
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Solstice Enterprise Manager
Administration Guide

Release 2.0

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Solaris, SunSoft, Solstice, Solstice Enterprise Manager, SunNet Manager, SunOS,
OpenWindows, DeskSet, ONC, SNM, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. xxi

1. Planning for Network Management . 1-1

1.1 The Agent/Manager Model . 1-2

1.2 Client/Server Architecture . 1-3

1.3 Access Control . 1-5

1.4 Distributed Management. 1-5

1.4.1 Using Cooperative Consoles to Link
SunNet Manager to EM . 1-9

1.4.2 SunNet Manager Application Support. 1-11

1.5 Network Management Protocol Support 1-11

1.5.1 RPC Support . 1-11

1.5.2 SNMP Support. 1-15

1.5.3 CMIP Support . 1-19

1.5.4 Other Network Management Protocols 1-21

1.6 Adding New Object Classes and Event Types 1-22

iv Solstice Enterprise Manager Administration Guide

2. Populating the MIS. 2-1

2.1 Starting Discover from the Application Launcher 2-2

2.2 Using the Viewer to Create a View. 2-6

2.2.1 Discovering the Routers . 2-6

2.2.2 Creating a Routers View. 2-7

2.3 Creating an Object Instance in the Viewer 2-9

2.3.1 Using the Viewer’s Object Menu. 2-9

2.3.2 Using the Object Palette . 2-11

2.4 Updating the Views of Your Network 2-11

2.5 What’s Next? . 2-15

3. Managing Devices . 3-1

3.1 Fault Management . 3-2

3.1.1 Color-Coding of Fault Status in the Viewer. 3-2

3.1.2 Receiving Event Information 3-5

3.1.3 Event Notifications . 3-8

3.1.4 Preparing for Fault Management 3-17

3.1.5 For more information… . 3-18

3.2 Monitoring Fault Status of Devices 3-19

3.2.1 Launching Requests . 3-20

3.2.2 Obtaining a Picture of an RPC Device Through
the Data Viewer . 3-26

3.2.3 Obtaining a Picture of an SNMP Device Through
the SNMP Browser . 3-28

3.3 Performance Management . 3-29

Contents v

4. Device Management Using
RPC Agents . 4-1

4.1 Overview . 4-1

4.2 Managing Network Resources with RPC Agents. 4-4

5. Using Cooperative Consoles with Enterprise Manager 5-1

5.1 Overview . 5-1

5.2 Filtering Criteria for Information Forwarding 5-3

5.3 Cooperative Consoles Configuration and Operation. . . . 5-4

5.4 Receiving SunNet Manager Alarms. 5-7

6. SunNet Manager Application Support 6-1

6.1 Overview . 6-1

6.2 SNM Applications’ Access to Solstice EM Features 6-4

6.3 Adding an SNM Application to Solstice EM. 6-6

6.4 Importing an SNM Database into EM 6-9

6.5 SNM Applications’ Access to SNM Agents
(Over Solstice EM) . 6-10

6.6 Solstice EM Applications’ Access to SNM Agents 6-12

6.6.1 Configuration . 6-14

6.6.2 Agent Support . 6-14

6.6.3 Support for SNM Proxy Agents 6-14

7. SunNet Manager SNMP
Proxy Agents . 7-1

7.1 Overview . 7-1

7.2 SNMP Proxy Agent Operation . 7-4

7.2.1 SNMP Trap Daemon (em_snmp-trap) Operation . 7-8

vi Solstice Enterprise Manager Administration Guide

7.3 Schema Files . 7-8

7.4 SNMP Version 2 Support . 7-11

7.4.1 SNMPv2 Enhancements . 7-11

7.4.2 SNMPv2 Files . 7-13

7.4.3 Using the v2mib2schema Program 7-13

8. Mapping SNMP Traps to
CMIP Event Notifications . 8-1

8.1 Trap Daemon Operation . 8-1

8.2 The Structure of SNMP Traps . 8-4

8.3 Default Trap Mapping . 8-6

8.3.1 Default Method for Specifying the Source
of the Alarm. 8-7

8.3.2 Default perceivedSeverity Values 8-7

8.3.3 Default probableCause Values. 8-9

8.3.4 Default additionalText Information. 8-9

8.3.5 Default Event Notification Type 8-10

8.3.6 Default Location of Information from Trap Variable
Bindings . 8-11

8.4 Trap Daemon Behavior When no Mapping Is Provided . 8-11

8.5 Customizing the Mapping of SNMP Traps 8-11

8.5.1 Overview . 8-12

8.5.2 Enterprise Mapping Blocks . 8-12

8.5.3 Mapping Records . 8-13

8.5.4 How to Customize SNMP Trap Mapping 8-15

8.6 Format of Trap Mapping Records. 8-17

Contents vii

8.6.1 Using FDN Templates to Specify the Source
of a Trap . 8-21

8.6.2 Mapping Restrictions . 8-26

8.7 Distributed Trap Handling . 8-26

8.7.1 Forwarding SNMP Traps to Other Managers 8-27

9. Nerve Center Overview . 9-1

9.1 Overview . 9-1

9.2 Guide to Nerve Center Documentation. 9-2

9.3 Request Terminology . 9-3

9.4 Nerve Center Operation . 9-6

9.4.1 How a Request Gets Information 9-6

9.4.2 Variables and Attributes in a Request 9-9

9.4.3 Where and When a Condition is Evaluated. 9-11

9.4.4 Action at a Transition . 9-11

9.4.5 Specifying the Objects to be Polled. 9-12

9.4.6 Alarm Logging and the Alarm Service. 9-15

10. Building Request Templates . 10-1

10.1 Overview . 10-1

10.1.1 Building Blocks of Requests: States, Transitions,
and Conditions . 10-3

10.1.2 State Machine Diagrams. 10-4

10.1.3 Sample Request Template . 10-8

10.1.4 Controlling Fault Status Color in the Viewer 10-13

10.2 Designing Request Templates . 10-16

10.3 Requests Based on Polling. 10-18

viii Solstice Enterprise Manager Administration Guide

10.3.1 Adding States . 10-21

10.3.2 Adding Conditions . 10-22

10.3.3 Adding Transitions . 10-23

10.4 Polling RPC Agents . 10-27

10.4.1 Targeting the RPC ping-reach Group. 10-29

10.4.2 Correlating Information from Multiple Polls 10-31

10.5 Requests Based on Event Subscription 10-33

10.5.1 Example: Subscribing for Enterprise-Specific
SNMP Traps . 10-34

10.6 Debugging Your Templates . 10-40

10.6.1 Nerve Center Debugging Agents 10-41

10.6.2 Turning Off Debug Agents. 10-43

11. Building Templates for
SunNet Manager Event Requests. 11-1

11.1 Overview . 11-1

11.2 Nerve Center’s SNM Event Request Capability 11-4

11.3 SNM Alarms . 11-6

11.4 Building SNM Event Request Templates. 11-7

11.4.1 Subscribing for SNM Events 11-10

11.4.2 Sending an SNM ping Event Request 11-11

11.4.3 Waiting for a Response to the Event Request 11-13

12. Request Designer . 12-1

12.1 Overview . 12-1

12.2 Starting the Request Designer. 12-3

12.3 Using the Request Designer . 12-3

Contents ix

12.3.1 Main Window . 12-3

12.3.2 File Menu . 12-4

12.3.3 Edit Menu. 12-8

12.3.4 View Menu. 12-8

12.4 Edit States Window . 12-9

12.5 Transitions Window . 12-10

12.6 Conditions Window . 12-16

12.7 Poll Rates Window . 12-17

12.8 Severities Window . 12-18

12.9 Graphical State Diagram Display . 12-18

12.9.1 Creating a Template Through the State Diagram
Display . 12-20

12.9.2 Other Tasks in the Graphical Display. 12-21

12.10 em_ncimport and em_ncexport Utilities 12-22

13. Request Condition Language . 13-1

13.1 Types of Operands . 13-2

13.2 Constants . 13-3

13.3 Variables in a Condition . 13-3

13.3.1 Variable Names . 13-4

13.3.2 Scope of Variables . 13-4

13.4 Data Types . 13-5

13.5 System Variables . 13-6

13.5.1 $pollFdnSet . 13-6

13.5.2 $pollfdn . 13-7

x Solstice Enterprise Manager Administration Guide

13.5.3 $eventOI . 13-9

13.5.4 $eventInfo . 13-9

13.5.5 $eventType . 13-10

13.6 Message Types . 13-12

13.7 Attributes. 13-13

13.7.1 Syntax of Attribute Names . 13-14

13.8 Operators . 13-15

13.8.1 Logical Operators . 13-17

13.8.2 Bitwise Operators . 13-17

13.8.3 Precedence and Associativity 13-18

13.9 Control Structures . 13-18

13.9.1 IF Constructs . 13-19

13.9.2 IF ELSE Constructs . 13-19

13.9.3 WHILE Constructs . 13-20

13.9.4 FOREACH Constructs . 13-21

13.9.5 Nested Constructs . 13-22

13.10 Timestamp Arithmetic . 13-23

13.11 Error Checking . 13-24

14. RCL Functions . 14-1

14.1 Summary of RCL Built-in Functions. 14-1

14.2 AddressStrToAddress . 14-3

14.3 Alarm . 14-3

14.3.1 Alarm Logging and Viewer Fault Status 14-4

14.4 AlarmOi . 14-6

Contents xi

14.5 AlarmStr . 14-7

14.6 AnyStr . 14-8

14.7 AppendRdn. 14-9

14.8 AsnToStr . 14-13

14.9 Defined. 14-13

14.10 Extract . 14-14

14.11 FinalStr. 14-15

14.12 FirstStr . 14-15

14.13 GetTimeStamp . 14-16

14.14 Include . 14-16

14.15 InitialStr . 14-17

14.16 IsChoice . 14-17

14.17 IsList . 14-18

14.18 Mail . 14-18

14.19 NameToAddress . 14-19

14.20 NameToOid . 14-19

14.21 NumElements . 14-19

14.22 OiNameToOi . 14-20

14.23 OiToOiName . 14-20

14.24 Print . 14-21

14.25 SendAction . 14-21

14.26 SendEvent . 14-22

14.27 SendTrap . 14-23

14.28 Set . 14-24

xii Solstice Enterprise Manager Administration Guide

14.29 SnmEventRequest. 14-25

14.30 SnmKillRequest . 14-30

14.31 StrToAsn . 14-30

14.32 StrCat . 14-31

14.33 Strstr . 14-31

14.34 Strstrplus . 14-32

14.35 Subscribe . 14-32

14.36 SubscribeFilter . 14-33

14.37 SubscribeOi . 14-36

14.38 TrapGenericType. 14-37

14.39 TrapSpecificType. 14-38

14.40 Undefine . 14-38

14.41 Unixcmd . 14-39

14.42 UnSubscribe . 14-40

15. Adding New Event Types . 15-1

16. Adding a Managed Object Class
to the MIS. 16-1

16.1 GDMO and ASN.1 Used in the Examples 16-3

17. Adding a MIB to the MIS . 17-1

18. Adding an Object Class Based on an
SNM Schema File to the MIS . 18-1

19. Configuring Communication with CMIP Agents 19-1

19.1 Overview of CMIP Configuration Tasks 19-1

19.2 Preparing the System for CMIP Configuration. 19-4

19.2.1 Determining the Distribution Model 19-4

Contents xiii

19.2.2 Installing the Required SunLink Products 19-4

19.2.3 Gathering Your Configuration Information. 19-6

19.3 Compile and Load CMIP Agent Object Types into MIS . 19-6

19.4 Starting and Configuring SunLink OSI 8.1 19-6

19.5 Starting and Configuring SunLink CMIP 8.2 19-8

19.6 Starting and Configuring the CMIP MPA 19-9

19.6.1 Configuring Multiple MPAs on One System 19-14

Index . Index-1

xiv Solstice Enterprise Manager Administration Guide

xv

Figures

Figure 1-1 Agent/Manager Communication in Solstice EM Environment 1-2

Figure 1-2 EM Application Launcher . 1-4

Figure 1-3 A Sample Configuration Using MIS-to-MIS Communication 1-7

Figure 1-4 Topology Tree as Seen by Viewer Connected to MIS A 1-8

Figure 1-5 Topology Tree as Seen by Viewer Connected to MIS Net_B . 1-8

Figure 1-6 Topology as Seen in Viewer Connected to MIS Net_D 1-9

Figure 1-7 MIS-to-MIS Connection from MIS A to MIS Net_B 1-9

Figure 1-8 Forwarding of Information to Central Management Station . 1-10

Figure 1-9 Polling RPC Agents . 1-12

Figure 1-10 Using SNM Event Requests with Solstice EM. 1-14

Figure 1-11 MIS Communication with SNMP Agents 1-15

Figure 1-12 SNMP Trap Daemon Operation . 1-17

Figure 1-13 Viewing Trap Notifications in the Alarm Manager 1-18

Figure 1-14 SNMP Proxy Agent Operation . 1-19

Figure 1-15 CMIP MPAs in Distributed Configuration 1-20

Figure 1-16 TMN Q3 Connection to EM . 1-21

xvi Solstice Enterprise Manager Administration Guide

Figure 2-1 Discover Main Window . 2-3

Figure 2-2 Discover Properties Window. 2-5

Figure 2-3 Gather Window . 2-8

Figure 2-4 Save Results Window . 2-9

Figure 2-5 Monitor Properties Window . 2-13

Figure 3-1 Selecting a Severity for communicationsAlarm Generated by
Monitor . 3-7

Figure 3-2 CMIP Management of a Cellular Network 3-9

Figure 3-3 Viewing Trap Notifications in the Alarm Manager 3-10

Figure 3-4 Solstice EM Processing of SNMP Traps 3-11

Figure 3-5 Example: SNMP Trap Handling Using
SnmpLinkUpDownTrap Request . 3-13

Figure 3-6 AlarmLog Discriminator Construct with
enterpriseSpecificTraps Excluded. 3-15

Figure 3-7 Creating a New Log for enterpriseSpecificTraps 3-16

Figure 3-8 Interaction of Nerve Center Request and EM Applications . . 3-23

Figure 3-9 Using Data Viewer to Obtain hostperf Data 3-27

Figure 3-10 Invoking the SNMP Browser from the Element Icon Menu . . 3-28

Figure 3-11 Using SNMP Browser to Get Router ifTable 3-29

Figure 3-12 Creating a Data Request . 3-31

Figure 4-1 Communication with RCP Agents in Direct Polling Requests 4-2

Figure 4-2 Using SNM Event Requests with Solstice EM. 4-4

Figure 4-3 Selecting RPC Agents to be Configured during
Network Discovery . 4-7

Figure 5-1 Forwarding of Information to Central Management Station . 5-3

Figure 5-2 Information Forwarding from SNM Console to EM MIS 5-7

Figure 6-1 SNM-Solstice EM Compatibility . 6-3

Figures xvii

Figure 6-2 SNM Application Accessing Solstice EM Features. 6-5

Figure 6-3 SNM Application Accessing SNM Agents over Solstice EM . 6-10

Figure 6-4 Solstice EM Applications Accessing SNM Agents 6-13

Figure 7-1 MIB, GDMO, and Schema Definitions . 7-3

Figure 7-2 SNMP Proxy Agent Operation . 7-5

Figure 8-1 em_snmp-trap Operation . 8-3

Figure 8-2 SNMP Trap PDU Structure . 8-5

Figure 8-3 Trap Mapping Record Format . 8-17

Figure 8-4 Sample FDN for cmipsnmpProxyAgent Object Instance 8-21

Figure 8-5 FDN Format . 8-22

Figure 8-6 Sample FDN for internetSystem Group Object Instance 8-22

Figure 8-7 Sample ifTable FDN . 8-23

Figure 8-8 Sample FDN Template . 8-25

Figure 10-1 Request Example with Poll Rates and Severities 10-5

Figure 10-2 Request Example with Poll Rates and Severities 10-6

Figure 10-3 Request Example with Conditions . 10-7

Figure 10-4 IsSnmpSystemUp Sample Request Template 10-12

Figure 10-5 Using AlarmOi to Log a Minor Alarm . 10-14

Figure 10-6 State Diagram of IsSnmpSystemEverDown Template 10-21

Figure 10-7 Entering Condition Code in the Request Designer 10-22

Figure 10-8 Order of Transitions in IsSnmpSystemEverDown 10-24

Figure 10-9 isSnmpSystemEverDown Template . 10-26

Figure 10-10 State Diagram of SnmpPingBackoffReachable Request 10-28

Figure 10-11 get_rpc_mo Condition . 10-29

Figure 10-12 SnmpTrapSubscription Condition . 10-36

xviii Solstice Enterprise Manager Administration Guide

Figure 10-13 IsSubscriptionError Condition . 10-36

Figure 10-14 receivedTrap Condition . 10-37

Figure 10-15 State Diagram for IsEnterpriseSpecificTrap Template 10-38

Figure 10-16 examineTrap Condition . 10-39

Figure 10-17 SNMP Trap Subscription Template . 10-40

Figure 11-1 Using SNM Event Requests with Solstice EM. 11-3

Figure 11-2 State Machine Diagram for DeviceReachablePing
Template . 11-8

Figure 11-3 get_rpcAgent_name Condition . 11-9

Figure 11-4 subscribe_snmAlarmEvent Condition 11-10

Figure 11-5 send_ping_reach Condition . 11-11

Figure 11-6 another_event Condition . 11-14

Figure 11-7 wakeup_count Condition. 11-14

Figure 12-1 Import Window . 12-6

Figure 12-2 Export Customized Window . 12-7

Figure 12-3 Order Transitions Window . 12-12

Figure 12-4 Example: Adding AlarmClearedOi as an Action at Up-to-Up
Transition . 12-14

Figure 12-5 Graphical State Diagram Display . 12-19

Figure 14-1 Sample SetInternetSystem Condition. 14-11

Figure 14-2 IsSystemDesc Sample Condition. 14-14

Figure 14-3 IsSystemDescr Sample Condition . 14-39

Figure 14-4 UndefineSystemDescr Sample Condition 14-39

Figure 19-1 Configuring EM for Communication with CMIP Agents 19-3

Figure 19-2 OCT CMIP Configuration Tool Window. 19-12

xix

Tables

Table 3-1 Default Color-Coding of Severities. 3-3

Table 3-2 Default SNMP Trap Notifications and Severities 3-10

Table 3-3 Mapping of SNM Console Fault Indications to
perceivedSeverity Values . 3-17

Table 3-4 Request Templates Shipped with Solstice EM 3-20

Table 4-1 RPC Request Templates Shipped with EM 4-9

Table 5-1 Mapping of SNM Console Fault Indications to
perceivedSeverity Values . 5-8

Table 8-1 Standard SNMP Trap Types . 8-6

Table 8-2 Default Color-Coding of Severities. 8-8

Table 8-3 Default IP Management Trap Event Types 8-10

Table 8-4 Example: Mapping an SNMP linkDown Trap. 8-18

Table 10-1 Enterprise Specific Traps Example . 10-34

Table 11-1 Mapping of SNM Event Severities . 11-6

Table 12-1 Action Menu Items . 12-13

Table 12-2 Poll Rates. 12-17

Table 12-3 Severities . 12-18

xx Solstice Enterprise Manager Administration Guide

Table 13-1 Types of Request Condition Language Constants 13-3

Table 13-2 System Variables Available to a Condition 13-6

Table 13-3 perceivedSeverity Values . 13-10

Table 13-4 Values of $messType. 13-13

Table 13-5 Precedence of Operators. 13-18

Table 14-1 Valid Alarm Severities . 14-4

Table 14-2 Arguments in <EventRequest> . 14-26

Table 14-3 Relational Operators in SNM Request Thresholds. 14-27

Table 14-4 Data Types for Threshold Operands . 14-28

Table 14-5 Mapping of SNM Event Severities . 14-29

Table 14-6 Standard SNMP Trap Types . 14-37

Table 15-1 Default Notification to Event log Record Object Class
Mapping . 15-2

Table 19-1 em_oct Parameters. 19-11

xxi

Preface

The Solstice Enterprise Manager Administration Guide provides procedures,
guidelines, and examples for setting up, customizing, and using Solstice
Enterprise Manager™, hereafter referred to as Solstice EM™, to accomplish
your network management objectives. This guide also provides reference
information on the Solstice EM SNMP trap daemon, Nerve Center, and the
Request Designer application.

Our goal in writing this document was to anticipate what you, our customers,
would want to do using Solstice EM. Inevitably, we will not have thought of
everything. Our hope is that we have described enough tasks, of enough
variety, that you can extrapolate from what we have provided to figure out
how to perform those tasks that we had not covered.

Who Should Use This Book
This document is intended for network administrators who are responsible for
customizing, setting up, and maintaining a Solstice EM network management
installation. Users who want reference information on Solstice EM applications
(other than Request Designer) should consult the Solstice Enterprise Manager
Reference Manual.

xxii Solstice Enterprise Manager Administration Guide

Before You Read This Book
If you have just acquired the Solstice EM product, you should read Chapter 1,
“Planning for Network Management” in this guide for an overview of the
Solstice EM architecture and possible scenarios for deploying EM. The
“Overview” chapter in the Solstice Enterprise Manager Reference Manual also
provides an overview of the Solstice EM product functions, features, and
components. You should also read the Solstice Enterprise Manager 2.0 Release
Notes for information on installing and starting, compatibility and minimum
machine and software requirements, known problems, an inventory of the
product components, and late breaking information about the Solstice EM
product. It will be useful to you to at least browse the Solstice Enterprise
Manager Reference Manual.

How This Book Is Organized
This document is organized as follows:

Chapter 1, “Planning for Network Management,” provides guidelines and
examples on how to set up and use Solstice EM to meet network management
goals.

Chapter 2, “Populating the MIS,” provides an example on how to use the
Discover application to find elements on your network and add them to the
Management Information Server (MIS).

Chapter 3, “Managing Devices,” provides procedures and examples for using
Solstice EM to do fault and performance management of your network.

Chapter 4, “Device Management Using RPC Agents,” provides procedures and
examples for using SunNet Manager Remote Procedure Call (RPC) agents with
Solstice EM.

Chapter 5, “Using Cooperative Consoles with Enterprise Manager,” describes
the use of Cooperative Consoles to forward management information from
Site/SunNet/Domain Manager Consoles to the EM MIS.

Chapter 6, “SunNet Manager Application Support,” describes Solstice EM
support for SunNet Manager applications.

Preface xxiii

Chapter 7, “SunNet Manager SNMP Proxy Agents,” describes the
configuration and operation of Solstice Site/SunNet/Domain Manager SNMP
proxy agents for managing SNMP devices with Solstice EM.

Chapter 8, “Mapping SNMP Traps to CMIP Event Notifications,” describes the
SNMP trap handling capabilities of the Solstice EM SNMP trap daemon,
em_dmuxd, and the procedure for customizing conversion of SNMP traps to
CMIP event notifications.

Chapter 9, “Nerve Center Overview,” provides an overview of the operation of
the Solstice EM Nerve Center and an introduction to Nerve Center request
terminology.

Chapter 10, “Building Request Templates,” provides guidance on using the
Request Designer application and Request Condition Language to build Nerve
Center request templates.

Chapter 11, “Building Templates for SunNet Manager Event Requests,”
provides information and examples for using the Nerve Center’s SunNet
Manager event request capability.

Chapter 12, “Request Designer,” provides information on using the Request
Designer application, which is used to create and modify Nerve Center request
templates.

Chapter 13, “Request Condition Language,” provides information on the
Request Condition Language (RCL) used in building conditions used in Nerve
Center request templates.

Chapter 14, “RCL Functions,” describes the built-in functions that can be used
to construct conditions that are used as components in Nerve Center request
templates.

Chapter 15, “Adding New Event Types,” provides information on adding new
event notification types to Solstice EM.

Chapter 16, “Adding a Managed Object Class to the MIS,” provides examples
on how to add a GDMO object class to the MIS.

Chapter 17, “Adding a MIB to the MIS,” provides an example on how to add a
Sun defined MIB to the MIS.

xxiv Solstice Enterprise Manager Administration Guide

Chapter 18, “Adding an Object Class Based on an SNM Schema File to the
MIS,” provides an example on how to convert a SunNet Manager schema file
to a GDMO document and, then, add a GDMO object class for that schema to
the MIS.

Chapter 19, “Configuring Communication with CMIP Agents,” provides
information on setting up communication between Solstice EM and CMIP
Agents. It includes examples on how to configure a CMIP MPA, SunLink OSI,
and SunLink CMIP.

Conventions Used in This Book
This section describes the conventions used in this book.

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

<AaBbCc123> Command-line placeholder:
replace with a real name or
value

To delete a file, type rm
<filename>.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in the Solstice
Enterprise Manager Administration
Guide.
These are called class options.
You must be root to do this.

Preface xxv

Shell Prompts in Command Examples

All command line examples in this guide use the C-shell environment. If you
use either the Bourne or Korn shells, refer to sh (1) and ksh (1) man pages for
command equivalents to the C-shell. The following table shows the default
system prompt and superuser prompt for the C shell, Bourne shell, and Korn
shell.

User Interface Conventions
The following subsections discuss conventions that apply to the descriptions of
the Solstice EM applications.

Mouse/Menu Interactions

We have pursued a minimalist approach in describing a user’s interactions
with the graphical-based applications in Solstice EM. That is, rather than
write:

To exit, press the right mouse button on the File icon. In the pull-down
menu that you receive, move the mouse pointer down to Exit and release
the right mouse button.

We write:

To exit, select File➤Exit.

The symbol ➤ indicates moving down a level, from a button or icon to a menu,
or from one menu to another.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn
shell prompt

$

Bourne shell and Korn
shell superuser prompt

#

xxvi Solstice Enterprise Manager Administration Guide

The interface to the Solstice EM applications is, with the exception of the
Object Editor, standard Motif. Selections are made in the identical way they
are made for Motif applications that run on Sun and non-Sun machines.

The following table compares the exhaustive description of a user interaction
with the way we have chosen to describe that interaction in this manual:

Tear-off Menus

The top-level menus in the Solstice EM applications—those applications
accessible through the Application Launcher, plus others—have a type of menu
known as a “tear-off” menu. When you select a button, you receive a menu
with a dotted line at the top. If you click left on that dotted line, the menu
“tears off,” like a sheet of paper from a tablet, and positions itself in a separate
window. If you are running the application in a Motif environment, the title
displays as “<menu title>—Tear-off.” If you are not in a Motif environment, the
title displays as “No Name.”

To dismiss a tear-off menu, select the menu title bar to obtain a menu of
options. In that menu, select Dismiss. Alternatively, you can simply press Esc
while your mouse pointer is in the tear-off menu window.

Table P-3 User Interaction Equivalents

Complete Description As Described in this Document

Select an item by clicking once with the left mouse button. Select an item.

Activate an item by double-clicking with the left mouse
button.

Activate an item.

Press left on the slider in the scrollbar move the slider so
that the item comes into view.

Scroll until the item comes into view.

Press right on the icon to obtain the icon pulldown menu.
Move the mouse pointer over the item in the menu and
release the mouse button.

Select icon➤item.
or
Invoke icon➤item.

Press and hold middle mouse button on the icon. Move
the mouse pointer to the target location and release the
mouse button.

Drag and drop.

Preface xxvii

Connecting to an MIS

All Solstice EM applications rely on a connection with the product
kernel—called the Management Information Server or MIS—for their data. All
of the Solstice EM applications can connect to an MIS on a local or remote
machine. When reading the descriptions of the applications in this manual,
keep these facts in mind:

• An application must have a connection to a running MIS.

• An MIS can be on a local or remote machine.

When connecting to a remote MIS, you can use either of two methods. These
two methods are described below, using the Application Launcher, invoked
from the em command, as an example.

• Invoke the application with the -host option. For example:

• Set the $EM_SERVER environment variable to the name of the remote MIS
machine. For example:

Note that we use C-shell syntax for specifying the environment variable. Use
the syntax appropriate for your shell.

If you invoke an application without the -host option and with the
EM_SERVER variable not set, the application attempts to connect to an MIS on
the local machine.

% em -host <remote MIS machine> &

% setenv EM_SERVER <remote MIS machine>
% em &

xxviii Solstice Enterprise Manager Administration Guide

1-1

Planning for Network Management 1

Network management is the ability to monitor and control network resources.
A network management system should allow you to do the following:

• Detect and correct network problems

• Monitor and evaluate network activity

• Monitor, analyze, and change network configurations

Solstice Enterprise Manager (EM) is a distributed, multi-user management
platform, and a set of user applications, that allows you to accomplish these
network management goals.

Solstice EM offers various installation options so that you can tailor the
product to meet your network management needs. This overview discusses
some of the considerations that will affect your decisions about how to deploy
components shipped with Solstice EM.

The Agent/Manager Model page 1-2

Client/Server Architecture page 1-3

Access Control page 1-5

Distributed Management page 1-5

Network Management Protocol Support page 1-11

Adding New Object Classes and Event Types page 1-22

1-2 Solstice Enterprise Manager Administration Guide

1

1.1 The Agent/Manager Model
Solstice EM is based upon the manager/agent model described in the
International Organization for Standardization (ISO) network management
standards. Solstice EM can exchange monitoring and control information about
network resources with software processes called “agents.” Any network
resource that is manageable through this exchange of information is a
“managed resource.” This could be an NFS server or a hub or a cellular base
station or a WAN link, or components such as a circuit or a router interface, or
software entities such as an application or a printer queue. Agents access the
managed resource and collect data on behalf of managers.

Agents provide information in response to requests from managers. In
addition, agents typically have the ability to issue reports — called event
notifications — to managers on their own initiative when they detect predefined
thresholds or events on a managed resource. Manager/agent communication is
illustrated in Figure 1-1.

Figure 1-1 Agent/Manager Communication in Solstice EM Environment

AgentEM

EM
Application

Management
Information
Server (MIS)

request

response

event notification

Planning for Network Management 1-3

1

A manager relies upon a database of definitions and information about the
properties of managed resources and the services that agents support. In
Solstice EM this information resides in the Management Information Server
(MIS).

1.2 Client/Server Architecture
The management functionality of EM is based on a client/server architecture.
Solstice EM is shipped with a set of applications to carry out network
management tasks. For example, the EM Viewer provides a graphical,
dynamically updated display of your network topology. Coloring of icons is
used to represent the fault status of devices displayed in the Viewer. The
Viewer’s Request tool allows users to launch Nerve Center requests to monitor
devices for the occurrence of critical events. In addition to one-at-a-time
launching of requests from the Viewer, EM also includes an Auto Manager
daemon, which you can activate to automatically launch requests to manage
routers, links, or to check hosts for reachability. The Auto Manager is the most
efficient method for checking thresholds on large numbers of devices. (The
Auto Manager is discussed in the “Automatic Management” chapter in the
Solstice Enterprise Manager Reference Manual.)

Another key application is the Alarm Manager, which allows users to view and
sort incoming alarms and acknowledge or clear them. (The Solstice EM
applications are documented in the Solstice Enterprise Manager Reference
Manual.)

These and other user applications may be installed on machines remote from
the machine that runs the MIS. Multiple users, running EM applications on one
or more workstations, may be connected to the same MIS. The user’s point of
entry to most of the EM applications is the EM Application Launcher, shown in
Figure 1-2. You can configure the Launcher to include other applications in
addition to those shipped with EM.

1-4 Solstice Enterprise Manager Administration Guide

1

Figure 1-2 EM Application Launcher

EM applications that are installed on the same machine as the MIS can be
displayed remotely by means of an X windows session. This is different from
the situation where you install the EM applications on a remote machine. In
the latter case, EM applications connect to the MIS using a reliable Common
Management Information Protocol (CMIP) over TCP/IP connection. In general,
applications running on a remote machine consume far less network
bandwidth than applications that are run on the MIS machine and displayed
remotely.

The multi-user capabilities of EM are based on EM’s ability to provide
consistent management information to components of the network
management solution — operators, applications, other management stations.
This enables management tasks to be divided across geography and
organization with confidence that all users will see the same view of
management data. This is particularly useful in fault management scenarios
where cooperation among staff members leads to quicker resolution of
problems.

Planning for Network Management 1-5

1

1.3 Access Control
Solstice EM provides the ability to define levels of user access privileges.
Access control allows you the flexibility to grant or deny users access to
applications or to specific features within applications. The privileges for users
are defined through their membership in groups.

The EM Access Manager application allows a system administrator to create
groups which define a level of access. Three groups are shipped with EM: full-
access, operator, and view-only. If you use the default installation settings,
access control is activated. A first step in setting up EM is using Access
Manager to define user profiles to the system.

Access control is an optional feature that can be either enabled or disabled.
Access control is described in the “Access Manager” chapter in the Solstice
Enterprise Manager Reference Manual.

1.4 Distributed Management
A particularly powerful aspect of the Solstice EM platform is the ability to
distribute the management information base to multiple Management
Information Servers while allowing transparent access for users to
management data irrespective of whether it resides in the local MIS to which
their applications are connected or in a remote MIS in another geographical
locale.

The EM MIS Manager application is used to set up and take down such
connections. Setting up a connection from one MIS to another is analogous to
using NFS to mount a file system from one workstation to another. When a
connection is initiated from MIS A to MIS B, the internal Management
Information Tree (MIT) of MIS B is “mounted” into MIS A — and becomes
visible in the Navigator of a Viewer connected to MIS A.

The user running the Viewer connected to MIS A then has access to the views
and devices represented in MIS B. These devices become manageable from the
local MIS. For example, the user could launch Nerve Center requests targeted
at a device in the topology “tree” of the remote MIS, and this request will
execute on the remote MIS. Whether the request is running on the local MIS or
a remote MIS is transparent to the user.

1-6 Solstice Enterprise Manager Administration Guide

1

Many of the applications shipped with EM have this ability to access managed
resources via MIS-to-MIS connections. However, there are some applications
(such as Request Designer, Access Manager, and Discover) that only access
data in the local MIS.

The example in Figure 1-3 illustrates a possible configuration using MIS-to-MIS
communication. In this example, MIS A is a central office “manager of
managers” connected to three regional MISs on Net_B, Net_C, and Net_D.

The Viewer connected to MIS A will see a topology like that shown in
Figure 1-4. The topology tree for the Viewer connected to MIS Net_B is shown
in Figure 1-5. The Viewer connected to the MIS on Net_D, however, sees only
the local MIS, as illustrated in Figure 1-6. If the user running the Viewer on
mom were to select the Bldg_1_Subnet view, under the MIS Net_B root, the
Viewer accesses the data on MIS Net_B and the user sees the same view as the
of this subnet as a user running the Viewer connected to MIS Net_B.

Planning for Network Management 1-7

1

Figure 1-3 A Sample Configuration Using MIS-to-MIS Communication

MIS Net_B

MIS A

MIS Net_C MIS Net_D

VIewer
on machine
mom

Viewer on
machine mgr_1

Viewer on
machine
sledge

Viewer on
machine
neva

1-8 Solstice Enterprise Manager Administration Guide

1

Figure 1-4 Topology Tree as Seen by Viewer Connected to MIS A

Figure 1-5 Topology Tree as Seen by Viewer Connected to MIS Net_B

Root [A]

Root [Net_B]

Root [Net_C]

Root [Net_D]

Bldg_1_Subnet

Bldg_2_Subnet

New_York_Subnet

New_England_Subnet

Root [A]

Root [Net_B]

Root [Net_C]

Root [Net_D]

Bldg_1_Subnet

Bldg_2_Subnet

New_York_Subnet

New_England_Subnet

Planning for Network Management 1-9

1

Figure 1-6 Topology as Seen in Viewer Connected to MIS Net_D

When a connection is established from MIS A to MIS Net_B, MIS A takes on
the “manager role” in MIS-to-MIS communication, as the initiator of requests
for data, and MIS Net_B plays the role of an agent, responding to requests
initiated by MIS A. This is illustrated in Figure 1-7. For information about
setting up MIS-to-MIS connections, refer to the “MIS-to-MIS Communication”
chapter in the Solstice Enterprise Manager Reference Manual.

Figure 1-7 MIS-to-MIS Connection from MIS A to MIS Net_B

1.4.1 Using Cooperative Consoles to Link
SunNet Manager to EM

Another aspect to Solstice EM’s support for distributed management is the
ability to implement forwarding of event and topology information about
selected changes in the state of critical network resources or changes in
selected aspects of network topology from SunNet Manager or Solstice Domain
Manager Consoles to one or more Solstice EM Management Information
Servers.

New_York_Subnet

New_England_Subnet

Root

request

response

MIS A
(in manager
role)

MIS Net_B
(in agent
role)

1-10 Solstice Enterprise Manager Administration Guide

1

Figure 1-8 Forwarding of Information to Central Management Station

If you already using SunNet Manager (SNM) to manage segments of your
network, the Cooperative Consoles Receiver application can be used on an MIS
machine to implement one-way forwarding of topology and event information
from the SNM Consoles to the MIS. This creates a periphery-to-center
configuration in which the MIS functions as a central “manager of managers.”

SNM
Console

SNM
Console SNM

Console

 EM MIS

Event/Trap
 Forwarding

Event/Trap
 Forwarding

EM
Viewer

Event/Trap
Forwarding

EM
Alarm Manager

Planning for Network Management 1-11

1

This configuration is illustrated in Figure 1-8. For a more detailed discussion of
Cooperative Consoles, refer to Chapter 5, “Using Cooperative Consoles with
Enterprise Manager.”

1.4.2 SunNet Manager Application Support

EM’s ability to interoperate with Cooperative Consoles is an illustration of
EM’s support for applications that have been developed for use with SunNet
Manager. There are numerous third-party applications developed for SNM that
can also be used with Solstice EM. For more information, refer to Chapter 6,
“SunNet Manager Application Support.”

1.5 Network Management Protocol Support
A network management protocol defines the types of messages, encoding
rules, and how messages are exchanged in communication between a manager
and agent. As shipped to you, Solstice EM offers support for three network
management protocols:

• Simple Network Management Protocol (SNMP)

• Common Management Information Protocol (CMIP)

• Remote Procedure Call (RPC) protocol (as used by SunNet Manager)

SNMP and RPC are network management protocols used to manage resources
in the context of an Internet (IP) network environment. When you install EM,
you are asked whether you want support for IP management, CMIP
management, or both. Your choice will be dictated by the types of devices used
in your network, and the network management protocols that they support.

1.5.1 RPC Support

Solstice Enterprise Manager is shipped with a suite of agents developed for the
SunNet Manager network management platform. These agents communicate
with a network manager, such as Solstice EM, using Remote Procedure Call
(RPC) protocol. When deployed on systems in your network, these RPC agents
can be used by Solstice EM as part of your strategy for managing network
resources. The resource may be a machine, a component in a machine (such as
a router interface card), or some other resource. The RPC agent may be local to
or remote from that resource.

1-12 Solstice Enterprise Manager Administration Guide

1

As illustrated in Figure 1-9, SNM agents use Remote Procedure Call (RPC)
protocol to communicate with the MIS. However, an SNM agent may act as a
“proxy” for the management station, using a different management protocol in
gathering information from other agents. The RPC Protocol Driver Module
(PDM) in the MIS translates requests from management applications, such as
Nerve Center requests, into appropriate SNM RPC messages, which it
forwards to the RPC agent. RPC responses from the agent are in turn
translated from SNM RPC format into the CMIP format used for messages
internal to the MIS.

Figure 1-9 Polling RPC Agents

Step by step guidance in using RPC agents as part of your network
management solution is provided in Chapter 4, “Device Management Using
RPC Agents.”

RPC PDM

 Poll
(via RPC
protocol)

Response
(via RPC protocol)

Poll

Response

RPC
Proxy
Agent

Managed Resource

 EM MIS

Planning for Network Management 1-13

1

An important aspect of EM’s RPC support is the ability of the EM MIS to
offload threshold-checking activity to RPC proxy agents, which may be
distributed to various sites around your network.

SunNet Manager RPC agents have the ability to poll managed resources to
check for user-configurable thresholds and send an event notification — called
an SNM event — to a specified management station. This polling activity is
initiated by a one-shot message from a management station — called an SNM
event request. The SNM event request defines the threshold and polling interval
for the agent’s polling activity. The flow of information using EM’s SNM event
request capability is illustrated in Figure 1-10. Figure 1-10 illustrates a
configuration where the RPC proxy agent is distributed to a machine other
than the MIS. The RPC proxy agent may also be located on the MIS machine.

1-14 Solstice Enterprise Manager Administration Guide

1

Figure 1-10 Using SNM Event Requests with Solstice EM

The RPC proxy agents, SunNet Manager Event Dispatcher and SNM Event
Forwarder are installed on the MIS machine if you select the IP management
option (or both CMIP and IP management) during installation. Solstice EM’s
Request Condition Language (RCL) — a script language used in building
Nerve Center request templates — has built-in support for SNM event
requests. This capability is described in Chapter 11, “Building Templates for
SunNet Manager Event Requests” and Chapter 9, “Nerve Center Overview.”

response

 EM MIS

RPC PDM

SNM Event

SNM
events

registers

snmAlarmEventsSNM Event
Forwarder

Nerve

 SNM Event Request
initiated

polling

Managed

 SNM
 event request
 (via RPC protocol)

Dispatcher

Center

RPC proxy host resource

via CMIP
 over TCP/IP

MIS Host

SNM
events
(via RPC Protocol)

Planning for Network Management 1-15

1

1.5.2 SNMP Support

A key component of EM’s SNMP support is the SNMP Protocol Driver Module
(PDM) in the MIS. The SNMP PDM translates management requests into an
appropriate SNMP message and translates messages from SNMP agents into
the internal CMIP format used by the MIS. This is illustrated in Figure 1-11.

Figure 1-11 MIS Communication with SNMP Agents

For example, if you select a device in the Viewer that is manageable via SNMP,
and invoke EM’s SNMP Browser, you can retrieve the current values of SNMP
attributes or poll for selected attributes. The SNMP Browser, which connects to
the MIS, sends requests for data which are translated by the MIS into SNMP
requests via the SNMP PDM.

A second important aspect of EM’s SNMP support is the EM SNMP trap
daemon, which can be distributed to various sites in your network. Simple
Network Management Protocol (SNMP) agents have the ability to generate
event notifications on their own initiative when certain conditions are detected;
these notifications are called traps. The EM trap daemon listens for incoming

SNMP PDM

MIS

 request response
 (via SNMP
 protocol)

(via SNMP
protocol)

SNMP
Agent

1-16 Solstice Enterprise Manager Administration Guide

1

SNMP traps and converts them to CMIP event notifications for forwarding to
one or more MIS. Like other EM applications, the trap daemon uses a reliable
CMIP over TCP/IP connection to the MIS.

The trap daemon also has the ability to forward SNMP traps to
Site/SunNet/Domain Manager Consoles or other managers. Trap daemon
operation is illustrated in Figure 1-12.

Planning for Network Management 1-17

1

Figure 1-12 SNMP Trap Daemon Operation

The trap daemon has a flexible, user-configurable trap-mapping capability
which allows you to customize the conversion of incoming SNMP traps to
event notifications to create more meaningful alarms tailored to your network

SNMP Trap
Daemon

SNMP

Alarm
Log

CMIP event
notifications

EM MIS

Alarm
Service

Sets device
 fault status

Monitors

EM Viewer

traps

 Runtime ❂
data

Determines
icon color

Other Managers

SNMP
Traps

SNM
Traps

SNM Event
Dispatcher

SunNet Manager
Applications

SNM
Traps

SNMP Agent or Proxy

EM Alarm
Manager

1-18 Solstice Enterprise Manager Administration Guide

1

management needs. How to customize the trap daemon’s mapping of SNMP
traps is described in Chapter 8, “Mapping SNMP Traps to CMIP Event
Notifications.”

A default mapping is provided when you install the trap daemon. With this
default mapping, a user who invokes the Alarm Manager to examine the alarm
log can tell at a glance the types of traps that have been logged against devices
in their network, as shown in Figure 1-13.

Figure 1-13 Viewing Trap Notifications in the Alarm Manager

The SunNet Manager SNMP proxy agent, shipped with Solstice EM, provides
an additional element of SNMP support. Polling of SNMP devices can be
offloaded from the MIS to the SNMP proxy agent, using the EM Nerve
Center’s SNM event request capability. Using its RPC PDM, the MIS
communicates with the SNMP proxy agent via RPC protocol (over UDP/IP),
and the proxy agent talks to SNMP devices. Figure 1-14 illustrates the use of
the SNMP proxy agent for offloaded polling of SNMP devices.

Planning for Network Management 1-19

1

Figure 1-14 SNMP Proxy Agent Operation

1.5.3 CMIP Support

The Solstice EM CMIP Management Protocol Adaptor (MPA) supports
communication between the Solstice EM MIS and CMIP agents. The CMIP
MPA is installed if you select the CMIP management option (or mixed IP and

SNMP
Proxy Agent

SNM Event
Dispatcher

SNM
Applications

SNM
Event
Forwarder

snmAlarmEvents

S
N

M
 E

ve
nt

s

 SNM
 Events

Alarm
Log

Nerve
Center

MIS

MIS System

SNM Request

SNMP
Agent

Poll Response

Proxy System

SNM events (via SNMP
protocol)

1-20 Solstice Enterprise Manager Administration Guide

1

CMIP management) during installation. The CMIP MPA may be installed on
the same machine as the MIS or it can be distributed to multiple sites. This
distributed scenario is illustrated in Figure 1-15. Alternatively, if the MIS is
installed on a more powerful server machine, multiple MPAs could be installed
on the MIS machine to “fan out” the message-handling load in
communications with large numbers of CMIP agents.

The machine on which the MPA is installed must be running SunLink CMIP
8.2. The MPA can be used with SunLink CMIP 8.2 using RFC 1006 (over
TCP/IP) or SunLink CMIP 8.2 over SunLink OSI 8.1. This enables
communication with conformant CMIP management entities. SunLink CMIP
and SunLink OSI are not shipped with Solstice EM.

Figure 1-15 CMIP MPAs in Distributed Configuration

For information about configuring CMIP support, refer to Chapter 19,
“Configuring Communication with CMIP Agents.”

MIS

MIS Host

CMIP
MPA A

CMIP
MPA B

CMIP
MPA C

SunLink
CMIP 8.2

SunLink
CMIP 8.2

SunLink
CMIP 8.2

CMIP
over
TCP/IP

Host X

Host Y

Host Z

CMIP
Agent

CMIP
Agent

CMIP
Agent

Planning for Network Management 1-21

1

1.5.3.1 Telecommunications Management Network

Solstice EM complies with the Telecommunications Management Network
(TMN) standard, an extension of the Open Systems Interconnection (OSI)
standards developed through the International Telecommunications Union-
Telecommunications Standardization Sector (ITU-T, formerly the CCITT). A
Telecommunications Management Network is a network providing
surveillance and control over another network. As illustrated in Figure 1-16,
EM’s CMIP Management Protocol Adaptor (MPA), installed on the MIS
machine, can support a TMN Q3 connection to a CMIP agent, which provides
access to the managed resources.

Figure 1-16 TMN Q3 Connection to EM

1.5.4 Other Network Management Protocols

Legacy or proprietary network management protocols can be supported by EM
through the development of a custom Management Protocol Adaptor (MPA).
Third-party developers interested in creating such custom MPAs should
consult the “Management Protocol Adaptors” chapter in the Solstice Enterprise
Manager Application Development Guide.

MIS
 CMIP
 MPACMIP over TCP/IP

MIS Host

CMIP Agent

TMN Q3 Stack

Q3 Connection

1-22 Solstice Enterprise Manager Administration Guide

1

1.6 Adding New Object Classes and Event Types
The definition language used to represent management information internally
in the MIS is the Guidelines for the Definition of Managed Objects (GDMO),
outlined in the ITU ISO/IEC 10165-4 standard. This provides the EM
management platform with an integrated, standards-based view of all
managed resources.

Solstice EM is shipped with a variety of GDMO-defined object classes and
event notification types that allow you to perform OSI, SNMP, and RPC
network management for most common network elements and topologies.
However, the system can be easily extended through the addition of new object
classes and event types. All object classes and event types are defined in
GDMO documents that have been loaded into the MIS. Solstice EM allows you
to create your own GDMO definitions, or to add new GDMO definitions that
you have obtained from third-party vendors. Also, Solstice EM is shipped with
tools that enable you to convert third-party SNMP MIBs and SNM schemas to
GDMO documents.

For more information…
• On adding new event types — See Chapter 15, “Adding New Event Types.”

• On adding new GDMO object class definitions — See Chapter 16, “Adding a
Managed Object Class to the MIS.”

• On converting an SNMP Concise MIB to a GDMO document — See
Chapter 17, “Adding a MIB to the MIS.”

• On converting an SNM schema to a GDMO document — See Chapter 18,
“Adding an Object Class Based on an SNM Schema File to the MIS.”

2-1

Populating the MIS 2

This chapter provides an example on how to populate the Management
Information Server (MIS) with managed objects, using applications shipped
with Solstice EM.

As a Solstice EM user, you add objects to the MIS by:

• Invoking Discover (the primary means)

• Invoking the Object Configuration Tool from the Viewer. For more
information, see the “Object Configuration Tool” chapter in the Solstice
Enterprise Manager Reference Manual, or Section 2.3, “Creating an Object
Instance in the Viewer.”

• Invoking the Viewer’s Object Palette tool. For more information, see the
“Viewer” chapter in the Solstice Enterprise Manager Reference Manual.

This chapter describes how to populate the MIS by using the Discover
application. Specifically, you will proceed through a scenario in which you
will:

Starting Discover from the Application Launcher page 2-2

Using the Viewer to Create a View page 2-6

Creating an Object Instance in the Viewer page 2-9

Updating the Views of Your Network page 2-11

What’s Next? page 2-15

2-2 Solstice Enterprise Manager Adminsitration Guide

2

• Discover all routers up to one hop away

• Place them in a single view for ease of management

• Update the view so that if new routers are found, they are added to the MIS

2.1 Starting Discover from the Application Launcher
Start the Application Launcher with the command shown below.

If you need to connect to a remote MIS, specify the name of the host where the
MIS is running with the command shown below.

In the Application Launcher, click on the Discover icon. This starts Discover
and brings up the main Discover window (Figure 2-1).)

hostname% em &

hostname% em -host < hostname> &

Populating the MIS 2-3

2

Figure 2-1 Discover Main Window

2-4 Solstice Enterprise Manager Adminsitration Guide

2

Starting from the machine on which it is run, (which might be local to or
remote from the MIS machine), Discover finds hosts, routers, networks,
subnetworks, links, and Simple Network Management Protocol (SNMP)
devices. Upon finding one of these network elements, Discover creates an
object for that element in the MIS.

When you click on the Start Discover button from the Discover main window,
Discover probes your network in a way that is determined by the parameters
specified in the Discover Properties window (Figure 2-2). This mode of
discovery can be as limited or extended as your time and machine resources
allow.

By default, Discover finds all objects on the local subnetwork (0 hops away).
See the “Discover” chapter in the Solstice Enterprise Manager Reference Manual
for a discussion of configuration options and of the possible consequences of
performing a multiple-hop discover.

Discover configuration options may be set in the Properties window. Select
Discover ➤ Properties from the Discover main window to display the
Properties window, shown in Figure 2-2.

Populating the MIS 2-5

2

Figure 2-2 Discover Properties Window

2-6 Solstice Enterprise Manager Adminsitration Guide

2

The following example illustrates the steps required to perform a discover in
which you find all routers no more than one hop from the network on which
Discover is running. You then create a view in which you place all the
discovered routers. This example represents just one of a number of
possibilities for performing a discover. This may not be the discover operation
that you want or need to perform for your network.

2.2 Using the Viewer to Create a View

2.2.1 Discovering the Routers

1. In Discover’s Properties window, shown in Figure 2-2, click on the up
arrow in the Hop Count window to increase the hop count to 1.

2. Click on the All Objects toggle button in the Objects field to deselect that
option and activate the other options, then click on the Routers toggle
button.
Note that selecting Routers automatically activates the Networks/Subnets
and Links options.

3. In the Agent Mapping field, select the desired SunNet Manager (SNM)
RPC-based agents from the list.
Notice that when you selected Routers, the ping agent was automatically
selected. If there are other specific SNM RPC-based agents installed on
routers in your network, and you want objects to be configured for these
agents when they are discovered, select them from this list.

For more information, see the “Device Management Using RPC Agents”
chapter in the Solstice Enterprise Manager Administration Guide.

4. If you want, specify the name of a proxy host in the Default Proxy field.
The Default Proxy field allows you to specify the name of a machine you
want to act as a proxy and perform the actual network polling. Any
machine with the desired RPC-based SunNet Manager (SNM) agent(s) can
be specified. The default value for this field is localhost, meaning that the
polling will be done by the agent on the local machine.

For more information, see the “Device Management Using RPC Agents”
chapter in the Solstice Enterprise Manager Administration Guide.

5. Click on the OK button.

Populating the MIS 2-7

2

6. In the Discover main window, click on the Start Discover button to start
the discovery process.
Discover reports its progress in the main window (called the Discover Log
window). The application first finds the subnetworks and networks within
one hop of the machine on which Discover is running, then it finds routers.

To stop the Discover process prior to completion, click on the Stop Discover
button. Any machines already discovered remain in the MIS.

2.2.2 Creating a Routers View

For ease of management, you can create a view in which all the routers are
placed.

1. Select the Viewer icon in the Application Launcher to start that
application.
Select the bottom right corner of the Viewer and pull right and down to
increase the size of the Viewer window. Use the sash, the small box at the
base of the divider between the view navigator window and the Viewer
canvas, to adjust the proportions of those two subwindows.

In the view navigator window, you see subnetworks found by Discover.
Activate a subnetwork icon to switch to the view represented by that icon.

2. In the Viewer window, select Tools ➤ Find.
You will receive the Find window (Figure 2-3).

2-8 Solstice Enterprise Manager Adminsitration Guide

2

Figure 2-3 Gather Window

3. In the Find window, click on the button in the Object Type field and
select “Router” from the pop-up menu, then click on the Find button.
The tool displays all Router objects in the window beneath the Object Type
field.

4. Click on the Add to button.
You will receive the Save Results window, as shown in Figure 2-4.

Populating the MIS 2-9

2

Figure 2-4 Save Results Window

5. In the Save Results window, enter “Routers”, then click on the Save
button.
The Viewer gathers the just-found routers into a new logical view called
“Routers”, which appears in the view navigator window.

6. In the view navigator window, click on the new Routers icon to switch to
that view.
In the Viewer canvas, you will see the router icons you originally saw in the
Find window.

2.3 Creating an Object Instance in the Viewer
The Viewer offers you several different methods for adding object instances
and, thus, further populating your MIS. One method is to use the options
available in the Viewer’s Object pull-down menu, while another is through the
use of the Object Palette, which you invoke using the Viewer’s Tool pull-down
menu.

There is also a third creation method, which applies only to the creation of
container objects, such as subnetworks or networks. An example of this
method was shown in Section 2.2.2, “Creating a Routers View,” when you
selected Tools ➤ Find from the Viewer and created a new instance of a
container object called “Routers.”

2.3.1 Using the Viewer’s Object Menu

The Viewer’s Object pull-down menu contains the following options:

2-10 Solstice Enterprise Manager Adminsitration Guide

2

New Container Option
Select Object ➤ New Container to configure the following objects:

• Container
• Subnetwork
• Network
• Universe

New Monitor Option
Select Object ➤ New Monitor to configure the following objects:

• Hexagon
• Hexagon120
• OmniSector
• Circle

New Device Option
Select Object ➤ New Device to configure the following objects:

• Device
• Bus
• Router
• Bridge
• Hub
• Host
• Server
• Interface
• Pc
• Sunws
• Printer

New Link Option
Select Object ➤ New Link to configure the following object:

• Link

Selecting any item under the New Container, New Device, or New Monitor
pull-right menus causes the Object Configuration Tool (OCT) window to be
displayed. At the very minimum, the name of the managed object, its type, and

Populating the MIS 2-11

2

the managed protocol that is to be used with it should be specified. In addition
to these three pieces of information, any other optional configuration
information may be specified.

If you create any object under the New Container or New Monitor pull-right
menus, an icon for that object shows up in the view navigator window and
also in the Viewer canvas.

When you select Link from the New Link pull-right menu, you are prompted
to click on the object you are linking from and then on the object you are
linking to. After doing this, the OCT window appears.

