number of additional files and
directories by moving the pointer over them and clicking ADJUST.

You can select entire groups of files by clicking and holding SELECT in an
empty portion of the chooser and dragging the bounding box to surround
any number of icons. When you release the button, all the files within the
bounding box are selected.

You can also add a file to the File List pane by specifying its path name in
the Name text field. If you type Return, the entry will be entered
immediately; you may also enter it by choosing the Add Files to List button.

2. Select the Add File to List button to add the file to the File List pane.

Note – A check mark in a file icon indicates that the file is checked out from
SCCS.

Copying Files from a Parent to a Child Workspace (Bringover)
All Configuring file transfer transactions are performed from the perspective of
the child workspace; hence Bringover transactions “bring over” groups of files
from the parent to the child workspace. There are two types of Bringover
transactions:

Note – You can use the Bringover Update and Create transactions to import
directories and files from directories that are not Configuring workspaces. You
cannot Putback files to directories that are not workspaces.

Bringover Create Copy groups of files from a parent workspace to a
nonexistent child workspace; the child is created as a
result of the Bringover Create transaction.

Bringover Update Copy files to an existing workspace; the contents of
the child are updated as result of the Bringover
Update transaction.

90 Sun Workshop TeamWare Users Guide—December 1996

8

Creating a New Child Workspace (Bringover Create)

You use the Configuring Bringover Create transaction to copy groups of files
from a parent workspace to a child workspace that is created as a result of the
Bringover transaction. You can display the Bringover Create layout of the
Transactions window by any of the following methods:

• Drag and drop a workspace icon onto an empty space in the Workspace
Graph pane.

• Select a workspace icon and choose the Bringover >> Create item from the
Transactions menu.

• Select a workspace icon and choose the Bringover >> Create item from the
Workspace Graph pane pop-up menu.

• Choose the Bringover Create item from the Category menu if the
Transactions window is already displayed.

The Bringover Create transaction operates on files that are under SCCS control.
When files are said to be copied to the child, the SCCS history file is copied and
its g-file (the most recent delta) is created through the SCCS get command.

To initiate a Bringover Create transaction, follow these five basic steps:

1. Specify the parent workspace.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Bringover Create window, its path name is automatically
inserted in the From Parent Workspace Directory text field. You can edit and
change the contents of the text field by hand at any point. You can specify
the absolute path name of any accessible workspace; it need not be
displayed in the Workspace Graph pane.

Note – You can also specify the path name of directories that are not
workspaces to import directories and files into the new workspace.

2. Specify the child workspace.
Type the absolute path name of the child that will be created and populated
with files from the parent workspace in the To Child Workspace Directory
text field.

Copying Files between Workspaces 91

8

3. Create a list of directory and file names in the File List Pane.
You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See “Specifying Directories and Files for Transactions” on page 85 for
information about specifying directory and file arguments.

Note – If you are using your own FLPs to generate file lists, you also specify
them in the File List pane. Refer to the Sun WorkShop TeamWare: Solutions Guide
for examples of how to use CodeManager FLPs.

4. Select options.

Preview Select this option to preview the results of the trans-
action. If you invoke the Bringover Create transaction
with this option selected, the transaction will proceed
without actually transferring any files. You can
monitor the output messages in the Transaction
Output window (Show Output) as if the transaction
were actually proceeding.

Verbose Select this option to increase the information dis-
played in the Transaction Output window. By default,
a message is displayed for each created, updated, or
conflicting file. The Verbose option causes bringover
to print a message for all files, including those that are
not brought over. If both the Verbose option and the
Quiet option are specified, the Quiet option takes
precedence.

92 Sun Workshop TeamWare Users Guide—December 1996

8

5. Select the Bringover button to initiate the transaction.

Notes about the Bringover Create Transaction
• Checked-out files

When, during a Bringover Create transaction, Configuring encounters files
that are checked out from SCCS in the parent, it takes action based on
preserving the consistency of the files and any changes to the file that might
be in-process.

Table 8-1 shows the different actions that Configuring takes when it
encounters checked-out files.

Quiet Select this option to suppress the output of status
messages to the Transaction Output window (Show
Output).

Skip SCCS gets Select this option to inhibit the automatic invocation
of the SCCS get program as part of the Bringover
transaction. Normally g-files are extracted after they
are brought over. This option improves file transfer
performance although it shifts the responsibility to
the user to do the appropriate get s at a later time.

Force Conflicts Select this option to cause all updates to be treated as
conflicts. This option is not applicable to the
Bringover Create transaction, but is applicable to the
Bringover Update transaction.

Table 8-1 Effects of Checked-out Files on Bringover Create Transactions

File Checked-out
in Parent

Configuring Action

g-file and latest
 delta differ

•Issue a warning
•Process file

g-file and latest
 delta are identical

•Process file

Copying Files between Workspaces 93

8

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction and a transaction summary is displayed when
execution is completed.

• If you specify relative path names for directory and file names, be aware that
they are interpreted as being relative from the top-level (root) directory of
the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the file
must be found in one of the two workspaces, or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
Either automounter or NFS® mounts can be used.

• Action taken during the Bringover Create transaction can be reversed using
the Undo transaction. Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 105 for details.

• While Configuring is reading and examining files in the parent workspace
during a Bringover transaction, it obtains a read-lock for that workspace.
When it is manipulating files in the child workspace, it obtains a write-lock.

Read-locks may be obtained concurrently by multiple Configuring
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock can be
in force at any time; no Configuring command may write to a workspace
while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to bring over files into a workspace that is locked, you will be
so notified with a message that states the name of the user that has the lock,
the command they are executing, and the time they obtained the lock.

bringover: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

94 Sun Workshop TeamWare Users Guide—December 1996

8

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Make sure
that “bringover-to” and “bringover-from” access for your workspaces are
set appropriately. Refer to Section , “Controlling Access to Workspaces,” on
page 71 for more information.

• Configuring records information regarding the Bringover transaction in the
Codemgr_wsdata/history file. This information can be useful to you as a
means of tracking changes that have been made to files in your workspaces.
Refer to “Viewing Workspace Command History” on page 78 for further
information regarding these files.

• Configuring executes commands during a Bringover transaction and expects
to find them in your command search path. Make sure that your PATH
variable includes the directory in which Configuring commands are
installed.

Updating an Existing Child Workspace (Bringover Update)

You use the Configuring Bringover Update transaction to update an existing
child workspace. You can display the Bringover Update layout of the
Transactions window by any of the following methods:

• Drag and drop a workspace icon on top of the icon of a child workspace.

• Select a child workspace icon and choose the Bringover ⇒ Update item from
the Transactions menu.

• Select a child workspace icon and choose the Bringover ⇒ Update item from
the Workspace Graph pane pop-up menu.

• Choose the Bringover Update item from the Category menu if the
Transactions window is already displayed.

The Bringover Update transaction transfers files that are under SCCS control.
When a file exists in the parent workspace but not in the child, its SCCS history
file is copied to the child and its g-file (the most recent delta) is created through
the SCCS get command. When a file exists in both workspaces and has
changed only in the parent, Configuring copies the new deltas from the parent
to the child. When a file has changed in both workspaces, Configuring moves
the child’s new deltas into an SCCS branch.

To initiate a Bringover Update transaction follow these five basic steps:

Copying Files between Workspaces 95

8

1. Specify the child workspace.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Bringover Update window, its name is automatically inserted
in the To Child Workspace Directory text field. You can insert new path
names, and edit and change the text field by hand at any point.

2. Specify the parent workspace.
The name of the selected child’s parent workspace is automatically inserted
in the From Parent Workspace text field. The parent workspace name is
retrieved from the Configuring metadata file named
Codemgr_wsdata/parent .

Note – You can also specify the path name of directories that are not
workspaces to import files and directories into the workspace.

You can change a child workspace’s parent for the duration of a single
Bringover Update transaction by specifying the new parent’s path name in
the From Parent Workspace text field. You change the parent for that
transaction only; if you wish to permanently change a workspace’s parent,
use the Reparent item on the Configuring window Edit menu or drag the
child workspace icon over the new parent’s icon. See “Reparenting a
Workspace” on page 66 for details regarding reparenting workspaces.

Note – If you enter the child workspace name by hand and no icons are
selected in the Workspace Graph pane, Configuring automatically updates the
parent field if you rechoose the Bringover Update item in the Category menu.

3. Create a list of directory and file names in the File List Pane.
You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See “Specifying Directories and Files for Transactions” on page 85 for
information about specifying directory and file arguments.

Note – If you are using your own FLPs to generate file lists, you also specify
them in the File List pane.

96 Sun Workshop TeamWare Users Guide—December 1996

8

4. Select options.

5. Invoke the Bringover button to initiate the transaction.

Notes about the Bringover Update Transaction
• Checked-out files

When, during a Bringover Update transaction, Configuring encounters files
that are checked-out from SCCS, it takes action based on preserving the
consistency of the files and any changes to the file that might be in process.

Preview Select this option to preview the results of the trans-
action. If you invoke the Bringover Create
transaction with this option selected, the transaction
will proceed without actually transferring any files.
You can monitor the output messages in the
Transaction Output window (Show Output) as if the
transaction were actually proceeding.

Verbose Select this option to increase the information dis-
played in the Transaction Output window. By
default, a message is displayed for each created,
updated, or conflicting file. The Verbose option
causes bringover to print a message for all files,
including those that are not brought over. If both the
Verbose option and the Quiet option are specified,
the Quiet option takes precedence.

Quiet Select this option to suppress the output of status
messages to the Transaction Output window (Show
Output).

Skip SCCS gets Select this option to inhibit the automatic invocation
of the SCCS get program as part of the Bringover
transaction. Normally g-files are extracted after they
are brought over. This option improves file transfer
performance although it shifts the responsibility to
the user to do the appropriate get s at a later time.

Force Conflicts Select this option to cause all updates to be treated as
conflicts. This option is not applicable to the
Bringover Create transaction, but is applicable to the
Bringover Update transaction.

Copying Files between Workspaces 97

8

Table 8-2 shows the different actions that Configuring takes when it
encounters checked-out files.

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction and a transaction summary is displayed when
execution is completed.

• Bringover Update transactions often produce conflicts (when files are
changed in both the parent and child). When this occurs, you are so notified
by messages in the Transaction Output window. See Chapter 9, “Resolving
Conflicts,” for details about resolving conflicts.

• If you specify relative path names for directory and file names be aware that
they are interpreted as being relative from the top-level (root) directory of
the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the file
must be found in one of the two workspaces or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
Either automounter or NFS® mounts can be used.

• Action taken during the Bringover Update transaction can be reversed using
the Undo transaction. Refer to “Reversing Bringover and Putback
Transactions with Undo” on page 105 for details.

Table 8-2 Effects of Checked-out Files on Bringover Update Transactions

File Checked-out
in Parent

File Checked-out
in Child

Configuring Action

g-file and latest
delta differ

•Issue a warning
•Process file

g-file and latest
delta are identical

•Process file

g-file and latest
delta are identical

•Uncheckout the file
•Process the file
•Checkout the file

g-file and latest
delta differ

•Create a conflict

g-file is readonly •Issue a warning
•Do not process the file

98 Sun Workshop TeamWare Users Guide—December 1996

8

• While files are read and examined in the parent workspace during the
transaction, Configuring obtains a read-lock for that workspace. When
Configuring manipulates files in the child workspace, it obtains a write-lock.

Read-locks may be obtained concurrently by multiple Configuring
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock may
be in force at any time; no Configuring command may write to a workspace
while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to bring over files into a workspace that is locked, you will be
so notified with a message that states the name of the user that has the lock,
the command they are executing, and the time they obtained the lock.

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Ensure that
“bringover-to” and “bringover-from” access for your workspaces are set
appropriately. Refer to “Controlling Access to Workspaces” on page 71 for
more information.

• Bringover Update transaction information is recorded in the
Codemgr_wsdata/history file. This information can be useful as a means
of tracking changes that have been made to files in your workspaces. Refer
to “Viewing Workspace Command History” on page 78 for further
information regarding these files.

• Configuring executes a number of programs as part of the Bringover Update
transaction and expects to find them in your command search path. Ensure
that your PATH variable includes the directory in which Configuring
commands are installed.

bringover: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

Copying Files between Workspaces 99

8

Bringover Action Summary

Table 8-3 summarizes the actions that Configuring takes during Bringover
transactions.

Copying Files from a Child to a Parent Workspace (Putback)
All Configuring file transfer transactions are performed from the perspective of
the child workspace; hence the Putback transaction “puts back” groups of files
from the child to the parent workspace.

You use the Putback transaction to make the parent and child workspace
identical with respect to the set of files that you specify for the Putback
transaction. Use the Putback transaction after you make changes and test them
in the child workspace. Putting the files back into the parent usually makes
them accessible to other developers.

During a Putback transaction, Configuring may find that it cannot transfer files
from the child to the parent workspace without endangering the consistency of
the data in the parent. If this occurs, no files are transferred and the Putback
transaction is said to be blocked. A Putback transaction is blocked because:

• A file in either workspace is currently checked out from SCCS.

Table 8-3 Summary of Configuring Action during a Bringover Transaction

File in Parent File in Child Action by Configuring

Exists Does not exist Create the file in the child

Does not exist Exists None

Unchanged Unchanged None

Unchanged Changed None

Changed Unchanged Update file in the child. (Merge SCCS
files and extract [via get] a g-file that
consists of the most recent delta.)

Changed Changed Merge SCCS history files in the child,
create conflict, and notify user of the
conflict. Current line of work in the child
is moved to an SCCS branch.

100 Sun Workshop TeamWare Users Guide—December 1996

8

• A file in the parent workspace contains changes not yet brought over into
the child workspace.

• A file conflict in either workspace is currently unresolved.

The Putback transaction transfers files that are under SCCS control. When a file
exists in the child workspace but not in the parent, its SCCS history file is
copied to the parent and its g-file (the most recent delta) is materialized
through the SCCS get command. When a file exists in both workspaces and
has changed only in the child, Configuring copies the new deltas from the
child to the parent. When a file has changed in the parent, or both the parent
and child, the Putback transaction is blocked.

Updating a Parent Workspace Using Putback

You can display the Putback layout of the Transactions window by any of the
following methods:

• Drag and drop a child workspace icon onto a parent workspace icon.

• Select a workspace icon and choose the Putback item from the Transactions
menu.

• Select a workspace icon and choose the Putback item from the Workspace
Graph pane pop-up menu.

• Choose the Putback item from the Category menu if the Transactions
window is already displayed.

To initiate a Putback transaction, follow these steps:

1. Specify the child workspace.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Putback window, its name is automatically inserted in the
From Child Workspace Directory text field. You can insert new path names,
and edit and change the text field at any point.

2. Specify the parent workspace.
The name of the selected child’s parent workspace is inserted in the From
Parent Workspace text field. The parent workspace name is retrieved from
the Configuring metadata file named Codemgr_wsdata/parent .

Copying Files between Workspaces 101

8

You can change a child workspace’s parent for the duration of a single
Putback transaction by specifying the new parent’s path name in the To
Parent Workspace text field. You change the parent for that transaction only;
if you wish to permanently change a workspace’s parent, use the Reparent
item on the Configuring window Edit menu or drag the child workspace
icon over the new parent’s icon. See “Reparenting a Workspace” for details
regarding reparenting workspaces.

Note – If you enter the child workspace name by hand and no icons are
selected in the Workspace Graph pane, Configuring automatically updates the
parent field if you rechoose the Putback item in the Category menu.

3. Create a list of directory and file names in the File List Pane.
You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See “Specifying Directories and Files for Transactions” for information about
specifying directory and file arguments.

Note – If you are using your own FLPs to generate file lists, you also specify
them in the File List pane.

4. Select options.

Preview Select this option to preview the results of the trans-action.
If you invoke the Bringover Create transaction with this
option selected, the transaction will proceed without
actually transferring any files. You can monitor the output
messages in the Transaction Output window (Show
Output) as if the transaction were actually proceeding.

Verbose Select this option to increase the information dis-played in
the Transaction Output window. By default, a message is
displayed for each created, updated, or conflicting file. The
Verbose option causes bringover to print a message for all
files, including those that are not brought over. If both the
Verbose option and the Quiet option are specified, the
Quiet option takes precedence.

102 Sun Workshop TeamWare Users Guide—December 1996

8

5. Enter a comment.
Enter a comment that describes the Putback transaction. This comment is
included with the transaction log written into the file called
Codemgr_wsdata/history in the parent workspace. The comment can be
up to 8 Kbytes long.

6. Invoke the Putback button to initiate the transaction.

Notes about the Putback Transaction
• Checked-out files

When, during a Putback transaction, Configuring encounters files that are
checked-out from SCCS, it takes action based on preserving the consistency
of the files and any changes to the file that might be in-process.

Quiet Select this option to suppress the output of status messages
to the Transaction Output window (Show Output).

Skip SCCS gets Select this option to inhibit the automatic invocation of the
SCCS get program as part of the Bringover transaction.
Normally g-files are extracted after they are brought over.
This option improves file transfer performance although it
shifts the responsibility to the user to do the appropriate
get s at a later time.

Auto Bringover Select this option to cause Configuring to automatically
start a Bringover Update transaction to update files in the
child if the Putback transaction is blocked.

Copying Files between Workspaces 103

8

Table 8-4 shows the different actions that Configuring takes when it
encounters checked-out files.

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction, and a transaction summary is displayed when
execution is completed.

• If you specify relative path names for directory and file names, be aware
that they are interpreted as being relative from the top-level (root) directory
of the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the
file must be found in one of the two workspaces or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
You can use either automounter or NFS mounts.

• Action taken during the Putback transaction can be reversed using the Undo
transaction. Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 105 for details.

• While files are read and examined in the child workspace during the
transaction, Configuring obtains a read-lock for that workspace. When
Configuring manipulates files in the parent workspace it obtains a write-lock.

Table 8-4 Effects of Checked-out Files on Putback Transactions

File Checked-out
in Parent

File Checked-out
in Child

Configuring Action

g-file and latest
delta differ

•Block Putback transaction

g-file and latest
delta are identical
or g-file does not
exist)

•Uncheckout the file
•Process the file
•Check-out the file

g-file and latest
delta differ

•Block Putback transaction

g-file and latest
delta are identical

•Process the file

g-file does not exist •Issue a warning
•Process the file
•No changes made

104 Sun Workshop TeamWare Users Guide—December 1996

8

Read-locks may be obtained concurrently by multiple Configuring
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock may
be in force at any time; no Configuring command may write to a workspace
while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to put back files into a workspace that is locked, you are
notified with a message such as the following that states the name of the
user that has the lock, the command they are executing, and the time they
obtained the lock.

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Ensure that
“putback-to” and “putback-from” access for your workspaces are set
appropriately. Refer to “Controlling Access to Workspaces” on page 71 for
more information.

• Putback transaction information is recorded in the file called
Codemgr_wsdata/history . This information can be useful as a means of
tracking changes that have been made to files in your workspaces. Refer to
“Viewing Workspace Command History” on page 78 for further information
regarding these files.

• Configuring executes a number of programs as part of the Putback
transaction and expects to find them in your command search path. Make
sure that your PATH variable includes the directory in which Configuring is
installed.

Putback Action Summary

Table 8-5 summarizes the actions that Configuring takes during Putback
transactions.

putback: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

Copying Files between Workspaces 105

8

*If a file is checked out in either the parent or the child, the transaction is
blocked. See Table 8-4 for more information about putting back files that are
checked out.

**If a conflict is unresolved in either the parent or the child, the transaction
is blocked.

Reversing Bringover and Putback Transactions with Undo
You can reverse (undo) the action of the most recent Bringover or Putback
transaction in a workspace by using the Undo Transactions window layout.
You Undo the Putback or Bringover transaction in the destination workspace
(the one in which the files are changed). You can undo a Bringover or Putback
transaction as many times as you like until another Bringover or Putback
transaction makes changes in that workspace; only the most recent
Bringover/Putback transaction can be undone.

If a file is updated or found to be in conflict by the Putback or Bringover
transaction, the Undo transaction restores the file to its original state. If a file is
“new” (created by the Bringover/Putback transaction), then it is deleted.

Table 8-5 Summary of Configuring Action during a Putback Transaction

File in Parent File in Child Action by Configuring

Exists Does not exist Block Putback and notify user.

Does not exist Exists Create the file in the parent.

Unchanged Unchanged None.

Unchanged Changed Update file in the parent. (Merge SCCS
files and extract [via get] a g-file that
consists of the most recent delta.)

Changed Unchanged Block Putback, notify user.

Changed Changed Block Putback, notify user.

Checked out Checked out* Block Putback, notify user.

Unresolved conflict Unresolved
conflict**

Block Putback, notify user.

106 Sun Workshop TeamWare Users Guide—December 1996

8

To initiate an Undo transaction, follow these three basic steps:

1. Specify the workspace in which to reverse the transaction.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Undo layout, its name is automatically inserted in the
Workspace Directory text field. You can insert a new path name followed by
a Return, and edit and change the text field by hand at any point.

2. Click on the Undo button to initiate the transaction.

Notes about the Undo Transaction
• When it is manipulating files in the specified workspace, Configuring

obtains a write-lock for the workspace. Only a single write-lock may be in
force at any time; no Configuring command may write to a workspace while
a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace. If Configuring cannot
obtain the lock, it will display an error message and abort.

• Configuring records information regarding the Undo transaction in the
Codemgr_wsdata/history file. This information can be useful as a means
of tracking changes that have been made to files in your workspaces. Refer
to “Viewing Workspace Command History” on page 78 for further
information regarding these files.

How the Undo Transaction Works

When the Bringover and Putback transactions update or create files in the
destination workspace (the child in the case of Bringover, the parent in the case
of Putback), they make backup copies of the originals before they actually
make changes to the files. All existing files are copied to the
Codemgr_wsdata/backup/files directory in the destination workspace,
and the names of all newly created files are entered into a file called
Codemgr_wsdata/backup/new .

When you decide that you would like to cause a workspace to revert to its
state before a Bringover/Putback transaction, the Undo transaction does the
following:

• Copies the backed-up files from the Codemgr_wsdata/backup/files
directory over the transferred files

Copying Files between Workspaces 107

8

• Deletes files whose names are contained in the
Codemgr_wsdata/backup/new file

The next Bringover/Putback transaction overwrites all data in the
Codemgr_wsdata/backup directory.

