
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Writing FCode 3.x Programs

Part No: 802-6287-10
Revision A, November 1997

SunSoft, Inc.

Please
Recycle

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley BSD system,
licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

1. SBus Cards and FCode . 1

FCode PROM Format . 2

Interpreting FCode. 2

Device Identification . 2

Creating and Executing FCode Definitions 3

2. PCI FCode Information . 5

PCI FCode PROM Header Format. 5

The PCI Expansion PROM Header Format 6

PCI Expansion PROM Data Structure Format 6

Format of Physical Address in "reg " Property 7

CPU PROM-Generated Properties. 8

Adding a PCI Header to a PROM . 10

3. Elements of FCode Programming . 11

Colon Definitions . 12

Stack Operations . 13

iv Writing FCode 3.x Programs —November 1997

Programming Style . 14

Commenting Code. 14

Coding Style . 15

Definition Length. 15

Stack Comments. 16

A Minimal FCode Program. 18

FCode Classes. 19

Primitive FCode Functions . 20

System FCode Functions. 21

Interface FCode Functions . 21

Local FCode Functions . 22

4. Debugging and Testing
FCode Programs . 23

Packaging PCI FCode . 23

System Flags and FCode Debugging. 24

FCode Source . 25

Tokenizing FCode Source . 25

FCode Binary Format . 27

Testing FCode Programs on the Target Machine 27

Configuring the Target Machine . 28

Setting Appropriate Configuration Parameters 28

Modifying the Expansion Bus Probe Sequence 29

Getting to the Forth Monitor . 30

Using the Command Line Editor of the Forth Monitor 30

Contents v

Using the Forth Monitor to Test FCode Programs 30

Using dload to Load from Ethernet 31

Using dlbin to Load From Serial Port A 32

Using boot to Load From Hard Disk, Diskette, or Ethernet 32

Using dl to Load Forth Over Serial Port A 33

Using the Forth Monitor to Interpret an FCode Program. 34

Using the Forth Monitor to Browse a Device Node. 36

Using the Forth Monitor to Test a Device Driver. 38

Device Node Methods. 38

Using select-dev . 38

Using begin-select-dev . 40

Using execute-device-method 41

Using apply . 42

Testing FCode Programs in Source Form 42

Producing an FCode PROM . 42

Exercising an Installed FCode PROM . 43

select-dev -Generated Errors . 43

5. Helpful Testing and Debugging Hints 45

Accessing a PCI Device’s Configuration Space Registers 45

Base Address Register Setting . 45

System Cache Line Size . 45

Sun Ultra-30 UPA/PCI-Related Nodes . 46

Finding and Using Physical Addresses. 47

Controlling PCI Slot Probing on an Ultra-30 UPA/PCI System 49

vi Writing FCode 3.x Programs —November 1997

Using 3.x Tokenizer and 3.x CPU PROMs 50

PCI Device Configuration Register Access 51

Boot Software Roles . 51

Enabling Access to a PCI Device’s Memory Space Locations . 52

Expansion FCode PROM. 53

Packaging Error with Ethernet FCode. 54

6. Packages . 57

Package Instances . 58

Package Data . 61

Static and Instance-specific Methods. 62

Execution Tokens . 63

Intra-package Calling Methods . 63

Accessing Other Packages . 64

Inter-package Calling Methods . 66

execute-device-method and apply 69

Plug-in Device Drivers . 70

Common Package Methods . 71

Basic Methods . 71

open . 71

close . 71

Recommended Methods . 72

reset . 72

selftest . 72

Package Data Definitions . 73

Contents vii

Instance Arguments and Parameters. 74

Package Addresses . 76

Package Mappings. 77

nvramrc . 77

Modifying Package Properties . 78

Standard Support Packages . 78

Sun Disk-Label Support Package. 79

TFTP Booting Support Package . 80

Deblocker Support Package . 81

7. Properties . 83

Standard FCode Properties . 85

Standard Property Names . 86

Display Device Properties. 86

Network Device Properties . 87

Memory Device Properties . 87

General Properties For Parent Nodes 87

Properties For PCI Parent Nodes . 88

Properties for PCI Child Nodes . 88

Detailed Descriptions of Standard Properties 89

#address-cells . 89

#size-cells . 89

address . 90

address-bits. 90

alternate-reg . 91

viii Writing FCode 3.x Programs —November 1997

assigned-addresses . 91

available . 92

big-endian-aperture. 92

bus-range . 93

big-endian-aperture. 93

character-set . 93

class-code . 93

compatible . 94

class-code . 94

depth . 94

device-id . 95

device-id . 95

device_type. 95

devsel-speed . 96

existing . 96

fast-back-to-back . 97

has-fcode . 97

fast-back-to-back . 97

has-fcode . 97

height. 97

interrupts . 98

linebytes . 99

little-endian-aperture . 100

local-mac-address . 100

Contents ix

mac-address . 100

max-frame-size. 101

max-latency . 101

min-grant . 102

model. 102

name . 102

page-size . 103

power-consumption . 104

ranges . 105

reg . 110

revision-id. 113

slot-names. 113

status . 114

translations . 114

vendor-id . 115

width . 115

Manipulating Properties . 115

Property Creation and Modification 115

Property Values . 115

Property Encoding. 116

Property Retrieval . 116

Property Decoding. 117

Property-Specific FCodes . 118

8. Block and Byte Devices . 121

x Writing FCode 3.x Programs —November 1997

Block Devices . 121

Byte Devices . 122

Required Methods . 122

block-size (-- block-len) . 122

load (addr -- size) . 122

max-transfer (-- max-len) . 123

read (addr len -- actual) . 123

read-blocks (addr block# #blocks -- #read) 123

seek (poslow poshigh -- status) for block; (offset file# -- error?
) for byte . 123

write (addr len -- actual). 124

write-blocks (addr block# #blocks -- #written) 124

Required Properties . 125

Device Driver Examples . 125

Simple Block Device Driver . 126

Extended Block Device Driver . 126

Complete Block and Byte Device Driver 134

9. Display Devices. 145

Required Methods . 145

Required Properties . 146

Device Driver Examples . 146

Simple Display Device Driver . 146

Extended Display Device Driver . 147

Complete Display Device Drive. 151

Contents xi

10. Memory-Mapped Buses . 157

Required Methods . 157

decode-unit (addr len -- phys.lo … phys.hi) 157

dma-alloc (size -- virt) . 158

dma-free (virt size --) . 158

dma-map-in (virt size cacheable? -- devaddr) 159

dma-map-out (virt devaddr size --) 159

dma-sync (virt devaddr size --) . 160

probe-self (arg-addr arg-len reg-addr reg-len fcode-addr
fcode-len --) . 160

map-in (phys.lo … phys.hi size -- virt) 161

map-out (virt size --) . 161

SBus Addressing . 161

SBus Required Properties . 162

Device Driver Examples . 162

Basic Hierarchical Device Driver . 163

Extended Hierarchical Device Driver 165

Complete Hierarchical Device Driver 173

11. Network Devices. 191

Required Methods . 192

load (addr -- len) . 192

read (addr len -- actual) . 193

write (addr len -- actual). 193

Required Device Properties . 193

xii Writing FCode 3.x Programs —November 1997

Optional Device Properties. 193

Device Driver Examples . 194

Simple Network Device Example . 194

Sample Driver With Test and Debugging Methods. 196

Bootable Network Device Driver Example. 209

12. Serial Devices . 237

Required Methods . 237

install-abort (--) . 237

read (addr len -- actual) . 237

remove-abort (--) . 238

write (addr len -- actual) . 238

Required Properties . 238

Device Driver Examples . 238

Simple Serial FCode Program. 239

Extended Serial FCode Program . 239

Complete Serial FCode Program . 241

13. PCI FCode Driver Example . 247

14. FCode Dictionary . 255

A. FCode Reference . 399

FCode Primitives . 399

FCodes by Function . 399

FCodes by Byte Value . 424

FCodes by Name . 440

B. FCode Memory Allocation . 457

Contents xiii

C. Coding Style . 459

Typographic Conventions. 459

Use of Spaces . 459

if…then…else . 460

do…loop . 461

begin…while…repeat . 461

begin…until…again . 462

Block Comments . 462

Stack Comments. 462

Return Stack Comments . 463

Numbers . 463

D. Differences Between FCode 2.x and 3.x 465

xiv Writing FCode 3.x Programs —November 1997

xv

Figures

Figure 6-1 An Instance Chain for /iommu/sbus/SUNW,cgsix 59

Figure 6-2 An Instance Chain for /iommu/sbus/ledma/le
with obp-tftp Support . 61

Figure 8-1 Sample Device Tree . 125

Figure 11-1 QED Device Tree . 192

xvi Writing FCode 3.x Programs —November 1997

xvii

Tables

Table 2-1 PCI FCode PROM Header Format . 5

Table 2-2 PCI Expansion PROM Header Format. 6

Table 2-3 PCI Expansion PROM Data Structure . 6

Table 2-4 Format of Physical Address in “reg” Property 8

Table 3-1 Stack Parameter Abbreviations . 16

Table 3-2 FCode Source Word Classes . 19

Table 4-1 FCode Binary Format . 27

Table 4-2 FCode Header Format . 27

Table 4-3 Common Package-related Commands. 30

Table 4-4 Commands for Browsing the Device Tree 36

Table 6-1 Packaage Access FCodes . 65

Table 6-2 Manipulating phandles and ihandles 66

Table 6-3 Functions Enabling Calling Other Packages’ Methods 66

Table 6-4 Sun Disk Label Package Methods . 80

Table 6-5 TFTP Package Methods . 81

Table 6-6 Deblocker Package Methods . 81

xviii Writing FCode 3.x Programs —November 1997

Table 7-1 Standard Device Types . 96

Table 7-2 interrupts Property Value Encoding. 99

Table 7-3 Child-Parent Address Relationships . 106

Table 7-4 Child-Parent Address Relationships for a PCI Node in a
PPCRP Machine . 108