Each icon in the Viewer canvas has an available pop-up menu, which you can
see by positioning the mouse cursor over the icon and clicking the third mouse
button. To bring up the OCT window, select the Object Properties option from
this menu. Alternatively, you can double-click on any icon to bring up the OCT
window.

2.3.2 Using the Object Palette

Select Tools ➤ Object Palette from the Viewer’s menu to invoke the Object
Palette. From the Object Palette window you can drag-and-drop an object to
the Viewer canvas (using the middle mouse button). Alternatively, you can
select a point within the Viewer canvas, then select an object in the Object
Palette window.

After either dragging and dropping or pointing and selecting an object from
the Object Palette window to the Viewer canvas, the OCT window will appear.
After configuring the new object and clicking on the OK button in the Object
Configuration Tool, the object will appear in the Viewer canvas.

2.4 Updating the Views of Your Network
While the Discover function provides you with an easy way of adding objects
to the MIS, The Monitor function provides a convenient means of regularly
updating the MIS topology information. Monitor compares the current MIS
network topology to network resources that it finds while it is active. Monitor
can be used to find devices that have been added to the network since Discover
was last run.

2-12 Solstice Enterprise Manager Adminsitration Guide

2

In this scenario, you will start the Monitor function to update the Routers view
which you just created. Any new routers, networks, subnets, and/or links that
are found since the last time Discover was run will be added to the MIS.

1. In the Discover main window, select Monitor ➤ Properties to display the
Monitor Properties window, shown in Figure 2-5.
The Monitor Properties window allows you to configure the Monitor
function. For more information, see the “Discover” chapter in the Solstice
Enterprise Manager Reference Manual.

Populating the MIS 2-13

2

Figure 2-5 Monitor Properties Window

2-14 Solstice Enterprise Manager Adminsitration Guide

2

2. In the Holding Container field, specify the name of the container in which
you want to place any newly discovered objects.
The default is Root, which means that newly discovered objects are placed
in the MIS as they are found, preserving the network topology. If you want
to place all newly discovered objects in a specific container, specify the
container name in this field.

3. If you want, turn the Log History feature on and specify a name and
electronic mail recipient for the log file.
For more information, see the “Discover” chapter in the Solstice Enterprise
Manager Reference Manual.

4. Click on the button in the Start Time field, select 12:00 from the resulting
pop-up menu, and click on the AM toggle button.
This instructs monitor to begin updating your topology database at
midnight.

5. Change the date in the Date field to tomorrow’s date.
By default, the date in this field is today’s date.

6. Click on the button in the Stop Time field, select 5:00 from the resulting
pop-up menu, and click on the AM toggle button.
This instructs monitor to stop updating your topology database at 5:00 a.m.
tomorrow morning.

7. Change the date in the Stop Date field to tomorrow’s date.
By default, the date in this field is one week from today’s date.

8. Click on the OK button.

9. In the Discover main window, click on the Start Monitor button.
Monitor will reports its progress in the Discover Log window.

If you turned the log history feature on, and specified a mailing address, the
log will be mailed electronically to the specified address at 5:00 a.m. tomorrow,
when you instructed the Monitor process to stop. To stop the Monitor process
prior to completion, click on the Stop Monitor button.

Populating the MIS 2-15

2

2.5 What’s Next?
By using Discover or the tools in the Viewer, you can create a database of
objects to be managed. To be able to manage the objects in your network the
objects in the database must be configured to indicate what management
capabilities these objects support — such as CMIP, SNMP, or SunNet Manager
agents. There are two ways this can be done:

• If you use Discover to populate your database, Discover will automatically
configure objects for SNMP capability if it has uncovered this in the
discovery process. You can also select the RPC agents for which you want
discovered objects to be configured (ping is the default RPC agent).

• If you have added objects to the database through the one-at-a-time
methods provided in the Viewer, or if you want to specify SunNet Manager
RPC agents, then you must use the Object Configuration Tool to specify
CMIP, SNMP, or SunNet Manager management capabilities for these objects.
See the “Object Configuration Tool” chapter in the Solstice Enterprise
Manager Reference Manual for a complete description of the Object
Configuration Tool’s capabilities.

Following OCT configuration (if needed), you can use Nerve Center requests
and related applications (see the example in Chapter 3, “Managing Devices”)
and the Data Viewer to manage your network.

2-16 Solstice Enterprise Manager Adminsitration Guide

2

3-1

Managing Devices 3

This chapter is intended to provide you with some ideas about how you can
use Solstice Enterprise Manager to accomplish your network management
goals. The methods and scenarios described here are not the only ways those
goals could be met. The approach that is best suited for a given situation will
depend on the particular network configuration, available network
management applications, and network management priorities.

This chapter assumes you have already populated your MIS, through a
combination of the use of Discover, to add multiple managed objects
automatically, and through use of various Viewer-related tools, to add
managed objects one-by-one. See Chapter 2, “Populating the MIS,” for
examples of how you can add managed objects to your MIS. We also assume
that the objects representing your network have been configured according to
the network management protocol and agents they support — CMIP, SNMP, or
SunNet Manager (SNM) RPC. (This is done either via the Discover process or
one-at-a-time using the Object Configuration tool.)

Fault Management page 3-2

Monitoring Fault Status of Devices page 3-19

Performance Management page 3-29

3-2 Solstice Enterprise Manager Administration Guide

3

3.1 Fault Management
Fault management is the tracking and managing of critical events on your
network. For example, if one of your critical network resources — such as a
server, link, or key application — becomes inoperative or unavailable to users,
you will want to be notified of this immediately.

Three key tools provided by Solstice EM for tracking fault status are the
Viewer, Alarm Manager, and Log Manager. Two important Solstice EM
components that can provide you with information about critical network
events are Nerve Center requests, which are launched from the Viewer, and the
Solstice EM SNMP trap daemon, which listens for traps generated by SNMP
agents. A number of the options available to you in setting up Solstice EM for
tracking fault status of devices on your network are described in this section.
The steps in monitoring device status are described below in Section 3.2,
“Monitoring Fault Status of Devices.”

3.1.1 Color-Coding of Fault Status in the Viewer

The Viewer provides a window into your network that is continuously
updated with the latest fault status information. Fault status is indicated by an
icon changing color. The fault status of an object reflects the incoming alarms
posted against that object.

Alarms differ in their severity. The severity of an event is a rating used to
represent the importance or impact of the event. For example, you might
regard an event indicating high router network memory usage as less severe
than an event indicating that the router is not working at all.

Solstice EM provides six severities; by default, these are color-coded as
indicated in Table 3-1.

Managing Devices 3-3

3

The same color-coding of severities is used in the Alarm Manager — a Solstice
EM application that enables you to selectively view, acknowledge, and clear
alarms. (You can change the color-coding of severities through the Request
Designer application. Refer to Chapter 12, “Request Designer” in this guide.
The Alarm Manager is described in the “Alarm Manager” chapter in the
Solstice Enterprise Manager Reference Manual.)

3.1.1.1 Propagating Changes in Fault Status in the Viewer

The Viewer’s display of the fault status of an object can be “propagated” to
objects that “contain” it. (Propagation is off by default.) If you have turned on
fault status propagation, a “cloud” icon that represents a subnet changes color
to indicate the highest severity fault of any device in that subnet. Similarly,
with state change propagation turned on, if you have the Viewer reduced to an
icon on your computer screen, the icon representing the Viewer changes color
to indicate the highest severity fault status of any device represented in the
Viewer. (For information on state change propagation, refer to the “Viewer”
chapter in the Solstice Enterprise Manager Reference Manual.)

3.1.1.2 The Role of the Alarm Service

The fault status of objects displayed in the Viewer and Alarm Manager is
controlled by the Alarm Service, which is a part of the MIS. The Alarm Service
monitors incoming alarms posted to the alarm log and updates the fault status
of objects to match the highest severity amongst the outstanding (uncleared)
alarms posted against that object. If the alarm log receives four minor alarms

Table 3-1 Default Color-Coding of Severities

Integer Value Severity Default Color

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color

0 Indeterminate Blue

3-4 Solstice Enterprise Manager Administration Guide

3

and one critical alarm against router sledge , sledge ’s icon is changed to red
to reflect the critical alarm. If the critical alarm is cleared, the icon changes to
cyan. If all the alarms are cleared or purged, the icon has no status coloring —
indicating that the state of the device is “normal.”

As shipped to you, the Alarm Services monitors a log called AlarmLog . When
alarms are logged to this log, they automatically affect the icon color in the
Viewer.

3.1.1.3 The Log Manager and Alarm Logging

The Log Manager is the application that you use to create logs to store
incoming event notifications, and to define which events are stored in which
logs.

The particular event types that are selected for logging to the AlarmLog is
determined by a Common Management Information Service (CMIS) filter,
called a discriminator construct. You use the Log Manager to add or subtract
event types to the AlarmLog by editing the AlarmLog ’s discriminator
construct. (An example that illustrates how to do this is described in
Section 3.1.3.4, “Creating a Separate Log for Enterprise-Specific Trap
Notifications.”)

Actions of the Alarm Manager also affect fault indication in the Viewer. If a
network administrator uses the Alarm Manager to clear all the outstanding
alarms against router sledge , the Alarm Service changes sledge ’s fault status
to cleared , and the Viewer icon changes color accordingly. Thus, the Alarm
Service ensures that the Viewer and Alarm Manager have the same picture of
the fault status of the network resources you are managing.

The types of events that you will want the Alarm Service to monitor (thus
updating the color of Viewer icons automatically) depends upon the types of
network events you want to track and the management protocols you are using
(as discussed in Chapter 1, “Planning for Network Management”).

For example, SunNet Manager RPC agents (shipped with EM) have the ability
to poll managed resources to check for predefined thresholds and send an
event notification — called an SNM event — to the management station. This
polling activity can be initiated by a one-shot message — called an SNM event
request. SNM event requests can be initiated from the MIS by Nerve Center
requests. (Using Nerve Center requests to initiate threshold-checking by RPC
agents, is described in Chapter 11, “Building Templates for SunNet Manager

Managing Devices 3-5

3

Event Requests.”) When an RPC agent generates an SNM event in response to
threshold-checking initiated by the MIS, this arrives at the MIS as an
snmAlarmEvent. There are two ways in which you might use these events:

• The Nerve Center request that initiated the RPC agent threshold-checking
could subscribe for incoming snmAlarmEvents from the target device and
take appropriate action in response, such as logging nerveCenterAlarms.
nerveCenterAlarms are alarms created by Nerve Center requests using
alarm-logging functions that can be inserted in request templates. Two SNM
event request templates shipped with Solstice EM, CheckCPU and
DeviceReachablePing , use this method of handling snmAlarmEvents. To
avoid duplication of alarms, therefore, snmAlarmEvents are, by default, not
logged to the AlarmLog. You may want to use the Request Designer
application to examine these request templates to see how they handle SNM
event requests.

• Alternatively, the AlarmLog could be configured to automatically log
incoming snmAlarmEvents. If you want to implement this, you can use the
Log Manager to remove the entry for snmAlarmEvents from the default
discriminator construct for the AlarmLog. The default log discriminator
only specifies the types of events that are to be excluded from the AlarmLog.
Any incoming event not explicitly excluded is logged automatically.

Even if you do not want snmAlarmEvents posted to the AlarmLog, you might
create a special log, SNMLog, to retain an historical record of incoming
snmAlarmEvents . You can use the Log Viewer to examine the contents of
event logs.

For more information …
The Viewer, Alarm Service, Alarm Manager, Log Manager, and Log Viewer
each have a separate chapter devoted to them in the Solstice Enterprise Manager
Reference Manual.

3.1.2 Receiving Event Information

Information about changes in network resources are reported by agents. There
are two types of event information that agents provide:

• Responses to polls — Managers can request attributes of managed objects
at periodic intervals; this is called polling.

3-6 Solstice Enterprise Manager Administration Guide

3

• Event notifications — Agents also typically have the ability to generate
messages on their own initiative when they detect events on a resource the
agent is responsible for; these messages are called event notifications.

3.1.2.1 Polling

There are two types of polling. Polling can be done directly by the Nerve
Center module in the MIS, or SunNet Manager event requests can be used to
offload polling to Remote Procedure Call (RPC) proxy agents. Fault
management strategies that rely on event notifications and indirect polling by
proxy agents are most efficient than direct polling for managing large numbers
of devices because such strategies minimize network traffic and MIS
processing load. (Offloading of polling to RPC agents is described in
Chapter 11, “Building Templates for SunNet Manager Event Requests.’)

You can deploy fault management strategies based on logging of incoming
event notifications, direct polling by the Nerve Center, or threshold-checking
by RPC proxy agents; or you can develop strategies that use a combination of
these. Fault management scenarios that illustrate some of the possibilities are
described below.

Solstice EM is shipped with a number of Nerve Center request templates
which you may find helpful in developing your fault management strategy.
You may find these templates useful as is, or you might modify them to better
fit your network management needs.

Note – If you want to monitor large numbers of devices (for example, more
than 500) for reachability, the most efficient way to do this is to activate the
Solstice EM Auto Manager. For information on Solstice EM’s automatic
management capability, refer to the “Automatic Management” chapter in the
Solstice Enterprise Manager Reference Manual.

3.1.2.2 Using Discover to Monitor Device Availability

EM’s Discover application provides a form of polling for device status that
does not require the use of Nerve Center requests.

The main purpose of Discover’s Monitor function is the updating of the
representation of your network’s topology in the MIS. Monitor uses Internet
protocols, such as SNMP and Internet Control Message Protocol (ICMP), to

Managing Devices 3-7

3

probe for devices that have been added to the network since Discover was last
run. Monitor compares the existing topology in the MIS to the results of its
searches and adds objects to the MIS if new devices are uncovered.

Monitor can also be configured to query all links and interfaces represented in
the MIS and generate CMIP communicationsAlarms if these network resources
are not available. You can also select the severity that you want to attach to the
alarms that would be generated. CMIP communicationsAlarms are logged to
the AlarmLog by default when they arrive. Alarm Service monitors the
AlarmLog and sets fault status indication to reflect the highest severity alarm
currently posted against an object. For example, if you select critical as the
severity for Monitor “No Response” alarms, the device icon changes to red in
the Viewer when the alarm is logged to the AlarmLog.

If Monitor finds that a previously downed interface or link has become
available, it posts a communicationsAlarm with a severity of cleared against
the object. The Alarm Service changes fault status indication to reflect this, and
icon color in the Viewer changes accordingly.

By default, Monitor’s “No Response” event generation capability is turned off.
To activate this capability, do the following:

1. Invoke the Discover application from the Launcher if it is not currently
running. Select the Discover➤Monitor Properties… option to invoke the
Monitor properties window.

2. Select On for the No Response Event option and select a severity from the
pulldown menu (shown in Figure 3-1).

Figure 3-1 Selecting a Severity for communicationsAlarm Generated by Monitor

3-8 Solstice Enterprise Manager Administration Guide

3

3. Select the time of day and days of the week when you want Monitor to be
active. Click OK to make your choices take effect.

The Discover application is described in the “Discover” chapter in the Solstice
Enterprise Manager Reference Manual

3.1.3 Event Notifications

There are two ways in which event notifications can be used in fault
management:

• Automatic monitoring of incoming events by the Alarm Service

• Event correlation and processing by Nerve Center requests

Several types of event notifications are, by default, automatically logged to the
AlarmLog when they arrive at the MIS. When these events arrive, icon color in
the Viewer is dynamically changed to reflect the severity of the alarms.

3.1.3.1 Example: Monitoring Event Notifications from CMIP Agents

In this scenario XYZ Communications Corp. is using Solstice EM to manage a
cellular network. The vendor for their network components has provided
AwesomeCell CMIP agents to manage switches and other network
elements.The agents can be configured to generate OSI alarms, such as
environmentalAlarms and communicationsAlarms, when specified thresholds
are crossed. This configuration is illustrated in Figure 3-2.

When, for example, a failure occurs in a relay, the agent generates an
environmentalAlarm with a severity of critical. The alarm is logged to the
AlarmLog and the icon for the device is colored red automatically. No Nerve
Center request or polling of the agent was necessary.

Managing Devices 3-9

3

Figure 3-2 CMIP Management of a Cellular Network

3.1.3.2 Using SNMP Traps

Simple Network Management Protocol (SNMP) agents also have the ability to
generate event notifications on their own initiative; these messages are called
traps. CMIP protocol is used by Solstice EM internally to represent all network
management event information. Accordingly, Solstice EM’s SNMP trap
daemon (em_snmp-trap) converts incoming SNMP traps to CMIP event
notifications and sends them to the MIS.

MIS

(

Cellular Network Elements

Alarm
Log

Alarm
Service

Monitors

Events are viewed and cleared
 in Alarm Manager.

Icons change color in the
Viewer as events arrive
or are cleared.

Third-Party
Application

CMIP Agent
(Q3 adaptor)

Sets
 thresholds

CMIP
MPA

Event notifications
(via CMIP Q3 connection)

 CMIP event
 notifications

3-10 Solstice Enterprise Manager Administration Guide

3

By default, the trap daemon converts SNMP traps into event notifications as
indicated in Table 3-2.

These notifications are, by default, sent to the AlarmLog when they arrive.
When you open the Alarm Manager, you can tell at a glance the types of traps
that have been logged against devices in your network, as shown in Figure 3-3.

Figure 3-3 Viewing Trap Notifications in the Alarm Manager

SNMP trap daemon operation is illustrated in Figure 3-4. The SNMP trap
daemon’s mapping of SNMP traps into event notifications can be customized
to create alarms that are tailored to your particular network management

Table 3-2 Default SNMP Trap Notifications and Severities

SNMP Trap Notification Name Default Severity

cold Start coldStartTrap critical

warmStart warmStartTrap major

linkDown linkDownTrap major

linkUp linkUpTrap clear

authenticationFailure authenticationFailureTrap warning

egpNeighborLoss egpNeighborLossTrap minor

enterpriseSpecific enterpriseSpecificTrap indeterminate

Managing Devices 3-11

3

needs. For example, you can customize the severities that attach to trap
notifications or create custom mappings for enterprise-specific traps based on
the enterprise identifier and the specific trap type.

The trap mapping capability also allows you to more finely pinpoint the
element that is the source of the alarm. You might want to represent the
interface cards in a router with separate icons. You could configure the trap
daemon to convert router linkDown and linkUp traps to
communicationsAlarms targeted to the responsible interface. The interface
icons would change color to pinpoint problems to the level of the individual
interface. (Customizing the trap daemon’s trap-to-event notification mapping
is described in Chapter 8, “Mapping SNMP Traps to CMIP Event
Notifications.”)

Figure 3-4 Solstice EM Processing of SNMP Traps

SNMP
Agent

SNMP
 Traps

EM SNMP Trap
Daemon
(em_snmp-trap)

Request with
Appropriate
Subscription

Trap notifications

Log with
Appropriate
Discriminator

MIS

CMIP-over-TCP/IP
connection

3-12 Solstice Enterprise Manager Administration Guide

3

3.1.3.3 Monitoring SNMP Traps with Nerve Center Requests

Nerve Center requests can be designed to receive a specified type of event
notification, or events from a selected object; this is called event subscription.
The request enters a subscription with the MIS to receive the specified events
as they arrive. A request can subscribe for any type of event notification that
has been defined in the MIS.

Event subscription requests can be used to customize your handling of
incoming SNMP traps. The sample template SnmpLinkUpDownTrap , shipped
with Solstice EM, illustrates this possibility. If you launch the
SnmpLinkUpDownTrap request at a target router in the Viewer, the request
subscribes for incoming linkDown traps from the target device. If a
linkDownTrap notification arrives, the request terminates the subscription for
linkDown traps and initiates a subscription for linkUp traps. If a matching
linkUp trap does not arrive from the target device within a specified polling
interval, the request transitions to the Down state and logs a
nerveCenterAlarm with a severity of critical. Because the critical alarm is a
higher severity than the major severity of the linkDown trap, the Alarm
Service sets the fault status of the device to critical and the device icon turns
red.

Figure 3-5 shows the flow of information from traps to logs using the
SnmpLinkUpDownTrap request.

Managing Devices 3-13

3

Figure 3-5 Example: SNMP Trap Handling Using
SnmpLinkUpDownTrap Request

3.1.3.4 Creating a Separate Log for Enterprise-Specific Trap Notifications

Because enterprise-specific traps may have a variety of possible causes, the
default severity of enterpriseSpecificTrap notifications is indeterminate. You
may want to create more meaningful alarms by customizing the SNMP trap
daemon’s mapping of enterprise-specific traps, or by using a Nerve Center
request that subscribes for enterpriseSpecificTraps and logs
nerveCenterAlarms with severities that match the cause, as indicated by the
specific trap type. (An example of a Nerve Center request that subscribes for
enterprise-specific traps is described in Chapter 1, “Building Request
Templates.”)

SNMP Trap Daemon

SNMP
 Traps

trap
subscription
request

trap

 Alarm
 Log

nerveCenterAlarms

Alarm
Service

Monitors

 Incoming
 traps affect icon
 color in
 Viewer.

 Alarms can
 be examined
and cleared in
Alarm
Manager.

MIS

notifications

linkDownTrap
and
linkUpTrap
notifications

All trap
notifications

Target
Router

3-14 Solstice Enterprise Manager Administration Guide

3

If you do not want enterpriseSpecificTrap notifications to automatically affect
icon color in the Viewer, one way to accomplish this is to edit the discriminator
construct for the default AlarmLog to add enterpriseSpecificTraps to the list of
excluded event types. However, you may also want to create a separate log to
store the enterpriseSpecificTraps for an historical record. To accomplish this
change, do the following:

1. Invoke the Log Manager from the Application Launcher.

2. Select the AlarmLog and then select the Edit➤Object Properties… option
to invoke the Log Object window.
This window displays the CMIS filter that selects the events to be logged to
the AlarmLog.

3. Add a new entry for enterpriseSpecificTraps, as shown in Figure 3-6. Click
on OK, of course, to make this change take effect.
You should see the change in the “discriminatorConstruct” field for
AlarmLog in the main Log Manager window.

Managing Devices 3-15

3

Figure 3-6 AlarmLog Discriminator Construct with
enterpriseSpecificTraps Excluded

4. To create a new log for enterpriseSpecificTraps, select the Edit➤Create
menu option.
This invokes a blank Log Object window.

5. Enter the name of the new log in the logId field.
If you leave the maxLogSize field at 0 (the default), there is no limit on the
size. If you enter an integer value in this field, this becomes the maximum
log size in bytes. In Figure 3-7 a log name of SNMPlog was entered and
maxLogSize was set to 5 MB. Select OK to create the new log.

3-16 Solstice Enterprise Manager Administration Guide

3

Figure 3-7 Creating a New Log for enterpriseSpecificTraps

3.1.3.5 Forwarding of Events from SunNet Manager Consoles

If you have Site/SunNet/Domain Manager Consoles installed in various sites
on your network, this can provide an additional source of fault status
information for EM. When RPC agents generate event notifications about
critical events, in response to threshold-checking initiated from SNM Consoles,
Cooperative Consoles can be used to forward these event notifications to the
EM MIS. When SNM event notifications are forwarded to EM by Cooperative
Consoles, these arrive at the SNM Event Forwarder (em_snmfwd) on the MIS

Managing Devices 3-17

3

machine. The SNM Event Forwarder translates SNM’s fault status indications
into EM alarm severities in the manner indicated in Table 3-3. The SNM event
notifications are then logged to the AlarmLog as snmAlarmTraps.

The Alarm Service, which controls the fault status color of icons in the Viewer,
monitors the perceivedSeverity of alarms posted against a device, and sets
fault status to reflect the highest severity of outstanding (uncleared) alarms
against a device. Incoming snmAlarmTraps will thus affect fault status color of
icons in the Viewer. (For more information on forwarding of information from
SNM Consoles to EM, refer to Chapter 5, “Using Cooperative Consoles with
Enterprise Manager.”)

3.1.4 Preparing for Fault Management

Looking at the use of Solstice EM from a larger perspective, the steps in
preparing for fault management can be summarized as follows:

1. Decide on the information you need to manage your network.
This topic is discussed in Chapter 1, “Planning for Network Management.”

2. Use the Request Designer to create Nerve Center request templates, if
needed.
Solstice EM is shipped with a number of sample request templates. These
may be sufficient for your needs. A request template is a set of commands
used to obtain information about network devices, either by direct polling,
initiation of a SunNet Manager event request, or by subscribing to receive
incoming event notifications, or a combination of these methods.

Table 3-3 Mapping of SNM Console Fault Indications to
perceivedSeverity Values

SNM Event Priority SNM Fault Status Indicator
snmAlarmTrap
perceivedSeverity Value

Default EM
Icon Color

Low color by priority Minor Cyan

Medium color by priority Major Orange

High color by priority Critical Red

blinking Warning Yellow

dim Indeterminate Blue

glyph reset Cleared No color

3-18 Solstice Enterprise Manager Administration Guide

3

3. Use the Log Manager to create logs to store those events for which you
want to have an historical record, and to define which events are logged to
which logs.

4. Configure the em_log2rdb daemon to store historical log file data in a
relational database, if desired.
Solstice EM’s relational database logging capability is described in the “Log
Management” chapter in the Solstice Enterprise Manager Reference Manual.

5. Chose the logs that you want the Alarm Service to monitor.
The event notifications that are logged to these logs are the events that will
automatically determine fault indication in the Viewer and Alarm Manager.

6. Edit the SNMP trap daemon’s trap_maps file to customize the mapping of
SNMP traps to event notifications.

7. If you want to implement forwarding of information from SNM Consoles
to EM, use the Cooperative Consoles Configuration Tool to configure the
Sender daemons on the SNM machines and the Receiver application on
the EM MIS machine.

3.1.5 For more information…
• On designing Nerve Center request templates — Consult Chapter 10,

“Building Request Templates” and Chapter 13, “Request Condition
Language.”

• On designing Nerve Center requests to handle SunNet Manager event
requests — Chapter 11, “Building Templates for SunNet Manager Event
Requests.”

• On using the Request Designer application — Refer to Chapter 12, “Request
Designer.”

• On using the Log Manager — Refer to the “Log Manager” chapter in the
Solstice Enterprise Manager Reference Manual.

• On relational database logging — Refer to the “Log Management” chapter
in the Solstice Enterprise Manager Reference Manual.

• On customizing the SNMP trap daemon mapping of SNMP traps to event
notifications — Refer to Chapter 8, “Mapping SNMP Traps to CMIP Event
Notifications.”

• On the Alarm Service — Refer to the “Alarm Service” chapter in the Solstice
Enterprise Manager Reference Manual.

• On configuring Cooperative Consoles for EM — Chapter 5, “Using
Cooperative Consoles with Enterprise Manager.”

Managing Devices 3-19

3

• On event notifications — Refer to Chapter 8, “Mapping SNMP Traps to
CMIP Event Notifications” and Chapter 15, “Adding New Event Types.”

3.2 Monitoring Fault Status of Devices
The following is a summary of steps you can take to monitor the fault status of
network resources:

1. Choose the devices you want to be the target of requests.

2. Select a request template that will give you the type of information about
the device you want and launch the request.
You use the Request tool, invoked from the Viewer’s Tools menu, to launch,
examine, and stop requests. A request is created when a request template is
launched after selecting a particular device. The same template can be
launched against multiple devices to create multiple requests.

3. Monitor the fault status of objects in the Viewer.

4. View incoming event notifications, including alarms logged by requests,
in the Alarm Manager.
The Alarm Manager allows you to sort, acknowledge, clear, and purge
alarms. From the Alarms Manager, you can invoke the Grapher, to represent
management data in pictorial form.

5. Use the Log Viewer to browse the historical record of events stored in
logs.

6. Use the SNMP Browser to obtain a snapshot of SNMP devices.

7. Use the Data Viewer to obtain a snapshot of RPC or CMIP devices.

3-20 Solstice Enterprise Manager Administration Guide

3

3.2.1 Launching Requests

Solstice EM is shipped with a number of Nerve Center request templates that
you can use for managing devices that support SNMP and RPC protocols.
Table 3-4 describes what each template does and the type of device the
template can be launched against. A number of these templates are described
in detail in the paragraphs that follow.

Table 3-4 Request Templates Shipped with Solstice EM

Name Description Target Device Type

IsSnmpSystemUp Directly polls an SNMP agent for its system
description to determine if it is running.

SNMP agent system

AdminOperStatusUp Directly polls all of the interfaces on a router to
determine if ifOperStatus is not up. If not, the request
polls for ifAdminStatus. If ifAdminStatus is up but
ifOperStatus is not, a critical alarm is logged.

Router

CheckCPU Uses the hostperf RPC proxy agent to initiate two
SNM event requests to check for CPU usage. A minor
alarm is generated if CPU usage is greater than 50%. A
major alarm is generated if CPU usage is greater than
80%.

UNIX host that is
manageable via the
hostperf RPC proxy agent.

DeviceReachablePing Initiates an SNM event request using the RPC ping
proxy agent to check for device reachability. Posts a
critical alarm if the device is not reachable and a
warning alarm when device is up after having been
down.

Host that is manageable via
the ping RPC proxy agent.

LinkUp Directly polls agent on each device for ifOperStatus. If
no response, logs critical alarm indicating the agent is
down. If agent comes back up, a warning is logged. If
agent response indicates ifOperStatus is down, the
request polls for ifAdminStatus. If ifAdminStatus is up
but ifOperStatus is down, a critical “Link Down”
alarm is logged against the down interface.

Link

Managing Devices 3-21

3

3.2.1.1 Example: Polling for SNMP System Availability

Polling of managed objects is initiated by launching a request from the Viewer.
A request is based on a request template. You can have multiple requests,
targeted at various objects, based on the same request template. Requests are
launched from the Requests tool, invoked from the Viewer’s Tools menu. The
Requests tool provides you a menu of all the request templates currently
available in the MIS.

Note – You are not restricted to launching requests against devices represented
in the local MIS. If the Viewer is connected to an MIS which has established a
connection to another MIS, you can also launch requests against managed
objects in that remote MIS.

Direct polling can be illustrated using the IsSnmpSystemUp template, shipped
with Solstice EM. As its name suggests, this template determines whether the
Simple Network Management Protocol (SNMP) daemon is running on the
target system.

To launch this request, do the following:

PingUpOrDown Direct polling for reachability of device using the RPC
ping proxy agent.

Host that is manageable via
ping RPC proxy agent.

SnmpLinkUpDownTrap Subscribes for linkDownTrap notifications and logs a
critical alarm if a linkUp trap is not received within
one minute of arrival of a linkDown trap.

Routers

SnmpPingBackoffReachable Directly polls to determine whether the SNMP agent is
up, and if there is no response, uses ping to determine
whether the host machine is reachable. If there is no
response to the poll for reachability, a “Device down”
critical alarm is logged.If the device is reachable but
the SNMP agent isn’t responding, a major alarm is
logged indicating the SNMP agent is down.

SNMP agent system that is
also manageable via ping.

Table 3-4 Request Templates Shipped with Solstice EM

Name Description Target Device Type

3-22 Solstice Enterprise Manager Administration Guide

3

1. Select an appropriate object in the Viewer.
This must be an object that supports SNMP protocol. (To check which
network management protocols an object is configured to support, or to
change this configuration, double-click on the object’s icon in the Viewer to
invoke the Object Configuration Tool.)

2. Invoke Tools➤Requests to bring up the Requests tool.

3. In the Requests window, select the IsSnmpSystemUp request template in
the Request Template display area and click Start.
The request will be added to the list of running requests.

4. Selecting Examine brings up a window that provides dynamic tracking of
the values of the system and user-defined variables in a running request.

The IsSnmpSystemUp request polls for the value of the system description
attribute in the SNMP RFC 1213 (MIBII) internetSystem group. If the
agent system responds, the request knows it is up. You may want to open this
request in the Request Designer to examine how the request is designed to
work.

Managing Devices 3-23

3

Figure 3-8 Interaction of Nerve Center Request and EM Applications

Requests window and
Request Monitor invoked
from Viewer. Can stop

2. Launch request.

3. Machine down!

Icon for down
machine changes
appearance in
Viewer.

Alarm Manager
lists new

Send alarm
output to Grapher.

6.

7.

8.

Sequence of events indicated
by numbered items. 4. No response to

Requests
tool

 Poll poll

Nerve
Center

5. NC logs nerveCenterAlarm.

alarm.
.

Alarm
Log

Alarm
Service Monitors

MIS
9. Browse log
 records in
 Log Viewer.

1.Log Manager
 defines
 event logs.

or examine state of
request.

3-24 Solstice Enterprise Manager Administration Guide

3

The result of a request is largely a matter of the action defined for the
transition from one state to another in the request template used for that
request. The IsSnmpSystemUp request calls a Request Condition Language
(RCL) alarm-logging function to log nerveCenterAlarms with different
severities that indicate the fault status of the object. If the agent system fails to
respond, the request logs a nerveCenterAlarm with a severity of critical. The
Alarm Service then sets an appropriate fault indication for the object — and its
icon in the Viewer turns red. If the agent system becomes available and
responds to a poll, an alarm with a severity of cleared is logged. This clears the
previous critical alarm, causing the red color to disappear from the icon.

Figure 3-8 shows the various Solstice EM applications you can use to view the
results of a request such as IsSnmpSystemUp .

3.2.1.2 Example: Using sysUpTime to Monitor SNMP Devices

A limitation of the IsSnmpSystemUp template is that it can only tell you
whether an SNMP agent system is up on the occasions when it polls the agent.
But you might want to be notified if an SNMP system has been down
momentarily between polls and then become available again. Another attribute
in the SNMP MIB II internetSystem group — sysUpTime — could be used as
the basis of a request that can do this. The time since the last system restart, in
hundredths of a second, is stored in the sysUpTime attribute. Chapter 10,
“Building Request Templates,” shows you how to build a template —
IsSnmpSystemEverDown — which checks for a decrease in the sysUpTime
value. If this value has decreased since the previous poll, the request knows the
system has been down between polls. If the IsSnmpSystemEverDown request
determines that sysUpTime has decreased, it logs a nerveCenterAlarm with a
severity of minor. This causes the device icon to “decay to cyan” in the Viewer,
indicating that it is currently up but was down at some time in the past.

3.2.1.3 Example: Using both sysUpTime and ping to Monitor Devices

A limitation of the IsSnmpSystemEverDown template is that it cannot
distinguish between a situation where the lack of response to a poll for
sysUpTime is due to the SNMP daemon being down and a situation where the
lack of response is due to the unavailability of the machine on which the
daemon is installed. The SnmpPingBackoffReachable sample template

Managing Devices 3-25

3

overcomes this limitation by correlating information from two polls — a poll
for the SNMP sysUpTime attribute and a poll for reachability, using the ping
RPC proxy agent.

The SnmpPingBackoffReachable request begins by polling the SNMP system
every 30 seconds for the sysUpTime attribute. If there is no response to the
poll, the request backs off the poll rate to 60 seconds — possibly the request
needs to wait longer for a response. If there is still no response to the poll, the
request attempts to poll the device for reachability using the RPC ping proxy
agent. If there is a response to the ping, the request knows that the machine is
up but the SNMP daemon is down, and a major alarm indicating this is logged.

However, if there is no response to the poll for reachability, the request knows
that the machine itself is unavailable and logs a major alarm indicating this.
The request continues to poll for reachability. When a response is received, a
warning alarm is logged, indicating that the device is up after having been
down. The request then transitions back to polling for the SNMP sysUpTime
attribute.

3.2.1.4 Example: Checking the Status of Router Interfaces

The AdminOperStatusUp sample template is an example of another direct
polling request that correlates information from multiple polls. This is a
template that you can use to check the status of interfaces on routers.

The request checks the number of interfaces configured for the device and sets
the target of the poll initially to the first interface in the list and then transitions
from the setup state to the Poll state. The request polls to determine the value
of ifOperStatus. If ifOperStatus is up, the request transitions back to the setup
state to reset the target of polling to the next interface in the list of interfaces
for the router. In this way the request cycles through all the interfaces, checking
to ensure that each interface is operatiional. If the request finds an interface
whose ifOperStatus value is not up, the request polls for the value of
ifAdminStatus. If the ifAdminStatus is not set to up — perhaps the interface
has been downed due to operator intervention — the request ignores that
interface.

If, however, the request finds an interface that is not operational but its
ifAdminStatus is up, the request posts a critical alarm against the device in the
transition from the Poll state back to the setup state.

3-26 Solstice Enterprise Manager Administration Guide

3

3.2.1.5 Example: Using SNM Event Requests to Test for Reachability

The DeviceReachablePing request template, shipped with EM, is an example of
a Nerve Center request that initiates a SunNet Manager event request.

When a DeviceReachablePing request is launched against a target host, an
SNM event request is sent to the ping proxy agent with a polling interval of 30
seconds. The ping proxy agent is to poll to determine if the target device is not
reachable. A high priority SNM event is generated by the ping proxy agent if it
finds the target device not reachable. This event notification is sent to the SNM
Event Forwarder on the MIS machine; the Event Forwarder translates the high
priority SNM event into an snmAlarmEvent with a perceivedSeverity of
critical. The DeviceReachablePing request listens for incoming
snmAlarmEvents from the target device and posts a nerveCenterAlarm with a
perceivedSeverity of critical if an SNM event is received.

The ping proxy agent uses a “timeout” of 30 seconds when polling the target
device. The timeout is the length of time the proxy agent waits for a response
to a poll before sending an alarm.

While it is listening for incoming SNM events, the DeviceReachablePing
request counts the elapsed time since any previous “Device Down” event, and
if the elapsed time is greater than the timeout used by the ping proxy agent in
polling the device, the DeviceReachablePing request assumes the device is up
and posts a minor alarm to indicate the device is up after having been down.

This request template is discussed in detail in Chapter 11, “Building Templates
for SunNet Manager Event Requests.”

3.2.2 Obtaining a Picture of an RPC Device Through
the Data Viewer

The Data Viewer is a Solstice EM application that enables you to examine the
data that is collected by the on-going operation of an RPC or CMIP agent. You
can invoke the Data Viewer from the pulldown menu for a device in the
Viewer canvas (as shown in Figure 3-10). This tool enables you to perform one-
time gets of information or to establish polling of attribute values. It also
allows you to perform sets.

The Data Viewer can be used to obtain data from RPC agent groups that are
supported on target devices. In the example shown in Figure 3-9, a snapshot is
obtained of the current values of the hostperf-data group on the host

Managing Devices 3-27

3

gatoloco . The Inspect Criteria window indicates that lpstat-status ,
ping-reach , and ping-stats are three additional RPC agent groups
supported for this device. Selecting one of these groups would cause the Data
Viewer to retrieve the current values of the selected group.

Figure 3-9 Using Data Viewer to Obtain hostperf Data

3-28 Solstice Enterprise Manager Administration Guide

3

3.2.3 Obtaining a Picture of an SNMP Device Through
the SNMP Browser

The SNMP Browser is a Solstice EM application that enables you to examine
the data that is collected by the on-going operation of an SNMP agent for a
selected device, or browse the attributes defined in SNMP MIBs known to the
MIS. You can either invoke the SNMP Browser from the EM Application
Launcher, or from the pulldown menu for a device in the Viewer canvas (as
shown in Figure 3-10). This tool enables you to perform one-time gets of
information, or you can create tabular views of selected SNMP attributes and
then establish polling for the selected attributes. The tool also allows you to
perform sets.

Figure 3-10 Invoking the SNMP Browser from the Element Icon Menu

In the example in Figure 3-10 we have selected a router in the Viewer and
invoked the SNMP Browser. In this case, the SNMP Browser automatically
comes up with the current values of the router ifTable, as shown in Figure 3-11.

Managing Devices 3-29

3

Figure 3-11 Using SNMP Browser to Get Router ifTable

3.3 Performance Management
Collecting data on the utilization rates of network resources can help you to
determine whether particular resources are overburdened. You may want to
collect statistical data to compare the performance of your critical nodes, such
as servers and gateways, over a period time. Data collection can also provide
you with statistics on network traffic levels at various times.

3-30 Solstice Enterprise Manager Administration Guide

3

The Data Collector is the Solstice EM tool for gathering data from devices in
your network. The Data Collector allows you to create data requests — called
request objects. The Data Collector allows you to set the polling rate for
requests, and to schedule the period of time when the data-gathering is active.

In most cases, you will probably not want continual polling for data as this can
itself add an additional burden to the network. If you activate data-gathering
periodically, you can develop an historical record that can help you spot
trends, and determine “normal” load levels.

If you determine that problems occur on particular devices when utilization
rates reach certain levels, you can use that information in fault management —
for example, in setting thresholds that trigger alarms in Nerve Center requests.

A request object is essentially a definition of the type of data that is being
gathered, polling frequency, and which managed resources (represented on
local or remote MISs) to poll for the data. There is no limit, other than system
resources, on the number of concurrent data requests.

In the example ilustrated in Figure 3-12, we have invoked the Data Collector’s
Create window to define a new data request. The target of this data request is
the ifEntry object under the MIB II interfaces group for the router
frmpk16c-76 . Clicking on the Object Attributes… button invokes the list of
attributes supported by the target object. We’ve selected the ifInErrors attribute
for this data request. The polling rate is set at 15 minutes to minimize network
traffic load.

Two formats are available for log output. In this example we have selected
SunNet Manager log file format. Various third-party applications that support
SNM log file format can be used for presentation and analysis of the data. For
more information on the EM Data Collector, consult the “Data Collector”
chapter in the Solstice Enterprise Manager Reference Manual.

Managing Devices 3-31

3

Figure 3-12 Creating a Data Request

3-32 Solstice Enterprise Manager Administration Guide

3

4-1

Device Management Using
RPC Agents 4

4.1 Overview
Solstice Enterprise Manager is shipped with a suite of agents developed for the
Site/SunNet/Domain Manager (SNM) network management system. These
agents communicate with a network manager, such as Solstice EM, using
Remote Procedure Call (RPC) protocol within an Internet (TCP/IP) network
environment. When deployed on systems in your network, these RPC agents
and proxy agents can be used by Solstice EM as part of your strategy for
managing network resources. The resource may be a machine, a component in
a machine (such as a router interface card), or some other resource. The RPC
agent may be local to or remote from that resource.

There are two types of SunNet Manager RPC agents: those that directly access
managed resources and those that indirectly access managed resources. Most
of the RPC agents provided with EM manage resources on the Sun
workstations (or PCs running Solaris for x86) where they are installed. For
example, the diskinfo agent provides file system usage data.

The second type of agent provides the ability to manage resources that reside
in other Sun workstations or in other vendors’ devices. Such agents are called
proxy agents. Proxy agents run on machines running Solaris, called proxy

Overview page 4-1

Managing Network Resources with RPC Agents page 4-4

4-2 Solstice Enterprise Manager Administration Guide

4

systems, and use protocol translation mechanisms to provide the necessary
access to the managed resources. The proxy system can also be a workstation
in a different subnet or domain from where the EM MIS is running.

As illustrated in Figure 4-1, SNM agents and proxies use Remote Procedure
Call (RPC) protocol to communicate with a management station. However, an
SNM proxy agent may use a different management protocol in gathering
information from other agents.

Figure 4-1 Communication with RCP Agents in Direct Polling Requests

 EM MIS

RPC PDM

Nerve
Center

Response
 GET
 Request

 Poll
(via RPC
protocol)

Response
(via RPC protocol)

Poll

Response

RPC
Proxy
Agent

Managed Resource

Device Management Using RPC Agents 4-3

4

Solstice EM Nerve Center requests can obtain information from RPC agents in
two ways:

• Direct polling by the Nerve Center — A request running in the Nerve
Center can directly poll the agent, at intervals specified in the request
template. The goal of such a request is to obtain the values of the specified
attributes directly from the agent. Building request templates that do direct
polling of RPC agents is described in Chapter 10, “Building Request
Templates.” Communication between manager and managed resource in a
direct polling request is illustrated in Figure 4-1.

• Offload polling activity to the RPC proxy agent — A Nerve Center request
can send a one-shot message, called an SNM event request, to an RPC proxy
agent. The event request causes the RPC proxy agent to begin polling for a
threshold specified in the event request. The event request also specifies the
polling interval. Polling of the managed resource is thus handled by the
RPC agent rather than the Nerve Center. This minimizes the polling work
required of the MIS and allows the polling to be distributed to a site closer
to the resource being polled. If the event defined in the event request occurs,
the RPC agent sends event information to the SNM Event Dispatcher
(na.event) running on a specified management station (by default, this is
the station that initiated the request). When an SNM event notification
arrives at an MIS machine, this information is forwarded to the EM MIS by
EM’s SNM Event Forwarder (em_snmfwd). Communication between
manager and agents in SNM event requests is illustrated in Figure 4-2.

Building templates that use the Nerve Center’s SNM event request
capability is described in Chapter 11, “Building Templates for SunNet
Manager Event Requests.”

Note – If you are using SNM Consoles to manage segments of your network,
these SNM Consoles will be initiating SNM event requests and tracking
network topology changes. Event and topology information received by these
SNM management stations can be forwarded to an EM MIS using Cooperative
Consoles. This type of distributed management scenario is described in
Chapter 5, “Using Cooperative Consoles with Enterprise Manager.”

4-4 Solstice Enterprise Manager Administration Guide

4

Figure 4-2 Using SNM Event Requests with Solstice EM

4.2 Managing Network Resources with RPC Agents
The steps for using RPC agents to manage network resources are as follows:

SNMP device

response response

 EM MIS

RPC PDM

Event

SNM
events

registers

snmAlarmEventsSNM Event
Forwarder
(em_snmfwd)

Nerve

 SNM request
initiated

 SNM
 events
 (via RPC protocol)

polling polling

UNIX host

 SNM
 event requests
 (via RPC protocol)

 (via snmEventRequest())
Dispatcher
(na.event)

Center

via SNMP
protocol SNMP Proxy

via rstat
protocolHostperf proxy

Device Management Using RPC Agents 4-5

4

1. Installing and Configuring the RPC agents.
Proxy agents may be installed on either the machine to be managed or on a
remote system, called a proxy system. RPC agents can be installed on three
types of machine:

• SPARC machines running Solaris 1.x (SunOS 4.x)
• SPARC machines running Solaris 2.x (SunOS 5.x)
• PCs running Solaris 2.x for x86
Use pkgadd to install the RPC agents package (SUNWsnmag) on Solaris 2.x
systems (machines to be managed or proxy systems).

To install agents on a machine is running Solaris 1.x, use the getagents
script.

For information on installation of RPC agents on the three types of system
listed above, refer to the Solstice Enterprise Manager Installation Guide.

If you have written your own SNM agent or have a third-party SNM agent,
copy the file for that agent, with its accompanying configuration files, to the
target machine. (You will also need to load a GDMO translation of the SNM
schema file into the MIS; this is discussed in Step 2 below.)

For information on configuring the SNMP proxy agent (na.snmp), or the
SNMP Version 2 proxy agent (na.snmpv2), refer to Chapter 7, “SunNet
Manager SNMP Proxy Agents.”

2. Adding Object Classes to the MIS based on SNM Schemas
If you are using only those SNM agents shipped with Solstice EM, you can
skip to Step 3.

The definition language used internally in the Solstice EM MIS to describe
object classes is the Guidelines for the Definition of Managed Objects
(GDMO), outlined in the ISO/IEC 10165-4 standard. An object class defines
the structure of the management information of a managed resource.

Schema files are the corresponding method for object type definition native
to SNM. Schema files are used for loading information about the
management capabilities of RPC agents into the SunNet Manager Console.
Solstice EM includes a schema-to-GDMO compiler for translating native
SNM schema files into GDMO documents. If you want Solstice EM to
acquire knowledge of the capabilities of an SNM-compatible RPC agent that
you have written, or which you have acquired from a product vender, you
must convert the agent’s schema file to pertinent GDMO and ASN.1 files,

4-6 Solstice Enterprise Manager Administration Guide

4

and these must be loaded into the MIS. The procedure for accomplishing
these tasks is described in Chapter 18, “Adding an Object Class Based on an
SNM Schema File to the MIS.”

However, you will only need to do a schema-to-GDMO conversion if you
have SNM schemas not provided with EM. For all SNM schemas shipped
with EM, corresponding GDMO documents are already provided with the
product, and these are loaded into the MIS at startup.

Note – If you are using an RPC-based SNMP proxy agent (na.snmp or
na.snmpv2), SNM schema files must also be provided on the proxy system to
enable the proxy agent to map Management Information Bases (MIBs) for
SNMP devices that are to be managed. For more information refer to
Chapter 7, “SunNet Manager SNMP Proxy Agents.”

3. Configuring the managed object in the MIS.
The object in the MIS that represents the target managed resource must be
configured to indicate support for appropriate SNM agents. There are two
ways to accomplish this task:

• If you use Discover to populate your MIS, you can configure Discover to
query hosts for RPC agents and automatically configure objects to indicate
RPC agent support when it adds them to the database. The RCP agent
selection sheet in the Discover Properties window is shown in Figure 4-3.
You can also select the host that will be configured as the proxy system for
devices that are manageable via RPC. For more information, refer to the
“Discover” chapter in the Solstice Enterprise Manager Reference Manual.

Device Management Using RPC Agents 4-7

4

• You can also manually configure RPC agent support for objects in the MIS
using the Object Configuration Tool (OCT). OCT is invoked from the EM
Viewer. Refer to the “Object Configuration Tool” chapter in the Solstice
Enterprise Manager Reference Manual.

Figure 4-3 Selecting RPC Agents to be Configured during
Network Discovery

4. Building request templates for RPC agents.
The Nerve Center module in the MIS contains the request-handling
capabilities of EM. Nerve Center requests are based on request templates,
which are built using the Request Designer application. A key building
block in request templates are request conditions — sets of instructions

4-8 Solstice Enterprise Manager Administration Guide

4

defined using the EM Request Condition Language (RCL). RCL supports
both direct polling of RPC agents as well as setting thresholds for polling by
proxy agents. A number of predefined request templates for use with RPC
agents are shipped with Solstice EM; these are described below in Table 4-1.
If these are sufficient for your needs, you can skip to Step 5. If you wish to
build additional request templates for RPC agents, you may want to consult
the following sources of information:

■For guidance on building direct polling request templates, consult
Chapter 10, “Building Request Templates.”

■For information on the Request Designer, refer to Chapter 12, “Request
Designer.”

■For information on Request Condition Language, refer to Chapter 13,
“Request Condition Language.”

■RCL provides two built-in functions, snmEventRequest() and
snmKillRequest() , for starting and stopping SNM event requests.
Building templates for SNM event requests is described in Chapter 11,
“Building Templates for SunNet Manager Event Requests.”

■For additional information on RCL functions that can be used in
building request templates, refer to Chapter 14, “RCL Functions.”

Device Management Using RPC Agents 4-9

4

5. Launching requests at target RPC devices.
To launch RPC requests at target objects, select the targets in the Viewer and
invoke the Requests tool from the Viewer’s Tools menu. The Requests tool
provides a list of the request templates that are available in the MIS. The
requests for managing RPC devices are described in Table 4-1.

Alternatively, the auto manager can be used to launch SNM requests. This is
the most efficient method for using SNM requests to manage large numbers
of devices. Refer to the “Automatic Management” chapter in the Solstice
Enterprise Manager Reference Manual.

Table 4-1 RPC Request Templates Shipped with EM

Template Name What it does Type of target

CheckCPU Sends two SNM event requests to hostperf proxy agent to
check CPU usage on target host. Generates minor alarm if
usage greater than 50% or major alarm if greater than 80%.

UNIX host
configured for
hostperf

DeviceReachablePing Sends an SNM event request to ping proxy agent to check
target device for reachability. Generates a critical alarm if
device is not reachable. Counts elapsed time since last “Device
Unreachable” alarm and posts minor alarm (the icon “decays to
cyan”) if absence of further alarms indicates the device is
available again.

Any device
configured for ping

PingUpOrDown Direct poll for reachability. Logs critical alarm if device is not
reachable.

Any device
configured for ping

SnmpPingBackoffReachable Direct poll for SNMP sysUpTime attribute to determine if
SNMP daemon is running. If no response, polls for reachability
via ping proxy agent to determine whether the non-response to
the SNMP poll is due to the SNMP agent being down or due to
the unavailability of the host machine. Generates a major alarm
if the system is unreachable.

Any system
configured for both
SNMP and ping

4-10 Solstice Enterprise Manager Administration Guide

4

6. Monitoring alarms.
Nerve Center requests that manage resources using RPC agents typically log
alarms in response to two types of event information:

• Information obtained by direct polling of the device
• Incoming snmAlarmEvents generated by an RPC agent when a threshold

defined in an SNM event request has been crossed

When a Nerve Center request posts an alarm using the RCL alarm-logging
functions, this generates a nerveCenterAlarm which is, by default, logged to
the AlarmLog. Logged alarms can be examined, acknowledged, or cleared
using the EM Alarm Manager application.

When SNM events are sent to the MIS machine, either in response to an
SNM event request initiated by the Nerve Center, or forwarded to the MIS
machine from a remote SNM Console via Cooperative Consoles, these
events are forwarded to the SNM Event Forwarder daemon (em_snmfwd).
The SNM Event Forwarder posts incoming SNM events to the MIS as
snmAlarmEvents. Because snmAlarmEvents are, by default, not logged to
the AlarmLog by default, they are not monitored by the Alarm Service and
therefore do not affect fault status color in the Viewer.

Be default, only alarms logged to the AlarmLog affect the fault status
indication (icon color) of devices in the Viewer. The Alarm Service (a part of
the MIS) monitors the alarm log and uses the highest severity of
outstanding (uncleared) alarms to determine the fault status of the device.

However, a request that listens for incoming snmAlarmEvents can use the
RCL alarm-logging functions to post appropriate nerveCenterAlarms to the
AlarmLog. The RCL subscription functions enable a request to listen for
specified types of events.

If you are using Cooperative Consoles to forward SNM events from remote
Site/SunNet/Domain Manager Consoles, you might also want to design
templates that use the RCL event subscription functions to listen for
incoming snmAlarmEvents, and log appropriate alarms.

For information on the Alarm Service, Viewer, and Alarm Manager, refer to
the appropriate chapters in the Solstice Enterprise Manager Reference Manual.

5-1

Using Cooperative Consoles with
Enterprise Manager 5

5.1 Overview
Cooperative Consoles (CC) provides the ability to implement forwarding of
information about selected changes in the state of critical network devices or
changes in selected aspects of network topology from management stations
running Site/SunNet/Domain Manager (SNM) to one or more Solstice EM
managers.

The supported configuration of Cooperative Consoles information forwarding
between SNM and EM management stations is a periphery-to-center
configuration. This is a distributed management scenario in which
management of particular network segments is conducted by SNM Consoles at
various sites and there is a one-way forwarding of selected information from
the SNM stations to a central EM MIS. The EM MIS thus functions as a central
office “manager of managers.” A periphery-to-center configuration is
illustrated in Figure 5-1.

Overview page 5-1

Filtering Criteria for Information Forwarding page 5-3

Cooperative Consoles Configuration and Operation page 5-4

Receiving SunNet Manager Alarms page 5-7

5-2 Solstice Enterprise Manager Administration Guide

5

There are several types of information that Cooperative Consoles can forward
from SNM Console stations to Solstice EM:

• SNM Events — These are generated by SNM agents or proxy agents when
they detect that a specified threshold has been crossed while polling a target
network resource. The polling activity is initiated by an SNM event request
issued by the SNM Console. The SNM event request defines the threshold
(such as network memory usage greater than 80%) that triggers the
generation of the SNM event. The SNM agent or proxy agent uses Remote
Procedure Call (RPC) protocol to communicate with the management
station.

• Topology Traps — The SNM Console generates traps when changes are
made to the SNM database, such as addition of a new element or loading of
a background image for a view.

• Glyph State Traps — The SNM Console generates glyph traps when the
user changes the glyph state — for example, if a user resets the glyph state
after receipt of an alarm.

• SNMP Traps — Cooperative Consoles can forward SNMP traps received by
SNM’s SNMP trap daemon (na.snmp-trap). However, you may prefer to
use EM’s SNMP trap daemon (em_snmp-trap) for distributed SNMP trap
forwarding and configurable event type conversion.