Note – All files transferred by Configuring are under SCCS control. Usually,
only SCCS history files are backed up during Bringover and Putback
transactions; if the files are subsequently restored, the Undo transaction
extracts the appropriate g-file (most recent delta) from the history file. If,
however, a file in the child is checked out (using sccs edit) during the
Bringover transaction (Configuring permits files to be checked out during a
Bringover transaction, but not during a Putback transaction. If a file that is
being put back is checked out, an error condition exists). Configuring backs up
both the g-file and the SCCS history file in order to preserve the work in
progress; the g-file and the SCCS history file are copied to the
Codemgr_wsdata/backup/files directory and restored by the Undo
transaction.

108 Sun Workshop TeamWare Users Guide—December 1996

8

Renaming, Moving, or Deleting Files
When you rename, move, or “delete” files as described in this section,
Configuring tracks those changes so that it knows how to manage the altered
files during Bringover and Putback transactions. Although Configuring
processes these files automatically, it is helpful for you to understand some of
the ramifications of renaming, moving, or deleting files.

Note – For the purposes of this discussion, the terms “rename” and “move” are
considered to be the same action and are referred to only as “rename.”

The best way to delete and rename files is to use the move and delete
commands available from the Workshop Versioning menu. This section
describes the underlying process.

Renaming Files

When you bring over or put back files that you (or another user) have
renamed, Configuring must decide whether the files have been newly created
or whether they existed previously and have been renamed.

For example, in the following figure, the name of file C in the parent is
changed to D. When Configuring brings the file over to the child it must decide
which of the following is true:

• D has been newly created in the parent.

• It is the same file as C in the child, only with a new name.

Copying Files between Workspaces 109

8

Figure 8-2 File “C” Renamed to “D”

If the same case was the subject of a Putback operation, the same problem
would apply: Is “C” new in the child, or has it been renamed from some other
file?

The action that Configuring takes is very different in each case. If it is a new
file in the parent, Configuring creates it in the child; if it has been renamed in
the parent, Configuring renames file “C” to “D” in the child.

Configuring stores information in the SCCS history files that enables it to
identify files even if their names are changed. You may have noticed the
following message when viewing Bringover and Putback output:

Configuring examines all files involved in a Bringover Update or Putback
transaction for potential rename conditions before it begins to propagate files.

Examined files:

Rename
C

Parent

Child

Bringover

D

Parent

A B

DA B

CA B

110 Sun Workshop TeamWare Users Guide—December 1996

8

When Configuring encounters renamed files, it propagates the name change to
the child in the case of Bringover, and to the parent in the case of Putback. You
are informed of the change in the Transaction Output window with the
following messages:

Name History

Configuring stores information about a file’s name history in its SCCS history
file. The name history is simply a list of the workspace-relative names that
have been given to the file during its lifetime. This information is used by
Configuring to differentiate between files that have been renamed and those
that are new. When you rename a file, Configuring updates the file’s name
history during the next Bringover or Putback transaction that includes it. When
a name history is updated, you are notified in the Transaction Output window.

Rename Conflicts

In rare cases, a file’s name is changed concurrently in parent and child
workspaces. This is referred to as a rename conflict. For example, the name of
file “C” is changed to “D” in the parent, and concurrently to “E” in the child.

rename from: old_filename
 to: new_filename

Names Summary:
1 updated parent’s name history
1 updated children’s name history

Copying Files between Workspaces 111

8

Figure 8-3 File “C” is Concurrently Renamed in both Parent and Child Workspaces

When this occurs, Configuring determines that both “D” in the parent and “E”
in the child are actually the same file, but with different names. In the case of
rename conflicts:

• Configuring reports the conflict using the name of the file in the child.

• Configuring always resolves the conflict by automatically changing the
name of the file in the child workspace to the current (renamed) name in the
parent; the name of the file from the parent is always chosen, even in the case
of a Putback transaction.

When Configuring encounters a rename conflict, you are notified in the
Transaction Output window with the following messages:

rename conflict: name_in_child
rename from: name_in_child
 to: name_in_parent

Rename
CChild

Child

Bringover

E

Parent

A B

DA B

EA B

Rename
C

Parent DA B

112 Sun Workshop TeamWare Users Guide—December 1996

8

Deleting Files

Deleting files from a Configuring workspace is a little trickier than it first
appears. Deleting a file from a workspace with the rm command causes
Configuring to think that the file has been newly created in the workspace’s
parent or child.

Take for instance, the following example. The file “C” is removed from the
child workspace using the rm command; later the Bringover Update
transaction is used to update the child.

Figure 8-4 File “C” Is Removed From The Child Using the rm Command, Then
Created Again by Bringover

Configuring examines the two workspaces and determines that the file “C”
exists in the parent and not in the child — following the usual Configuring
rules, it creates “C” in the child.

The recommended method for “deleting” files in workspaces is to rename
them out of the way using a convention agreed upon by everyone working on
the project. One recommended method is to rename files you wish to “delete”
so that they begin with the.del- prefix. For example:

example% mv module.c .del-module.c
example% mv SCCS/s.module.c SCCS/s..del-module.c

Copying Files between Workspaces 113

8

This method has a number of advantages:

• The file is no longer seen using default SunOS commands such as ls .

• Configuring does not recreate the file.

• Configuring propagates the change throughout the workspace hierarchy as
a rename, “deleting” the file in all workspaces.

• The file remains available to later reconstruct releases for which it was a part
(for example, if it was part of a freezepoint (see Chapter 5, “Starting a
Project” and Chapter 17, “Introduction to FreezePointing” for more
information about freezepoints).

Notes about Renaming Files
• When you rename a file, you must rename both the g-file and the SCCS

history file.

• During transactions, Configuring processes files individually. When you
rename a directory, each file in the directory is evaluated separately as if
each had been renamed individually.

• When files are renamed, Configuring propagates the change throughout the
workspace hierarchy using the same rules used with file content updates
and conflicts.

114 Sun Workshop TeamWare Users Guide—December 1996

8

115

Resolving Conflicts 9

This chapter discusses the process by which the Configuring program detects
conflicts and then assists you in resolving these conflicts.

Conflict Resolution Process
When files change concurrently in both a parent and child workspace, they are
in conflict. Neither the version of the file in the child nor the version in the
parent can be copied to the other without overwriting changes. Conflicts are
detected during Bringover Update transactions. You must resolve conflicts in
the child before the conflicting file(s) can be put back to the parent. The
Configuring program assists you in resolving conflicts. Use the following
procedures to resolve conflicts if you are using the GUI. If you are using the
CLI, see the resolve(1) manual page for more information.

Detecting Conflicts during Bringover Update Transactions page 116

Preparing Files for Conflict Resolution page 117

Resolve Transaction page 118

The Merging Program page 119

116 Sun Workshop TeamWare Users Guide—December 1996

9

Changing Names

The current release of TeamWare uses new command names, so the following
table summarizes the correspondences for you. Note that the old commands
still work, however this manual uses the new commands and GUI names.

Detecting Conflicts
Before you can resolve conflicts, the Configuring program must detect the
conflict and prepare the history files of the conflicting files for resolving. These
two processes are described in this section.

Detecting Conflicts during Bringover Update Transactions

Usually, the conflict resolution process begins when you attempt to put back
files that have changed in both the parent and the child workspaces. The
Putback transaction blocks the transfer of files from the child to the parent
because the version of the file from the child will overwrite changes made in
the parent.

After the Putback transaction is blocked, you must use the Bringover Update
transaction to update the child. (If Putback is executed with the Auto
Bringover option specified, then the Bringover transaction is initiated
automatically by the Configuring program.) If, during the Bringover
transaction, the Configuring program determines that the file in the child has
also changed, a conflict exists. All files included in the Bringover Update
transaction that are not in conflict are copied or updated normally.

Table 9-1 Correspondences Between New and Old TeamWare Commands

Old Command New Command Old Tool Name New GUI Name

codemgrtool twconfig, teamware CodeManager Configuring

vertool twversion VersionTool Versioning

filemerge twmerge FileMerge Merging

maketool twbuild MakeTool Building

freezepttool twfreeze FreezePoint Freezepointing

Resolving Conflicts 117

9

Preparing Files for Conflict Resolution

When a conflict is encountered during a Bringover Update transaction, the
Configuring program takes special steps to prepare that file so that you can
resolve the conflict.

The Configuring program incorporates the deltas created in the parent into the
SCCS history file in the child. The parent and child deltas are placed on
separate branches in the child SCCS history file. After the deltas are merged,
the history file in the child contains:

• Delta(s) created in the parent
• Delta(s) created in the child
• The delta from which the two versions of the file are both descended (their

common ancestor)

Note – The Versioning program enables you to view graphical depictions of
SCCS delta histories (including branches).

Access to the three deltas (common ancestor, parent, and child) in the child
enables you to use the Configuring Resolve transaction and the Merging
program to compare the parent and child deltas — both to their common
ancestor, and to each other.

In addition to merging deltas, the Configuring program adds the name of the
conflicted file to the child’s Codemgr_wsdata/conflicts file. The
conflicts file is a text file that contains the names of all files in that
workspace with unresolved conflicts.

The stage is set for you to resolve the conflicts using the Configuring Resolve
transaction.

Resolving Conflicts
The two tools that you use to resolve conflicts are:

• Configuring Resolve Transactions window
• Merging program

118 Sun Workshop TeamWare Users Guide—December 1996

9

Resolve Transaction

The Resolve layout of the Transactions window facilitates resolving conflicts
detected during Bringover Update transactions. The Resolve transaction
coordinates the merging process, acting as intermediary between you and the
file-merging program—Merging.

As previously mentioned, when the Configuring program detects a conflict
during a Bringover Update transaction, it does the following:

• Merges new deltas from the parent into the SCCS history in the child

• Enters the file’s path name in the child’s Codemgr_wsdata/conflicts file

To resolve conflicts in a workspace, follow these four steps:

1. Double-click SELECT on the icon of a workspace that contains conflicted
files.
The Resolve layout of the Transaction window is automatically activated
with the names of its conflicted files displayed in the File List Pane.

2. Select a file in the File List Pane and then invoke the Merging selection
button.
The Configuring program starts the Merging program and begins to process
the list of files from the File List Pane. For the next file in the list, the
Configuring program extracts the parent delta, the child delta, and the
common ancestor from the SCCS history file and passes their path names to
the Merging program. (Configuring and Merging communicate via the
ToolTalk™ service. The ToolTalk service is a network-spanning,
interapplication communication service that allows applications to
communicate with other autonomous applications.) The Merging window
appears with the files loaded and ready for merging.

3. Use Merging to resolve the differences between the parent and child
versions of the file.
See “The Merging Program” for more information.

4. Save the file in Merging.
After you use Merging to resolve differences between the parent and child
versions of the file, the Configuring program creates a new delta in the child
SCCS history file and removes the file name from the conflicts file. The
new delta contains the “Merged Result” you created using Merging.

Resolving Conflicts 119

9

Notes about the Resolve Transaction
• By default, the Configuring program automatically, sequentially processes

the list of files from the File List Pane. After you resolve a conflict, the
Configuring program automatically begins to process the next file in the list.
If you want to change the behavior so that it individually processes only
files that you explicitly select, deselect the Auto Advance check box in the
Properties window.

• Conflicts need not be resolved immediately. You can continue to make
changes and create new deltas in conflicted files in the child workspace.
New deltas are created on a branch; when you finally resolve the conflict,
the latest delta is the one merged with the version brought over from the
parent. Conflicts must be resolved before you can put back the files to the parent.

• When the Configuring program creates the new delta in the child SCCS
history file, it includes the following standard comment:

By default, the Configuring program does not prompt you for a comment to
append to its comment. If you want to be prompted for comments that are
appended to the standard comment, select the Skip Checkin Comments
check box in the Properties window.

The Merging Program

This section is a brief introduction to the Merging program as used with the
Configuring program. For a more detailed description, refer to the Merging
section in this manual.

Merging displays two text files (the parent and child deltas) for side-by-side
comparison, each in a read-only subwindow. Beneath them, Merging displays a
subwindow that contains a merged version of the two files. The merged
version contains selected lines from either or both deltas and can be edited to
produce a final merged version.

Each delta in each of the top windows is shown in comparison to the common
ancestor delta:

• The child delta may be in the left window labeled “Child vs. Ancestor”
• The parent delta may be in the right window labeled “Parent vs. Ancestor”

Merged changes between workspaces x and y

120 Sun Workshop TeamWare Users Guide—December 1996

9

The common ancestor is the delta from which both the parent and child deltas
are descended. This arrangement permits you to make a three-way
comparison—each delta to the common ancestor, and each delta to the other.

Lines in each descendant are marked according to their relationship to the
corresponding lines in the common ancestor:

• If a line is identical in all three deltas, then no glyph appears.

• If a line is not in the ancestor but was added to one or both of the
descendants, then a plus sign glyph (+) appears next to the line in the delta
where the line was added.

• If a line is present in the ancestor but was removed from one or both of the
descendants, then a minus sign (-) appears as a placeholder in the delta
from which the line was removed.

• If a line is in the ancestor but has been changed in one or both of the
descendants, then a vertical bar glyph (|) appears next to the line in the
delta where the line was changed.

When Merging discovers a line that differs between either of the two deltas
and the ancestor, it marks with glyphs the lines in the two deltas and also in
the automatically merged file. Together, these marked lines are called a
difference. While Merging is focusing on a difference, it highlights the glyphs.

The difference on which Merging is focusing at any given time is called the
current difference. The difference that appears immediately later in the file is
called the next difference; the difference that appears immediately earlier in the
file is called the previous difference.

While focusing on a difference, you can accept a line from either of the original
deltas, or you can edit the merged version by hand. When you indicate that
you are satisfied with your changes (by clicking on a control panel button), the
current difference is said to be resolved. After a difference is resolved, Merging
changes the glyphs that mark the difference to outline (hollow) font. Merging
then automatically advances to the next difference (if the Auto Advance
property is on), or moves to another difference of your choice.

In summary, when used with the Configuring program, Merging activity is
coordinated by the Resolve transaction window. The Configuring and Merging
programs communicate bidirectionally through the ToolTalk service. The
Configuring program extracts the parent, child, and common ancestor deltas
and starts the Merging program, passing it the names of the files that contain

Resolving Conflicts 121

9

the deltas to be merged. When you complete the merge process using the
Merging Save button, the Configuring program creates a new delta in the file’s
SCCS history file that contains the “Merged Results” and removes the file
name from the conflicts file.

In the next chapter we consider how to administer the TeamWare workspaces.

122 Sun Workshop TeamWare Users Guide—December 1996

9

123

Administering the Workspace 10

The Configuring program requires little administrative support. However,
there are some things to consider when starting out. This chapter contains the
following sections:

Starting a Project with the Configuring Program
Getting started with the Configuring program is simple. The following sections
provide guidelines and strategic issues that you (the project administrator)
should consider to maximize the benefit your project receives by using the
Configuring program.

Moving an Existing Project

The Configuring program works only with projects that use SCCS for version
control. Moving an existing SCCS-based project to the Configuring program is
a simple process:

• Ensure that all SCCS history files (“s-dot-files”) are in directories named
SCCS located directly beneath directories that contain source files.

• Be sure that your project directory structure is current and organized.

Starting a Project with the Configuring Program page 123

Structuring Your Workspace Hierarchy page 124

Product Release Considerations page 128

124 Sun Workshop TeamWare Users Guide—December 1996

10

• Execute the Create Workspace command item in the File menu, specifying
the top-level directory as your workspace. The Create Workspace command
creates the Codemgr_wsdata directory under the top-level directory.

• Begin using the Bringover Create transaction to form a workspace hierarchy.
See “Structuring Your Workspace Hierarchy” on page 124 for guidelines
regarding workspace hierarchies.

If your project is structured so that compilation units can be easily grouped on
a directory basis during transfer operations, you can use the default
Configuring FLP. See “Grouping Files for Transfer Using File List Programs”
for a description of the default FLPs.

If your project requires files to be grouped for transfer operations in special
ways, you have to write your own FLP(s).

Starting a New Project

If you are starting a new project:

• Use the Create Workspace command item in the File menu to create your
project’s top-level directory (with its Codemgr_wsdata directory)

• Proceed as you normally would to set up an SCCS-based development
hierarchy. Ensure that all SCCS history files (“s-dot-file”) are in directories
named SCCS located directly beneath directories that contain source files.

• Begin using the Bringover Create transaction to form a workspace hierarchy.
See “Structuring Your Workspace Hierarchy” on page 124“, for guidelines
regarding workspace hierarchies.

• The default Configuring FLP groups files recursively by directory; if you
intend to use that FLP, be sure to arrange files in compilation units
accordingly. If your project requires that files be grouped differently during
transfer, be sure to arrange your project hierarchy in such a way that it
works well with the FLP(s) you will create.

Structuring Your Workspace Hierarchy
The way you structure the workspace hierarchy of your project will have
influence on the inter-workspace file-transfer process and on how you prepare
product releases. The following discussion will help you make informed
choices about the kind of workspace hierarchy best suited for your project.

Administering the Workspace 125

10

Note – Whatever initial decisions you make regarding workspace hierarchies
can later be changed by using Configuring’s workspace reparenting feature.
See “Reparenting a Workspace” on page 66 for details.

A workspace hierarchy is a chain of parent/child workspaces two or more
layers deep. The number of layers in a hierarchy bears no relation to the
number of workspaces comprising it. A parent workspace and its child
comprise two layers. A parent workspace and three children also comprise two
layers. A parent workspace and its child and grandchild comprise three layers.
Figure 10-1 depicts a “flat” (three-tiered) hierarchy and a “multitiered” (four-
tiered) hierarchy.

Figure 10-1 A Three-Tiered Hierarchy (Flat)

Product

Integration

Development

126 Sun Workshop TeamWare Users Guide—December 1996

10

Figure 10-2 A “Multitiered” (Four-Tiered) Hierarchy

File Transfer Considerations

The way in which you set up your workspace hierarchy can have an impact on
the transfer of files up and down the hierarchy. If you have over 2000 files in a
single directory under SCCS control, you could have problems using
TeamWare. Subdivide workspace directories for better performance.

File System Accessibility

In order to transfer (Bringover/Putback) files between workspaces, both the
parent and the child must be mounted on the same file system. The
automounter can be used to connect file systems.

Flat Hierarchy vs. Multitiered Hierarchy

Advantages of a Flat Hierarchy
A flat workspace hierarchy is one in which many developers put back files to a
single integration workspace. The advantage of a flat hierarchy is that all
developers have immediate access to one another’s work. The moment that

Product

Integration

Development

Subintegration

Administering the Workspace 127

10

Jack (a developer) puts back his work to the integration workspace, Jon
(another developer) can use the Bringover Update transaction to have
immediate access to the changes made by Jack.

Disadvantages of a Flat Hierarchy
The disadvantage of a flat hierarchy is that time is often wasted because the
integration workspace changes frequently, requiring developers to do frequent
Bringover transactions, builds, and tests in order to keep their source base up-
to-date. There is a cumulative effect of doing Putback transactions; the first
developer to do a Putback resolves only one set of changes, the next developer
resolves two, and so on till the last developer, who must resolve all of the
changes that have been made within her development group.

Advantages of a Multitiered Hierarchy
The amount of time required for a developer to put her work back to the
integration workspace can be sharply reduced by interposing a tier of
subintegration workspaces between the integration and development level
workspaces.

Whenever a developer puts back work to an integration workspace, there is
some chance that the next developer to do a Putback transaction will not be
able to put back their changes until they bring over the earlier changes, rebuild
the modules, and test the new changes with their own — the more Putbacks
that occur the higher the potential for conflict.

When many developers work on a project, the Bringover, rebuild, test cycle can
become onerous and time consuming. If smaller groups of developers working
on related portions of code integrate into a subintegration workspace, that
workspace will be more stable and require fewer builds and less testing. Of
course when the subintegration workspaces are themselves put back to their
common integration area, changes made in the other development workspaces
will have to be integrated. Experience has shown, however, that doing larger
integrations, less frequently, is more efficient.

Disadvantages of a Multitiered Hierarchy
The disadvantages of multiplying subintegration workspaces are as follows:

• Each new workspace consumes disk space.

128 Sun Workshop TeamWare Users Guide—December 1996

10

• Developers who ought regularly to be looking at one another’s work may
find it harder to do so because they do not put back to the same integration
workspace

• Integration of the subintegration workspaces to the higher integration
workspace can become more complicated than more frequent, smaller
integrations.

Product Release Considerations

When you plan your project hierarchy structure, you must consider how you
plan to release your product. There are several ways that you can structure
workspace hierarchies to facilitate the preparation of major, minor, and patch
releases. The following discussion presents some ideas for you to consider;
your product may not lend itself to this model, or your product may have
considerations that suggest an alternate scheme.

It’s best to dedicate a workspace as a product release staging area for each
release. It’s also a good idea to “hang” the release workspace off of a top level
“product” workspace. The product workspace should be located hierarchically
above the workspaces in which normal development integration is done.
Locating the product workspace this way permits you to begin development of
your next release without corrupting the current release.

After the files are transferred to the product workspace, use the Bringover
transaction to transfer the files down to the release workspace. The release
workspace can be used to make masters and can serve as an area in which to
save work for subsequent releases if necessary. Figure 10-3 shows a hierarchy

Administering the Workspace 129

10

that contains a product workspace and release workspaces for six different
releases. You can use the reparenting feature to transfer data between release
workspaces directly. See “A Reparenting Example” on page 68” for details.

Figure 10-3 Product and Release Workspaces

Product

2.1

2.0

2.2

1.0

1.21.1

130 Sun Workshop TeamWare Users Guide—December 1996

10

131

How the Configuring Program
Merges SCCS Files 11

This chapter describes the ways the Configuring program manipulates SCCS
history files when you copy files between workspaces and resolve conflicts.

Note – This discussion assumes that you are familiar with SCCS, including the
concept of branching. SCCS is described in detail in the Programming Utilities
manual.

When considering Bringover and Putback transactions, remember that source
files are derived from SCCS deltas and are identified by SCCS delta IDs (SIDs).
When a file is copied by either a Putback or Bringover transaction, the
Configuring program must manipulate the file’s SCCS history file (also known
as the “s-dot-file”).

When a file is copied (by means of Bringover or Putback transaction) from a
source workspace to a destination workspace, it appears that a single file has
been transferred. In fact, all of the SCCS information for that file (deltas,
comments, and so on) must be merged into the destination SCCS history file.
By merging the information from the source into the destination history file,
the current version (delta) can be rederived, and the file’s entire delta and

Merging Files That Do Not Conflict page 132

Merging Files That Conflict page 133

An Example of Merging page 134

132 Sun Workshop TeamWare Users Guide—December 1996

11

comment history are available. (The exception is when the file does not exist in
the destination workspace. This this case, the entire history file is copied from
the source workspace to the destination workspace.)