Table 7-5 status Property values. 114

Table 7-6 Property-specific FCodes . 118

Table 8-1 Required Properties of Block and Byte Devices 125

Table 9-1 Required Display Device Properties. 146

Table 10-1 SBus Required Properties . 162

Table 11-1 Required Network Device Properties. 193

Table 11-2 Optional Network Device Properties . 193

Table 12-1 Serial Driver Required Properties . 238

Table 14-1 Escape Sequences in Text Strings . 256

Table A-1 Stack Manipulation . 399

Table A-2 Arithmetic Operations . 400

Table A-3 Memory Operations . 402

Table A-4 Atomic Access . 403

Table A-5 Data Exception Tests . 403

Table A-6 Comparison Operations . 403

Table A-7 Text Input . 404

Table A-8 ASCII Constants. 405

Table A-9 Numeric Input . 405

Table A-10 Numeric Primitives . 405

Table A-11 Numeric Output . 406

Table A-12 General-purpose Output . 406

Tables xix

Table A-13 Formatted Output . 407

Table A-14 begin Loops . 407

Table A-15 Conditionals . 407

Table A-16 Case Statements . 408

Table A-17 do Loops . 408

Table A-18 Control Words . 408

Table A-19 Strings . 409

Table A-20 Defining Words . 409

Table A-21 Dictionary Compilation . 410

Table A-22 Dictionary Search. 410

Table A-23 Conversion Operators. 410

Table A-24 64-bit Operations . 411

Table A-25 Memory Buffers Allocation . 412

Table A-26 Miscellaneous Operators . 412

Table A-27 Internal Operators (invalid for program text) 413

Table A-28 Virtual Memory Allocation . 415

Table A-29 Properties . 415

Table A-30 Commonly-used Properties . 416

Table A-31 System Version Information . 417

Table A-32 Device Activation Vector Setup. 417

Table A-33 Self-test Utility Routines . 417

Table A-34 Time Utilities . 417

Table A-35 Machine-specific Support. 418

Table A-36 User-set Terminal Emulation Values . 418

Table A-37 Terminal-set Terminal Emulation Values 418

xx Writing FCode 3.x Programs —November 1997

Table A-38 Terminal Emulation Routines* . 418

Table A-39 Frame Buffer Parameter Values* . 419

Table A-40 Font Operators . 420

Table A-41 One-bit Frame Buffer Utilities . 420

Table A-42 eight-bit Frame Buffer Utilities . 421

Table A-43 Package Support . 421

Table A-44 Asynchronous Support. 423

Table A-45 Miscellaneous Operations . 423

Table A-46 Interpretation . 423

Table A-47 Error Handling. 423

Table A-48 FCodes by Byte Value . 424

Table A-49 Tokenizer Directives . 436

Table A-50 FCodes and Tokenizer Directives by Name 440

Table D-1 FCode Names Changed in Version 3.x. 465

Table D-2 FCode 2.x Changed Names and
Equivalent FCode 3.x Names. 467

Table D-3 FCode 2.x Commands Deleted in FCode 3.x 467

Table D-4 New FCodes Added in 3.x . 468

Table D-5 Differently Functioning 3.x FCodes
With Changed Byte Values . 468

Table D-6 3.x FCodes Related to 64-bit Operations 469

Table D-7 Device-related User Interface Commands
Changed in 3.x . 470

xxi

Preface

This manual, Writing FCode 3.x Programs (802-6287), describes how to write,
debug, and test FCode programs for SPARC-based systems and PCI or SBus
interface card devices. It replaces all previous manuals describing how to write
FCode programs. IEEE Standard 1275-1994 is based on the Sun™ OpenBoot™
2.x implementation. OpenBoot 3.x from Sun is compliant with IEEE Standard
1275.

Throughout this book, the reference to FCode PROM might refer to any type of
ROM device (ROM, PROM, FlashPROM, etc.).

Who Should Use This Book
This manual is written for designers of PCI and SBus interface cards and other
devices that use the FCode programming language. It is written for those
designers who have some familiarity with PCI or SBus card design
requirements and Forth programming. The sample code in this book is
provided as is without any warranty.

The material in this manual is for developers of FCode applications for PCI or
SBus peripherals on OpenBoot 3.x. With proper programming precautions,
these applications should run on OpenBoot 3.x and earlier versions. By
following the IEEE 1275 standard, the same FCode application can also run on
non-SPARC systems which are IEEE 1275-compliant. The FCode language is
defined by IEEE Standard 1275-1994 Standard for Boot Firmware.

xxii Writing FCode 3.x Programs —November 1997

This manual is written for designers who have read and understood the
corresponding SBus or PCI specifications and SBus or PCI binding to IEEE
Standard 1275-1994 1.2.

How This Book Is Organized
• Chapter 1, “SBus Cards and FCode”, introduces the basic relationships

between FCode device drivers and the hardware that they control.

• Chapter 2, “PCI FCode Information”, basic information for developers
writing FCode for use with PCI.

• Chapter 3, “Elements of FCode Programming”, introduces the basic
elements of FCode, stack notation, and programming style.

• Chapter 4, “Debugging and Testing FCode Programs”, describes the
process of producing FCode programs, from source files to testing working
programs.

• Chapter 5, “Helpful Testing and Debugging Hints”, is information to
consider when you are designing FCode code for PCI.

• Chapter 6, “Packages”, describes the basic units of FCode program function.

• Chapter 7, “Properties”, describes properties, which define how an FCode
device driver program recognizes the hardware that it controls.

• Chapter 8, “Block and Byte Devices”, describes the required methods for
nonvolatile and sequential-access mass storage devices.

• Chapter 9, “Display Devices”, describes writing FCode programs for
display devices.

• Chapter 10, “Memory-Mapped Buses”, describes addressing and required
properties for memory-mapped buses.

• Chapter 11, “Network Devices”, describes how to implement network
device drivers.

• Chapter 12, “Serial Devices”, describes programming requirements for
serial devices, and gives examples of serial device drivers.

• Chapter 13, “PCI FCode Driver Example”, shows a PCI FCode driver which
is an example of a way of dealing with PCI-related registers in FCode.

• Chapter 14, “FCode Dictionary”, describes currently-defined FCode words
and their functions and use, with brief programming examples.

Preface xxiii

• Appendix A, “FCode Reference”, lists all currently-defined FCode words
according to functional group, name, and byte value.

• Appendix B, “FCode Memory Allocation”, describes guidelines for
memory allocation and de-allocation in FCode.

• Appendix C, “Coding Style”, contains an OpenBoot coding guideline.

• Appendix D, “Differences Between FCode 2.x and 3.x”, discusses the
FCodes and macros that have changed between FCode 2.x and FCode 3.x.

Related Books
This manual does not cover all you need to know in order to write FCode
drivers. The following sources are also useful.

For further information:

• IEEE Standard 1275-1994 Standard for Boot (Initialization Configuration)
Firmware, Core Requirements and Practices

• IEEE Standard 1275.1-1994 Standard for Boot (Initialization Configuration)
Firmware: Instruction Set Architecture (ISA) Supplement for IEEE 1754

• IEEE Standard 1275.2-1994 Standard for Boot (Initialization Configuration)
Firmware: Bus Supplement for IEEE 1496 (SBus)

• IEEE 1496-1993 Standard for Chip and Module Interconnect Bus:
SBus 1-55937-353-9

• PCI Local Bus Spedification, rev. 2.1 available from PCI Special Interest group:
800-433-5177/503-797-4207 and
http://www.pcisig.com

• OpenBoot 2.x Command Reference (802-3241)

• OpenBoot 3.x Command Reference (802-5837)

• PCI -Bus Binding to IEEE STD 1275-1994 is available at

http://playground.sun.com/1275

The on-line version of this manual and FCode tools are available at

http://www.sun.com/developers/driver

xxiv Writing FCode 3.x Programs —November 1997

Forth and Forth Programming
For further information about Forth and Forth programming:

• Mastering Forth, Anita Anderson and Martin Tracy, Brady Communications
Co., Inc., 1989

• ANSI Forth X3J14

• Forth: A Text and Reference, Mahlon G. Kelly and Nicholas Spies. Prentice-
Hall, 1986

• Starting Forth, Leo Brody. Forth, Inc., second edition, 1987

• Forth: The New Model, Jack Woehr. M & T Books, 1992

• Forth Interest Group http://forth.org/fig.html

What Typographic Changes Mean

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

system% su
Password:

AaBbCc123 Variable: replace with a real name or value To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

[optional] Optional command-line entry lpr [-Pprinter]

Code samples are included in boxes and may display the following:

ok The OpenBoot Forth Monitor prompt ok

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell prompt system$

Superuser prompt, all shells system#

Preface xxv

Ordering Sun Documents
The SunDocs Order Desk is a distribution center for Sun Microsystems
technical documentation. You can use major credit cards and company
purchase orders. You can order documentation in the following ways:

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your
comments and suggestions. You can email or fax your comments to us. Please
include the part number of your document in the subject line of your email or
fax message.

• Email: smcc-docs@sun.com

• Fax: SMCC Document Feedback
1-415-786-6443

In the U.S.A. Outside the U.S.A.

Call 1-800-247-0250 Call 1-801-342-3450

Fax 1-801-373-6798 Fax 1-801-373-6798

World Wide Web: http://www.sun.com/sundocs/catalog.html

xxvi Writing FCode 3.x Programs —November 1997

1

SBus Cards and FCode 1

Each SBus card must have a PROM whose contents identify the device and its
characteristics.

The SBus card’s PROM may also include an optional software driver that lets
you use the card as a boot device or a display device during booting.

In addition to designing hardware, the process of developing SBus devices
may include writing, testing, and installing FCode drivers for the device. These
drivers, if present, perform three functions:

• Exercising the device during development, and verifying its functionality

• Providing the necessary driver to be used by the system boot PROM during
power-up

• Providing device configuration information

In practice, these functions overlap substantially. The same code needed by the
system boot PROM usually serves to significantly test the device as well,
although additional code may be desired to fully verify proper behavior of the
device. The PROM code is used before and during the boot sequence. After the
boot sequence finishes, and while not using the OpenBoot Forth Monitor, most
SBus device use is through Solaris drivers.

SBus device PROMs must be written in the FCode programming language,
which is similar to ANS Forth. FCode is described in more detail in Chapter 3,
“Elements of FCode Programming”.