Using Cooperative Consoles with Enterprise Manager 5-3

5

Figure 5-1 Forwarding of Information to Central Management Station

5.2 Filtering Criteria for Information Forwarding
The flexible filtering capabilities of CC allows you to select event and topology
information to be forwarded on the basis of the following criteria:

SNM
Console

SNM
Console SNM

Console

 EM MIS

Event/Trap
 Forwarding

Event/Trap
 Forwarding

EM
Viewer

Event/Trap
Forwarding

EM Alarm
Manager

Forwarded events

5-4 Solstice Enterprise Manager Administration Guide

5

• Type of the managed resource
You can choose to forward events by element type, such as routers.

• Hostname
You can select events by the name of the originating device.

• Priority
For example, you might choose to forward only SNM events with High
priority.

• Viewname
For example, if certain key objects are in an SNM Console view called
“CriticalElements”, you could specify forwarding of events for the objects in
that view.

• View type
You can select events on the basis of the type of view that the object is in.
For example, events from objects in views of type building could be
selected for forwarding.

• Event type — You can select the type of event or trap to be forwarded. For
example, you might want to forward only SNM events. If you want to
forward SNMP traps, you can choose to forward only standard SNMP traps,
or traps can be selected on the basis of the enterprise MIB. For example,
3Com or Cisco traps could be selected for forwarding, and ranges of traps
can be selected for the enterprise-specific traps.

5.3 Cooperative Consoles Configuration and Operation
The executable software modules required in setting up a Cooperative
Consoles connection between an SNM Console and an EM MIS are:

• Receiver Application — A Receiver is to be installed on the EM MIS
machine. The Receiver initiates the forwarding of information from remote
SNM Consoles to the local MIS. The Receiver maintains a Registration List
of the remote SNM stations that it attempts to register with for receipt of
event and topology information. You use the CC Configuration Tool to set
up the local Receiver’s Registration List. When a connection to a remote
SNM is running, the Receiver uses the SNM database API functionality in
the EM MIS to update the EM MIS to reflect changes in the views on the
remote SNM Consoles. EM’s support for the SunNet Manager database API
is described in Chapter 6, “SunNet Manager Application Support.” If CC

Using Cooperative Consoles with Enterprise Manager 5-5

5

forwarding of information has been set up to create a “mirror” on the EM
MIS of a particular SNM Console view, then moving or deleting an element
in that view on the SNM Console is reflected in the “mirror” in the EM
Viewer.

• Sender Daemon — A Sender daemon is to be installed on each SunNet
Manager host that is to forward event and topology information to the EM
MIS. CC’s event and topology filters are used by the Sender daemon. The
CC Configuration Tool is used on the sending SNM stations to configure
these filters. The periphery-to-center configuration is the only configuration
currently supported for EM. In this configuration, no Sender daemon is
installed on the EM MIS machine.

• Configuration Tool — This is the user interface for configuring operation of
the Sender and Receiver processes. Configuring the Receiver on the EM MIS
machine also requires installation of the CC Configuration Tool.

Steps to follow in setting up Cooperative Consoles on the EM MIS machine:

1. Install the CC Configuration Tool and Receiver packages
This is described in the Solstice Enterprise Manager Installation Guide.

2. Set your LD_LIBRARY_PATH to support the Receiver application.
Ener a command such as the following to set this environment variable
correctly:

Because the CC Receiver is an SNM application, you should consult the
general instructions for use of SNM applications in Chapter 6, “SunNet
Manager Application Support.”

3. Add the CC Configuration Tool and the CC Receiver to the EM
Application Launcher.
This is described in the “Application Launcher” chapter in the Solstice
Enterprise Manager Reference Manual. You will need to tell the Launcher the
path to the CC executables. The default path to the CC Receiver is as
follows:

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/lib:${LD_LIBRARY_PATH}

/opt/SUNWconn/snm/bin/cc_receiver

5-6 Solstice Enterprise Manager Administration Guide

5

4. Use the CC Configuration Tool on the remote SNM Console machines to
configure the appropriate Sender daemon filters for event and topology
forwarding to the EM MIS.

5. Use the CC Configuration Tool to set up the Receiver’s Registration List
on the EM MIS machine.

For information on configuring the CC Sender daemon and the CC Receiver
application, refer to the Solstice Cooperative Consoles Administration Guide.

Using Cooperative Consoles with Enterprise Manager 5-7

5

Figure 5-2 Information Forwarding from SNM Console to EM MIS

5.4 Receiving SunNet Manager Alarms
The CC Sender daemon on a remote SNM Console can be configured to send
SNM events, and notification of user actions clearing these alarms (glyph
reset), to the MIS machine. The Sender daemon reformats these SNM events
(and glyph reset events) as SNM traps and sends them to the SNM Event

Runtime
MDB

SNM
Console

Event
Dispatcher

Event
Dispatcher

Daemon Application

Sender Receiver

Authorization List and
 Filter Files

Sending Station Receiving Station

Register/

SNM Non-database

Processed
Database
Traps

SNM Events
and Traps

DB
Read

Access

Unregister

DB
Read/Write

Access

Traps

Registration
List

Forwarded
SNM Traps

Alarm
Log

EM
Application
Launcher

Startup

SNM Event
Forwarder

EM MIS

snmAlarmTraps

5-8 Solstice Enterprise Manager Administration Guide

5

Dispatcher (na.event) on the MIS host. The SNM Event Forwarder
(em_snmfwd) on the MIS machine registers with the Event Dispatcher to
receive all SNM events and traps. The Event Forwarder converts the SNM
traps into snmAlarmTraps and sends these to the MIS. By default, these event
notifications are logged to the AlarmLog.

SNM Console users can configure SNM event requests to indicate fault status
of the target device in several ways:

• Dimming of a glyph
• Blinking of a glyph
• Color by priority

Priority is the attribute of an SNM event that represents the severity of an event
on the managed resource. If the user has selected color by priority, the SNM
Event Forwarder maps SNM priorities to perceivedSeverity values as indicated
in Table 5-1. The SNM Event Forwarder also translates dimming or blinking of
glyphs into perceivedSeverity values, as indicated in Table 5-1.

The Alarm Service, which controls the fault status color of icons in the Viewer,
monitors the perceivedSeverity of alarms posted against a device, and sets
fault status to reflect the highest severity of outstanding (uncleared) alarms
against a device. Incoming snmAlarmTraps will thus affect fault status color of
icons in the Viewer.

Table 5-1 Mapping of SNM Console Fault Indications to
perceivedSeverity Values

SNM Event Priority SNM Fault Status Indicator
snmAlarmTrap
perceivedSeverity Value

Default EM
Icon Color

Low color by priority Minor Cyan

Medium color by priority Major Orange

High color by priority Critical Red

blinking Indeterminate Yellow

dim Warning Yellow

glyph reset Indeterminate Blue

pending Warning Yellow

Using Cooperative Consoles with Enterprise Manager 5-9

5

If a user resets a glyph to clear an alarm on the SNM Console, a glyph state
reset trap is sent to em_snmfwd on the MIS machine which generates an
snmAlarmTrap with a perceivedSeverity of “Indeterminate.”

When glyph fault status indications are propagated to higher-level views in the
SNM Console, a glyph reset is also propagated to those views. Glyph reset
traps are thus forwarded for the views that contain the element. These are
translated into separate “clear” snmAlarmTraps for the corresponding views in
the EM MIS.

Note – If SNM event requests are initiated by the MIS, incoming SNM events
from the RPC proxy agents are received by the SNM Event Dispatcher on the
MIS host as SNM events (not SNM traps). These are also forwarded to the
SNM Event Forwarder (em_snmfwd); however, these event notifications are
posted to the MIS as snmAlarmEvents. By default, snmAlarmEvents are not
logged to the AlarmLog. For more information, refer to Chapter 11, “Building
Templates for SunNet Manager Event Requests.”

5-10 Solstice Enterprise Manager Administration Guide

5

6-1

SunNet Manager Application
Support 6

This chapter describes the areas in which SunNet Manager applications can
interoperate with Solstice Enterprise Manager (EM) as part of an overall
network management solution.

Note – For purposes of this guide, SunNet Manager (SNM) refers to the 2.2 or
later releases of SunNet Manager, and releases of Solstice Site Manager and
Solstice Domain Manager. SunSoft makes no claims of compatibility of Solstice
EM with versions of SNM prior to 2.2.

6.1 Overview
For the purpose of describing SNM/EM interoperability, we define an SNM
application as an application that uses the SNM API to access the SNM
database and/or to access SNM agents. We define a Solstice EM application as

Overview page 6-1

SNM Applications’ Access to Solstice EM Features page 6-4

Adding an SNM Application to Solstice EM page 6-6

Importing an SNM Database into EM page 6-9

SNM Applications’ Access to SNM Agents (Over Solstice EM) page 6-10

Solstice EM Applications’ Access to SNM Agents page 6-12

6-2 Solstice Enterprise Manager Administration Guide

6

one that uses the native Solstice EM API (called the Portable Management
Interface, or PMI) to access objects in the Solstice EM Management Information
Tree (MIT).

Solstice EM and SNM are compatible with each other in the following ways:

• Dynamically-linked SNM applications that use the SNM API to access
database elements can run without modification over Solstice EM, to access
objects in the Solstice EM MIT. SNM database-access functions, such as
snmdb_open() , snmdb_add() , and snmdb_delete_from_view() , are
translated by the compatibility library, libnetmgt_db.so , into the Solstice
EM PMI. You must set or prepend to the LD_LIBRARY_PATH environment
variable to include the location of the compatibility library, which, by
default, is /opt/SUNWconn/em/lib .

Note – If you have previously installed SunNet Manager, make sure that
/opt/SUNWconn/snm/lib does not occur prior to /opt/SUNWconn/em/lib
in your LD_LIBRARY_PATH.

• Dynamically-linked SNM applications that use the SNM API to access SNM
agents can run without modification over Solstice EM. These applications
use the native SNM libnetmgt.so library, which is shipped with Solstice
EM. The libnetmgt.so library is stored, by default, in
/opt/SUNWconn/snm/lib . Accessing this library requires that you set
LD_LIBRARY_PATH to include its location.

• Solstice EM applications can access SNM agents—which are shipped with
Solstice EM—through the RPC Protocol Driver Module (PDM) (see
Figure 6-1). This capability allows you to take advantage of the power of
Solstice EM while retaining the ability to manage SNM agents. Support for
Solstice EM applications accessing SNM agents requires no action on the
part of the application programmer and user.

In addition to SNM agents shipped with Solstice EM, Solstice EM supports
RPC agents that have been written for SNM but were not shipped with that
product.

Support for SNM applications and agents requires some minor configuration
steps, which are discussed in Section 6.3, “Adding an SNM Application to
Solstice EM.”

SunNet Manager Application Support 6-3

6

Figure 6-1 SNM-Solstice EM Compatibility

MIS

EM

Application

SNM

Application

PMI

Persistent

Storage

SNM Schema

to GDMO

Compiler

RPC
PDM

SNMP
PDM

CMIP
MPA

SNM

Agents

SNMP
Agents

 libnetmgt libnetmgt_db

 snm2gdmo

A B

C
D F

G

Legend

EM

MIS

PMI
PDM

SNM
SNMP

RPC

Enterprise Manager

Management Info Server

Protocol Driver Module
Portable Management Interface
Remote Procedure Call
SunNet Manager
Simple Network Mgmt Protocol

RPC

RPC SNMP

E

Capital letters and shaded lines
used to mark data paths, which
are described in following pages.

GDMO Guidelines for Definition of MOs

PMI

PMI

CMIP

Agents

Part of SNM, shipped with EM

Not part of EM or SNM

Part of EM

CMIP Common Mgmt Info Protocol
LPP Lightweight Presentation Protocol

MPA Mgmt Protocol Adapter

CMIIP

H

I

 over
 TCP/IP
 (LPP)

6-4 Solstice Enterprise Manager Administration Guide

6

The areas of SNM-Solstice EM compatibility are illustrated in Figure 6-1. This
figure is the basis of the discussion that follows.

The areas of compatibility described in the bullets on page 6-2 are illustrated in
Figure 6-1 as follows:

• SNM applications accessing Solstice EM features: Path A to D to E to G to H.

• Solstice EM applications accessing SNM agents: Path B to F to G to H to I.

• SNM application accessing SNM agents: Path A to C to I.

In Figure 6-1, for path A to C to I, note that SNM applications access SNM
agents through the library libnetmgt , just as they do while running the SNM
Console.

The following subsections discuss each area of compatibility in some detail.

6.2 SNM Applications’ Access to Solstice EM Features
Solstice EM support for SNM applications accessing Solstice EM features is
illustrated in Figure 6-2.

SunNet Manager Application Support 6-5

6

Figure 6-2 SNM Application Accessing Solstice EM Features

An SNM application can access Solstice EM features if and only if the
application uses the SNM API only as specified in the Solstice
Site/SunNet/Domain Manager Application and Agent Development Guide Such
applications can access Solstice EM features without any modification to code,
without any recompilation or relinking.

Note – Applications that access the SNM management database directly,
bypassing the published API, do not run correctly.

SNM

Application

 libnetmgt libnetmgt_db

PMI

MIS

PMI

Persistent

Storage

Legend

MIS
PMI
SNM

Management Info Server
Portable Management Interface
SunNet Manager

Part of SNM, shipped with EM

Not part of EM or SNM

Part of EM

6-6 Solstice Enterprise Manager Administration Guide

6

Part of the requirement for SNM API conformance is the requirement, spelled
out in the Site/SunNet/Domain Manager Application and Agent Development Guide,
that applications be dynamically linked for compatibility with future releases.
The current release of Solstice EM is such a future release.

6.3 Adding an SNM Application to Solstice EM
To run your SNM application with Solstice EM do the following:

1. Install the SNM API and RPC agents packages (SUNWembc and
SUNWsnmag) on the MIS machine, if you have not already done so.
Installation of these packages is described in the Solstice Enterprise Manager
Installation Guide.

2. Convert third-party SNM icons to EM glyph format.
Element types shipped with Site/SunNet/Domain Manager have already
been mapped to EM icons by default. This step is only necessary if you have
added third-party icons, not shipped with SNM, that you wish to use with
an SNM application accessing EM features. These icons must be converted
from SNM Xview format to EM X-pixmap (pm) format. To make this
conversion, do the following:

a. Convert the SNM glyph to pbm format.
You can use the Open Windows icontopbm utility to make this
conversion:

Note – Typically <element-type> is the same as the SNM element type name.
For example, component.bridge would have an icon named bridge.icon.
However, not all third-party SNM icons follow this rule. Note that the EM icon
file name must be of the form <element-type>.pm where <element-type> is the
name of the element type.

b. Convert the icon from pbm format to pm format.
There are various graphic utilities available that you could use to convert
an icon from pbm to pm format. Both the ImageMagick convert utility
and netpbm are shareware packages that you can use to convert the
icons from pbm format to X pixmap format. Both packages can be

% /usr/openwin/bin/icontopbm <element-type>.icon > <element-type>.pbm

SunNet Manager Application Support 6-7

6

downloaded, using ftp , from the X consortium’s ftp server
(ftp.x.org). ImageMagick can be downloaded from:
/contrib/R5contrib-fixes/ImageMagick . Netpbm can be
downloaded from: /R5contrib/netpbm-1mar1994.tar.gz .

c. Place the converted pm icon file <icon>.pm in the
$EM_HOME/glyphs directory.

3. Convert third-party SNM schemas to GDMO documents.
The default elements.schema , cooptools.schema , and
netware_elements.schema files, shipped with SNM, have already been
converted to GDMO documents for you, and these are incorporated into the
EM MIS by default. However, if you have customized the
elements.schema file with new entries, or added third-party schema files,
these schemas must be converted to GDMO documents and loaded into the
MIS. The em_snm2gdmo compiler is provided for accomplishing this task.
For step-by-step guidance, refer to Chapter 18, “Adding an Object Class
Based on an SNM Schema File to the MIS.”

4. Use the em_snm_type_import utility (as root) to incorporate new SNM
element types, defined in SNM schema files, into the EM environment.
The syntax for this utility is:

For example::

You only need to do this step if you have custom or third-party element
types that you want to incorporate into EM. This utility updates entries in
$EM_HOME/config/SNM2EM_type_mappin , which maintains the
mapping of SNM element types to EM element types. By default, this file
contains the mappings for elements defined in the default SNM
elements.schema , cooptools.schema , and
netware_elements.schema files. The following files are also updated:

• $M_HOME/install/em_platform/bc_map

$EM_HOME/bin/em_snm_type_import -file <schema-file>

#./em_snm_type_import -file /opt/CSCOcw/snm/struct/cisco.record

6-8 Solstice Enterprise Manager Administration Guide

6

• $EM_HOME/config/em_viewer.cf

New entries are added only for types that are not already present. When
you run em_snm_type_import , a log is generated in the current directory
of the shell where you invoked the command. This log is written to the file
em_snm_type_import.log . Warnings are generated in the log if matching
pixmap format icons have not yet been provided for the imported types. An
example of log output would be the following:

5. Run em_services -r to re-initialize the MIS.
You need to do this step only if you have done Step 2, Step 3, or Step 4.

Note – Running em_services -r recompiles the GDMO and ASN.1
documents. Any existing topology data in the MIS is lost. If you have existing
topology data in the MIS that you want to save, you can use the Topology
Import/Export tool to export the data prior to running em_services . You can
then use this same tool to import the data into the MIS after re-initialization.

6. Add the path to the Solstice EM version of libnetmgmt to your
LD_LIBRARY_PATH environment variable.
Assuming you installed Solstice EM in /opt/SUNWconn/em , enter a
command such as the following to set this environment variable correctly:

Following this command, you can successfully run your SNM application.

7. Set the EM_SERVER environment variable if you want to run the SNM
application remote from the MIS machine.
With regard to applications, Solstice EM has a special feature not available
in SNM: Solstice EM allows you to run applications remote from the MIS.
This capability is supported through CMIP-over-TCP/IP connections,
allowing you to avoid the high bandwidth use and inconvenience of remote
X window sessions. In SNM terms, this feature is the equivalent of running

Warning: Need synfleet-router.pm file in $EM_HOME/glpyhs directory
Warning: Need syn-novell-server.pm file in $EM_HOME/glpyhs directory
Warning: Need baystack-100-conc.pm file in $EM_HOME/glpyhs directory
Warning: Need syn-fddi-segment.pm file in $EM_HOME/glyphs directory

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/lib:${LD_LIBRARY_PATH}

SunNet Manager Application Support 6-9

6

SNM applications on a machine remote from the Console machine (which is
not possible in SNM, where Console, database, and applications reside on
the same machine).

Solstice EM extends support for remote applications to SNM applications,
thereby providing to those applications a feature not available to them in
their native SNM environment. To allow your SNM application to connect to
an MIS on a remote machine, you must set the $EM_SERVER environment
variable. This environment variable is available to Solstice EM applications
as well. To set this variable, enter a command such as the following:

With $EM_SERVER thus set, subsequent invocations of an SNM (or Solstice
EM) application automatically connect to <remote_MIS_machine>.

For SNM applications, Solstice EM supports:

• multiple remote applications connecting to (and thereby sharing the data in)
a single MIS.

• multiple remote applications connecting to MISs running on multiple
machines.

8. Add an icon for the SNM application to the EM Launcher.
Invoke the Configure Applications window in the Application Launcher to
add the SNM application to the launcher. For information on adding
applications to the EM Application Launcher, refer to the “Application
Launcher” chapter in the Solstice Enterprise Manager Reference Manual. If you
select “Yes” in the EM Application field in the Configure Applications
window, the icon will be grayed out whenever the MIS has disconnected.

6.4 Importing an SNM Database into EM
The em_snmdb_import utility enables you to import a SunNet Manager
topology database into the runtime database of a Solstice EM MIS. The SNM
database must have been previously saved to an ASCII file, using the SNM
Console’s File➤Save➤Management Database… option to save the SNM
database to an ASCII-format file.

host% setenv EM_SERVER <remote_MIS_machine>

6-10 Solstice Enterprise Manager Administration Guide

6

The command to import the ASCII-format SNM database file is as follows:

Note – The em_snmdb_import utility retains the layout of elements within
views. However, SunNet Manager event requests in the SNM database are not
loaded into the EM MIS.

6.5 SNM Applications’ Access to SNM Agents
(Over Solstice EM)

Solstice EM support for SNM applications accessing SNM agents over Solstice
EM is illustrated in Figure 6-3.

Figure 6-3 SNM Application Accessing SNM Agents over Solstice EM

em_snmdb_import -import <filename>

SNM

Application

 libnetmgt libnetmgt_db

PMI

SNM

Agents

RPC Legend

PMI

SNM
RPC

Portable Management Interface
Remote Procedure Call
SunNet Manager

Part of SNM, shipped with EM

Not part of EM or SNM

Part of EM

SunNet Manager Application Support 6-11

6

Under Solstice EM, an SNM application accesses an SNM agent just as it would
under SNM, through the libnetmgmt library, which is shipped with Solstice
EM. The advantage to using Solstice EM rather than SNM is that, as with using
Solstice EM applications to access SNM agents, data obtained from agents can
be stored in the MIS, which provides a number of user- and programmer-level
features that are not present in SNM.

As shipped with Solstice EM, SNM configuration files, such as snm.conf ,
snmpd.conf , snmp.hosts , and snmp.traps , are stored in their normal,
SNM 2.x locations and are used in the same way as in SNM 2.x. The default
locations of these files are:

The default SNM elements.schema, netware_elements.schema, and
cooptools.schema files, required by SNM applications, are incorporated in the
EM environment by default. If you have customized the elements.schema
file, or have added third-party element definitions, then you must follow the
steps outlined in Section 6.3, “Adding an SNM Application to Solstice EM.”

The SNM agent and schema files reside, by default, in
/opt/SUNWconn/snm/agents . Third-party agents and schemas are
integrated in the Solstice EM environment just as they were in the SNM
environment. As with SNM, in Solstice EM you would add an entry for
na.snmp.schemas to snm.conf for the location of additional third-party
SNMP schemas.

The requirement for $LD_LIBRARY_PATH for SNM applications accessing
SNM agents is identical to the requirement SNM applications accessing Solstice
EM features, as described in Section 6.3, “Adding an SNM Application to
Solstice EM.” That is, you append the location of the Solstice EM library file to
LD_LIBRARY_PATH, with a command such as the following:

/etc/opt/SUNWconn/snm/snm.conf
/etc/opt/SUNWconn/snm/snmpd.conf
/var/opt/SUNWconn/snm/snmp.hosts
/var/opt/SUNWconn/snm/snmp.traps

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/lib:${LD_LIBRARY_PATH}

6-12 Solstice Enterprise Manager Administration Guide

6

SNM applications also have available the $EM_SERVER environment variable,
for connecting to a remote MIS, as described in Section 6.3, “Adding an SNM
Application to Solstice EM.”

6.6 Solstice EM Applications’ Access to SNM Agents
Solstice EM support for Solstice EM applications accessing SNM agents is
illustrated in Figure 6-4.

SunNet Manager Application Support 6-13

6

Figure 6-4 Solstice EM Applications Accessing SNM Agents

If you install Solstice EM in a network in which you use SNM, you can use
Solstice EM applications to access SNM agents, just as you would access those
agents with an SNM application. In fact, a number of the applications shipped

MIS

PMI

Persistent

Storage

EM

Application

PMI

RPC
PDM

SNM

Agents

RPC

SNM Schema

to GDMO

Compiler

 snm2gdmo

Legend

EM

MIS

PMI
PDM

SNM
RPC

Enterprise Manager

Management Info Server
Protocol Driver Module
Portable Management Interface
Remote Procedure Call
SunNet Manager

GDMO Guidelines for Description of MOs

Part of SNM, shipped with EM

Part of EM

6-14 Solstice Enterprise Manager Administration Guide

6

with Solstice EM—including the Data Viewer, Object Configuration tool, Log
Manager, and Alarm Manager—have built-in access to or support for SNM
agents.

The advantage of using Solstice EM applications to access SNM agents, instead
of running SNM, is that the data obtained from the agents becomes part of the
MIS. The MIS has a wealth of tools and functions available, in applications
such as the Log Manager and the Alarm Manager, and Nerve Center request
capability, for manipulating data in ways not possible in SNM.

6.6.1 Configuration

Solstice EM’s application support for SNM agents is seamless. That is, it
requires no configuration or any other action on your part. The complete set of
SNM agents is shipped with Solstice EM, so you can immediately access SNM
agents, such as ping , rstat , or lpstat .

6.6.2 Agent Support

All of the agents shipped with SNM are also shipped with Solstice EM. This
means that Solstice EM applications have access to all of the RPC agent
functions available to SNM applications.

In addition for agents shipped with SNM, Solstice EM provides support for
Remote Procedure Call (RPC) agents that you might have written for SNM, or
acquired from a third-party vender. The product has an snm2gdmo compiler
that allows you to convert SNM schema files to GDMO documents, which can
be loaded as objects into the MIS. This is described in Chapter 18, “Adding an
Object Class Based on an SNM Schema File to the MIS.”

6.6.3 Support for SNM Proxy Agents

The complete nature of Solstice EM’s support for SNM agents means that
Solstice EM supports proxy agents that you might have or might choose to
write. Proxy agents are protocol translators, speaking to the MIS with the SNM
RPC protocol and speak to managed objects using a different protocol, which
might be a proprietary protocol, or a standard protocol such as SNA or X.25.
For information on how to write an RPC agent for EM, refer to the “Writing
RPC Agents for EM” chapter in the Solstice Enterprise Manager Application
Development Guide.

7-1

SunNet Manager SNMP
Proxy Agents 7

7.1 Overview
The SunNet Manager (SMM) agents provided with Solstice EM include proxy
agents to support Simple Network Management Protocol (SNMP) and SNMP
Version 2. Proxy agents allow for distribution of polling of SNMP devices to
multiple locations in the network.

This chapter describes the configuration and operation of the SunNet Manager
SNMP proxy agents. For information on installing the SNM agents and
proxies, refer to the Solstice Enterprise Manager Installation Guide.

Note – For purposes of this guide, SunNet Manager (SNM) refers to the 2.2 or
later releases of SunNet Manager, and releases of Solstice Site Manager and
Solstice Domain Manager. SunSoft makes no claims of compatibility of Solstice
EM with versions of SNM prior to 2.2.

Overview page 7-1

SNMP Proxy Agent Operation page 7-4

SNMP Version 2 Support page 7-11

7-2 Solstice Enterprise Manager Administration Guide

7

SunNet Manager requests can be launched from the EM MIS using the request-
handling capabilities of the EM Nerve Center (as described in Chapter 11,
“Building Templates for SunNet Manager Event Requests”). Polling of the
managed resource at the specified intervals is handled by the SNM proxy agent
rather than the Nerve Center, minimizing network traffic and the polling work
required of the MIS.

Proxy agents run on one of the following platforms:

• Sun workstations running SunOS 4.x
• Sun workstations running Solaris 2.x
• PCs running Solaris 2.x/x86.

The Solstice EM MIS communicates with the SNMP proxy agents using the
same Remote Procedure Call (RPC) protocol as other SNM agents. The SNMP
Version 1 proxy agent (na.snmp) communicates with other network devices
using the SNMP protocol defined in RFC 1157. The SNMP Version 2 proxy
agent (na.snmpv2) is discussed below in Section 7.4, “SNMP Version 2
Support.”

The SNMP proxy agent allows you to manage any number of management
information bases (MIBs) in which you can define either standard SNMP MIB
objects or enterprise-specific objects. The proxy agent uses a SunNet Manager
schema file to map objects described in a MIB and SunNet Manager attributes.
A schema file is the representation of a MIB used by SunNet Manager.

Communication between the Solstice EM MIS and SNMP devices, using the
RCP-based SNMP proxy agents, thus requires three representations of the MIB
structure:

• The SNMP MIB on the agent system containing the managed resource

• The SNM schema mapping of the MIB, which resides on the proxy system

• The GDMO and ASN.1 documents, defining the managed object class,
which is loaded into the MIS

SunNet Manager SNMP Proxy Agents 7-3

7

Figure 7-1 MIB, GDMO, and Schema Definitions

Generating GDMO object classes from SNMP MIBs is described in Chapter 17,
“Adding a MIB to the MIS.” How to generate SNM schema files from MIBs is
discussed later in this chapter. To ensure successful operation, there must be an
identical mapping of object definitions between the SNMP MIBs, the GDMO
documents and the SNM schema files — see Figure 7-1.

The following SunNet Manager SNMP schemas are supplied with Solstice EM:

• snmp.schema describes MIB I, as defined by RFC 1156.

• snmp-mibII.schema describes MIB II, as defined by RFC 1213.

• snmpv2-mibII.schema describes MIB II, as used by SNMP version 2. See
the “SNMP Version 2 Support” section for a description of SNMPv2
support. This schema is used only by the na.snmpv2 agent.

• sun-snmp.schema describes the MIB associated with the SNMP agent
(snmpd) for Sun workstations. This schema file provides MIB II support
with Sun enterprise-specific extensions. For more information about the
sun-snmp.schema , refer to the Site/SunNet/Domain Manager Reference
Manual.

 MIS SNMP
Proxy Agent

SNMP
Agent

GDMO
Object Classes

SNM
Schemas MIB

Uses na.snmp.schemas
in snm.conf file

SNMP
Protocol

RPC
protocol

(na.snmp)

7-4 Solstice Enterprise Manager Administration Guide

7

Except for the two MIB II files (which differ only in the RPC number specified),
each of the schema files listed above is a subset of the file that follows it. That
is, snmp.schema is a subset of the two MIB II files, which are, in turn, are a
subset of sun-snmp.schema.

The SNMP proxy agent can simultaneously access any of the above-mentioned
schemas, as well as other enterprise-specific schemas that you might create.
The SNMP proxy agent uses the keyword na.snmp.schemas in the
snm.conf file to locate the directories where the SNMP schema files reside.

The following section describes in detail how the SNMP proxy agent works.
Note that many of the operations of the proxy agent are defined by arguments
passed in the SNM request or with keywords in the snm.conf file on the
proxy system. Refer to the snn.conf entry in the Site/SunNet/Domain Manager
Reference Manual for information on the keywords that are related to the SNMP
proxy agent.

7.2 SNMP Proxy Agent Operation
The default operation of the SNMP proxy agent is configured by values
specified in the snm.conf file. These parameters are identified by various
keywords. The affect of these settings is described below. The SNMP proxy
agent operation is illustrated in Figure 7-2.

SunNet Manager SNMP Proxy Agents 7-5

7

Figure 7-2 SNMP Proxy Agent Operation

When the SNMP proxy agent starts up (normally via inetd) it loads all the
SNMP schemas located in the directories specified by the keyword
na.snmp.schemas in the snm.conf file on its host system. Only SNMP-
related schemas (schemas that contain an rpcid keyword value of ‘100122’)
are loaded.

SNMP
Proxy Agent
(na.snmp)

SNM Event
Dispatcher
(na.event)

SNM
Applications

SNM
Event
Forwarder
(em_snmfwd)

snmAlarmEvents

S
N

M
 E

ve
nt

s

 SNM
 Events

Alarm
Log

Nerve
Center

MIS

t

snm.conf
schema files

reads

Proxy SystemMIS System

SNM
Events

SNM Request

SNMP
Agent

 Poll Response

7-6 Solstice Enterprise Manager Administration Guide

7

When the SunNet Manager SNMP proxy agent receives a request for an SNMP
agent on a particular device, it performs the following sequence of operations:

1. It checks whether there are any new or modified SNMP related schema files
since the last request. If the proxy agent finds a new or modified schemas in
any of the directories specified by the na.snmp.schemas keyword in the
snm.conf file on the proxy’s system, it loads the schema file.

2. It passes the request to an existing agent subprocess or forks a new
subprocess, if needed, to handle the request. A single subprocess can handle
multiple SNMP requests from an instance of a management application. The
maximum number of subprocesses that the SNMP proxy agent can fork is
set by the keyword na.snmp.max-subprocs in the snm.conf file. At
installation, this value is set to 20. The maximum number of requests that a
subprocess can handle is set by the keyword na.snmp.max-requests in
the snm.conf file. At installation, this value is set to 50.

3. It checks whether the request contained any optional arguments. Requests
sent by the Solstice EM Nerve Center may include arguments in an SNMP
request. These arguments can include:

a. the name of the schema to be used with the request. If, for some reason,
the specified schema does not contain the attribute group specified in the
request, the proxy agent attempts to use the schema specified by the
keyword na.snmp.default-schema in the snm.conf file on its host
system. At installation, the default schema is set to be:

• /usr/snm/agents/snmp-mibII.schema for Solaris 1.x installations
• /opt/SUNWconn/snm/agent/snmp-mibII.schema for Solaris 2.x

installations.

This schema supports the MIB II definition.

b. a community name that specifies the SNMP community name the proxy
agent is to use when reading or writing attribute values. If no community
name is specified, public is used for both Get and Set requests.

c. a request timeout that specifies the number of seconds the proxy agent is
to wait for a response to a request sent to the target system. If no request
timeout is specified, the proxy agent uses the value specified by the
keyword na.snmp.request_timeout in the snm.conf file on its
system. At installation, the value is set to 5 (seconds).

4. The proxy agent then sends an SNMP message to the device and waits for a
response.

SunNet Manager SNMP Proxy Agents 7-7

7

If the proxy agent is sending a Get request, the proxy sends up to three
SNMP requests per reporting interval. (The maximum number of SNMP
requests sent is specified by the keyword na.snmp.max_attempts in the
snm.conf file—by default the value is set to 3.) For each SNMP PDU sent,
the proxy waits for the specified request timeout for a response from the
device. As mentioned previously, the request timeout can be an optional
argument in the request. If it is not specified in the request, request timeout
is either the request timeout value specified in the SNMP host file for the
device or the value of the keyword na.snmp.request_timeout in the
snm.conf file.

If the proxy agent does not receive a response after sending three SNMP
requests, it sends a “No response from system” report to the Event
Dispatcher (na.event) (The keyword na.snmp.trap-if-no-response
in the snm.conf on the proxy system determines whether the proxy agent
sends a trap or an error report. At installation, the keyword’s value is
true —send a trap report.) The proxy agent then waits until the next
reporting interval to send out another set of SNMP requests. If no reporting
interval has been specified in the request, the proxy agent sends out SNMP
requests every 30 seconds. If the proxy agent does not receive a response
when the last report is due, it sends both an error report and a trap report to
na.event if na.snmp.trap-if-no-response is true .

If the proxy agent is sending a Set request, the proxy waits for the specified
request timeout for a response before timing out. There is no attempt to re-
send the request. The reason for this is as follows: Because UDP is the
transport mechanism, there is no guarantee of message delivery, thus there
is no way to determine whether the request or the response to the request
was lost. If you do not receive a response from your initial Set request, you
should perform a Get request to see whether or not the Set operation was
successful.

5. When the proxy agent receives a response from the target device, it sends a
report to the Event Dispatcher (na.event) on the management machine
that initiated the request.

If the proxy agent does not receive an acknowledgment from the event
dispatcher within a specified time, the proxy agent terminates the request.
The specified time that the proxy waits for the event dispatcher to
acknowledge the report is specified by the na.snmp.report_timeout
keyword in the snm.conf file. At installation, the keyword’s value is set to
5 (seconds).

7-8 Solstice Enterprise Manager Administration Guide

7

Normally, if the SNMP proxy agent is not performing any requests, it will exit.
The keyword na.snmp.exit-if-no-requests in the snm.conf file allows
you to specify otherwise.

7.2.1 SNMP Trap Daemon (em_snmp-trap) Operation

Asynchronous or unexpected event notifications (traps) from SNMP agents are
handled by the SNMP trap daemon (em_snmp-trap) , which may run on one
or more machines on the network. The daemon listens for incoming traps on
the SNMP trap port (port 162). The trap daemon does the following with
incoming traps:

• SNMP traps are converted to CMIP event notifications, as specified by the
trap daemon’s trap_maps configuration file, and sent to the MIS.

• SNMP traps are also translated into SunNet Manager traps for use by SNM
applications. SNM applications that register with the event dispatcher
receive the incoming SNM traps forwarded by the trap daemon. The trap
daemon uses a SunNet Manager SNMP trap file, which contains information
on enterprise-specific traps.

• You may also specify forwarding of raw SNMP traps to other managers.

Configuration of the EM SNMP trap daemon is described in Chapter 8,
“Mapping SNMP Traps to CMIP Event Notifications.”

7.3 Schema Files
If you do not already have an SNM schema file for the device you want to
manage via the RPC-based SNMP proxy agent (na.snmp), use the
mib2schema utility to convert an existing MIB file for the device. The
mib2schema utility supports conversion of MIBs adhering to the following
Internet standards:

• RFC 1156 — MIB-I
• RFC 1213 — MIB-II
• RFC 1155 — SMI
• RFC 1212 — Concise MIB definition
• RFC 1215 — Defining traps

SunNet Manager SNMP Proxy Agents 7-9

7

To create a schema file for managing devices via the SNMP Version 2 proxy
agent (na.snmpv2), use the v2mib2schema utility to convert the MIB to a V2-
compatible schema. The v2mib2schema utility is described below in
Section 7.4.3, “Using the v2mib2schema Program.”

Note – Nested groups or tables are not supported in SNM schema files.

You may need to manually edit the resulting schema file produced by
mib2schema . The areas that are likely to require changes are:

• When mib2schema encounters an OCTET STRING, it inserts -C ??? in
place of a format string. If you want to format octet strings in a particular
way, search the schema file for occurrences of -C ??? to replace ??? with
the required format string. If a format string is specified, the SNMP proxy
agent formats each octet of the attribute value it receives from an SNMP
agent before sending the attribute value to a SunNet Manager rendezvous.
You may, however, choose not to enter any format string. In this case, the
contents of the OCTET STRING will be printed as is.

The format string is the same as the sprintf(3S) format argument. Up to
16 octets can be formatted; each byte is sent to sprintf as a separate,
unsigned character. For example, the format string:

causes an OCTET STRING containing a 48-bit Ethernet address to be
formatted in standard colon notation (for example, 08:00:20:07:8F:93).

Note – The format string and the length of the OCTET STRING to be formatted
must match. All bytes specified in the format string are displayed. If the
OCTET STRING is smaller than the format string, unexpected characters may
be displayed in the formatted output.

Note that the -C format parameter is only used if the parameter -T STRING
is specified for the attribute. If the parameter -T STRING is specified and
-C format is not specified, the attribute is displayed as either octets or as a
string, depending upon whether the attribute is an octet or display string.

%02.2X:%02.2X:%02.2X:%02.2X:%02.2X:%02.2X

7-10 Solstice Enterprise Manager Administration Guide

7

An example of the characteristics string for the ifPhysAddress attribute in
the ifStatus table is shown below:

This results in the display:

ifPhysAddress =08:00:20:09:A0:D5

• Some SNMP devices cannot return groups or tables with a large number of
attributes; this is due to local space limitations. When this happens, the
SNMP proxy agent returns an error message that the response is “too big”.
This means that very large groups or tables need to be split into smaller
groups or tables to be received by the SNMP proxy. mib2schema does not
automatically split groups or tables. Generally, if a group has more than 15
fields, it is a good idea to split the fields up into smaller groups. You can
choose your own name for subgroups.

In addition to the schema file, the mib2schema utility produces an object
identifier file (with the .oid suffix) that contains a table of object identifiers
and names. The object identifier file is required only if you want SNMP traps
forwarded as SNM traps to SunNet Manager Consoles. For SNM Console
support, the contents of the .oid file need to be added to the SNM Object
Identifier Database, using the SNM build_oid utility. For more information,
refer to the build_oid entry in the Site/SunNet/Domain Manager Reference
Manual.

mib2schema may also produce a trap definition file (with the.traps suffix),
depending upon whether traps were specified in the MIB. This file is used for
mapping enterprise-specific traps into SunNet Manager trap format for use by
the SNM Console. Refer to the Solstice Site/SunNet/Domain Manager
Administration Guide for more information.

If mib2schema cannot determine the key for a table characteristics field in the
schema file, it inserts -K ??? into the schema file.

"-N ifPhysAddress -O 1.3.6.1.2.1.2.2.1.6 -T STRING -A RO
-C %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X -X equal -F 0"

SunNet Manager SNMP Proxy Agents 7-11

7

7.4 SNMP Version 2 Support
Solstice EM provides support for SNMP Version 2 through the SunNet
Manager SNMP Version 2 proxy agent (na.snmpv2). This section assumes you
are familiar with SNMPv2 concepts. Instructions for installing and de-
installing SNMPv2 are in the Solstice Enterprise Manager Installation Guide.

SunNet Manager provides a proxy agent that supports SNMPv2. This proxy
agent allow you to get data and event information from and set attribute
values for devices managed through SNMPv2.

There is also an SNMP agent for Sun workstations called the snmpv2d daemon.
The MIS communicates with this daemon through the SNMP proxy agent. The
snmpv2d daemon also allows Sun workstations to be managed by other
SNMPv2 and SNMP stations. For more information about the snmpv2d

daemon, see the snmpv2d entry in the Site/SunNet/Domain Manager Reference
Manual.

The following sections discuss the differences between SNMP and SNMPv2.
For information about the SNMPv2 configuration files, see the following man
pages:

v2install (1), acl.pty (5), agt.pty (5), context.pty (5), mgr.cnf (5),
mgr.pty (5), snmpv2d.conf (5), and view.pty (5).

These man page entries are also provided in hardcopy and AnswerBook form
in the Site/SunNet/Domain Manager Reference Manual.

Note – When the Discover tool locates SNMP devices on your network, it
cannot determine whether the devices support functionality specific to
SNMPv2.

7.4.1 SNMPv2 Enhancements

The key enhancements from SNMP to SNMPv2 are in the following categories:

• Structure of Management Information (SMI)

• Protocol operations

• Manager-to-manager capability

• Security

7-12 Solstice Enterprise Manager Administration Guide

7

7.4.1.1 Structure of Management Information

The SMI for SNMPv2 is based on the SMI for SNMP. The SNMPv2 SMI
provides more extensive specification and documentation of managed objects
and MIBs.

Several new data types were created for SNMPv2. These include a 64 bit-
counter (Counter 64) and the UInteger32 type which allows representation
of integers in the range 0 to 232 - 1.

The SNMPv2 OBJECT-TYPE macro includes an optional UNITS clause, which
contains a textual definition of the units associated with an object. This clause
is useful for any object that represents a measurement in units (ex. “seconds”).
The OBJECT-TYPE macro for SNMPv2 also incudes a MAX-ACCESS clause
which allows you to specify the maximum level of access.

7.4.1.2 Protocol Operations

SNMPv2 has three new protocol data units (PDU). The SNMPv2 trap PDU
works in a way similar to that of the SNMP trap PDU, but it uses the same
format as most other SNMPv2 PDUs. This eases the receiver processing task.

A major enhancement for SNMPv2 is the GetBulkRequest PDU. This PDU
can significantly minimize the number of protocol exchanges required to
retrieve a large amount of management information.

The third additional PDU is the InformRequest PDU. This is sent by an
SNMPv2 manager, on behalf of an application, to another SNMPv2 manager.
The PDU provides management information to an application using the second
SNMPv2 manager.

7.4.1.3 Manager-to-Manager Capability

Manager-to-Manager operations are supported through the use of the
manager-to-manager MIB. This MIB is a set of objects which describe the
behavior of an SNMPv2 entity acting in a manager roll. For more information,
see RFC 1451.

SunNet Manager SNMP Proxy Agents 7-13

7

7.4.1.4 Security

SNMPv2 uses the Secure SNMP (S-SNMP) party concept for security.
Improvements over S-SNMP include the elimination of ordered delivery
mechanism and simplification of the clock synchronization algorithm. In
addition, SNMPv2 introduces the context concept. Contexts provide for more
efficient storage of access control and MIB view information. SNMPv2 uses
both DES and MD5 for message security and authentication.

7.4.2 SNMPv2 Files

You can install SNMPv2 as an agent (snmpv2d), a manager (na.snmpv2), or
both. The required files are installed as part of the current product. Installation
steps are the same for both agents and managers. Before running the v2install
script, you will need to create the three configuration files required by the
v2instal l script. The files are:

agents — contains names of hosts on which the snmpv2d agent will be
installed

mgrs.v1 — contains names of hosts that will be running SNMPv1 managers
(na.snmp)

mgrs.v2 — contains names of hosts that will be running SNMPv2 managers
(na.snmpv2)

See the v2install (1) man page, or the v2install entry in the
Site/SunNet/Domain Manager Reference Manual, for detailed information about
these files. Procedures for installing (or removing) SNMPv2 software are in the
Solstice Enterprise Manager Installation Guide.

7.4.3 Using the v2mib2schema Program

A program, v2mib2schema , has been included with the current product to
allow you to translate your own SNMPv2 MIBs to SNM schema files.

Be aware that SunNet Manager schemas do not have the flexibility of SNMPv2
MIBs, so changes to the MIB may be necessary before v2mib2schema can
successfully parse it.

7-14 Solstice Enterprise Manager Administration Guide

7

Although v2mib2schema parses TEXTUAL-CONVENTIONS clauses, it
currently ignores them, so later references to the new types will cause syntax
errors. See the v2mib2schema (5) man page (or v2mib2schema entry in the
Site/SunNet/Domain Manager Reference Manual) for more details.

8-1

Mapping SNMP Traps to
CMIP Event Notifications 8

8.1 Trap Daemon Operation
Simple Network Management Protocol (SNMP) agents have the ability to
generate event notifications on their own initiative when certain conditions are
detected; these notifications are called traps. A Solstice EM daemon —
em_snmp-trap — listens for incoming SNMP traps for forwarding to
management stations. The em_snmp-trap daemon can be distributed to
multiple machines in the network.

The trap daemon does the following with incoming SNMP traps:

• SNMP traps are converted to CMIP event notifications and sent to the MIS.
Like other EM applications, em_snmp-trap uses the Portable Management
Interface to communicate with the MIS. The trap daemon’s mapping of

Trap Daemon Operation page 8-1

The Structure of SNMP Traps page 8-4

Default Trap Mapping page 8-6

Trap Daemon Behavior When no Mapping Is Provided page 8-11

Customizing the Mapping of SNMP Traps page 8-11

Format of Trap Mapping Records page 8-17

Distributed Trap Handling page 8-26

8-2 Solstice Enterprise Manager Administration Guide

8

SNMP traps into CMIP notifications can be customized via entries in the
daemon’s trap mapping file (trap_maps); this is described in Section 8.5,
“Customizing the Mapping of SNMP Traps.”

• SNMP traps are also translated into SunNet Manager traps for use by
SunNet Manager applications. Any SNM application (such as the SNM
Console) that registers with the SNM Event Dispatcher (na.event) on a
manager system receives the incoming SNM traps forwarded by the trap
daemon. The trap daemon uses a SunNet Manager SNMP trap file
(snmp.traps), which contains information for interpretation of enterprise-
specific traps. To configure the SNMP trap daemon for use with SunNet
Manager, follow the Solstice Site/SunNet/Domain Manager Administration
Guide guidelines for the SNM trap daemon (na.snmp-trap). (The SNM
trap conversion functionality of na.snmp-trap is a subset of the
functionality of the Solstice EM SNMP trap daemon.)

• You can also specify forwarding of raw SNMP traps to other managers.
How to configure this capability is described in Section 8.7.1, “Forwarding
SNMP Traps to Other Managers.” This is configured when you install the
Solstice EM trap daemon. The installation script prompts you for the host
name and port number of the managers that are to receive the forwarded
SNMP traps.

Note – It is unnecessary to run both the Solstice EM SNMP trap daemon and
the SunNet Manager SNMP trap daemon (na.snmp-trap) on the same system
because they listen at the same port (port 162) and the SNM trap-daemon
handling is a subset of the functionality of em_snmp-trap .

SNMP trap daemon operation is illustrated in Figure 8-1.

For information on how to install em_snmp-trap , refer to the Solstice
Enterprise Manager Installation Guide.

Note – In the current release, em_snmp-trap is supported only on Sun
workstations running Solaris 2.4 or later software.

Mapping SNMP Traps to CMIP Event Notifications 8-3

8

Figure 8-1 em_snmp-trap Operation

There are two ways the SNMP trap daemon can be started or stopped:

• The em_services command is used to start and stop all of the EM
daemons at once, including the trap daemon and the MIS. (For information
on the em_services command, refer to the “Management Information
Server” chapter in the Solstice Enterprise Manager Reference Manual.)

SNMP Trap
Daemon
(em_snmp-trap)

SNMP

Alarm
Log

internetAlarms

trap_maps

reads at
startup

or other CMIP
notifications

EM MIS

Alarm
Service

Sets device
 fault status

Monitors

EM Viewer

traps

 Runtime ❂
 data

Determines
icon color

Other Managers

SNMP
Traps

SNM
Traps

Event
Dispatcher

SunNet Manager
Applications

SNM
Traps(na.event)

trap_forward
snm.conf
snmp.traps

SNMP Agent
EM Alarm
Manager

8-4 Solstice Enterprise Manager Administration Guide

8

• If you want to start or stop the trap daemon by itself, you can use the
em_trapd script. There are two commands:

em_trapd start — This command starts the trap daemon.

em_trapd stop — This command stops the trap daemon.

You should use these commands if you want to start or stop the trap
daemon on an MIS machine without also starting or stopping the MIS.

At startup the SNMP trap daemon spawns at least two child processes. One
process is responsible for translation of traps to SunNet Manager format and
forwarding to the SunNet Manager event dispatcher (na.event). In addition,
one additional child process is spawned for each of the MIS hosts the trap
daemon connects to. (You specify the target MIS machines during installation
of the trap daemon.) Each of these processes sets up a CMIP over TCP/IP
connection to the MIS on a particular host, and is responsible for conversion of
SNMP traps to CMIP event notifications.

The trap daemon’s mapping of incoming SNMP traps into CMIP event
notifications is determined by user-configurable mapping records in the trap
daemon’s trap_maps file. The trap_maps file is an ASCII text file that resides
in the /etc/opt/SUNWconn/em/conf directory; the trap daemon reads this
file whenever it starts.

8.2 The Structure of SNMP Traps
In the discussion of trap-mapping in this chapter we will be making reference
to the various fields that comprise the SNMP trap Protocol Data Unit (PDU).
The SNMP trap PDU has the fields indicated in Figure 8-2.

Mapping SNMP Traps to CMIP Event Notifications 8-5

8

Figure 8-2 SNMP Trap PDU Structure

The fields are:

• <type> — Indicates the type of SNMP message. (In this case, it indicates that
this is a trap PDU.)

• <enterprise> — Indicates the subsystem that generated the trap, as indicated
by the sysObjectID attribute.

• <agent-addr> — This is the IP address of the source of the trap.
• <generic-trap> — This is an integer value in the range 0 to 6 indicating the

standard trap type. The standard trap types are listed in Table 8-1.
• <specific-trap> — A device-specific value providing more information

concerning the nature of the event.
• <timestamp> — Time between the last reinitialization of the agent system

and the time when the trap was generated.
• <variable-bindings> — Information that varies depending upon the particular

implementation by the product vender. The format consists of
attribute/value pairs. Each attribute name is followed by its value.

<type> <enterprise> <agent-addr> <generic-trap> <specific-trap> <timestamp> <variable-bindings>

SNMP Trap PDU

 Variable Bindings

<varbindname1> <varbindvalue1> … … <varbindnameN> <varbindvalueN>

8-6 Solstice Enterprise Manager Administration Guide

8

The <generic-trap> and <specific-trap> fields contain values that indicate the
nature of the trap. The possible values for <generic-trap> are described in
Table 8-1.

8.3 Default Trap Mapping
A default trap-mapping is configured automatically when you install the EM
trap daemon. When an SNMP trap arrives, the default method for converting
this into a CMIP event notification, as follows:

Table 8-1 Standard SNMP Trap Types

Value of
<generic-trap> Trap Type Description

0 coldStart The originating SNMP device is
reinitializing itself, typically due to
unexpected reboot.

1 warmStart The originating SNMP device is
reinitializing itself, typically due to
normal restart.

2 linkDown One of the agent’s communication
links is down. The first name/value
pair in the variable bindings is the
ifIndex for the interface.

3 linkUp One of the agent’s communication
links has come up. The first
name/value pair in the variable
bindings is the ifIndex for the
interface.

4 authenticationFailure The originating system has received
a protocol message that has failed
authentication.

5 egpNeighborLoss An External Gateway Protocol peer
has been marked down.

6 enterpriseSpecific Further information about the event
is indicated in the <specific-trap>
field.

Mapping SNMP Traps to CMIP Event Notifications 8-7

8

8.3.1 Default Method for Specifying the Source
of the Alarm

When an SNMP trap arrives, em_snmp-trap extracts the IP address from
the <agent-addr> field in the SNMP trap and uses this information to
determine if there is an object configured in the MIS to represent that agent
system. By default, a cmipsnmpProxyAgent object instance in the MIS is
used to represent SNMP agent systems.

• If there is a cmipsnmpProxyAgent object in the MIS corresponding to the
IP address in <agent-addr>, em_snmp-trap ’s default method of operation
is to set the originating system’s cmipsnmpProxyAgent as the source
object instance for this alarm.

• If there is no managed object instance in the MIS corresponding to the IP
address of the SNMP trap, the trap daemon attempts to retrieve the
hostname of the source agent, but if this is not possible, the trap deamon
sets the value of cmipsnmpProxyAgentId to “<IP-address>”.

• If there are multiple objects in the MIS that have network addresses that
match the IP address of the trap, em_snmp-trap seeks a match on the
SNMP Community String values included in the trap header. For example,
an SNMP agent may be a proxy for legacy devices, and the Community
String provides information that is used to identify the source device for
the alarm.

The trap daemon’s default method of mapping SNMP traps into CMIP event
notificaitons is determined by a mapping entry in the default trap_maps file.
The default mapping uses a single scheme to convert traps for any <enterprise>
identifier. The mapping is based on generic trap type.

8.3.2 Default perceivedSeverity Values

Severity is the presumed importance or impact of an event. Following the ITU
X.721 standard, Solstice EM uses an attribute in event notifications called
perceivedSeverity to represent severity of events. The Alarm Service, which
monitors the alarm log, uses the perceivedSeverity value in event notifications
to determine the fault status indication for devices. The Alarm Service sets the
fault status of a device to the highest perceivedSeverity of outstanding
(uncleared) alarms for that device. The fault status of a device, as determined
by the Alarm Service, is represented in the Viewer by icon color. The default

8-8 Solstice Enterprise Manager Administration Guide

8

mapping of severities to colors is described in Table 8-2. If event notifications
are to affect fault status indication, they need to have a perceivedSeverity
value.

SNMP, however, lacks a systematic concept of the severity of a trap. A function
of the trap-mapping is to assign a severity to event notifications based on
information in the SNMP trap. The default trap-mapping uses the <generic-
trap> value to make severity assignments as follows:

• coldStart traps — critical
• warmStart traps — major
• linkDown traps — major
• linkUp traps — cleared
• authenticationFailure traps — warning
• egpNeighborLoss traps — minor
• enterpriseSpecific traps — indeterminate

Note that linkUp traps automatically clear previous linkDown traps from the
same router.

You can easily change these severity assignments if you wish. For example, the
mapping record for linkDown traps in the default trap_maps file contains the
following line:

If you want linkDown traps to have a severity of critical, simply edit the
trap_maps file to replace “major” with “critical”. This change takes effect when
the trap daemon is restarted. Customizing the trap mapping is discussed in

Table 8-2 Default Color-Coding of Severities

Integer Value Severity Default Color

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color

0 Indeterminate Blue

perceivedSeverity=major;

Mapping SNMP Traps to CMIP Event Notifications 8-9

8

detail in Section 8.5, “Customizing the Mapping of SNMP Traps.” For
information on the Alarm Service, refer to the “Alarm Service” chapter in the
Solstice Enterprise Manager Reference Manual.

8.3.3 Default probableCause Values

The default trap-mapping assigns integer values to the probableCause
attribute in event notifications as follows:

• coldStart traps — 100
• warmStart traps — 200
• linkDown traps — The value from the first variable binding attribute/value

pair. By convention, this is the ifIndex , indicating the number of the
interface.

• linkUp traps — The value from the first variable binding attribute/value
pair.

• authenticationFailure traps — 500
• egpNeighborLoss traps — 600
• enterpriseSpecific traps — Set to the specific trap type, in localForm

(integer).

For example, if an enterpriseSpecific trap has a trap specific type of 99, this
will be the value of probableCause for the enterpriseSpecificTrap
notification generated by the trap daemon.