Merging Files That Do Not Conflict
If the file in the destination workspace is being updated (the file has changed
in the source of a Bringover or Putback transaction and has not changed in the
destination). The new deltas from the destination are added to the history file
in the destination. The reason that SCCS history files are merged at all in this
case, rather than the source history file being copied over the destination
history file, is that administrative information (for example, flags and access
lists) stored in the destination history file would be overwritten.

To accomplish the merger, the Configuring program determines where the
delta histories diverge and adds (to the destination workspace) only the deltas
that were created in the source workspace since they diverged. To determine
where the histories diverge, the Configuring program compares the delta
tables in both the parent and child history files; information used in this
comparison includes comments and data such as when and who created the
delta. Figure 11-1 contains an example of a Putback transaction where the
Configuring program adds deltas 1.3 and 1.4 from the child workspace to the
SCCS history file in the parent.

How the Configuring Program Merges SCCS Files 133

11

Figure 11-1 Updating a File in the Destination Workspace That Has Not Changed

Merging Files That Conflict
When you propagate files between parent and child workspaces, often both the
version of the file from the parent and the version in your child changed since
they were last updated. When that is the case, the parent and child versions of
the file are in conflict.

When file contents conflict, the Configuring program aids you in resolving the
potentially conflicting changes that were made to the file, and preserves the
file’s delta, administrative, and comment history. To accomplish this, the
Configuring program merges the SCCS deltas from the parent into the history
file in the child. Configuring’s Resolve transaction is then used to resolve the
conflict in the child. See Chapter 9, “Resolving Conflicts“, for details on
resolving conflicts.

1.1

1.2

1.3

1.4

1.1

1.2

Parent

Child

Putback/merge

1.1

1.2

1.3

1.4

Parent

Child

1.1

1.2

1.3

1.4

134 Sun Workshop TeamWare Users Guide—December 1996

11

An Example of Merging

This section illustrates the Configuring merging process. This merge example
involves an integration workspace and two child workspaces owned by
different developers. The developers bring over copies of the same file from
the integration workspace, and independently change the file. The illustrations
show how the SCCS history file is manipulated when conflicts occur and when
they are resolved. Some notes regarding the following figures:

• The default delta (the point at which the next delta is added to the SCCS
delta tree) is identified by an unattached descending line.

• You can use the Versioning program to graphically display SCCS delta trees
in much the same way they are depicted here.

Both developers copy the same file from the integration workspace with the
Bringover transaction. The file is new in both workspaces, so the SCCS history
file is copied to both.

1.1

1.2

1.1

1.2

1.1

1.2

Integration WS

Developer BDeveloper A

Bringover

How the Configuring Program Merges SCCS Files 135

11

Developer B makes changes to the file, creating two new deltas: 1.3 and 1.4,
and then puts the file back into the integration workspace (with the Putback
transaction). the Configuring program appends the two new deltas to the
parent SCCS delta tree.

Rather than replacing the destination workspace version of the SCCS history
file with the source’s version, the new deltas are added to the destination SCCS
history file to preserve administrative information, such as access lists.

In the meantime, developer A also changes the file (creating three new deltas:
1.3, 1.4, and 1.5) and now attempts to put back the file into the integration
workspace.

The Configuring program blocks the Putback of developer A because the files
are in conflict. The changes put back by developer B would be overwritten.
Developer A must also incorporate the changes made by developer B into his
work.

1.1

1.2

1.3

1.4

Integration WS

Putback

1.1

1.2

1.3

1.4

Developer BDeveloper A

1.1

1.2

136 Sun Workshop TeamWare Users Guide—December 1996

11

Developer A brings over the file that now contains the changes made by
Developer B into his workspace from the integration workspace. The deltas
created by Developer B are added into the child SCCS history file by the
Configuring program.

The delta tree brought down from the parent is unchanged in the child. The
new deltas created in the child are attached as an SCCS branch to the last delta
that the child and parent had in common; the deltas from the child are
assigned new SIDs accordingly. The deltas are renumbered using the SCCS
branch numbering algorithm that derives the SID from the point at which it
branches. In this case the branch is attached to SID 1.2; the first delta is
renumbered to 1.2.1.1. The last delta created in the child (1.2.1.3, formerly 1.5)
is still the default delta. Therefore, any new deltas that developer A creates in
the child before the conflict is resolved are added to the child line of work, and
not the trunk (the parent line of work).

1.1

1.2

1.3

1.4

Putback blocked

1.1

1.2

1.3

1.4

1.1

1.2

1.3

1.4

1.5

Integration WS

Developer BDeveloper A

How the Configuring Program Merges SCCS Files 137

11

Developer A resolves the conflict in his workspace using the Configuring
Resolve transaction (see Chapter 9, “Resolving Conflicts“, for details regarding
conflict resolution). Developer A uses the Resolve transaction to help him
decide how to merge the versions of the file represented by SIDs 1.2.1.3 and
1.4. When he commits the changes, the Resolve transaction places the newly
merged contents into a new delta 1.5. Notes:

• The new delta, 1.5, is contained in a circle because it is created by developer
A.

• The newly created delta is now the default location for any new work
created by developer A.

Bringover/merge

1.1

1.2

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.3

1.4

Integration WS

Developer BDeveloper A

1.1

1.2

1.3

1.4

1.3

1.4

1.5

138 Sun Workshop TeamWare Users Guide—December 1996

11

With the conflict resolved, Developer A puts back the file into the integration
workspace. The branch and the newly created delta are added to the SCCS
history file in the integration workspace.

1.1

1.2

Resolve/Merge

1.5

1.3

1.4

1.1

1.2

1.3

1.4

Integration WS

Developer BDeveloper A

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.3

1.4

How the Configuring Program Merges SCCS Files 139

11

Developer B makes another change to the file in her workspace, creating delta
1.5. She attempts to put back the new work to the integration workspace, but
the Putback is blocked because it conflicts with the newly merged delta 1.5 that
was put back by Developer A.

Putback

Integration WS

Developer BDeveloper A

1.1

1.2

1.3

1.4

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

140 Sun Workshop TeamWare Users Guide—December 1996

11

Developer B brings over the changed file into her workspace where its deltas
are added into the child SCCS history file and renumbered by the Configuring
program.

Integration WS

Developer BDeveloper A

Putback Blocked

1.1

1.2

1.3

1.4

1.5

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

How the Configuring Program Merges SCCS Files 141

11

As in the previous case, the Configuring program appends the delta created by
developer B to the last common delta on the delta tree trunk as a branch and
renumbers it appropriately. 1.5 becomes 1.4.1.1. 1.4.1.1 remains the default
delta. Any new deltas created in the child before the conflict is resolved will be
added to the branch.

Integration WS

Developer BDeveloper A

Bringover
1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.4.1.1

142 Sun Workshop TeamWare Users Guide—December 1996

11

Using the Configuring Resolve transaction, developer B resolves the conflict
merging the differences between 1.5 and 1.4.1.1 to create the new delta 1.6.
Notes:

• The newly created merged contents are added as a new delta to the parent
delta 1.6.

• The new delta is owned by the developer who owns the workspace.
• The new delta becomes the default delta, therefore, new work in the child

will now be added beneath it.

Developer B

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.4.1.1

Developer B

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.6

1.4.1.1

143

Configuring Example 12

This chapter illustrates the basic bringover, putback, resolve cycle using an
example.

This example employs a simple case to demonstrate:

• Use of the Bringover Create transaction to create two new child workspaces
from a common parent

• Use of the Putback transaction to put back changes from one of the child
workspaces to the parent

• Use of the Bringover Update transaction to update the other child
workspace with those changes

• How to resolve conflicts created during the Bringover Update transaction

For this example, assume two writers (Jane and Bob) are responsible for
maintaining the man pages for some of the Configuring commands. The main
man page workspace is named man_pages . The writers decide that they will
each do their work in separate child workspaces and merge their work in
man_pages . Figure 12-1 shows the file system hierarchy in the workspace
man_pages .

Creating Workspaces page 144

Putting Back Changes page 145

Updating a Workspace page 146

Resolving Conflicts page 147

144 Sun Workshop TeamWare Users Guide—December 1996

12

Figure 12-1 The man_pages Workspace

Creating Workspaces
Each writer creates his and her own child workspaces. Each child contains the
same files as the parent workspace man_pages .

1. Jane selects the man_pages icon on the Workspace Graph pane and chooses
the Bringover ⇒ Create item from the Transactions menu.

Note – For accelerator options see “Accelerators” on page 60.”

2. The Bringover Create Transactions window is activated. Jane enters the
following information:
• The path name of the child workspace in the To Child Workspace

Directory text field
• The directory /man in the File List pane using the Add Files point-and-

click chooser window activated from the File menu .

SCCS/
bringover.1
def.dir.flg.1
filemerge.1
putback.1

ws_undo.1
workspace.1

man/

man_pages/

Codemgr_wsdata/

SCCS/
access_control.

args.5
children.5
conflicts.5
history.5
locks.5

nametable.5
parent.5

man1/ man5/

Configuring Example 145

12

The Transactions window as it is configured to create Jane’s child workspace
man_pages_jane . (Bob repeats the process to create his workspace named
man_pages_bob .)

Note – The character “.” (representing all of the workspace) could have been
specified in the file list pane instead of man/ . Since all SCCS files are located
beneath man/ , the two are equivalent.

Notes Regarding the transaction output:

• Updating names in child workspace’s name table

The name table is a file that assists the Configuring program in tracking file
names, it is used to speed up the processing of renamed files.

• Examined files: 15

During the initial examination phase of the Bringover transaction, the
Configuring program determined that 15 files differed in the parent and
child. In this case, since the child is being created and thus contains no files,
all files contained in the parent are considered for the transaction.

• Bringing over contents changes: 15

The Configuring program has determined that 15 files should be brought
over from the parent to the child workspace.

• Contents Summary:

Summarizes the results of the transaction.

• 15 Create

This line indicates that 15 files were created (as opposed to updated) in the
child. In the Bringover Create transaction, all transferred files fall into this
category.

Putting Back Changes
Bob begins work in his new workspace and makes changes to three files:
bringover.1 , putback.1 , and args.5 . He decides that these changes are
important and that Jane should have access to them. He uses the Putback
transaction to copy the changes back to the common parent workspace
man_pages .

146 Sun Workshop TeamWare Users Guide—December 1996

12

1. Bob selects the man_pages_bob icon on the Workspace Graph pane and
chooses the Putback item from the Transactions menu.

Note – For accelerator options see “Accelerators” on page 60.”

2. When the Putback window is activated, Bob chooses the Preview option. By
choosing this option, the transaction proceeds without actually copying
files. Bob is able to view the output of the transaction without actually
altering files; by using this option he is able to confirm that the transaction
will proceed the way he expects.

Note that the Configuring program automatically loads the directory /man
into the File List pane. This is the directory that Bob specified when he
created man_pages_bob ; the value was saved in the workspace
Codemgr_wsdata/args file. He could change the contents of the File List
pane using the items in the File and Edit menus directly below the pane.

Updating a Workspace
Jane makes changes to the files putback.1 and locks.5 in
man_pages_jane . Before she attempts to put the changes back to the
man_pages workspace, she wants to update her workspace with the changes
that Bob has just put back to man_pages . She uses the Bringover Update
transaction.

1. Jane selects the man_pages_jane icon on the Workspace Graph pane and
chooses the Bringover ⇒ Update item from the Transactions menu. For
accelerator options see “Accelerators” on page 60.”

2. When the Bringover Update window is activated, Jane chooses the Preview
option. By choosing this option, the transaction proceeds without actually
copying files. Jane is able to view the output of the transaction without
actually altering files. By using this option she is able to determine which
files have been changed prior to taking any real action.

The output indicates that:
• args.5 and bringover.1 will be updated in man_pages_jane

• There will be a conflict created on putback.1 . The conflict occurs
because putback.1 is changed both in man_pages by Bob and in
man_pages_jane by Jane.

Configuring Example 147

12

• One file (locks.5) is changed only in man_pages_jane.

• The other 11 files are unchanged.

3. None of these changes surprises Jane, so she decides to complete the
transaction by reexecuting it with the Preview option deselected. After the
transaction completes as expected, the Configuring program automatically
presents Jane with the option to resolve the conflict created on putback.1 .

Resolving Conflicts
Jane decides that she wants to resolve the conflict now and she clicks SELECT
on the Resolve now button. The Resolve transaction window is activated.

Note – If the conflict is left unresolved, the Resolve transaction can be initiated
later by either double-clicking SELECT on the man_pages_jane icon, or by
selecting the icon and choosing the Resolve item from the Transactions menu.

Note – If the “auto load” property is set for the Resolve window, the Merging
program begins execution automatically

The file in conflict (man/man1/putback.1) is listed in the Resolve window
File List pane. The file is automatically selected (surrounded by a box) so Jane
clicks SELECT on the Merging button. If there had been multiple files in the
list, Jane could have deselected any portion of the list. If the Auto Advance
property is selected (the default), the Configuring program automatically
works its way down through the list of selected files.

The Configuring program starts the Merging program and passes it the name
of putback.1

Jane works her way through the merging process, accepting Bob’s changes
from the right pane and her changes from the left. When all the differences
have been resolved, she saves the changes. See Chapter 9, “Resolving
Conflicts,” for more information about using Merging.

Jane can now put back her changes to the parent workspace (man_pages)
following the same procedure that Bob used (“Putting Back Changes”).

148 Sun Workshop TeamWare Users Guide—December 1996

12

149

Error and Warning Messages 13

This chapter describes error and warning messages. Error messages are
described in”Error Messages” and warning messages are described in
“Warning Messages.” All Configuring messages are numbered and are listed in
numerical order. For each message, the meaning of the message and a possible
remedy for the error are provided:

Table 13-1 Error and Warning Message Numbers

Message Type Message Number
Page
Number

Operating System Error Messages 1000 - 1999 page 150

Configuring Program Error Messages 2000 - 2600 page 150

Configuring Program Warning Messages 2601 - 2632 page 165

150 Sun Workshop TeamWare Users Guide—December 1996

13

Error Messages
The following table describes error messages, their meaning, and a possible
remedy.

Table 13-2 Configuring Error Messages

1000 - 1999 System Errors

Error messages between 1000 and 1999 report errors from operating system calls made by Configuring
commands. They consist of a short Configuring message and an appended system error message and
number. Refer to operating system documentation for information regarding these errors.

2000 Line too long or unexpected end of file in file_name

Meaning: While reading the file_name, a line was encountered that contained too many characters for a
Configuring command to buffer. The maximum line length is 1024 characters.

Remedy: Reduce the size of the long line and re-execute the command.

2001 Must specify a [child] * workspace either with the -w option or via the CODEMGR_WS
environment variable

Meaning: The Configuring command could not determine the workspace on which to act. Configuring
commands attempt to acquire the workspace path name in the following order:

1. As specified by the command’s -w option
2. As specified by the value of the environment variable CODEMGR_WS

3. The current directory, if it is hierarchically within a workspace

*When the error is reported by Bringover and Putback the word child is included, when reported by
Undo and Resolve it is not included.

Remedy: Specify the workspace path name using one of the methods listed above.

2002 Cannot use the -p option to reparent the child of an NSE environment

Meaning: You cannot use the -p option with the CLI bringover and putback commands to reparent a
workspace that has an NSE environment as a parent.

Remedy: Use the workspace reparent command to reparent a workspace whose parent is an NSE
environment to a Configuring workspace. You cannot reparent such a workspace to another NSE environment.

2003 directory_name is not a workspace

Meaning: The directory specified in the command is not a Configuring workspace. Configuring
workspaces are distinguished by the presence of the Codemgr_wsdata directory in the top level directory.

Remedy: Specify a different workspace name or use the CLI workspace create command or GUI File ⇒
Create Workspace command to convert the directory into a workspace.

Error and Warning Messages 151

13

2004 Workspace workspace_name doesn’t have a parent workspace

Meaning: A Configuring command (Bringover or Putback) could not complete execution because a parent
workspace could not be found for workspace workspace_name.

Remedy: Use the CLI workspace parent command or the GUI Edit ⇒ Parent command to reparent the
orphaned workspace.

2005 Parent workspace workspace_name is not visible as it is not mounted on machine_name

Meaning: The file system that contains the parent workspace is not currently mounted on machine
machine_name.

Remedy: Mount the file system that contains the parent workspace and re-issue the command.

2006 Filename file_name has too many “..” path components in it

Meaning: Relative file names specified to Configuring commands are interpreted as being relative to the
root directory of the workspace. If a file name contains “.. ” components, it is possible for one of the “.. ”
components to reach a directory that is hierarchically above the workspace root.

Remedy: Specify the path name with fewer (or no) “.. ” path name components

2007 Could not get username for uid uid_number

Meaning: The uid could not be found in the NIS maps or in /etc/passwd

Remedy: Check NIS server and maps.

2008 No version number in file file_name

Meaning: When a Configuring command accesses a metadata file (a file in the Codemgr_wsdata directory)
it checks the version number written in the file when it was created (for example, VERSION 1). The
metadata file file_name does not contain the version string.

Remedy: Check the integrity of file_name. The version string may have been removed when the file was
edited. If the version string is missing, and the file is not otherwise corrupted, use the workspace create
command to create a new workspace. Check the value of the version string for the analogous file in the new
workspace and edit that string into file_name.

2009 Commandcommand_name failed, /bin/sh killed by signal signal

Meaning: A Configuring command attempted to execute command_name and was unable to because the
shell was killed by signal.

Remedy: Re-execute the Configuring command.

2010 Commandcommand_name failed, could not execute the shell, /bin/sh

Meaning: A Configuring command could not start a shell. This indicates that some system resource, such
as swap space or memory was insufficient.

Table 13-2 Configuring Error Messages

152 Sun Workshop TeamWare Users Guide—December 1996

13

Remedy: Check system resources.

2011 Commandcommand_name killed by signal signal

Meaning: A command started by a Configuring command received signal signal.

Remedy: Re-execute the command. If the error re-occurs, refer to the Solaris documentation for information
about the signal.

2012 Commandcommand_name exited with status status

Meaning: Configuring expects commands it executes to exit with a status of zero indicating successful
completion. Configuring considers it an error if a command exits with a non-zero status.

Remedy: Refer to the documentation for command_name to determine the meaning of status.

2013 LP FLP_name does not exist in the parent or child workspace

Meaning: The file list program (FLP) FLP_name specified for the Bringover or Putback transaction, could
not be found in either the parent or child workspace

Remedy: Check the path name of the intended FLP and re-execute the transaction.

2014 Could not execute program_name

Meaning: A Configuring command attempted to execute another program and was unable to do so.

Remedy: Ensure that your installation is correct. Ensure that the program is in your search path and that its
permissions are set correctly.

2015 Workspace workspace_name already exists

Meaning: An attempt was made to create a workspace that already exists.

Remedy: Re-execute the command using a different workspace name.

2016 Workspace name does not exist

Meaning: The workspace name specified as an argument for a Configuring command could not be found.

Remedy: Ensure that the path name was specified correctly.

2017 Can’t open file file_name so can’t get comments for check in

Meaning: Configuring stored checkin comments in a temporary file and was unable to open that file to read
the comments.

Remedy: Check file permissions and other file system problems that would prohibit opening the file.

2018 Can’t reparent a workspace to itself

Meaning: An attempt was made (either as part of a transaction, or by using an explicit reparent command)
to make a workspace its own new parent.

Table 13-2 Configuring Error Messages

Error and Warning Messages 153

13

Remedy: Re-execute the command, specifying a different parent.

2019 Internal error: unknown locktype lock

Meaning: The workspace lock file (Codemgr_wsdata/locks) is corrupted. An unknown lock value was
found.

Remedy: Edit the lock file to repair the damage. For more information, see the locks(5) manual page or
“Ensuring Consistency through Workspace Locking.”

2020 You must specify a workspace name

Meaning: The Configuring command could not determine the workspace on which to act. Configuring
commands attempt to acquire the workspace path name in the following order:

1. As specified by the command’s -w option
2. As specified by the value of the environment variable CODEMGR_WS

3. The current directory, if it is hierarchically within a workspace

Remedy: Specify the workspace path name using one of the methods listed above.

2021 Cannot obtain a type lock in workspace workspace_name because it has the following
locks: Command: command (pid), user: user, machine: machine, time: time

Meaning: To ensure consistency, Configuring interworkspace commands lock workspaces while they read
and write data in them. The command you issued could not obtain a lock because the workspace is already
locked. While Configuring is reading and examining files in the parent workspace during a Bringover
transaction, it obtains a read-lock for that workspace. When it is manipulating files in the child workspace,
it obtains a write-lock. Read-locks may be obtained concurrently by multiple Configuring commands that
read files in the workspace. No commands may write to a workspace while any read-locks are in force.
Only a single write-lock can be in force at any time; no Configuring command may write to a workspace
while a write-lock is in force. Lock status is controlled by the Codemgr_wsdata/locks file in each
workspace.

Remedy: If the system is running normally, wait until the command that is locking the workspace releases
its lock. If the workspace is stuck in a locked state (for example, the system crashed while a command had
a lock in force), use the GUI Props ⇒ Workspace ⇒ Locks window, or the workspace locks command to
remove the lock.

2022 Invalid subcommand - command_name

Meaning: An attempt was made to obtain help on a subcommand of the resolve , workspace or codemgr
command and the name of a non-existent subcommand was specified.

Remedy: For the list of valid subcommands for each command, type the command and specify the help
subcommand.

2023 Not used.

Table 13-2 Configuring Error Messages

154 Sun Workshop TeamWare Users Guide—December 1996

13

2024 File file_name has no deltas

Meaning: The SCCS history file file_name contains no deltas, therefore it cannot be processed.

Remedy: Perhaps the history file was mistakenly overwritten.

2025 Could not find the command_name command.Executable does not exist: name Also could
not find the name command in PATH PATH_contents

Meaning: A Configuring command attempted to execute another program and was not able to find it.

Remedy: Ensure that your installation is correct. Include the directory that contains the missing program.

2026 Unknown SCCS control character (char) in file file_name at line line_number

Meaning: A Configuring command expected file_name to be an SCCS history file; based on the character it
encountered, it is either not a history file, or it has been corrupted.

Refer to the Solaris SCCS documentation regarding SCCS history file format.