2 Writing FCode 3.x Programs —November 1997

1

FCode PROM Format
An FCode PROM begins at address 0 in the SBus card’s physical address
space. Its size can range from 30 bytes up to 32K bytes. Typical sizes are 60
bytes (for a simple card that identifies itself but does not need a driver) and 5
to 15K bytes (for a card with a boot driver). It is good practice to make FCode
boot drivers as short as is practical.

An FCode PROM must be organized as follows:

• Header (8 bytes: consisting of magic number, version number, length,
checksum).

• Body (FCode program; 0 or more bytes).
• End Token (either End0, a zero byte, or End1, an alternative all 1s byte).

Interpreting FCode
For each SBus slot, the FCode program is interpreted during bootup as follows:

• Location 0 of the SBus PROM is read with an 8-bit or 32-bit access. If there is
no response (as when there is no card in that slot), the slot is subsequently
ignored.

• If the high-order byte of the value returned from the first access is not the
FCode magic numbers 0xfd or 0xf1 , the slot is subsequently ignored.

• If the high-order byte is 0xfd or 0xf1 , the PROM is assumed to contain a
valid FCode program. The FCode is then interpreted by starting at location
0 and reading one byte at a time, executing a procedure associated with
each FCode value.

• Interpretation ceases when the FCode 0x00 or 0xff (End0 or End1) is
encountered.

Device Identification
An FCode PROM must identify its device. This identification must include, at
a minimum, the device name, used to link the device to its Solaris driver.
Identification information may include additional characteristics of the device
for the benefit of the operating system and the CPU boot PROM.

SBus Cards and FCode 3

1

In most systems, the CPU’s FCode interpreter will store each device’s
identification information in a device tree that has a node for each device. Each
device node has a property list that identifies and describes the device. The
property list is created as a result of interpreting the program in the FCode
PROM.

Each property must have a name and a value. The name is a string and the
value is an array of bytes, which may encode strings, numbers, and various
other data types.

See Chapter 7, “Properties” for more information.

Creating and Executing FCode Definitions
Many FCode programs create executable routines, called colon definitions (or
methods) that typically read from and write to device locations to control device
functions. These definitions are also stored in the device tree node for that
device.

Once defined, these routines may typically be executed under any of the
following circumstances:

• Interactively at the OpenBoot ok prompt
• By the OpenBoot system (for using this boot or display system during

system start-up)
• Automatically during FCode interpretation (for power-on initialization or

other purposes)

4 Writing FCode 3.x Programs —November 1997

1

5

PCI FCode Information 2

This chapter contains basic information for developers writing FCode for use
with PCI.

PCI FCode PROM Header Format
The PCI FCode PROM header format is as follows:

The a.out header is required in order to download an FCode image using
dload or boot on a Solaris™ 1.x (SunOS 4.x) system if, for instance, during
test/development of your FCode driver, you don’t want to use a physical
PROM.

If you are dload ing or boot ing your FCode image on a Solaris 2.x system, you
must replace the a.out header by an ELF header.

The fakeboot utility can add either an a.out or an ELF header based on
parameters that you pass to fakeboot .

Table 2-1 PCI FCode PROM Header Format

Header Format

a.out header 32 bytes (needed by some utilities)

PCI expansion PROM header 28 bytes

PCI data structure 24 bytes

FCode (8 Byte FCode header + FCode code bytes)

6 Writing FCode 3.x Programs —November 1997

2

The PCI Expansion PROM Header Format
The PCI expansion PROM header format (28 bytes) is as follows:
(Values are shown in hexadecimal.)

PCI Expansion PROM Data Structure Format
The PCI expansion PROM data structure (24 bytes) is as follows:
(Values are shown in hexadecimal.)

Table 2-2 PCI Expansion PROM Header Format

Byte Offset Value Description

00 55(h) PROM signature byte one

01 aa(h) PROM signature byte two

02-03 34 00 (h) SPARC reserved value

04-17 00 00 Reserved for processor architecture-unique data

18-19 1c 00 Pointer to PCI data structure (assuming PCI data
structure follows immediately after PCI expansion
PROM Header)

1A-1B 00 00 Pad bytes

Table 2-3 PCI Expansion PROM Data Structure

Byte Offset Description /(Hex. value)

00-03 Signature : P C I R (50 43 49 52)

04-05 Vendor id

06-07 Device id

08-09 Pointer to Vital Product Data

0A-0B PCI data structure length (18 00)

0C PCI data structure revision.

0D Programming interface code

0E Subclass code

0F Class code

10-11 Image length in 512 bytes

PCI FCode Information 7

2

The following is a dump of initial bytes in a PCI FCode PROM with an a.out
header in the first 32 bytes.

For the PROM above, the vendor id is 0x108e, the device id is 0x1001, the
pointer to Vital Product Data is 0xc000, class code is 0x02, subclass code is 0,
programming interface code is 0, image length (in 512 bytes) is 0x7e, FCode
length is 0x4664 bytes, xx..... are FCode data.

Format of Physical Address in "reg " Property
For PCI, the "reg " property value has 5 32-bit numbers - phys.hi , phys.mid ,
phys.lo , size.hi , size.lo . The size.hi and size.lo are values for a
register size of which the address and type are defined by phys.hi ,
phys.mid , and phys.low .

12-13 Revision level of code/data

14 Code type (01)

15 Indicator byte. For last image (80)

16-17 Reserved (00 00)

Code Example 2-1 PCI FCode PROM Dump

00000 01 03 01 07 00 00 46 98 00 00 00 00 00 00 00 00

00010 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00 00

00020 55 aa 34 00 00 00 00 00 00 00 00 00 00 00 00 00

00030 00 00 00 00 00 00 00 00 1c 00 00 00 50 43 49 52

00040 8e 10 01 10 00 c0 18 00 00 00 00 02 7e 00 00 01

00050 01 80 00 00 f1 03 18 6e 00 00 46 64 xx xx xx xx

Table 2-3 PCI Expansion PROM Data Structure (Continued)

Byte Offset Description /(Hex. value)

8 Writing FCode 3.x Programs —November 1997

2

The format of the physical address in the “reg” property is as follows:

where

• n is 0 if the address is relocatable; 1 otherwise.

• p is 1 if the addressable region is prefetchable; 0 otherwise.

• t is 1 if the address is aliased (for non-relocatable I/O), below 1MByte (for
memory), or below 64KBytes (for relocatable I/O).

• ss =00 ==> configuration space.

• ss =01 ==> I/O space.

• ss =10 ==> 32 bit memory space.

• ss =11 ==> 64 bit memory space.

• bbbbbbbb is an 8-bit bus number (assigned by the CPU PROM at probe
time).

• ddddd is a 5-bit device number.

• fff is a 3-bit function number.

• rrrrrrrr is an 8-bit register number.

• hh..hh is a 32-bit unsigned number, most significant bits.

• LL..LL is a 32-bit unsigned number, least significant bits.

CPU PROM-Generated Properties
This section describes the properties created by the motherboard CPU PROM
from the information in the configuration space registers of the PCI device.

The CPU PROM normally generates the following properties in a PCI device
node:

• vendor-id

Table 2-4 Format of Physical Address in “reg” Property

phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr

phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

phys.low cell: LLLLLLLL LLLLLLLL LLLLLLLL LLLLLLLL

PCI FCode Information 9

2

• device-id

• revision-id

• class-code

It also generates devsel-speed from the information from the configuration
space registers. The "interrupts" property is present if the Interrupt Pin
register is non-zero. The following properties are present only if the
corresponding capability is available from the device or if the corresponding
value was non-zero as indicated in the configuration space registers:

• 66mhz-capable

• udf-supported

• cache-line-size

• fast-back-to-back

• subsystem-id

• subsystem-vendor-id

The min-grant and max-latency properties are created unless the header
type is 01. The CPU PROM also creates the "assigned-addresses"
property, with entries for each address base register for which an address is
assigned.

10 Writing FCode 3.x Programs —November 1997

2

Adding a PCI Header to a PROM
You can see an example in test-pci.fth or add a PCI header using the following
example:

tokenizer[
\ to add vendor id, device id and class code
h# 108e h# 1001 h# 020000 pci-header
\ to add vital product data
h# c000 pci-vpd-offset
\ to add pci-code-revision
h# 1234 pci-code-revision
]tokenizer
fcode-version3

end0

11

Elements of FCode Programming 3

FCode is a computer programming language defined by IEEE Standard 1275-
1994 Standard for Boot Firmware. FCode is semantically similar to ANS Forth,
but is encoded as a sequence of binary byte codes representing a defined set of
Forth definitions.

FCode has these characteristics:

• The source format is machine and system independent.

• The binary format (FCode) is machine, system, and position independent.

• The binary format is compact.

• The binary format can be interpreted easily and efficiently.

• Programs are easy to develop and debug.

• The source format can easily be translated to binary format.

• The binary format can be translated back to source format.

Forth commands are called words, and are roughly analogous to procedures in
other languages. Unlike other languages, such as C, which have operators,
syntactic characters and procedures, in Forth every word is a procedure.

A Forth word is named by a sequence of between one to 31 printable
characters. A Forth program is written as a sequence of Forth word names
separated by one or more white space characters (such as spaces, tabs, or line

12 Writing FCode 3.x Programs —November 1997

3

terminators). Forth uses a left-to-right reverse Polish notation, like some
scientific calculators. The basic structure of Forth is: do this, now do that, now
do something else, and so on.

New Forth words are defined as sequences of previously existing words.
Subsequently, new words may be used to create still more words.

FCode is a byte-coded translation of a Forth program. Translating Forth source
code to FCode involves replacing the Forth word names (stored as text strings)
with their equivalent FCode numbers. The tokenized FCode takes up less
space in PROM than the text form of the Forth program from which it was
derived, and can be interpreted more easily and rapidly than the text form.

For purposes of this manual, the term FCode indicates both binary-coded
FCode and the Forth programs written as ASCII text files for later conversion
to binary-coded FCode.

Except where a distinction between the two forms is explicitly stated, the use
of FCode in this manual can be assumed to apply equally to both FCode and
Forth.

Colon Definitions
Three concepts are critical to understanding FCode (or Forth):

• A colon definition creates a new word with the same behavior as a sequence
of existing words. A colon definition begins with a colon and ends with a
semicolon.