8.3.4 Default additionalText Information

The default trap-mapping uses the additionalText field in the event notification
to contain the following information:

• The enterprise identifier from the trap <enterprise> field
• The <specific-trap> value (typically 0 for traps other than enterpriseSpecific

traps)
• The attribute/value pairs from the trap variable bindings

8.3.5 Default Event Notification Type

By default, the trap daemon converts SNMP traps into Solstice EM-specific
event notifications as indicated in

8-10 Solstice Enterprise Manager Administration Guide

8

The default trap-mapping options ensures that every incoming SNMP trap
matchs some trap-mapping record in the trap_maps file. This is done by
including in the trap_maps file a mapping block that specifies a mapping for
each <generic-trap> type. The default mapping block is of the following form:

The identifier “1.3.6.1.4.1” acts like a wildcard in that it matches the <identifier>
field of every trap.

Mapping blocks can also be added to the trap_maps file that use other
enterprise identifiers to map SNMP traps generated by agents supplied by
particular venders. How to do this is discussed below in Section 8.5,
“Customizing the Mapping of SNMP Traps.”

8.3.6 Default Location of Information from Trap Variable Bindings

The default mapping scheme loads the attribute/value pairs from the trap
variable bindings into the additionalText field of the event notification.

8.4 Trap Daemon Behavior When no Mapping Is Provided
This section describes how the trap daemon handles incoming SNMP traps in
any situation where no explicit mapping is provided by the trap_maps file.
This situation could happen, for example, if you delete the default mapping
block, or if some of the records within it are deleted.

If an incoming SNMP trap fails to match any entry in the trap_maps file, the
trap daemon converts the SNMP trap into an internetAlarm , in accordance
with the ISO-Internet Management Co-existence (IIMC) standard. The IIMC
standard defines the use of the ISO/ITU Common Management Information
Protocol (CMIP) for integrated management of TCP/IP networks that are
managed using SNMP. The IIMC standard prescribes the following:

• Event notification type is internetAlarm.

enterprise 1.3.6.1.4.1
{
<mapping-record-1>
...
<mapping-record-N>
}

Mapping SNMP Traps to CMIP Event Notifications 8-11

8

• The perceivedSeverity value of internetAlarms is set to indeterminate.
• The alarm is posted against the cmipsnmpProxyAgent that represents the

agent system.
• The attribute/value pairs that comprise the trap variable bindings are

loaded into the additionalInformation field of the internetAlarm.

The user-configurable trap-mapping capability of the Solstice EM trap daemon
is designed to address these limitations of SNMP and the IIMC standard. This
capability allows you to configure the trap daemon to extract information from
SNMP traps to create more meaningful alarms, tailored to your particular
network management needs.

8.5 Customizing the Mapping of SNMP Traps
The Solstice EM trap-mapping capability is designed to enable you to
customize the mapping of SNMP traps to CMIP event notifications.

8.5.1 Overview

SNMP lacks a systematic notion of the severity of an alarm. Also, the IIMC
standard lacks a systematic method for determining the source component for
a trap within the agent system. The user-configurable trap-mapping capability
of the Solstice EM trap daemon is designed to address these limitations of
SNMP. This capability allows you to configure the trap daemon to extract
information from SNMP traps to create more meaningful alarms, tailored to
your particular network management needs.

The trap-mapping activity of the SNMP trap daemon can be customized by
editing the trap_maps file. Your modifications take effect after the trap
daemon is restarted.

8-12 Solstice Enterprise Manager Administration Guide

8

8.5.2 Enterprise Mapping Blocks

The trap mapping file consists of blocks of records, with each block identified
by the keyword enterprise. Each block is in the following form:

The mapping records (one or more) for a given enterprise are grouped within a
pair of curly braces. Enterprise object identifiers are specified in dot-dot
notation.

Enterprise blocks in the trap_maps file select incoming traps for mapping if
the the <enterprise-object-identifier> in the block heading matches the
<enterprise> field in the trap. Three important aspects of the enterprise heading:

• A enterprise block <enterprise-object-identifier> does not need to be
identical with the <enterprise> field of the trap. For example, if the trap
<enterprise> identifier is “1.3.6.1.4.1.42.1.2”, this will match an enterprise
block with “1.3.6.1.4.1” in the heading. So long as the enterprise block
identifier is contained in the <enterprise> field, starting at the left, a match
will occur.

• A trap is mapped by the first enterprise block in the trap_maps file
whose enterprise heading it matches. Therefore, if you want to add a block
with the following enterprise identifier,:

be sure to add this block before the default mapping block, which has the
following identifier::

enterprise <enterprise-object-identifier>
{
<trap-mapping-record1>

<trap-mapping-recordN>
}

enterprise 1.3.6.1.4.1.46

enterprise 1.3.6.1.4.1

Mapping SNMP Traps to CMIP Event Notifications 8-13

8

If this default enterprise block were the first block in the trap_maps file, it
selects all incoming traps and any blocks after it in the file would never map
any traps. In general, mapping blocks with longer <enterprise-object-
identifier> strings should be at the beginning of the trap_maps file.

If an incoming trap has an <enterprise> field that matches tue <enterprise-
object-identifer> of one of the blocks in the file, but fails to match any entry in
that block, it may still be mapped if it matches another enterprise block later
in the file. Traps are checked against the enterprise blocks in the trap_maps
file sequentially, starting at the top.

The default mapping block should remain at the bottom of the file; traps
will never be tested against any blocks beneath the default block since the
default block will map any trap.

8.5.3 Mapping Records

If the trap daemon determines that an incoming trap matches a mapping block
on its <enterprise> identifier, the trap daemon then uses the first mapping
record within the selected block that matches the trap on the following two
fields:

• <generic-trap>
• <specific-trap>

If the trap fails to match any record in the enterprise mapping block on trap
type, the trap daemon checks the following enterprise blocks in the file for a
possible match. If the trap matches no mapping record in any matching
enterprise block, it is mapped into an internetAlarm , in the manner
described in Section 8.4, “Trap Daemon Behavior When no Mapping Is
Provided.”

Mapping blocks can be used to provide a mapping for enterprise-specific traps.
For example, if the agent software provided with a server generates an
enterprise-specific trap (indicated by a <generic-trap> value of 6) with a
<specific-trap> value of 5 when the machine’s internal temperature exceeds an
acceptable threshold, this could be mapped to a CMIP environmentalAlarm
with probableCause and perceivedSeverity set to appropriate values.
The type of value appropriate to an alarm attribute depends upon the GDMO
definition of that event type.

8-14 Solstice Enterprise Manager Administration Guide

8

SNMP traps can be mapped to any type of CMIP event notification the MIS
knows about. The following event notifications are defined in the MIS by
default:

Defined by the ISO X.722 standard
• objectCreation
• objectDeletion
• attributeValueChange
• relationshipChange
• stateChange
• communicationsAlarm
• environmentalAlarm
• equipmentAlarm
• integrityViolation
• operationalViolation
• physicalViolation
• processingErrorAlarm
• qualityofServiceAlarm
• securityServiceOrMechanismViolation
• timeDomainViolation

Defined by the IIMC standard
• internetAlarm

Solstice EM-specific
• snmAlarmEvent
• snmAlarmTrap
• nerveCenterAlarm
• coldStartTrap
• warmStartTrap
• linkDownTrap
• linkUpTrap
• authenticationFailureTrap
• egpNeighborLossTrap
• enterpriseSpecificTrap

The structure of these event notifications is described in the “Standard Event
Notifications” appendix in the Solstice Enterprise Manager Reference Manual.

Mapping SNMP Traps to CMIP Event Notifications 8-15

8

You could also create your own custom event types, as described in
Chapter 15, “Adding New Event Types.”

When selecting an event type for trap mapping, you will also want to ensure
that the selected event type is logged to the alarm log. This will ensure that the
incoming traps cause appropriate changes in Viewer icon color. By default,
only the following event types are excluded from the AlarmLog :

• snmAlarmEvent
• objectCreation
• objectDeletion
• attributeValueChange
• stateChange

8.5.4 How to Customize SNMP Trap Mapping

The steps in configuring em_snmp-trap for SNMP trap mapping are as
follows:

1. Collect information on enterprise-specific traps.
If you want to add mapping blocks to map enterprise-specific traps, consult
the vender documentation for SNMP devices deployed in your network to
determine which variable bindings and specific trap values to use for
mapping into event notification attributes and to identify components that
are sources of events.

2. Devise your mapping scheme.
There are four aspects to the mapping:

• Creating enterprise blocks, if desired.
These should be entered above the default enterprise block in the
trap_maps file.

• Creating records within a block that map traps to event notification type
based on generic and specific trap values.

This is discussed below in Section 8.4, “Trap Daemon Behavior When no
Mapping Is Provided.” You can also create mapping records that instruct
the trap daemon to discard matching traps.

• Creating a mapping for event notification attribute values within mapping
records.

This is discussed below in Section 8.5, “Customizing the Mapping of
SNMP Traps.”

8-16 Solstice Enterprise Manager Administration Guide

8

• Adding an FDN map to mapping records, if desired.
An FDN map is a template that is used by the trap daemon to identify
the component element that is the source of the event. This is discussed
below in Section 8.6.1, “Using FDN Templates to Specify the Source of a
Trap.”

3. Verify that the event types selected for mapping are logged to the alarm
log.
Use the Log Manager to check the discriminator that selects events for
logging to the alarm log. If your selected event type is excluded, you may
want to change the log discriminator.

4. Edit the trap_maps file.
Using your favorite text editor (such as vi), add your mapping elements to
the file, with each record conforming to the format shown in Figure 8-3.

5. Save the file.
The file location is /etc/opt/SUNWconn/em/conf/trap_maps .

6. Restart the trap daemon.
To stop the trap daemon, enter the following command (as root):

Restart the trap daemon by entering the following command (as root):

Note – During this operation, any traps that arrive on the system are lost.

7. Verify that there are no error messages at startup.
When em_snmp-trap reads the trap_maps file at startup, it prints error
messages if it encounters any parsing errors in the trap mapping table.
Verify that no errors occur when em_snmp-trap is restarted.

Note – Startup of em_snmp-trap is terminated if errors are detected in the
trap_maps file.

#em_trapd stop

#em_trapd start

Mapping SNMP Traps to CMIP Event Notifications 8-17

8

8.6 Format of Trap Mapping Records
Each record in an enterprise block in the trap_maps file has the format shown
in Figure 8-3

Figure 8-3 Trap Mapping Record Format

 GENERIC-TRAP <generic-trap>
[SPECIFIC-TRAP <specific-trap>]
 NOTIFICATION <alarm-type> | DISCARD
[ATTRIBUTE-MAP <attr-name>=<attr-value>;]
[<attr-nameN>=<attr-valueN>;]
 FDN-MAP[<FDN-template>];;

8-18 Solstice Enterprise Manager Administration Guide

8

SPECIFIC-TRAP is an optional entry. Typically, <specific-trap> will be specified
only when <generic-trap> is 6, indicating an enterprise-specific trap.

<generic-trap> is an integer in the range of 0–6.

SNMP traps are selected for mapping to specified CMIP event notifications
only if they match a mapping record on enterprise object identifier and generic
and specific trap type. If there is a match on these three values, the trap is
converted to the CMIP event notification type indicated by the keyword
NOTIFICATION. For example, you might choose to map an SNMP linkDown
trap to a CMIP communicationsAlarm, as in the following example:

Table 8-3 Example: Mapping an SNMP linkDown Trap

The type of event notification specified by NOTIFICATION in a mapping
record can be any CMIP event notification which the MIS knows about.
Alternatively, you can use the keyword DISCARD to indicate that a matching
trap is to be discarded by the trap daemon.

A mapping for one or more event attributes can be entered after the keyword
ATTRIBUTE-MAP. <attr-name> must be a valid attribute for the event type
specified by <alarm-type>.

enterprise 1.3.6.1.4.1.42
{GENERIC-TRAP 2
NOTIFICATION communicationsAlarm
ATTRIBUTE-MAP
 perceivedSeverity=varbindvalue3;
 probableCause=varbindvalue2;
FDN-MAP
 internetClassId={interfaces 0}/internetClassId={ifTable 0}/internetClassId={ifEntry
varbindvalue1};;}

Mapping SNMP Traps to CMIP Event Notifications 8-19

8

<attr-value> can be one of the following:

• A constant
In the following example

the severity of the alarm is set to critical and a string constant is passed as
additionalText.

If a constant is used for <attr-value>, it must be of a type appropriate for the
particular event notification attribute in proper ASN.1 string format.

• A trap variable binding value
For example:

In this example, “varbindvalue2” indicates the value of the second variable
binding name/value pair in the SNMP trap.

• The keyword $ALLVARS
This keyword is used only with a text field. The $ALLVARS keyword
specifies that the text field is to receive the following information:

• The <enterprise> identifier of the trap
• The <specific-trap> value
• All of the attribute/value pairs comprising the trap variable bindings

 For example:

ATTRIBUTE-MAP
 perceivedSeverity=critical;
 probableCause=localValue : 100;
 additionalText=”Network memory usage greater than 80%”;

probableCause=varbindvalue2;

additionalText = $ALLVARS;

8-20 Solstice Enterprise Manager Administration Guide

8

An example of output from this mapping would be an additionalText field that
looks like this::

Each mapping of an attribute to a value must end in a semicolon.

The EM Alarm Service requires that an alarm have a perceivedSeverity value
(an integer value in the range of 0 to 5) in order to map to Viewer icon colors
that represent the importance of a network event. The valid severities and their
default associated icon colors are listed in Table 8-2.

The mapping of severity to displayed color is controlled by the EM Nerve
Center; this mapping is user-configurable via the Request Designer application.
Refer to the “Request Designer” chapter in the Solstice Enterprise Manager
Reference Manual for more information.

The interpretation of <specific-trap> values for enterprise-specific traps depends
upon the particular implementation by the product vender. You will need to
consult the product documentation for SNMP devices in your network to
determine an appropriate mapping to CMIP event notifications.

SNMP traps that do not match any record in the mapping file on <enterprise>,
<generic-trap>, and <specific-trap> are mapped to default IIMC internetAlarms
as described in Section 8.4, “Trap Daemon Behavior When no Mapping Is
Provided.”

Some useful considerations in customizing the trap_maps file:

• ATTRIBUTE-MAP is an optional entry. However, you will want to include a
mapping for at least the attributes defined as REQUIRED attributes in the
GDMO definition of the alarm type specified as NOTIFICATION.

• Two semicolons are required to mark the end of each record.

• Case is ignored for all keywords in the trap_maps file.

• Comments can be interspersed in the file. Any line that begins with a pound
sign (#) as the first character in the line at the left is treated as a comment.

enterprise = 1.3.6.1.4.1.42 , specificTrap = 1 , ifNumber = 5 ,
ifType = other , ifIndex = 3 , ifDescr = THIS IS A STRING

Mapping SNMP Traps to CMIP Event Notifications 8-21

8

Note – If you specify a mapping of attributes for internetAlarms, the only
attributes that will be included in the alarm are the required attributes and any
optional attributes whose mapping you have specified.

8.6.1 Using FDN Templates to Specify the Source
of a Trap

When SNMP traps arrive at the MIS system, em_snmp-trap extracts the IP
address from the <agent-addr> field in the SNMP trap and uses this information
to determine if there is an object configured in the MIS to represent that agent
system. By default, a cmipsnmpProxyAgent object instance in the MIS is used
to represent the agent system. If there is a cmipsnmpProxyAgent object in the
MIS corresponding to the IP address, em_snmp-trap ’s default method of
operation is to convert the trap to an internetAlarm and set the originating
system’s cmipsnmpProxyAgent as the source object instance for this alarm.
For example, if a linkDown trap arrives from router bigguy with IP address
129.144.55.67, em_snmp-trap sets the following as the fully distinguished
name (FDN) for the alarm:

Figure 8-4 Sample FDN for cmipsnmpProxyAgent Object Instance

This might not be the object instance that represents the specific component on
which the event occurred. To point the event notification at the particular
component object, you can specify a template to build an FDN that points to
the specific component that is the source of the event, such as an interface on a
router or a circuit in a switch. This template is indicated in the trap mapping
record by the FDN-MAP keyword.

8.6.1.1 Understanding FDNs and RDNs

An FDN specifies an absolute path through the Management Information Tree
(MIT) to an object instance. The FDN specifies the path to an object instance by
indicating its “containment” relationships. Just as an object instance is a

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1
0}/cmipsnmpProxyAgentId=”bigguy”

8-22 Solstice Enterprise Manager Administration Guide

8

software entity that represents a particular network resource, the containment
relationship between objects is used to model physical containment
relationships, such as that between a router and its interface cards.

The format of an FDN is as follows:

Figure 8-5 FDN Format

You can think of an FDN as analogous to an absolute path to a file in a UNIX
file system. Each <naming-attribute>=<value> pair is a relative distinguished
name (RDN) that specifies an object instance relative to the object specified by
the portion of the FDN to its left.

An FDN consists of a concatenation of RDNs, with a slash (/) separating the
RDNs. An RDN specifies an object instance only relative to the object which
contains it. For example, the following RDN specifies the internetSystem
group within our cmipsnmpProxyAgent for bigguy :

Thus, if this RDN is appended to the FDN for bigguy’s cmipsnmpProxyAgent
in Figure 8-4, the result is an FDN that points to the internetSystem object
instance for this SNMP agent:
:

Figure 8-6 Sample FDN for internetSystem Group Object Instance

In this example the particular MIS system where this cmipsnmpProxyAgent
object instance resides is indicated by systemId=name:”gatoloco” .

/ <naming-attribute1>=<value1>/ <naming-attribute2>=<value2>/ <naming-attribute3>=<value3>

internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1
0}/cmipsnmpProxyAgentId=”bigguy”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}

internetSystem Object Instance
 RDN

cmipsnmpProxyAgent Object
 RDN

object
contained in

Mapping SNMP Traps to CMIP Event Notifications 8-23

8

systemId, cmipsnmpProxyAgentId, and internetClassId are examples of
naming attributes. A naming attribute is an attribute whose value is an
identification that is unique within the object that contains it (for example, a
unique interface index within a router or a unique hostname within a subnet).

Figure 8-7 Sample ifTable FDN

The value of a naming attribute is an Object Identifier that specifies the object
instance. The Object Identifier for the instance consists of the Object Identifier
value for its class plus an object instance index, as illustrated in Figure 8-7.
Scalar objects have an index of 0. For example, because there is only one
interfaces object instance under the cmipsnmpProxyAgent, the object instance
index for the interfaces object will always be 0.

8.6.1.2 Building FDN Templates

The function of an FDN template is to enable em_snmp-trap to compose an
FDN that represents the target component within the agent system.

The FDN template is preceded by the keyword FDN-MAP (see Figure 8-3).
FDN templates can follow one of two formats:

internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 0 } /internetClassId={ 1 3 6 1 42 2 2 2 9 1 1 3 6 1 2 1 2 2 0}

interfaces Object Instance RDN ifTable Object Instance RDN

ifTable Class Object
Identifier

interfaces Class Object
Identifier Object

Instance
Object
Instance
IndexIndex

8-24 Solstice Enterprise Manager Administration Guide

8

Standard Format:

Absolute Format:

where <value> is either a constant or specifies a variable binding value. A
variable binding value is specified by expressions of the form
varbindvalue1 , varbindvalue2 , and so on.

• The standard FDN template lacks an initial slash at the far left. This indicates
that the FDN built from the template is to be appended to the FDN that
specifies the cmipsnmpProxyAgent object instance FDN. The object
instance representing the target component is thus contained under the
cmipsnmpProxyAgent object. The standard format enables em_snmp-trap
to more finely specify the component within the agent system represented
by the default cmipsnmpProxyAgent object. The example in Figure 8-8
shows an FDN template with the standard format. Class names are used in
specifying attribute values.

• The absolute format FDN template specifies the full FDN path to the target
component from root. The absolute format FDN template is distinguished
by the presence of an initial slash at the left. The initial slash indicates to
em_snmp-trap that it is not to append the FDN built from the template to
the default cmipsnmpProxyAgent FDN. Class names cannot be used in
specifying attribute values. Constants or variable binding values are used to
indicate attribute values. For example:

<naming-attribute>={ <object-class-name> <instance-index>}/ <naming-attribute>={ <object-class-name> <instance-index>}

/<naming-attribute>=<value>/ <naming-attribute>=<value>

/systemId=name:”bigguy”/myClassId=varbindvalue3

Mapping SNMP Traps to CMIP Event Notifications 8-25

8

The example in Table 8-4 has the FDN template shown below.

Figure 8-8 Sample FDN Template

In this example, “interfaces”, “ifTable”, and “ifEntry” are object class names.
em_snmp-trap converts the class name to its corresponding Object Identifier
value and appends the <instance-index> value. For example, “interfaces” will
be replaced with “1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 2” and “0” — the instance
index — will be appended. Because there is only one interfaces object instance
under the cmipsnmpProxyAgent, the object instance index for the interfaces
object is always 0. The resulting Object Identifier is:

This Object Identifier specifies the SNMP interfaces group object instance.
Similarly, “ifEntry” is converted to its Object Identifier value and the specific
interface index obtained from the trap <varbindvalue1> field is appended. For
example, this might be an index of 2. The resulting Object Identifier specifies
the object representing the particular interface card.

An SNMP trap variable binding field used in a template is specified in the
following form:

varbindvalue N

where N is the number of the variable binding you want to use.

{1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 2 0}

 internetClassId={interfaces 0}

interfaces Group Class Name

interfaces group object
 RDN template

/internetClassId={ifTable 0} /internetClassId={ifEntry varbindvalue1}

 ifTable object
 RDN template

object
contained in ifEntry object

 RDN template

object
contained in

ifEntry Object
Class Name

Instance index
from variable
 bindingsInstance index

8-26 Solstice Enterprise Manager Administration Guide

8

8.6.2 Mapping Restrictions

The following restrictions apply in mapping SNMP traps to CMIP event
notifications:

• If you are specifying a mapping from a variable binding value to an event
notification attribute value, the ASN.1 value of a CMIP notification attribute
must be the same as the value of the SNMP trap field. Data type conversions
are not allowed.

• If you are mapping variable bindings to event notification attributes, there
must be a one-to-one mapping for SNMP variable bindings. Multiple
variable bindings cannot be concatenated to form a single notification
attribute.The exception to this is the use of the $ALLVARS keyword to
specify mapping of all variable bindings into the additionalText field of the
event. An example is shown above under Section 8.6, “Format of Trap
Mapping Records.”

8.7 Distributed Trap Handling
The SNMP trap daemon can be distributed to machines in your network other
than workstations running the MIS. The names of MIS machines for forwardng
of event notifications are specified when the trap daemon is installed.

However, if the trap daemon is to connect to the MIS on another machine, you
will need to do the following:

1. Edit the /var/opt/SUNWconn/em/conf/EM-config file on the MIS
machine.
Add the name of the trap deamon machine to the entry
EM_ACCESS_TRUSTED_HOSTS. For example, if you have installed the
trap daemon on the machine empress, the EM-config file on each MIS
machine it is to connect to should have the following line:

2. Restart the MIS, if necessary.
If the MIS is already running on the target MIS machine, use the
em_services command to restart the MIS.

EM_ACCESS_TRUSTED_HOSTS: empress

Mapping SNMP Traps to CMIP Event Notifications 8-27

8

8.7.1 Forwarding SNMP Traps to Other Managers

The Solstice EM SNMP trap daemon has the ability to forward raw
(unprocessed) SNMP traps to other managers. When you install the SNMP trap
daemon, you are prompted for the hostname and port for each SNMP manager
that is to receive forwarded SNMP trap PDUs. This information is stored in the
trap_forward file in the /etc/opt/SUNWconn/em/conf directory; this is an
ASCII text file that the em_snmp-trap daemon reads whenever it starts.

The trap_forward file has the following format:

The MIS_HOSTS line contains the names of the machines where an MIS is
running that the trap deamon is to connect to. Each MIS machine names are
separated by commas.

The SNMP_HOSTS line contains the hostname and port number for each
SNMP manager that is to receive the raw SNMP traps. Entries for multiple
managers are separated by commas.

MIS_HOSTS: <MIS-host1>,<MIS-host2>
SNMP_HOSTS:<mgr_hostname1>: <port1>, <mgr_hostname2>:<port2>

8-28 Solstice Enterprise Manager Administration Guide

8

9-1

Nerve Center Overview 9

9.1 Overview
The Solstice EM product provides the MIS support and applications that
enable you to detect conditions in a network and take action in response.
Collectively, this MIS functionality and related tools are referred to as Solstice
EM’s Nerve Center.

The Nerve Center is comprised of the following parts:

• Request facilities in the Solstice EM MIS that handle the sending and
receiving of requests and generate request-driven polling

• Request Condition Language (RCL) — A script language that allows you to
express what you want to do to monitor and perform threshold-checking in
your network. You use this language in the Request Designer to build sets of
instructions called “conditions.” Conditions are the building blocks of
request templates.

Overview page 9-1

Guide to Nerve Center Documentation page 9-2

Request Terminology page 9-3

Nerve Center Operation page 9-6

9-2 Solstice Enterprise Manager Administration Guide

9

• A set of applications that allow you to create, save, and debug request
templates, and launch and monitor requests. These applications include:
• The Request Designer, which allows you to create request templates that

are the basis of requests.
• The Requests tool, which allows you to launch requests against specific

network elements. Requests tool also allows you to view, stop, and
examine running requests.

• Facilities in the Request Designer (and via the em_ncimport and
em_ncexport command-line utilities) that allow you to export request
templates and their components to ASCII file for easy replication of
request components from one MIS to another.

• The em_debug utility, which provides facilities for debugging of request
templates.

• A Nerve Center Interface Library that provides programmers the means to
write applications to create, launch, and retrieve information from requests.
The Nerve Center Interface Library is described in the “Nerve Center
Interface Library” chapter in the Solstice Enterprise Manager API Syntax
Manual.

9.2 Guide to Nerve Center Documentation
Information on Nerve Center components can be found in the following places
in the Solstice EM documentation:

• This chapter describes the Nerve Center request terminology and operation.
• Chapter 12, “Request Designer,” describes the features and usage of the

Request Designer application.
• Chapter 13, “Request Condition Language,” describes the components of

the Request Condition Language used to build Nerve Center request
templates.

• Chapter 14, “RCL Functions,” describes the built-in functions that can be
used in building RCL conditions.

• The Requests tool is described in the “Viewer” chapter in the Solstice
Enterprise Manager Reference Manual.

• The Nerve Center interface library is described in the Solstice Enterprise
Manager API Syntax Manual.

• Chapter 10, “Building Request Templates,” provides step-by-step guidance
on building and debugging request templates using the Request Designer,
RCL, and em_debug.

Nerve Center Overview 9-3

9

• Chapter 11, “Building Templates for SunNet Manager Event Requests,”
provides guidance in building templates that initiate SunNet Manager event
requests.

• The request templates shipped with Solstice EM are described Chapter 3,
“Managing Devices.”

9.3 Request Terminology
Knowledge of the following terms is useful in understanding how requests
work in Solstice EM. Terms in italics are defined within this section. Terms
themselves start at the left margin of the page.

action

What can happen when a transition from one state to another occurs as the
result of a condition returning a value of true. The Nerve Center supports three
types of actions: execution of a condition, execution of a Unix command, or
sending a mail message. The default is that no action be taken upon a
transition. You can have any number of actions in any combination of types.
See severity.

attribute
A formal characteristic of a managed object. The Nerve Center polls for
attributes as part of a request. In a request, you can poll only for those attributes
that are defined in the MIS. Solstice EM is shipped with a set of attributes
defined in GDMO documents, which are compiled into the MIS.

condition
A set of instructions written in the Request Condition Language (RCL). A
condition serves two functions in requests:

• A single condition can be used to define when a request targeted at a
specific set of (one or more) managed objects undergoes a transition from
one state to another (or loops back to the same state). You must have exactly
one condition associated with each transition. Where more than one
transition out of a given state is possible, each defined by a distinct
condition, the Nerve Center evaluates the conditions in the order they are
entered in the request template.

• A second function of a condition is as an action, taken in response to a
transition. A condition is one of three types of action (the others being the
sending of mail and the invocation of a Unix command). Multiple

9-4 Solstice Enterprise Manager Administration Guide

9

conditions can be invoked as actions resulting from a single transition.
When multiple actions result from a given transition, Nerve Center executes
them in the order entered in the request template.

When used to test whether to make a transition, the value of the condition is
the value returned by the last statement in the condition. The value is either
true (nonzero) or false (zero). When used as an action, the value returned by
the condition is not used by the Nerve Center.

Nerve Center
That portion of the MIS that polls and receives notifications from the agents of
managed objects. The main job of the Nerve Center is to start and maintain
requests.

notification
A message initiated by an agent, reporting a change in the state of a managed
object. The set of notifications that the Nerve Center knows about — and
therefore the notifications that you can receive through a request — are defined
in GDMO documents that are compiled into the MIS.
A notification is a superset of an alarm, which is an extraordinary event, such
as an equipment failure. Solstice EM has a default set of alarms. Through the
Request Condition Language, requests can subscribe to receive incoming
notifications and take appropriate action.

polling
The process by which the Nerve Center in the MIS periodically obtains data
from an agent according to the specifications of a request template. The goal of
polling is to obtain the attributes of a managed object.

poll rate
Specifies the delay until the first poll and the interval between successive polls.
The Request Designer associates a name and a number (of seconds) with each
poll rate. This application offers a ready-made list of poll rates and allows you
to create your own poll rate.
Upon the conclusion of a poll rate interval, the Nerve Center begins to test the
conditions for the transitions that lead from a given state. Each state has a poll
rate and a severity associated with it.

request
The series of activities through which the Nerve Center polls for the attributes of
managed objects and receives notifications from the agents of managed objects.
A request is based on a request template and is typically targeted at a specific
managed object. (A request that subscribes to receive event notifications may

Nerve Center Overview 9-5

9

be launched without being targeted at a specific object.) Each request is made
up of multiple states, with, potentially, multiple transitions between those
states.
You launch requests in the Requests window, which is started from the Viewer.
Once started, a request remains alive until you delete it, in the Requests tool.

Request Condition Language (RCL)
A script language, similar to the C programming language, used to create
conditions. The RCL is described in Chapter 13, “Request Condition Language,”
and Chapter 14, “RCL Functions.”

request template
A state transition diagram consisting of one or more states, transition paths
between states, and actions to be undertaken when a transition from one state
to another occurs. Any number of requests can be created using a single
request template. Each request template has a name, which you can use in
other applications to start or view a request. When you start a request, you are
typically applying a specific request template to a specific managed object.

severity
Severity has two meanings in the context of the Request Designer:

• Each state has a severity and a poll rate associated with it. A severity is made
up of three items: a name, a number, and a color. As a value attached to a
state, a severity has a meaning that applies only within the Request
Designer itself — for example, by indicating the appropriate color to use in
representing a state in the graphical State Machine display. The Request
Designer offers a ready-made list of severities and allows you to create your
own severities.

• A severity can also be attached as a value to a Nerve Center alarm posted to
the alarm log, using one of the RCL alarm log commands (alarm() ,
alarmOi() , alarmStr()). This Nerve Center alarm severity is reflected in
the color of the icon for the managed object as that object is displayed in the
Viewer.

state
A description of a managed object at a point in time with respect to a request.
At any given moment, a request, reflecting the target managed object, is in
some state defined in that request or is undergoing a transition between states.
While in a state, a request repeatedly tests the conditions associated with each
transition leading from that state. The interval between tests of a condition is
determined by the state’s poll rate. In addition to a poll rate, each state has a

9-6 Solstice Enterprise Manager Administration Guide

9

severity associated with it as well as a name and a description. Between any
two states, there are, potentially, multiple transitions in both directions, with a
single condition associated with each transition.
One state is required state: the ground state. This state must have a severity of
“normal”. Other states are of your choosing. There is no limit to the number of
states, though a maximum of nine states (including Ground) can be displayed
in the Request Designer’s graphical state diagram display.

transition
The change from one state to another, which occurs when the condition
associated with a transition evaluates to true. From one state, a request can
make transitions to multiple states, including the state from which the
transition started. Within a pair of states (or from and to itself) there can be
multiple transitions in each direction. Each transition is associated with one
condition. Where there are multiple transitions, the Nerve Center evaluates
conditions associated with those transitions in the order the transitions are
entered in the request template.
When a transition occurs, depending on the specifications in the request
template, a set of actions might be performed — to set variables or send
notifications, for example.

variable
A Request Condition Language (RCL) expression that can potentially take on
different values, or have values assigned to it. RCL allows you to specify
variables as you need them when you create a condition. It assigns types to
these variables at runtime. The RCL also has a set of system variables, which
you will find useful in a variety of different request templates.

9.4 Nerve Center Operation

9.4.1 How a Request Gets Information

A request can get information in the following ways:

1. It can poll for the attributes referred to in the conditions to be tested from its
current state. The Nerve Center sets the values of the attributes before it
“awakens” a request.

2. It can subscribe for event notifications. The Nerve Center sets the values of
variables related to the notification before it “awakens” the request.

Nerve Center Overview 9-7

9

3. It can use a combination of (1) and (2). If a state uses both subscription and
polling, its conditions can tell which of them “woke” the request by
checking the value of $messType , described in Section 13.6, “Message
Types.”

9.4.1.1 Where and When a Request’s Notifications Arise

An event that “awakens” a request can arise in either of two ways:

1. A notification initiated by an agent.

Agents originate notifications on their own. A request can subscribe to
particular notifications. That is, it can ask the Nerve Center to pass it certain
notifications. For example, a request might ask to receive all authentication-
failure SNMP traps. A request for a specific managed object might ask to
receive notifications that concern that object. After it has subscribed, the
request has nothing to do but wait until a notification arrives.

The subscription specifies whether the request will receive:

a. All notifications of a particular type

or

b. All notifications that refer to a particular object

After a request subscribes to a notification, it receives all such
notifications, whenever they arrive, regardless of the request’s current
state.

Requests can also use CMIS filters to select which notifications they want
to receive.

2. A response to a poll

Some information is provided by agents only on request from
management stations, that is, when polled.

A condition can refer to attributes of a managed object. Every reference
to an attribute in a condition is interpreted as an implicit request to poll
for that attribute. When a request goes through a transition and arrives at
a state, it initiates periodic polls for the values of all the attributes it
needs.

9-8 Solstice Enterprise Manager Administration Guide

9

For each state, the template specifies a periodic poll rate. The poll rate
specifies the delay until the first poll and the interval between successive
polls.

When a request goes through a transition, in effect it sends the following
request to the Nerve Center:

“Cancel any previous poll requests I made. Set a timer to go off every
<n> seconds from now and every <n> seconds thereafter. (The number of
seconds is the poll rate for the request’s current state.) Whenever that
much time has elapsed, poll to get me the values of the following
attributes. When you have obtained values for all these attributes, wake
me.”

The list of conditions for a poll contains all attributes mentioned in any of the
conditions leading from the current state and also all attributes mentioned in
any of the actions that accompany transitions from the current state.

A state must be awakened by retrieving information from the MIS. Otherwise,
a request hangs in a state forever. A condition as simple as the “jump”
condition ($x=map; true;), supplied with Solstice EM, is sufficient to
awaken a state. In this case, the value of the map attribute is accessed.

9.4.1.2 When Information From Managed Objects Can Arrive

Event-related information from managed objects are of two types:

Notifications that come from an agent arrive at unpredictable times. After a
request has subscribed for certain types of event, it receives notification of all
events that match its subscription. They are forwarded at once, regardless of
the state the request is in. What the request does with them, or whether it even
looks at them, depends on the conditions the request tests in its current
state.The RCL offers the following functions that allow you to subscribe to
events.

• subscribe()

• subscribeOi()

• subscribeFilter()

Nerve Center Overview 9-9

9

Messages in response to a poll arrive according to the schedule set by the current
state’s poll rate. The Nerve Center notifies the request when it has assembled
the values for all the requested attributes. A message in response to a poll
arrives no sooner than the number of seconds specified in the poll rate, but
possibly later.

9.4.2 Variables and Attributes in a Request

All requests built from the same template use the same names for variables
and attributes. Values associated with these names are specific to an individual
request. Any of the conditions that the template uses can refer to those names.

When a template is created, the Request Designer automatically scans the
definitions of all the conditions mentioned in the template for references to
variables and attributes.

9.4.2.1 Attributes

When a condition contains the name of an attribute, the Nerve Center
automatically looks up the name in the Solstice EM MIS’s MetaData Repository
(MDR). Provided the attribute occurs only once in the MDR, using to its name
is sufficient to identify it. If the same attribute name occurs in different places
in the MDR, the name can be qualified by including the name of the GDMO
document in which it is declared. Refer to Section 9.4.5, “Specifying the Objects
to be Polled,” on page 9-12 for more information.

You cannot use a request to perform sets on attributes.

An ampersand precedes an attribute (or variable) name if you need to pass the
address (rather than the value) of the attribute to an RCL function, such as
defined() or extract() . For example:

9.4.2.2 System Variables

Certain names have standard meanings. If a condition refers to one of those
names, the Nerve Center supplies the appropriate information. For example, if
a condition needs to retrieve the time that a notification arrived, it can use the

NOT (defined(&sysUpTime);

9-10 Solstice Enterprise Manager Administration Guide

9

system variable $eventTime . If it needs to retrieve the message type of the
current notification, it can use $messType . See Chapter 13, “Request
Condition Language” for a list of system variables and a list of the possible
values of the $messType variable.

9.4.2.3 User Variables

Any condition can create a variable by using the name of the variable to the
left of an = sign. The name of a variable must begin with the dollar sign ($).
(The dollar sign distinguishes the names of variables from the names of
attributes, because attribute names do not start with $.) For example, if you
want the variable $count to be the number of consecutive times that
confirmation of object X has been missing, some initial condition should
contain a statement such as

and some other condition should contain

Using the name count is sufficient to declare it.

A variable must first be assigned a value before it can be compared to another
variable or attribute. For example, a condition that has the statement

should not be called if the variable $last_sys_up_time has not yet been
assigned a value.

All the variables mentioned in a request template share a common name space.
That is, any condition used in a request can see or set any of the request’s
variables. However, no request has access to variables in another request.

$count = 0;

$count = $count+1;

sysUpTime<$last_sys_up_time

Nerve Center Overview 9-11

9

9.4.2.4 How Notifications and Poll Responses Are Delivered

When a notification arrives, the Nerve Center sets the values of all the system
variables involved in a request. Similarly, when a poll response arrives, the
Nerve Center sets the values of all the relevant system variables and attributes.

At the point when a request starts testing its conditions, the Nerve Center has
already set the values of variables or attributes it needs. However, if the
request uses both subscription and polling, it should check the $messType
system variable to determine which type of event “woke” it. Following a
notification or poll response, the values of attributes are those from the
previous notification or poll response, if there was one.

9.4.3 Where and When a Condition is Evaluated

A condition is evaluated independently for each managed object that is the
target of a request when the request is in a state that tests the condition, and

• A poll response arrives, or

• An event notification arrives.

A notification to which the request subscribes can arrive at any time. A
response from a poll cannot arrive until:

• The state’s poll interval has expired, and

• The Nerve Center has returned the response from the poll.

9.4.4 Action at a Transition

The following subsections describe actions you can specify in your request
templates.

9.4.4.1 Supported Actions

To invoke actions at a transition, you must select one or more of the actions
from the Solstice EM list of supported actions. The types of supported actions
are summarized in Table 12-1. For an action you can specify any combination
of the supported actions.

9-12 Solstice Enterprise Manager Administration Guide

9

Note – A condition can be invoked as an action. Indeed, conditions are a much
more powerful way of defining actions than the use of Unix commands or
mail. This permits the power of RCL, together with its access to the variables
defined within an individual request, to be combined in writing individualized
actions.

9.4.4.2 Logging an Event

A log object (described in the “Log Manager” chapter of the Solstice Enterprise
Manager Reference Manual) stores selected event records. Each log object has a
discriminator construct: a proposition that the MIS uses to decide whether to
send a notification to the log or ignore it. In effect, each log object can adopt its
own criteria for receiving notifications.

The Request Condition Language (RCL, see Chapter 14, “RCL Functions”)
provides alarm logging functions (alarm() , alarmOi() , alarmStr() , and
sendEvent()) to write a log record to the log object alarmLog . Log records
written as a result of the alarm logging functions meet the criteria of the
default discriminator construct. The alarm() , alarmOi() , and alarmStr()
functions log only nerveCenterAlarms. The sendEvent() function can be
used to log other kinds of notifications (such as internetAlarms or
communicationsAlarms). The events that are logged to a particular log depend
upon the discriminator construct for that log.

9.4.4.3 Forwarding an SNMP Trap

The predefined condition called InternetTrap invokes the SendTrap
function to send a trap notification to the host identified by the user-defined
variable $Host . The condition uses the system variables $eventType and
$eventInfo , which are set automatically upon receipt of an incoming trap.
The definition assumes that $Host has previously been assigned the
appropriate value, for example during the transition from the ground state.

9.4.5 Specifying the Objects to be Polled

You can write templates that specify a particular managed device as the target
of the request. That request template would only be useful for managing that
particular device, however. In most cases you will not want to write a new

Nerve Center Overview 9-13

9

template for each target object. Typically you will define a template that can be
used to manage objects of the same type — a certain type of router manageable
via SNMP, for example. The same template can then be launched against all the
devices that share the same management characteristics (for example, routers
that support the same SNMP MIB).

Using the $pollfdn system variable in templates helps you to define templates
that can be targeted at different objects of the same type. In the following
example the objective is to create a template that can extract the attributes
under the snmp-mibII system group, such as sysDescr .

When a template is launched against a device selected in the Viewer,
$pollfdn is initially set to the first distinguished name (FDN) in
$pollFdnSet . The $pollFdnSet variable contains the set of FDNs that point to
all the managed objects that have been configured for the selected device. For
example, if the device is configured as SNMP and RCP manageable,
$pollFdnSet will contain both an FDN for the cmipsnmpProxyAgent for the
device, which represents the device’s SNMP agent, and an FDN pointing to the
RPC proxy table, which contains objects representing the Remote Procedure
Call (RPC) agents the device supports.

For example, the host bigguy is an SNMP agent system and the device has
been so configured in the MIS. When a request is launched against bigguy , the
cmipsnmpProxyAgent is one of the objects in $pollFdnSet. The distinguished
name (FDN) pointing to this object is the following:

The cmipsnmpProxyAgent is the object in the MIS that represents the agent
on the system being managed. The various attribute groups or tables accessible
via the SNMP agent are represented by objects “contained” in the
cmipsnmpProxyAgent object. Before it can establish polls for the object of
interest, the request needs to do the following:

• select the cmipsnmpProxyAgent from among the objects in $pollFdnSet and
set this object instance into a variable

• append to this object instance a further specification of the object it wishes
to poll (for example, the interfaces group object)

• set $pollfdn to point to this object

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2
4]/cmipsnmpProxyAgentId=”bigguy”

9-14 Solstice Enterprise Manager Administration Guide

9

In a fully distinguished name (FDN)

each <naming-attribute>=<value> designation is called a “Relative
Distinguished Name” (RDN), and each RDN designates an object, which is
said to be “contained in” the object designated by the RDN to its left in the
path. The initial slash at the left represents the local root of the Management
Information Tree (MIT). In the example above, the cmipsnmpProxyAgent for
bigguy is contained in the MIS on the system gatoloco . “Containment”
relationships are reflected in the path to the object specified in the FDN.

For example, to set the $pollfdn to point to the snmp-mibII
internetSystem group under the cmipsnmpProxyAgent object for bigguy,
the template must concatenate the Relative Distinguished Name (RDN) for the
internetSystem group to the cmipsnmpProxyAgent. The RCL appendRdn()
function allows you to do this. The appended RDN is a string that specifies the
<naming-attribute>=<value> pair for the system group. The affect of this
appendRdn operation on our request launched against the system bigguy is
to change the value of $pollfdn to the following:

For examples that illustrate the use of appendRdn(), and the $pollFdnSet and
$pollfdn variables, see Chapter 10, “Building Request Templates.”

Note – If you reset the value of $pollfdn in a condition to change the target of
polling, the new value does not affect until after the request transitions to a
different state.

/ <naming-attribute>=<value>/ <naming-attribute>=<value>/ <naming-
attribute>=<value>

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2
4]/cmipsnmpProxyAgentId=”bigguy”/InternetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}

Nerve Center Overview 9-15

9

9.4.6 Alarm Logging and the Alarm Service

The RCL alarm-logging functions — alarm() , alarmStr() , and alarmOi()
— allow you to generate nerveCenterAlarm which, by default, are logged to
the AlarmLog. Alarms logged to the alarm log can be viewed and cleared in
the Alarm Manager.

The AlarmLog is also, by default, monitored by the Alarm Service. The Alarm
Service is a module in the MIS that controls the fault status color in the Viewer.
Fault status is an attribute of topology nodes, which are represented by icons
in the Viewer. Each topology node has an attribute topoNodeMOSet , which
points to a set of managed object instances (MOIs), representing the agents
configured for the particular device.

The Alarm Service associates an alarm posted to the AlarmLog with a topology
node if and only if that alarm is posted against one of the managed objects in
the topoNodeMOSet for that topology node. The Alarm Service tracks the
perceivedSeverity values of the alarms that are posted against each
topology node. The highest perceivedSeverity value of uncleared alarms
determines the fault status of the device. Thus, if a critical alarm is logged
against host bigguy, the router icon, by default, turns red. If several minor
alarms are then posted against bigguy, these do not cause the router icon to
turn cyan unless the critical alarm has been cleared.

A request can use the alarmOi() function to clear a previous alarm it has
posted against a device by posting an alarm with a severity of cleared. To
determine which previous alarm the “clear” alarm is clearing, the Alarm
Service looks for a match on probableCause . When a request uses alarm() or
alarmStr() to log alarms, the probableCause value of the nerveCenterAlarm is
set to the severity value indicated for that alarm. For example, if you use:

to post a critical alarm, this alarm will have a probableCause of 1. To clear this
alarm, you must use the alarmOi() function and set the probableCause value to
1, to match the critical alarm the request is clearing.

alarmStr(1,”Device is Down”);

9-16 Solstice Enterprise Manager Administration Guide

9

 For example:

When a request is launched at a target device in the Viewer, the $pollFdnSet
RCL system variable for that request points to the managed objects that are
comprised in the topoNodeMOSet for the selected topology node. The $pollfdn
system variable is also initially set to point to the first managed object listed in
$pollFdnSet.

The alarm() and alarmStr() functions posts a nerveCenterAlarm against the
managed object that the $pollfdn variable points to at the time when the alarm-
logging function is called. If you have reset the $pollfdn variable to point to an
object other than one of those comprised in $pollFdnSet in your request, you
should either reset $pollfdn to an appropriate managed object before calling
alarm() or alarmStr() or else use the alarmOi() function, which enables
you to specify the managed object against which the alarm is to be posted.

For example, if you reset $pollfdn to point to the internetSystem group under
the cmipsnmpProxyAgent object, you can retain the original pointer to the
cmipsnmpProxyAgent in a variable $snmpfdn, and then post an alarm using
that variable:

For more information on the Alarm Service, refer to the “Alarm Service”
chapter in the Solstice Enterprise Manager Reference Manual. For more
information on alarm-logging, refer to Chapter 10, “Building Request
Templates.”

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,clear,\”Device is up\”,3,1}”);
alarmOi($save_pollfdn,$info);

alarmOi($snmpfdn,1);

10-1

Building Request Templates 10

10.1 Overview
The functions and applications provided by the Solstice EM Nerve Center
enable you to detect conditions in a network and take action in response.

Requests are the series of activities through which the Nerve Center polls for the
attributes of managed objects, receives notifications from the agents of managed
objects, and takes appropriate action in response. A request is typically
initiated when a request template is launched from the Viewer’s Requests tool.
The same request template can be used as the basis of multiple requests,
targeted at different managed objects. The Request Designer is an application
that allows you to create request templates.

A request can obtain information about managed resources in several ways:

Overview page 10-1

Designing Request Templates page 10-16

Requests Based on Polling page 10-18

Polling RPC Agents page 10-27

Requests Based on Event Subscription page 10-33

Debugging Your Templates page 10-40

10-2 Solstice Enterprise Manager Administration Guide

10

Direct polling
Polling is the obtaining of data from an agent, at intervals specified in the
request template. The goal of polling is to detect specified attributes of a
managed object. When a request polls for the current values of object
attributes, this activity is carried out directly by sending GET requests to the
MIS.

Indirect polling
Polling for device attributes can be offloaded to RPC agents or proxy agents.
The periodic checking of thresholds on devices is carried out by the agent or
proxy, not the Nerve Center. Indirect polling is initiated when a request
generates a certain type of action — a SunNet Manager (SNM) event request —
targeted at an RPC agent or proxy. Indirect polling is more efficient than direct
polling for checking thresholds on large numbers of devices because it
minimizes the polling burden on the MIS and distributes the polling activity to
an RPC proxy agent closer to the device being polled. (Building request
templates that initiate SNM event requests is discussed in Chapter 11,
“Building Templates for SunNet Manager Event Requests.”)

Subscribing for events
A message generated by an agent on its own initiative when a specified event
is detected on a managed resource is an event notification. For example, a CMIP
agent may generate a communicationsAlarm when a remote connection goes
down.

A request template can listen for specified event notifications; this is called an
event subscription. The RCL subscription functions are used to specify the type
of event notification the request is to receive. The desired events can be
specified by managed object, event type, or through the use of a CMIS filter.
The subscribed-for event notifications are forwarded to the request by the MIS
when they arrive. For example, if you are using the Solstice EM SNMP trap
mapping capability to convert router SNMP linkDown traps to CMIP
communicationsAlarms, you might design a template that subscribes for
communicationsAlarms and then takes appropriate action when
communicationsAlarms are received.

Building Request Templates 10-3

10

The MIS also generates event notifications; and, thus, a request could be
defined that listens for specified event notifications from the MIS. For example,
a request could subscribe for objectCreation event notifications generated
when client applications connect to the MIS.

Combining polling and event-subscription
These different ways of obtaining information about managed resources can be
combined in the same request. For example, a request might initiate an SNM
event request and, at the same time, subscribe for snmAlarmEvents from the
target object. If an SNM agent or proxy detects the occurrence of the threshold
specified in the SNM event request, it emits an SNM event notification, which
arrives at the MIS as an snmAlarmEvent . The request may wait for the arrival
of snmAlarmEvents, and take appropriate action when this happens. (A
sample template that subscribes for snmAlarmEvents is described in
Chapter 11, “Building Templates for SunNet Manager Event Requests.”)

10.1.1 Building Blocks of Requests: States, Transitions,
and Conditions

A request template is comprised of a finite number of states and transitions
between states. States in a request are used to represent the presumed state of
a managed resource, as indicated by information available to the request. For
example, if a request is polling to determine if a device is up or down, then,
clearly, two states you would want in such a request would be Up and Down,
to represent these possible states of the device. If the request is in the Up state
when the device fails to respond to a poll, then you will want the request to
move to the Down state to indicate this change in the state of the device. A
move from one state to another in a request is called a transition.

A state can also loop back to the same state in a transition. For example, if a
request is in the Up state and a poll indicates the target device is still up,
passing this test may cause the request to loop back to the Up state.

In designing a template you will need to define when each transition should
take place; this is done by selecting a condition that defines when the transition
is to occur.

A condition is made up of instructions written in Request Condition Language
(RCL). You assign a name to a condition when you save it in the Request
Designer. Saving a condition stores it in the MIS for use in templates. A

10-4 Solstice Enterprise Manager Administration Guide

10

condition can be used to define when a transition from state A to state B is to
occur. If you want a request to move from Up to Down, for example, when a
target system is not reachable, you will need to use a condition that tests for
that circumstance to define the transition.

Nerve Center checks conditions in the order they occur in the template. To use
a condition to define when a transition is to occur, the condition must evaluate
to true or false when checked by the Nerve Center.

A condition that defines a transition is evaluated only if the current state is
“woken up.” The current state is woken up only if one of the following occur:

• The request has received an incoming event notification.

• The condition attempts to access a an attribute.

For example, if a request subscribes for coldStartTraps and the condition
defining a transition tests for the arrival of an event, an incoming coldStartTrap
will “wake up” the state and the condition is then evaluated.

10.1.2 State Machine Diagrams

A representation of a finite set of states, and the possible paths between those
states, is a finite state machine. Before you start building a request template, you
may wish to draw a state machine diagram in which you show the various
device states you want to represent, the paths between them, the types of
information that the request is to make use of to determine when to make each
transition, and the actions that you want the request to take when it makes a
transition (for example, logging an alarm or sending an e-mail message).

A state diagram shows how a request template works. Figure 10-1 shows a
very simple, yet valid, example that illustrates request-related concepts.‘

Note – The “severities” that attach to template states in the Request Designer
do not control the fault status indication (icon color) of devices in the Viewer;
severities of states only affects the color attached to states in the Request
Designer’s graphical display. Fault status color of devices in the Viewer is
determined by the alarms logged against those devices. If you want the fault
status color of icons to change when a request transitions from one state to

Building Request Templates 10-5

10

another, you can control this using RCL alarm-logging functions. This is
discussed below in Section 10.1.4, “Controlling Fault Status Color in the
Viewer.”

Figure 10-1 Request Example with Poll Rates and Severities

Figure 10-2, following, is a state diagram for an example request template that
adds the “Missed” and “InitComplete” states to the previous example
template.

Ground

Up

Down

Severity: Cleared

Poll Rate: 20
Severity: Cleared

Poll Rate: 20
Severity: Critical

If NC has new confirmation
that host is reachable, go to Up

Perform housekeeping.

If NC has new confirmation
that host is reachable, stay at Up

If NC has no new confirmation
that host is reachable, go to Down

If NC has new confirmation
that host is reachable, go to Up

NC = Nerve Center

10-6 Solstice Enterprise Manager Administration Guide

10

Figure 10-2 Request Example with Poll Rates and Severities

Figure 10-3, following, shows the same template as shown in Figure 10-2 with
the conditions associated with each transition.

Ground

InitComplete

Up Missed

Down

Severity: Cleared

Poll Rate: 40
Severity: Minor

Poll Rate: 40
Severity: Critical

Poll Rate: 40
Severity: Warning

Poll Rate: 20
Severity: Minor

Note that severity colors are manifested
in icon for managed object in Viewer
only if an alarm-logging function (such
.as alarm()) is used in a condition.

Building Request Templates 10-7

10

Figure 10-3 Request Example with Conditions

In Figure 10-3, the conditions are described in English. In an actual request
template, you define conditions in the Request Condition Language.

Ground

InitComplete

Up Missed

Down

Perform housekeeping and
move to InitComplete

If NC has new confirmation
that host is reachable, go to Up

If NC has no new confirmation
that host is reachable, go to Missed

If NC has new confirmation
that host is reachable, stay at Up

If NC has no new confirmation
that host is reachable, go to Missed

If NC has no new confirmation
that host is reachable and has now
missed many checks, go to Down

If NC has no new confirmation
that host is reachable, but has not
missed many checks, increase count
of times missed and stay at Missed

If NC has new confirmation
that host is reachable, go to Up

If NC has new confirmation
that host is reachable, go to Up

Conditions are tested at the interval
specified by the poll rate for a given
state. If there are multiple conditions,
they are tested in the order you entered
them in the Request Designer.

NC = Nerve Center

10-8 Solstice Enterprise Manager Administration Guide

10

10.1.3 Sample Request Template

Figure 10-4 illustrates the workings of a sample request template
IsSnmpSystemUp , which is shipped with Solstice EM. This template does
what its name suggests: tells you whether the SNMP daemon is running on a
target machine. You can use this template as the basis for additional templates.
For example, you might add a “Missed” state, as illustrated in Figure 10-2.

Condition names are user-created; they are not pre-defined in RCL. Conditions
are saved in the MIS under separate names to make it possible for you to use
the same condition in multiple requests. The AlarmCriticalOi condition, for
example, logs a nerveCenterAlarm with a severity of critical. This is a
condition that you may want to use in a wide variety of request templates.

In the Request Designer’s graphical display, the “IsSnmpSystemUp” request
template is displayed much as it appears in Figure 10-4, without the condition
code. You can infer much of the essential work in building a template from the
figure:

• create states

• define transitions between states

• specify a condition for each transition

• specify actions to take place for each transition, if needed

The IsSnmpSystemUp template has five states: Ground, Error, Poll, Up, and
Down.