2027 Corrupted file - file_name, line line_number

Meaning: A Configuring command was unable to read a workspace metadata file (a file in the
Codemgr_wsdata directory). Illegal characters were found in line line_number.

Remedy: Check and repair the file. All Configuring metadata files are ASCII text files and can be edited. See
the file_name (5) manual page or Chapter 7, “TeamWare Configuring Workspace” for more information
on its format.

2028 Could not find the command_name command in PATH path_name

Meaning: A Configuring command attempted to execute another program and was not able to find it.

Remedy: Ensure that your installation is correct. Include the directory that contains the missing program.

2029 The file has unresolved conflicts. Run ‘edit m’ and search for ^<<<<<<<

Meaning: This error is issued by the resolve command. An attempt was made to save the file while it still
contained unresolved conflicts.

Remedy: Use the edit m subcommand (edit the merged result) to resolve the conflicts and then save the
file. Conflicts are marked with ^<<<<<<<.

2030 No file with number file_number

Meaning: The resolve command creates a numbered list of files that contain conflicts. The file_number
chosen does not exist in this list.

Remedy: Use the list subcommand to list the files and determine the correct number of the file you wish
to specify.

Table 13-2 Configuring Error Messages

Error and Warning Messages 155

13

2031 Can’t find home directory so can’t write to file file_name

Meaning: A Configuring command was unable to find the user’s home directory and cannot locate file
file_name. This usually indicates a problem with NIS maps.

Remedy: Check NIS server and appropriate NIS maps.

2032 Can’t parse line in file file_name: line

Meaning: Upon startup, the resolve command reads the ~/.codemgr_resrc file to obtain user defined
properties. The line line could not be interpreted correctly by the program.

Remedy: Correct the file ~/.codemgr_resr c file so that it includes only valid entries. For information
regarding these entries, see the resolve (1) manual page.

2033 Must specify a directory list either as arguments or via the CODEMGR_WSPATH
variable

Meaning: This message is reported by the workspace list command when a directory (or list of
directories) was not specified in a way in which workspace list can search for workspaces to list.
Directories can be specified as the standard argument to the command, or by defining the
CODEMGR_WSPATH variable to contain the path name of a directory.

Remedy: Re-execute the command specifying a directory, or set the CODEMGR_WSPATH directory to contain
a directory path.

2034 internal error: Access control operation operation_name does not have a Ibuilt-in
default

Meaning: A Configuring command attempted to verify access permission for a workspace operation (for
example: bringover-from, putback-to, reparent-to). An internal consistency check failed.

Remedy: Contact your local service representative.

2035 Access control file does not exist

Meaning: A Configuring command attempted to verify access permission for a workspace operation (for
example: bringover-from, putback-to, reparent-to). The access control file
(Codemgr_wsdata/access_control) in the affected workspace was not found.

Remedy: If the access control file has been deleted from the workspace, copy a new one from another
workspace and edit it so that the access permissions are correct. If no other workspaces are available, create
a new workspace using the CLI workspace create or the GUI File ⇒ Create Workspace commands and
copy the file from the newly created workspace. For more information refer to the access_control (5)
manual page or “Controlling Access to Workspaces.”

2036 Cannot specify common ancestor file; there is no common ancestor delta

Table 13-2 Configuring Error Messages

156 Sun Workshop TeamWare Users Guide—December 1996

13

Meaning: The ancestor (a) was specified as an argument to a resolve subcommand (diff , edit , more).
The files that are being resolved do not have an ancestor in common. This occurs most commonly in cases
where files with the same name are created concurrently in both the child and the parent. They have the
same name but are not descended from a common ancestor. For more information about ancestors and their
role in resolving conflicts, see Chapter 9, “Resolving Conflicts.”

Remedy: Proceed with the conflict resolution process without specifying the ancestor (a) as an argument to
the diff , edit and more subcommands.

2037 Invalid argument - character

Meaning: An invalid argument was specified to one of the resolve subcommands. The command
expected one of the following characters: a (ancestor), c (child), p (parent), m (merged result).

Remedy: Specify one of the valid arguments: a, c , p, m. See the resolve (1) manual page for more
information.

2038 Parent workspace is an NSE environment. Use the nseputback command

Meaning: The “parent” in a putback transaction is an NSE environment and not a Configuring workspace.

Remedy: Use the nseputback command to putback changes from the workspace to the environment.

2039 File file_name is probably not an s-file on line line_number expected ^A, but got char

Meaning: A Configuring command expected file_name to be an SCCS history file; based on the format it is
either not a history file, or it was corrupted.

Remedy: Refer to Solaris SCCS documentation regarding SCCS history file format.

2040 File file_name has not been merged. Use the twmerge subcommand first or the filemerge
subcommand

Meaning: An attempt was made to commit (save) a file that had not yet been merged.

Remedy: Merge the file using either the twmerge subcommand, or the filemerge subcommand (which
executes the Merging GUI merge tool). For more information about the resolve command see the
resolve (1) manual pages.

2041 path_name is not a workspace or a directory

Meaning: The string path_name specified in the Bringover Create transaction is not a Configuring
workspace or a directory.

Remedy: Specify a different workspace or directory name.

2042 Can’t create ToolTalk message, error = TT_error_code

Table 13-2 Configuring Error Messages

Error and Warning Messages 157

13

Meaning: The resolve command communicates with the Merging program via the ToolTalk service.
ToolTalk is an interapplication communication service distributed with the Solaris OpenWindows
windowing system. In this case the resolve command called a ToolTalk routine to create a ToolTalk
message for Merging. The ToolTalk routine could not create the message and passed back TT_error_code.

Remedy: Refer to the OpenWindows ToolTalk documentation for information about the error.

2043 SCCS file file_name is corrupted

Meaning: The SCCS admin -h command reports that the newly computed check-sum does not compare
with the one stored in the first line of the file.

Remedy: See the Solaris SCCS documentation for more information.

2044 Unable to create a temporary name from template temp_file_name

Meaning: A Configuring command was unable to create a temporary file for its use. This is a Configuring
internal error.

Remedy: Check for any system-level reasons why the command could not write this file (for example, file
permission restrictions or incorrect command ownership).

2045 Fprintf of file_name failed

Meaning: A command was unable to write to the file file_name.

Remedy: Check file permissions and other such file system problems that would prohibit writing in the file
system.

2046 Version mismatch in file file_name, expected version expected_number, but found actual_number

Meaning: Each Configuring metadata file (Codemgr_wsdata/*) contains a string that includes a version
number (for release 1.0 the version number string is VERSION 1). As a consistency check, when
Configuring commands read and write to these files, they check to determine whether the file contains the
version that the command expects. In this case the command expected to find expected_number but found
actual_number instead. This may indicate that old binaries are being used with new metadata files and could
cause the file to be corrupted.

Remedy: Make sure that the most current versions of the Configuring binaries are being accessed.

2047 Do not know how to convert file file_name from version found_version_number to
current_version_number

Meaning: Each Configuring file (Codemgr_wsdata/*) contains a string that includes a version number (for
release 1.0 the version number string is VERSION 1). As a consistency check, when Configuring commands
read and write to these files, they check to determine whether the file contains the version that the
command expects. It is anticipated that when new versions of Configuring binaries and metadata files are
released, the formats of some of these files may change. Commands contain code to make this conversion.
A command found a metadata file with a version number earlier than 1.

Table 13-2 Configuring Error Messages

158 Sun Workshop TeamWare Users Guide—December 1996

13

Remedy: Since this is the first release of Configuring, the version string in the metadata file must have been
inadvertently changed during editing. Check the file and make sure that the first line reads “VERSION 1”.

2048 Must specify at least one file, directory or -f argument to a bringover that
creates a child workspace

Meaning: The command-line for a Bringover transaction was not constructed properly. An argument that
specifies at least one file, directory or FLP must be included. If this argument is omitted, Configuring
attempts to take the arguments from the workspace’s Codemgr_wsdata/args file.

Remedy: Reenter the command and ensure that you’ve included the correct number of arguments.

2049 Could not determine where file_name is mounted from

Meaning: Configuring commands convert path names of NFS mounted directories to the
machine_name: path_name format to do much of their work. This message indicates that the mount entry
that contains file_name in /etc/mtab (Solaris 1.x) or /etc/mntab (Solaris 2.x) is no longer present.

Remedy: Remount the file system that contains file_name.

2050 Could not determine the absolute pathname for file_name

Meaning: A Configuring command was unable to read a directory. This indicates some corruption in the
file system; for example, incorrect directory permissions.

Remedy: Check the file system, especially directory and file permissions in the path of file_name.

2051 Can’t rename to file_name; it exists

Meaning: During a Bringover, Putback or Undo transaction a file was found that was renamed in the source
workspace to a name already in use in the destination workspace.

Remedy: Change the name in one of the directories.

2052 Corrupted file - file_name, text after BEGIN, line number. Can’t send notification

Meaning: A Configuring command encountered an error when reading the workspace notification file
Codemgr_wsdata/notification . The BEGIN statement that delimits the list of files/directories for
which notification is requested must be the only text on the line, other text was encountered. The
Configuring command cannot correctly parse the request; if the file contains a notification request, it cannot
be sent.

Remedy: Edit the notification file and enter the appropriate BEGIN statement. See the notification (5)
man page or “How to Notify Users of Changes to Workspaces” for more information on its format.

2053 Corrupted file - file_name, text after END, line number. Can’t send notification

Meaning: A Configuring command encountered an error when reading the workspace notification file
Codemgr_wsdata/notification . The END statement that delimits the list of files/directories for which
notification is requested must be the only text on the line, other text was encountered. The Configuring
command cannot correctly parse the request; if the file contains a notification request, it cannot be sent.

Table 13-2 Configuring Error Messages

Error and Warning Messages 159

13

Remedy: Edit the notification file and enter the appropriate END statement. See the notification (5)
manual page or “How to Notify Users of Changes to Workspaces” for more information on its format.

2054 Corrupted file - file_name, missing BEGIN, line number. Can’t send notification

Meaning: A Configuring command encountered an error when reading the workspace notification file
Codemgr_wsdata/notification . The BEGIN statement that delimits the list of files/directories for
which notification is requested, is missing. The Configuring command cannot correctly parse the request; if
the file contains a notification request, it cannot be sent.

Remedy: Edit the notification file and enter the appropriate BEGIN statement. See the notification (5)
man page or Section , “How to Notify Users of Changes to Workspaces” for more information on its format.

2055 File file_name has incomplete delta table

Meaning: The delta table in the SCCS history file file_name is incomplete. This indicates that the file was
corrupted.

Remedy: Fix the file, or copy in a new version.

2056 Badly formatted line in file_name: line_number

Meaning: A Configuring command was reading a temporary log file left over from an aborted Bringover or
Putback operation and encountered a malformed line. This indicates that the file was corrupted.

Remedy: Execute the workspace updatenames command to rebuild the nametable and then re-execute
the command.

2057 Zero-length SCCS file, file_name

Meaning: An SCCS history file was encountered that contained no data.

Remedy: Remove the SCCS history file.

2058 Can’t get a version of the child file until it is checked in

Meaning: During a Resolve transaction a file was encountered that is not checked in to SCCS. Files must be
checked in before conflicts can be resolved.

Remedy: Check the file in and re-start the transaction.

2059 Name history serial number number out of order in file file_name

Meaning: Rename information in the SCCS history file file_name is corrupted. The name history records in
this SCCS file are not in numerically descending order.

Remedy: Reorder the name history records, or copy in a new version of the file using the Bringover or
Putback transaction.

2060 Delta serial number number out of order in file file_name

Table 13-2 Configuring Error Messages

160 Sun Workshop TeamWare Users Guide—December 1996

13

Meaning: Delta numbers are not in numerically descending order in the SCCS history file file_name. This
indicates that the file is corrupted.

Remedy: Reorder the delta numbers, or copy in a new version of the file using the Bringover or Putback
transaction.

2061 Must have DISPLAY environment variable set to invoke twmerge or filemerge

Meaning: The DISPLAY variable is automatically set by OpenWindows when it begins execution. Your
machine must be running OpenWindows to use the Merging program.

Remedy: Ensure that OpenWindows is executing properly; if it is, reset the DISPLAY variable.

2062 Can’t resolve file file_name because it is writable

Meaning: The file file_name is not checked out from SCCS but its file permissions indicate that it is writable.
Resolving this conflict will result in writing to a file that is not checked out.

Remedy: Reconcile the file permissions (for example, check the file out and then check it back in) and then
re-execute the Resolve transaction.

2063 Cannot create workspace name because it would be nested within workspace name

Meaning: An attempt was made to create a workspace hierarchically beneath an existing workspace.

Remedy: Create the new workspace hierarchically outside of any existing workspaces.

2064 Cannot delete a workspace that is a symbolic link. Run workspace delete workspace_name

Meaning: Configuring commands will not delete directories or files that are symbolic links. You must delete
the physical copy of the file. The appropriate command line is provided.

Remedy: Use the workspace delete command to delete workspace_name.

2065 This error message may be issued in any of the following form:
User user_name does not have access to bringover from workspace workspace_name
User user_name does not have access to bringover to workspace workspace_name
User user_name does not have access to putback from workspace workspace_name
User user_name does not have access to putback to workspace workspace_name
User user_name does not have access to undo workspace workspace_name
User user_name does not have access to delete workspace workspace_name
User user_name does not have access to move workspace workspace_name
User user_name does not have access to change the parent of workspace workspace_name
User user_name does not have access to change the parent to workspace workspace_name

Meaning: The user user_name attempted an operation that affected the workspace workspace_name; access
permissions in workspace_name do not permit user_name access to execute that operation.

Table 13-2 Configuring Error Messages

Error and Warning Messages 161

13

Remedy: The file workspace_name/Codemgr_wsdata/access_control is a text file that specifies access
permissions for various workspace operations. The owner of the workspace must change the permissions
to include user_name in order for the operation to proceed. Permissions can be changed using the
Workspace item in the GUI Props menu or by editing the access_control file directly. See the
access_control (5) man page or Chapter , “TeamWare Configuring Workspace” of this manual for more
information.

2066 Corrupted file - file_name, whitespace in pathname, line line_number. Can’t send
notification

Meaning: A Configuring command encountered an error when reading the workspace notification file
Codemgr_wsdata/notification . A whitespace character was encountered in a line where a single path
name was expected.

Remedy: Edit the Codemgr_wsdata/notification file to remove the whitespace characters from the
line. See the notification (5) man page or “How to Notify Users of Changes to Workspaces” for more
information on its format.

2067 Corrupted file - file_name, missing notification event, line line_number. Can’t send
notification

Meaning: A Configuring command encountered an error when reading the workspace notification file
Codemgr_wsdata/notification . The Configuring event (for example, bringover-to) was not specified.

Remedy: Edit the Codemgr_wsdata/notification file to add the correct event. See “How to Notify
Users of Changes to Workspaces” for a list of valid events.

2068 Not used

2069 Not used

2070 Not used

2071 Not used

2072 Not used

Table 13-2 Configuring Error Messages

162 Sun Workshop TeamWare Users Guide—December 1996

13

2073 Not used

2074 Workspace workspace_name has no locks

Meaning: An attempt was made to remove locks from a workspace that had no active locks.

Not applicable

2075 Lock lock_name does not exist for workspace workspace_name

Meaning: While using the workspace locks -r command, a lock number was specified that is out of
range of the lock list.

Remedy: Check the lock numbers for the workspace using the workspace locks command and enter a
valid number.

2076 Internal error: Cannot find the directory in which command command_name is located
because avo_find_dir_init() has not been called

Meaning: This is an internal error.

Remedy: Please contact your local service representative.

2077 number is not a valid number

Meaning: While using the resolve command, a number was referenced that is outside of the listed values.

Remedy: List the values to determine the valid number for your selection.

2078 Cannot access workspace workspace_name

Meaning: File permissions for workspace_name prohibit access by the Configuring command.

Remedy: Default permissions for workspace directories are 777.

2079 Could not parse name history for file file_name, contains: text

Meaning: There is a format error in the name history record in the SCCS history file file_name. The
troublesome text is displayed.

Remedy: If possible, fix the record; otherwise copy a new version of the file using the Bringover or Putback
transaction.

2080 Could not remove or rename backup directory directory_name

Table 13-2 Configuring Error Messages

Error and Warning Messages 163

13

Meaning: Configuring attempted to clear the backup area directory_name so that it could backup a new
transaction. Configuring was not able to delete or rename the directory out of the way. The most likely
cause is that file permissions have been changed for the directory.

Remedy: Check directory permissions for directory_name. Default Configuring permissions for this directory
are 777.

2081 build_workspace_list: path_name does not start with a /

The Configuring GUI program was expecting a fully qualified path name to be returned from a subprocess.
This is an internal error.

Please contact your local service representative.

2082 Workspace workspace_name’s parent does not exist in the filesystem

Meaning: The parent workspace is not mounted or visible on this machine.

Remedy: Mount the parent workspace on the executing machine.

2083 Workspace workspace_name’s child does not exist in filesystem

Meaning: The child workspace is not mounted or visible on this machine.

Remedy: Mount the child workspace on the executing machine.

2084 codemgrtool: internal error in args_strlist_from_wsname() : NULL args_list

Meaning: Internal error.

Remedy: Contact your local service representative.

2085 codemgrtool: internal error in undo_strlist_from_wsname() : NULL undo_list

Meaning: Internal error.

Remedy: Contact your local service representative.

2086 codemgrtool: path_name doesn’t start with a /

Meaning: Internal error.

Remedy: Please contact your local service representative.

2087 Not used.

Table 13-2 Configuring Error Messages

164 Sun Workshop TeamWare Users Guide—December 1996

13

2088 Nametable in workspace workspace_name cannot be read because the following SCCS
files have identical root deltas
file_name
file_name
Run the following command and then re-execute the command_name command:

path_name/workspace updatenames workspace_name

Meaning: An SCCS history file was copied within a workspace using the cp command. As a result, the two
files contain the identical root delta. Configuring uses the root delta to distinguish between files. The
workspace updatenames command enables Configuring to distinguish between the files.

Remedy: E xecute the workspace updatenames command and then re-execute the command that
spawned the error.

2089 Cannot move workspace workspace_name
Because it is a symlink to directory_name.
Use a workspace name that is not a symlink.

Meaning: Configuring commands will not move directories or files that are symbolic links.

Remedy: Move the workspace to a name that is not a symlink.

2090 Nametable in workspace workspace_name not written because the following SCCS files
have identical root deltas
file_name
file_name
Run the following command and then re-execute the command_name command:
path_name/workspace updatenames workspace_name

Meaning: An SCCS history file was copied within a workspace using the cp command. As a result the two
files contain the identical root delta. Configuring uses the root delta to distinguish between files. The
workspace updatenames command enables Configuring to distinguish between the files.

Remedy: Execute the workspace updatenames command and then re-execute the command that
spawned the error.

2091 Internal error: hash table missing entry

Meaning: Internal error.

Remedy: Contact your local service representative.

2092 An SCCS file (A) was copied (to file B). The original SCCS file (A) cannot be found.
Run the following command and then re-execute the command_name command:
path_name/workspace updatenames workspace_name

Table 13-2 Configuring Error Messages

Error and Warning Messages 165

13

Warnings Messages

Meaning: An SCCS history file was copied within a workspace using the cp command. The original file (A)
was subsequently renamed or removed from the workspace. Configuring is unable to determine whether
the files has been renamed (and to what name) or removed from the workspace. The workspace
updatenames command interactively displays the possible names to which the file could have been
renamed, and asks you to determine the file’s current state: its new name, or its absence from the
workspace. Configuring can then correctly propagate the changes throughout the workspace hierarchy.

Remedy: Execute the workspace updatenames command and then re-execute the command that
spawned the error.

2093 Internal error: SmIDs not equivalent

Meaning: Internal error.

Remedy: Contact your local service representative.

2094 Internal error: SmID not found

Meaning: Internal error.

Remedy: Contact your local service representative.

2095 - 2499 Not used

2500 - 2600 Internal errors

Meaning: Error numbers 2500 through 2600 Configuring programs internal errors. These errors indicate
problems that users cannot correct. If you encounter these errors, contact your local service representative.

Table 13-3 Configuring Warning Messages

2601 Could not remove backup directory old_dir_name, so it was renamed to new_dir_name

Meaning: Configuring attempted to clear the backup area old_dir_name so that it could backup a new
transaction. Configuring was not able to clear the backup directory by deleting it, but it was able to rename
it out of the way to the name new_dir_name. The most likely cause is that file permissions were changed for
the directory.

Remedy: Check directory permissions for old_dir_name. Default Configuring permissions for this directory
are 777. Delete the contents of new_dir_name.

Table 13-2 Configuring Error Messages

166 Sun Workshop TeamWare Users Guide—December 1996

13

2602 File file_name is not under SCCS in either workspace - ignored

Meaning: Configuring could not find an SCCS history file in either workspace for file_name.

Remedy: The file name was probably entered incorrectly, re-execute the command.

2603 Zero length filename - ignored

Meaning: A file name specified as an argument on the command-line (or in the Codemgr_wsdata/args
file) contained no characters (““).

Remedy: Re-execute the command and re-specify the file name argument. If the problem persists, check the
arguments listed in the args file.

2604 Filename file_name has whitespace characters in it - ignored

Meaning: A file name specified as an argument on the command-line (or in the Codemgr_wsdata/args
file) contained whitespace characters. Configuring commands do not accept file names that contain
whitespace characters.

Remedy: Re-execute the command and re-specify the file name argument. If the problem persists, check the
arguments listed in the args file.

2605 Not used

2606 File file_name not brought over because it is a file_type in workspace workspace_name and a
file_type in workspace workspace_name

Meaning: A file name has a different file type (regular file vs. directory vs. symbolic link) in the parent and
child workspaces.

Remedy: Take whatever action is appropriate to make the listed files the same type, or change one of the
names.

2607 Not used

2608 Workspace child_ws_name is a child of parent_ws_name. Could not update its parent file

Meaning: During a workspace delete or workspace move operation involving child_ws_name, the
command found that the children file in the workspace’s parent (parent_ws_name) did not contain an
entry specifying child_ws_name as a child of that parent.

Remedy: Advisory only: the command corrects the discrepancy, however, this could indicate that the
parent’s children file was corrupted.

Table 13-3 Configuring Warning Messages

Error and Warning Messages 167

13

2609 Not used

2610 directory_name is not a workspace

Meaning: The directory specified in the command is not a Configuring workspace. Configuring
workspaces are distinguished by the presence of the Codemgr_wsdata directory in the top level directory.