• Once a new word has been created, it is immediately available, either for
direct execution or for use in future colon definitions.

• Most parameter passing is done through a pushdown, last-in, first-out stack.

Normally, the action associated with an FCode Function is performed when the
FCode Function is encountered. This is called interpret state. However, the state
may switch between interpret state to compile state.

In interpret state, FCode Functions are executed as they are encountered.
Interpret state operates until encountering a “:”. The word “:” does the
following:

• Allocates an FCode Number and associates it with the name immediately
following the colon.

Elements of FCode Programming 13

3

• Switches to compile state.

In compile state, FCodes are saved for later execution, rather than being
executed immediately. The sequence thus compiled is installed in the action
table as a new word, and can be used later in the same way as if it were a built-
in word.

Compile state continues until a “;” is read. The word “;” does the following:

• Compiles an end-of-procedure FCode word

• Switches to interpret state

After compilation, the newly-assigned FCode word can be either interpreted or
compiled as part of yet another new word.

If you define a new word having the same spelling as an existing word, the
new definition supersedes the older one(s), but only for subsequent usages of
that word.

Here’s an example of a colon definition for a new FCode word dac!

Stack Operations
Each FCode word is specified by its effect on the stack and any side effects,
such as accessing memory. Many FCode words affect the stack, by removing
arguments from it, performing some operation, and putting the result(s) back
on the stack.

A stack comment, included in the colon definition, describes the effect on the
stack of the execution of an FCode word.

In the previous example, the stack comment, beginning with “(” and ending
with “) ”, shows that dac! takes two parameters from the stack, and doesn’t
replace them with anything when it’s done.

Stack comments can be put anywhere in a colon definition. They should be
included wherever their use will enhance the clarity of the definition.

: dac! (data offset --) dac + rl! ;

14 Writing FCode 3.x Programs —November 1997

3

The rightmost argument is on top of the stack, with any preceding arguments
“under it”. In other words, arguments are pushed onto the stack in left to right
order, leaving the most recent argument (the rightmost one in the stack
diagram) on the top.

In a stack diagram, parameters shown to the left of the double dashes are
expected to be on the stack prior to the execution of the word. Parameters
shown to the right of the double dashes are those which are left on the stack
after execution of the word. Stack comments use the same convention but
detail changes to the stack during execution of the word.

Stack comments and stack diagrams are essentially the same thing. Stack
diagrams show the net effect to the stack of any Forth word. Stack comments
are embedded in the definition of a word and are used to convey intermediate
stack results or changes.

A series of words that describe the behavior of dac! follow the stack
comment in the preceding example. Executing dac! is the same as executing
the list of words in its colon definition.

Note that FCode words are separated by spaces, tabs, or newlines, so in the
previous example, “(data ” is not the same as “(data ”. Any visible
character is part of a word, and not a separator.

Programming Style
Some people have described Forth as a write-only language. While it
sometimes ends up that way due to poorly-written or uncommented code, it is
possible to write Forth (and FCode) programs that can be read easily and
understood. Well-written Forth programs will meet these criteria. See
Appendix C, “Coding Style” for detailed information about the style used in
the existing OpenBoot FCode source base.

Although case is not significant, by convention FCode is written in lower case.

Commenting Code

Comment code extravagantly, then consider adding more comments. The
comments will help with maintenance of the code, and don’t add to the final
size of the resulting FCode PROM.

Elements of FCode Programming 15

3

Adopt the useful convention of using “() ” for stack comments and “\ ” for
other descriptive text and comments.

In comments, describe the purpose of the Forth words, any interface
assumptions and requirements, and unusual aspects of the algorithm you
used. Try to avoid simply translating low-level details of the code into English.
Comments like, “increment the variable” are rarely helpful.

Coding Style
By studying the examples in this book, you can note the indentation and
phrasing style that is widely used in OpenBoot source code. Adoption of this
style will allow your Forth code to be read more easily by the many
programmers who are accustomed to the style.

Definition Length

Keep word definitions short. If your definition exceeds half a page, it should be
rewritten as two or more smaller definitions. This will help to make each
definition more readable. Readable code is easier to maintain.

A good size for a word definition is one or two lines of code. Keeping
definitions short and limited in functionality improves readability, speeds
debugging and increases the likelihood that the word will be reusable.
Remember: reuse of Forth words is a principal contributor to compact PROM
images.

16 Writing FCode 3.x Programs —November 1997

3

Stack Comments

Always include stack comments in word definitions. It can be useful to compare
intended function with what the code really does. Here’s an example of a word
definition with acceptable style.

Note the stack diagram following the word xyz-map , and the use of stack
comments in the word’s definition code.

Stack diagrams are generally written using descriptive parameter names to
clarify correct usage. See the table below for stack parameter abbreviations
used in this manual

\ xyz-map establishes a virtual-to-physical mapping for each of
the
\ useful addressable regions on the board

0 value status-register

: xyz-map (--)

\ Base-address Size create-mapping then save virtual address

 my-address 4 map-low (virtaddr)
 to status-register ()
 my-address 10.0000 d+ frame-buf-size map-low (virtaddr)
 to frame-buffer-adr ()
;

Table 3-1 Stack Parameter Abbreviations

Notation Description

| Alternate stack results shown with space, e.g. (input -- addr len false | result true).

| Alternate stack items shown without space, e.g. (input -- addr len|0 result).

??? or ? Unknown stack item(s)

… Unknown stack item(s). If used on both sides of a stack comment, means the same stack
items are present on both sides.

< > <space> Space delimiter. Leading spaces are ignored.

a-addr Variable-aligned address

Elements of FCode Programming 17

3

addr Memory address (generally a virtual address).

addr len Address and length for memory region

byte b xxx 8-bit value (low order byte in a 32-bit word).

char 7-bit value (low order byte), high bit unspecified.

cnt or len or size Count or length

dxxx Double (extended-precision) numbers. 2 stack items, hi quadlet on top of stack.

<eol> End-of-line delimiter

false 0 (false flag)

ihandle Pointer for an instance of a package

n or n1 or n2 or n3 n xxx Normal signed values (32-bit)

nu or nu1 Signed or unsigned values (32-bit)

<nothing> Zero stack items

phandle Pointer for a package

phys Physical address (actual hardware address)

phys.lo phys.hi Lower/upper cell of physical address

pstr Packed string

quad or qxxx Quadlet (32-bit value)

qaddr Quadlet (32-bit) aligned address

{text} Optional text. Causes default behavior if omitted.

"text<delim>” Input buffer text, parsed when command is executed. Text delimiter is enclosed in <>.

true -1 (true flag)

uxxx Unsigned value, positive values (32-bit)

virt Virtual address (address used by software)

waddr Doublet (16-bit) aligned address

word or w xxx Doublet (16-bit value, low order two bytes in a 32-bit word)

x or x1 Arbitrary stack item

x.lo x.hi Low/high significant bits of a data item

Table 3-1 Stack Parameter Abbreviations (Continued)

Notation Description

18 Writing FCode 3.x Programs —November 1997

3

A Minimal FCode Program
If a peripheral bus card is not needed during the boot process, a minimal
FCode program that merely declares the name of the device and the location
and size of on-board registers will often suffice.

A minimum program for an SBus device is:

Note the following about this SBus example:

• my-address and my-space each leave only a single number on the stack
representing the phys.lo phys.hi address representation of an SBus node. (The
value of #address-cells is 2 for SBus which is reflected by this format.)

• An offset of 0x200000 is being added to the value returned by my-address .

• The size argument of “ reg” is a single number (since #size-cells is 1
for SBus) reflecting SBus’s 32-bit address space.

xt Execution token

xxx? Flag. Name indicates usage (e.g. done? ok? error?).

xyz-str xyz-len Address and length for unpacked string

xyz-sys Control-flow stack items, implementation-dependent

(C: --) Compilation stack diagram

(--) or (E: --) Execution stack diagram

(R: --) Return stack diagram

fcode-version1
" SUNW,bison" encode-string " name" property

my-address h# 20.0000 + my-space encode-phys
h# 100 encode-int encode+
" reg" property

end0

Table 3-1 Stack Parameter Abbreviations (Continued)

Notation Description

Elements of FCode Programming 19

3

The example program above creates a “ name” property that will be used to
identify the device whose value is “SUNW,bison ”. Begin the name attribute’s
value with an identification of your company. The preferred form of this
identification is an organizationally unique identifier (OUI), a sequence of six
uppercase hexadecimal digits assigned by the IEEE Registration Authority
Committee. OUIs are guaranteed to be unique world-wide. (For more
information about obtaining an OUI, please see the glossary entry for name in
IEEE Standard 1275-1994 Standard for Boot Firmware.)

As an alternative to the OUI, you may use a sequence of from one to five
uppercase letters representing the stock symbol of your company on any stock
exchange whose symbols do not conflict with the symbols of the New York
Stock Exchange and the NASDAQ Exchange. All stock exchanges in the United
States satisfy this requirement. If a non-US company’s stock is traded on US
stock exchanges by “depository equivalents”, those symbols also satisfy this
requirement.

The preceding SBus example program can also be written using the following
shorthand form. The FCode program generated will be equivalent to the
minimum SBus program given above.

FCode Classes
There are four general classes of FCode source words:

fcode-version1
" SUNW,bison" name
my-address h# 20.0000 + my-space h# 100 reg
end0

Table 3-2 FCode Source Word Classes

Primitives These words generally correspond directly to conventional
Forth words, and implement functions such as addition, stack
manipulation, and control structures.

20 Writing FCode 3.x Programs —November 1997

3

Each FCode primitive is represented in a peripheral card’s PROM as a single
byte. Other FCodes are represented in the PROM as two consecutive bytes. The
first byte, a value from 1 to 0x0f, may be thought of as an escape code.

One-byte FCode numbers range in value from 0x10 to 0xfe . Two-byte FCode
numbers begin with a byte in the range 0x01 to 0x0f , and end with a byte in
the range 0x00 to 0xff . The single-byte values 0x00 and 0xff signify “end of
program” (either value will do; conventionally, 0x00 is used).

Currently-defined FCodes are listed in functional groups, in alphabetic order
by name and in numeric order by FCode value in Appendix A, “FCode
Reference”.