10.1.3.1 Setting the Target Managed Object

The initialization of the template takes place in the transition from Ground to
Poll. The first step in initializing the request is to set the target of the poll.

 When you launch a request against a device selected in the Viewer, Nerve
Center places all of the managed objects configured for the device into the
system variable $pollFdnSet . “Managed objects” are internal representations
in the MIS of the agent capabilities supported by the device. If you configured
Discover to search for RPC-based SunNet Manager agents when you
populated your MIS, devices that have both SNMP and RPC agents are
configured in the MIS to indicate this. Fully distinguished names (FDNs)
pointing to these managed objects in the MIS are thus loaded into the
$pollFdnSet variable when you launch requests against such a device.

Building Request Templates 10-9

10

Nerve Center uses another system variable — $pollfdn — to hold the target
of the request. When a request is launched, Nerve Center initially sets $pollfdn
to the first FDN in $pollFdnSet. However, the first agent name in $pollFdnSet
may not be the appropriate agent to support this particular request.

The task performed in the template’s initialization is thus to check $pollFdnSet
to determine if the device is configured with the agent capability appropriate
for the request, and, if so, to set $pollfdn to the appropriate object from those
contained in $pollFdnSet. The IsSnmpSystemUp template, for example, must
be targeted at a device that supports SNMP, and $pollfdn needs to be set to
point to the cmipsnmpProxyAgent object, which represents the SNMP agent
system. Thus, the SetInternetSystem condition searches through the FDNs
contained in the $pollFdnSet for the target device to find a match on
“cmipsnmp”. If no match is found, then the request knows the device is not
configured appropriately for this template.

The SetInternetSystem condition uses an RCL WHILE loop to accomplish
this. The WHILE loop needs to loop for as many times as there are objects in
$pollFdnSet. The RCL numElements() function is used to discover how many
objects this is:

$num = numElements(&$pollFdnSet);

10-10 Solstice Enterprise Manager Administration Guide

10

If SetInternetSystem does find a match on “cmipsnmp”, it uses the RCL
AppendRdn() function to set the target for the poll to the SNMP RFC 1213
internetSystem group object “contained” under the default
cmipsnmpProxyAgent, which represents the agent system:

Note that the condition ends with the statement “false;”. This guarantees that
this condition will not cause a transition to another state. This is to ensure that
the next transition out of the Ground state in the template is not passed over
but is evaluated. If the Boolean variable $res is false at the end of the
SetInternetSystem condition, we know that the request has been targeted
at a device that is not configured with a cmipsnmpProxyAgent.

You may want to warn the user when this happens. In the IsSnmpSystemUp
template, the check_not_ok condition checks for $res having a value of false,
and causes a transition to the Error state if this occurs. A warning alarm is
posted, indicating that the target device is not configured properly for this
template.

Thus, we see that there are three phases to initialization in the
IsSnmpSystemUp template:

• Determining if the target device is configured with the appropriate agent
support for this template

$num = numElements(&$pollFdnSEt);
$save_pollfdn = $pollfdn;
$res = FALSE;
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = extract(&$pollFdnSet,$numstr);
 $dn1 = extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = anyStr($dnstr,”cmipsnmp”);
 if ($res == TRUE)
 {
 $pollfdn = appendRdn($dn,”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}”);
 $count = $num + 1;
 }
 $count = $count + 1;
}
false;

Building Request Templates 10-11

10

• Setting $pollfdn to point to the appropriate managed object
• Transitioning to an Error state (and sending an appropriate warning) if the

search of $pollFdnSet indicates the device is not configured with the
appropriate agent support

10.1.3.2 Polling for an SNMP Attribute

The internetSystem group contains the system description (sysDescr)
attribute. If the Nerve Center can obtain the value of this attribute from the
agent, the IsSnmpSystemUp request knows that the agent is running. The
IsSysDescr condition, which checks for the value of the sysDescr attribute, is
therefore used to define the transition to the Up state. This condition contains
the following code:

The defined() function can be used to poll for any attribute that has been
defined in the GDMO document for the target managed object. If you try to
add a condition that refers to an attribute that is not defined in a GDMO
document that has been loaded into the MIS, the Request Designer displays an
error message and the condition is not saved to the MIS. (You can use the
SNMP Browser application to examine the attributes and groups supported by
GDMO documents that the MIS knows about.)

defined(&sysDescr);

10-12 Solstice Enterprise Manager Administration Guide

10

Figure 10-4 IsSnmpSystemUp Sample Request Template

If the target object’s sysDescr attribute value does not already exist in the
memory space allocated for the running request, the Nerve Center retrieves the
attribute from the agent. But the Nerve Center does not attempt to retrieve the

Up

Down

Poll

Ground
Condition name: “SetInternetSystem”

 Condition: “IsNotSystemDescr”
 True if no response to poll for system description.

 Condition: “IsSystemDescr”
True if response to poll for system

Action: “UndefineSystemDescr”

 Action: Critical alarm.

Condition: “IsSystemDescr”
True if response to poll.
Action: CONDITION
“UndefineSystemDescr”

Sets the cmipsnmpProxyAgent as the target object.

Condition: “IsNotSystemDescr”
True if no response to poll.
Action: Critical alarm.

Condition:
“check_not_ok”
True if incorrect

Dummy transition (value set to false).
Condition: “check_ok”
True if correct result
from “SetInternetSystem”

result from
“SetInternetSystem”
condition.

Error

 condition.

Action: Warning that
target not configured
 for this template.

Condition: “IsSystemDescr”
True if response to poll for
system description.

Condition names are in quotes.

Action: “UndefineSystemDescr”

Description.

Action: Post a “cleared” alarm to
clear previous critical alarm.

Building Request Templates 10-13

10

attribute if a value for sysDescr already exists. This is why the
UndefineSysDescr condition is invoked as an action after each transition.
UndefineSysDescr contains the following RCL statement:

This removes the attribute sysDescr from the memory allocated to the running
request, forcing the Nerve Center to access the remote agent each time a new
defined(&sysDescr) is called.

10.1.4 Controlling Fault Status Color in the Viewer

Your network topology is represented in the Viewer by icons once you have
populated the MIS. The objects you are viewing are called topology nodes. Each
topology node has an attribute, topoNodeSeverity , that represents the fault
status of the device. When the value o f this attribute changes, the icon changes
color to represent a change in the fault status of the device. The setting of the
fault status of topology nodes is controlled by the Alarm Service — a module
in the MIS that tracks incoming alarms posted to the alarm log. The Alarm
Service keeps a tally of the perceivedSeverity values of all outstanding
(uncleared) alarms logged against each topology node. The Alarm Service sets
the fault status indication of a topology node to match the highest
perceivedSeverity value amongst the outstanding alarms against the
device.

Corresponding to each device represented in the Viewer are objects in the MIS
— called managed objects (MOs) — that represent the agent capabilities
supported by the device — for example, a cmipsnmpProxyAgent object in the
MIS is used to represent a remote SNMP agent. There may be multiple
managed objects that correspond to a single topology node. For example, host
bigiron may be configured in the MIS to indicate that it can support both
SNMP and RPC management. Incoming alarms are logged against the
managed objects, not the topology node. However, each topology node has an
attribute, topoNodeMOSet , which contains a set of distinguished names
(FDNs) that point to the managed objects configured for that device. The
Alarm Service uses this list of managed objects to match incoming alarms to
devices represented in the Viewer.

undefine(&sysDescr);

10-14 Solstice Enterprise Manager Administration Guide

10

When a request is launched against a selected device in the Viewer, the
topology node’s list of managed objects (topoNodeMOSet) is loaded into the
RCL system variable $pollFdnSet. Thus, if you want to use the RCL alarm-
logging functions to change the fault status color for the device in the Viewer,
you need to ensure that alarms are logged against one of the objects in
$pollFdnSet. When the request is initially launched, the RCL variable $pollfdn
is set to point to the first object in $pollFdnSet. Therefore, the easiest way to
post alarms against the target device is to log alarms against $pollfdn. The RCL
alarm() and alarmStr() functions automatically post alarms against
$pollfdn. However, this will work only if you do not reset $pollfdn in the
template to point to some other object. Notice, for example, that the
SetInternetSystem sample condition resets $pollfdn to point to the RFC 1213
internetSystem group under the SNMP agent. If alarmStr() were then
used to post alarms, they would not affect icon color because the Alarm Service
would not be able to match that object to a topology node.

However, RCL provides another alarm-logging function, alarmOi() , which
allows you to specify the managed object the alarm is to be posted against.
Also, note that the SetInternetSystem condition saves the original value of
$pollfdn in the variable $save_pollfdn . Thus, an alarm can be posted
against the device by passing $save_pollfdn to alarmOi() . For example,
we could post a minor alarm with the following condition:

Figure 10-5 Using AlarmOi to Log a Minor Alarm

10.1.4.1 Using alarmOi() to Clear Previous Alarms

Also, note that if a critical alarm had been logged by our request before logging
a minor alarm, using the condition in Figure 10-5, this minor alarm will not
cause the icon to change to cyan unless we first log a “cleared” alarm to clear
the previous critical alarm. The Alarm Service always sets the fault status color
to the highest severity of uncleared alarms. No matter how many minor or

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{3,minor,\”Device is up after being
down\”,3,1}”);
alarmOi($save_pollfdn,$info);

Building Request Templates 10-15

10

warning alarms are logged, the icon remains red if there is a single uncleared
critical alarm against the device. We could clear the previous critical alarm
with the following condition:

Note that, in the above example, the probableCause value has been set to 1 in
the cleaar alarm — the same probableCause value used in the critical alarm.
For an alarm to clear a previous alarm, it is necessary that the probableCause
value of the clear alarm match the probableCause value of the alarm being
cleared. If the alarm() or alarmStr() functions were used to log
nerveCenterAlarms, the probableCause is automatically set to a value that
matches the severity. For this reason, only the alarmOi() function can be used
to log alarms that clear previous alarms.

For templates that subscribe for incoming event notifications, alarms can be
targeted to the appropriate device by using the RCL $eventOi variable.
$eventOi points to the managed object that is the source of the event. Before
calling the alarm() or alarmStr() functions, you could set $pollfdn to point to
the managed object that is the source of the event:

10.1.4.2 Alarm-logging Tips

We can summarize the alarm-logging considerations discussed here as follows:

• Event notifications must have a perceivedSeverity value to affect fault
status color. Alarm Service uses the highest outstanding severity to
determine fault status. If you want an icon to change to indicate a lower
severity after your request has posted a higher severity alarm, your request
should first clear the higher severity alarm.

• To affect fault status color, alarms must be logged to the alarm log
monitored by the Alarm Service (by default, this is the log called
AlarmLog). The RCL alarm-logging functions (alarm(), alarmStr(), and
alarmOi()) can be used to log nerveCenterAlarms to the alarm log.

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,5,\”Device is up\”,3,1}”);
alarmOi($save_pollfdn,$info);

$pollfdn = $eventOi;

10-16 Solstice Enterprise Manager Administration Guide

10

• If your request template resets $pollfdn to point to a different object, you
may want to save the initial value of $pollfdn in another variable for use in
alarm-logging. The functions alarm() and alarmStr() automatically post
alarms against $pollfdn. If you have reset the value of $pollfdn, you can use
alarmOi() to post alarms against a particular managed object.

• If you want to log an alarm to clear a previous alarm, you must use
alarmOi() and set the probableCause value of the clear alarm to match the
probableCause of the alarm it is clearing. If the previous alarm was logged
using alarm() or alarmStr(), its probableCause value is the same as its
severity.

• The managed object that is the source of an incoming event can be obtained
using the RCL $eventOi variable. This can then be passed to alarmOi()
to log a nerveCenterAlarm against that object.

For more information…
You may want to consult the “Alarm Service” and “SNMP Browser chapters in
the Solstice Enterprise Manager Reference Manual, as well as the following
chapters in this guide:

• Chapter 9, “Nerve Center Overview.”
• Chapter 12, “Request Designer.”
• Chapter 13, “Request Condition Language.”
• Chapter 14, “RCL Functions.”

10.2 Designing Request Templates
Before embarking on building a request template from scratch, use the Request
Designer to examine the sample request templates supplied with the product.
You may be able to use a template as is, modify a template, or, short of these
labor-savers, use one or more of the conditions that are used in the sample
templates. See the following subsection for a procedure for creating a template
from an existing template.

If you find you need to create a request template, the essential steps are as
follows:

1. Design a state machine: draw a picture for yourself showing the states
you want to monitor and the paths between those states. Make note of
conditions that would cause movement from one state to another.

2. Invoke the Request Designer, as described below.

Building Request Templates 10-17

10

The following steps all involve the use of the Request Designer.

3. Create the states you need.
States are specific to each template, that is, you have to create new states for
each template.

4. Create the conditions you need.
You are supplied with a number of conditions. Conditions are reusable
across all request templates. You may wish to develop a library of
conditions that can be used in multiple templates.

5. Create the transitions from one state to another.
Transitions are specific to each template and are executed in the order in
which they appear in the template.

6. Name the request template and enter a brief description of it.

7. Save the template.

Note – You can save an incomplete template, to continue work on it at a later
date, through the Request Designer’s Template➤Export Current option. Use
the Template➤Import option when you want to reload that template into the
Request Designer.

With a template created, you can invoke the Requests window from the
Viewer’s Tools menu and start requests using that template against target
managed objects.

The bulk of the work in building a new request template is in the design of the
template and in the coding of the conditions for the template. You should
design your template before you invoke the Request Designer, although you
can use the application’s graphical display as your drawing board. We
recommend composing your conditions in the Request Designer, because the
application tests the syntax of your condition code when you attempt to save
it.

With your design and a set of conditions in place, the putting together of a
request template is a simple matter of moving through menu selections. The
Request Designer gives you both a text-based and a graphical method of
creating templates. The choice of one or the other is a matter of personal
preference.

10-18 Solstice Enterprise Manager Administration Guide

10

10.3 Requests Based on Polling
The IsSnmpSystemUp template, discussed earlier, is an example of a request
based on polling — periodically checking a managed resource for the current
value of one of its attributes. A limitation of the IsSnmpSystemUp template is
that it can only determine if an SNMP agent system is available on the
occasions that it polls the system. But you may want to be notified if an SNMP
device has been down momentarily and then become available. Another
attribute in the SNMP RFC 1213 internetSystem group — sysUpTime —
can be used to design a request template that does this. Building such a
template will illustrate the process of creating templates based on polling.

sysUpTime measures the time, in hundredths of a second, since the last
system restart. If this value has decreased since the last poll, we know that the
system went down between polls. We can create a state in the template called
“EverDown” to represent the situation where the device is currently up but
was previously down. To make this visible in the Viewer, we can log an alarm
with a perceivedSeverity of minor when a transition to the EverDown
state occurs. However, this will only cause the Viewer icon color to “decay to
cyan” if we first log a “cleared” alarm to clear the previous critical alarm. Fault
status color is determined by the highest severity of uncleared alarms against a
device.

The states for our template, and the corresponding Viewer color, might be the
following:

• Ground — no color
• Poll — no color
• Up — no color
• Down — Red (critical alarm)
• EverDown — Cyan (minor alarm)

To ensure that the Viewer icon for the target object displays an appropriate
color in response to a change in request state, we can add, as an action at each
transition, a condition that calls an RCL alarm-logging function. For example,

Building Request Templates 10-19

10

to cause icons to turn cyan when the request enters the EverDown state, we
can add a condition, AlarmMinorOiEverDow n, consisting of the following
statement:

Because the SetInternetSystem condition resets $pollfdn to point to the
internetSystem group, we need to use $save_pollfdn to log the alarm
against the target device. The Boolean variable $everdown_alarm is used a
latch, to ensure that the request does not flood the alarm log with duplicate
alarms.

As in the IsSnmpSystemUp template, we can set the target of the poll to the
SNMP RFC 1213 internetSystem group by using the SetInternetSystem
condition to define a transition from Ground to Poll.

We want the request to transition from Poll or Up to EverDown if the value of
sysUpTime decreases. This means we will need a variable to store the
previous value of sysUpTime , to compare with the results of the next poll.
This variable should be initialized to zero in the transition from the Ground to
Poll state. For example, we might add a condition, InitLastSysUpTime , as
an action at the transition from Ground to Poll; this condition might consist of
this statements:

To define the transition from Up (or Poll) to EverDown, we might compose a
condition, sysUpTimeDecrease , as follows:

IF ($everdown_alarm == FALSE)
{
$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{3,minor,\”Device is up after being
down\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$everdown_alarm = TRUE;

$last_sys_up_time = 0;
$everdown_alarm = FALSE;
$down_alarm = FALSE;

$last_sys_up_time>sysUpTime;

10-20 Solstice Enterprise Manager Administration Guide

10

We will also need to re-initialize the variable $last_sys_up_time with the
current value of sysUpTime after each successful poll. For example, we might
compose a condition, getSysUpTime , to do this:

We might call our template “IsSnmpSystemEverDown”; a possible state
diagram for our template is pictured in Figure 10-6.

$last_sys_up_time = sysUpTime;

Building Request Templates 10-21

10

Figure 10-6 State Diagram of IsSnmpSystemEverDown Template

10.3.1 Adding States

To add a state, such as EverDown, to our template, invoke the Edit States
window (by clicking on the main window States button) and do the following:

Ground

Poll

Down

Up

Remain Down as long
as no response to poll
for sysUpTime.

If NC can obtain
sysUpTime, go to Up and
 set $last_sys_up_time
 to sysUpTime.

If no response to NC
poll for sysUpTime,
go to Down.

 EverDown

 If sysUpTime less
 than $last_sys_up_time,
 this indicates that

If no response
to NC poll
for sysUpTime,
go to Down.

Remain Up as
long as there is
a response to
NC poll for
sysUpTimeand

Remain in EverDown as
long as there is a
response to NC poll for
sysUpTime.

If there is a response to
 poll for sysUpTime,
 go to EverDown.

 If no response to
 NC poll for
 sysUpTime, go
 to Down.

NC = Nerve Center

sysUpTime
did not decrease.If sysUpTime

decreases,
 go to
 EverDown.

 sysUpTime has decreased —
 go to EverDown.

 Error

Set $pollfdn and
 initialize
 $last_sys_up_time
 to zero.

If SetInternetSystem
indicates target not
configured for SNMP agent,
go to Error state
and post a warning.

10-22 Solstice Enterprise Manager Administration Guide

10

1. Type in the name (“EverDown”) in the State field.

2. Describe what the state represents in the Description field
— for example, “Agent system is up but has been down.”

3. Select a poll rate from the Poll Rate menu.
Note that the polling interval for poll rates (in seconds) can be changed, or
new poll rates added, in the Poll Rates window (invoked by selecting the
Edit➤Poll Rates menu option).

4. Select a severity from the Severity menu.
Note that severity here is a value that is internal to the request. This does
not cause an alarm to be logged, nor does it automatically cause a change in
icon color in the Viewer when the request enters the state. Icon color is
determined by alarms that are logged against a managed object. Control of
icon color is discussed above in Section 10.1.4, “Controlling Fault Status
Color in the Viewer.”

5. Click on Add to add the new state to the template.

Repeat this procedure for the other states to be added.

10.3.2 Adding Conditions

To add a condition, invoke the Conditions window by clicking on the
Conditions button in the Request Designer main window. You create the
condition code by simply typing in the text window. For example, a condition
we will want to use in the IsSnmpSystemEverDown template tests whether
sysUpTime has not decreased; this could be entered as follows:

Figure 10-7 Entering Condition Code in the Request Designer

This RCL statement returns a value of true when (and only when) the
expression “$last_sys_up_time > sysUpTime” is false.

To add the new condition to the MIS, do the following:

Building Request Templates 10-23

10

• Enter a name (“sysUpTimeNotDecrease”) for the condition in the Name
field

• Describe what the condition does in the Description field
• Click on Add to store the new condition in the MIS.

Repeat this procedure for the other conditions to be added.

10.3.3 Adding Transitions

After you have created the states and conditions that you need for the
template, you can begin to create transitions.

After you have created the Poll state, for example, do the following to create
the first transition from the Ground to Poll state:

1. Invoke the Transitions window in the Request Designer main window.

2. Select the Ground state as the From state.

3. Select the Poll state as the To state.

4. Select SetInternetSystem as the Condition to define this transition.

5. To select an Action to be taken at the transition, select either
CONDITION, MAIL, or UNIXCMD.
Because SetInternetSystem is a “dummy” transition that never occurs,
we do not select an action for this transition. Select <none>.

6. Click on Add to add this transition.

To add additional actions at a transition, do the following:

1. Set the From, To, and Condition field settings so that they match the
transition to which you wish to add an additional action.
If you are adding an action after just creating the transition, the settings will
already be set properly for adding an additional action.

2. Select the type of action from the Action menu

a. If you selected MAIl as the type of action, fill in the Message and
Address fields

b. If you selected UNIXCMD as the type of action, fill in the Command
and Arguments fields as required by the UNIX command.

10-24 Solstice Enterprise Manager Administration Guide

10

c. If you selected CONDITION as the type of action, select the condition
from the condition Name menu.

3. Click on Add to add the new action to the list of actions that will be
performed at that transition.

Note that actions at a transition are executed in the order they appear in the
template textual display (which is the order you entered them in the template).
If you want to delete one of the actions at a transition, you can only delete the
last action listed in the that transition. By deleting the actions from the bottom
up, as needed, you can re-enter them to arrange them in the desired order.

Repeat this procedure for each of the transitions in the template. For example,
we need to do error-checking to determine whether SetInternetSystem
indicates a configuration error. If an error occurs, we transition to the Error
state; if no error occurs, we transition to the Poll state. The
InitLastSysUpTime condition can be called as an action in the transition
from Ground to Poll, thus completing the request’s initialization.

After we have completed the initialization phase, we might create the three
transitions out of the Poll state shown below for our IsSnmpSystemEverDown
template:

Figure 10-8 Order of Transitions in IsSnmpSystemEverDown

Building Request Templates 10-25

10

The transition to the Down state is the first transition out of Poll because we
want IsNotSysUpTime to be checked first, to determine if the request will be
able to retrieve the sysUpTime value. If this condition evaluates to false, the
request knows that sysUpTime has been retrieved, and it can then determine if
it has decreased. If it has not decreased, the request transitions to the Up state.
If it has decreased, the request transitions to the EverDown state.

If you enter the transitions out of a certain state in the wrong order in a
template, you can change the order by invoking the Order Transitions window.
The Order Transitions window is accessed by clicking on the Order
Transitions… button in the Transitions window.

10-26 Solstice Enterprise Manager Administration Guide

10

Figure 10-9 isSnmpSystemEverDown Template

Building Request Templates 10-27

10

The condition UndefineSysUpTime contains the following RCL statement:

This condition needs to be called after each successful poll to remove the last
sysUpTime value from the memory space where the request is running. This
forces the Nerve Center to retrieve the current sysUpTime value from the
agent system at the next poll. But before removing sysUpTime from memory,
we call the getSysUpTime condition, which stores the retrieved sysUpTime
value in the variable $last_sys_up_time for comparison with the value of
sysUpTime at the next poll.

Figure 10-9 shows the completed IsSnmpSystemEverDown template as it
appears in the Request Designer textual display: Select the Template➤Save As
option to save the completed template.

10.4 Polling RPC Agents
A limitation of our IsSnmpSystemEverDown template is that it cannot
distinguish between a situation where the lack of response to a poll for
sysUpTime is due to the SNMP daemon being down and a situation where the
lack of response is due to the unavailability of the machine on which the
daemon is installed. The SnmpPingBackoffReachable sample template
overcomes this limitation by using the ping RPC proxy agent to poll for
reachability. Discussing this template will illustrate the design of request
templates that do direct polling of RPC agents.

The SnmpPingBackoffReachable request begins by polling every 30 seconds for
the SNMP system for the sysUpTime attribute. If there is no response to the
poll, the request backs off the poll rate to 60 seconds. If there is still no
response to the poll, the request attempts to poll the device for reachability
using the RPC ping proxy agent. If there is a response to the ping, the request
knows that the machine is up but the SNMP daemon is down, and a major
alarm indicating this is logged.

However, if there is no response to the poll for reachability, the request knows
that the machine is unavailable and logs a major alarm indicating this. The
request continues to poll for reachability. When a response is received, a

undefine(&sysUpTime);

10-28 Solstice Enterprise Manager Administration Guide

10

warning alarm is logged, indicating that the device is up after having been
down. The request then transitions back to polling for the SNMP sysUpTime
attribute. A state machine diagram for this request is shown in Figure 10-10.

Figure 10-10 State Diagram of SnmpPingBackoffReachable Request

Ground

 Error

snmp1

snmp2
Loops as
long as
agent responds
to poll for
sysUpTime.

If no response to
poll for
sysUpTime,
go to
snmp2.

Down

Go to
snmp1 if agent
responds to poll
for sysUpTime.

Loops as long
as there is no
response to
ping.

If there is no
response to ping,
go to Down and

If device responds to
ping after being
unavailable, go to
snmp2 and log
 warning alarm.

Poll rate: 60 seconds

Poll rate:
30 seconds

Poll rate:
120 seconds

log critical “Device
down” alarm.

ping1

If no
response
to poll, go
to ping1
and start
polling for
reachability.

If device is
reachable, go to
snmp2 and post
“SNMP daemon
down” major alarm.

Poll rate:
90 seconds

If device is not
properly configured,
go to Error and
log warning alarm.

Set polling targets
to appropriate
SNMP and RPC
attribute groups.
 Go to snmp1 if
 no error.

Building Request Templates 10-29

10

10.4.1 Targeting the RPC ping-reach Group

The SnmpPingBackoffReachable template polls for both the SNMP sysUpTime
attribute and the reachable attribute supported by the RPC ping proxy
agent. To do this, the request must extract both the cmipsnmpProxyAgent
object and the RPC proxy table object from $pollFdnSet for the device against
which the user has launched the request. Just as SNMP attribute groups are
“contained” under the cmipsnmpProxyAgent object, all RPC agent attribute
groups configured for a device are “contained” under the RPC proxy table
object for that device. The request should check to ensure that the target device
is configured to support both SNMP and RPC. In this case, the
SnmpPingBackoffReachable request transitions to an Error state if it
determines that the device is not configured to support the request.

The first transition in the template uses the following condition to obtain the
RPC proxy table object from $pollFdnSet:

Figure 10-11 get_rpc_mo Condition

$save_pollfdn = $pollfdn;
$num = numElements(&$pollFdnSet);
$count = 1;
while($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguisedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”RPC”);
 if ($res == TRUE);
 {
 $rpc_mo = appendRdn($dn,”/agentId=\”ping-reach\””);
 $count = $num + 1;
 print($rpc_mo);
 }
 $count = $count+1;
}
false;

10-30 Solstice Enterprise Manager Administration Guide

10

The initial setting of $pollfdn is saved in $save_pollfdn. $save_pollfdn can then
be used to target alarms against this device. Alarms must be targeted at one of
the objects in $pollFdnSet in order for the Alarm Service to match it to a device
icon in the Viewer.

A WHILE loop is used to locate the RPC proxy table object by finding a match
for “RPC” on one of the FDNs in $pollFdnSet. An appendRdn() operation is
used to set $rpc_mo to point to the ping-reach attribute group “contained”
under the RPC proxy table. This is accomplished by appending
/agentId=”ping-reach” to the RPC proxy table FDN.

The condition ends with “false;” to ensure that the transition defined by this
condition is not actually executed, and the request then proceeds to evaluate
the next condition, get_snmp_mo , which is similar to the SetInternetSystem
condition discussed in Section 10.1.3.1, “Setting the Target Managed Object.”
This condition sets $snmp_mo to point to the internetSystem group object
under the cmipsnmpProxyAgent object (which represents the SNMP agent).

The third transition out of the Ground state checks for errors:

This condition will evaluate to true if $pollFdnSet had one or fewer objects
(i.e., not both SNMP and RPC) or the internetSystem group or RPC ping-reach
group are not defined for the target device. If so, the request transitions to the
Error state and an appropriate warning alarm is posted. If there is no error, the
request transitions to the snmp1 state in the transition defined by the
initialize_variables condition:

The $pollfdn is set to the SNMP internetSystem group to poll for the
sysUpTime attribute. “true;” ensures that this transition will occur when it is
evaluated.

$num < 2 OR NOT defined(&$snmp_mo) OR NOT defined(&$rpc_mo);

$ping_alarm = FALSE;
$snmp_alarm = FALSE;
$pollfdn = $snmp_mo;
true;

Building Request Templates 10-31

10

10.4.2 Correlating Information from Multiple Polls

The SnmpPingBackoffReachable uses polls for the sysUpTime attribute in the
snmp_up condition:

As long as this condition evaluates to true, the request loops in the snmp1
state. After each poll, the UndefineSysUpTime condition is called to force the
next defined() call to access the remote agent. If there is no response to the
30 second poll for sysUpTime, the request transitions to the snmp2 state which
backs off the poll rate to 60 seconds, in case a longer timeout is needed in
waiting for a response from the agent. If there is now a response from the
agent, the request transitions back to snmp1 and in the transition executes the
is_snmp_backup condition:

The IF construct here is used to distinguish between the situation where the
machine has previously failed to respond to a ping and the situation where it
has not failed a poll for reachability. This warning alarm will be logged only in
the situation where it has not previously failed a response to a poll for
reachability; that is, the request had previously determined that failure of
response to a sysUpTime poll was due to a failure of the SNMP daemon and
not due to the unreachability of the machine.

defined(&sysUpTime);

if ($ping_alarm == TRUE)
{
$info = StrToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{4,warning,\”SNMP Daemon is now
responding\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$ping_alarm = FALSE;
$snmp_alarm = FALSE;

10-32 Solstice Enterprise Manager Administration Guide

10

If there is still no response to the poll for sysUpTime, the request transitions to
the ping1 state to begin polling for reachability, using the RPC ping proxy
agent. In this transition the $pollfdn is set to point to the ping-reach attribute
group with the set_ping_pollfdn condition:

The request tests for reachability with the ping_up condition:

If this condition evaluates to true, the request knows that the previous absence
of a response to the previous poll for sysUpTime was not due to the
unavailability of the machine, but indicates a failure of the SNMP daemon. The
request thus transitions back to snmp1 and executes the is_ping_alarm
condition as an action in the transition:

This condition logs a nerveCenterAlarm with a severity of major against the
device the request was launched against (indicated by $save_pollfdn), but only
if an “SNMP daemon is not responding” alarm has not already been logged.
Setting the $ping_alarm variable to true ensures that if the SNMP device does
start responding to a sysUpTime poll, an alarm will be logged indicating that
the SNMP daemon is up after having been down.

If the device does not respond to the ping, the ping_down condition will
evaluate to true:

$pollfdn = $rpc_mo;

reachable == 1;

if ($ping_alarm != TRUE)
{
$info = StrToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{2,major,\”SNMP daemon is not
responding\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$ping_alarm = TRUE;

reachable == 0;

Building Request Templates 10-33

10

If so, the request knows that the absence of a response to the original
sysUpTime poll was due to the unavailability of the machine, and thus the
request transitions to the Down state. The request executes the
deviceDownCriticalAlarm condition as an action at this transition:

The request loops in the Down state as long as the device does not respond to
polls, which are generated at two-minute intervals. If the device responds to a
ping, the request transitions back to the snmp2 state and issues a warning
alarm in the ping_back_up condition.

10.5 Requests Based on Event Subscription
In addition to responding to requests from managers, agents typically have the
ability to detect conditions and generate messages — called event notifications
— on their own initiative. Event subscription is a facility that forwards specified
event notifications to a request as soon as they arrive at the MIS. Rather than
actively polling devices in the network, the request waits for the arrival of
specified event notifications, and then takes appropriate action when this
happens.

A request can “subscribe” to receive any type of event notification that is
known to the MIS. Subscriptions can request all events of a certain type, events
generated by a specified object, or all events that satisfy a CMIS filter. (For
information on CMIS filters and the types of event notifications that are
defined in Solstice EM by default, refer to the Solstice Enterprise Manager
Reference Manual appendices.)

When designing requests based on event subscription, you will want to
correlate this with your use of other Solstice EM event-handling features:

• Event logging and Alarm Service monitoring of alarm logs
Most types of incoming event notification are, by default, logged to the
AlarmLog ; this log is, by default, used by the Alarm Service to determine
the fault status of devices. The fault status of the device — indicated by icon
color in the Viewer — is set to the highest severity of outstanding
(uncleared) alarms against that device. However, if you are, for example,
using requests to determine when alarms are posted in response to the
arrival of internetAlarms, you might not want internetAlarms to be

alarmStr(1,”Device Not Responding to Ping”);

10-34 Solstice Enterprise Manager Administration Guide

10

automatically logged to the AlarmLog . The Log Manager is used to define
which events are logged to specified logs. The Log Manager and Alarm
Service are discussed in the Solstice Enterprise Manager Reference Manual.

• Mapping of SNMP traps to CMIP event notifications
The Solstice EM SNMP trap daemon (em_snmp-trap) converts incoming
SNMP traps into CMIP event notifications for forwarding to the MIS. The
type of event the trap is mapped to depends upon the way you have
configured the trap daemon’s mapping capability. (SNMP trap-mapping is
described in Chapter 8, “Mapping SNMP Traps to CMIP Event
Notifications.”) If you are designing a subscription template to listen for
SNMP traps, the event types your request should subscribe for will depend
upon the trap-to-event mapping implemented by the trap daemon.

10.5.1 Example: Subscribing for Enterprise-Specific
SNMP Traps

An example of an event subscription request would be a request that
subscribes to receive all enterprise-specific SNMP traps.

You could design an event-subscription request that uses the Nerve Center
alarm-logging function to generate more meaningful alarms. For example,
suppose that the enterprise-specific traps generated by certain devices on your
network have specific trap values that are to be interpreted as indicated in
Table 10-1.

Table 10-1 Enterprise Specific Traps Example

Specific Trap
Number Description Desired action

1 CPU Failure Critical alarm

2 Power Supply Failure Critical alarm

3 Fan Failure Critical alarm

4 Overheating Warning alarm

5 Realtime Clock Failure Ignore

6 Network Connection Failure Minor alarm

Building Request Templates 10-35

10

Your request could subscribe for enterprise-specific traps and then use the RCL
alarm-logging functions to log nerveCenterAlarms with the appropriate
severities in response to incoming traps. We would thus be using
nerveCenterAlarms to drive fault status indication in the Viewer for incoming
enterprise-specific alarms. This means that we want to route incoming
enterprise-specific traps to our subscription request before they become alarms
that affect Viewer icon color.

For purposes of this example, let us suppose that you have configured the
SNMP trap daemon to convert enterprise-specific traps to internetAlarms in
accordance with the ISO-Internet Management Coexistence (IIMC) standard.
(The IIMC standard defines the use of the CMIP protocol for integrated
management of TCP/IP networks that are managed using SNMP. The trap
daemon maps enterprise-specific traps to IIMC internetAlarms by default if no
mapping is provided for enterprise-specific traps in its trap-mapping file.)
Thus, you might have configured the trap daemon to map SNMP generic trap
types to event notifications as follows:

• coldStart traps — coldStartTrap notifications
• warmStart traps — warmStartTrap notifications
• linkDown traps — linkDownTrap notifications
• linkUp traps — linkUpTrap notifications
• authenticationFailure traps — authenticationFailureTrap notifications
• egpNeighborLoss traps — egpNeighborLossTrap notifications
• enterpriseSpecific traps — internetAlarms

All of these alarm types are logged to the AlarmLog by default, and thus affect
icon status color in the Viewer. However, in this example we are assuming that
you want to control fault status indication for enterprise-specific traps with a
request template rather than relying on automatic tracking of internetAlarms
by the Alarm Service. Thus, we want to remove internetAlarms from the
AlarmLog to eliminate duplication of alarms. To do this, you could use the Log
Manager to alter the log discriminator for the AlarmLog to filter out
internetAlarms. (An example is described in Chapter 3, “Managing Devices.”
Also, you may want to refer to the “Log Manager” chapter in the Solstice
Enterprise Manager Reference Manual.)

10-36 Solstice Enterprise Manager Administration Guide

10

10.5.1.1 Initiating the Event Subscription

Because, in this example, the trap daemon is mapping incoming enterprise-
specific traps to internetAlarms, we will want our request template to listen
for incoming internetAlarms.

A subscription request typically initiates the subscription in the transition out
of the Ground state. For example, we might define a condition, called
“SnmpTrapSubscription” that has the following condition code:

Figure 10-12 SnmpTrapSubscription Condition

The variable $itindx receives a value of -1 if an error occurred which
prevented the subscription from being implemented. Accordingly, you could
define a condition to check if such an error occurs, and then transition to a
“Dead” state if it does. The following is an example:

Figure 10-13 IsSubscriptionError Condition

The IsSubscriptionError condition is used to define the transition from
Ground to Dead. The use of “false” in the last line of SnmpTrapSubscription
conditions ensures that this error-checking transition will be evaluated. A third
transition out of the Ground state is defined by the
IsNotSubscriptionError condition:

After subscribing for internetAlarms and checking for subscription error, the
request transitions from Ground to a state where it listens for incoming
internetAlarms, if no error has occurred. Accordingly, you might want to create
a state in the template called “Waiting,” to represent this situation.

$itindx=Subscribe(“internetAlarm”);
$itType = NameToOid(“internetAlarm”);
false;

$itindx < 0;

NOT ($itindx < 0);

Building Request Templates 10-37

10

10.5.1.2 Listening for Incoming Events

In the Waiting state the request checks for the arrival of incoming
internetAlarms by testing the following condition:

Figure 10-14 receivedTrap Condition

$eventType is a system variable that contains the type of the current event
notification. If this condition evaluates to true, an internetAlarm has arrived
and we will want this to cause a transition to another state — which we might
call the “Problem” state — where the request examines the internetAlarm in
detail and takes appropriate action, depending on the nature of the trap. A
possible state diagram for our SNMP trap subscription template is pictured in
Figure 10-15.

The examineTrap condition illustrated in Figure 10-16 is an example of how
the request could interpret enterprise-specific traps in the way suggested by
the example in Table 10-1. Alarms are posted with the appropriate severity and
the cause of the trap is passed in the additionalText field of the
nerveCenterAlarm .

$eventType == $itType;

10-38 Solstice Enterprise Manager Administration Guide

10

Figure 10-15 State Diagram for IsEnterpriseSpecificTrap Template

Ground

Waiting

Problem

Subscribe for all enterprise-specific
 SNMP traps (internetAlarms).

If an internetAlarm
arrives, go to
Problem state and take

After taking action
on a trap,
return to
Waiting
state.

appropriate action.

Check for subscription
error and
go to Dead
state if
an error
occurred.

Dead

Building Request Templates 10-39

10

Figure 10-16 examineTrap Condition

$gnum = TrapGenericType($eventInfo);
$snum = TrapSpecificType($eventInfo);
$pollfdn = $eventOi;
IF ($gnum == 6)
{
 IF ($snum == 1)
 {
 alarmStr(1,”CPU Failure”);
 }
 ELSE
 {
 IF ($snum == 2)
 {
 alarmStr(1,”Power Supply Failure”);
 }
 ELSE
 {
 IF ($snum == 3)
 {
 alarmStr(1,”Fan Failure”);
 }
 ELSE
 {
 IF ($snum == 4)
 {
 alarmStr(3,”Overheating”);
 }
 ELSE
 {
 IF ($snum == 6)
 {
 alarmStr(4,”Network Connection Failure”);
 }
 }
 }
 }
 }
}

10-40 Solstice Enterprise Manager Administration Guide

10

Note that $pollfdn is set to $eventOi. $eventOi is a system variable that
indicates the managed object that is the source of the event. We set $pollfdn to
point to this object because $pollfdn determines the managed object that will
have a nerveCenterAlarm posted against it by the alarmStr() function. The
text string passed to the alarmStr() function is passed in the
additionalText field of the alarm, which can be viewed in the Alarm
Manager.

Our completed IsEnterpriseSpecificTrap template is shown in
Figure 10-17.

Figure 10-17 SNMP Trap Subscription Template

10.6 Debugging Your Templates
There are several faciliities available to you in debugging templates:

• The Request Designer does RCL syntax checking when you attempt to save
a newly created, or modified, condition. However, the Request Dpesigner
will not catch possible runtime errors.

• The Request Monitor tool (accessible from the Viewer’s Tools menu) lists the
requests currently executing in the Nerve Center. If you select a request and
click on the Examine button, the Request Examine window is invoked. This
window displays the values of variables in the request as it is executing.
(Refer to the “Viewer” chapter in the Solstice Enterprise Manager Reference
Manual for information on Request Monitor.)

Building Request Templates 10-41

10

The Solstice EM em_debug utility also provides facilities that are useful in
debugging templates.

10.6.1 Nerve Center Debugging Agents

As a part of em_debug, there are a number of Nerve Center debugging
“agents” which track aspects of Nerve Center operation and display messages
in the shell where they are invoked.

• nc_state — Traces transitions from state to state, indicating the current
state and the condition used to transition out of a state.

• nc_poll — Traces the enabling and disabling of polling in states.
• nc_event — Provides information on all event notifications that have been

received.
• nce_error — Provides information on Nerve Center runtime errors.

For example, you can activate the nc_state agent by entering the following
command:

In reporting on state transitions in a running request, nc_state refers to states
by number. States are numbered by order of appearance in the left-most
column in the Request Designer textual display.

You should invoke the debugging agents before launching the request in the
Viewer.

The Nerve Center debugging agents report on the activities of any request
running in the MIS. If you have multiple requests running, it may be difficult
to isolate which request is the cause of a message that is displayed. For this
reason, it is recommended that you only have the request running which you
are trying to debug when using the NC debugging agents.

hostname% em_debug -c “on nc_state”

10-42 Solstice Enterprise Manager Administration Guide

10

10.6.1.1 Activating RCL Print Statements

Request Condition Language provides a print() function which you can use
in conditions to help you in debugging templates — by printing current values
of variables, for example. You can use the following em_debug command to
activate RCL print() statements:

The RCL print() statements will be displayed in the shell where this
command was invoked.

As with the NC debugging agents, the misc_stdout agent turns on print
statements for all requests running in the MIS that contain the print()
function. If you follow a practice of removing print() statements from
templates after new conditions have been debugged, you can use print()
statements to debug new templates even while other requests are running in
the MIS. Only messages from the request being debugged are then displayed.

Keep in mind that the RCL print() function always returns a value of true. If
a print() statement is the last statement in a condition that defines a
transition, that transition will always occur. Accordingly, when debugging a
template, you may want to avoid print() statements in conditions that define
transitions, and restrict them to conditions that are used as actions after a
transition.

Note – An RCL print() statement will only be executed if it is in a condition
that is evaluated. If a state is never “woken up” by either a poll for an attribute
value or the arrival of an incoming event, the conditions defining the
transitions out of that state will never be evaluated. Also, the conditions that
define transitions out of a state are evaluated in the order they appear in the
template. If a prior condition has evaluted to true, and the request transitions
out of the state, the subsequent transitions in that state are not evaluated.

hostname% em_debug -c “on misc_stdout”

Building Request Templates 10-43

10

10.6.2 Turning Off Debug Agents

You can turn off a particular debugging agent by entering the following
commend:

If you want to turn off all debugging, you can use the em_debug wildcard
feature, as follows:

% em_debug -c “off <agent-name>”

% em_debug -c “off *”

10-44 Solstice Enterprise Manager Administration Guide

10

11-1

Building Templates for
SunNet Manager Event Requests 11

11.1 Overview
Solstice Enterprise Manager is shipped with a suite of agents developed for the
Site/SunNet/Domain Manager (SNM) network management system. These
agents communicate with a network manager, such as Solstice EM, using
Remote Procedure Call (RPC) protocol within an Internet (TCP/IP) network
environment. These RPC agents have the ability to poll managed resources to
check for predefined thresholds and send an event notification — called an
SNM event — to a specified management station. This polling activity is
initiated by a one-shot message from a management station — called an SNM
event request. The SNM event request defines the threshold and polling interval
for the agent’s polling activity. The agent thus acts as a proxy for the manager.
Polling activity is offloaded from the management station to the RPC proxy
agents, which may be distributed to various sites around your network. For
example, a certain machine (either a PC running Solaris for x86 or a SPARC
workstation running SunOs 4.x or Solaris 2.x) — called a proxy host — may
contain the proxy agents for polling of resources in a particular subnet.

Overview page 11-1

Nerve Center’s SNM Event Request Capability page 11-4

SNM Alarms page 11-6

Building SNM Event Request Templates page 11-7

11-2 Solstice Enterprise Manager Administration Guide

11

The Solstice EM Nerve Center has the ability to initiate SNM event requests.
This enables EM to offload the polling of the managed resource from the MIS.
If the threshold defined in the event request obtains on the managed resource,
the RPC agent sends an SNM event to the SNM Event Dispatcher (na.event)
(by default, this is sent to the management station that initiated the request).
This information is forwarded to the EM MIS by EM’s SNM Event Forwarder
(em_snmfwd).

As illustrated in Figure 11-1, RPC proxy agents use Remote Procedure Call
(RPC) protocol (over TCP/IP) to communicate with a management station.
However, a RPC proxy agent may use a different management protocol in
gathering information from other agents. In the example in Figure 11-1, SNM’s
Simple Network Management Protocol (SNMP) proxy agent (na.snmp) is used
to manage devices that support the SNMP protocol.

Building Templates for SunNet Manager Event Requests 11-3

11

Figure 11-1 Using SNM Event Requests with Solstice EM

For information on the installation of RCP proxy agents, refer to the Solstice
Enterprise Manager Installation Guide.

SNMP device

responseresponse

 EM MIS

RPC PDM

Event

SNM
events

registers

snmAlarmEventsSNM Event
Forwarder
(em_snmfwd)

Nerve

 SNM request
initiated

SNM
events

 (via RPC protocol)

polling polling

UNIX host

 SNM
 event requests

 (via RPC protocol)

 (via snmEventRequest())
Dispatcher
(na.event)

Center

via SNMP
protocol SNMP Proxy

via rstat
protocolHostperf proxy

11-4 Solstice Enterprise Manager Administration Guide

11

Note – SNM events that are received by SunNet Manager Consoles managing
segments of your network can also be forwarded to the EM MIS using
Cooperative Consoles. This type of distributed management scenario is
described in Chapter 5, “Using Cooperative Consoles with Enterprise
Manager.”

For general information on using SunNet Manager RPC agents with Solstice
EM, refer to Chapter 4, “Device Management Using RPC Agents.”

11.2 Nerve Center’s SNM Event Request Capability
The Nerve Center module in the MIS contains the request-handling capabilities
of EM. Nerve Center requests are based on request templates, which are built
using the Request Designer application. A key building block in request
templates are request conditions — sets of instructions defined using the EM
Request Condition Language (RCL). RCL provides two built-in functions,
snmEventRequest() and snmKillRequest() , for starting and stopping
SNM event requests. For general guidance in building request templates,
consult Chapter 10, “Building Request Templates.” For information on the
Request Designer and Request Condition Language, refer to Part 3 of the
Solstice Enterprise Manager Reference Manual.

SNM event requests can be launched from the EM management station using
the request-handling capabilities of the EM Nerve Center. Request templates
built using the EM Request Condition Language (RCL) can initiate SNM event
requests via the RCL snmEventRequest() function. When SNM event
requests are launched at target managed objects, the Nerve Center
communicates the request to the appropriate SNM agent or proxy through the
RPC Protocol Driver Module (PDM) in the MIS.

When the snmEventRequest() function initiates a request, the following
information is passed to the target SNM agent or proxy:

• The agent attribute
For example, the mempct attribute, supported by the hostmem agent,
reports the percentage of network memory in use on a machine running
SunOS 4.x. A request might use this attribute to generate an SNM event if
the network memory usage on a router is greater than 80%.

Building Templates for SunNet Manager Event Requests 11-5

11

• The agent attribute group
For example, the load_stats group, supported by the cpustat agent,
reports load statistics for a particular CPU in a multi-processor machine.

• The relation used to define the threshold
Relations such as Equal To, Greater Than, Not Equal To, can be used to
define situations that generate SNM events if they occur.

• The threshold value to test for
For example, if the threshold value is 1 and the relation is Not Equal To,
then Not Equal To 1 is the threshold that will generate an SNM event if it
occurs for the specified attribute.

• The SNM priority of an alarm generated if the threshold obtains
The possible priorities for SNM events are High, Medium, or Low. These
correspond to perceivedSeverity values of EM alarms as indicated in
Table 11-1 below.

• Polling interval (in seconds)
The delay between polls of the target object by the SNM agent or proxy.

• The number of times the device should be polled before terminating the
request
This can be unlimited, or a finite number of polls can be specified. (The
number 0 is used to indicate that polling should continue indefinitely.)

• A specific resource to target within the agent system
For example, a specific file system can be checked for its percent of capacity
in use via the diskInfo agent. A request could be defined to generate an
SNM event if the capacity attribute value is greater than 90% on the target
file system.

Once the Nerve Center has initiated the SNM request, polling of the managed
resource at the specified intervals is handled by the SNM proxy rather than the
Solstice EM Nerve Center, thus minimizing network traffic and the polling
work required of the Nerve Center.

When an SNM agent or proxy first receives a request, two agent processes are
started: one is a parent process and one is a child process to handle the request.
Subsequent requests sent to the same agent will cause the agent to start
additional child processes.

11-6 Solstice Enterprise Manager Administration Guide

11

Information on the attributes and attribute groups supported by SNM agents
and proxy agents can be found in the Site/SunNet/Domain Manager Reference
Manual.

11.3 SNM Alarms
When a critical threshold defined in an SNM request is detected by the SNM
agent, a response — called an event in SNM terminology — is sent via RPC
protocol to the SNM Event Dispatcher (na.event). The SNM Event Forwarder
daemon (em_snmfwd) registers with the SNM Event Dispatcher to receive
incoming SNM events. SNM events received by em_snmfwd contain the
following information:

• Name of the target system where the managed resource resides
• Name of the system which sent the event
• The pertinent agent attribute, and the threshold which obtained, thus

causing the event
• Priority of the event
• RPC number of the agent

If the sending agent is a proxy agent, the target system name and the agent
system name will be distinct.

The SNM Event Forwarder uses the SNM event to build an snmAlarmEvent ,
which will be sent to the EM MIS. The Event Forwarder maps SNM event
severities to the perceivedSeverity values used by the Alarm Service in the
manner indicated in Table 11-1.

The attributes in the snmAlarmEvent include the following:

• perceivedSeverity — This is mapped to SNM priorities as indicated in
Table 11-1.

• managedObjectInstance — This represents the target element within the
agent system.

Table 11-1 Mapping of SNM Event Severities

SNM Event Severity perceivedSeverity Value Default Icon Color

Low Minor Cyan

Medium Major Orange

High Critical Red

Building Templates for SunNet Manager Event Requests 11-7

11

• probableCause — This indicates the threshold that was defined in the
SNM request; the event was generated because this threshold obtained.

• additionalText — This contains the name of the RPC agent and the
threshold that generated the event.

• notificationIdentifier — This a timestamp of the moment when the
MIS sent the SNM event request; this enables the MIS to identify the request
that is responsible for the event.

For the structure of snmAlarmEvents, refer to the “Standard Event
Notifications” appendix to the Solstice Enterprise Manager Reference Manual.

Because snmAlarmEvents are, by default, not logged to the AlarmLog, they are
not monitored by the Alarm Service and therefore do not affect fault status
indication (icon color) in the Viewer. By default, only alarms logged to the
AlarmLog affect fault status color in the Viewer. The Alarm Service is a module
in the MIS that monitors the alarm log and uses the highest severity of
outstanding (uncleared) alarms to determine the fault status color for the
device. For information about the Alarm Service, refer to the “Alarm Service”
chapter in the Solstice Enterprise Manager Reference Manual.

However, a request that listens for incoming snmAlarmEvents can use the RCL
alarm-logging functions to post appropriate nerveCenterAlarms to the
AlarmLog. The RCL subscription functions enable a request to listen for
specified types of events. Thus, you will want to design your SNM event
request templates to listen for incoming snmAlarmEvents from SNM agents
and take appropriate action.

11.4 Building SNM Event Request Templates
An example of a Nerve Center request template that initiates an SNM event
request is the DeviceReachablePing template, shipped with Solstice EM.
Examining this template may give you some ideas for building other SNM
event request templates.

When a DeviceReachablePing request is launched against a target host, an
SNM event request is sent to the ping proxy agent with a polling interval of 30
seconds and a threshold of reachable Not Equal To true. A high priority SNM
event is generated by the ping proxy agent if it finds the target device not
reachable when it polls. As indicated in Table 11-1, the SNM Event Forwarder
translates the high priority SNM event into an snmAlarmEvent with a
perceivedSeverity of critical. The DeviceReachablePing request listens for

11-8 Solstice Enterprise Manager Administration Guide

11

incoming snmAlarmEvents from the target device and posts a
nerveCenterAlarm with a perceivedSeverity of critical if an SNM event is
received.

While it is listening for incoming SNM events, the DeviceReachablePing
request counts the elapsed time since any previous “Device Down” event, and
if the elapsed time is greater than the timeout used by the ping proxy agent in
polling the device, the DeviceReachablePing request assumes the device is up
and posts a minor alarm to indicate the device is up after having been down.

Figure 11-2 State Machine Diagram for DeviceReachablePing
Template

 Ground

Check that the request has been launched at a
correctly configured device and, if so, send
an SNM ping event request testing for reachability.
Subscribe for incoming snmAlarmEvents from
 target device.

If an SNM “not

 arrives, go to Down

Waiting

Down

 Error

Go to Error state
if the target device
is not correctly
configured for this
request.

Reinitialize elapsed time count
to zero if a new SNM
event arrives.

reachable” event

state, initialize
elapsed time count
to zero, and send
critical alarm.

If no new event arrives,
increment elapsed time counter.

If the elapsed time
count exceeds
the proxy’s
polling interval,
go to Waiting
and log
warning
alarm that
device is up
after being
down.

Building Templates for SunNet Manager Event Requests 11-9

11

The transition from the Ground state to the Waiting state is where the request’s
initialization is accomplished:

• The target device is checked to determine if it is correctly configured for a
ping request. If the target device does not support the request, the request
transitions to the Error state and an appropriate warning alarm is logged.

• The RCL subscribeOI() function is used to subscribe for incoming
snmAlarmEvents from the target device.

• The RCL snmEventRequest() function is used to send the SNM event
request to the ping proxy agent.

Each of these tasks is carried out by a separate condition defining a transition
from the Ground state to the Waiting state. The first of these transitions is
defined by the get_rpcAgent_name condition:

Figure 11-3 get_rpcAgent_name Condition

Using the RCL numElements() function, the first statement in the condition
determines how many managed objects are configured for this device. This
information is passed to the request in the $pollFdnSet variable when the
request is launched against a target device in the Viewer. The condition then

$num = numElements(&$pollFdnSet);
$count = 1;
while($count <= $num))
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”RPC”);
 if ($res == TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $hostname = Extract(&$dn3,”attributeValue”);
 $rpc_dn = appendRdn($dn,”/agentId=\”ping-reach\””);
 $count = $num+1;
 }
 $count = $count+1;
}
false;

11-10 Solstice Enterprise Manager Administration Guide

11

uses a WHILE loop to examine the distinguished name (FDN) pointing to each
such object to determine if the device is manageable via RPC. If the device is
manageable by RPC, the RPC proxy table for the device (which “contains”
under it the various RPC agent attribute groups supported by that device) will
be represented in the $pollFdnSet.

The Boolean variable $res is set to true if the device does support RPC, false
otherwise. This condition is followed in the template by a transition defined by
the check_for_rpc condition. If $res is false, that condition causes a
transition to the Error state.

The get_rpcAgent_name condition also extracts from the RPC FDN the
hostname of the device, which will be used in building the SNM event request.
The RCL appendRdn() function is used to point $rpc_dn to the ping agent
reach group contained under the RPC proxy table. This will be passed to the
RCL snmEventRequest() function when initiating the SNM event request.

Note that the get_rpcAgent_name condition ends with a line that says “false;”.
This is to ensure that this condition does not cause a transition to the Waiting
state. If this condition did cause a transition to the Waiting state, the conditions
initiating the SNM event request and subscribing for incoming SNM events
would never be executed. The conditions defining transitions are executed by
Nerve Center in the order they occur in the template. The conditions in the
later transitions out of the Ground state would not be executed by Nerve
Center if any of the earlier conditions evaluate to true. If a condition defining
one of these transitions evaluates to true, the request transitions to the Waiting
state. Thus, if check_for_rpc evaluates to true, the request transitions to the
Error state and the conditions initiating the SNM event request and subscribing
for SNM alarms are never evaluated.