Remedy: Specify a different workspace name or use the CLI workspace create command or GUI File ⇒
Create Workspace command to convert the directory into a workspace.

2611 file_name does not exist in either workspace - ignored

Meaning: The file file_name was not found in either the parent or child workspace.

Remedy: Check to be sure the name was specified correctly.

2612 Not used

2613 Filename file_name has too many “.. ” path components in it - ignored

Meaning: Possible causes include that the Configuring command cannot resolve the path name into a:
• workspace-relative file name
• fully qualified workspace name

Remedy: Specify the path name with fewer (or no) “.. ” path name components

2614 Line line_number too long or unexpected end of file in file_name

Meaning: While reading the Codemgr_wsdata/nametable file, a line was encountered that contained too
many characters for a Configuring command to buffer. The maximum line length is 1024 characters. This
indicates that nametable has been corrupted.

Remedy: Configuring automatically rebuilds the nametable. This takes some time.

2615 Line line_number has bad format in file_name

Meaning: This indicates that the Codemgr_wsdata/nametable file has been corrupted.

Remedy: Configuring automatically rebuilds the nametable. This takes some time.

2616 Not used

Table 13-3 Configuring Warning Messages

168 Sun Workshop TeamWare Users Guide—December 1996

13

2617 Unexpected name table editlog record type type_number - ignored

Meaning: A Configuring command was reading a temporary log file left over from an aborted Bringover or
Putback operation and encountered a malformed record. This indicates that the file has been corrupted.

Remedy: Execute the workspace updatenames command to rebuild nametable and then re-execute the
command.

2618 Can’t open file_name - can’t send mail notification

Meaning: The Configuring notification facility failed to open the file file_name. As a result, notification mail
is not sent for the current operation.

Remedy: Check file permissions for file_name.

2619 Not used

2620 Can’t fork process to send notification

Meaning: Lack of system resources (memory, swap space) prevented the Configuring notification facility
from sending notification mail.

Remedy: Check system resources.

2621 Not used

2622 Filename file_name contains a comment character (#) - ignored

Meaning: A file name specified as an argument to a command (or in the Codemgr_wsdata/args file)
contains the # character. Configuring reserves this character to denote comments.

Remedy: Change the name of the file so that its file name does not contain the # character. If the problem
persists, check the arguments listed in the args file.

2623 Read-lock left in workspace or Write-lock left in workspace

Meaning: A Configuring command was unable to remove locks in workspace_name. This may indicate that
there is insufficient disk space, or that permissions on the file Codemgr_wsdata/locks were changed
since the lock was originally written.

Remedy: Remove the locks using the Configuring GUI Props workspace command or the CLI workspace
locks command.

2624 File file_name is checked out in workspace workspace_name. The changes in the checked out
file will not be brought over

Table 13-3 Configuring Warning Messages

Error and Warning Messages 169

13

Meaning: The file file_name is checked out in the parent workspace. You are being advised that any changes
in the g-file were not brought over as part of the Bringover transaction.

Remedy: Not applicable.

2625 File file_name is not in conflict according to the SCCS file. Removing it from the
conflict file

Meaning: The information in the SCCS history file indicates that the file contains no unresolved conflicts,
however, the Codemgr_wsdata/conflicts file in the workspace lists it as being in conflict. The
command removed it from the conflicts file.

Remedy: Not applicable.

2626 File file_name not brought over because it is unresolved in workspace workspace_name

Meaning: The file file_name was not brought over because it contains an unresolved conflict in
workspace_name.

Remedy: Use the GUI Resolve transaction or the CLI resolve command to resolve the conflict and then re-
execute the Bringover transaction.

2627 Directory directory_name is mounted read-only.

Meaning: Before beginning Bringover and Putback transactions, Configuring checks to determine whether
the destination workspace root (top-level) directory is accessible for writing. This is not treated as an error
condition because lower level directories within the workspace could be mounted from different areas and
they may be accessible for writing. This warning is issued as an early warning that directory permissions
might be set incorrectly.

Remedy: If write access is not intentionally denied, change the root directory permissions.

2628 Not updating g-files because get command couldn’t be found in PATH search_path

Meaning: The g-files could not be updated as part of a Bringover or Putback transaction because the SCCS
get command could not be executed; it was not found in your search path.

Remedy: If you want g-files to be updated as part of transactions, include the get command in your search
path.

2629 Will not be able to run twmerge or filemerge

Meaning: The resolve command was not able to connect with the ToolTalk message service. The ToolTalk
service is used by the resolve command to communicate with the Merging program.

Remedy: The ToolTalk service is normally installed as part of OpenWindows version 3. Check the
OpenWindows documentation to determine why the ToolTalk service is not present or responding.

2630 This workspace is being created over an existing directory

Table 13-3 Configuring Warning Messages

170 Sun Workshop TeamWare Users Guide—December 1996

13

Meaning: You are converting an already existing directory into a Configuring workspace. Creating a
workspace from an existing directory hierarchy consists of creating the Codemgr_wsdata metadata
directory in the top-level directory. Once the directory becomes a workspace, its contents can be deleted
using the Configuring workspace delete command.

Remedy: Not applicable.

2631 File file_name not brought over because it is checked out and not writable in
workspace workspace_name

Meaning: The file file_name was not brought over as part of the Bringover transaction because it is checked
out (p-file exists) and writable in the child workspace workspace_name. The unusual state of this file
indicates that it is safer not to process the file.

Remedy: Reconcile the write permissions with its SCCS status.

2632 Omitting contents change to file file_name because of rename error

Meaning: An error was encountered while processing the name of file_name. As a result, the change in the
file from the source workspace could not be propagated to the destination workspace.

Remedy: Correct the rename problem (see the rename error text) and re-execute the Configuring
transaction.

Table 13-3 Configuring Warning Messages

171

Performing Basic SCCS Functions
with Versioning 14

This chapter shows you how to perform basic SCCS functions using
Versioning. It is organized into the following sections:

Typical Sessions
This section gives an overview of the most common SCCS sessions using
Versioning. It assumes that you are familiar with the SCCS. The following
scenarios are covered:

• An initial session where files are not yet under SCCS control
• A session where the project is already under SCCS control

Typical Sessions page 171

Commands: Manipulating Files page 174

View Option: Changing Versioning Properties page 177

172 Sun Workshop TeamWare Users Guide—December 1996

14

Changing Names

The current release of TeamWare uses new command names, so Table 14-1
summarizes the correspondences for you. Note that the old commands still
work, however this manual uses the new commands and GUI names.

Putting a Project Under SCCS Control

There may be instances where a project is under development before a source
code control system is put in place. This scenario assumes a project is already
under way and the hierarchy of the project is established. It is assumed that the
project is ready to be put under SCCS control. The following process shows
you how to do so.

1. Bring up Versioning at the top level of the source hierarchy by going to
the appropriate directory and entering one of the commands shown in the
following two examples:

2. Double click on the project directory from the list displayed in the base
window.
Versioning automatically changes (cd) to the selected directory. As there are
no files yet under SCCS control, the display will only show directories.

Table 14-1 New and Old TeamWare Commands

Old Command New Command Old Tool Name New GUI Name

codemgrtool twconfig, teamware CodeManager Configuring

vertool twversion VersionTool Versioning

filemerge twmerge FileMerge Merging

maketool twbuild MakeTool Building

freezepttool twfreeze FreezePoint Freezepointing

demo% twversion &

demo% twversion dirname &

Performing Basic SCCS Functions with Versioning 173

14

3. From the Commands menu, choose Check In New.
The Check In New window displays a list of files not under SCCS control.

4. Select the files you want to put under SCCS control and add necessary
comments in the Initial Comment pane.

5. Choose the OK button at the bottom of the window to check in the
selected files.
Once the files are under SCCS control, they will be transferred to the base
window file list display. The Reset button clears the comment pane.

Repeat this scenario in as many project directories as necessary. Then proceed
to the scenario in the next section for working with files under SCCS control.

Working with a Project Under SCCS Control

Once a project is under SCCS control, you can use Versioning to perform SCCS
functions. This section provides a scenario of basic SCCS tasks and how they
might be applied on a project. These steps are simplified to give an overview of
the process. The remaining sections of this chapter cover in-depth instructions
on performing tasks.

Note – This is representative of a hypothetical session. The steps will vary
according to project needs and the tasks required to fulfill them.

1. Bring up Versioning in the working directory.

2. Check out a file.

3. From the View menu, select File History to display the history graph of
the file.

4. Select two deltas from the history graph and inspect the diffs.

5. Make changes to the file.

6. Add necessary comments.

7. Check the file in.

These steps can be repeated and varied as required by the needs of your
project. The following sections of this chapter provide in-depth information on
how to perform these, and other, SCCS functions with Versioning.

174 Sun Workshop TeamWare Users Guide—December 1996

14

Getting Help on the GUI or the CLI

Versioning is implemented in both the GUI and CLI. To use Versioning from
the GUI, see the Sun WorkShop TeamWare online help.

To Access the Online Help

1. Open any Sun WorkShop TeamWare GUI from the Sun WorkShop.

2. Or, open any Sun WorkShop TeamWare from the command line. For
example, to open the Versioning GUI, enter the following:

3. Open the pull-down menu from the Help button.

4. Click on Help Contents.

To Access Help for the CLI

♦ To access the manual page for information on how to use Versioning from
the CLI, enter the following. The manual page gives information on all
command-line options, variables, and macros necessary to use DMake.

 To discover what each of the windows and associated buttons do, bring up
the GUI as shown above, and access the Help Contents>TeamWare
Windows.

Commands: Manipulating Files
You can perform SCCS operations within the file list on a per-file basis or on a
multiple-file basis. You can select a single file, or multiple files, on which to
perform a function.

The Commands menu allows you to do the following:

• Check out a file
• Check in a file

demo% twversion &

demo% man twversion.1

Performing Basic SCCS Functions with Versioning 175

14

• Edit a checked out file
• Check a new file under SCCS control
• Uncheckout a file

Checking Out and Checking In Files

This section covers the process of checking out and checking in files that are
already under SCCS control.

Checking Out Files

Two methods for checking out files are as follows:

♦ Select the file(s) you want to check out from the base window display.
Then, choose Check Out from the Commands menu.
A check mark is displayed in the file icon(s) of the selected file(s). This
method is valuable when you want to check out several files at once.

♦ Double click on a file icon in the base window (if set in the Options
window).
A check mark is displayed in the file icon and the file is checked out with
you as the owner. This is not the default behavior. You must change the
default behavior using the View menu Options.

Checking In Files

There are two methods for checking in files:

♦ Select the file(s) you want to check in from the base window display and
choose Check In from the Commands button menu. Enter the appropriate
comments in the Check In pop-up window before choosing Check In.
The check mark(s) continue to be displayed on the file icon(s) until you
choose Check In from the pop-up window. This method is valuable when
you want to check in several files at once and the same comment can apply
to each.

176 Sun Workshop TeamWare Users Guide—December 1996

14

♦ Double click on a checked out file icon in the base window and add the
appropriate comments in the Check In window before choosing Check In
(if set in the Options window).
The check mark continues to be displayed on the file icon until you choose
Check In from the pop-up window. This is not the default behavior. You
must change the default behavior using the View menu Options.

Editing a Checked-Out File

This section covers the process of checking out a file that is under SCCS control
and displaying it in a window with an editor. The Edit menu item allows you
to do this in either of the following ways:

 To check out a file and display it in a window with an editor:

♦ Choose the Check Out & Edit menu item from the Commands menu.
The default is for the file to be brought up in a cmdtool window running vi .
For instructions on defining an editor, see “View Option: Changing
Versioning Properties.

Checking in a New File

Files that are not under SCCS control are not displayed in the base window. To
see what files are in a directory and are not under SCCS control, use the Check
In New menu item.

Check In New displays a window that contains a list of files. You can define
the list by specifying a pattern in the filter text field.

1. Display a list of files from a directory that are not under SCCS control.
Double click on the directory in the base window, or define the directory
path in the Directory text field. Once in the directory, choose Check In New
from the Commands button menu. The Check In New window is displayed
with a list of files not yet under SCCS control.

2. Check in new files under SCCS control using the Check In New window.
Select the files from the Check In New window display. Enter the
appropriate initial comments in the Initial Comments pane before choosing
Check In. The checked-in files are removed from the Check In New display
and now appear in the base window file list display.

Performing Basic SCCS Functions with Versioning 177

14

Unchecking Out a File

When you have mistakenly checked out a file and want to return the file to an
unchecked out state, there is a simple way to do so without having to check in
the file and add comments. This is done through the Uncheck Out option of the
Commands button menu.

To uncheck out a file:

♦ Select the checked out file and choose Uncheckout from the Commands
menu.
You will be prompted for confirmation. When confirmed, the file reverts to
its previous unchecked-out status, and no comments are required. No record
is kept of your owning the file.

View Option: Changing Versioning Properties
The View menu displays a pop-up window with Versioning properties options.
Selecting options from this window sets the Versioning properties for the
remainder of the session.

Note – You must choose the Apply button before the property selections are
activated. Use the Set Default button to save the changes for subsequent
twversion sessions.

Changing the Main File List Display

The Main File List category lets you specify the type of SCCS files displayed in
the base window file list.

To specify the base window file list display:

♦ Select one of the following from the Options window:

• List all files under SCCS control
• List only files which are checked out
• List only files which are checked in

178 Sun Workshop TeamWare Users Guide—December 1996

14

Defining an Editor

The Editor category lets you specify an editor that automatically comes up
when you view the contents of a delta, or bring up a delta to edit. You have the
following list of editors to choose from. The last option allows you to specify
your own editor.

To specify an editor:

♦ Select one of the following from the Options window:
• textedit
• emacs
• emacsclient
• vi
• Other:__

Note – With Other:__ you must supply a command that will bring up your
editor in a separate window. The file name is tacked on the end of the supplied
command.

Note – If you set the EDITOR environment variable to one of the top four
selections, Versioning brings up the editor automatically without setting it
from the Properties window.

Changing the Double-Click Action

The Double-Click Action category lets you specify what happens when you
double click in Versioning.

To specify the results of the double-click action:

♦ Select one of the following from the Options window:
• Toggle SCCS State — checked in or checked out
When you select this option, you can optionally check the Confirm Double
Click Check Out option.

• Show File History — automatically brings up the History window

Performing Basic SCCS Functions with Versioning 179

14

Changing the History Graph Display

The History Graph category lets you define items for display on the history
graph.

To specify the display of the history graph:

♦ Select the desired options from the Options window.
These options are toggles that you can turn off or on.

• Show Removed Deltas - Removed deltas displayed with an “X” through
them

• Show Branch Closure - Shows dashed lines that indicate changes included
from other deltas

Changing the History Information Display

The History Information category lets you specify the extensiveness of the
information displayed when you select a delta on the history graph.

To specify the history information:

♦ Select one of the following from the Option window:
• Show Per-SID Information
• Show Entire File History
When you select this option, you can also specify a command to gather the
history.

180 Sun Workshop TeamWare Users Guide—December 1996

14

181

Starting and Loading Merging 15

This chapter explains how to start Merging, load it with files, and save the
output file. The chapter is organized into the following sections:

You can start Merging from Sun Workshop, or the Sun Workshop TeamWare
GUI, or from a shell command line. Each method has its advantages. The
command line provides flexible access to all Merging options such as loading
files at startup time. However, the GUI provides the following additional
capabilities:

• An easy-to-use visual interface for starting all tools

• The ability to set properties, such as a default working directory, for all tools

• A properties sheet specific to each tool that lets you specify command-line
options and save the command line for use in a later session

You can also start Merging from Versioning and the Sun Workshop Resolving
tool.

Changing Names page 182

Starting Merging from Sun WorkShop page 182

Loading Files from the Merging Window page 182

Starting Merging from the Command Line page 183

Saving the Output File page 188

182 Sun Workshop TeamWare Users Guide—December 1996

15

Changing Names
The current release of TeamWare uses new command names, so Table 15-1
summarizes the correspondences for you. Note that the old commands still
work, however this manual uses the new commands and GUI names

Starting Merging from Sun WorkShop
To start Merging from Sun WorkShop:

♦ Select the Merging icon in the Sun WorkShop window and click on it.

When Merging starts successfully, the Merging window opens.

Starting Merging from Sun WorkShop TeamWare
To start Merging from Sun WorkShop TeamWare:

♦ Pull down the TeamWare menu from the Sun WorkShop TeamWare
Configuring window and select Merging.

When Merging starts successfully, the Merging window opens.

Loading Files from the Merging Window
To load files in Merging:

♦ Select Open from the File menu, or from the Open button.

Table 15-1 Correspondences Between New and Old TeamWare Commands

Old Command New Command Old Tool Name New GUI Name

codemgrtool twconfig, teamware CodeManager Configuring

vertool twversion VersionTool Versioning

filemerge twmerge FileMerge Merging

maketool twbuild MakeTool Building

freezepttool twfreeze FreezePoint Freezepointing

Starting and Loading Merging 183

15

The resulting pop-up window provides text fields in which to enter file names.
As an example, from the directory/usr/src, matriarch is entered as the
ancestor file, file_1 as the left file, and file_2 as the right file.

Working Directory— This text field shows the current working directory
whenever you start Merging from the Manager or from the command line with
no arguments. You can edit this field. Merging interprets the file names you
specify in the window as relative to the current working directory. Therefore,
you can use such constructs as subdir/filename to specify a file in a subdirectory
and ../filename to specify a file in a parent directory. Any file name you specify
that begins with a “/ ” character is interpreted as an absolute path name, not as
relative to the current working directory

Left File—The file you specify in this text field appears in the left text pane,
also considered the “child” pane.

Right File—The file you specify in this text field appears in the right text pane,
also considered the “parent” pane.

Ancestor File—If you enter the name of an ancestor file, Merging will compare
it to the files to be merged and identify lines in those files that differ from the
ancestor. The automerged file will be based on the ancestor file, but the
ancestor file itself is not displayed in any Merging window. If you do not enter
an ancestor file name, Merging compares only the left and right files and
derives the output file from them. Automerging is not possible without an
ancestor file.

Output File—The merged output file takes the name you specify in this text
field. Merging uses the name filemerge.out unless you specify a different
name, and stores the file in the current working directory.

Open Button—Click on the Open button to load the files you have specified in
the text fields.

In a loaded Merging window the names of the left file, right file, and output
file are displayed above each text pane. The name of the ancestor file (for a
three-way diff only) is displayed in the window header. The “...” buttons to the
right of each text field bring up a file chooser.

Starting Merging from the Command Line
Starting Merging from the command line enables you to:

184 Sun Workshop TeamWare Users Guide—December 1996

15

• Determine which files (if any) are loaded into Merging at startup
• Specify the name of the merged output file at startup
• Specify whether or not Merging should consider leading white space (tabs

and spaces) when it identifies differences
• Specify whether Merging should produce a writable merged output file or

function in read-only mode
• Load lists of files from specified directories
• Specify input file display names, which are displayed over the left and right

text panes in the Merging base window (This feature is especially useful
when you merge entire directories of files from a list.)

Basic Startup Command

To start Merging from the command line without loading any input files
(assuming that the Merging executable is in your search path):

♦ Type the following command at a command-line prompt:

The command starts Merging (in background) without loading any files.

Command-Line Synopsis

The complete twmerge command is summarized below, with command
options enclosed in square brackets.

twmerge [-b] [-r] [-a ancestor] [-f1 name1] [-f2 name2] [-
l listfile] [leftfile rightfile [outfile]] [-V]

Options Defined

-b
Causes Merging to ignore leading blanks and tabs when comparing lines.

-r
Starts Merging in read-only mode. When you specify this option, only the
input file text panes are displayed, and the output text pane is absent.

demo% twmerge &

Starting and Loading Merging 185

15

-a ancestor
Specifies an existing ancestor file of the two files to be merged (called
descendants of the ancestor file). The merged file is based on this ancestor file
and the changes to it that have been made in the descendants.

When used with the -l listfile option, ancestor is a directory of files, which
you can load in succession from the File menu.

-f1 name1
Sets the file name displayed for the first (left) file. This option is useful when
a list of files is being loaded (with the -l option), and you want to display a
name for reference only in the Merging window.

For example, if you are loading files from two directories that correspond to
two different revisions of a product, you could use the -f1 option to display
the name Rev1 above the left pane and the -f2 option to display the name
Rev2 above the right pane.

-f2 name2
Sets the file name displayed for the second (right) file.

-l listfile
Specifies a file that contains a list of individual file names. This option is
useful for merging entire project directories.

Merging uses the names in listfile to successively load files from directories
you name with the leftfile and rightfile arguments, placing the output files in
the directory you name with the outfile argument. The names in listfile must
match file names in the leftfile and rightfile directories. When used with the
-a ancestor option, the ancestor argument must be a directory: Merging will
look in the ancestor directory for files that have the same names as those in
listfile and use those with matching names as ancestor files for each merge.

If you specify the character “- ” for listfile, Merging reads the list of files
from standard input.

leftfile
The name of the left file to be loaded for comparison. When used with the
-l listfile option, leftfile is a directory of files, which you can load in
succession from the File menu.

186 Sun Workshop TeamWare Users Guide—December 1996

15

rightfile
The name of the right file to be loaded for comparison. When used with the
-l listfile option, rightfile is a directory of files, which you can load in
succession from the File menu.

Note – If you use the -l listfile option, then all three input file names (ancestor,
leftfile, and rightfile) must be directories. If you do not use the -l listfile option,
then any two input file names can be directories, but one of the three must be
a simple file name. In this case, Merging uses the file name to find a file with
the same local name in each directory.

outfile
Specifies the name of the merged output file. If you do not specify an outfile,
the output file is given the default name filemerge.out . If you want to
specify a different name when you save the file, use Save As from the File
menu.

When used with the -l listfile option, outfile names the directory to be used
when each merged output file is saved. Individual file names in the outfile
directory are the same as the names listed in listfile.

-V

Does not start up Merging, but displays the version number of the application.

Loading Two Files at Startup

To load two files at the time you start Merging, change to the directory in
which the files are stored and specify the file names on the command line. To
merge two files named file_1 and file_2 , use the following command:

The first file listed appears in the left text pane; the second file appears in the
right pane.

demo% twmerge file_1 file_2 &

Starting and Loading Merging 187

15

Loading Three Files at Startup

To merge the same two files and at the same time compare them to a common
ancestor named ancestor_file , change to the directory in which the files are
stored and use the following command:

The ancestor file is not displayed, but differences between the ancestor file and
the two descendants are marked, and the merged output file is based on the
ancestor file.