Primitive FCode Functions
There are more than 300 primitive FCode functions, most of which exactly
parallel ANS Forth words, divided into three groups:

• FCode words that generate a single FCode byte

• tokenizer macros

• tokenizer directives

Primitive FCode functions that have an exact parallel with standard ANS Forth
words are given the same name as the equivalent ANS Forth word. Chapter 14,
“FCode Dictionary”, contains further descriptions of primitive FCodes.

There are about another 70 tokenizer macros, most of which also have direct
ANS Forth equivalents. These are convenient source code words translated by
the tokenizer into short sequences of FCode primitives.

System These are extension words implemented in the boot PROMs,
and implement functions such as memory allocation and
device property reporting.

Interface These are specific to particular types of devices, and
implement functions such as draw-character for a display
device.

Local These are private words, implemented and used only by the
device that created the definition.

Table 3-2 FCode Source Word Classes

Elements of FCode Programming 21

3

Tokenizer directives are words that generate no FCodes, but are used to control
the interpretation process. Tokenizer directives include the following words:

• decimal , hex , and octal

• d# , h# , and o#

• headers and headerless

• \ and (

• .(

• alias

System FCode Functions
System FCode functions are used by all classes of FCode drivers for various
system-related functions. System FCode functions can be either service words
or configuration words.

• Service words are available to the device’s FCode driver when needed for
functions such as memory mapping or diagnostic routines.

• Configuration words are included in the driver to document characteristics
of the driver itself. These properties are made available for use by the
operating system.

Interface FCode Functions
Interface FCode functions are standard routines used by the workstation’s CPU
to perform the functions of the peripheral card’s device. Different classes of
devices will each use only the appropriate set of interface FCodes.

22 Writing FCode 3.x Programs —November 1997

3

For example, in order to display a character on the screen, OpenBoot calls the
interface FCode draw-character . Previously, the FCode driver for the device
controlling that screen must have assigned a device-specific implementation to
draw-character . It does this as follows:

When my-install executes, draw-character is assigned the behavior of
my-draw .

Local FCode Functions
Local FCode functions are assigned to words defined in the body of an FCode
program. There are over 2000 FCode byte values allocated for local FCodes.
The byte values are meaningful only in the context of a particular driver.
Different drivers reuse the same set of byte values.

: my-draw (char --) \ "local" word to draw a character.
 … \ Definition contents.
; \ end of my-draw definition.
: my-install (--) \ local word to install all interfaces.
 …
 ['] my-draw to draw-character
 …
;

23

Debugging and Testing
FCode Programs 4

Packaging PCI FCode
Example: In trying to test a new version of an FCode program, a developer
creates a new package as follows:

However, when doing an ls , it is obvious that there are now TWO packages
corresponding to the card:

To get rid of or override the original package so that the downloaded code is
executed, remove the PCI card PROM. The CPU PROM will still create a device
node for the card, but the "name" property will have a value of the form

 "pci<DDDD>,<VVVV>"

ok 4000 dload /stand/mydev.fcode
ok 0 0 " 4,0" " /pci@1f,2000" begin-package
ok 4020 1 byte-load
ok end-package

ok ls
ffd70c00 my-network@4,0
ffd6e860 my-network@4,0
ok

24 Writing FCode 3.x Programs —November 1997

4

Create a name property for your device in your downloaded code with a value
different from the one created by the CPU PROM. Then refer to your device by
its full device path.

System Flags and FCode Debugging
Example: When using Sun systems debugging flags to aid in debugging
FCode, set the NVRAM variable fcode-debug? to true to keep the headers
for those words in your source preceded by headers.

Also, some CPU PROMS have a variable named "fcode-verbose? " to display
each FCode as it is being read at probe time by your CPU PROM’s token
interpreter. To turn it on, before you probe your FCode, do:

To set it from NVRAMRC, do:

Some CPU PROMs have pcimsg? and probemsg? variables to give additional
PCI-related information. You can turn them ON in a way similar to that
described above. pcimsg? controls the display of all accesses to PCI
configuration space. probemsg? controls the display of probing status
information, including physical allocation.

Note that not all CPU PROMs have pcimsg? and probemsg? . Also, in future
PROMs, the behavior of pcimsg? , probemsg? and fcode-verbose? may
change, including the possibility of deletion.

ok true to fcode-verbose?
<probe-your-card>

ok nvedit
0: true to fcode-verbose?
^C
ok nvstore
ok setenv use-nvramrc? true
ok reset-all

Debugging and Testing FCode Programs 25

4

FCode Source
An FCode source file is essentially a Forth language source code file. The basic
Forth words available to the programmer are listed in Chapter 14, “FCode
Dictionary”.

FCode programs have the following format:

fcode-version3 is a macro which directs the tokenizer to create an FCode
header. For a description of the FCode header see “FCode Binary Format”.
fcode-version3 produces a header including the start1 FCode. The
macros fcode-version3 and fcode-version2 produce a header containing
the start1 FCode. Whereas fcode-version1 produces a header with
version1 FCode. To use all IEEE 1275 compliant Fcodes, use fcode-
version3 . (Since OpenBoot version 1 systems only recognize version1,
plug-in device FCode that must run in OpenBoot version 1 systems must use
fcode-version1 .)

end0 is an FCode that marks the end of an FCode program. It must be at the
end of the program or erroneous results may occur.

The comment in the first line is not necessary in many cases but it is
recommended since it allows some OpenBoot tools to recognize the file as a
Forth source file.

Tokenizing FCode Source
The process of converting FCode source to FCode binary is referred to as
tokenizing. A tokenizer program converts FCode source words to their
corresponding byte-codes, as indicated in Chapter 14, “FCode Dictionary”. A
tokenizer program with instructions describing its use is available from

http://www.sun.com/developers/driver

under the tools icon as Fcode tokenizer and tools.

\ Title comment describing the program that follows
fcode-version3
< body of the FCode program >
end0

26 Writing FCode 3.x Programs —November 1997

4

An FCode program’s source can reside in multiple files. The fload tokenizer
directive directs the tokenizer input stream to load another file. fload acts like
an #include statement in C. When fload is encountered, the tokenizer
begins processing the file named by the fload directive. When the named file
is completed, tokenizing continues with the file that issued the fload . fload
directives may be nested.

Typically, the tokenizer produces a file in the following format:

• Header - 32 bytes

• FCode header - 8 bytes

• FCode binary - remainder of file

The header has the following format:

• 4 bytes - 0x01030107 (hexadecimal)

• 4 bytes - Size in bytes of the FCode binary

• 4 bytes - 0x0

• 4 bytes - 0x0

• 4 bytes - 0x0

• 4 bytes - Load point of the file

• 4 bytes - 0x0

• 4 bytes - 0x0

You can use this file to load either an FCode PROM or system memory for
debugging as described in “Using the Forth Monitor to Test FCode Programs”.

The load point of the file is not used when burning an FCode PROM, but is
used by Forth Monitor commands that load FCode files into system memory.
The tokenizer available from SunExpress sets the load point to be the
recommended 0x4000 address.

Debugging and Testing FCode Programs 27

4

FCode Binary Format
The format of FCode binary that is required by the OpenBoot FCode evaluator is
as follows:

The format of the FCode header is:

Testing FCode Programs on the Target Machine
Once you have created the FCode binary, you can test it using the OpenBoot
Forth Monitor. The Forth Monitor provides facilities to allow you to load your
program into system memory and direct the FCode evaluator to interpret it
from there. This allows you to debug your FCode without having to create a
PROM and attach it to your plug-in board for each FCode revision during the
debug process. See the OpenBoot 3.x Command Reference for complete
documentation of the use of the Forth Monitor.

The FCode testing process generally involves the following steps:

1. Configuring the target machine. This includes installing the hardware
associated with the FCode program in the target machine and powering-up
the machine to the Forth Monitor.

Table 4-1 FCode Binary Format

Element Structure

FCode header Eight bytes

Body 0 or more bytes

End byte-code 1 byte, the end0 byte-code

Table 4-2 FCode Header Format

Byte(s) Content

0 One of the FCodes: start0 , start1 , start2 , start4,version1

1 reserved

2 and 3 reserved

4 through 7 count of bytes in the FCode binary image including the header

28 Writing FCode 3.x Programs —November 1997

4

2. Loading the FCode program into memory from a serial line, a network, a
hard disk, or a floppy disk.

3. Interpreting the FCode program to create a device node(s) on the OpenBoot
device tree.

4. Browsing the device node(s) to verify proper FCode interpretation.

5. Exercising the FCode program’s device driver methods compiled into the
device node, if any.

If the FCode program does not include any methods which involve using the
actual hardware (for example, a driver which only publishes properties) then
the program can be tested without installing the hardware.

Configuring the Target Machine

Setting Appropriate Configuration Parameters

Before powering-down the target machine to install the target hardware, a few
NVRAM configuration variables should be set to appropriate values. You can
set them from the Forth Monitor as follows:

Setting auto-boot? to false tells OpenBoot not to boot the OS on a machine
reset but rather to enter the Forth Monitor at the ok prompt.

Setting fcode-debug? to true tells the OpenBoot FCode evaluator to save
the names of words created by interpreting FCode words which were
tokenized with headers on. This is in addition to words defined after the
tokenizer processed an external directive (in other words, words whose
names are always saved). fcode-debug? defaults to false to conserve RAM
space in normal machine operation.

ok setenv auto-boot? false
ok setenv fcode-debug? true

Debugging and Testing FCode Programs 29

4

Modifying the Expansion Bus Probe Sequence

The start-up sequence in the machine’s OpenBoot implementation normally
examines all expansion buses for the presence of plug-in devices and their on-
board FCode PROM programs. It then invokes the FCode evaluator to interpret
any programs found. This process is called probing.

When using the Forth Monitor to load and interpret an FCode program in
system memory, it is better to configure OpenBoot to avoid probing that device
automatically. The probing can then be done manually (as explained later)
from the Forth Monitor.

Configuring an OpenBoot implementation to avoid probing a given slot on a
given expansion bus can be done in various implementation-dependent ways.
That is, they will be different for different systems and different expansion
buses.