11.4.1 Subscribing for SNM Events

The subscription for snmAlarmEvents occurs in the following condition:

Figure 11-4 subscribe_snmAlarmEvent Condition

subscribeOi(“snmAlarmEvent”,””,$dn);
false;

Building Templates for SunNet Manager Event Requests 11-11

11

The subscribeOi() function is used to subscribe for events from a specified
object. Note that $dn — the RPC proxy table for the target device, not the FDN
pointing to the ping reach group ($rpc_dn) , is the object that is the target of
the subscription. For RPC requests, the RPC proxy table FDN contained in
$pollFdnSet must be used for both event subscriptions and logging of
alarms against the device.

As with the get_rpcAgent_name condition, the subscribe_snmAlarmEvent
condition ends with “false;” to ensure that the request does not leave the
Ground state after evaluating this condition but proceeds to the next transition
in the Ground state.

11.4.2 Sending an SNM ping Event Request

After subscribing for snmAlarmEvents from the target device, the
DeviceReachablePing request sends the SNM event request to the ping
proxy agent. This is accomplished in the send_ping_reach condition:

Figure 11-5 send_ping_reach Condition

The SNM event request parameters are passed to the snmEventRequest()
function as the string $tmp. The hostname, which was extracted in the
get_rpcAgent_name condition, is concatenated with the other parameters. If
the RPC proxyhost setting for $hostname is configured as localhost , the
request is sent to the ping proxy agent on the MIS system. However, polling by
SNM agents can be offloaded to other machines if the managed resource is
configured with a proxyhost other than localhost. (This can be configured in
the Discover Properties window, when doing discovery of RPC-manageable
devices on TCP/IP networks, or it can be configured manually using OCT.)

$tmp = “{agentHost \””;
$request_timeout = 30;
$tmp = StrCat($tmp,$hostname);
$s1 = “\”,agentProgram 100115, agentVersion 10, timeout 30,interval 10,group
\”reach\”,threshold {\”reachable\”,21,1,\”0\”,high}}”;
$tmp = StrCat($tmp,$s1);
$handle = 0;
print($tmp);
snmEventRequest($rpc_dn,$tmp,&$handle);
true;

11-12 Solstice Enterprise Manager Administration Guide

11

The event request passes the address of $handle to Nerve Center. This variable
can be passed to snmKillRequest() function to kill the request. Note that
handle must be initialized before calling snmEventRequest() .

The parameters passed in the event request string are as follows:

• agentHost <hostname> — <hostname> was obtained from $pollFdnSet in
the get_rpcAgent_name condition. This is the target device for the SNM
event request.

• agentProgram 100115 — The RPC number of the ping proxy agent.
• agentVersion 10 — This is the software version number. This is

contained in the entry for the agent in the /etc/initd.conf file. For
example, 10 is the version number for na.snmp in the following inetd.conf
entry:

• timeout 30 — This is the length of time the ping proxy agent will wait for
a response from the device before sending an alarm.

• interval 10 — The ping proxy agent polls the target device every 10
seconds.

• \”reach\” — The name of the attribute group used in this request.
• threshold { <threshold> } — The name “threshold” introduces a set of values

that define the threshold that the agent is to check for:
• \”reachable\” — The name of the attribute whose value is checked.
• 21 — The data type of the operands of the relational operator.
• 1 — The relational operator. A value of 1 indicates the operator is Equal

To.
• \”0\” — “0” indicates false in this case.
• high — The priority to assign to the SNM event generated if the threshold

obtains.

Thus, the ping proxy agent is instructed to check for reachability Equal To false
and generate an SNM event notification if this should occur.

na.snmp/10 tli rpc/udp wait root /opt/SUNWconn/snm/agents/na.snmp na.snmp

Building Templates for SunNet Manager Event Requests 11-13

11

11.4.3 Waiting for a Response to the Event Request

After the DeviceReachablePing request subscribes for snmAlarmEvents from
the target device and sends the SNM event request to the ping proxy agent, the
request transitions to the Waiting state. The request “sleeps” until it is “woken
up” by the arrival of an snmAlarmEvent. This happens when the
is_snmAlarmEvent condition evaluates to true:

A $messType of 0 indicates that the request was woken up by the arrival of an
event. The arrival of an snmAlarmEvent indicates that the target device is not
reachable. The request then transitions to the Down state and executes two
conditions as actions in the transition. One of these actions logs a
nerveCenterAlarm:

This alarm is logged against the device indicated by the request’s $pollfdn
value. When the request is first launched, this is set by Nerve Center to point
to the first object in $pollFdnSet. This critical alarm will cause the icon of the
target device to turn red in the Viewer. The string passed to the alarmStr()
function appears in the additionalText field for that alarm in the Alarm
Manager.

The other action in the transition from the Waiting to the Down state initializes
a counter:

At this point the request knows that the device is down. But it would also be
useful to be notified if the device comes back up. The request can assume that
the device is back up if it stops receiving “Device Down” events from the ping
proxy agent for a length of time that is longer than the timeout that the ping
agent is using in waiting for responses from the target device. The request has
set this timeout value to 30 seconds in the SNM event request. Therefore, the
DeviceReachablePing request counts the time elapsed after each incoming

$messType == 0;

alarmStr(1,”Device Not Responding to Ping”);

$time_counter = 0;

11-14 Solstice Enterprise Manager Administration Guide

11

“Device unreachable” event, and when it stops receiving such events for a
period longer than the request timeout being used by the ping agent, the
request assumes the device is back up.

After the request transitions to the Down state, it loops back to that state so
long as the following condition evaluates to true:

Figure 11-6 another_event Condition

Each time the request loops back from the Down to Down state due to the
arrival of a new SNM event notification from the ping proxy agent, the time
counter is reinitialized to zero.

Note that the polling interval is every 20 seconds in the Down state. If no new
SNM event arrives after 20 seconds, the another_event condition will evaluate
to false and the request will then evaluate the following condition:

Figure 11-7 wakeup_count Condition

The purpose of the first statement “$fake = topoNode; ” is to retrieve some
attribute (it may be irrelevant to the purposes of the request, as in this
example) in order to force the request to be “woken up.” If the request is not
woken up, this condition would not be evaluated.

The wakeup_count condition increments the time counter and then checks to
determine if the time elapsed since the last SNM event is greater than the ping
proxy request timeout. If it is not, this condition will evaluate to false and will
not cause a transition back to the Waiting state; the request then continues to
loop in the Down state. If this condition does evaluate to true, the request
assumes that the ping proxy agent is no longer sending “Not reachable” event

$messType == 0;

$fake = topoNode;
$time_counter = $time_counter + 10;
$time_counter > $request_timeout;

Building Templates for SunNet Manager Event Requests 11-15

11

notifications because the device is back up. This causes the request to transition
back to the Waiting state, and in the transition a minor alarm is logged by the
deviceBackUpWarningAlarm condition:

This is a minor alarm. This will only turn the icon cyan, however, after a user
clears the previous critical alarm in the Alarm Manager. If you wanted to
implment an automatic “decay to cyan” feature, to automatically change the
icon to cyan when a device becomes available after being unreachable, you
could modify the DeviceReachablePing template to issue a “cleared” alarm
before logging the minor alarm. The following condition would send a
“cleared” alarm to clear the previous critical alarm:

If the request did not clear the previous critical alarm, the icon would remain
red because the Alarm Service sets fault status color to the highest severity of
uncleared alarms. An outstanding critical alarm always takes precedence over
alarms of lesser severity. The minor alarm only causes the icon to “decay to
cyan” if the previous critical alarm has been cleared.

alarmStr(4,”Device is up after being down”);

alarm(5)

11-16 Solstice Enterprise Manager Administration Guide

11

12-1

Request Designer 12

12.1 Overview
Requests are the series of activities through which the Solstice EM Nerve Center
polls for the attributes of managed objects or receives notifications from the
agents of managed objects, or both. A request is typically initiated when a
request template is launched at a target object. The Request Designer is an
application that allows you to create request templates.

Overview page 12-1

Starting the Request Designer page 12-3

Using the Request Designer page 12-3

Edit States Window page 12-9

Transitions Window page 12-10

Conditions Window page 12-16

Poll Rates Window page 12-17

Severities Window page 12-18

Graphical State Diagram Display page 12-18

em_ncimport and em_ncexport Utilities page 12-22

12-2 Solstice Enterprise Manager Administration Guide

12

States, poll rates, and conditions are the building blocks of request templates.
Each template is made up of multiple states, with, potentially, multiple
transitions between those states. A request state may be thought of as an
internal representation of a state (such as Up or Down) of a network resource.
A condition is a set of instructions written in the Request Condition Language
(RCL). Conditions can play two roles in requests:

• A single condition can be used to define when a request will undergo a
transition from one state to another (or loop back to the same state). You
must have exactly one condition associated with each transition. Where
more than one transition out of a given state exists in a template, each
defined by a distinct condition, the Nerve Center evaluates the conditions in
the order they are entered in the request template.

• A second role of a condition is as an action, taken in response to a transition.
A condition is one of three types of action, the others being the sending of
mail and the invocation of a Unix command. Multiple conditions can be
invoked as actions resulting from a single transition. When multiple actions
result from a given transition, Nerve Center executes them in the order
entered in the request template.

As part of a request template, you can enter RCL statements that cause an
event to be treated as an alarm and to be logged to an alarm log. The Request
Condition Language is described in Chapter 13, “Request Condition
Language.”

The alarm logging activity of Nerve Center affects the Alarm Manager, which
displays a summary of alarms in one or more logs, and the Log Manager,
which displays log records for events you have chosen to log. Both the Alarm
Manager and Log Manager are described in the Solstice Enterprise Manager
Reference Manual. Nerve Center alarm logging also has an impact upon the
color of icons in the Viewer. The MIS Alarm Service module monitors the
alarm logs and updates the color of icons in the Viewer to reflect the severity of
alarms logged against the managed objects represented by those icons. The
default mapping of color to severity is described in Table 12-3. Nerve Center
controls this mapping and you can change it through the Request Designer’s
Edit➤Severities option, described in Section 12.7, “Poll Rates Window.”

Request Designer 12-3

12

12.2 Starting the Request Designer
To use the Request Designer, a Solstice EM MIS must be running and the
Request Designer must be able to communicate with it.

You can start the Request Designer by selecting the Request Designer icon in
the Application Launcher window. Also, the application is brought up if you
click the Create or Modify buttons in the Viewer’s Requests window. (See the
“Viewer” chapter in the Solstice Enterprise Manager Reference Manual for a
description of the Requests window.)

You can also invoke the Request Designer, and have it connect to an MIS, by
using the following command line format:

The <hostname> option is used to specify the name of the machine where the
MIS is running. If you start the Request Designer from the command line, and
you are a logged on as a non-root user, you receive a Login window if
password authentication has been activated for EM. To proceed, enter your
password and click OK. Your access to Request Designer functions depends
upon the permissions granted to you through the Solstice EM Access Manager.

The Request Designer offers two modes of interaction — through a text-based
window or through a graphical display, called a “State Diagram” window.
Upon invoking the Request Designer, the application comes up in its text
mode. In the following subsections, we first describe the use of the text-based
window. Much of this information applies to the graphical display as well. See
Section 12.9, “Graphical State Diagram Display for instructions on the use of
the graphical display.

12.3 Using the Request Designer
The following sections explain the use of the Request Designer.

12.3.1 Main Window

The Request Designer main window consists of the following components:

• A menu bar that offers File, Edit, and View menus

host% em_reqedit [-host <hostname>]

12-4 Solstice Enterprise Manager Administration Guide

12

• A display area, showing the textual description of the current request
template

• An area near the bottom with the States, Transitions, and Conditions buttons

Each of these areas is described in detail in the following sections.

12.3.1.1 Display Area

The Request Designer has a read-only text display area beneath the menu bar.
The name of the current template appears in the footer of the window. The text
display area has the column headings for State, Transition, Condition, and
Action. As you add states, transitions, conditions, and actions in building a
template, the names of these components are aligned in the appropriate
column.

The display area contains the text for the currently selected request template.
Contents of the area change in response to File➤Open…, File➤Delete… and
File➤New commands. The File➤Open… option allows you to open (and
thereby display) an existing template. Invocation of File➤New clears the
display area.

The display area records the states and transitions you create or modify using
the States and Transitions windows.

12.3.1.2 States, Transitions, and Conditions Buttons

These buttons invoke the windows of the same names. The States, Transitions,
and Conditions windows are described starting with Section 12.4, “Edit States
Window.”

12.3.1.3 Text-display Message Area

The Request Designer has a message area along the bottom edge of the main
window. In this area, the Request Designer displays the name of the current
template. Error messages are also displayed here.

12.3.2 File Menu

The options in the File menu are as follows:

Request Designer 12-5

12

New
Select the New option to have a “fresh” request template window displayed. If
you select New when you have unsaved changes to a template, the Request
Designer asks you if you want to save those changes before presenting you
with a new, empty template. The message area displays a current template
name of “NoName.”

Open…
Select Open… to receive the Open Template window. This window lists
available templates by name and description. To open a template, select the
template name and description then select Open. Or simply double-click on a
template name and description. To delete a template (which removes the
template object from the MIS), select the template name, then select Delete.

Note – The Request Designer does not allow you to change a request template
that is in use. The Request Designer determines whether a template is in use at
the point where you attempt to save the template.

Delete…
The Delete… option also invokes the Open Template window. To delete a
template (which removes the template object from the MIS), select the template
name, then select Delete.

Save
Select Save to save the current template. The Request Designer saves the
template under the name used when it was opened. To save a new template, or
to save a previously opened template under a new name, use the Save As
option. The Save option does not allow you to save partial or incomplete
templates. Use the File➤Export Current… option to save incomplete templates.

Save As…
Select Save As to save the current request template under a new name. The
Request Designer saves a template (and stores the template in the MIS) by its
name. Enter the new name in the Name field and select OK to save the
template. If you attempt to save the template under a name that is in use, the
program gives you the option of overwriting the existing template or of

12-6 Solstice Enterprise Manager Administration Guide

12

selecting another name. The Save As option does not allow you to save partial
or incomplete templates. Use the File➤Export Current… option to save
incomplete templates.

Import
Select Import to invoke the Import window (shown in Figure 12-1). This
window allows you to select which type of component you want to import
from a previously exported ASCII file — Templates, Conditions, or Poll Rates.
You can select the directory and the specific file as the source of the import.
The action of the Import option depends upon how the imported file was
previously saved:

• If the imported file was previously saved using the Export option, the
imported components are loaded into the MIS.

• If the imported file was previously saved using the Export Current option,
the template is loaded into the Request Designer but not into the MIS.

Figure 12-1 Import Window

Export…
Select Export to invoke the Export Customized window. This window allows
you to select Templates, Conditions, and Poll Rates to export to an ASCII file.
You can select the directory and filename to which the selected items are to be
exported. Depending on your selection of component type from the buttons in
the top of the window, the existing components of that type are displayed for
your selection. In the example in Figure 12-2 the template IsSnmpSystemUp
has been selected for export to a file named snmp.template .

Click here for file chooser

Request Designer 12-7

12

Figure 12-2 Export Customized Window

Export Current…
Allows you to save the contents of the Request Designer main window into an
ASCII text file. You can use this option to save incomplete or partial templates
in order to continue work on them later. You can reload the exported template
using the Import option.

Note – The Request Designer Export and Import functions can also be accessed
through the em_ncimport and em_ncexport command-line utilities. Refer to
Section 12.10, “em_ncimport and em_ncexport Utilities,” for more information.

Click here for
file chooser

12-8 Solstice Enterprise Manager Administration Guide

12

Exit
Select Exit to leave the Request Designer. Any unsaved changes to a
template are lost. Use the Export Current option to save incomplete or
partial templates before exiting.

12.3.3 Edit Menu

The Edit menu offers the following options, which invoke the corresponding
windows:

• States — see Section 12.4, “Edit States Window”

• Transitions — see Section 12.5, “Transitions Window”

• Conditions — see Section 12.6, “Conditions Window”

• Poll Rates — see Section 12.7, “Poll Rates Window”

• Severities — see Section 12.8, “Severities Window”

The foundation-building work of the Request Designer is performed in the
States, Transitions, and Conditions Windows. These windows can also be
invoked by selecting the appropriate button at the bottom of the main
window.

You must create states before creating transitions. States and transitions are
specific to a given request template; conditions can be used across multiple
request templates.

Severities and poll rates are associated with states. You may find that the poll
rates already defined are more than adequate for your needs.

12.3.4 View Menu

The options in the View menu control the way in which the template is
displayed. The Request Designer offers two modes of interaction — through a
text-based window or through a graphical display, called a “State Diagram”
window. The Request Designer is in text mode when it is initially invoked.

Graphical
 Select this option if you want to view the template solely in the graphical State
Diagram display.

Request Designer 12-9

12

Text
Selects text-only display of the template. Invoking this option closes the
graphical State Diagram window if it is in use.

Both
Select this option if you want to use both the text and graphical displays of the
same template. The two modes are not exclusive; changes made in one are
reflected immediately in the other. Even if you prefer to work in the text-based
display, you might find it useful to have the graphical display open, to see a
picture of the template as it emerges.

12.4 Edit States Window
Select the States button at the bottom of the main window (or the
Edit➤States… menu option) to display the Edit States window.

You can create any number of states for a given request template. However, a
maximum of nine states (including Ground) can be displayed in the Request
Designer’s graphical display. If you have more than nine states, the Request
Designer displays the most recently entered eight states, plus Ground.

The components of the Edit States window are described as follows:

Tabular Display
This is a read-only area that is updated after you perform an Add, Delete, or
Modify operation. It is also updated when you invoke File➤Open… and open
a request template. The display area lists the states that are in the currently
displayed template.

For a given state, the display area lists the state name and the name of the
severity and the poll rate associated with that state.

State Field
Displays the name of a currently selected state, if any, from an open request
template. If you want to create a new state, enter a name in this field. Names
must be of 64 or fewer alphanumeric characters and must not contain
whitespace characters.

12-10 Solstice Enterprise Manager Administration Guide

12

Description Field
The contents of this field describe a state. This field is updated when you make
a selection in the States window display area. Descriptions are strings of 256 or
fewer characters. Whitespace is allowed in descriptions.

Poll Rate Button
The Poll Rate button provides a menu of available poll rates. Poll rates
supplied with Solstice EM are shown in Table 12-2. You can create or modify a
poll rate in the Edit➤Poll Rates window.

Severity Button
The Severity button provides a menu of available severities. Severities
supplied with Solstice EM are shown in Table 12-3.

Note – “Severities” attached to states are internal to the Request Designer
application. They do not cause alarms to be logged nor do they cause changes
in icon color in the Viewer. The severity value attached to a Nerve Center
alarm is determined by the value passed in the <severity> parameter of an RCL
alarm logging function, such as alarm() , alarm_oi() , or alarm_str() .

In the menu of severities, select a severity you want for the selected state. You
can customize the colors associated with severities by invoking the
Edit➤Severities option.

If you select a state in the tabular display and values such as severity or poll
rate, you can then alter the state in the template by clicking on the Modify
action button.

12.5 Transitions Window
Select the Transitions button at the bottom of the Request Designer main
window (or the Edit➤Transitions… menu option) to display the Transitions
window (shown in Figure 12-4). All operations relating to transitions are
performed in this window.

Request Designer 12-11

12

Order Conditions
Select Order Conditions to display the Order Conditions window (shown in
Figure 12-3). This window allows you to change the order of transitions from a
specified state within the current template. To select the state whose transitions
you wish to reorder, select a state from pulldown menu for the Select State
field.

Each transition is associated with a condition that determines when that
transition will occur. The order of these conditions in the template determines
the order in which the Nerve Center evaluates them. After a state has been
selected from the Select State menu, the transitions out of that state are listed in
their current order. Click on the Move Up or Move Down buttons to move the
position of the selected transition.

Changes made in this window are shown immediately in the text and graphics
template display areas.

12-12 Solstice Enterprise Manager Administration Guide

12

Figure 12-3 Order Transitions Window

Display Area
This is a read-only area that lists all transitions leaving the currently selected
“From” state.

From
“From” here refers to the state from which a request is making a transition. The
From menu shows the available states, that is, states that you have created.
When you select an available state, all transitions leaving that state are
displayed in the display area above.

Request Designer 12-13

12

To
The To menu allows you to select the state to which a request is making a
transition. This may be the same state as the From state (i.e. a transition may
loop back to the same state). The To menu shows the available states, that is,
states that you have created.

Condition
The Condition menu allows you to select a condition to be the test of whether
to move from one state to another. A single condition is used to define when a
transition will occur. If there are multiple transitions out of a given state to a
variety of other states, each such transition requires a condition to define when
it occurs. You can define multiple transitions between the same two states —
for example, from Up to Down — each defined by a different condition.

The Condition menu shows the available conditions, that is, conditions that
exist in the MIS.

Use the Conditions window, described in Section 12.6, “Conditions Window to
create a new or modify an existing condition.

Action
The Action menu allows you to select a set of actions that will be taken when a
transition occurs.The Action menu options are described in Table 12-1.

If you select CONDITION, the Name field is activated. From the Name menu,
you can choose a condition from the menu of conditions. This menu lists all the
conditions that exist in the MIS.

Table 12-1 Action Menu Items

Action Description

<none> No action taken.

UNIXCMD The name of command with any required parameters. For example, for netstat -rn ,
you enter netstat in the Command field and -rn in the Arguments field.

MAIL An electronic mail address and message. For example, verma@halcyon in the Address
field and CPU usage exceeded 90% in the Message field. By default, the mail that
results from an action has a subject “Problem with Node.”

CONDITION The name of a condition as you created and saved it in the Request Designer (which
saves it into the MIS).

12-14 Solstice Enterprise Manager Administration Guide

12

Variables that have been introduced in conditions can also be used for the
UNIXCMD or MAIL items in the Action menu.

Figure 12-4 Example: Adding AlarmClearedOi as an Action at Up-to-Up Transition

To add an action at a
transition, you must match the
From,
 To, and Condition values
 of transition.

Request Designer 12-15

12

Command and Arguments
These fields are active if you select an action of UNIXCMD. Enter a command
as described in Table 12-1.

Address and Message
These fields are active if you select an action of MAIL. Enter a message as
described in Table 12-1.

Name
This field is active if you select an action of CONDITION. The Name menu
lists the available conditions.

Add
Select Add to add the transition. You can add multiple actions that are to be
executed at the same transition. To add a new action to an existing transition,
the Transitions window must match the target transition on the From, To, and
Condition fields, as shown in the example in Figure 12-4. In that example, the
condition AlarmCleared is being added as an action at the transition from Up
to Up.

The actions in a transition are invoked by the request in the order they appear
in the template. If you want to change the order of actions in an existing
transition, you need to delete the actions, then add them in the desired order.

Delete
You can delete one action at a time. To delete an action that is a condition,
select the condition from the condition menu and select Delete. To delete an
action of UNIXCMD or MAIL, specify both arguments (Command and
Arguments for UNIXCMD, Address and Message for MAIL) exactly as you
entered them when you created the action.

Note – To delete an entire transition, specify an Action of <none> , then select
the From, To, and Condition entries for the transition you want to delete.
Then, select Delete.

12-16 Solstice Enterprise Manager Administration Guide

12

Close
Dismisses the Transitions window.

12.6 Conditions Window
Select the Edit➤Conditions option (or the Conditions… button at the bottom of
the main window) to invoke the Conditions window. Use the Conditions
window to create new or modify existing conditions.

The Conditions window displays a list of available conditions. To modify an
existing condition or to create a new condition based on an existing condition,
activate the condition you want to change. (A single click on an item in the
available conditions list displays that condition’s name and description; a
double-click, in addition to name and condition, displays the condition code.)

If you change the condition name, select Add after making the changes you
want to the description and the condition code. If you change the description
or code and leave the name unchanged, select Modify.

Note – You cannot delete or modify a condition that is used in a template
displayed in the Request Designer’s Open Template window, described under
Section 12.3.2, “File Menu.”

The Conditions window has a sash, a small box divided along the diagonal,
located near the right side of the window. The sash allows you to use your
mouse to change the proportions between the “available conditions” and the
“condition code” displays within the Conditions window.

Error Checking
After you select Add or Modify, the Request Designer performs a syntax check
on the condition code. If the code meets the syntactical requirements of the
RCL, the Request Designer adds or modifies your condition. If the code does
not meet RCL requirements, the Request Designer displays an error pop up
window and prevents saving the condition.

Request Designer 12-17

12

If your condition code includes references to agent attributes, the Request
Designer checks to determine if that attribute has been defined in a GDMO
document loaded into the MIS. If the attribute has not been defined in the MIS,
you receive an error message and the Request Designer does not save the
condition.

Select the Delete button to delete the currently displayed condition.

12.7 Poll Rates Window
Select Edit➤Poll Rates to display the Poll Rates window. Use the Poll Rates
window to create new or to modify existing poll rates. A poll rate specifies the
interval at which the Nerve Center checks on a managed object for a given
state. A single poll rate is associated with each state. A poll rate consists of a
name (alphanumeric characters only, no whitespace) and a number, the
number being the number of seconds that must elapse before the Nerve Center
makes a poll request.

Poll rates supplied with the product are listed in Table 12-2.

Table 12-2 Poll Rates

Name Interval (secs.)

Fast 60

default_rate 300

VerySlow 21600

Slow 3600

Medium 900

Moderate 300

Pollping 10

Poll 20

12-18 Solstice Enterprise Manager Administration Guide

12

12.8 Severities Window
Select Edit➤Severities to receive the Severities window, which, by default,
offers you the list of severities shown on Table 12-3.

A severity describes the degree of importance you attach to a network resource
entering a state. The Severities window allows you to change the color that is
used to represent a severity. To make a change, select the severity and type in
the desired color in the Color field; then click on Modify.

A severity is made up of three items: a name, a number, and a color. For
example, “Warning 4 yellow” is one of the supplied severities. The Nerve
Center’s mapping of colors to severities (shown in Table 12-3) controls the use
of color in the Viewer and Alarm Manager to represent the severity of alarms
logged against managed objects.

Note – You cannot change the name or the numeric value of the severities, nor
can you add or delete severities. Only integer values in the range 0 to 5 are
valid severity values.

12.9 Graphical State Diagram Display
In the Request Designer main window, select View➤Graphical (or View➤Both)
to receive the State Diagram window shown in Figure 12-5. In this figure, you
start with the single state, “Ground,” which is the required starting point for
all request templates.

Table 12-3 Severities

Integer Name Default Color

0 Indeterminate Blue

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Normal Green

Request Designer 12-19

12

Figure 12-5 Graphical State Diagram Display

Down

States button

Transitions button

Conditions button

Transitions
 popup menu

Numbers in boxes
indicate the number of
transitions between the two
states.

12-20 Solstice Enterprise Manager Administration Guide

12

The menus at the top of this window are identical to those in the text-based
display and are described starting in Section 12.3.2, “File Menu.”

12.9.1 Creating a Template Through the State Diagram Display

The graphical display icons are pointed out in Figure 12-5. These icons
correspond to (from left to right) the States, Transitions, and Conditions
buttons in the text-based display.

To use the graphical display to create a request template, perform the following
steps:

1. Select the States (leftmost) icon.
A new, unconfigured state displays in the graphical display. This state has a
name of “NoName.” At the same time, the Configure States window is
displayed. This allows you to enter the same data as is accepted by the
States window invoked from the text-based display. See the description of
that window in Section 12.4, “Edit States Window.”

2. Enter a name and description and select a poll rate and severity for the
new state. Select Add.
The name just entered appears in the circle for the new state; the color
specified in the state’s severity is also displayed.

Note – At this point, you have the option of creating additional states — first
adding a state (circle), then configuring that state — or making a transition
from the Ground state to your new state. In these instructions, we proceed as if
you are making a transition before making additional states.

3. Select the circle for the Ground state (the “from” state), use the middle
mouse button to extend your selection to the circle for the new state (the
“to” state), and then select the Transitions (center) icon.
A line appears between the two states with a small box containing “0” on
the line. We call this box the “transition-count box”. At the same time, you
receive the Transitions window, which is identical to the Transitions window
invoked from the text-based display. See the description of that window in
Section 12.5, “Transitions Window.” When you bring up the Transitions
window from the graphics display, the names of the two states connected by
the transition are displayed in the From and To fields.

Request Designer 12-21

12

You can also obtain the Transitions window by pressing right in the
transition-count box in the newly made transition line and selecting
Configure in the new transition’s menu.

Note – When configuring states and transitions, do your work in indivisible
pairs: create a state, configure that state; create a transition, configure that
transition.

4. To make additional states and transitions, repeat Step 1 through Step 3.

5. Invoke File➤Save As to save the new template.

You can create any number of states for a given template. However, you can
display a maximum of nine (including Ground) in the Request Designer’s
graphical display.

The graphical display has a message area at the bottom of the window that is
analogous to the text-display message area, described in Section 12.3.1.3, “Text-
display Message Area.”

The numbers in boxes indicate the number of transitions that have been
created between a pair of states.

12.9.2 Other Tasks in the Graphical Display

To delete a state, select Configure from the menu for the state icon to be
deleted. In the Configure States window, select Delete, then select OK in the
dialog box that subsequently appears.

To delete a transition, press right in the transition-count box for that transition.
Select Configure. You receive the Transitions window. In this window, select
Delete, then select OK in the dialog box that subsequently appears.

To delete the action for a transition (not the entire transition), press right in the
transition-count box for that transition. Select Configure. You receive the
Transitions window. In this window, select the action you want to delete, enter
any arguments (such as Command or Address), and select Delete. If you
specify an action of <none>, all actions are deleted.

To obtain a description of a state or transition, press right in the state icon or in
the transition-count box for the transition. Select Description. You receive a
read-only State or Transition Information window.

12-22 Solstice Enterprise Manager Administration Guide

12

12.10 em_ncimport and em_ncexport Utilities
Templates, conditions, poll rates, and severities can be saved to an ASCII text
file using the em_ncexport command-line utility. Templates, conditions, poll
rates, and severities previously saved to an ASCII text file can be loaded into
an MIS using the em_ncimport command-line utility. This facility is useful
for:

• Replicating templates, or selected template components, from one MIS to
another

• Storing several versions of the same template, or an entire Nerve Center
template data

Syntax:
em_ncexport [-host <hostname>] [-file <filename>] [-help]
[-t <template_name>] [-c <condition_name>]
[-p <poll_rate_name>] [-s <severity_name>] [-minimize]

em_ncimport [-host <hostname>] [-file <filename>] [-t] [-
help]
[-p] [-s] [-c] [-v]

Options
-help

Displays help text.

-host <hostname>
<hosthame> is the name of machine with the target MIS for import or export.
Default is localhost .

-file <filename>
<filename> is name of file to export to or import from. Default is stdin for
import, stdout for export.

Request Designer 12-23

12

-t [<template_name>]
<template_name> is the name of the template to export. By default, all poll
rates, severities, and conditions that are associated with the template are
exported. Multiple template names can be listed if the list of names is
surrounded by double quotes. If no name is specified, all templates are
exported. For example:

Individual templates cannot be selected for import. The -t option imports
all templates in the selected file.

-c [<condition_name>]
<condition_name> is the name of the condition to export. Multiple condition
names can be listed if the list of names is surrounded by double quotes. If
no name is specified, all conditions are exported.

Individual conditions cannot be selected for import. The -c option imports
all conditions in the selected file.

-p [<poll_rate_name>]
<poll_rate_name> is the name of the poll rate to export. Multiple poll names
can be listed if the list of names is surrounded by double quotes. If no name
is specified, all polls are exported.

Individual polls cannot be selected for import. The -p option imports all
poll rates from the selected file.

-s [<severity_name>]
<severity_name> is the name of the severity to export. Multiple severity
names can be listed if the list of names is surrounded by double quotes. If
no name is specified, all severities are exported.

Individual severities cannot be selected for import. The - s option imports
all severities from the specified file.

-v

Turns on verbose mode. Warnings are printed in addition to errors. For
example, if a condition is a duplicate of one already in the MIS, this
generates a warning. This option is not supported for export.

-minimize

em_ncexport -t “IsSnmpSystemUp PingUpOrDown RouterIfStatus”

12-24 Solstice Enterprise Manager Administration Guide

12

If specified, only the template is exported, and not the conditions, poll rates,
or severities associated with it. This option is suppored only for
em_ncexport .

Note – For em_ncexport , at least one of the following options must be
specified: -t , -c , -p , -s . em_ncimport can be used without any options being
specified. If no options are specified, em_ncimport imports all components in
the specified file.

Examples
• Templates can also be piped to a printer. In the following example, the

template IfUP from the remote MIS on machine bar is sent to the printer:

% em_ncexport -host bar -t IfUp -minimize | lp

• Export all conditions from the default MIS to file myconditions :

% em_ncexport -f myconditions -c

• Export template IfUp and all templates related to it (that is, referenced by
it) to file foo :

% em_ncexport -f foo -t IfUp -r

• Import all contents of the file mytemplates to the default MIS:

% em_ncimport -f mytemplates -t -c -p -s

• Import only templates from the file templatelib :

% em_ncimport -f templatelib -t

• Export all conditions from the machine bighost to the machine host2 :

% em_ncexport -host bighost -c | em_ncexport -host host2 -c

13-1

Request Condition Language 13

 Request Condition Language (RCL) is a script language used to build
conditions. Using RCL you can build up a library of conditions that can be
deployed as building blocks in the construction of request templates in the
Request Designer.

A condition is a sequence of one or more statements written in the Solstice EM
RCL. With the exception of compound expressions built using IF, IF ELSE, FOR
EACH, and WHILE constructs, each RCL statement must end with a
semicolon.

Types of Operands page 13-2

Constants page 13-3

Variables in a Condition page 13-3

Data Types page 13-5

System Variables page 13-6

Message Types page 13-12

Attributes page 13-13

Operators page 13-15

Control Structures page 13-18

Timestamp Arithmetic page 13-23

Error Checking page 13-24

13-2 Solstice Enterprise Manager Administration Guide

13

There are two possible roles that a condition can play in a template:

• A single condition is used to define when a transition from one state to
another in a template will occur.

• Conditions can also function as actions that are executed as the result of a
transition. Multiple conditions can be specified as actions for the same
transition and they will be executed in the order listed in the transition.

When a condition is used to define when a transition will occur, the sequence
of statements must evaluate as true or false. That is, the last statement must
return a result that can be treated as false (null) or true (not null). If the
condition returns a value of true, this causes the transition to occur.

However, when a condition is used to define an action that occurs as the result
of a transition, the condition’s return value is ignored.

This chapter covers the operands, variables, attributes, and other components
that make up RCL. RCL also provides a library of built-in functions that can be
used in building templates. The built-in functions are described, in alphabetical
order, in Chapter 14, “RCL Functions.”

13.1 Types of Operands
The operators or built-in named operators that are currently implemented
support primitive data types.

The RCL has three basic types of operands:

• Constants

• Variables

• Attributes

Each operand has a type and a value. The type is represented internally as an
Asn1Type . For example, an integer operand has the type INTEGER. The value
of an operand is represented internally as an Asn1Value . A built-in operator
assigns types and values to variables dynamically. Type declarations are not

Request Condition Language 13-3

13

required for variables. For example, the variable $counter is initially defined
as an integer type when the following assignment is encountered in a
condition:

13.2 Constants
Table 13-1 shows the list of constants represented in the RCL syntax.

13.3 Variables in a Condition
Variables can be used to store temporary information. For example:

In this RCL statement, $last_sys_up_time is a user variable to store the
value obtained from the SNMP sysUpTime attribute.

Variables have the scope of the request template. Every request that uses a
template thereby has all the variables named in the template. Each request has
its own storage area, the StackFrame . All variables are assigned to storage

$counter = 0;

Table 13-1 Types of Request Condition Language Constants

Constant Type Values (examples)

BOOLEAN true false

INTEGER 10 0 57 0x3e 0X580

REAL 10.73

OCTET STRING “Hello”
“How are you?”
“Embedded\\’Quote”

OBJECT
IDENTIFIER

{1 2 3 1 }

GeneralizedTime "19931106210627.3"
(YYYYMMDDHHMMSS.S)

$last_sys_up_time = sysUpTime;

13-4 Solstice Enterprise Manager Administration Guide

13

locations in the StackFrame . Thus, when a variable is defined once in the
request template, instances of it are created in each request’s StackFrame .
Values are retained throughout the life of the request.

A condition expression can make use of two classes of variables:

• System Variables — These are always present in each request. Their values
are set by the Solstice EM MIS. System variables are listed in Table 13-2.

• User-defined Variables — These comprise all user-deployed variables other
than system variables. They cannot duplicate the name of a system variable.
They are not declared. Whenever a variable is assigned, it is automatically
assigned a type corresponding to the result of the expression assigned to it.
If a variable has never been assigned, it is said to be undefined. There is a
function, defined() , (described in Section 14.9, “Defined”) to test whether
a variable has been defined.

13.3.1 Variable Names

The name of a variable begins with $ (dollar sign) followed by one or more
alphanumeric characters or _ (underbar).

Note – Case is significant in variable names.

13.3.2 Scope of Variables

Each request that implements a request template has a complete set of the
variables defined in all of the conditions used anywhere in that template. The
values of those variables are local to the request. That is, in each request,
variables have values that are independent of their values in any other request.
The values of variables within a request persist as long as the request lives.

The scope of a variable name is the template in which it occurs. That is, a
variable that is set by one condition within a template can be used by any other
condition in the same template. However, variables are defined when a
condition in which it occurs is evaluated. A variable defined in a condition that
has not yet been evaluated in a request, is not available for conditions that
occur earlier in that request template.

Request Condition Language 13-5

13

13.4 Data Types
Because the Request Designer functions in a CMIP and an SNMP framework,
Asn1Values and Asn1Types are used throughout the RCL. Any variable,
attribute, or constant carries the Asn1Type along with it. For example, in the
expression:

$int_val is a variable and is assigned the value 10. It is automatically
assigned the Asn1Type INTEGER. Also, attributes have type information
associated with them.

Because typing is dynamic, a variable’s type is defined as the currently
assigned type. Thus $int_val can be changed to type REAL as follows:

Variables can be assigned arbitrary Asn1Values of arbitrary Asn1Type . Thus
it is possible to add new operators to the language that deal with any type
other than those listed in Table 13-1 with which most operators deal. An
example of such an operator is TrapSpecificType , which takes as input an
operand of type InternetActionInfo .

$int_val = 10;

$int_val = 10.0;

13-6 Solstice Enterprise Manager Administration Guide

13

13.5 System Variables
The names and types of the available system variables are shown in Table 13-2.

The following paragraphs contain examples illustrating the use of system
variables.

13.5.1 $pollFdnSet

When a request is launched against a device selected in the Viewer,
$pollFdnSet is assigned a set of fully distinguished names (FDNs) which
denote the managed objects that have been configured for the device (for
example, when Discover is run to populate the MIS). A “managed object” is

Table 13-2 System Variables Available to a Condition

Name Type Description

$eventOC OID Object class of last/current event

$eventOI ObjectInstance Object instance of event

$eventInfo eventInfo eventInfo of eventType

$eventTime GeneralizedTime Actual time the event was generated

$eventType OID OID of the event type of the last event

$messType INTEGER Type of current message (refer to
Table 13-4 for $messType values)

$multipleInstance BOOLEAN For SNMP polls only. True if the polled
object has multiple instances, False
otherwise.

$pollOC ObjectClass Object class last polled or being currently
polled

$pollfdn ObjectInstance Object instance being polled

$pollFdnSet SET OF ObjectInsance Set of distinguished names pointing to the
managed object instances configured for
the target device. Assigned when request
launched against a selected element in the
Viewer.

$pollTime GeneralizedTime Delay until the first poll is sent and the
time between successive polls, in seconds

$severity INTEGER Severity level of current state

Request Condition Language 13-7

13

the internal representation in the MIS of the agent — for example, a
cmipsnmpProxyAgent object, which represents an SNMP agent system. The
order of the FDNs in $pollFdnSet depends upon the order in which they
were added to the MIS. Individual FDNs can be extracted from $pollFdnSet
using the RCL extract() function. The following is an example of a
condition that extracts the RPC proxy table FDN from $pollFdnSet in order to
set the $pollfdn to ping-reach — the reach attribute group of the RPC ping
agent.

13.5.2 $pollfdn

The $pollfdn variable represents the object that is the target of the request. In
the following example, $pollfdn is used to pass the request’s target managed
object instance to the subscribeOi() function to subscribe for SNMP event
notifications generated by that object.

$num = NumElements(&$pollFdnSet);
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $result = AnyStr($dnStr,”RPC”);
 IF ($result == TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $Hostname = Extract(&$dn3,”attributeValue”);
 $count = $num + 1;
 }
 $count = count+1;
}
$pollfdn = appendRdn($dn,”/agentId=\”ping-reach\””);

$itindx=subscribeOi(“internetAlarm”,””,$pollfdn);

13-8 Solstice Enterprise Manager Administration Guide

13

The $pollfdn is based on the object’s Fully Distinguished Name — the
absolute path to the object through the Management Information Tree (MIT).
When a request is launched in the Viewer, the $pollfdn is initially set to the
first managed object in $pollFdnSet . In the following example, a request
launched against the router bigguy has its $pollfdn set to the
cmipsnmpProxyAgent :

However, this $pollfdn could be changed to point to particular MIBs
“contained” under the SNMP agent. In the following example, the
appendRdn() function is used to change the $pollfdn to point to the snmp-
mibII object:.

After the append operation, the $pollfdn is the following:

Note – If a condition resets $pollfdn to point to a different managed object, the
change does not take effect until after a transition to a different state.
Therefore, if a condition resets $pollfdn to point to a different object, your
design the request to transition to a different state before trying to poll the new
object.

Chapter 10, “Building Request Templates,” describes sample templates that
change the target of polling during execution.

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2
4]/cmipsnmpProxyAgentId=”bigguy”

$tmp = “/InternetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}”;
$pollfdn = appendRdn($pollfdn,$tmp);

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2
4]/cmipsnmpProxyAgentId=”bigguy”/InternetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}

Request Condition Language 13-9

13

13.5.3 $eventOI

$eventOI indicates the managed object instance that was the source of an
event notification that “woke up” the request. In the following example, the
OiToOiName() function is used to convert the $eventOI to a string.

13.5.4 $eventInfo

$eventInfo is the current event notification. This will be a sequence of ASN.1
values of the attributes comprising the event. The attributes that comprise
$eventInfo depend upon its event type (the value of $eventType). The
definition of the event type specifies the required attributes for that type and
optional attributes, if any. The required attributes for a communicationsAlarm,
for example, are probableCause and perceivedSeverity. If the attribute has an
assigned name, this tag can be used to extract the ASN.1 value of that attribute
from $eventInfo, as in the following example:

The attributes that comprise a given event notification depend upon the
definition of its event type. The definitions used by the MIS are contained in
the pertinent ASN.1 and GDMO documents. The event types known to the MIS
by default are described in Chapter 15, “Adding New Event Types.”

In the following example, the value of $eventInfo is set to contain a
nerveCenterAlarm:

The first argument passed to strToAsn1() is text that refers to the event type
— NerveCenterAlarmInfo. This type is defined in the ASN.1 document
/opt/SUNWconn/em/etc/asn1/nc.asni . The definition specifies that an
event of type NerveCenterAlarmInfo is a sequence of ASN.1 attributes. A
nerveCenterAlarm is defined as including four required attributes —

$name = OiToOiName($eventOI);

$cause = Extract(&$eventInfo,”probableCause”);

$eventInfo = strToAsn(“EM-NC-
ASN1:NerveCenterAlarmInfo”,”{1,critical,\”Device Down\”,3,1}”;

13-10 Solstice Enterprise Manager Administration Guide

13

probableCause, perceivedSeverity, mosiSeverity, mosiStateID — and an
optional fourth attribute, additionalText. The permissible values, and standard
interpretation, of perceivedSeverity values is indicated in Table 13-3.

Thus, in the example above, $eventInfo is defined as a nerveCenterAlarm
with a perceivedSeverity of critical, a mosiSeverity value of 3, a
probableCause value of 1, and a mosiStateID value of 1. The strToAsn()
function is used to convert the string constant to the sequence of ASN.1 values
required by the event type definition.

13.5.5 $eventType

$eventType is the Object Identifier for the type of the event that “woke up”
the request. The following example shows a condition used to define a
transition from one state to another. The transition will take place if
communicationsAlarm is the event type.

Table 13-3 perceivedSeverity Values

Severity Name Value Default Color

Indeterminate 0 Blue

Critical 1 Red

Major 2 Orange

Minor 3 Cyan

Warning 4 Yellow

Clear 5 No color

$comm = NameToOid(“communicationsAlarm”);
$eventType == $comm;

Request Condition Language 13-11

13

In the next example, an IF statement tests whether an event is an
internetAlarm and sendEvent() is called to post the event to the alarm log if
it is.

The event types known to the MIS by default are the following:

• objectCreation
• objectDeletion
• attributeValueChange
• relationshipChange
• stateChange
• communicationsAlarm
• environmentalAlarm
• equipmentAlarm
• integrityViolation
• operationalViolation
• physicalViolation
• processingErrorAlarm
• qualityofServiceAlarm
• securityServiceOrMechanismViolation
• timeDomainViolation
• internetAlarm
• snmAlarmEvent
• snmAlarmTrap
• nerveCenterAlarm
• coldStartTrap
• warmStartTrap
• linkDownTrap
• linkUpTrap
• linkDownTrap
• egpNeighborLossTrap
• authenticationFailureTrap
• enterpriseSpecificTrap

For more information on these event types refer to the ”Standard Event
Notifications” appendix in the Solstice Enterprise Manager Reference Manual.

$itType=NameToOid(“internetAlarm”);
IF ($eventType == $itType)
{sendEvent(“internetClass”,$pollfdn,”internetAlarm”,$eventInfo);}

13-12 Solstice Enterprise Manager Administration Guide

13

13.6 Message Types
When an event or poll response is received, the variable $messType is set in
the request. A condition can check the value of $messType . In a state
machine that is both poll- and event-based, $messType will indicate the
current message received, either an EVENT_REPORT_REQ, GET_RES, or
errors. As an example of the use of $messType , the following is a condition
that defines a transition. The probableCause value is extracted from an
equipmentAlarm and a transition occurs if an event notification has been
received ($messType == 0) and it has a probableCause value indicating
equipmentMalFunction.

A CMIP event notification has a $messType value of 0
(EVENT_REPORT_REQ) because it is generated by the agent on its own
initiative; it is not a response to a request generated by a management station.

Another use of $messType is to check for errors in the request. If errors occur
during polls, the state machine can be designed to transition to a “dead” state.

$cause = Extract($eventInfo,”probableCause”);
$messType == 0 AND $cause == 15;

Request Condition Language 13-13

13

The possible values of $messType are specified in Table 13-4.

13.7 Attributes
In addition to constants, variables, operators, and built-in functions, an
expression in the RCL can refer to an attribute of a managed object. An
attribute has both a name (determined in the GDMO description of the object
in which it occurs) and a value. When an attribute is used in a condition, it is

Table 13-4 Values of $messType

Message No. Description

EVENT_REPORT_REQ 0 Request

EVENT_REPORT_RES 7 Response

GET_RES 8 Get Response obtained

SET_RES 9 Set Response obtained

ACTION_RESPONSE 10 A response to an M-ACTION has been received.

NO_SUCH_OC 14 Object class being polled does not exist

NO_SUCH_OI 15 Object Instance being polled does not exist

ACCESS_DENIED 16 Operation not performed due to security problem

SYNC_NOT_SUPP 17 Synchronization not supported

INVALID_FILTER 18 Filter parameter invalid

GET_LIST_ERR 21 One or more attribute values not read because
access was denied or attribute was not recognized

PROCESS_FAILURE 24 General failure in processing

INVALID_SCOPE 32 Value of scope parameter invalid

INVALID_OI 33 Invalid OI specified

CLASS_INST_CONFL 35 Specified OI not of specified class

COMPLEX_LIMIT 36 Operation not performed due to complex
parameter supplied

MISTYPED_OP 37 One of the parameters supplied has not been
agreed for use on association

INVALID_OPERATION 38 Invalid operation requested

OP_CANCELLED 41 Operation cancelled by M-Cancel-Get

13-14 Solstice Enterprise Manager Administration Guide

13

assigned storage in the same way that storage is allocated for a variable. The
scope of an attribute is the request template in which it occurs. Each request
has its own copy of the attribute, independent of any other request.

Each attribute has a type. The type is determined by the object’s description, as
recorded in the MetaData Repository (MDR). When a condition refers to an
attribute, the Nerve Center queries the MDR and assigns the attribute’s type
accordingly.

An attribute within a request reflects the current condition of some attribute of
a managed object. To obtain current information, the Nerve Center schedules
polls for all attributes that are referred to in the conditions that must be tested
for the current state of each request. The Nerve Center also schedules polls for
the attributes referred to in the actions for transitions leading from the current
state. That is, for every request, the Nerve Center tracks its current state, and
for that state, schedules a poll for every attribute that must be tested to
determine whether there will be a transition from that state. When the
response to a poll arrives, the attribute’s value in the request is updated before
the conditions are evaluated.

The value of an attribute within a request is set only by the mechanism just
described; you cannot use the = operator to assign a value to an attribute.
Therefore an attribute name cannot appear on the left side of an assignment.

Like a variable, an attribute is “declared” automatically when used in a
condition. It becomes “defined” when a notification assigns a value to it.

13.7.1 Syntax of Attribute Names

The name of an attribute can be written in either of two forms:

&<label_name> <label_name> is the name as it occurs in the relevant
GDMO description of a managed object class. & is to
be used if an attribute or variable is passed as an
argument in such functions as extract(), define(), and
undefine(). The ampersand is used to pass the address
of the variable or attribute in the Stack Frame.

“<doc_name>”:<label_name
>

A label <label_name> may be preceded by the name of
the GDMO document in which the label occurs. The
document name is enclosed in double quotes. The
document name and the label name are separated by a
colon.

Request Condition Language 13-15

13

For example, the attribute sysContact specified in the document
IIMCRFC1213-MIB, is written

13.8 Operators
The RCL uses the same operators as C (for example, = for assignment, == for a
test of equality, * for multiply, and so on). In addition, there are built-in named
operators whose syntax resembles the syntax of functions in the C
programming language.

Operators are arithmetical, logical, and relational. Each operator or built-in
named operator specifies the input argument and types that it can handle.

The following operator symbols are supported by the RCL.

“IIMCRFC1213-MIB”:sysContact

Operation Type Operator Description

Assignment = Assigns the value or attribute to the right of the
operator to the name to the left

Arithmetic +
–

-
*
/
%
|
^
~

plus
minus (preceded and followed by blanks)
negative (no blanks following)
multiply
divide
modulus
Bitwise inclusive OR
Bitwise exclusive OR
Bitwise NOT

Relational <
<=
>
>=

less than
less than or equal
greater than
greater than or equal

Equality ==
!=

equal
not equal

13-16 Solstice Enterprise Manager Administration Guide

13

The assignment operator can be used to assign values or types to variables.

Note – You cannot use = to assign or set values of attributes.

The arithmetic operators are defined for INTEGERS and REAL data types.
Modulus is defined only for INTEGERS.

Note – Because the hyphen within an attribute name could be confused with a
minus sign, a minus sign must be surrounded by blanks. For example:

• There are no implicit type conversions. That is, 5/2 yields an integer result,
so if you expect the result to be 2.5, you need 5.0/2.0 (as in C).

• The relational and equality operators accept not only integer or real
arguments, but can also be used to compare arbitrary Asn1Values (in the
same way as the CMIS Filter constructs).

• Statements built up using the logical operators are completely evaluated.
That is, each operand of a complex expression, built using the AND, OR, and
NOT operators, is evaluated. Thus, “short circuiting” is not implemented,
that is, evaluation of the component expressions does not stop even if the
value of the complex expression is already known from the evaluation of
initial components. Logical operators operate only on Boolean values,
Integers, and Reals. The names of the logical operators are not case sensitive.

Logical AND
OR
NOT

and
or
not

Address & “Address of” is used in the argument of
defined or undefine to permit inquiry about
the status of a variable name without referring
to its value. Addresses are basically indices into
the StackFrame — the location where the
variable or attribute is stored.

10 - 5; This is correct
10-5; This is a syntax error

Operation Type Operator Description

Request Condition Language 13-17

13

13.8.1 Logical Operators

The following example illustrates the use of an OR statement to define a
condition for a transition. First, the user variables $ncType and $itType are
defined as nerveCenterAlarm and internetAlarm (respectively) in the following
condition, which also subscribes to receive SNMP traps. This condition might
be used to initialize the template in the Ground state.

In the following example, the OR operator is used in a condition that forces a
transition if the system variable $eventType indicates that either an
internetAlarm or a nerveCenterAlarm has been received:

13.8.2 Bitwise Operators

The bitwise operators numeric AND, inclusive OR, and exclusive OR perform
binary operations on numeric operands and generate numeric results. For
example,

compares the binary numbers

and generates a binary number with a 1 bit wherever either (or both) of the
operands has a 1 bit. The resulting value is:

$ncindx=Subscribe(“nerveCenterAlarm”);
$itindx=subscribeOi(“internetAlarm”,””,$pollfdn);
$ncType=NameToOid(“nerveCenterAlarm”);
$itType=NameToOid(“internetAlarm”); true;

$eventType == $ncType OR $eventType == $itType;

20|24

20 = 00010100
24 = 00011000

28 = 00011100

13-18 Solstice Enterprise Manager Administration Guide

13

13.8.3 Precedence and Associativity

The precedence and associativity of operators are summarized in Table 13-5.

Parentheses force precedence in the usual way.

13.9 Control Structures
RCL supports four constructs that can be used to build control structures
within a condition: IF , IF ELSE , WHILE, and FOREACH. These four constructs
are used to control the conditions under which a block of RCL statements are

Table 13-5 Precedence of Operators

Operator Name Associativity

High

= Assign right

OR Or left

AND And left

|
^
&

Bitwise numeric OR
Bitwise numeric XOR
Bitwise numeric AND

left

=
!=

Equal
Not equal

left

<
<=
>
>=

Less than
Less than or equal
Greater than
Greater than or equal

left

+
-

Plus
Minus

left

*
/
%

Multiply
Divide
Modulus

left

& Address right

~
-
NOT

Bitwise NOT (numeric)
Negative (numeric)
Negation (logical)

right

Low

Request Condition Language 13-19

13

to be executed. An RCL statement block consists of zero or more RCL
statements, each terminated with a semicolon. Also, a statement block must be
preceded by a left curly brace and followed by a right curly brace.

13.9.1 IF Constructs

Syntax:
IF (<boolean_expression>)
{ <statement_block>}

<boolean expression> must be an RCL expression that evaluates as either true or
false. <statement_block> consists of zero or more RCL statements, each
terminated with a semicolon. The block of statements must be surrounded by
curly braces, as shown above. The RCL statements contained in
<statement_block> are executed if <boolean_expression> evaluates to true. For
example:

13.9.2 IF ELSE Constructs

Syntax:
IF (<boolean_expression>)
{ <statement_block1>}
ELSE
{ <statement_block2>}

<boolean expression> must be an RCL expression that evaluates as either true or
false. <statement_block1> and <statement_block2> each consists of zero or more
RCL statements, each terminated with a semicolon. Each block of statements
must be surrounded by curly braces, as shown above. The RCL statements
contained in <statement_block1> are executed if and only if <boolean_expression>
evaluates to true.

IF ($eventOi = $pingFdn)
{$ping_response_count = ping_response_count+1;}

13-20 Solstice Enterprise Manager Administration Guide

13

The block of statements comprised in <statement_block2> — the ELSE
construct — are executed if and only if <boolean_expression> in the preceding
IF statement evaluated to false. For example:

13.9.3 WHILE Constructs

Syntax:
WHILE (<boolean_expression>)
{ <statement_block>}

<boolean_expression> must be an RCL expression that evaluates to either true or
false. <statement_block> consists of zero or more RCL statements, each
terminated with a semicolon. The statements comprised in <statement_block>
are executed if <boolean_expression> evaluates to true. After the statements in
<statement_block> have been executed, <boolean_expression> is evaluated once
again. So long as <boolean_expression> remains true, the statements in
<statement_block> continue to be executed in a repetitive cycle.