Loading Files from a List File

You can sequentially load files from a list of file names. For example, suppose
ancestor versions of a project’s source files are stored in a directory named
/src . You have been editing the files file_1 , file_2 , and file_3 in your
directory /usr_1 , and another developer has been simultaneously editing the
same files in the directory /usr_2 . You have been given the responsibility of
merging the changes to both sets of files, and you want to place the merged
versions in a directory named /new_src .

To merge the /src , /usr_1 , and /usr_2 directories, you first create a list file
that contains only the names of the three files to be merged with each name on
a separate line, as follows:

Name the file sourcelist and place it in the working directory where you
plan to start Merging. Change to that directory (with the cd (1) command) and
start Merging with the following command:

demo% twmerge -a ancestor_file file_1 file_2 &

file_1
file_2
file_3

demo% twmerge -a /src -1 sourcelist /usr_1/usr_2/new_src &

188 Sun Workshop TeamWare Users Guide—December 1996

15

This command causes Merging to load /usr_1/file_1 into the left text pane,
/usr_2/file_1 into the right text pane, and compare both files to the
common ancestor /src/file_1 . After you have resolved the differences
between the two files, choose Save from the File menu to automatically save
the output file as /new_src/file_1 .

Saving the Output File
Save the output file by clicking on the Save button or choosing Save from the
File menu. The name of the output file is the name you specify in the Output
File test field of the Load pop-up window.

The Load item on the File menu changes depending on whether or not you are
loading files from a list; however, Save and Save As are available in either case.

To change the name of the output file while saving, choose Save As and fill in
the new file and directory names in the resulting pop-up window. Saving an
Output File Under Another Name

189

Examining Differences 16

This chapter further explains some features and presents an example of how to
use Merging. The chapter is organized into the following sections:

Moving Between Differences
You can navigate through differences using either the Next and Prev buttons or
the up arrow and down arrows. Merging automatically moves to the next
difference immediately after you resolve the current difference.

Resolving Differences
A difference is represented by a blank line in the merged (output) file in the
lower text pane. To resolve a difference, you edit the line displayed there by
either:

• Accepting the line displayed and incorporate it into the merged file by
choosing either the Accept or Accept & Next button over the side you wish
to accept.

Moving Between Differences page 189

Resolving Differences page 189

Automatic Merging page 190

An Example page 190

190 Sun Workshop TeamWare Users Guide—December 1996

16

• Editing the line in the merged file by hand, and marking the difference as
resolved. From the Edit menu, choose Mark Selected as Resolved.

Automatic Merging
If you have loaded a common ancestor file, Merging is often able to resolve
differences automatically, based on the following rules:

• If a line has not been changed in either descendant (it is identical in all three
files), it is placed in the merged file.

• If a line has been changed in only one of the descendants, the changed line
is placed in the merged file. A change could be the addition or removal of
an entire line, or an alteration to some part of a line.

• If identical changes have been made to a line in both descendants, the
changed line is placed in the merged file.

• If a line has been changed differently in both descendant files so that it is
different in all three files, Merging places no line in the merged file. You
must then decide how to resolve the difference—either by using a line from
the right or left file, or by editing the merged file by hand.

An Example
This example merges two files that have a common ancestor. The files are
file_1 and file_2 , and the ancestor file is named matriarch . The
descendant files file_1 and file_2 were derived from matriarch by
editing. The edits show all varieties of changes that could occur in the
descendants: deleting lines, adding new lines, and changing lines.

The content of each line in the example helps to identify whether or not it was
changed, and how. The ancestor file contains only twelve lines and is shown in
Code Example 16-1.

Examining Differences 191

16

Merging does not number lines in the files it loads; the numbers are part of the
example text and were placed there for clarity.

Code Example 16-2 shows the contents of file_1 . This file is identical to
matriarch with the following exceptions:

• The line numbered 1 in the matriarch file was deleted in file_1 .
• A new line was added following the line numbered 4.
• The line numbered 6 was changed (a different change was made to this line

in file_2).
• The line numbered 8 in the matriarch file was changed (an identical

change was made to this line in file_2 .)

Code Example 16-1 Ancestor File (matriarch)

1 This line is deleted in file_1
2 This line is in all three files
3 This line is deleted in file_2
4 This line is in all three files
5 This line is in all three files
6 This line is changed in descendants
7 This line is in all three files
8 This line is changed in descendants
9 This line is in all three files
10 This line is changed in file_2
11 This line is in all three files
12 This line is in all three files

Code Example 16-2 Descendant File (file_1)

2 This line is in all three files
3 This line is deleted in file_2
4 This line is in all three files
 &&& Added to file_1 &&&
5 This line is in all three files
6 This line is modified in file_1 from matriarch
7 This line is in all three files
8 #&# Changed in file_1 and file_2 #&#
9 This line is in all three files
10 This line is changed in file_2
11 This line is in all three files
12 This line is in all three files

192 Sun Workshop TeamWare Users Guide—December 1996

16

Code Example 16-3 shows the contents of file_2 . This file is identical to
matriarch with the following exceptions:

• The line numbered 3 in the matriarch file was deleted.

• The line numbered 6 was changed (a different change was made to this line
in file_1).

• The line numbered 8 was changed (an identical change was made to this
line in file_1).

• The line numbered 10 was changed (no change was made to this line in
file_1).

• A new line was added following the line numbered 11.

To simplify the example, we place all three files in one directory, and use this
directory as the working directory where we will start Merging.

Starting Merging

♦ Go to the directory in which matriarch , file_1 , and file_2 are stored.
Type the following to start Merging in background mode and load the
three files:

Code Example 16-3 Descendant File (file_2)

1 This line is deleted in file_1
2 This line is in all three files
4 This line is in all three files
5 This line is in all three files
6 This line is altered in file_2 from matriarch
7 This line is in all three files
8 #&# Changed in file_1 and file_2 #&#
9 This line is in all three files
10 ### Changed in file_2 ###
11 This line is in all three files
 ### Added to file_2 ###
12 This line is in all three files

demo% filemerge -a matriarch file_1 file_2 &

Examining Differences 193

16

Merging starts up with the Auto Merge feature turned on by default. The
window that appears displays an automerged output file.

In the upper left of the window, Merging has reported finding seven
differences, of which only one remains unresolved—six differences were
resolved by automerging, and are marked by glyphs in outline font.

The meaning of the glyphs is as follows: a vertical bar means a change in the
marked line, a plus sign signifies a line added, a minus sign means a line was
deleted. Unresolved states are marked by solid glyphs, unresolved by outline.
These glyphs are highlighted in color except when the color map is full. The
default significance is: red indicates a change, green indicates a deletion,
yellow shows an addition.

The unresolved difference (line 6) is marked by a vertical bar.

Examining Differences

Merging highlights the unresolved difference, which it identifies as the line
numbered 6 in file_1 and file_2 . When differences are being resolved with
Merging, the resulting Merging window (filemerge .out) shows the current
state of the file with automatic merging.

Proceed to the next difference by choosing the down arrow above the
appropriate file, or Navigate: Next Difference. The next difference becomes the
current difference.

Proceed through the differences by clicking on the down arrow.

Auto Merge preserves a change that was made to one file if no change was
made in the other file.

When a difference has not been resolved by Auto Merge, as indicated by the
solid highlighted glyph next to the lines involved in the difference, you need to
resolve the difference by making a choice. The vertical line indicates that the
line has been changed (as opposed to added or deleted). In this case, Auto
Merge failed because the same line was changed differently in the two files,
and Merging could not decide which change was more valid.

You could resolve this difference in one of the following ways:

• Click on the Accept, Accept & Next button on the left to place the line from
file_1 into the output file.

194 Sun Workshop TeamWare Users Guide—December 1996

16

• Click on the the Accept, Accept & Next button on the right to place the line
from file_2 into the output file.

• Edit the output file by hand.

Editing the Output File
To edit the output file, move the pointer into the output file’s text pane and
place it in the line you want to change. In this example, the following line was
typed in:

>>> This line edited by hand <<<

Choose the Edit:Mark Selected as Resolved. This menu item marks the
difference as resolved. In this example there are no more unresolved
differences, so the next difference remains the current one.

Note that the message in the upper left part of the window now indicates that
all differences have been resolved. Nevertheless, proceed to verify the
automerged differences.

Continue through the differences by clicking on the down arrow.

The final difference results from a line that was added only to file_2 .
Merging places the new line in the output file just as it did when a new line
was added to file_1 , which resulted in the third difference.

Saving Output File

Now that all differences have been resolved and the automerged differences
verified, you can save the output file. The output file takes the name shown in
the Load Files pop-up window, which by default is filemerge .out. To write
the file, choose Save from the File menu, or the Save button. To save the file
under another name, use Save As, from the File menu.

Examining Differences 195

16

196 Sun Workshop TeamWare Users Guide—December 1996

16

197

Introduction to FreezePointing 17

This chapter discusses how FreezePointing can help you preserve snapshots of
your work, and the process of recreating those key points.

Changing Names
The current release of TeamWare uses new command names, so Table 17-1
summarizes the correspondences for you. Note that the old commands still
work, however this manual uses the new commands and GUI names.

How FreezePointing Works page 198

Starting FreezePointing page 200

Creating a Freezepoint File page 201

Recreating (Extracting) a Source Hierarchy page 202

Table 17-1 Matching New and Old TeamWare Commands

Old Command New Command Old Tool Name New GUI Name

codemgrtool twconfig, teamware CodeManager Configuring

vertool twversion VersionTool Versioning

filemerge twmerge FileMerge Merging

maketool twbuild MakeTool Building

freezepttool twfreeze FreezePoint Freezepointing

198 Sun Workshop TeamWare Users Guide—December 1996

17

During the software development process it is often useful to create
“freezepoints” of your work at key points. Those freezepoints serve as
snapshots of a project that enable you to later recreate the state of the project at
key development points.

One way to preserve the state of the project is to make a copy of the project
hierarchy using the tar or cpio utilities. This method is very effective, but it
requires a large amount of storage resources and time.

With FreezePointing, you preserve freezepoints quickly and simply, using a
small amount of storage resource.

You can use FreezePointing through two functionally equivalent user
interfaces. You can access the user interfaces with the following commands

• twfreeze —for the GUI
• freezept —for the CLI

Note – FreezePointing is a companion tool to the TeamWare product.
Therefore, FreezePointing assumes that you are creating freezepoints of
Configuring workspace hierarchies. You can also use FreezePointing to
preserve nonworkspace directories that contain SCCS files. If you specify a
directory that is not a workspace, a cautionary warning is issued.

This chapter refers primarily to the GUI. For information about the CLI, see the
freezept (1) man page. The GUI is documented online. You can access the
online help from any TeamWare GUI, by opening the pull-down menu from
the Help button, and clicking on Help Contents.

How FreezePointing Works
FreezePointing enables you to create freezepoint files from Configuring
workspaces.

Note – Nonworkspace directory hierarchies that contain SCCS history files can
also be preserved using FreezePointing. FreezePointing issues a warning if the
directory is not a workspace.

At a later time you can use the freezepoint files to recreate the directory
hierarchies contained in the workspaces.

Introduction to FreezePointing 199

17

Note – The recreated hierarchy will not contain the original SCCS history files;
only the g-files represented by the default deltas from the original hierarchy
are recreated. The default delta is the delta that would be

The freezepoint file that FreezePointing creates is a text file that lists the default
deltas in SCCS history files in the hierarchy. When you later recreate the
hierarchy, FreezePointing uses those entries as pointers back to the original
history files and to the delta that was the default at the time the freezepoint file
was created.

When you create a freezepoint file, you specify directories and files to
FreezePointing in the Directories and Files pane. FreezePointing recursively
descends the directory hierarchies and identifies the most recently checked-in
deltas in each SCCS history file. FreezePointing then creates a freezepoint file
that consists of a list of those files and unique numerical identifiers for each
delta.

You can later use FreezePointing to recreate the source hierarchy. You specify
the name of the freezepoint file, the path name of the directory hierarchy from
which the deltas are to be extracted (if different from the hierarchy from which
it was derived), and the directory where you want the source hierarchy
recreated.

Terminology

Freezepoint File

A freezepoint file is a list of the default deltas from the SCCS history files
contained in the workspace hierarchy being preserved. The freezepoint file also
contains the following information:

• The login name of the user who created the freezepoint
• The date and time that the file was created
• The path name of the workspace from which the list of deltas was created
• An optional user-supplied comment

See “Details about the Freezepoint File” on page 204 for more information.

200 Sun Workshop TeamWare Users Guide—December 1996

17

Extract

The extract operation consists of creating a new directory hierarchy based on
the information contained in the freezepoint file. The new hierarchy is
comprised of g-files defined by the default deltas in the original SCCS history
files; the history files themselves are not recreated. Deltas are extracted from SCCS
history files located in the original source workspace.

Source Workspace

The source workspace is the directory hierarchy that contains the SCCS history
files from which the freezepoint file is created. Usually, the source workspace is
also the directory hierarchy from which g-files are later extracted to recreate
the hierarchy.

Note – You can specify an alternate source directory at the time you perform
the extract operation.

Destination Directory

The destination directory is the top-level directory into which the files listed in
the freezepoint file are extracted. You specify the path name of this directory in
the Extract pane of the FreezePointing base window.

Starting FreezePointing
♦ To start the FreezePointing GUI, type the following:

After a moment, the FreezePointing GUI appears.

demo% twfreeze &
demo%

Introduction to FreezePointing 201

17

Creating a Freezepoint File
1. To create a Freezepoint file, use the Category menu to choose the Create

pane.
The pane below the Control area is used for both creating and extracting
freezepoints. You switch between the Create pane and the Extract pane by
choosing the appropriate item from the Category menu. The Create pane is
the default and is displayed when you start FreezePointing.

2. Enter the name of a freezepoint file.
• When FreezePointing initially appears, the FreezePointing File text field is

automatically set to contain the file freezepoint.out appended to the
path name of the directory from which freezepoint.

• Delete freezepoint.out and type the path name of your freezepoint file
in the FreezePointing File text field.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePointing is started.

3. Enter the name of the source workspace.
When you start FreezePointing, the Workspace text field is automatically set
to be the workspace you have specified through the CODEMGR_WS
environment variable. If the variable is not set, and the directory from
which FreezePointing is started is hierarchically within a workspace, the
Workspace field is initialized with the path name of that workspace.

4. In the Directories and Files text window, compose a list of directories
and/or files that you wish to preserve.
The list of directories and files that you create in the Directories and Files
text window are those that will be preserved in the freezepoint file.

You add directory and file entries to the Directories and Files window using
the two items in the File menu:
• Load Entire Directory
• Add File to List

The Load Entire Directory inserts the “./” characters into the Directories
and Files window; this indicates that the entire workspace hierarchy be
recursively preserved.

The Add Files to List item activates a point-and-click chooser window with
which you can search for and select files and directories to add to the list.

202 Sun Workshop TeamWare Users Guide—December 1996

17

• Click SELECT on a directory icon to select it, and then select the chooser’s
Add to List button to add the choice to the list.

• Double click SELECT on a directory icon to descend in the file system
hierarchy, double-click SELECT on a previous icon to ascend.
(Alternatively, you can select a directory icon and click on the Load
Directory button to hierarchically descend.)

Note – You can also type the path name of a directory or file into the chooser
Directory field and then click SELECT on the Add to List button.

5. Enter an optional comment in the Comments text pane.
The comment is stored in the freezepoint file for future reference.

6. Select the Create button to create the freezepoint file.
A counter on the bottom right corner of the base window footer displays the
progress of the freezepoint operation.

Viewing or Modifying a Freezepoint File
Freezepoint files are text files. You can view and edit their contents using
standard text editors.

Recreating (Extracting) a Source Hierarchy
To extract a new source hierarchy described by a freezepoint file, follow these
basic steps:

1. Use the Category menu to choose the Extract pane
The pane below the Control area is used for both creating and extracting
freezepoints. You switch between the Create pane and the Extract pane by
choosing the appropriate item from the Category menu. Choose the Extract
item to display the Extract pane.

2. Type the name of an existing freezepoint file.
Type the path name of your freezepoint file in the FreezePointing File text
field.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePointing is started.

Introduction to FreezePointing 203

17

3. Use the Extract From menu to choose how you will specify the source
workspace.
By default, FreezePointing extracts files from the source workspace path
name stored in the freezepoint file when it was created. (You can edit the
freezepoint file and change the path name of the source workspace.) By
default, FreezePointing uses this path name as the source workspace from
which to extract files. If you choose the Show Default menu item from the
Extract From menu, FreezePointing displays the path name of the source
workspace in the Workspace text field.

Note – Show Default displays the default source workspace in the Workspace
text field

If you wish to specify a source workspace hierarchy other than the one
contained in the freezepoint file, choose the You Specify item from the
Extract From menu and enter the path name of the alternate source
workspace in the Workspace text field.

4. Specify the Destination Directory.
Enter in the Destination Directory text field the path name of the directory
in which you want the new (extracted) hierarchy to be located.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePointing is started. The destination directory that
you specify must be new or empty.

5. Select the Extract button to begin the extraction.
Selecting the Extract button causes a series of sccs get operations to be
performed on the source files listed in the freezepoint file. The version of
each file extracted is the version specified by the SMID in the freezepoint
file. The extracted g-files are written to destination directory.

A counter on the bottom right corner of the base window footer displays the
progress of the extract operation.

204 Sun Workshop TeamWare Users Guide—December 1996

17

Notes about Using FreezePointing
• Use the Edit menu on the Create pane to delete selections from the

Directories and Files text window. Select and deselect files using the
SELECT mouse button and then use the Delete item from the Edit menu to
delete selected directories/files. Use the Select All, Deselect All, Delete All
items to edit large numbers of directories/files.

• Helpful status messages are displayed in the main window footer.

• If during an extraction, FreezePointing cannot locate a file that has been
renamed or deleted, the extraction is aborted and the offending entry is
named. You must edit the freezepoint file to remove the entry. Refer to the
freezepointfile (5) man page for information that enables you to
determine the new name of a renamed file.

• You can use the Tools menu to launch other TeamWare tools directly from
FreezePointing.

Details about the Freezepoint File
A freezepoint file contains:

• A list of source files

• A group of hex digits that identifies the most recent SCCS deltas found in
each file’s corresponding SCCS history file

• A group of hex digits that identifies the root delta in each file’s
corresponding SCCS history file

Figure 17-1 Three Entries From a Freezepoint File

The deltas are not identified as you might imagine, by their standard SCCS
delta ID (SID). Instead, a new means of identification called an SCCS
Mergeable ID (SMID) is used. Use of the SMID enables FreezePointing to work
properly with files in which SIDS have been renumbered as part of a
Configuring Bringover Update transaction. For more information see Section ,
“Why are SMIDs Necessary?”.

filemerge.1 (previously 1.5) 92/03/19 14:09:08 jon a6f4fe81 89b4632b 418e7950 5510740e cf9ab4e1 95627c33 2287acc3 b9e0877e
putback.1 (previously 1.40)92/06/02 16:36:16 george 5b791c60 2b827cfd f0cc9a73 46ac975 24d9b3ec f87d1975 9ea59e0d 72ce2a4d
resolve.1 (previously 1.19) 92/06/10 16:38:07 paul f21fa6e6 668bf818 e4964f36 240d825c f1d3f57 8cc4c31c 9f53029f 8aaf3db1

Introduction to FreezePointing 205

17

What is a SMID?

The use of SMIDs ensures that every delta is uniquely identifiable, even if its
SID is changed. A SMID is a number generated using the Xerox Secure Hash
Function. When you use FreezePointing to create a freezepoint file, it calculates
the SMID for both the current delta and the root delta in the SCCS history file.
Using both of these values, FreezePointing can identify a delta in a file even if
its SID has been changed.

Why are SMIDs Necessary?

Note – This section briefly discusses how Configuring merges SCCS history
files. For more information, see Chapter 11, “How the Configuring Program
Merges SCCS Files.

When Configuring encounters a file conflict during a Bringover Update
transaction (file is changed in both the parent and child workspaces), it merges
the new deltas from the parent workspace into the SCCS history file in the
child. When this merge occurs, the deltas that were created in the child are
moved to an SCCS branch off of the delta that both deltas have in common
(common ancestor).

When Configuring relocates the child deltas to a branch, it changes their SID. If
SIDS were used in freezepoint files to identify deltas, this relocation would
invalidate the information contained in the freezepoint file. For that reason,
SIDs cannot be used to identify deltas after conflicting SCCS histories have
been merged.

SMID/SID Translation
In release 2.0 of TeamWare, SMID/SID translation is available only through the
FreezePointing CLI.

The freezept command sid and smid subcommands enable you to translate
specified SIDs into SMIDs, and to translate specified SMIDs into SIDs. The
ability to make these translations is useful if you wish to write your own
scripts or programs to track deltas.

206 Sun Workshop TeamWare Users Guide—December 1996

17

Translating SIDs to SMIDs

Use the freezept smid command to translate SIDs to SMIDs. The syntax is:

freezept smid [-w workspace] [-r SID] [-a] file

• Use the -r option to specify the SID (in file file) for which you wish to
calculate a SMID.

• Use the -a option to calculate a SMID for all of the SIDS in file.

• For convenience you can use the -s option to specify a directory from which
file is relative.

Examples

Translating SMIDS to SIDS

Use the freezept sid command to translate SMIDs to SIDs. The syntax is:

freezept sid [-w workspace] [-m “SMID”] [-a] file

• Use the -m option to specify the SMID (in file file) for which you wish to
calculate a SID.

• Use the -a option to calculate a SID for all of the deltas in file.

example% freezept smid -r 1.38 module.c
SID 1.38 = SMID “f5b67794 705f0768 a89b1f4 588de104”

example% freezept smid -a bringover.1
SID 1.1 = SMID “b05b0a2f 1db5246e 1a466014 707e38f5”
SID 1.2 = SMID “d6a5c61f 5634f0ef 9847a080 d0d7b212”
SID 1.2 = SMID “e31acdd5 6c1232e2 9e81c287 1edb2f41”
SID 1.3 = SMID “c34c91b4 a818622a 2457356a 489b2728”
SID 1.4 = SMID “98c0fd8d 889563fb cf722c2b 6afc9636”
SID 1.5 = SMID “b1e24be3 752fec3e df2d2717 a9b3f1fa”
SID 1.6 = SMID “2b93d39 1ea2f6ba 9814320c bc609acb”
SID 1.7 = SMID “1db7d640 42b0f009 35c60d7b b230bd85”
SID 1.8 = SMID “906dfe9a ca7e2d6c a64da5be 4baef254”

Introduction to FreezePointing 207

17

• For convenience you can use the -s option to specify a directory from which
file is relative.