Many machines with SBus have an NVRAM configuration variable named
sbus-probe-list . It defines which SBus card slots will be probed during
start up and the order in which they will be probed.

For example, a machine with four SBus slots might have the
sbus-probe-list configuration variable set to a default value of 0123.
Setting sbus-probe-list to 013 directs OpenBoot during start-up to probe
first SBus slots 0, 1, and 3. This leaves SBus slot 2 unprobed, free for use by the
device under development.

Methods to prevent probing a given slot for other types of expansion buses can
involve using the NVRAMRC script. Among other uses, an NVRAMRC script
can:

• Patch an implementation-specific OpenBoot word that defines the bus’s
probe sequence

• Modify a property of the expansion bus’s device node that describes the
sequence.

After the FCode program is debugged and programmed in PROM on the
device, you can do a full system test (including automatic probing of the new
device), by restoring the expansion bus probing configuration to the default.

30 Writing FCode 3.x Programs —November 1997

4

Getting to the Forth Monitor

After completing the configuration described above, power the machine down
and install the device. Then power the system up. The display should stop
scrolling at the ok prompt, ready to accept Forth Monitor commands.

Using the Command Line Editor of the Forth Monitor
Refer to the OpenBoot 3.x Command Reference for a list and description of the
line-editing commands available with the Forth Monitor.

Using the Forth Monitor to Test FCode Programs
Directions for using the Forth Monitor to download files to system memory are
provided in the OpenBoot 3.x Command Reference. Common package-related
commands are shown below.

Table 4-3 Common Package-related Commands

Command Stack Diagram Function

begin-package (arg-addr arg-len reg-addr reg-len path-addr path-len --) Initializes device tree for
executing FCode.

end-package (--) Completes a device tree
entry and returns to the
Forth Monitor
environment.

open-dev (path-addr path-len --) Opens the specified device
node and all of its parents.

device-end (--) Closes the current node
and returns to the Forth
Monitor environment.

select-dev (path-addr path-len --) Opens the specified device
node and all of its parents,
and makes the device the
current instance.

Debugging and Testing FCode Programs 31

4

Using dload to Load from Ethernet

dload loads files over Ethernet at a specified address, as shown below.

In the above example, filename must be relative to the server's root. Use 4000

(hex) as the address for dload input.

Note – One can use any value other than 4000 as long as it has been properly
mapped.

FCode programs loaded with dload must be in the format described in
“Tokenizing FCode Source”.

dload uses the trivial file transfer protocol (TFTP), so the server may need to
have its permissions adjusted for this to work.

unselect-dev (--) Closes the specified device
node and all of its parents,
and unselects the active
package and current
instance leaving none
selected.

set-args (arg-addr arg-len reg-addr reg-len --) Sets values returned by
my-args , my-space and
my-address for the
current node.

execute-device-method (… path-addr path-len cmd-addr cmd-len -- … ok?) Executes the named
command in the specified
device tree node.

ok 4000 dload filename

Table 4-3 Common Package-related Commands (Continued)

Command Stack Diagram Function

32 Writing FCode 3.x Programs —November 1997

4

Using dlbin to Load From Serial Port A

dlbin may be used to load files over serial line A. Connect the target system's
serial port A to a machine that is able to transfer a file on request. The
following example assumes a tip window setup on a Sun system which will
provide the FCode file. (See the OpenBoot 3.x Command Reference for
information on setting tip connections.)

1. At the ok prompt, type:

2. In the tip window of the other system, send the file:

The ok prompt will reappear on the screen of the target system.

FCode programs loaded with dlbin must be in the format described in
“Tokenizing FCode Source”. dlbin loads the files at the entry point indicated
in the file header. It is suggested that this address be 0x4000.

Using boot to Load From Hard Disk, Diskette, or Ethernet

You can also load an FCode program with boot , the command normally used
to boot the operating system. Use the following format:

device-specifier is either a full device path or a device alias. See the OpenBoot 3.x
Command Reference for information on device path and aliases.

For a hard disk or diskette partition, filename is relative to the resident file
system. See the OpenBoot 3.x Command Reference for information on creating a
bootable diskette. For a network, filename is relative to the system's root
partition on its root server. In both cases, the leading / must be omitted from
the file path.

ok dlbin

~C (local command) cat filename
(Away two seconds)

ok boot [device-specifier] [filename] -h

Debugging and Testing FCode Programs 33

4

The -h flag specifies that the program should be loaded, but not executed. This
flag must be included since otherwise boot will attempt to automatically
execute the file assuming it is executable binary.

boot uses intermediate booters to accomplish its task. When loading from a
hard disk or diskette, the OpenBoot firmware first loads the disk's boot block,
which in turn loads a second-level booter. When loading over a network, the
firmware uses TFTP to load the second-level booter. In both cases, filename and
-h are passed to these intermediate booters.

The output file produced by a tokenizer may need to be converted to the
format required by the secondary boot program. For example, Solaris 2.x
intermediate booters require ELF format. fakeboot , a program available from
SunExpress, may be useful in this process.

The location in memory where the FCode program is loaded depends on the
secondary boot program and the fakeboot program.

Using dl to Load Forth Over Serial Port A
Forth programs loaded with dl must be ASCII files.

To load the file over the serial line, connect the system's serial port A to a
machine that is able to transfer a file on request. One method is to set up a TIP
window on another Sun system. (See OpenBoot 3.x Command Reference for
information on this procedure.) The following example assumes a TIP window
setup.

1. At the ok prompt, type:

2. In the TIP window of the other system, send the file, and follow it with a
Control-D to signal the end of the file.

The ok prompt appears on the screen of the system to which the file is loaded.

ok dl

~C (local command) cat filename
(Away two seconds)
^-D

34 Writing FCode 3.x Programs —November 1997

4

dl normally loads the file at 4000 (hex). The file is automatically interpreted
after it is loaded.

Using the Forth Monitor to Interpret an FCode Program
FCode program interpretation involves creating a device node on the device
tree. Device nodes are also known as packages. Creating a device node from
downloaded FCode involves the following steps:

1. Set up the environment with begin-package .

For example, a begin-package call for creating a device node for a SBus
card installed in SBus Slot 3 of a SPARCstation 2 looks like:

In the example, the string, /sbus , indicates that the device node which will
be created by the FCode program is to be a child node of the /sbus node in
the device tree.

In general, parent nodes, which support child nodes, can be used as this
argument to begin-package . The device node defined by the FCode
program will be created as a child of that node. Give the full device
pathname from the root node. Other types of parent nodes define different
address spaces. Another example of an SBus parent node is on a
SPARCstation 10 where its device pathname is /iommu/sbus .

In the example, the string, " 3,0" indicates the SBus slot number, 3 and
byte-offset 0 in the slot’s address space where the device node is to be based.

In general, this string is a pair of values separated by a comma which
identify the physical address associated with the expansion slot. The form of
this physical address depends on the physical address space defined by the
parent node. For children of an SBus node, the form is slot-number,
byte-offset . Other parent nodes will define different address spaces.

The physical address pair value is retrieved in the FCode program with both
the my-address and my-space FCodes. The slot ID string is converted to
a binary form consisting of three values. Those values can be retrieved with
the FCode program by using my-address for the phys.lo and phys.mid
components and my-space for the phys.hi component.

ok 0 0 " 3,0" " /sbus" begin-package

Debugging and Testing FCode Programs 35

4

In the preceding example, the initial 0 0 represents a null argument string
passed to the FCode program.

This argument string is retrieved in the FCode program with the my-args
FCode. Generally, FCode programs do not take arguments at interpretation
time so this will usually be the null string.

begin-package is defined as:

select-dev (parent-dev-addr parent-dev-len --) opens the
input device node (the parent node) and makes it the current instance.

new-device (--) initializes a new device node as a child of the currently
active node and makes it the current instance.

set-args (arg-addr arg-len reg-addr reg-len --) sets the
values returned by my-args , my-space , and my-address for the current
instance.

2. Interpret the loaded FCode with byte-load

byte-load is the Forth Monitor command that invokes the FCode
evaluator to compile the FCode program into the current instance.

For FCode programs downloaded with byte-load use:

load-base is the system default load address. The argument, ' c@ , tells
byte-load to use c@ as the access routine for reading the FCode.

3. Close the environment with end-package

end-package finishes up the creation of the device tree node.

: begin-package (arg-addr arg-len reg-addr reg-len dev-addr dev-len --)
 select-dev new-device set-args
;

ok <fcode-stat-address> ' c@ byte-load

ok end-package

36 Writing FCode 3.x Programs —November 1997

4

It is defined as:

finish-device (--) Completes the device tree node initialized by
new-device and changes the current instance to the parent node.

unselect-dev (--) Closes the parent device tree node and returns to
the normal Forth Monitor environment. That is, there is no longer a current
instance or active package.

Using the Forth Monitor to Browse a Device Node
The Forth Monitor has many built-in commands to navigate the device tree.
Table 4-4 lists the Forth Monitor commands supporting device node browsing:

: end-package (--) finish-device unselect-dev ;

Table 4-4 Commands for Browsing the Device Tree

Command Description

.properties Display the names and values of the current node’s properties.

dev device-path Choose the indicated device node, making it the current node.

dev node-name Search for a node with the given name in the subtree below the current node, and
choose the first such node found.

dev .. Choose the device node that is the parent of the current node.

dev / Choose the root machine node.

device-end De-select the current device node, leaving no node selected.

" device-path" find-device Choose device node, similar to dev .

get-inherited-property (name-addr name-len -- true | value-addr value-len false)
Return property value of current instance or its parents

get-my-property (name-addr name-len -- true | value-addr value-len false)
Return property value of current instance.

ls Display the names of the current node’s children.

pwd Display the device path that names the current node.

see wordname Decompile the specified word.

show-devs [device-path] Display all the devices known to the system directly beneath a given level in the
device hierarchy. show-devs used by itself shows the entire device tree.

words Display the names of the current node’s methods.

Debugging and Testing FCode Programs 37

4

Once a device node has been created, you can use the Forth Monitor to browse
the node. See the OpenBoot 3.x Command Reference for a more complete
discussion. Here is a brief synopsis of the available commands:

• show-devs displays all known devices in the device tree.