$FdnStr = AsnToStr($dn,TRUE);
$result = AnyStr($FdnStr,”RPC”);
IF ($result == TRUE)
{
 print($FdnStr);
 $count = $num + 1;
}
ELSE
{
$count = $count+1;
}

Request Condition Language 13-21

13

The following is an example of a condition that uses a WHILE loop to extract
the RPC proxy table FDN from $pollFdnSet in order to set the $pollfdn to
ping-reach — the reach attribute group of the RPC ping agent.

13.9.4 FOREACH Constructs

Syntax:
Foreach name in (<list_expression>)
{ <statement_block>}

<list_expression> must be of type SEQUENCE OF or SET OF. The block of
statements comprised in <statement_block> is executed once for each element of
the set or sequence, using name as a variable to represent the current element
in each cycle. The variable name is automatically assigned the appropriate type
for each element that it represents. If <list_expression> is not of type
SEQUENCE OF or SET OF, <statement_block> is executed exactly once with

$num = NumElements(&$pollFdnSet);
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $result = AnyStr($dnStr,”RPC”);
 IF ($result == TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $Hostname = Extract(&$dn3,”attributeValue”);
 $count = $num + 1;
 }
 $count = count+1;
}
$pollfdn = appendRdn($dn,”/agentId=\”ping-reach\””);

13-22 Solstice Enterprise Manager Administration Guide

13

name assigned the entire value of <list_expression>. The end of the block of
statements in <statement_block> is marked by the final curly brace. For
example:

The RCL FOREACH construct is similar to the UNIX Shell Foreach construct.

13.9.5 Nested Constructs

A statement block in an IF , IF ELSE , WHILE, or FOREACH construct can
contain additional constructs. For example, an ELSE construct could contain
another IF ELSE construct, such as the following:

Similarly, a WHILE or FOREACH construct might contain an IF ELSE construct
within its statement block.

foreach $var in (collectionInfoList)
{
 print($var);
}

IF (<boolean_expr1>) { <RCL_statement1>}
ELSE
{IF (<boolean_expr2>) { <RCL_statement2>} ELSE { <RCL_statement3>}}

Request Condition Language 13-23

13

The following is an example of an IF ELSE construct used to log
nerveCenterAlarms in response to enterprise-specific traps:

13.10 Timestamp Arithmetic
Timestamps are of the type GeneralizedTime . The system variables
$eventTime and $pollTime are of that type.

The following operators can accept Timestamp arguments or return Timestamp
results

$snum = TrapSpecificType($eventInfo);
$pollfdn = $eventOi;
IF ($snum == 1)
{
 $tmp = “CPU Failure”;
 alarmStr(1,$tmp);
}
ELSE
{
 IF ($snum == 2)
 {
 $tmp = “Fan Failure”;
 alarmStr(1,$tmp);
 }
 ELSE
 {
 IF ($snum == 3)
 {
 $tmp = “Power Supply Failure”;
 alarmStr(1,$tmp);
 }
 ELSE
 {
 IF ($snum == 4)
 {
 $tmp = “Excessive Temperature”;
 alarmStr(3,$tmp);
 }
 }
 }
}

13-24 Solstice Enterprise Manager Administration Guide

13

• <Timestamp1> = <Timestamp2> + <integer>
• <Timestamp1> = <Timestamp2> + <real>
• <real> = <Timestamp1> - <Timestamp2> (result in milliseconds)
• <Timestamp1> = <Timestamp2> - <integer>
• <boolean> = <Timestamp1> > <Timestamp2>
• <boolean> = <Timestamp1> >= <Timestamp2>
• <boolean> = <Timestamp1> <= <Timestamp2>
• <boolean> = <Timestamp1> < <Timestamp2>
• <boolean> = <Timestamp1> == <Timestamp2>
• <boolean> = <Timestamp1> != <Timestamp2>

In the following example, a difference greater than six seconds between the
current system time on the MIS machine and the time when an event was
generated on a remote machine is used to define a condition for a transition.

In this case the transition would occur if the statement evaluates to True.

13.11 Error Checking
The Request Designer application checks and catches lexical and syntactic
errors at the time you try to save the condition’s definition. If it finds an error,
the Request Designer displays an error dialog, and the offending condition is
not saved. If there are any references to attributes in conditions, the Request
Designer checks to determine if the attribute is known to the MIS. An attribute
is not known to the MIS if it is not referred to in a GDMO document that has
been loaded into the MIS. If an attribute is not known to the MIS, Request
Designer displays an error dialog if you try to save the condition, and the
condition is not saved.

If the condition survives the lexical and syntactic check, the Request Designer
engine compiles the condition’s definition. No further checking occurs at
compile time. Only runtime type checking is implemented.

When a condition is executed within a particular request, each function or
operator checks the type of each argument it receives. (The RCL does not
provide type casting, so you cannot coerce types.) If the type is invalid, the

$curtime = getTimeStamp();
($eventTime - $curtime) > 600;

Request Condition Language 13-25

13

operator returns an error. For example, if a built-in function expects an OCTET
STRING and it is passed an INTEGER, it causes the condition to return
FALSE.

Warning – A condition that is syntactically valid but contains an error detected
only at runtime acts in the same way as a valid condition that returns FALSE.

The em_debug utility provides facilities for debugging request templates. For
information on template debugging, refer to Chapter 10, “Building Request
Templates.”

13-26 Solstice Enterprise Manager Administration Guide

13

14-1

RCL Functions 14

The Request Condition Language (RCL) built-in functions are described in this
chapter in alphabetical order.

 Built-in functions take the form of a function call with a set of arguments.
List denotes an Asn1Value whose type is SET, SEQUENCE, SET OF, or
SEQUENCE OF. <Var> indicates a variable name. <Attr> indicates an attribute
name.

The names of RCL functions are not case-sensitive.

14.1 Summary of RCL Built-in Functions.

Alarm Log Functions
• Alarm — Generates a nerveCenterAlarm with indicated severity.
• AlarmOi — Takes severity, object instance, and event arguments.
• AlarmStr — Generates a nerveCenterAlarm with indicated severity and

additionalText.
• SendEvent — Logs an event notification. Allows you to log event

notifications of types other than nerveCenterAlarm .

String-Handling Functions
• InitialStr — True if string matches initial portion of a string.
• FinalStr — True if string matches end portion of a string.
• AnyStr — True if string appears anywhere in a string.
• StrCat — Builds string by concatenation.

14-2 Solstice Enterprise Manager Administration Guide

14

Value Check Functions
• Defined — True if variable or attribute has a value.
• Undefine — Sets variable or attribute to have no value.

Name Conversion Functions
• NameToOid — Returns an Object IDentifier from a name string.
• OiNameToOi — Object instance from quoted name string.
• OiToOiName — Returns the name of an object instance.
• AddressStrToAddress — Dot address string to Internet address string.
• NameToAddress — IP address from a host name string.
• AppendRdn — Constructs an object instance from an object instance and

RDN string.

Action Functions
• Unixcmd — Executes a specified UNIX command.
• Mail — Sends an e-mail message.

ASN.1 Conversion Functions
• AsnToStr — Builds string representation of an ASN.1 value.
• StrToAsn — Builds ASN.1 values from strings.

SunNet Manager RPC Request Functions
• SnmEventRequest — Issues request to an SNM RPC agent.
• SnmKillRequest — Kills a previously issued SNM request.

Debugging Function
• Print — Prints values if em_debug misc_stdout option turned on.

Constructed-Type Handling Functions
Parameters may be passed to constructed-type handling functions. Each
parameter is an expression which in turn may contain function calls.

• Extract — Returns value of a component in a list.
• Include — Used to construct an ASN.1 value of types SET or SEQUENCE.
• IsList — True if variable or attribute is a list.
• NumElements — Returns number of elements in a list.
• IsChoice — True if a variable or attribute is a choice.

RCL Functions 14-3

14

Time Functions
• GetTimeStamp — Retrieves the current time of the MIS machine.

Event-Handling Functions
• Set — Performs an M-SET on a specified object.
• Subscribe — Subscribes to event type specified in string.
• SubscribeOi — Subscribe to events for specified object.
• SubscribeFilter — Subscribes for events that match a specified CMIS

filter.
• TrapSpecificType — Returns number of SpecificType of a trap.
• TrapGenericType — Returns number of GenericType of a trap.
• SendAction — Sends an M-ACTION to a specified object.
• SendTrap — Sends a trap to destination IP address.
• UnSubscribe — Can be used to terminate a previously invoked event

subscription.

14.2 AddressStrToAddress
Syntax:
AdressStrToAdress(<addrStr>);

where <addrStr> is of type OCTET STRING.

Return Value: unsigned long. Returns the value of the inet_addr()
system call.

Takes a string containing an address in dot format and returns an unsigned
long integer containing an internet address. For example:.

14.3 Alarm
Syntax:
alarm(<perceivedSeverity>);

where <perceivedSeverity> is of type INTEGER (in the range 0–5).

Return Value: None.

$saddr=AddressStrToAddress(“129.144.44.36”);

14-4 Solstice Enterprise Manager Administration Guide

14

The MIS Alarm Service (which monitors the alarm logs) causes the Viewer to
change the color of the icon for the object instance associated with the alarm
(the object indicated by the $pollfdn system variable), based on the value of
<perceivedSeverity>. The value must be in the range 0–5. For example, the
AlarmCritical sample condition provided with Solstice EM contains the
following:.

This statement will post a nerveCenterAlarm with severity critical . The
valid severities and their associated icon colors are listed in Table 14-1.

14.3.1 Alarm Logging and Viewer Fault Status

The alarm() function allows you to generate a nerveCenterAlarm which is,
by default, logged to the AlarmLog. Alarms logged to the alarm log can be
viewed and cleared in the Alarm Manager.

The AlarmLog is also, by default, monitored by the Alarm Service. The Alarm
Service is a module in the MIS that controls the fault status color in the Viewer.
Fault status is an attribute of topology nodes, which are represented by icons
in the Viewer. Each topology node has an attribute topoNodeMOSet , which
points to a set of managed object instances (MOIs), representing the agents
configured for the particular device.

alarm(1);

Table 14-1 Valid Alarm Severities

Severity
Value Severity Name

Default Icon
Status Color

0 Indeterminate Blue

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color

RCL Functions 14-5

14

The Alarm Service associates an alarm posted to the AlarmLog with a topology
node if and only if that alarm is posted against one of the managed objects in
the topoNodeMOSet for that topology node. The Alarm Service tracks the
perceivedSeverity values of the alarms that are posted against each
topology node. The highest perceivedSeverity value of uncleared alarms
determines the fault status of the device. Thus, if a critical alarm is logged
aganst router bigguy , the router icon, by default, turns red. If several minor
alarms are then posted against bigguy , these do not cause the router icon to
turn cyan unless the critical alarm has been cleared. Once the critical alarm is
cleared, the presence of uncleared minor alarms causes a change in color to
cyan.

When a request is launched at a target device in the Viewer, the $pollFdnSet
RCL system variable for that request points to the managed objects that are
comprised in the topoNodeMOSet for the selected topology node. The
$pollfdn system variable is also initially set to point to the first managed
object listed in $pollFdnSet.

The alarm() function posts a nerveCenterAlarm against the managed object
that the $pollfdn variable points to at the time when the alarm() function
is called. If you have reset the $pollfdn variable to point to an object other
than one of those comprised in $pollFdnSet in your request, you should
either reset $pollfdn to an appropriate managed object before calling
alarm() or else use the alarmOi() function, which enables you to specify
the managed object against which the alarm is to be posted.

The alarm() and alarmStr() functions post nerveCenterAlarms that have a
probableCause value equal to the perceivedSeverity value. For
example, if your request uses alarm() to post a minor alarm,
probableCause is set to 3. Alarm Service uses the probableCause value of
nerveCenterAlarms to match a “clear” alarm to the previous
nerveCenterAlarm it is clearing. For example, if your request has used

to post a critical alarm, your request must post a nerveCenterAlarm with a
probableCause of 1 and a perceivedSeverity of 5 (clear) to clear this
alarm. Because alarm() and alarmStr() set probableCause to equal

alarm(1);

14-6 Solstice Enterprise Manager Administration Guide

14

perceivedSeverity , requests cannot use alarm() or alarmStr() to clear
a previous nerveCenterAlarm. To post an alarm that clears a previous
nerveCenterAlarm, your request must use the alarmOi() function.

14.4 AlarmOi
Syntax:
alarm(<oi>, <perceivedSeverity> | <event-notification>);

where <oi> is of type Object Instance . The second argument is either
<perceivedSeverity> or <event-notification>. <perceivedSeverity> is of type
INTEGER (in the range 0–5).

Return Value: None.

The Viewer icon will change color based on the severity value passed in
<perceivedSeverity> (as indicated in Table 14-1). For example, the statement

will cause the icon representing the target of the current request to turn red.

Note – For an alarm posted against $pollfdn to cause a change in icon color
in the Viewer, $pollfdn must point to one of the managed objects configured
for the device. The $pollFdnSet variable is initially set to point to these
objects when the request is launched against a selected device in the Viewer,
and $pollfdn is initially set to point to the first object in $pollFdnSet. If your
request template changes the value of $pollfdn to point to an object other
than those in $pollFdnSet , the alarm may not affect icon color. For the <oi>
parameter, you must use a variable that points to one of the objects in
$pollFdnset if the alarm is to affect the Viewer fault status of the target
device. For more information, see Section 14.3.1, “Alarm Logging and Viewer
Fault Status” above or the “Alarm Service” chapter in the Solstice Enterprise
Manager Reference Manual.

alarmOi($pollfdn, 1);

RCL Functions 14-7

14

If <event-notification> is passed as an argument to alarmOi() , the event
notification attribute values are used to build a nerveCenterAlarm . For
example:

If the system variable $eventInfo is passed as the second argument,
$eventInfo will have been defined only if the request has subscribed for
events. In that case, $eventInfo is set to the current event notification.

The alarmOi() function can be used to clear previous nerveCenterAlarms
posted by a request. To post a “clear” alarm, alarmOi() must set the
probableCause value to equal the probableCause of the
nerveCenterAlarm it is clearing. The alarm() and alarmStr() functions
automatically set the probableCause value of a nerveCenterAlarm to equal
the perceivedSeverity value. Thus, to use alarmOi() to clear a previous
critical alarm, you could use the following::

In this example, probableCause is set to 1 to match the probableCause of
the previous critical alarm.

14.5 AlarmStr
Syntax:
alarmStr(<perceivedSeverity>, <additionalText>);

where <perceivedSeverity> is of type INTEGER (in the range 0–5) and
<additionalText> is an RCL variable of any type.

Return Value: None.

The Viewer icon will change color based on the severity value passed in
<perceivedSeverity> (as indicated in Table 14-1).

$event=strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”, “{3,minor, 3, 1}”;
alarmOi($pollfdn, $event);

$event=strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”, “{1,cleared, 3,
1}”;
alarmOi($pollfdn, $event);

14-8 Solstice Enterprise Manager Administration Guide

14

When this function is called, a nerveCenterAlarm will be generated with
severity set to <perceivedSeverity> and objectInstance set to $pollfdn . The
<additionalText> string will be passed as the additionalText attribute, which
can be viewed in the Alarm Manager application. For example:

In the following example the <additionalText> argument is used to pass the
FDN of the managed object in an alarm with a severity of critical:

Note – An alarm posted using the alarmStr() function uses the value of
$pollfdn to determine the managed object that is the target of the alarm. If
the alarm is to affect Viewer icon color, $pollfdn must point to one of the
managed objects that have been configured for that device. The $pollFdnSet
variable is initially set to point to the managed objects configured for a device
when the request is launched against a target device in the Viewer. $pollfdn
is initially set to refer to the first of these objects. If your template resets the
value of $pollfdn , you will need to either reset it to point to one of the objects
in $pollFdnSet before calling alarmStr() or use the alarmOi() function,
which allows you to specify the managed object that is the target of the alarm.
Refer to Section 14.3.1, “Alarm Logging and Viewer Fault Status.”

The alarmStr() function cannot be used to post nerveCenterAlarms that
clear previous nerveCenterAlarms. For an explanation of how to clear previous
alarms, refer to the entries for the alarm() and alarmOi() functions.

14.6 AnyStr
Syntax:
anystr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value: BOOLEAN

alarmStr(1,”Over 80% of network memory capacity in use”);

alarmStr(1,$pollfdn);

RCL Functions 14-9

14

Checks whether <secondstr > appears anywhere in <firststr>. (A string
constant is enclosed in double quotes.) In the following example $anywhere is
a Boolean variable that will be assigned the value true if “Agent” occurs
anywhere in the string that is the value of $hostdescr.)

14.7 AppendRdn
Syntax:
appendRdn(<oi>, <stringRdn>);
where <oi> is of type Object Instance and <stringRdn> is of type OCTET
STRING.

Return Value: Object Instance.

Used to specify a new object instance (OI) from a supplied OI and a relative
distinguished name (RDN) string. An RDN consists of a naming attribute and a
value connected by the identity sign (=). Examples of naming attributes are
systemId, networkId, internetClassId, and agentId. An RDN identifies an
object uniquely relative to a superior object that “contains” it.

This built-in function can be used to set $pollfdn (the object that is the
current target of the poll), which is of type Object Instance .

The following example illustrates this use. Let us suppose that you want to
design a template that retrieves SNMP attribute values from an SNMP agent.
The IsSnmpSystemUp template, shipped with Solstice EM, is an example of
such a template. IsSnmpSystemUp polls the agent system for its system
description in order to verify that the SNMP daemon is running. This requires
that the template set the $pollfdn to point to the internetSystem group of the
SNMP agent. To set the $pollfdn to point to the internetSystem group, the
SetInternetSystem condition must first locate the cmipsnmpProxyAgent
distinguished name (FDN). The cmipsnmpProxyAgent is the object in the MIS
that represents the agent on the system being managed. The various groups in
the SNMP agent are represented by objects “contained” in the
cmipsnmpProxyAgent object. These “containment” relationships are reflected
in the path to the object specified in the FDN. In the IsSnmpSystemUp
template, the appendRdn() function is used to construct an FDN that points
to the internetSystem group object.

$anywhere=anystr($hostdescr,”Agent”);

14-10 Solstice Enterprise Manager Administration Guide

14

When a template is launched against a device selected in the Viewer,
$pollfdn is initially set to the first FDN in $pollFdnSet , which is the set of
FDNs identifying the managed objects that have been configured for the target
device. However, if you have instructed Discover to search for RPC agents
when populating the runtime database in the MIS, the $pollFdnSet for a
target device may contain FDNs for RPC agents as well as the SNMP agent.
Depending upon the order in which Discover found the agents on the devices
in your network, the cmipsnmpProxyAgent FDN may or may not be the first
FDN in $pollFdnSet.

RCL Functions 14-11

14

The SetInternetSystem sample condition checks the initial $pollfdn to
determine if it is an RPC agent FDN, and, if it is, the condition then searches
the FDNs in the $pollFdnSet to find the FDN for the cmipsnmpProxyAgent
object

Figure 14-1 Sample SetInternetSystem Condition

$dnstr = AsnToStr($pollfdn,true);
$check = AnyStr($dnstr,”RPC”);
if ($check == TRUE)
{
 $num = NumElements(&$pollFdnSet);
 $count = 1;
 while ($count <= $num)
 {
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”cmipsnmpProxyAgentId”);
 if ($res == TRUE)
 {
 $tmp = “/internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0);
 $pollfdn = AppendRdn($dn,$tmp);
 $count = $num+1;
 }
 else
 {
 $count = $count+1;
 }
 }
}
else
{
 $tmp = “/internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0);
 $pollfdn = AppendRdn($dn,$tmp);
}
true;

14-12 Solstice Enterprise Manager Administration Guide

14

Once the SetInternetSystem condition has located the cmipsnmpProxyAgent, it
then uses the appendRdn() function to form an FDN that points to the
internetSystem group contained in that SNMP agent. For example, let us
suppose that an IsSnmpSystemUp request launched against the SNMP host
bigguy has its $pollfdn set to the following cmipsnmpProxyAgent FDN:

The SetInternetSystem sample condition then resets the value of
$pollfdn to point to the RFC 1213 internetSystem group object via an
appendRdn statement:.

The affect of this appendRdn operation on our request launched against the
host bigguy is to change the value of $pollfdn to the following:

This function only appends a single RDN. Although in some contexts a string
may contain several names separated by a slash (/), if such a string is given as
the second argument to appendRdn , only the first RDN is appended

Another use for the extract() function is to pull out attribute values from
events. For example, if $eventInfo is an enterpriseSpecificTrap, extract()
can be used to get the specific type of the trap as follows:

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1
0}/cmipsnmpProxyAgentId=”bigguy”

$tmp = “/internetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0);
$pollfdn = AppendRdn($dn,$tmp);

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1
0}/cmipsnmpProxyAgentId=”bigguy”/InternetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6 1 2 1 1 0}

$spec_trap_type = Extract(&$eventInfo,”probableCause”);

RCL Functions 14-13

14

14.8 AsnToStr
Syntax:
AsnToStr(<asn1_value>, <fTranslate>);
where <asn1_value> is of type Asn1Value and <fTranslate> is of type
BOOLEAN.

Return Value: OCTET STRING.

This function can be used to build an equivalent string representation of an
ASN1value . It takes two arguments:

<asn1_value> is the value whose string representation you want.

<fTranslate> controls the choice of format for an object name. If <fTranslate> is
TRUE, the resulting string OIDs are represented by equivalent string names.
Otherwise, the resulting string OIDs are represented in curly brace form (for
example, as {1 2 3 1} rather than its equivalent string form). For example:

14.9 Defined
Syntax:
defined(& <Var>);
where <Var> is a variable; or

defined(& <Attr>);
where <Attr> is an attribute.

Return Value: BOOLEAN.

Checks whether the variable <Var> or the attribute <Attr> has a value. Returns
TRUE if so, FALSE if the name or attribute has not been assigned a value or is
not a valid name. A valid name is any of the assigned names of system
variables (refer to Table 13-2 on page 13-6), a user-defined variable local to the
request, or any of the names or attributes occurring in the request template. For

$destIp=NameToAddress($host);
$ipStr=asnToStr($destIp,FALSE);

14-14 Solstice Enterprise Manager Administration Guide

14

example, the IsSystemDesc sample condition, shown below, will return true
if the device has responded to a get request for its SNMP sysDescr attribute
value.

Figure 14-2 IsSystemDesc Sample Condition

However, if this condition is used to test repetitively for availability of the
SNMP device, an undefine should be executed before each subsequent test.
This is necessary since the attribute value will remain defined in the request if
a previous define returned successful.

14.10 Extract
Syntax:
Extract(& <listvalue>, <subName>);
where <listvalue> is of type LIST and <subName> is of type OCTET STRING.

Return Value: Asn1Value.

From <listvalue>, returns the value of the subcomponent identified by the
string <subName>. <subName> specifies the name of the type of the component.
Returns a null Asn1Value if the first parameter <listvalue> is not a LIST
whose type is a SEQUENCE or SET. In the following example,

$ele1 will e assigned the first set from collectionInfoList , which is a
SET OF SEQUENCE.

In the following example, the ASN1 value for one attribute in the sequence of
attributes in a communicationsAlarm is extracted using the tag
probableCause that identifies that attribute:

defined(&sysDescr);

$ele1=Extract(&collectionInfoList,”1”);

$cause = Extract(&$eventInfo, “probableCause”);

RCL Functions 14-15

14

However, a single extract() call will only extract from the first layer of
components. For example, suppose that you want to extract oldAttributeValue
from an attributeValueChange event notification in the system variable
$eventInfo. The event contains an ASN.1 attributeValueChangeDefinition,
which is itself a construct containing both the old and new attribute values.
(The structure of attributeValueChange events is described in Chapter 15,
“Adding New Event Types.”) To get the oldAttributeValue, you could first
assign

attributeValueChangeDefinition to a variable $attrChange and then
call Extract() again to pull oldAttributeValue from that variable:

14.11 FinalStr
Syntax:
finalstr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value: BOOLEAN.

Checks whether secondstr appears in the end of <firststr>. (A string constant
is enclosed in double quotes. In the following example $at_end_of_str is a
Boolean variable that will be assigned the value true if “IPX” occurs at the end
of the string that is the value of $hostdescr .)

14.12 FirstStr
Syntax:
FirstStr(<first-string>, <delimiter-string>);
where <string1> and <string2> are of type OCTET STRING.

Return Value: OCTET STRING.

$attrChange = extract(&$eventInfo,”attrValueChangeDefinition”);

$oldAttrVal = extract(&$attrChange,”oldAttrValue”);

$at_end_of_str = finalstr($hostdescr,”IPX”);

14-16 Solstice Enterprise Manager Administration Guide

14

Returns the first string delimited by <delimiter-string>. For example:

$machine1 will have “gatoloco ” as its value.

14.13 GetTimeStamp
Syntax:
getTimeStamp (<cur_time>);
where <cur_time> is of type GeneralizedTime in the format
YYYYMMDDHHMMSS.

Retrieves the current time of the host where the MIS is running. For example:

14.14 Include
Syntax:
include(& <list-var>, <value>);
where <list-var> is a list variable of ASN.1 type SET or SEQUENCE. <value>
contains the value to be included in the list.

Return Value: Boolean. True if the include operation was successful; false if not
successful.

$x = “gatoloco dokusan columbine”;
$machine1 = firststr($x, “ ”);

$curtime = getTimeStamp();
if (($curtime - $eventTime) > 600) { print($curtime);}
else {print($eventTime);}

RCL Functions 14-17

14

To add values to a list using include() , the list variable should be initialized
first. For example:

14.15 InitialStr
Syntax:
initialstr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value: BOOLEAN.

Returns True if <secondstr > appears initially in <firststr >. (A string
constant is enclosed in double quotes.)Returns FALSE otherwise. In the
following example, $at_start_of_str is a Boolean variable that will be
assigned the value true if “Sun” occurs at the beginning of the string that is the
value of $hostdescr .

14.16 IsChoice
Syntax:
IsChoice(& <Var>);
where <Var> is a variable; or

IsChoice(& <Attr>);
where <Attr> is an attribute.

Return Value: BOOLEAN.

$mylist = StrToAsn(“SET”,””);
$ifint = 1;
$ifStr = “ifIndex”;
include(&$mylist,$pollfdn);
include(&$mylist,$ifint);
include(&$mylist,$ifStr);

$at_start_of_str = initialstr($hostdescr,”Sun”);

14-18 Solstice Enterprise Manager Administration Guide

14

Returns TRUE if the variable or attribute is a choice . Returns FALSE
otherwise. For example:

14.17 IsList
Syntax:
IsList(& <Var>);
where <Var> is a variable; or

IsList(& <Attr>);
where <Attr> is an attribute.

Return Value: BOOLEAN.

Returns TRUE if the variable or attribute is a LIST. Returns FALSE otherwise.
For example:

14.18 Mail
Syntax:
Mail(<addr>, <message-text>);
where <addr> and <message-text> are both of type OCTET STRING.

Return Value: None.

Sends an e-mail message. This is the equivalent of the MAIL action. <addr> is a
string containing the e-mail address. <message-text> is a string containing the
message text. RCL variables can be interspersed in the string; for example:

$choice = IsChoice(&accessControlInfo);

$listVar = IsList(&collectionInfoList);

Mail(“netMgr@Eng”,”linkDown trap from $pollfdn”);

RCL Functions 14-19

14

14.19 NameToAddress
Syntax:
NameToAddress(<hostname>);
where <hostname> is of type OCTET STRING.

Return Value: OCTET STRING.

Returns the IP address of the host whose name is <HostName>. In the following
example, the NameToAddress function is used to set up an IP address for a
SendTrap operation.

14.20 NameToOid
Syntax:
NameToOid(<Name>);
where <Name> is of type OCTET STRING.

Return Value: OBJECT IDENTIFIER.

Returns the OID (Object IDentifier) of the object whose name is <Name>. This
may be any name in the MIT that has been assigned an OID, such as an
attribute, a name binding, and so on. In the following example, the OID
corresponding to internetAlarm is assigned to a user variable $ncType .

14.21 NumElements
Syntax:
NumElements(& <Var>);
where <Var> is a variable that is a LIST ; or

NumElements(& <Attr>);
where <Attr> is an attribute that is a LIST .

Return Value: INTEGER.

$destIpAddr = NameToAddress($host);
SendTrap($destIpAddr,$eventType,$eventInfo);

$ncType=NameToOid(“internetAlarm”);

14-20 Solstice Enterprise Manager Administration Guide

14

Returns the number of elements contained in a variable or an attribute that is a
LIST . Returns 0 if the variable or attribute is not a LIST . This function can be
used, for example, to check how many managed objects are listed in the
$pollFdnSet — the set of FDNs pointing to the managed objects that have
been configured for the device that the request has been launched against. This
following statement illustrates this use:

14.22 OiNameToOi
Syntax:
OiNameToOi(<name>);
where <name> is of type OCTET STRING.

Return Value: Object Instance.

Returns the object instance for the object whose name is supplied as quoted
string <Name>. In the following example, an ObjectInstance will be returned
from the distinguished name string constant.

14.23 OiToOiName
Syntax:
OiToOiName(<instValue>);
where <instValue> is of type ObjectInstance.

Return Value: OCTET STRING.

Returns the name of the object instance <inst> in the format the server uses.
This is the inverse of the OiNameToOi function.

$numFdns = NumElements(&$pollFdnSet);

$oi = OiNameToOi(“/systemId=name:\”bigguy\”/topNodeDBId=NULL/topoNodeId=5”);

$nm = OiToOiName($oi);

RCL Functions 14-21

14

14.24 Print
Syntax:
print(<Var>);
print(<AttrName>);
print(<Constant>);

Return Value: BOOLEAN. Returns TRUE.

This function is used to print the value of the supplied variable, attribute, or
constant. This function will print messages only if the following em_debug
command has been invoked in a shell:

For more information on running the em_debug utility, refer to the “Building
Request Templates” chapter in the Solstice Enterprise Manager Administration
Guide.”

14.25 SendAction
Syntax:
<Var> = SendAction(<dest_oi>, <ActionInfo>, &<result>);
where <dest_oi> is of type ObjectInstance (an ASN.1 value) and
<ActionInfo> is an OCTET STRING constant. The address of <result> is also
passed. The variable <result> needs to be initialized before being passed to
SendAction() . <Var> is a BOOLEAN variable.

Return Value: BOOLEAN.

The return value <Var> will be true if the action request is issued, otherwise
false. However, even if <Var> is true, this does not mean the action request was
successful. To determine whether the action request was successful, you will
need to check the $messType system variable.

Sends an M-ACTION to the destination object instance <dest_oi>, using
<ActionInfo>. The second argument is a string in the following form:.

%em_debug -c “on misc_stdout”

“{ <actionName>, <actionArgs>}”

14-22 Solstice Enterprise Manager Administration Guide

14

For example, suppose there is an object

/systemId=titleist/counterObject=4

which has an action incrementCounter defined in the appropriate GDMO
document. This action takes as its argument a name of a counter — for
example, “alarm_counter” might be such a name. The following condition
sends a CMIS M-ACTION to counterObject=4 with the parameter
“alarm_counter”:

You may then wish to transition to another state to check for a response; for
example:

Another example:

After issuing this SendAction request, you can then check for a $messType of
10 in a separate condition:

RCL functions can also be used to extract information from <result>.

14.26 SendEvent
Syntax:
sendEvent(<oc_name>, <oi>, <eventTypeName>, <event-notification>);

$dn=OiNameToOi(”/systemId=name:\”titleist\”/counterObject=4”);
$result=0;
$ret = SendAction($dn,”{incrementCounter,”alarm_counter”}”,&$result);

if ($ret AND ($messType == 10)) {print($result);}

$dn=OiNameToOi(“/systemId=name:\”bigguy\”/topoNodeDBId=NULL”);
$result = 0;
$ret = SendAction($dn,”{topoNodeGetByType,\”Host\”},&$result);

if ($ret AND ($messType == 10)) {print($result);}

RCL Functions 14-23

14

where <oc> is of type OCTET STRING, <oi> is of type objectInstance , and
<eventTypeName> is of type OCTET STRING.
<event-notification> is the event to be logged, comprised of ASN.1 attributes.
The attributes must be those that would be appropriate for the type of event
notification specified by <eventTypeName>. (The structure of the default EM
event types is described in Chapter 15, “Adding New Event Types.”)
<oc_name> is a string that specifies the object class of which <oi> is an instance.

Return Value: None.

sendEvent() has a function similar to the other alarm logging functions, such
as alarm() and alarmOi() , but sendEvent() can be used to log events
other than nerveCenterAlarms. For example, internetAlarms or CMIP event
notifications defined by the ISO/ITU X.733 standard, such as a
communicationsAlarm , can be sent to the alarm log using the sendEvent()
function. In the following example a communicationsAlarm is logged using
the sendEvent() function.

This example generates a communicationsAlarm with a probableCause
value of 4 and a perceivedSeverity of major.

14.27 SendTrap
Syntax:
SendTrap(<dest>, <type>, <info>);
where <dest> is an OCTET STRING constant, <type> is an event type, and <info>
is of type InternetAlarmInfo .

Return Value: BOOLEAN.

Sends a trap to the destination IP address <dest>, using <type> and <info>.
The appropriate <type> can be obtained from $eventType .
The appropriate <info> can be obtained from $eventInfo .

$event=strToAsn(“Notification-ASN1Module.AlarmInfo”, “{4, major}”;
sendEvent(“system”,$pollfdn,”communicationsAlarm”,$event);

14-24 Solstice Enterprise Manager Administration Guide

14

Returns TRUE is successful, FALSE otherwise. For example:

14.28 Set
Syntax:
<Var> = Set(<oi>, <modList>);
where <oi> is of type ObjectInstance . The argument <modList> is a
modification list whose structure is defined in nc.asn1 as EM-NC-
ASN1.ModificationList . <Var> is a BOOLEAN variable.

Return Value: BOOLEAN.

Performs an M-SET on the object instance specified by <oi>. Set returns TRUE
if the SET request has been issued.

The following example is a condition that does an M-SET on the
topoNodeState attribute of a topology node.

After invoking Set, you can check for success of the operation by checking the
$messType system variable. If $messType has a value equal to 9, the set was
successful. Otherwise, $messType will be set to a different value if the Set was
unsuccessful. For example, if the set was directed at an invalid object instance,
$messType would be set to 15, indicating no such object instance. The
statement that checks for $messType value should be evaluated in a different
condition from the one that issues the Set.

$IpAddr = NameToAddress($host);
SendTrap($IpAddr,$eventType,$eventInfo);

$dn=strToAsn(“CMIP-
1.ObjectInstance”,”distinguishedName:{{{systemID,\”titleist\”}},{{topoNodeDBId,NULL}},
{{topoNodeId,0}}}”);
$arg = strToAsn(“[12] IMPLICIT SET OF SEQUENCE { modifyOperator [2] IMPLICIT ModifyOperator
DEFAULT replace, attributeId AttributeId, attributeValue ANY DEFINED BY attributeId }”,
“{{replace,topoNodeState,5}}”);
Set($dn,$arg);

RCL Functions 14-25

14

Another example:

After the M-SET is executed, you may want to transition to another state to
check for a response in another condition, such as the following:

14.29 SnmEventRequest
Syntax:
snmEventRequest(<oi>, <EventRequest>, &<result>);
where <oi> is of type ObjectInstance, <EventRequest> is of either of type OCTET
STRING or of type Asn1Value. <result> is a variable that has already been
initialized.

Return Value: BOOLEAN. The return value is true if the action request was
issued, otherwise false.

This function is used to issue a SunNet Manager event request to an SNM
agent or proxy via RPC protocol.

The response to the action is set in the variable <result>. The $messType
system variable should be checked to determine if a response to the action has
been received. If $messType is 10, this indicates a response has been received
to the action request.

$dn = OiNameToOi(“systemId=name:\”solpuppy\”/topoNodeDBId=NULL”);
$mlist = strToAsn(“EM-NC-ASN1.ModificationList”,”{{attributeId topoNodeDisplayStatus,
{\”Down\”,5}}}”);
$ret = set($dn,$mlist);

if ($ret AND ($messType == 9)) {print($ret);}

14-26 Solstice Enterprise Manager Administration Guide

14

<EventRequest> is a sequence of ASN.1 attributes as described in Table 14-2.
The order of occurrence in the table is the order within <EventRequest>.

Table 14-2 Arguments in <EventRequest>

Argument Data Type Description Required/Optional

agentHost OCTET STRING Name of target agent system Required

agentProgram INTEGER RCP number of agent Required

agentVersion INTEGER Agent’s RPC version number Required

timeout INTEGER Maximum time (in seconds) to
wait for response from agent
before request fails

Required

interval INTEGER Polling interval.(in seconds) Required

group OCTET STRING Name of attribute group Required

threshold SEQUENCE of
■ attrName — OCTET STRING

■ attrType — INTEGER

■ relop — INTEGER

■ threshValue — OCTET STRING
■ priority — ENUMERATED
— low (1)
— medium (2)
— high (3)

•Name of the attribute used to
define the threshold
•Data type of the operands for
relop. See Table 14-4.
•Relational operator used in
defining the threshold. See
Table 14-3.
•Threshold value to check for
• Priority assigned to an SNM
event generated if the threshold
is crossed

Required

proxyHost OCTET STRING Name of a proxy system if a
proxy agent is being used to
access the agent system

Optional

count INTEGER Specifies the number of polls
before terminating. If count is set
to 0, this indicates that polling is
to continue until request is killed.

Optional

optionalArgs SEQUENCE of
■ name — OCTET STRING
■ value — OCTET STRING

Optional arguments are agent-
specifc. For example, requests to
na.ping use these to set packet
size, time to wait for echo replies,
etc.

Optional

RCL Functions 14-27

14

The agentVersion number can be found in the listing for the agent in
/etc/inetd.conf . For example, 10 is the version number for na.snmp in the
following inetd.conf entry:

The relational operators that can be used to define thresholds are described in
Table 14-3.

key OCTET STRING Row in a table. Entire table is
used if no key is specified.
Interpretation is agent-specific.
For example, for the na.diskinfo
agent this is the name of a
filesystem partition.

Optional

flags INTEGER Request option flags. Currently
defined is NETMGT_RESTART.

Optional

rendezHost OCTET STRING Name of host where
rendezProgram (typically
na.event) is running

Optional

rendezProgram INTEGER RPC number of the program that
is to receive the events (typically
the Event Dispatcher — na.event)

Optional

rendezVersion INTEGER rendezProgram’s RPC version
number

Optional

na.snmp/10 tli rpc/udp wait root /opt/SUNWconn/snm/agents/na.snmp na.snmp

Table 14-3 Relational Operators in SNM Request Thresholds

Integer Value Relational Operator

0 No operation

1 Equal To

2 Not Equal To

3 Less Than

4 Less Than or Equal To

Table 14-2 Arguments in <EventRequest>

Argument Data Type Description Required/Optional

14-28 Solstice Enterprise Manager Administration Guide

14

The data types for operands of relational operators (attrType) are defined in
Table 14-4.

5 Greater Than

6 Greater Than or Equal To

7 Value has changed

8 Value Increased By

9 Value Decreased By

10 Value Increased By More Than

11 Value Increased By Less Than

12 Value Decreased By More Than

13 Value Decreased By Less Than

Table 14-4 Data Types for Threshold Operands

Integer Value Data Type

1 short

2 unsigned short

3 int

4 unsigned int

5 long

6 unsigned long

7 float

8 double

9 null-terminated ASCII string

10 opaque octet stream

11 Internet address

12 struct timeval

13 seconds since 1/1/70

14 enumerated type

Table 14-3 Relational Operators in SNM Request Thresholds

Integer Value Relational Operator

RCL Functions 14-29

14

When an SNM agent or proxy detects that a specified threshold has been
crossed, an event is sent to the SNM Event Dispatcher (na.event), which is
called the rendezvous. rendezHost is the name of the machine whose Event
Dispatcher is to receive the SNM event. By default, rendezHost is the name of
the MIS machine that initiated the event request. The SNM Event Forwarder
(em_snmfwd) on the MIS machine receives the event from the Event
Dispatcher and converts it to an snmAlarmEvent (a type of CMIP event
notification). The Event Forwarder maps SNM event priorities to the
perceivedSeverity values used by the Alarm Service in the manner
indicated in Table 14-5. The SNM Event Forwarder sends snmAlarmEvents to
the MIS.

The following condition builds and sends an SNM event request targeted at
the ping-reach managed object, which represents the reach attribute group
supported by the na.ping proxy agent.

In this example, 100115 is the RPC number of the na.ping agent and 10 is the
version number of this agent. The polling interval is set to 12 seconds. The
threshold is triptime not equal to 1. If the threshold is crossed, the ping agent is
to generate an SNM event with a medium priority. The variable $hostname
holds the hostname of the target of the request; this information could be
extracted from the $pollFdnSet . (An example that extracts the hostname

Table 14-5 Mapping of SNM Event Severities

SNM Event Priority perceivedSeverity Value Default Icon Color

Low Minor Cyan

Medium Major Orange

High Critical Red

$eventRequestStr = “{agentHost \””;
$eventRequestStr = StrCat($eventRequestStr,$Hostname);
$agentStr = “\”,agentProgram 100115, agentVersion 10, timeout 10,
interval 12, group \”reach\”, threshold
{\”triptime\”,21,2,\”1\”, medium}}”;
$eventRequestStr = StrCat($eventRequestStr,$agentStr);
$request_handle = 0;
snmEventRequest($pollfdn,$eventRequestStr,$request_handle);

14-30 Solstice Enterprise Manager Administration Guide

14

from $pollFdnSet can be found in Section 13.9.3, “WHILE Constructs.”)
$pollFdnSet is a system variable that contains the set of distinguished
names (FDNs) pointing to managed objects configured for the target device.

To receive SNM event notifications (snmAlarmEvents) generated by the proxy
agent in response to a crossed threshold, the request that initiates the SNM
event request can also use the event subscription functions, such as
subscribeOi() , to subscribe for snmAlarmEvents. For more information on
using RCL templates to launch SNM event requests, refer to Chapter 11,
“Building Templates for SunNet Manager Event Requests.”

14.30 SnmKillRequest
Syntax:
snmKillRequest(<oi>,<EventReply>);
where <EventReply> is the result returned in the <result> variable passed to
snmEventRequest().

Return Value: BOOLEAN. Returns true if a correct argument is passed.

Issues a request to kill a SunNet Manager event request that had been issued
by a call to the snmEventRequest function.

14.31 StrToAsn
Syntax:
StrToAsn(<strAsn1Type>, <strAsn1Value>);
where <strAsn1Type> and <strAsn1Value> are of type OCTET STRING.

Return Value: Asn1Value

This function takes two arguments:
<strAsn1Type> is the canonical text representation of the Asn1Type .
<strAsn1Value> is the text representation of the Asn1Value . For example:

$asn1_int = StrToAsn(“INTEGER”,”1000”);
$asn1_bool = StrToAsn(“BOOLEAN”,”FALSE”);

RCL Functions 14-31

14

returns the ASN1 encoding of <strAsn1Value>, but returns FALSE if the
arguments are invalid. In the following example, strToAsn is used to build an
internetAlarmInfo value for a SendTrap operation:

14.32 StrCat
Syntax:
strcat(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value: OCTET STRING.

Returns a string built by concatenating <string1> and <string2>. For example:

14.33 Strstr
Syntax:
strstr(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value: OCTET STRING.

$alarminfo = “{ “;
$alarminfo = strcat($alarminfo,$cause);
$alarminfo = strcat($alarminfo,$trans_domain);
$alarminfo = strcat($alarminfo,$traddr);
$alarminfo = strcat($alarminfo,$access);
$alarminfo = strcat($alarminfo,$ainfo);
$alarminfo = strcat($alarminfo,” }”);
$internetAlarmInfo = strToAsn(“IimcCommonDef.InternetAlarmInfo”,$alarminfo);
$eventInfo = $internetAlarmInfo;
SendTrap($destIp,$itType,$eventInfo);

$probCOid = “{1 3 6 1 4 1 42 2 2 2 9 1 9 1 999 1 1 1}”;
$cause = “probableCause globalValue: “;
$cause = Strcat($cause,$probCOid);

14-32 Solstice Enterprise Manager Administration Guide

14

Returns a string with the first occurrence of <string2> in <string1>. For
example:

$s will contain “my dentist .”

14.34 Strstrplus
Syntax:
strstrplus(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value: OCTET STRING.

Returns the remainder of a string after the first occurrence of <string2> in
<string1>. For example:

$s will contain “entist .”

14.35 Subscribe
Syntax:
subscribe(<event_name_str>);
where <event_name_str> is of type OCTET STRING.

Return Value: INTEGER.

$s = “How tall is my dentist”;
$res = strstr($s, “my d”);

$s = “How tall is my dentist”;
$res = strstrplus($s, “my d”);

RCL Functions 14-33

14

Used to subscribe to events of the type identified in <event_name_str>. The
<event_name_str> must be one of the event names that appears as a
NOTIFICATION in a GDMO document that the MIS knows about. The
following condition subscribes to receive SNMP traps. This condition could be
used to define an initial transition out of the Ground state.

The OID retrieved using NameToOid() can be tested against the system
variable $eventType to determine if an event of the subscribed type has
arrived, as, for example, in the following condition:

Note – In composing a condition that tests for object creation, use
subscribeOi() , rather than subscribe() , and subscribe to the creation of
only a specific type of object. Do not listen for all object creations, as this can
result in a deadlock (infinite loop) situation.

If a problem prevents the subscription from being implemented, a -1 is
returned. Otherwise, this function returns a handle index; that is, a unique
index for a subscription in a request. This handle can be passed in a call to the
unsubscribe() function to terminate the event subscription.

14.36 SubscribeFilter
Syntax:
<result> = subscribeFilter(<cmis_filter_string>);
where <cmis_filter_string> is a CMIS filter construct of type OCTET STRING.

<result> = subscribeFilter(<asn1_cmis_filter>);
where <asn1_cmis_filter> is a CMIS filter construct of type Asn1Value .

Return Value: INTEGER. <result> is a a handle of type INTEGER. If there is a
failure that prevents implementation of the subscription, -1 is returned.
Otherwise, a handle index is returned; this handle can be passed to the
unsubscribe() function to terminate the subscription.

$itindx=Subscribe(“internetAlarm”);
$itType=NameToOid(“internetAlarm”); true;

$eventType == itType;

14-34 Solstice Enterprise Manager Administration Guide

14

It is recommended that you check for a return value of -1 to determine if errors
have been encountered. For example, if the syntax of the CMIS filter passed as
<cmis_filter_string> is incorrect, -1 will be returned.

This command subscribes for events that match the specified CMIS filter. If an
event passes the filter, it will be forwarded to the request. The CMIS filter can
be passed to the function either as a string or as an ASN.1 value. For
information on the format of a CMIS filter, refer to the “CMIS Scoping and
Filtering” appendix in the Solstice Enterprise Manager Reference Manual.

Note – If you want to use the unsubscribe() function to turn off a
subscription created with the subscribeFilter() function, you cannot
invoke unsubscribe() in a condition that is evaluated as the result of an
event received on this subscription. Your request should transition to another
state before calling the unsubscribe() function.

Considerations
• If you invoke two subscriptions using CMIS filters and one filter selects a

subset of the other, your request will receive duplicate events for the
overlapping subset. An example of this would be the following two
subscriptions:

If these two subscriptions are invoked, each incoming internetAlarm is
forwarded twice to the request. You should tailor your event subscriptions
so as to avoid this duplication of events.

• When a subscription is created using a CMIS filter, every event in the
system is checked against that filter. Additional filter subscriptions thus
place an increasing load on the MIS. To avoid an adverse impact on
performance, it is recommended that you exercise care in the use of filter
subscriptions.

$index = subscribeFilter(“CMIP-1.CMISFilter”,”or: {item:
equality: {objectClass,mosi}, item: equality: {eventType,
internetAlarm}}”);

$index = subscribeFilter(“CMIP-1.CMISFilter”, “item: equality:
{eventType, internetAlarm}”);

RCL Functions 14-35

14

Examples
• The following is an example of a subscription that passes a CMIS filter that

forwards all events to a request:

This same CMIS filter could be passed as an ASN.1 value:

• A CMIS filter could be used to forward all events of a specified managed
object class to the request. For example, all nerveCenterAlarm, generated
using the RCL alarm-logging functions (alarm() , alarmOi() ,
alarmStr())s are instances of a managed object class called mosi . The
following filter forwards to the request all events whose managed object
class is mosi.

This same CMIS filter could be passed as a string:

• The following example uses a CMIS filter that selects all events whose
managed object class is system and whose eventType is
communicationsAlarm:

$index = subscribeFilter(“and : { }”);

$filter = strToAsn(“CMIP-1.CMISFilter”,”and : { }”);
$index = subscribeFilter($filter);

$filter = strToAsn(“CMIP-1.CMISFilter”, “item: equality
{managedObjectClass, mosi}”);
$index = subscribeFilter($filter);

$index = subscribeFilter(“item: equality {managedObjectClass,
mosi}”);

$filter = strToAsn(“CMIP-1.CMISFilter”, “and: {item: equality:
{managedObjectClass, system}, item: equality: {eventType,
communicationsAlarm}}”);
$index = subscribeFilter($filter);

14-36 Solstice Enterprise Manager Administration Guide

14

14.37 SubscribeOi
Syntax:
subscribeOi(<event_name_str>, <event_oc_str >, <event_oi>);
where <event_name_str> and <event_oc_str> are of type OCTET STRING and
<event_oi> is of type ObjectInstance .

Return Value: INTEGER.

Used to subscribe to events of a specific type that concern objects of a specific
type, a specific object class, or a specific object instance. The <event_name_str>
must be one of the event names that appears as a NOTIFICATION in a GDMO
document that the MIS knows about.

The <event_oi> argument is an ObjectInstance specifying the instance of
interest.

The <event_oc_str> argument specifies the object class of interest. The function
will accept an empty string "" as the value of <event_oc_str>, and in that case
supplies the class to which <event_oi> belongs. However, for performance
reasons it is preferable to supply the object class explicitly.

If a failure occurs that prevents implementation of the subscription, -1 is
returned. Otherwise, this function returns a handle index; that is, a unique
index for a subscription in a request. This handle can be passed in a call to the
unsubscribe() function to terminate the event subscription.

Currently when a request is disabled or deleted, its subscription(s) are
automatically deleted also.

Note – In composing a condition that tests for object creation, use
subscribeOi() , rather than subscribe() , and subscribe to the creation of
only a specific type of object. Do not listen for all object creations, as this can
result in an infinite loop.

$itindx=subscribeOi(“internetAlarm”,””,$pollfdn);
$itType=NameToOid(“internetAlarm”); true;

RCL Functions 14-37

14

14.38 TrapGenericType
Syntax:
TrapGenericType(<info>);
where <info> is an event of type InternetAlarmInfo .

Return Value: INTEGER.

Returns the number of the GenericType of the received trap (for example,
from $eventInfo). For example:

 The possible return values are described inTable 14-6.

$gnum=TrapGenericType($eventInfo);

Table 14-6 Standard SNMP Trap Types

Value of
<generic-trap> Trap Type Description

0 coldStart The originating SNMP device is
reinitializing itself, typically due to
unexpected reboot.

1 warmStart The originating SNMP device is
reinitializing itself, typically due to
normal restart.

2 linkDown One of the agent’s communication
links is down. The first name/value
pair in the variable bindings is the
ifIndex for the interface.

3 linkUp One of the agent’s communication
links has come up. The first
name/value pair in the variable
bindings is the ifIndex for the
interface.

14-38 Solstice Enterprise Manager Administration Guide

14

14.39 TrapSpecificType
Syntax:
TrapSpecificType(<info>);
where <info> is an event of type InternetAlarmInfo.

Return Value: INTEGER.

Returns the number of the SpecificType of the received trap (for example,
from $eventInfo). For example:

14.40 Undefine
Syntax:
undefine(&<Var>);
where <Var> is a variable; or

undefine(&<Attr>);
where <Attr> is an attribute.

Return Value: BOOLEAN. Always returns TRUE.

Sets the variable <Var> or the attribute <Attr> to have no value.

4 authenticationFailure The originating system has received
a protocol message that has failed
authentication.

5 egpNeighborLoss An External Gateway Protocol peer
has been marked down.

6 enterpriseSpecific Further information about the event
is indicated in the <specific-trap>
field.

$snum=TrapSpecificType($eventInfo);

Table 14-6 Standard SNMP Trap Types

Value of
<generic-trap> Trap Type Description

RCL Functions 14-39

14

The IsSnmpSystemUp sample template illustrates the use of the undefine
function. The availability of the target device is tested using a call to define in
the IsSystemDescr sample condition.

Figure 14-3 IsSystemDescr Sample Condition

Once this condition returns true, however, the value will always remain true
unless the undefine function is called, as in the UndefineSystemDescr
sample condition:.

Figure 14-4 UndefineSystemDescr Sample Condition

Once the value of sysDescr has been undefined, the IsSystemDescr sample
condition can once again invoke the define the function to test for system
availability.

14.41 Unixcmd
Syntax:
Unixcmd(<command>, <arguments>);
where <command> and <arguments> are both of type OCTET STRING.

Return Value: None.

Executes the indicated UNIX command. This is the equivalent of the
UNIXCMD action. The <arguments> parameter can contain RCL variables,
either alone or embedded inside a quoted string. For example:

define(&sysDescr);

undefine(&sysDescr);

UnixCmd(“echo”,”$pollfdn > /tmp/mydata”);

14-40 Solstice Enterprise Manager Administration Guide

14

14.42 UnSubscribe
Syntax:
unsubscribe(<subscription_handle>);

where <subscription_handle> is an INTEGER value returned from a previous
call of one of the subscription functions, such as subscribe() or
subscribeOi() . This function can be used to turn off a previous event
subscription.

Note – If you want to use the unsubscribe() function to turn off a
subscription created with the subscribeFilter() function, you cannot
invoke unsubscribe() in a condition that is evaluated as the result of an
event received on this subscription. Your request should transition to another
state before calling the unsubscribe() function.

15-1

Adding New Event Types 15

Agents located on devices in the network typically are designed to generate
reports to managers on their own initiative when certain conditions are
detected; these messages are called event notifications.

Notifications are defined for managed objects in accordance with the ITU X.722
Guidelines for the Definition of Managed Object (GDMO) standard. The MIS
acquires knowledge of event notification types when the pertinent GDMO
documents are loaded into the MIS at startup. The CMIP event notifications
defined in EM by default are the following:

Defined by the ITU X.722 Definition of Management Information (DMI)
standard:

• objectCreation
• objectDeletion
• attributeValueChange
• relationshipChange
• stateChange
• communicationsAlarm
• environmentalAlarm
• equipmentAlarm
• integrityViolation
• operationalViolation
• physicalViolation
• processingErrorAlarm
• qualityofServiceAlarm
• securityServiceOrMechanismAlarm

15-2 Solstice Enterprise Manager Administration Guide

15

• timeDomainViolation

Defined by the ISO-Internet Management Co-existence (IIMC) standard:

• internetAlarm

Solstice EM-specific event notifications:

• snmAlarmEvent
• snmAlarmTrap
• nerveCenterAlarm
• coldStartTrap
• warmStartTrap
• linkDownTrap
• linkUpTrap
• authenticationFailureTrap
• egpNeighborLossTrap
• enterpriseSpecificTrap

Custom event notifications can be added. To add new event types to the MIS,
do the following:

1. Define the GDMO and ASN.1 documents in which the event notification
is defined.

2. You may also want to provide GDMO documents in which an equivalent
event log record is defined.
An event notification must have an appropriate event log record type in
order for it to be logged. You can either provide a custom log record class
definition, or alternatively, you can use one of the existing log record classes.
A single log record class can be used to log a group of event notifications.
The default mapping of event notifications to log record classes is shown in
Table 15-1.