Note – Because the SMID contains white space, you must enclose it within
quotation marks.

Examples

example% freezept sid -m “64fdd0df de9d7dd de75812 23da96aa”
module.c
SMID “64fdd0df de9d7dd de75812 23da96aa” = SID 1.36

example% freezept sid -a bringover.1
SMID “b05b0a2f 1db5246e 1a466014 707e38f5” = SID 1.1
SMID “d6a5c61f 5634f0ef 9847a080 d0d7b212” = SID 1.2
SMID “e31acdd5 6c1232e2 9e81c287 1edb2f41” = SID 1.2
SMID “c34c91b4 a818622a 2457356a 489b2728” = SID 1.3
SMID “98c0fd8d 889563fb cf722c2b 6afc9636” = SID 1.4
SMID “b1e24be3 752fec3e df2d2717 a9b3f1fa” = SID 1.5
SMID “2b93d39 1ea2f6ba 9814320c bc609acb” = SID 1.6
SMID “1db7d640 42b0f009 35c60d7b b230bd85” = SID 1.7
SMID “906dfe9a ca7e2d6c a64da5be 4baef254” = SID 1.8
SMID “77481e8a 61542339 cc28f532 e5fc6389” = SID 1.9
SMID “cb97c9a6 d0342cf6 19b7b743 2436ca1c” = SID 1.10
SMID “46de4131 b95b9973 93958a07 b960074c” = SID 1.11

208 Sun Workshop TeamWare Users Guide—December 1996

17

209

Troubleshooting Versioning
and FreezePointing 18

This chapter describes some of the most common problems in Versioning and
FreezePointing. It indicates where to look for information on how to overcome
the problem. It is organized into the following sections:

Troubleshooting Checklist
If you are having problems using Versioning or FreezePointing, use the
following checklist to rule out some of the most common reasons for the
problem:

❏ Is the tool installed correctly?
If not, contact your system administrator. You can also read Sun Workshop
Installation and Licensing Guide.

❏ Is /opt/bin in your PATH?
If not, see Sun Workshop Installation and Licensing Guide for information on
how to add /opt/bin to your PATH.

❏ Is /usr/lang in your PATH?
If not, see Sun Workshop Installation and Licensing Guide for information on
how to add /usr/lang to your PATH.

Troubleshooting Checklist page 209

Reporting Problems page 210

Error Messages page 210

210 Sun Workshop TeamWare Users Guide—December 1996

18

❏ Is the HELPPATH environment variable set?
Versioning relies on finding the vertool.info file in or near the directory
that contains vertool . FreezePointing relies on finding the
freezepoint.info file in or near the directory that contains
freezepoint . On-line help is available for each control, window, pane,
and error message displayed on the screen. See “Error Messages” for a list
of the Versioning and FreezePointing error messages and instructions on
what to do next.

❏ Do you have enough swap space?
If you receive a message stating “Request for xxx bytes of memory failed,”
you have run out of swap space. Use the mkfile (8) and swapon (8)
commands to create more swap space or abort some existing processes
(windows) to free up swap space. To determine which processes occupy
significant swap space, use the ps uagx command and look in the SZ
column. To determine how much swap space you have, use the pstat -s
command.

❏ Does your window system have enough resources?
If Versioning or FreezePointing cannot activate a pop-up window, your
window system may be running out of resources. Contact your system
administrator for help.

Reporting Problems
If you have gone through the checklist and are still having problems, call your
local service office. Have the version number of the tool ready to give to the
dispatcher. To display the version number of any TeamWare component, type
toolname -V at the prompt. For example:

twversion -V

Error Messages
Versioning and FreezePointing display messages to provide you with
information or tell you about an error.

Troubleshooting Versioning and FreezePointing 211

18

 Display Problems
If you experience difficulties in color display in any of the services, you can
copy the pertinent part of the resource files in the app-defaults directory.
These files adjust color, fonts, mnemonics, and several other attributes for each
TeamWare component.

These files are under the directory in which you have TeamWare installed,
according to the language you are using. If you use CDE the files are in:
TW2.0/lib/locale/<lang>/app-defaults/CDE . The resource files are
listed according to component, preceded by X. For example:

...TW2.0/lib/locale/C/app-defaults/CDE/XCodeManager

If you use OpenWindows or any other non-CDE windowing system, the files
are in ...TW2.0/lib/locale/C/app-defaults/non-CDE .

To make changes to your display:

1. Look at the resource file you want to change, and copy the appropriate
lines.

For example, if you want to change the foreground color of the Configuring
window, copy the line:

XCodeManager*foreground: black

2. Append the pertinent lines to your own ~/.Xdefaults file.

 Change it, for example, to:

XCodeManager*foreground: green

3. Type xrdb < ~/.Xdefaults

4. Restart the application.

The window foreground color will be set.

212 Sun Workshop TeamWare Users Guide—December 1996

18

213

Building Programs in Sun
Workshop TeamWare 19

Sun WorkShop TeamWare provides you with the ability to run one build job at
a time or you can run several build jobs concurrently. This chapter shows you
how to quickly build a single application and how to fix build errors using the
Building window and the WorkShop editor of your choice.

This chapter is organized into the following sections:

Building a TeamWare Target
A TeamWare target differs from a make target. When you build a program in
TeamWare, you are actually building a TeamWare target. A TeamWare target is
an object made up of a :

• build directory
• build command
• makefile
• make target

Building a TeamWare Target page 213

Building With Default Values page 214

Building With NonDefault Values page 214

Modifying a TeamWare Target page 215

Fixing Build Errors page 215

214 Sun Workshop TeamWare Users Guide—December 1996

19

A make target is an object that is built from the rules contained in a particular
makefile.

Building With Default Values
The quickest way to build a program is to use the default values provided in
the Define New Target dialog box. All you need to supply is the build path.

1. From the TeamWare menu bar choose Building, then choose Build ➤

New Target to open the Define New Target dialog box.
The Define New Target dialog box contains the value Default in the
Makefile and Target text fields. If you do not specify a particular makefile or
make target, WorkShop looks for a makefile in the build directory named
makefile or Makefile and uses the first make target in that makefile. The
build command provided by default is dmake. It is set to run in distributed
mode so you can run multiple jobs at the same time on the local host. For
information on building in distributed mode, see “Running a Distributed
Build” in the online help or Chapter 20, “Using DistributedMake.”

2. Type the build path in the Directory text field.
You can also click the button to the right of the text field to open a directory
chooser. Choose a directory in the list and click OK to load it into the
Directory text field.

3. Click Build at the bottom of the dialog box and watch the build output in
the Build Output display pane in the Building window.
The Building window displays the build output when you click the Build
button.

Click on the Stop Build button in the Building window to stop the build
process.

Building With NonDefault Values
If you have a specific build command, a makefile with a unique name, or a
certain make target, specify it in the Define New Target dialog box.

1. Type the name of the directory you want to build in and click Apply to
apply the change.
You can also select another directory from the Set Build Directory dialog box
by clicking the button next to the Directory text field.

Building Programs in Sun Workshop TeamWare 215

19

2. Type the name of the makefile you want in the Makefile text field.
If you want to choose another makefile from the current build directory,
click on the button next to the Makefile text field. Choose a makefile from
the list in the Set Makefile dialog box and click OK to load it into the
Makefile text field.

3. Type the name of the make target you want in the Target text field.
You can also choose another make target in the current makefile by clicking
on the button next to the Target text field. Click OK in the Target Chooser
dialog box to load the make target into the text field.

4. Type the name of the build command you want in the Command text
field.

If the build command you specify is something other than make or dmake, you
can include any of its arguments in the Command text field.

Note – If the build command is not in your PATH, you might have to specify
the full command path.

5. Click Build in the dialog box to start a build with the settings you
supplied.

Modifying a TeamWare Target
To edit an existing TeamWare target, choose Build ➤ Edit Target and choose a
TeamWare target from the list. The Edit Target dialog box opens, displaying the
current settings for the build directory, makefile, make target, and build
command. Edit any of these fields or change options, macros, or environment
variables. Click Build to rebuild the TeamWare target with your new settings.
See “Editing a WorkShop Target” in the online help for detailed information.

Fixing Build Errors
The process of fixing build errors has improved due to the integration of the
text editor with the build process. When a build fails, the build errors are
displayed in the Build Output display of the Building window. Build errors
that have links to the source files containing the errors are highlighted and

216 Sun Workshop TeamWare Users Guide—December 1996

19

underscored. (In C programs, an additional glyph is included in the build error
message. Clicking on a glyph opens a pop-up window that defines the
associated error message.)

Each error gives the name of the file containing the error, the line number on
which the error occurs, and the error message.

Note – Only Sun compilers produce output that can be converted to hypertext
links. If the build command you use does not call Sun compilers, you might
lose the link facilities of the Building window.

Clicking on the underscored error immediately starts a text editor that displays
the source file containing the error. The source file is shown with the error line
highlighted and an error glyph appears to the left of the line.

The message area of the text editor displays the error message.

The following steps show how you can use the Building window and the text
editor to quickly fix build errors:

1. Click on a highlighted error in the Build Output display.
The editor window opens, displaying the source file containing the error.
You do not have to search for the line containing the error—the error line is
highlighted in the editor and the cursor is already positioned at the line. The
error message is repeated in the footer of the text editor.

2. In the text editor, make sure the source file can be edited.
From the vi editor, choose Version ➤ Checkout. From the XEmacs editor,
choose Tools ➤ VC ➤ Check out File file. From the GNU Emacs editor,
choose Tools ➤ Version Control ➤ Check Out.

3. Edit the source file containing the error.

4. In the Building window, click on the Next Error button in the tool bar to
go to the location of the next build error in the text editor.
As you click Next Error, notice how each successive error in the build
output is highlighted and how the corresponding source line in the text
editor is also highlighted.

5. Save your edits to the file.

6. Check the file back in.

Building Programs in Sun Workshop TeamWare 217

19

7. Click the Build button in the text editor’s tool bar to rebuild.
You can also build by clicking the Build button in the Building window’s
tool bar.

You can watch the Build Output display pane to follow the progress of the
build.

For detailed information on building in TeamWare, see the online help. You can
access the online help by choosing Help ➤ Building from the Building window
or by choosing Help ➤ Help Contents ➤ Editing and Building Your Source
from the main TeamWare Configuring window.

218 Sun Workshop TeamWare Users Guide—December 1996

19

219

Using DistributedMake 20

This chapter describes the way DistributedMake (DMake) distributes builds
over several hosts to build programs concurrently over a number of
workstations or multiple CPUs.

Basic Concept of Distributed Make
DistributedMake (DMake) allows you to concurrently distribute the process of
building large projects, consisting of many programs, over a number of
workstations and, in the case of multiprocessor systems, over multiple CPUs.
DMake parses your makefiles and:

• Determines which targets can be built concurrently

• Distributes the build of those targets over a number of hosts designated by
you

DMake is a superset of the make utility.

To understand DMake, you should know about the following:

• Configuration files
• Runtime

What You Should Know About DMake Before You Use It page 223

DMake’s Impact on Makefiles page 223

How to Use DMake page 229

Controlling DistributedMake Jobs page 230

220 Sun Workshop TeamWare Users Guide—December 1996

20

• Build server
• The DMake host
• The build server

Configuration Files

DMake consults two files to determine to which build servers jobs are
distributed and how many jobs can be distributed to each.

Runtime Configuration File

DMake searches for a runtime configuration file on the DMake host to know
where to distribute jobs. Generally, this file is in your home directory on the
DMake host and is named .dmakerc . It consists of a list of build servers and
the number of jobs to be distributed to each build server. See “The DMake
Host” on page 220 for more information.

Build Server Configuration File

The /etc/opt/SPROdmake/dmake.conf file is in the file system of build
servers. It is used to specify the maximum total number of DMake jobs that can
be distributed to it by all DMake users. See “The Build Server” on page 223 for
more information.

The DMake Host

DMake searches for a runtime configuration file to know where to distribute
jobs. Generally, this file must be in your home directory on the DMake host
and is named .dmakerc . DMake searches for the runtime configuration file in
these locations and in the following order:

1. The path name you specify on the command line using the -c option

2. The path name you specify using the DMAKE_RCFILE makefile macro

3. The path name you specify using the DMAKE_RCFILE environment
variable

4. $(HOME)/.dmakerc

Using DistributedMake 221

20

If a runtime configuration file is not found, DMake distributes two jobs to the
DMake host. You edit the runtime configuration file so that it consists of a list
of build servers and the number of jobs you want distributed to each build
server. The following is an example of a .dmakerc file:

• The entries: falcon, hawk, eagle, heron, and avocet are listed build servers.

• You can specify the number of jobs you want distributed to each build
server. The default number of jobs is two.

• Any line that begins with the “#” character is interpreted as a comment.

Note – This list of build servers includes falcon which is also the DMake host.
The DMake host can also be specified as a build server. If you do not include
it in the runtime configuration file, no DMake jobs are distributed to it.

You can also construct groups of build servers in the runtime configuration file.
This provides you with the flexibility of easily switching between different
groups of build servers as circumstances warrant. For instance you may define
a different group of build servers for builds under different operating systems,
or on groups of build servers that have special software installed on them.

My machine. This entry causes dmake to distribute to it.
falcon { jobs = 1 }
hawk
eagle { jobs = 3 }
Manager’s machine. She’s usually at meetings
heron { jobs = 4 }
avocet

222 Sun Workshop TeamWare Users Guide—December 1996

20

The following is an example of a runtime configuration file that contains
groups of build servers:

• Formal groups are specified by the “group” directive and lists of their
members are delimited by braces ({}).

• Build servers that are members of groups are specified by the optional
“host” directive.

• Groups can be members of other groups.

• Individual build servers can be listed in runtime configuration files that also
contain groups of build servers; in this case DMake treats these build
servers as members of the unnamed group.

In order of precedence, DMake distributes jobs to:

earth { jobs = 2 }
mars { jobs = 3 }

group lab1 {
host falcon{ jobs = 3 }
host hawk
host eagle { jobs = 3 }

}

group lab2 {
host heron
host avocet{ jobs = 3 }
host stilt { jobs = 2 }

}

group labs {
group lab1
group lab2

}

group sunos5.x {
group labs
host jupiter
host venus{ jobs = 2 }
host pluto { jobs = 3 }

}

Using DistributedMake 223

20

1. The formal group specified on the command-line as an argument to the -g
option

2. The formal group specified by the DMAKE_GROUP makefile macro

3. The formal group specified by the DMAKE_GROUP environment variable

4. The first group specified in the runtime configuration file.

The Build Server

The /etc/opt/SPROdmake/dmake.conf file is in the file system of build
servers. Use this file to limit the maximum total number of DMake jobs (from
all users) that can run concurrently on a build server. The following is an
example of an /etc/opt/SPROdmake.conf file . This file sets the
maximum number of DMake jobs permitted to run on a build server (from all
DMake users) to be eight.

Note – If the /etc/opt/SPROdmake.conf file does not exist on a build
server, no DMake jobs will be allowed to run on that server.

What You Should Know About DMake Before You Use It
To use DMake, you use the executable file (dmake) in place of the standard
make utility. You should understand the Solaris make utility before you use
DMake. If you need to read more about the make utility see the Programming
Utilities Guide in the Solaris 2.5 Software Developer AnswerBook documentation
set. If you use the make utility, the transition to DMake require little if any
alteration.

DMake’s Impact on Makefiles

The methods and examples shown in this section present the kinds of
problems that lend themselves to solution with DMake. This section does not
suggest that any one approach or example is the best. Compromises between
clarity and functionality were made in many of the examples.

jobs: 8

224 Sun Workshop TeamWare Users Guide—December 1996

20

As procedures become more complicated, so do the makefiles that implement
them. You must know which approach will yield a reasonable makefile that
works. The examples in this section illustrate common code-development
predicaments and some straightforward methods to simplify them using
DMake.

Using Makefile Templates

If you use a makefile template from the outset of your project, custom
makefiles that evolve from the makefile templates will be:

• More familiar
• Easier to understand
• Easier to integrate
• Easier to maintain
• Easier to reuse

The less time you spend editing makefiles, the more time you have to develop
your program or project.

Building Targets Concurrently

Large software projects typically consist of multiple independent modules that
can be built concurrently. DMake supports concurrent processing of targets on
a multiple machines over a network. This concurrency can markedly reduce
the time required to build a large project.

When given a target to build, DMake checks the dependencies associated with
that target, and builds those that are out of date. Building those dependencies
may, in turn, entail building some of their dependencies. When distributing
jobs, DMake starts every target that it can. As these targets complete, DMake
starts other targets. Nested invocations of DMake are not run concurrently by
default, but this can be changed (see “Restricting Parallelism” on page 228 for
more information).

Since DMake builds multiple targets concurrently, the output of each build is
produced simultaneously. To avoid intermixing the output of various
commands, DMake collects output from each build separately. DMake displays
the commands before they are executed. If an executed command generates

Using DistributedMake 225

20

any output, warnings, or errors, DMake displays the entire output for that
command. Since commands started later may finish earlier, this output may be
displayed in an unexpected order.

Limitations on Makefiles

Concurrent building of multiple targets places some restrictions on makefiles.
Makefiles that depend on the implicit ordering of dependencies may fail when
built concurrently. Targets in makefiles that modify the same files may fail if
those files are modified concurrently by two different targets. Some examples
of possible problems are discussed in this section.

Dependency Lists
When building targets concurrently, it is important that dependency lists be
accurate. For example, if two executables use the same object file but only one
specifies the dependency, then the build may cause errors when done
concurrently. For example, consider the following makefile fragment:

When built serially, the target aux.o is built as a dependent of prog1 and is
up-to-date for the build of prog2 . If built in parallel, the link of prog2 may
begin before aux.o is built, and is therefore incorrect. The .KEEP_STATE
feature of make detects some dependencies, but not the one shown above.

Explicit Ordering of Dependency Lists
Other examples of implicit ordering dependencies are more difficult to fix. For
example, if all of the headers for a system must be constructed before anything
else is built, then everything must be dependent on this construction. This
causes the makefile to be more complex and increases the potential for error
when new targets are added to the makefile. The user can specify the special
target .WAIT in a makefile to indicate this implicit ordering of dependents.
When DMake encounters the .WAIT target in a dependency list, it finishes
processing all prior dependents before proceeding with the following

all: prog1 prog2
prog1: prog1.o aux.o

$(LINK.c) prog1.o aux.o -o prog1
prog2: prog2.o

$(LINK.c) prog2.o aux.o -o prog2

226 Sun Workshop TeamWare Users Guide—December 1996

20

dependents. More than one .WAIT target can be used in a dependency list.
The following example shows how to use .WAIT to indicate that the headers
must be constructed before anything else.

You can add an empty rule for the .WAIT target to the makefile so that the
makefile is backward-compatible.

Concurrent File Modification
You must make sure that targets built concurrently do not attempt to modify
the same files at the same time. This can happen in a variety of ways. If a new
suffix rule is defined that must use a temporary file, the temporary file name
must be different for each target. You can accomplish this by using the
dynamic macros $@ or $* . For example, a .c.o rule which performs some
modification of the .c file before compiling it might be defined as:

Concurrent Library Update
Another potential concurrency problem is the default rule for creating libraries
that also modifies a fixed file, that is, the library. The inappropriate .c.a rule
causes DMake to build each object file and then archive that object file. When
DMake archives two object files in parallel, the concurrent updates will corrupt
the archive file.

all: hdrs .WAIT libs functions

.c.o:
awk -f modify.awk $*.c > $*.mod.c
$(COMPILE.c) $*.mod.c -o $*.o
$(RM) $*.mod.c

.c.a:
$(COMPILE.c) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Using DistributedMake 227

20

A better method is to build each object file and then archive all the object files
after completion of the builds. An appropriate suffix rule and the
corresponding library rule are:

Multiple Targets
Another form of concurrent file update occurs when the same rule is defined
for multiple targets. An example is a yacc (1) program that builds both a
program and a header for use with lex (1). When a rule builds several target
files, it is important to specify them as a group using the + notation. This is
especially so in the case of a parallel build.

This rule is actually equivalent to the two rules:

The serial version of make builds the first rule to produce y.tab.c and then
determines that y.tab.h is up-to-date and need not be built. When building
in parallel, DMake checks y.tab.h before yacc has finished building
y.tab.c and notices that it does need to be built, it then starts another yacc in
parallel with the first one. Since both yacc invocations are writing to the same
files (y.tab.c and y.tab.h), these files are apt to be corrupted and incorrect.
The correct rule uses the + construct to indicate that both targets are built
simultaneously by the same rule. For example:

.c.a:
$(COMPILE.c) -o $% $<

lib.a: lib.a($(OBJECTS))
$(AR) $(ARFLAGS) $(OBJECTS)
$(RM) $(OBJECTS)

y.tab.c y.tab.h: parser.y
$(YACC.y) parser.y

y.tab.c: parser.y
$(YACC.y) parser.y

y.tab.h: parser.y
$(YACC.y) parser.y

y.tab.c + y.tab.h: parser.y
$(YACC.y) parser.y

228 Sun Workshop TeamWare Users Guide—December 1996

20

Restricting Parallelism

Sometimes file collisions cannot be avoided in a makefile. An example is
xstr (1), which extracts strings from a C program to implement shared strings.
The xstr command writes the modified C program to the fixed file x.c and
appends the strings to the fixed file strings . Since xstr must be run over
each C file, the following new .c.o rule is commonly defined:

DMake cannot concurrently build targets using this rule since the build of each
target writes to the same x.c and strings files, nor is it possible to change
the files used. You can use the special target .NO_PARALLEL: to tell DMake
not to build these targets in concurrently. For example, if the objects being
built using the .c.o rule were defined by the OBJECTS macro, the following
entry would force DMake to build those targets serially:

If most of the objects must be built serially, it is easier and safer to force all
objects to default to serial processing by including the .NO_PARALLEL: target
without any dependents. Any targets that can be built in parallel can be listed
as dependencies of the .PARALLEL: target:

Nested Invocations of DistributedMake
When DMake encounters a target that invokes another DMake command, it
builds that target serially, rather than concurrently. This prevents problems
where two different DMake invocations attempt to build the same targets in
the same directory. Such a problem might occur when two different programs
are built concurrently, and each must access the same library. The only way for
each DMake invocation to be sure that the library is up-to-date is for each to
invoke DMake recursively to build that library. DMake only recognizes a
nested invocation when the $(MAKE) macro is used in the command line.