• dev sets the active package to a named node so its contents can be viewed.
For example, to make the ACME company’s SBus device named
“ACME,widget” the active package:

• find-device is essentially identical to dev differing only in the way the
input path is passed.

• .properties displays the names and values of all the properties created
for the active package.

• get-my-property returns the value of the specified property from the
active package.

• get-inherited-property returns the location and length of the
property value array of the specified property from the active package or its
parents. dump can then be used to display the property value array.

• ls displays the names of all child nodes, if any, of the active package.

• words shows the names of the device node methods, if any, created by the
FCode program. It shows all words which were defined with external
and, if fcode-debug? was true when the FCode was interpreted, the
words defined with headers .

• see wordname displays the source code (without comments) for wordname.

• device-end reverses the effects of the dev or find-device command.

• pwd displays the device path of the active package.

ok dev /sbus/ACME,widget

ok " /sbus/ACME,widget" find-device

38 Writing FCode 3.x Programs —November 1997

4

Using the Forth Monitor to Test a Device Driver
The Forth Monitor provides the capability to test the methods of an FCode
program by allowing you to execute individual methods from the Forth
Monitor prompt.

Device Node Methods

Using select-dev

select-dev initializes an execution environment for the methods of the
package specified by its stack arguments. It allows the user to subsequently
execute the device node’s methods directly by name. For example:

select-dev performs the following steps:

1. Effectively calls “dev /sbus/ACME,widget ” to make the named device
the active package. This enables the recognition of the device methods by
the Forth Monitor.

2. Establishes a chained set of package instances for each node in the path. In
particular, this makes the package’s instance-specific data items available to
its methods.

3. Opens all device nodes in the path by calling the open method of each.
select-dev assumes open (and close) methods in each node in the path, so
the device node under test must have one.

Once these steps are performed, you can execute the methods of the current
device node by typing their names at the prompt. For example:

ok " /sbus/ACME,widget" select-dev

ok clear-widget-register
ok fetch-widget-register .
0

Debugging and Testing FCode Programs 39

4

As is generally true of the Forth language, if execution of a method exposes an
error in the code, the error can be isolated by executing the component words
of the method step-by-step. Use see to decompile the method, then type the
component words individually until the error is apparent. For example:

This process can be performed recursively by decompiling the component
words and then individually executing their component words. This is much
easier if most of the words were defined with the headers directive, since see
can then display the names of the component words instead of hexadecimal
codes.

This process is also enhanced by executing showstack . showstack causes
the stack’s contents to be displayed prior to every ok prompt. For example:

Device nodes can also be modified as needed with any of the following
techniques:

• Entering new methods definitions. These methods are compiled into the
device node like the methods in the FCode program that created the node.

ok see clear-widget-register
: clear-widget-register
 enable-register-write
 0 widget-register rl!
 disable-register-write
;
ok enable-register-write
ok 0 widget-register rl!
ok disable-register-write

ok 1 2
ok showstack
1 2 ok . clear 3 4
2
3 4 ok

40 Writing FCode 3.x Programs —November 1997

4

• Redefining a method to include a function neglected in the first definition.
(Previously defined words using the original definition of the method are
unaffected.) For example:

In general, such redefinitions affect only external uses of the named method
(for instance, calls from other packages via $call-method and the like)
and interactive use via the Forth Monitor. Previously compiled calls to the
method in the same package are unaffected unless the method is called by
name (for example, with $call-self).

• Use patch to edit word definitions. Such patches affect all uses of the
method, both internal and external. (See the OpenBoot 3.x Command Reference
Manual for information about using patch .)

• Resetting the machine causes all such corrections to be lost. Consequently,
once your words are debugged you’ll probably want to include any
modifications in the FCode program source.

unselect-dev reverses the effects of select-dev by calling the close
method of each device in the path of the current active node, destroying the
package instance of each node, and returning to the normal Forth Monitor
environment. Execute unselect-dev as follows:

Using begin-select-dev

Sometimes, select-dev will not work because the open method of a newly-
written package does not work correctly. In this case, begin-select-dev can
be used since it does everything that select-dev does except for opening the
last child node. For example:

ok : open open initialize-widget-register-2 ;

ok unselect-dev

ok " /sbus/ACME,widget" begin-select-dev

Debugging and Testing FCode Programs 41

4

Using execute-device-method

execute-device-method executes a method directly from the normal Forth
Monitor environment. That is, it is not necessary to manually make the device
node the current instance before executing the method. For example:

execute-device-method returns false if the method could not be
executed; otherwise it returns true on top of whatever results were placed on
the stack by the successful execution of the method.

execute-device-method performs the following steps:

1. Establishes a chained set of package instances for each node in the path. In
particular, this makes an instance of all data items of the device node
available to its methods.

2. Opens all device nodes in the named device path except the last device node
in the pathname.

3. Invokes the named method.

4. Closes all the device nodes in the path (except the last one) destroying their
package instances.

5. Restores the current instance to the one that was current prior to beginning
this process.

6. Restores the active package to the one that was active prior to beginning this
process.

7. Returns the results.

Note that, in contrast to select-dev , execute-device-method does not
call the open method of the last device node in the path. Consequently, any
method invoked in this manner must not require any pre-established state
which normally is created by open .

In summary, execute-device-method is provided to allow execution of
device node methods designed to provide their own state initialization, and
therefore to execute without previous execution of the open method. A typical
example is a selftest method.

ok " /sbus/ACME,widget" " test-it" execute-device-method

42 Writing FCode 3.x Programs —November 1997

4

Using apply

apply provides an alternative manner of invoking execute-device-
method in that it takes its arguments from the input stream instead of from the
stack. The above example would be invoked with apply as follows:

Since apply invokes execute-device-method , all of the restrictions listed
above for execute-device-method must be followed.

Testing FCode Programs in Source Form
The Forth Monitor enables you to skip the tokenizer and download FCode
program source directly. This practice is not recommended since the only
advantage is to save a small amount of time tokenizing the program. There are
also some disadvantages:

• It may cause problems in the long run since generally the Forth Monitor
recognizes a larger number of words than the FCode evaluator does. So the
FCode program developer who tests with FCode source may develop and
test a program only to find that some of the words used are not FCode
words, and will not be accepted by the tokenizer and the FCode evaluator.

• To load source you should comment out fcode-version1 and end0 .

• Since the download commands accept only one file, replace fload with the
actual file.

To load an ASCII Forth source file over serial line A, you use the command dl .
In addition to loading the file over the serial line, dl compiles the Forth source
while it is loading, without requiring an extra command. Therefore, you must
execute begin-package before downloading. See “Using dl to Load Forth
Over Serial Port A” for details.

Producing an FCode PROM
The output of the tokenizer program is used to make an actual FCode PROM.
If your PROM burning tools do not accept the raw binary format of the
tokenizer, you may need to develop a format conversion utility.

ok apply test-it /sbus/ACME,widget

Debugging and Testing FCode Programs 43

4

Exercising an Installed FCode PROM
You can either let OpenBoot automatically evaluate the FCode program from
the PROM or you can remove the device from the OpenBoot probing as
discussed earlier in “Configuring the Target Machine”.

The same process discussed for testing FCode programs loaded to system
memory can be used to test FCode programs already loaded into PROM on the
device.

If you take the device out of the probing sequence, a device node can be built
manually as in the following example for a device installed in SBus slot 1:

This is essentially the same sequence as outlined for evaluating FCode loaded
into system memory, except that you must map in and map out the FCode
PROM by using the decode-unit , map-in , and map-out methods of the
parent device node. For more information about these methods, see
Chapter 10, “Memory-Mapped Buses”.

You can browse the device node and exercise the device methods in the same
way as described earlier. You can also define new methods and patch existing
ones. Of course, these modifications will only remain until a system reset.

select-dev -Generated Errors
To debug your FCode/device in the case of errors during the use of
select-dev on the device, do the following.

ok 10000 constant rom-size
ok " /sbus" select-dev
ok " 1" decode-unit (phys.lo phys.mid phys.hi)
ok rom-size map-in (virt)
ok new-device (virt)
ok " " " 1,0" set-args (virt)
ok dup 1 byte-load (virt)
ok finish-device (virt)
ok rom-size map-out
ok unselect-dev

44 Writing FCode 3.x Programs —November 1997

4

Add a dummy open method to your device node's FCode if you want to be
able to select (open) the device to map the device in at the ok prompt and look
at the device registers, etc.:

Now you can use "select-dev " to open/select your device. Then use
"map-in " $call-parent to map in the device registers, and examine them.
The endianness may differ from what you think. Verify the way that the
device is mapped with map? Also, verify that rl@ and other register access
words return the data in the way you expect.

 ok dev /pci..../<device-node>
 ok : open true ;
(This may generate a message about open not being unique)
 ok device-end

45

Helpful Testing and Debugging
Hints 5

This chapter contains information to consider when you are designing FCode
code for PCI.

Accessing a PCI Device’s Configuration Space Registers
It isn’t necessary to do anything extra to access your device’s configuration
space registers. They are always accessible.

Base Address Register Setting
The base address registers in the configuration space are set by the CPU
PROM.

The CPU PROM (not the PCI card's FCode PROM) allocates the base address
for memory and/or I/O space on your PCI device and for the FCode PROM.

System Cache Line Size
To determine the system’s cache line size from the FCode to write into the
cache-line-size configuration space register of your PCI device, look in the
cache-line-size register in the configuration space; it refers to the cache line size
supported by the PCI device.

46 Writing FCode 3.x Programs —November 1997

5

Sun Ultra-30 UPA/PCI-Related Nodes
The PCI-related nodes on the Sun Ultra-30 UPA/PCI system are
/pci@1f,4000 and /pci@1f,2000 . pcia and pcib as needed for the
NVRAM variables pcia-probe-list and pcib-probe-list are
determined in the following manner.

Each PCI bus has a property named "slot-names " which gives information
about slots on that PCI bus. It could sometimes indicate which NVRAM
variable corresponds to it.

To get a human-readable value for that property, do the following:

For example, for a PCI bus at /pci@1f,2000 :

will display something like:

This is an indication that devices under /pci@1f,2000 relate to pcia .

In a Sun Ultra-30 UPA/PCI with 4 plug-in PCI slots, only slot 1 is physically
present for pci@1f,2000 . It can also support 66 Mhz., 64 bit PCI devices.