Table 15-1 Default Notification to Event log Record Object Class Mapping

Event Notification Event Log Record Object Class

attributeValueChange attributeValueChangeRecord

objectCreation objectCreationRecord

objectDeletion objectDeletionRecord

relationshipChange relationshipChangeRecord

stateChange stateChangeRecord

Adding New Event Types 15-3

15

3. Compile the GDMO and ASN.1 documents.
Compiling GDMO and ASN.1 documents is described in Chapter 16,
“Adding a Managed Object Class to the MIS.”

communicationsAlarm emAlarmRecord

environmentalAlarm emAlarmRecord

equipmentAlarm emAlarmRecord

processingErrorAlarm emAlarmRecord

qualityofServiceAlarm emAlarmRecord

integrityViolation securityAlarmReportRecord

operationalViolation securityAlarmReportRecord

physicalViolation securityAlarmReportRecord

securityServiceOrMechanismAlarm securityAlarmReportRecord

timeDomainViolation securityAlarmReportRecord

internetAlarm emInternetAlarmRecord

nerveCenterAlarm nerveCenterAlarmRecord

Table 15-1 Default Notification to Event log Record Object Class Mapping

Event Notification Event Log Record Object Class

15-4 Solstice Enterprise Manager Administration Guide

15

4. Add an event to log record entry in the init_user file.
Each mapping of an event type to a log record type requires an entry in the
init_user file. This file is located in the following directory:
/opt/SUNWconn/em/build/acct

An example of the format is indicated by the entry for
enterpriseSpecificTrap event type:

In this example we see that enterpriseSpecificTrap events are logged as log
records of type emInternetAlarmRecord .

5. If you do not want your new event type automatically logged to the alarm
log, modify the alarm log discriminator.
By default, the AlarmLog discriminator includes all event types except for
the following:

• snmAlarmEvent
• objectCreation
• objectDeletion
• attributeValueChange
• stateChange

If you do not want your custom event automatically logged, use the Log
Manager to edit the log discriminator to add your new event type to the list
of excluded event types in the alarm log discriminator. Refer to the “Log
Manager” chapter in the Solstice Enterprise Manager Reference Manual for
more information.

6. Restart the MIS.
After completing the above steps, use the em_services command to restart
the MIS.

enterpriseSpecificTrap

SET
{
OI = ‘subsystemId=”EM-MIS”/listname=”event2ObjectClass”’
evr2oclist += ‘{ { eventypeoid enterpriseSpecificTrap,
objectClassoid emInternetAlarmRecord } }’
}

Adding New Event Types 15-5

15

7. Verify that the new event types are recognized and logged.
Generate events of the new type and verify that they can be logged. For
example, the creation of new log records can be verified in OBED, Log
Viewer, or Alarm Manager. You could write a Nerve Center subscription
request template to verify that the new event type is recognized by the MIS.

15-6 Solstice Enterprise Manager Administration Guide

15

16-1

Adding a Managed Object Class
to the MIS 16

This chapter provides an example to illustrate how to add a GDMO object class
to the Management Information Server (MIS). The GDMO and ASN.1
definition files used in this example are called coffee.gdmo and
coffee.asn1 , respectively. The managed object class being added to the MIS
is called coffee . Code Example 16-1 lists the coffee.gdmo definition file,
and Code Example 16-2 lists the coffee.asn1 definition file. Both of these
files are located in the $EM_HOME/src/gdmo_sample directory.

1. From a directory in which you have write permissions, compile the
coffee.asn1 ASN.1 definition using the ASN.1 compiler as follows:

The “-o . ” parameter specifies to place the output file produced in the
current directory.

2. Copy the ASN.1 output files produced into the
/var/opt/SUNWconn/em/usr/data/ASN1 directory as follows:

The files are placed in the /var/opt/SUNWconn/em/usr/data/ASN1
directory for safe keeping. This way, when a pkgrm command is invoked,
these files remain in existence.

hostname% $EM_HOME/bin/em_asn1 -o . coffee.asn1

hostname% cp 1.2.3.4.5.1 /var/opt/SUNWconn/em/usr/data/ASN1
hostname% cp Coffee-ASN1 /var/opt/SUNWconn/em/usr/data/ASN1

16-2 Solstice Enterprise Manager Administration Guide

16

3. Specify the GDMO definition of the object class(es) in a file with a suffix
of.gdmo .
In this example, the coffee.gdmo file contains the GDMO definition of the
coffee managed object class.

4. Compile the coffee.gdmo GDMO definition using the GDMO compiler
as follows:

The -file option causes em_gdmo to generate an output file.

5. Copy the GDMO output file produced into the
/var/opt/SUNWconn/em/usr/data/MDR directory as follows:

6. Go to the $EM_HOME/bin directory and, as root , invoke the
em_services -r command to restart the MIS.

7. As root , compose the new coffee object class with the
em_compose_all command as follows:

This command composes all of the object types within a GDMO file. It is the
equivalent of running em_compose_poc and em_load_name_bindings
for all objects types within the GDMO file.

This procedure can be repeated for any GDMO object class you want to add to
the MIS. Alternatively, you can edit the em_startup file, located in
$EM_HOME/bin, so that the GDMO object classes you want to add to the MIS
are added each time the MIS is started or re-started. You could add the

hostname% $EM_HOME/bin/em_gdmo -file coffee.gdmo

hostname% cp G2_Coffee_Document /var/opt/SUNWconn/em/usr/data/MDR

cd $EM_HOME/bin
./ em_services -r

./ em_compose_all $EM_HOME/src/gdmo_sample/coffee.gdmo

Adding a Managed Object Class to the MIS 16-3

16

necessary em_compose_all < filename> command(s) at the end of the file,
immediately preceding the exit command. If you want to create an instance
of each object type, you must use the em_objop command.

16.1 GDMO and ASN.1 Used in the Examples
Following is a copy of the coffee.gdmo GDMO definition file. It is used to
describe the coffee Managed Object Class:

Code Example 16-1 coffee.gdmo Definition File

MODULE “G2 Coffee Document”
coffee MANAGED OBJECT CLASS
 DERIVED FROM “Rec. X.721 | ISO/IEC 10165-2 : 1992” : top;
 CHARACTERIZED BY
 coffeePackage;
 REGISTERED AS { 1 2 3 4 5 6 3 1 };

coffeePackage PACKAGE
 BEHAVIOUR coffeePackageDefinition BEHAVIOUR DEFINED AS
 !This managed object class represents the coffee
 pot of Peet’s coffee in Jon and Kevin’s office!;
 ;
 ATTRIBUTES
 coffeePotNumber GET-REPLACE,
 coffeeBlend GET-REPLACE,
 coffeeReady GET-REPLACE;
 NOTIFICATIONS
 “Rec. X.721 | ISO/IEC 10165-2 : 1992” :
 objectCreation,
 “Rec. X.721 | ISO/IEC 10165-2 : 1992” :
 objectDeletion,
 “Rec. X.721 | ISO/IEC 10165-2 : 1992” :
 attributeValueChange;
 REGISTERED AS { 1 2 3 4 5 6 4 1 };

-- Name Bindings

coffee-system NAME BINDING
 SUBORDINATE OBJECT CLASS coffee;
 NAMED BY
 SUPERIOR OBJECT CLASS “Rec. X.721 | ISO/IEC 10165-2 : 1992” : system;
 WITH ATTRIBUTE coffeePotNumber;
 BEHAVIOUR coffee-rootBehaviour BEHAVIOUR DEFINED AS

16-4 Solstice Enterprise Manager Administration Guide

16

 !This name is used to define the coffee object
 name binding!;
 ;
 CREATE;
 DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
 REGISTERED AS { 1 2 3 4 5 6 6 1 };

coffee-coffee NAME BINDING
 SUBORDINATE OBJECT CLASS coffee;
 NAMED BY
 SUPERIOR OBJECT CLASS coffee;
 WITH ATTRIBUTE coffeePotNumber;
 BEHAVIOUR coffee-systemcoffee BEHAVIOUR DEFINED AS
 !This name is used to define the coffee object
 name binding!;
 ;
 CREATE;
 DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
 REGISTERED AS { 1 2 3 4 5 6 6 2 };

-- Attributes

coffeePotNumber ATTRIBUTE
 WITH ATTRIBUTE SYNTAX Coffee-ASN1.CoffeeInteger;
 MATCHES FOR EQUALITY;
 BEHAVIOUR coffeePotNumberBehaviour BEHAVIOUR DEFINED AS
 !This is the naming attribute for the coffee
 object. This will always be 1 until Jon and
 Kevin get another pot working.!;
 ;
 REGISTERED AS { 1 2 3 4 5 6 7 1 };

coffeeBlend ATTRIBUTE
 WITH ATTRIBUTE SYNTAX Coffee-ASN1.CoffeeString;
 MATCHES FOR EQUALITY;
 BEHAVIOUR coffeeBlendBehaviour BEHAVIOUR DEFINED AS
 !This is the blend of coffee that is brewing
 in the current pot, undoubtedly Peets,
 and probably French or Italian.!;
 ;
 REGISTERED AS { 1 2 3 4 5 6 7 2 };

coffeeReady ATTRIBUTE

Code Example 16-1 coffee.gdmo Definition File

Adding a Managed Object Class to the MIS 16-5

16

Following is a copy of the coffee.asn1 ASN.1 definition file. It is used to
describe the syntax and encoding rules for the coffee managed object class:

 WITH ATTRIBUTE SYNTAX Coffee-ASN1.CoffeeInteger;
 MATCHES FOR EQUALITY;
 BEHAVIOUR coffeeReadyBehaviour BEHAVIOUR DEFINED AS
 !If this attribute is true there is coffee in
 the pot, you better hurry!;
 ;
 REGISTERED AS { 1 2 3 4 5 6 7 3 };
END

Code Example 16-2 coffee.asn1 Definition File

-- Asn1 Definitions needed by the coffee class
Coffee-ASN1 { 1 2 3 4 5 1 }

DEFINITIONS ::=
BEGIN

CoffeeInteger ::= INTEGER

CoffeeString ::= GraphicString

CoffeeBoolean ::= BOOLEAN

END

Code Example 16-1 coffee.gdmo Definition File

16-6 Solstice Enterprise Manager Administration Guide

16

17-1

Adding a MIB to the MIS 17

The Solstice EM product is shipped with the file sun.mib , stored in
$EM_HOME/etc/snmp_mibs . The same file was stored in
/opt/SUNWconn/snm/agents with SunNet Manager 2.2 and later. Using the
following procedure, you can use Solstice EM utilities to convert the objects
defined in the Sun MIB to GDMO objects and then load those objects into the
MIS.

1. As root , edit sun.mib to check the following line:

This string occurs approximately at line 13 in the file, and should appear
exactly as shown above. The critical aspect is that, in order to conform to
ASN.1 standards, the first letter must be capitalized. (The ASN.1 standard
requires that the first letter be capitalized, but does not require capitalization
of the rest of the module name.)

2. Save and exit the file.

3. With $EM_HOME/bin in your PATH, run em_cmib2gdmo to process
sun.mib :

The preceding command produces the files sunTYPE.asn1 and sun.gdmo .

 SUN-SNMP DEFINITIONS ::= BEGIN

em_cmib2gdmo sun.mib

17-2 Solstice Enterprise Manager Administration Guide

17

Should you receive any error messages during the compilation of sun.mib
about em_cmib2gdmo not being able to resolve OIDs, there are a couple of
possibilities you can explore.

The first is to invoke the em_cmib2gdmo compiler using the -l parameter,
meaning that you specify two schema files, but a GDMO and ASN.1 file are
generated for only the second file. This is useful if one MIB imports
information from another MIB, but you want to translate only the MIB with the
dependency. Two of the more commonly-used MIBs are rfc1312 and
rfc1155 , and they should be the first of the two MIBs specified with the -l
option. For more information, see the “Compilers” chapter in the Solstice
Enterprise Manager Reference Manual.

The second possibility is to manually edit sun.gdmo to replace all occurrences
of a string followed by a question mark with that string followed by the
numeric OID that corresponds to that string. Obtain the OID from the MIB
definition in the original MIB file. An OID for a Sun machine might be:

Obtain the full OID from the MIB definition in sun.mib , as you submitted that
file to the em_cmib2gdmo compiler.

1 . 3 . 6 . 1 . 4 . 1 . 42 . 3 . 1

An object within the Sun Enterprise
Object within the Sun MIB
Sun System

Adding a MIB to the MIS 17-3

17

4. Load the GDMO definitions.
If the MIS is not running, invoke the commands below to move the
generated GDMO and ASN.1 files to their correct destinations, build GDMO
and ASN.1 objects, and start the MIS, during which definitions are loaded
into the MIS.

If the MIS is running, enter the following command:

The -host < hostname> parameter loads the new GDMO definition directly
into the MDR, so you do not have to restart the MIS.

mv sun.gdmo $EM_HOME/etc/gdmo
mv sunTYPE.asn1 $EM_HOME/etc/asn1
$EM_HOME/bin/em_services -r

em_gdmo -host < hostname> -file sun.gdmo

17-4 Solstice Enterprise Manager Administration Guide

17

18-1

Adding an Object Class Based on an
SNM Schema File to the MIS 18

This chapter provides an example on how to convert a SunNet Manager
schema file to a GDMO document and, thence, add a GDMO object class for
that schema to the Management Information Server (MIS).

For this example, we use the diskinfo.schema file that is shipped with
SunNet Manager 2.x. This file resides in the /opt/SUNWconn/snm/agents
directory by default. You must be root to perform this procedure.

1. Copy diskinfo.schema to a directory in which root has write
permission.

2. With $EM_HOME/bin in your PATH, enter the following command:

The <OID_branch> parameter is any unused OID branch number for the
specified schema file. This number is used to assign a unique OID to every
record type defined within the specified schema file. “0” and “1” are the
only OID branch numbers that are already reserved:

• “0” is reserved for SNM agent/proxy schemas, which can be found in
$SNM_HOME/agents.

• “1” is reserved specifically for the schema file elements.schema .

em_snm2gdmo diskinfo.schema < OID_branch>

18-2 Solstice Enterprise Manager Administration Guide

18

See the “Compilers” chapter in the Solstice Enterprise Manager Reference Manual
for more information on determining which OID branch numbers are available
or reserved.

The output of the preceding command is two files, diskinfo.asn1 and
diskinfo.gdmo , stored in the directory in which you invoked the command.

3. If you want the diskinfo object class to be part of the MIS each time you
start Solstice EM, copy the newly created .asn1 and .gdmo files to the
$EM_HOME/etc/asn1 and $EM_HOME/etc/gdmo directories, respectively.

Note – Files stored in the $EM_HOME/etc/asn1 and $EM_HOME/etc/gdmo
directories are compiled each time you run em_services -r .

At this point, after copying the .asn1 and .gdmo files to their respective
directories, you can run em_services -r , or you can proceed with the rest of
the procedure. Running em_services -r automatically takes care of the rest
of this procedure.

If you run em_services -r now, you can use the Topology Import/Export
Tool to save your topology database, and use the em_ncexport utility to save
your Nerve Center templates. After the platform has been reinitialized, you
can import that information back into the MIS.

Keep in mind that running em_services means stopping and restarting the
MIS, potentially disrupting applications that are using the MIS.

4. Run em_services -r now, or proceed to Step 5 to continue.
If you run em_services -r now, you are finished with this procedure.

5. Change directories to the /var/opt/SUNWconn/em/usr/data/ASN1
directory.
This directory is intended for user-supplied ASN.1 output files.

Adding an Object Class Based on an SNM Schema File to the MIS 18-3

18

6. Enter the following command:

The ASN.1 compiler creates the following files in the current directory:

The diskSpace object class and the diskSpace-rpcContainer name
binding are defined in the diskinfo.gdmo file. In the following steps, you
load this object class and name binding into the MIS.

7. Change directories to the /var/opt/SUNWconn/em/usr/data/MDR
directory.
This directory is intended for user-supplied GDMO output files.

8. Enter the following command:

The GDMO compiler creates a file RPC_Agent_-_diskinfo in the current
directory.

9. Run the em_services command (no optional parameters).
This will add the object class to the MIS.

Note – You can use the Topology Import/Export Tool to save your topology
database, and use the em_ncexport utility to save your Nerve Center
templates. After the platform is restarted, you can import that information
back into the MIS.

em_asn1 -o . < path>/diskinfo.asn1

1.3.6.1.4.1.42.2.2.2.12.100105
DiskinfoASN1

em_gdmo -file < path>/diskinfo.gdmo

18-4 Solstice Enterprise Manager Administration Guide

18

19-1

Configuring Communication with
CMIP Agents 19

This chapter provides detailed instructions for installation and configuration of
the components required for managing CMIP agents.

19.1 Overview of CMIP Configuration Tasks
The following list summarizes the activities that you must complete before
your system can manage a CMIP Agent.

1. Prepare your system for CMIP configuration.

a. Define the distribution model.

b. Install all the required products and patches.

c. Gather the configuration information that you will use later.

Overview of CMIP Configuration Tasks page 19-1

Preparing the System for CMIP Configuration page 19-4

Compile and Load CMIP Agent Object Types into MIS page 19-6

Starting and Configuring SunLink OSI 8.1 page 19-6

Starting and Configuring SunLink CMIP 8.2 page 19-8

Starting and Configuring the CMIP MPA page 19-9

19-2 Solstice Enterprise Manager Administration Guide

19

2. Load the CMIP Agent Object Classes into the MIS.
The MIS needs to understand the kinds of objects that your CMIP Agent
supports. Many standard object classes are delivered with Solstice EM. For
any others you must compile the definitions and load them into the MIS.

3. Start up and configure SunLink OSI 8.1
SunLink OSI provides the lower layers of the OSI stack. This handles the
data transportation and presentation aspects of communication with a CMIP
Agent. This is required if you are using LLC or CONS/X.25.

4. Start up and configure SunLink CMIP 8.2
Sunlink CMIP provides the upper layers of the OSI stack, and uses the
services provided by SunLink OSI to communicate with a CMIP Agent.

5. Start up and configure the EM CMIP MPA.
The Solstice EM CMIP MPA translates CMIP requests and responses to and
from Solstice Enterprise Manager. It uses the services provided by SunLink
CMIP. Before Solstice EM can access the objects in the a CMIP Agent, the
CMIP agent must be configured in the MIS. You can use the EM Object
Configuration Tool (OCT) to configure CMIP objects. Refer to the “Object
Configuration Tool” chapter in the Solstice Enterprise Manager Reference
Manual for detailed instructions on OCT.

Note – Perform all procedures in this chapter as root . All commands assume
a PATH environment variable that includes /opt/SUNWconn/bin . See the
Solstice Enterprise Manager Installation Guide for instructions on setting your
PATH environment variable.

The following diagram summarizes the configuration procedure.

Configuring Communication with CMIP Agents 19-3

19

Figure 19-1 Configuring EM for Communication with CMIP Agents

The following sections provide detailed instructions for performing these
tasks.

Step 3: Start and configure
 SunLink OSI 8.1

Step 2: Compile and load the
 CMIP Agent Object
 Types into the MIS

Step 5: Start and configure the
 EM CMIP MPA.

Step 4: Start and configure
 SunLink CMIP 8.2

MISEM CMIP MPA

Step 1: Prepare the system.

SunLink CMIP 8.2
(optional)

SunLink OSI 8.1
(optional)

19-4 Solstice Enterprise Manager Administration Guide

19

19.2 Preparing the System for CMIP Configuration
Before you begin, there are several steps you must undertake before you can
configure the system for communication with CMIP agents. These are:

1. Determine the distribution model.
Before you begin, you must determine the distribution model you will use
for CMIP communications.

2. Install the required SunLink products.
Install the following products, as required for your environment:

a. SunLink CMIP 8.2 RT or SunLink CMIP 8.2 SDE

b. SunLink OSI 8.1 (optional)

c. SunLink X25 9.0 or above (optional)

3. Gather your configuration information.
Before proceeding, you should gather all the information that you will need
to complete the configuration process.

19.2.1 Determining the Distribution Model

Before you begin, you must determine the overall distribution model you are
to use for CMIP communications. For this you must be aware of which MPAs
and MISs will be communicating, how many there are, and how they are
configured. You will need the following information:

1. Determine with which MISs the MPA(s) will be communicating.

2. Determine how many agents there are, and how they are configured.

3. Determine the address(es) of the MPA(s).

4. Determine the address(es) of the agents.

19.2.2 Installing the Required SunLink Products

You can use one of the following configurations of SunLink products for CMIP
communications, depending upon your target environment:

• SunLink CMIP 8.2 (if using RFC1006)

Configuring Communication with CMIP Agents 19-5

19

• SunLink CMIP 8.2 & SunLink OSI 8.1 (if using CLNP/LLC)

• SunLink OSI 8.1 & SunLink CMIP 8.1 SDE & SunLink X25 9.x (if using
CONS/X.25)

Some of these products may require a patch. The appropriate patches for your
installation should be on hand before proceeding. Patches can be obtained
from your normal source or Sun point of contact. Refer to your installation
documentation for these products for patch information.

You should now install the lowest layer of the protocol stack first, as follows:

1. SunLink OSI 8.1. (Optional)
First you should install SunLink OSI 8.1. See the provided documentation
for details on installation. A typical installation for OSI 8.1 will include the
following product packages:

• SUNWcorpc
• SUNWcosia
• SUNWcosib
• SUNWcosic
• SUNWcosid
• SUNWlicsw
• SUNWlit

2. SunLink CMIP 8.2 (Required)
Install either SunLink CMIP 8.2 RT or SunLink CMIP 8.1 SDE. See the
provided documentation for details on installation. A typical installation for
SunLink CMIP 8.2 RT will include the following product packages:

• SUNWomgta
• SUNWomgtb
• SUNWomgtc
• SUNWrk6 (if RFC1006 is used)
• SUNWlicsw
• SUNWlit

The License Installation Tool package, SUNWlit, must be installed even
though you will have already installed a version for SunLink OSI 8.1.

19-6 Solstice Enterprise Manager Administration Guide

19

3. SunLink X.25 9.0. (Optional)
You will require to install SunLink X.25 if you are going to communicate
with a CMIP Agent over X.25. See the provided documentation for details
on installation. Once you have installed SunLink X.25 you should also
install any required SunLink X.25 9.x patches.

19.2.3 Gathering Your Configuration Information

The following checklist summarizes the information you will need for
configuring Solstice EM for communication with CMIP agents:

• Presentation Selector for CMIP Agent

• Session Selector for CMIP Agent

• Transport Selector for CMIP Agent

• Whether underlying communication with CMIP Agents is via
TCP/IP(RFC1006), CLNP/LLC or X.25 (CONS).

• The Network Service Access Point Address: IP Address of CMIP Agent
(RFC1006) or OSI Network Address (CLNP/CONS)

• Name of object directly contained by Root in the Management Information
Tree (MIT) of the CMIP Agent.

• ASN.1 and GDMO descriptions of the objects supported by the CMIP
Agent.

19.3 Compile and Load CMIP Agent Object Types into MIS
The MIS must understand the kinds of objects that your CMIP Agent supports
before it can access the objects maintained in the CMIP Agent. Many standard
object types are delivered with Solstice EM. For those of which the MIS is
unaware, you must compile and load the appropriate CMIP Agent ASN.1 and
GDMO definitions into the Solstice EM MIS. You can do this by using the
compilers em_asn1 and em_gdmo, supplied with Solstice EM. Refer to
Chapter 16, “Adding a Managed Object Class to the MIS,” for instructions on
using these compilers.

19.4 Starting and Configuring SunLink OSI 8.1
To configure SunLink OSI to communicate with CMIP agents, do the following:

Configuring Communication with CMIP Agents 19-7

19

Note – If you will be using RFC1006, you need not set up the Network Layer
Address.

1. Halt the CMIP MPA.
Halt the Solstice EM CMIP MPA by entering the following command:

2. Halt the CMIP stack.
Halt the CMIP stack by entering the following command:

3. Start the SunLink OSI stack.
If SunLink OSI is not running, start the SunLink OSI stack by entering the
following command:

4. Run ositool .
Your distribution of SunLink OSI 8.1 provides a tool for configuring
SunLink OSI, called ositool . Use this tool to configure the Network Layer
Address, OSI routing, and Application Selectors to successfully
communicate with the Agent.

You can run ositool by entering the following command:

For detailed instructions on using this tool, consult the SunLink OSI 8.1
Communication Platform Administrator’s Guide.

5. Restart osinetd .
After you have entered all of your configuration information, use ositool
to restart osinetd .

host# /etc/rc2.d/S98cmipmpa stop

host# osistop osimcs

host# /etc/rc2.d/S90osinet start

host# ositool &

19-8 Solstice Enterprise Manager Administration Guide

19

19.5 Starting and Configuring SunLink CMIP 8.2
To configure SunLink CMIP 8.2 to communicate with CMIP agents, do the
following:

1. Ensure the OSI stack and CMIP stack are running.
If the OSI stack and CMIP are not running, start them.

2. Run cmiptool .
Issue the cmiptool command at the operating system prompt:

The cmiptool main screen then appears.

3. Enter the type of Subnetwork.
Go to the section entitled “Default XMP Address.” Select the subnetwork
that you are using. Depending on the protocol used to communicate with
the CMIP Agents, click on one of the buttons as follows:

• CONS(X.25), if you are using X.25.
• TCP-IP(RFC1006), if you are using TCP/IP.
• CLNP(LLC1) If you are using Ethernet.

4. Enter the value for the Request Timer (optional).
The Request Timer in the CMIP/MCS Parameters section specifies the
maximum time allowed for requests to extract information from agents. By
default, SunLink CMIP has a timeout parameter value of 5 which indicates a
50 second timeout. The parameter value is then multiplied times 10 to
calculate the actual length of the timeout in seconds.

If you intend to issue requests to CMIP Agents which require a longer
timeout, you should increase the value of this parameter. It is recommended
that you choose a much larger value. The maximum allowable Timeout
value is 127, which equals 1270 seconds.

5. Select the Apply button.

6. Exit cmiptool .

host# cmiptool &

Configuring Communication with CMIP Agents 19-9

19

19.6 Starting and Configuring the CMIP MPA
A CMIP MPA is a Solstice EM component that provides access to CMIP Agents
and Managers. The CMIP MPA receives management directives from the MIS
and translates the directives into proper CMIP messages. In other words, the
CMIP MPA is the CMIP Proxy Agent for the MIS. The CMIP MPA can also act
as a CMIP Agent allowing the objects in the MIS to be managed by a CMIP
Manager.

The EM CMIP MPA performs association management. When a previously
established association goes down, a communicationsAlarm is generated by
the EM CMIP MPA and sent to the MIS. When the connection is re-established,
the alarm is automatically cleared by the MPA.

A CMIP MPA must be configured prior to attempting to access managed
objects over CMIP. A CMIP MPA can be located on the same machine where
the MIS is located (the default) or on a remote machine.

To configure a CMIP MPA for communication over CMIP, do the following:

1. Stop all running CMIP MPAs.
As only one CMIP MPA can be run on a single machine, enter the following
command to stop all running CMIP MPAs:

host# /etc/rc2.d/S98cmipmpa stop

19-10 Solstice Enterprise Manager Administration Guide

19

2. Set the $EM_MIS_DEFAULT environment variable.
If you are using csh as your shell, set the EM_MIS_DEFAULT environment
variable as follows:

Where:

 <hostname> is the name of the host on which the default MIS is running.

If you are using sh or ksh as your shell, set the environment variable as
follows:

3. Start the CMIP MPA.
To start the CMIP MPA, enter the following command at the operating
system prompt

host# setenv EM_MIS_DEFAULT -host <hostname>

host# EM_MIS_DEFAULT=<hostname>
host# export EM_MIS_DEFAULT

host# /etc/rc2.d/S98cmipmpa start

Configuring Communication with CMIP Agents 19-11

19

4. Bring up the Object Configuration Tool (em_oct).
The Object Configuration Tool (OCT) enables you to configure objects
managed under EM. To use OCT to configure a CMIP agent, start OCT from
the command line as follows:

The optional parameters are shown in Table 19-1:

When you invoke the em_oct command with the -cmip option, the OCT
main window appears as illustrated in Figure 19-2:

hostname% em_oct -cmip [options] &

Table 19-1 em_oct Parameters

Option Description

-help Print list of options (with descriptions) for the em_oct
command.

-host < hostname> Specify the <hostname> of a remote MIS.

-cmip Configure a CMIP object. Replaces em_cmipconfig .

-id < id>... Specify topology IDs. Multiple IDs are delimited by a
space.

-link < id1> < id2> Create a link between <id1> and <id2>.

-mis Configure an MIS object.

-name < name>... Specify the name of an object. Multiple names are
delimited by a space.

-parent < parent_id> Specify the parent of the object you want to create.

-rpc Configure an RPC object.

-snmp Configure an SNMP object.

-type < type> Specify the topology type of the object you want to
create.

19-12 Solstice Enterprise Manager Administration Guide

19

Figure 19-2 OCT CMIP Configuration Tool Window

Configuring Communication with CMIP Agents 19-13

19

For detailed instructions on using OCT, refer to the “Object Configuration
Tool” chapter in the Solstice Enterprise Manager Reference Manual.

Enter the appropriate information into the following fields in the OCT CMIP
Configuration window:

Entity Name
Specify the name of the remote MIS with which you want to communicate.
The value can be a string, object identifier (OID), or distinguished name
(DN). Click on the down arrow to see a list of known MISs. To delete an
MIS, click on the Delete button, select an MIS from the resulting list, then
click on the OK button. After specifying an MIS, all the other fields in this
window for which information exists in the MIS are filled.

Agents DNs
This field displays the list of distinguished names (DN) of objects that the
agent manages. When configuring a CMIP agent for a particular topology
node, you must select an Agent DN (from the list) by which that topology
node is managed.

MO DN
Specify the DN (top-most node) of the MIT to be managed by the remote
MIS. For example, if the remote MIS is located on a machine called
poignant , enter /systemId=name:”poignant” in the MO DN field and
click on the Add button. /systemId=name:”poignant” will appear in the
Agents DNs field. To delete a DN, select the one you want to delete and
click on the Delete button.

MPA Addresses
Select the Default toggle button to apply the default values for the MPA
Host and MPA Port. The default host is <localhost>, and the default port
number is 5557. To customize these values, select the Custom toggle button
and enter the MPA host and port number.

19-14 Solstice Enterprise Manager Administration Guide

19

Presentation Address
For MIS-MIS awareness, you must enter the appropriate Presentation
Selector, Session Selector, Transport Selector, and Network SAP for the agent
you are configuring.

Click on the Apply button to create the object, or click on the OK button to
create the object and dismiss the CMIP Configuration window.

Following are sample Presentation Address values when using
CLNS(LLC1)/CONS(X.25):

Following are sample Presentation Address values when using TCP-IP
(RFC1006):

Note that the Network SAP in this case is the value of the IP address of the
CMIP Agent represented in hexadecimal.

19.6.1 Configuring Multiple MPAs on One System

The following is an example of configuring multiple MPAs on a single system:

Presentation Selector: 4444
Session Selector: 3333
Transport Selector: 3007
Network SAP: 4700040006000108002011e7f001

Presentation Selector: dflt
Session Selector: Prs
Transport Selector:CMIP
Network SAP: 81924b94

Configuring Communication with CMIP Agents 19-15

19

1. Set the PSEL, SSEL, and TSEL environment variables.
Use the setenv command to set the PSEL, SSEL, and TSEL environment
variables:

If you want to specify the AE-TITLE for the MPA, set the APNAME
environment variable as well:

2. Start MPA #1 for communication with agent #1.
Next, start the MPA #1 for communication with Agent #1. Enter the start
command at the command line, as shown in this example:

 This mpa is bound to PAddr(rfc0,Prs,CMIP,0xIPlocalhostinHex)
and uses the default MPA port 5557.

3. Set up MPA #2 for communication with Agent #2:

host# setenv PSEL rfc0
host# setenv SSEL Prs
host# setenv TSEL CMIP
host# setenv NSAP 0xIPlocalhostinHex

host# setenv APNAME “ <AE-title-OID >: <AE-qualifier >: \
 < AP-invoke-id >:< AE-invoke-id >”

host# /etc/rc2.d/S98cmipmpa start

host# setenv PSEL rfc1
host# setenv SSEL Prs
host# setenv TSEL CMIP
host# setenv NSAP 0xIPinHex
host# setenv EM_CMIP_DEFAULT_PORT 5558

19-16 Solstice Enterprise Manager Administration Guide

19

4. Start MPA #2:

In this example, MPA #2 is bound to:

and uses the non-default MPA port of 5558.

5. Configure Agent(1) and (2) using em_oct -cmip .
Whereas Agent(1) uses the default MPA to talk to Agent #1, Agent #2 will
use the custom MPA port to talk to Agent #2.

The configuration for Agent #1 would therefore be as follows:

 The configuration for Agent #2 would be as follows:

As seen in above examples, both MPA's are running on same system and MIS
forwards requests to Agent1 and Agent2 using MPA1 and MPA2 respectively.

host# /etc/rc2.d/S98cmipmpa start

PAddr(rfc1,Prs,CMIP,0xIPlocalhostinHex)

Psel=dflt
Ssel = Prs
Tsel= CMIP
NSAP=0xIPAgent1addinHex
 'MDN=/systemId=name:"< system_name >"'

 Psel=gom
Ssel = ses
Tsel=
NSAP=0xIPAgent2addinHex
Custom MPA hostname="< hostname >"
MPA Port=5558,
 'MDN=/networkId=pString:"network"'

Index-1

Index

Symbols
$eventInfo, 13-9
$eventOI

definition of, 13-9
$eventType variable, 13-10
$eventTypes

that MIS knows by default, 13-11
$messType

checking after MSet, 14-24
checking after SendAction, 14-22
possible values of, 13-13

$messType system variable, 13-12
$pollfdn

resetting the value of, 13-8
use of Append_rdn to set, 14-9

$pollfdn system variable in RCL, 9-14
$pollfdn variable, 13-7
$pollFdnSet, 13-6

use in Nerve Center requests, 9-13

A
access to managed resources via

CMIP, 19-9
accessing SNM agents, 6-13
action

definition of, 9-3

deleting, 12-15
three types in request templates, 12-2

actions
adding to a transition, 12-13

actions available for request
templates, 12-13

Adding a GDMO object class
automatically

editing em_startup, 16-2
adding objects to the MIS

how to, 2-1
additionalText

specifying in alarmStr function, 14-7
additionalText information, 8-9
AdminOperStatusUp sample

template, 3-25
agent address, 8-5
Agent Mapping

Selecting SNM RPC agents, 2-6
agentVersion number

how to find, 14-27
alarm function, 14-3
Alarm Service

and alarm-logging by requests, 9-15
what it does, 3-3

Alarm Service perceived severity, SNMP
traps, 8-7

Index-2 Solstice Enterprise Manager Administration Guide

Alarm Service, perceived severity, 5-8
alarms

logging via RCL SendEvent
function, 14-22

alarms, SNM, 5-7
ampersand

use of in RCL, 13-14
appendRdn

use of, 13-8
appendRdn function

syntax of, 14-9
ASN.1 compiler

use in adding SNM-based object
classes, 18-3

use of, 16-1
ASN.1 values

converting to strings in RCL, 14-13
Asn1Type

use in RCL, 13-5
associativity

of operators in RCL, 13-18
asynchronous event reports (traps), 7-8
attribute

definition of, 9-3
attributes

referenced in RCL conditions, 13-13

B
bitwise operators

use of in RCL, 13-17
bridge, creating in Viewer, 2-10
bus, creating in viewer, 2-10

C
CC

filtering capabilities, 5-3
forwarding information, 5-1
glyph traps, 5-2
installing packages, 5-5
periphery-to-center

configuration, 5-1
Receiver application, 5-4

receiving station, definition, 5-4
Sender daemon, 5-5
Sender daemon, remote, 5-7
sending station, 5-5
SNM database traps, 5-2
SNM events, 5-2
SNM glyph traps, 5-2
SNMP Traps, 5-2

CC and SNM, 5-1
CC event types, 5-4
Circle

creating in Viewer, 2-10
clear alarms

generated by glyph reset on SNM
Console, 5-2

clearing alarms
by Nerve Center requests, 9-16

CMIP
changing timeout values, 19-8
configuring, 19-8

CMIP agents
use in device management, 3-8

CMIP messages, 19-9
CMIP MPA, 19-9

configuration, 19-9
configurations, 1-20

CMIP MPA, versions of, 19-9
CMIP Proxy Agent, 19-9
CMIP support

in Solstice EM, 1-19
CMIS filters

use in RCL event subscriptions, 14-33
color to severity mapping, 12-18

how to change, 12-18
colors

mapped to severities, 12-18
Concise MIB compiler

loading Sun-defined objects into
MIS, 17-1

condition
definition of, 9-3, 12-2, 13-1
role as an action, 12-2
role in defining transition, 12-2

Index-3

set supplied with Solstice EM, 12-17
Condition Language, 13-1

assignment operators, 13-16
Constants, 13-3
operator

assignment, 13-16
operator symbols, 13-15
Operators, 13-15
System variables, 13-6
value check functions

defined, 14-13
Variables, 13-3

Condition language
See Request Condition Language

(RCL), 13-1
conditions

evaluating in request, 9-11
two functions in requests, 9-3
two roles of, 13-2

Configuration Tool, 5-5
configuring

SunLink CMIP, 19-8
container object, creating in Viewer, 2-10
containment relationship, 14-9
converting SNM schema files, 6-14
Cooperative Consoles

operation, 5-7
setting up for EM, 5-5
using with EM, 5-1

correlation
of information in requests, 3-24

creating
container object in Viewer, 2-10
element object in Viewer, 2-10
multimonitor object in Viewer, 2-10
objects in Viewer, 2-9

Creating a View
an example, 2-7

custom mapping of SNMP traps, 8-11
customizing trap mapping, 8-15

D
data types

in SNM event requests, 14-28
Data Viewer

use of, 3-26
database, SNM

loading into EM, 6-9
debugging

via RCL Print() function, 14-21
debugging request templates

RCL Print function, 14-21
deleting a transition, 12-15
deleting an action, 12-15
device, creating in Viewer, 2-10
DeviceReachablePing sample

template, 3-26
Discover

configuration options, 2-4
creating views with, 2-4
how to configure, 2-6
how to invoke, 2-2

discover
default properties, 2-4

Discovering routers
an example, 2-6

discriminator constructs
define event logging, 3-4

DMI standard for event notifications, 15-1
Domain Manager

See SunNet Manager, 5-1

E
element.schemas, 6-7
em_cmib2gdmo

error messages, 17-2
em_cmipconfig

replaced by -cmip option of em_
oct, 19-11

em_debug
use with RCL print() function, 14-21

em_debug utility, 14-21

Index-4 Solstice Enterprise Manager Administration Guide

em_ncexport utility
options, 12-22

em_ncimport utility
options, 12-22

em_oct command
optional parameters, 19-11

em_snm_type_import utility
syntax of, 6-7

em_snmdb_import utility, 6-9
em_snmp-trap, 8-7
em_snmp-trap daemon, 8-1
em_trapd, 8-4
enterprise field, SNMP trap, 8-5
enterprise mapping blocks, 8-12
enterprise-object-identifier, 8-13
enterpriseSpecific trap, 8-9
environment variable

EM_SERVER, xxvii, 6-9, 6-12
LD_LIBRARY_PATH, 6-2, 6-8, 6-11

Event Dispatcher (na.event)
role in CC, 5-7

event information
two types, 3-5

event log mapping, table, 15-2
event logging, 9-12
event notification

as handled by requests, 9-7
event notification, default type, 8-10
event notifications

adding custom definitions, 15-2
definition, 15-1
DMI standard, 15-1
use in fault management, 3-8

Event requests, SNM, 3-26
event subscription

RCL statements for, 9-8
via RCL functions, 14-32
what it is, 3-12

event types
known to MIS by default, 13-11

event types for trap mapping, 8-15
event types,CC, 5-4

events
extracting attributes of in RCL, 14-14
logging via RCL SendEvent

function, 14-22
events generation, 15-5

F
fault management

definition of, 3-2
fault status

color-coding of, 3-2
monitoring, 3-2
procedure for monitoring, 3-17

fault status indication
in SunNet Manager, 5-8

FDNs
and Nerve Center requests, 9-13

filtering, CC, 5-3
Find window

use in creating a view, 2-7
forwarding an SNMP trap in a request

template, 9-12
forwarding SNMP traps, 8-2
fully distinguished name (FDN), 14-9

G
GDMO and ASN.1, compiling, 15-3
GDMO compiler

use of, 16-2
GDMO description

determines names of attributes, 13-13
GDMO document, 14-36
GDMO documents

event logs, 15-2
generating events, 15-5
generic trap values, 8-8
generic trap, SNMP, 8-5
graphical display

for Request Designer, 12-20
maximum number of states displayed

for Request Designer, 12-21

Index-5

maximum number of states in
Request Designer .., 12-9

Guidelines for the Definition of Managed
Objects (GDMO), 1-22

H
Hexagon

creating in Viewer, 2-10
Hexagon 120

creating in Viewer, 2-10
host, creating in Viewer, 2-10
hub, creating in Viewer, 2-10

I
icons

converting SNM glyphs to EM
format, 6-6

identifier field, traps, 8-10
IF construct

example of in condition, 14-25
IF constructs

use in RCL conditions, 14-22
use of in RCL, 13-18

IF ELSE constructs
nesting of in RCL, 13-22
use of in RCL, 13-19

IIMC standard event notifications, 8-14
IIMC standard for event notification, 8-11
incoming SNMP traps, 8-11
installing CC, 5-5
interface

creating in Viewer, 2-10
InternetActionInfo, 13-5
ISO X.722 standard event

notifications, 8-14

L
LD_LIBRARY_PATH

setting for SNM API access, 6-6
libnetmgmt library, 6-11
libnetmgt.so library, 6-2

libnetmgt_db.so compatibility library, 6-2
libnetmgt_db.so library, 6-2
link

creating in Viewer, 2-10
Log Manager

verify event types, 8-16
Log Manager, editing, 15-4
log record entries, adding, 15-4
logging alarms

from Nerve Center requests, 9-15
logging events, editing, 15-4
logical view

creation of, 2-7
logs, creating

example of, 3-13

M
M-ACTION

sent by RCL SendAction
function, 14-21

managed object class
adding to MIS, 16-1

managed objects, attributes of
accessing in RCL, 14-14

Management Protocol Adaptors
(MPAs), 1-21

manager-to-manager capability, 7-11
managing devices

request templates for, 3-20
using RPC agents, 4-4

mapping blocks, 8-14
mapping records, 8-13
mapping SNM for perceived severity, 5-8
MetaData Repository (MDR), 13-14
MIBs

adding to MIS, 1-22
MIS

adding a managed object class
to, 16-1

MIT, 14-19
Monitor

ability to generate alarms, 3-6

Index-6 Solstice Enterprise Manager Administration Guide

use in tracking device
availability, 3-6

Monitor function
what it does, 2-11

Monitor Properties window, 2-12
monitoring fault status, 3-19
multimonitor, creating in Viewer, 2-10

N
na.event

role in SNM event requests, 4-3
na.snmp.schemas, 6-11
na.snmp-trap, 8-2
Nerve Center

definition of, 9-1, 9-4
Message types, 13-12
related terminology, 9-3
Request Condition Language, 13-1

nerveCenterAlarm
structure of, 13-9

nerveCenterAlarms
logged by RCL functions, 14-7

network
creating in Viewer, 2-10

network management
role of requests in, 3-17
steps in performing, 3-17

notification
definition of, 9-4

O
Object Configuration Tool

role of, 2-15
object creation events

subscribing for in RCL, 14-36
object instance

creating, 2-11
how to create, 2-9

Object Palette, 2-11
using to create object instance, 2-9

objects
methods for adding to MIS, 2-1

OCT window
information that should be

specified, 2-10
OmniSector

creating in Viewer, 2-10
OR

use of in RCL conditions, 13-17
OSI stack

use with CMIP MPA, 1-20

P
PC, creating in Viewer, 2-10
perceived severity values, SNMP trap, 8-7
perceivedSeverity

in snmAlarmTraps, 5-8
permissible values of, 13-10

periphery-to-center configuration
using Cooperative Consoles, 5-1

poll rate
creating a new, 12-17
definition of (for requests), 9-4

poll responses to a request, 9-7
polling, 3-6

definition of (for requests), 9-4
offloading to RPC agents, 4-3

polling for system availability, 3-21
populate the MIS

how to, 2-1
precedence

of operators in RCL, 13-18
print

as RCL function, 14-21
Printer, creating in Viewer, 2-10
priority

in SNM, 5-8
probable cause values, 8-9
probableCause

and clearing of alarms, 9-16
protocol operations, 7-11
protocols, network management

support for, 1-11
proxy agents, 6-14

Index-7

Proxy host
entering a proxy host, 2-6

Q
Q3 connection, 1-21

R
reachability

using SNM event requests to check
for, 3-26

Receiver application, 5-4
receiving SNM alarms, 5-7
receiving station

definition, 5-4
relational operators

in SNM event requests, 14-27
Remote Procedure Call (RPC)

support in Solstice EM, 1-11
Remote Procedure Call (RPC) protocol

See RPC, 4-2
request

definition of (for Nerve Center), 9-4,
10-1, 12-1

evaluating conditions in, 9-11
poll responses to, 9-8
polling and event subscription, 9-6
scope of variables in, 9-10
use of variables and attributes in, 9-9

Request Condition Language
attributes, 13-2
capabilities of, 9-1
constants, 13-2
definition of, 9-5
operators

precedence of, 13-18
valid severities, 14-4
variables, 13-2

Request Condition Language (RCL)
AddressStrToAddress function, 14-3
alarm function, 14-3
alarm logging functions

Send_Event, 14-22
alarmOi function, 14-6

alarmStr function, 14-7
anystr function, 14-8
appendRdn function, 14-9
arithmetic operators, 13-16
ASN.1 conversion functions

sasnToStr, 14-12
StrToAsn, 14-30

asnToStr function, 14-13
attributes in, 13-16
bitwise operators, 13-17
built-in functions, 14-1
components of, 13-1
debugging function

print, 14-21
defined function, 14-13
event handling functions

SendAction, 14-21
SendTrap, 14-23
Subscribe, 14-32
SubscribeFilter, 14-33
SubscribeOi, 14-36
TrapGenericType, 14-37
TrapSpecificType, 14-38
Unsubscribe, 14-40

Extract function, 14-14
FinalStr function, 14-15
FOREACH constructs, 13-21
GetTimeStamp function, 14-16
IF constructs, 13-18
IF ELSE in, 13-19
include function, 14-16
InitialStr function, 14-17
IsChoice function, 14-17
IsList function, 14-18
logical operators, 13-16

examples, 13-17
Mail function, 14-18
minus sign, use of, 13-16
MSet function, 14-24
name conversion functions

Append_rdn, 14-9
NameToAddress, 14-19
NameToOid, 14-19

NameToAddress function, 14-19
NameToOid function, 14-19
nesting of constructs, 13-22

Index-8 Solstice Enterprise Manager Administration Guide

OiNameToOi function, 14-20
OiToOiName function, 14-20
operators

and timestamp arithmetic, 13-23
arithmetic, 13-16
equality, 13-16
logical, 13-16
relational, 13-16

operators in, 13-15
precedence of operators, 13-18
Print function, 14-21
relational operators, 13-16
SendAction function, 14-21
SendEvent function, 14-22
SendTrap function, 14-23
SnmEventRequest function, 14-25
SnmKillRequest function, 14-30
statement blocks, 13-19
StrCat function, 14-31
string handling functions

AnyStr, 14-8
FinalStr, 14-15
InitialStr, 14-17
StrCat, 14-31

StrToAsn function, 14-30
Subscribe function, 14-32
SubscribeFilter function, 14-33
SubscribeOi function, 14-36
summary of functions, 14-1
syntax checking, 13-24
syntax of attribute names in, 13-14
system variables, 13-6
timestamp arithmetic

operators, 13-23
TrapGenericType function, 14-37
TrapSpecificType function, 14-38
type checking, 13-24
types of operands in, 13-2
Undefine function, 14-38
UNIXCMD function, 14-38, 14-39
Unsubscribe function, 14-40
use of ampersand in, 13-16
value check functions

Undefine, 14-38
variables, dynamic typing of, 13-5
WHILE constructs in, 13-20

Request Condition Languate (RCL)
NumElements function, 14-19

Request Designer, 12-1
attribute names, 9-10
creating a new template, 12-5
graphical and text modes, 12-9
graphical display, 12-18

performing tasks using, 12-21
how to start, 12-3
log object, 9-12
logging an event, 9-12
notification, 9-8
notification arrival, 9-11
poll

conditions, 9-8
rate, 9-9

read-only text display area, 12-4
request

attribute name, 9-9
notification arrival, 9-11
poll response arrival, 9-11

Request Condition Language, 13-1
request notification

response to a poll, 9-7
request template, 9-9
starting, 12-3
Transitions window, 12-10
variable name, 9-10

request template
definition of, 9-5
forwarding a trap in, 9-12
high-level procedure for creation

of, 10-16
logging an event, 9-12
procedure for creating in graphical

display, 12-20
sample explained, 10-8
system and user variables, 9-9

request templates
changing order of transitions, 12-11
exporting to ASCII file, 12-6, 12-22
for RPC agents, 4-7
importing from ASCII file, 12-22
importing previously exported

templates, 12-6

Index-9

opening, deleting, and saving, 12-5
shipped with EM, 3-20

request templates, incomplete
saving via Export Current, 12-7

request terminology, 9-3
request-related applications, 9-2
requests

how target device is set, 9-13
how to launch, 3-21

Retix agents
configuring SunLink CMIP 8.1

for, 19-8
retry-interval for SNMP proxy, 7-7
router interfaces

checking via SNMP Browser, 3-28
router, creating in Viewer, 2-10
routers

finding .. on network, 2-6
polling for status of interfaces, 3-25

RPC agents
building request templates for, 4-7
direct polling of, 4-2
snapshot of in Data Viewer, 3-26
type of machine supported on, 4-5
using, 4-1
using Discover to configure support

for, 4-7
RPC Protocol Driver Module, 6-2

S
sash

in Request Designer’s Conditions
window, 12-16

schema files
relationship among .. shipped with

SNM, 7-4
schemas

See SNM schemas, 4-5
SNMP, 7-3

security, 7-11
Sender daemon, 5-5

filters for information
forwarding, 5-4

sending station
definition, 5-5

server
creating in Viewer, 2-10

severities
color-coding of, 3-3, 8-8
in alarm logging functions, 14-4
role of in Request Designer, 12-10

severity
definition of, 9-5
See perceivedSeverity, 5-8
two meanings in Request

Designer, 9-5
what it is, 3-2

severity assignments, changing, 8-8
severity in Request Designer

definition of, 12-18
short-circuiting

not implemented in RCL, 13-16
Simple Network Management Protocol

(SNMP), 2-4
SNM

See also SunNet Manager, 14-26
SNM agent and schema files, 6-11
SNM and SNMP traps, 8-2
SNM API

use by Cooperative Consoles, 5-4
SNM application

definition of, 6-1
requirement for EM

compatibility, 6-5
setting LD_LIBRARY_PATH for, 6-8

SNM applications
adding to EM, 6-6
compatibility with EM, 6-4

SNM configuration files, 6-11
default locations, 6-11

SNM console fault indications, table, 5-8
SNM database

importing into EM, 6-9
SNM database traps, 5-2
SNM element types

Index-10 Solstice Enterprise Manager Administration Guide

adding third-party SNM types to
EM, 6-7

SNM elements
converting schemas for third-party

elements, 6-7
SNM event requests, 4-3

example of, 3-26
SNM events, 5-2
SNM fault status

mapping to perceivedSeverity, 3-17,
5-8

SNM glyph reset
generates clear alarm via CC, 5-2
generating clear alarms on EM, 5-9

SNM glyph traps, 5-2
SNM glyphs

converting third-party glyphs to EM
format, 6-6

SNM schema file
coverting to GDMO document, 18-1

SNM schemas
adding new object classes based

on, 4-5
snm.conf file, 7-4, 7-6, 7-7
snm2gdmo compiler, 6-14
snmAlarmTraps

how perceivedSeverity is
determined, 5-8

SNMP, 2-4
request templates

shipped with EM, 3-20
SendTrap condition, 9-12
trap daemon translation, 8-2

SNMP attributes
retrieving values of in SNMP

Browser, 3-28
SNMP Browser

invoking, 3-28
use of, 3-28

SNMP daemon
polling for availability, 3-21

SNMP proxy
receiving responses, 7-7

retry-interval, 7-7
SNMP schemas, 7-3
SNMP support

in Solstice EM, 1-15
SNMP trap

additional text information, 8-9
agent address, 8-5
changing severity, 8-8
custom mapping, 8-11
customizing trap mapping, 8-15
default event notification, 8-10
default trap-mapping, 8-6
enterprise field, 8-5
enterprise mapping blocks, 8-12
generic trap, 8-5
generic values, 8-8
identifier field, 8-10
incoming, 8-11
mapping blocks, 8-14
mapping file location, 8-16
mapping records, 8-13
mapping records format, 8-17
probable cause values, 8-9
specific trap, 8-5
specifying source of alarm, 8-7
time stamp, 8-5
user-configurable capability, 8-11
variable bindings, 8-5

SNMP trap daemon
starting, 8-3

SNMP trap message type, 8-5
SNMP trap severity values, 8-7
SNMP trap types, table, 8-6
SNMP trap_maps file, 8-4
SNMP traps

and Cooperative Consoles, 5-2
extracting generic type in RCL, 14-37
extracting specific type in RCL, 14-38
generic types of, 14-37
monitoring with Nerve Center

requests, 3-12
operation, 8-1
structure, 8-4
use in device management, 3-9

Index-11

SNMP traps, forwarding, 8-2
snmp.schema, 7-3
snmp-mibII.schema, 7-3
SnmpPingBackoffReachable sample

template, 3-25
SNMPv2

files, 7-13
SMI, 7-11
translation program, 7-13

Solaris x86
RPC agents for, 4-5

Solstice EM-specific event
notifications, 8-14

specific trap, SNMP, 8-5
specifying source of alarm, 8-7
starting/stopping the trap daemon, 8-4
state

definition of (for requests), 9-5
statement blocks

in Request Condition
Language, 13-19

States window
in Request Designer, 12-9

subnetwork
creating in Viewer, 2-10

subscription
use in requests, 3-12

SUN Workstation, creating in
Viewer, 2-10

SunLink
configuring CMIP, 19-8

SunLink CMIP 8.2, 1-20
SunNet Manager

forwarding information to EM, 5-1
glyph reset traps, 5-2
topology traps, 5-2

SunNet Manager alarms
receiving via Cooperative

Consoles, 5-7
SunNet Manager event priorities

mapping to perceivedSeverity, 14-29
SunNet Manager event requests

data types for thresholds, 14-28

initiating via RCL, 14-25
relations for thresholds, 14-27
specifying thresholds in, 14-26
structure of, 14-26

SunNet Manager schemas
adding object classes based on, 18-1

system variable
$eventTime, 9-10
$eventType, 9-12
$messageType, 9-10

system variables
$eventInfo, 9-12

sysUpTime
polling for the current value of, 3-24
use in device management, 3-24

T
TCP/IP network

use of RPC agents within, 4-1
Telecommunications Management

Network (TMN), 1-21
templates, request

shipped with EM, 3-20
time stamp, SNMP trap, 8-5
time, on MIS host

retrieving in RCL, 14-16
timeout values

changing, 19-8
transition

definition of (for requests), 9-6
deleting, 12-15

trap mapping formats, 8-17
trap mapping, event types, 8-15
trap mapping, file location, 8-16
trap variable bindings, 8-5
trap_maps file, 8-4, 8-10, 8-11
trap-mapping, default, 8-6
traps, SNMP

see SNMP traps, 3-9
TrapSpecificType, 13-5
type of SNMP message, 8-5

Index-12 Solstice Enterprise Manager Administration Guide

U
universe

creating in Viewer, 2-10
user variables, 9-10
user-configurable trap-mapping, 8-11

V
variable

definition of (for requests), 9-6
variables

declaring in RCL, 9-10
Viewer

creating object instances in, 2-9
how color to severity mapping is

set, 12-18
Object menu, 2-9

Viewer Edit menu, to create an object, 2-9
views

creating a Routers view, 2-7

W
WHILE loops in RCL

example of, 13-21

Index-13

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solstice, Solstice Enterprise Manager, SunNet Manager, SunOS, OpenWindows,
DeskSet, ONC, SNM, and NFS sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit de X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