.c.o:
$(CC) $(CPPFLAGS) -E $*.c | xstr -c -
$(CC) $(CFLAGS) $(TARGET_ARCH) -c x.c
mv x.o $*.o

.NO_PARALLEL: $(OBJECTS)

.NO_PARALLEL:

.PARALLEL: $(LIB_OBJECT)

Using DistributedMake 229

20

If you nest commands that you know will not collide, you can force them to be
done in parallel by using the .PARALLEL: construct.

When a makefile contains many nested commands that run concurrently, the
load-balancing algorithm may force too many builds to be assigned to the local
machine. This may cause high loads and possibly other problems, such as
running out of swap space. If such problems occur, allow the nested
commands to run serially.

How to Use DMake
You execute dmake on a DMake host and distribute jobs to build servers. You can
also distribute jobs to the DMake host, in which case it is also considered to be
a build server. DMake distributes jobs based on makefile targets that DMake
determines (based on your makefiles) can be built concurrently. You can use
any machine as a build server that meets the following requirements:

• From the DMake host (the machine you are using) you must be able to use
rsh , without being prompted for a password, to remotely execute
commands on the build server. See man rsh (1) or the system AnswerBook
for more information about the rsh command. For example:

• The bin directory in which the DMake software is installed must be
accessible from the build server. See the share (1M) and mount (1M) man
pages or the system AnswerBook for more information.

• The bin directory in which the DMake software is installed must be in your
execution path when you rsh to the build server. Be sure this directory is
added to the PATH variable in your .cshrc file (or equivalent), not in your
.login file. You can verify this as follows:

• The source hierarchy you are building must be:
• accessible from the build server

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

230 Sun Workshop TeamWare Users Guide—December 1996

20

• mounted under the same name

From the DMake host you can control which build servers are used and how
many DMake jobs are allotted to each build server. The number of DMake jobs
that can run on a given build server can also be limited on that server.

Notes
• If you specify the -m option with the “parallel” argument, or set the

DMAKE_MODE variable or macro to the value “parallel,” DMake does not
scan your runtime configuration file. Therefore, you must specify the
number of jobs using the -j option or the DMAKE_MAX_JOBS
variable/macro. If you do not specify a value this way, a default of two jobs
is used.

• If you modify the maximum number of jobs using the -j option, or the
DMAKE_MAX_JOBS variable/macro when using DMake in distributed
mode (DMake default, or specified either by option, variable or macro), the
value you specify overrides the values listed in the runtime configuration
file. The value you specify is used as the total number of jobs that can be
distributed to all build servers.

Controlling DistributedMake Jobs

The distribution of DMake jobs is controlled in two ways:

1. A DMake user on a DMake host can specify the machines they want to use
as build servers and the number of jobs they want to distribute to each build
server.

2. The “owner” on a build server can control the maximum total number of
DMake jobs that can be distributed to that build server. The owner is a user
that can alter the /etc/opt/SPROdmake/dmake.conf file.

Note – If you access DMake from the GUI (Building) use the online help to
know how to specify your build servers and jobs. If you access DMake from
the CLI see the DMake man page (dmake.1).

Using DistributedMake 231

20

Getting Help on the GUI or the CLI

DMake is fully implemented in both the GUI and CLI. To use DMake from the
GUI, see the Sun WorkShop TeamWare online help.

To Access the Online Help

1. Open any Sun WorkShop TeamWare GUI from the Sun WorkShop.

2. Or, open any Sun WorkShop TeamWare from the command line. For
example, to open the Configuring GUI, enter the following:

3. Open the pull-down menu from the Help button.

4. Click on Help Contents.

To Access Help for the CLI

♦ To access the manual page for information on how to use DMake from the
CLI, enter the following. The manual page gives information on all
command-line options, variables, and macros necessary to use DMake.

demo% twconfig &

demo% man dmake.1

232 Sun Workshop TeamWare Users Guide—December 1996

20

233

Dealing With Release Matters 21

This chapter explores the post-build process and indicates where further help
can be found in handling release and integration matters.

Before you begin, make sure you have read Chapter 5, “Starting a Project”
—“Product Release Considerations” on page 47

Integrating Your Changes
The online Help gives a brief overview of this subject. For more background
information on how a specific environment handles the question, refer to: Sun
WorkShop TeamWare: Solutions Guide.

For quesions about resolving differences between files see Chapter 9,
“Resolving Conflicts.” You can reverse a bringover or putback with Undo
when conflicts occur, and review a file history to determine at which point any
degradation in functionality may have occurred.

Performing Master Builds
A Master Build is created subsequent to all contributing developers having
putback clean files into the common integration workspace.

Performing Master Builds page 233

Performing Releases page 234

234 Sun Workshop TeamWare Users Guide—December 1996

21

Establishing Nightly Builds

If you are the build master, the person responsible for running nightly and
master builds of the source, you determine if you will run your builds in the
main integration area or in a child workspace. Refer to Sun WorkShop
TeamWare: Solutions Guide for a description of how a specific environment
handled these questions.

Performing Releases
The release process demands control of source code and orderly hierarchical
cutbacks. You can organize a release to follow the “train” process as explained
in the next section.

Organizing a Release

When a series of overlapping software releases is needed, the “train” theory
can organize the projects. In principal, the release train leaves the station at
designated intervals, with whatever features are ready at the time.

Developers working in their private workspaces put back code to the
integration workspace, never to the train directly. Gate-keepers ensure the
putbacks to the train from the integration area are without error. Versioning
helps keep control of the changes as the release proceeds.

For an example of how the release process works in a specific environment see
Sun WorkShop TeamWare: Solutions Guide.

How the Release Process Works

When you reach a milestone in your source code development project, you can
use FreezePointing to create a snapshot, or freezepoint of your project. You
can later use FreezePointing to recreate the source hierarchy. Refer to
Chapter 17, “Introduction to FreezePointing” for a full explanation of how
FreezePointing can help in the release cycle.

235

Glossary

Access control
The Configuring facility by which users can control access to workspaces by
Configuring commands.

Branch (SCCS)
A delta or series of deltas that are placed off of the main line of deltas in an
SCCS history file.

Bringover Create
The transaction used to copy groups of files from a parent workspace to a
nonexistent child workspace. The new child workspace is created as a result of
the transaction. All Configuring transfer transactions are performed from the
perspective of the child workspace; hence the Bringover Create transaction
“brings over” files to the child from the parent workspace. See also Bringover
Update, Workspace and Putback.

Bringover Update
The transaction used to update an existing child workspace with respect to
files contained in its parent workspace. All Configuring transfer transactions
are performed from the perspective of the child workspace; the Bringover
Update transaction “brings over” files to the child from the parent workspace.
See also Bringover Create, Workspace, and Putback.

236 Sun Workshop TeamWare Users Guide—December 1996

Child workspace
A workspace that has a parent workspace listed in its
Codemgr_wsdata/parents file. Development work is typically done in child
workspaces and put back to parent workspaces after it has been tested. The
Configuring transfer transactions are viewed from the child workspace
perspective, and all conflicts are resolved in the child workspace.

Codemgr_wsdata directory
Every TeamWare workspace contains a “metadata” directory in its root
directory named Codemgr_wsdata . Configuring stores data about the
workspace in Codemgr_wsdata . The presence of this directory is the sole
factor that defines it as a TeamWare workspace (as opposed to a normal
directory). Configuring commands use the presence or absence of this
directory to determine whether a directory is a workspace. All data stored in
the Codemgr_wsdata directory is contained in flat ASCII text files that can be
edited by users. See Section , “The Workspace Metadata Directory,” on page 62
for more information.

Conflict
The condition that exists when a file has changed in both the child and parent
workspace. Conflicts are identified by the Bringover Update transaction and
are resolved by using the Resolve transaction.

Copy-Modify-Merge
The concurrent development model upon which Configuring is based. Using
this model, multiple developers concurrently copy sources from a common
area, modify the source in isolation, and then merge those changes with changes
made by other developers.

Create
Used in Configuring transaction output. Files are said to be created if they
exist in the source workspace and not in the destination workspace, and are
copied into the destination workspace as part of a Bringover or Putback
transaction.

Default line of work
The branch in an SCCS history file upon which the next delta will be added.

def.dir.flp
The default FLP shipped with Configuring is def.dir.flp ; this FLP
recursively descends directory hierarchies and lists all files for which SCCS
history files exist. See FLP.

Glossary 237

Delta
The set of differences between two versions of a file checked into SCCS. When
you check in a file, SCCS records only the line-by-line differences between the
text you check in and the previous version of the file. This set of differences is
known as a delta. The file version that you initially checked out was
constructed from a set of accumulated deltas. The terms delta and version are
often used synonymously; however, their meanings are not the same. It is
possible to retrieve a version that omits selected deltas. See Version.

Merging
The TeamWare utility used to merge deltas during Resolve transactions. See
Chapter 9, “Resolving Conflicts,” and the section on Merging.

FLP
An FLP or FIle List Program is a program or script that generates a list of files to
stdout that Configuring then processes during Bringover and Putback
transactions. See def.dir.flp.

FreezePointing
The TeamWare utility used to make snapshots of workspaces (or portions of
them) at important junctures or “freezepoints.”

g-file (SCCS)
The working copy of a file retrieved from an SCCS history file by the sccs-
get command.

History Files
When you initially put a file under SCCS control, a history file is created for
the new SCCS file. The initial version of the history file uses the complete text
of the source file. The initial history file is the file that further deltas are
compared to. Owing to its prefix (s.), the history file is often referred to as the
s. file (s-dot-file).

Integration workspace
A workspace to which multiple developers put back (merge) their work.

Lock
To assure consistency, the Configuring file transfer transactions Bringover and
Putback lock workspaces while they are working in them. Locks are recorded
in the Codemgr_wsdata/lock file in each workspace; the Configuring
commands consult that file before acting in a workspace. See read-lock,
write-lock.

238 Sun Workshop TeamWare Users Guide—December 1996

Merge
To produce a single version of a file from two conflicting files (deltas). Usually
accomplished with the assistance of the Merging program.

Notification
A Configuring facility that mails notice of events, such as changes to files or
directories, to users.

Parent workspace
A workspace that has a child workspace(s) listed in its
Codemgr_wsdata/children file. Parent workspaces are typically used as
integration areas, since development, testing, and conflict resolution occur in
child workspaces.

ParallelMake
The program distributed as part of TeamWare that enables program builds to
be parallelized over multiple processes and CPUs. See the section on
ParallelMake.

Putback
The transaction used to update a parent workspace with respect to files
contained in its child workspace. All Configuring transfer transactions are
performed from the perspective of the child workspace; the Putback
transaction “puts back” files to the parent from the child workspace. See also
Bringover Create, Bringover Update, and Workspace.

Read-lock
A lock that is obtained by a Configuring command while it examines the
contents of a workspace. A read-lock assures that the workspace does not
change while the command is examining files in a workspace. Read-locks may
be obtained concurrently by a number of commands; no Configuring
command may write to the workspace while a read-lock is in force. See lock,
write-lock.

Reparent
To change the parent of a child workspace.

Resolve
To produce a new delta of a file from two conflicting deltas. See merged,
conflict.

Glossary 239

Root directory
The top-level directory of a Configuring workspace. This directory’s path
name is the name by which the workspace is referred.

SCCS Delta ID (SID)
A SID is the number used to represent a specific delta. This is a two-part
number, with the parts separated by a dot (.). The SID of the initial delta is 1.1
by default. The first part of the SID is referred to as the release number, and the
second, the level number. When you check in a delta, the level number is
incremented automatically.

SCCS history file
The file that contains a given file’s delta history; also referred to as an
“s-dot-file.” All SCCS history files must be located in a directory named SCCS,
which is located in the same directory as the g-file. See g-file.

SID
SCCS delta ID—The number used to represent a specific SCCS delta.

Undo
To return a workspace to the state it was in before the most recent Bringover or
Putback transaction, thereby “undoing” the action of the transaction.

Update
Files are said to be updated during a Bringover or Putback transaction if they
exist in both the source workspace and in the destination workspace, and have
changed in the source workspace. The SCCS history file in the destination
workspace is updated with new deltas from the source workspace.

Version
When you check in a file, SCCS records only the line-by-line differences
between the text you check in and the previous version of the file. This set of
differences is known as a delta. The file version that you initially checked out
was constructed from a set of accumulated deltas. The terms delta and version
are often used synonymously; however, their meanings are not the same. It is
possible to retrieve a version that omits selected deltas. See Delta.

Versioning
The TeamWare program that provides a graphical interface to SCCS. See the
section on Versioning.

240 Sun Workshop TeamWare Users Guide—December 1996

Workspace
A workspace is a specially designated (but standard) directory and its
subdirectory hierarchy. Usually each developer on a project works in their
own isolated workspace concurrently with other developers programming in
other workspaces. Configuring provides utilities to “intelligently” copy files
from workspace to workspace.

Workspace hierarchy
A hierarchy of parent and child workspaces in which programmers and release
engineers can develop, test, share, and release software products.

Write-lock
A lock that is obtained by a Configuring command that changes data in a
workspace. Only one write-lock may be obtained for a workspace at any time.
When a write-lock is in force, only the Configuring command that owns the
lock may write to the workspace; other commands cannot obtain read-locks
from the workspace. See lock, read-lock.

241

Index

Symbols
.NO_PARALLEL: special target, 228
.PARALLEL: special target, 228
.WAIT special target, 225
~/.codemgr_resrc , 57
~/.codemgrtoolrc , 58

A
access control, workspace, 71
access_control file, 62, 71
adjusting color, 211
Ancestor File, 183
Ancestor file, 191
ancestor file, 35

loading at startup, 187
archiving libraries, 226
args file, 62, 87
Auto Advance, 189
Auto Bringover option, 102
automatic merging, 190
automerging algorithm, 38

B
backup directory, 62, 106
branch delta, 49

branches, 49
branching, SCCS, 136
Bringover Create transaction, 64, 90 to 145

effect of checked out files, 92
file system accessibility, 93
Force Conflicts option, 92, 96
path name specification, 93
Preview option, 91, 96, 101
Quiet option, 92, 96, 102
search path, 94
Verbose option, 91, 96, 101
workspace locks, 93

Bringover Transaction, 89 to 99
Bringover Update transaction, 94 to 99

action summary table, 99
conflict detection during, 116
effect of checked-out files, 96
file system accessibility, 97
path names, 97
workspace locks, 98

Bringover/Putback transaction
introduction, 27

Build button, 217
building with default values, 214
building with nondefault values, 214

242 Sun Workshop TeamWare Users Guide—December 1996

C
checked-out files, 96, 102
children file, 62
chooser, 88
CLI, command-line interface

umbrella command, 52
CODEMGR_WS variable, 82
Codemgr_wsdata , 25, 62

access_control file, 62
args file, 62, 87
backup directory, 62, 106
children file, 62
history file, 63
locks file, 63
nametable file, 63
notification file, 63, 75
parent file, 63

CODEMGR_WSPATH variable, 82
color display, to adjust, 211
command-line interface

umbrella command, 52
command-line options, 184
Commands button

checking in a new file, 176
checking in files, 175
checking out files, 175
displaying the differences between

deltas, 177
editing checked out files, 176
unchecking out a file, 177

comment
Putback transaction, 102

common ancestor delta, 117
concurrent file modification, 226
Configuring, 165

base window, 55
Chooser, 88
control area, 57
customization, 57
menus, 57
moving an existing project, 123
properties, 57
starting execution, 53

transaction model, 83
Workspace Graph pane, 55

conflict
detection during Bringover, 116
merging files in conflict, 133

copy-modify-merge
example, 18
model, 16

creating a workspace, 64
Current difference

defined, 36
current difference (Merging), 120
Current Working Directory, 183

D
def.dir.flp , 86
default build values, 214
default list

loading, 87
saving, 87

defaults files, 57
~/.codemgr_resrc , 57
~/.codemgrtoolrc , 58

Define New Target dialog box, 214
Delete, 64

Codemgr_wsdata Directory only, 65
Sources and Codemgr_wsdata

Directory, 65
delta, 237, 239
delta ID, 239
dependency lists, 225

explicit ordering, 225
implicit ordering, 225

descendant, 35
Descendant file, 192
Difference

current, 36
defined, 36
next, 36
previous, 36
remaining, 37
resolved, 36

Index 243

resolving, 189
difference (Merging)

current, 120
defined, 120
next, 120
previous, 120
resolved, 120

distributed make, explanation of, 219
Dmake, basic concept, 219
double-click action

Workspace Graph pane, 57

E
editing WorkShop targets, 215
environment variables, 81
example, 190
examples

Bringover/Putback/Resolve
cycle, 143 to 147

merging SCCS history files, 134
reparenting, 68

F
file

collision, 228
concurrent modification, 226
loading, 182
loading from list, 187
loading three files at startup, 187
loading two files at startup, 186

file chooser, 88
File List pane

changing contents of, 87
constructing directory and file

lists, 86
selecting files, 87

File List Program, see FLP
file lists

initial state, 86
transactions, 86

File menu, 57
files

merging, 133
relationships between files in parent

and child workspaces, 27 to
??

specifying for transactions, 85
fixing build errors, 215
FLP, 86

default (def.dir.flp), 86
fonts, changing, 211
Force Conflicts option, 92, 96
FreezePointing

creating a freezepoint file, 201
extract a source directory, 202

FreezePointing terms, 199
extract, 200
freezepoint file, 199

G
glyphs, meaning of, 37, 193
graphical user interface (GUI),

overview, 53
grouping files

H
HELPPATH environment variable, 210
hierarchy, workspace, ?? to 48, 124 to 129
history file, 237
history file, 63, 78

I
icons

drag and drop, 56

L
Left File, 183
library update, concurrent, 226
limitations on makefiles, 225
list file, 187
Load

244 Sun Workshop TeamWare Users Guide—December 1996

workspaces into Workspace Graph
pane, 55

Load button, 183
loading

three files at startup, 187
two files at startup, 186

loading files, 182
locking workspaces, 80
locks

removing workspace locks, 81
viewing workspace locks (GUI), 81

locks file, 63

M
macro

dynamic, 226
makefiles, limitations, 225
manual pages, SunOS, xviii
matriarch, 191
menu buttons

File, 57
menus

Configuring, 57
merging files

not in conflict, 132
Merging program, 119 to 121
merging SCCS history files, 32

example, 134
in conflict, 133

Merging window, 37
merging, starting, 192
metadata directory, 25
minus sign, 38
mkfile command, 210
moving to the next build error, 216
multiple targets, 227

N
name fields, workspace, 55
nametable file, 63
Next difference

defined, 36
next difference (Merging), 120
Next Error button, 216
nodes, 49
notification, 75
notification file, 63

O
Online Help, 53
Output File, 183
output file, 194
output, transaction, 85

P
parallelism

restricting, 228
Parent, 67
parent file, 63
parent/child introduction, 22 to 25
plus sign, 38
Preview option, 91, 96, 101
Previous difference

defined, 36
previous difference (Merging), 120
project

moving an existing project, 41, 123
Properties window, 57
Props button

changing double click action, 178
changing file list display, 177
changing history graph display, 179
changing history information

display, 179
defining an editor, 178

Putback, 104
Putback transaction, 99 to 104

access control, 104
action summary table, 104
Auto Bringover option, 102
comment, 102
effect of checked-out files, 102

Index 245

file system accessibility, 103
path names, 103
workspace locks, 103

Putback/Bringover transactions,
introduction, 27

Q
Quiet option, 92, 96, 102

R
Remaining difference

defined, 37
Rename, 65
reparenting a workspace, 25, 66 to 70

example, 68
Resolve transaction, 118

introduction, 33
merging SCCS history files, 137
preparing files for conflict

resolution, 117
Resolved difference

defined, 36
resolving differences, 189
restricting parallelism, 228
restrictions on makefiles, 225
Right File, 183

S
s.file, 237
Save As, 188
SCCS, xiv, 48

branches, 49
delta, 237, 239
delta ID, 239
history file, 237
nodes, 49
version, 237, 239

SCCS history files, 19, 26, 85, 100, 131
branching, 136
common ancestor delta, 117
merging, 32, 131

resolving, 117
s-dot-file, 237
selecting files, transactions, 87
Set Default button, 57
SID, 239
Source Code Control System, xiv, 48
specifying a build command, 214
specifying a build directory, 214
specifying a make target, 214
specifying a makefile, 214
spot help, see Online Help
starting a project

default FLP, 44, 124
SCCS file location, 123

starting Merging, 192
from Sun WorkShop, 182
from Sun WorkShop TeamWare, 182
from the command line, 184

Sun WorkShop, 182
Sun WorkShop TeamWare window, 182
swap space, 210

T
targets

.NO_PARALLEL: , 228

.PARALLEL: , 228

.WAIT , 225
multiple, 227

TeamWare
moving an existing project, 41

Tools menu, 204
transaction model, 83
Transaction Output window, 85
transactions

file lists, 86
file specification, 85

tutorial, 190
twconfig , 53
twmerge command, 184

246 Sun Workshop TeamWare Users Guide—December 1996

U
Undo transaction, 105 to 108

implementation, 106
workspace locks, 106

unlocking workspaces, 80

V
variables, environment, 81

CODEMGR_WS, 82
CODEMGR_WSPATH, 82

Verbose option, 91, 96, 101
version, 237, 239
version number, displaying, 210
Versioning, 49
vertical bar, 37, 38
viewing the source of a build error, 216

W
window

Merging at startup, 37
showing three input files loaded, 38
showing two input files loaded, 37
Sun WorkShop TeamWare, 182

workspace
access control, 71, 94, 98
command history log, 78
create, 64
create using Bringover Create, 64
delete, 64
event notification, 75
hierarchies, 23
hierarchy configuration, 48, 124, 129
locking, 80
metadata directory (Codemgr_

wsdata), 62
moving, 65
name fields, 55
removing locks, 81
renaming, 65
reparenting, 66 to 70
viewing locks from GUI, 81

Workspace Create, 64

Workspace Graph pane, 55
double-click action, 57
loading workspaces, 55

workspace introduction, 20 to 22

X
Xdefaults file, 211

Index 247

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunOS, Sun WorkShop, et Sun WorkShop TeamWare, sont des marques déposées ou
enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence,
sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit de X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