This is an indication that devices under /pci@1f,4000 relate to

ok " </pci-bus-node>" select-dev
ok " slot-names" get-my-property drop decode-int .h cr type

ok " /pci@1f,2000" select-dev
ok " slot-names" get-my-property drop decode-int .h cr type

6
pcia slot 1pcia slot 2

ok " /pci@1f,4000" select-dev
ok " slot-names" get-my-property drop decode-int .h cr type
34
pcib slot 2pcib slot 4pcib slot 5

Helpful Testing and Debugging Hints 47

5

pcib,

In a Sun Ultra-30 UPA/PCI with 4 plug-in PCI slots:

• Slots 2, 4 and 5 under /pci@1f,4000 support 33 Mhz., 32 bit PCI devices.

• Slot 3 under /pci@1f,4000 is for an on-board SCSI device.

Note that the value of the “slot-names " property differs for different
systems. Some systems may not indicate which PCI bus is which by the value
of the "slot-names " property.

Also in different releases of the PROM for the same system, the value of the
"slot-names " property may change. You may need to refer to the system
documentation for details about PCI buses on the system.

Alternatively, you can find which NVRAM variable refers to which PCI bus by
setting the NVRAM variables to different values and/or by plugging PCI
card(s) in different slot(s).

Finding and Using Physical Addresses
To find and use physical addresses to access, for instance, configuration space
registers on a Sun Ultra-30 UPA/PCI system, do MMU bypassing with the
choice of the correct ASI space. The arguments for the space {c,d,w,l,x}
command includes an address and ASI code (and data for a write operation.)

On Sun Ultra-30 UPA/PCI systems, a PCI device’s configuration registers are
viewed using the following address:

1fe.0100.0000 + X

where the 32-bit value of X is represented in bit format as:

0000.0000.bbbb.bbbb.dddd.dfff.rrrr.rrrr

where

where bbbb.bbbb is an eight bit bus number,
dddd.d is a five bit device number
fff is a three-bit function number
rrrr.rrrr is an eight-bit register number

So, if the bus number is 81, device number is 0 and function number is 1, then
X will be 81.0100, giving you a configuration register base.

48 Writing FCode 3.x Programs —November 1997

5

So you'll access the 0th configuration register at 1fe.0181.0100 (physical
address). On Sun Ultra-30 UPA/PCI systems, you can use ASI 0x15 for a non-
cacheable address being accessed by MMU bypass. If you are accessing a little-
endian device, use ASI 0x1d.

You can get bus number, device number, and function number from my-space
after selecting that device or from the "reg " property value for that device.
Look in IEEE 1275/PCI binding for the "reg " property format.

In general, for any system, to get physical addresses for registers in any space
(configuration space, 32- bit memory space, and others.) use the map-in
command. map-in requires the phys.lo , phys.mid , phys.hi , and length
arguments. Phys.lo , phys.mid , and phys.hi numbers can be taken from the
corresponding "reg " property.

In the case of configuration space, getting the physical address is easy since
phys.lo and phys.mid are always zero. phys.hi is just the configuration
space address.

Here is an example of getting the physical address of the configuration space
registers, using onboard ethernet on a Sun Ultra-30 UPA/PCI system:

ok " /pci@1f,4000/network@1,1" begin-select-dev
ok pwd
/pci@1f,4000/network@1,1
ok .properties
.
.
reg (Config Space ---->)00000900 00000000 00000000 00000000
00000000
(32bit memory space ---->) 02000910 00000000 00000000 00000000
00007020
.
.
.
ok 0 0 900 100 " map-in" $call-parent constant my-cfg-vaddr
ok my-cfg-vaddr . fff80900
ok my-cfg-vaddr map? VA:fff80900
G:0 W:1 P:1 E:1 CV:0 CP:0 L:0 Soft1:1 PA[40:13]:ff00800
PA:1fe01000000
Diag:0 Soft2:0 IE:0 NFO:0 Size:0 V:1
PA:1fe01000900

Helpful Testing and Debugging Hints 49

5

Hence the physical address for the base of configuration registers is
1fe.0100.0900 for this device. For plug-in PCI devices, the registers’ physical
address may vary if the device is plugged into a different slot, or if other
devices are present. Similarly, using the "reg " entry for memory or I/O space,
you can find a physical address for those spaces.

Controlling PCI Slot Probing on an Ultra-30 UPA/PCI System
You can control probing of PCI slots on your Sun Ultra-30 UPA/PCI system as
follows. On Sun Ultra-30 UPA/PCI system, during normal system
initialization, there are NVRAM variables which indicate to the CPU PROM
what slots to probe and in what order. On the Sun Ultra-30 UPA/PCI system
they are: pcia-probe-list and pcib-probe-list . The default value for
pcia-probe-list is 1,2; for pcib-probe-list , it is 3,2,4,5. To disable
slot 4 probing on pcib , during normal initialization after a reset, change
pcib-probe-list to:

After a reset, to probe slot 4 on pcib manually do:

Note that not all CPU PROMs have the probe-pci-slot command. Also, in
future PROMs, behavior of this command may change, including the
possibility of its deletion.

ok setenv pcib-probe-list 3,2,5

ok 4 probe-pci-slot /pci@1f,4000

50 Writing FCode 3.x Programs —November 1997

5

Using 3.x Tokenizer and 3.x CPU PROMs
Here are some points to consider while using the 3.x tokenizer: While you are
testing FCode under CPU OpenBoot PROM 3.x versions, make sure that you
have OpenBoot PROMs version 3.1 or later. Pre-3.1 PROMs will need the
following NVRAM patch:

Also, note that, while using the 2.x or 3.x tokenizer, literals or numbers that
have bit 31 set to 1 will extend this bit (1) to bit 63 on 3.x CPU PROMs. For
example:

8000.0000 constant xxx

will in reality be giving a value as: ffff.ffff.8000.0000. When such words or
constants are used in address manipulation or otherwise, your code should
clip them to a 32 bit value:

Get a real 8000.0000 by:

ff ff ff ff bljoin constant x-num

: clip-num (n -- l) x-num and ;

8000.0000 clip-num constant xxx

or

use xxx clip-num wherever "xxx " is being used.

ok nvedit
0: : nl-move(src dst len --) rot n->l rot n->l rot n->l
(move);
1: ['] nl-move is move
2: ['] l>>a 2 la+ dup l@ h# 1000 invert and swap l!
3: ['] lrshift 2 la+ dup l@ h# 1000 invert and swap l!
4: ^C
ok nvstore
ok setenv use-nvramrc? true
ok reset-all

Helpful Testing and Debugging Hints 51

5

PCI Device Configuration Register Access
To find the address to use for configuration register access on your PCI device,
look in the format for the physical address of the "reg " property. Use the
phys.hi cell of the first entry in the "reg " property as the base address for the
configuration space. The first entry in the "reg " property must be the
configuration space entry (bbbb.bbbb.dddd.dfff.0000.0000 binary).
Using this or any other method, obtain the values of bbbb.bbbb , ddddd and
fff for your device. Then use:

(XX is the offset for that register configuration.) For example, if the bus number
is 1000.0001 (0x81), the device number is 0.0000, and the function number is
001 (0x01), then use

Boot Software Roles
Three types of software involved during a boot: the kernel, FCode, and the OS
driver. This section describes the normal Solaris operating environment boot
scenario, including the functions of each and the order in which they begin.

At power-on, the CPU PROM begins execution. It probes all on-board devices
and plug-in cards, thus interpreting the FCodes on all FCode PROMs. In the
FCode probing process, FCode PROMs generate properties for devices. Some
FCode PROMs execute commands to reset the device and perform other
initialization.

ok "< parent-pci-bus-node>" select-dev
ok <bbbb.bbbb.dddd.dfff>XX config-l@

ok " /pci@1f,2000" select-dev
ok 81.0100 config-l@ (to read device id and vendor id)
ok 81.0104 config-w@ (to read command register)
ok 81.0130 config-l@ (to read the expansion PROM base address
register)

52 Writing FCode 3.x Programs —November 1997

5

Then, the CPU PROM boots over the specified boot device (using its FCode
boot driver), loads bootblk (or inetboot for network booting), and passes
control to the bootblk code. Then, the bootblk code loads the kernel and
modules, and passes control to the kernel. The kernel at some point starts to
use the OS-device driver.

So, the order is:

• CPU-PROM

• FCode-PROM

• bootblk

• Kernel

• OS driver.

Enabling Access to a PCI Device’s Memory Space Locations
If a developer is loading FCode and can’t access memory space locations, how
should they go about enabling access to memory space locations for their PCI
device?

Look in the format for the physical address of "reg " property. Using that (or
any other method), obtain the values of bbbb.bbbb , ddddd and fff for your
device. Then use

This will write to the configuration space command register and thus enable
access to memory and I/O space. This sets bit[0] and bit[1] of the command
register. In the same way, you may set other bits in the command register, if
needed by your application. If the bus number is 1000.0001 (0x81), the device
number is 0.0000, and the function no. is 001 (0x01), you will then use

ok " <parent-pci-bus-node>" select-dev
ok 3 <bbbb.bbbb.dddd.dfff>04 config-w!

ok " /pci@1f,2000" select-dev
ok 81.0104 config-w@ 3 or 81.0104 config-w!

Helpful Testing and Debugging Hints 53

5

Normally, your FCode driver’s open routine should enable such access.
FCode can use the value returned by my-space and add an offset of 4 to get
the address of the command register. Then it can set various bits in the
command register to enable the desired access. The close routine should
disable that access.

Expansion FCode PROM
If a developer is unable to access his expansion FCode PROM, how can access
to it be enabled?

To enable access, look in the format for the physical address of the "reg "
property. Using that (or any other method), obtain the values of bbbb.bbbb ,
ddddd and fff for your device. Then use

This will first enable memory and I/O space access. Then, it will read the
value from the expansion PROM configuration space base address register (at
offset 0x30) or 1 to it, and write the value in the expansion PROM base address
register to enable access to your FCode PROM. This sets bit[0] of the
expansion PROM base address register. In other words, if the bus number is
1000.0001 (0x81), the device number is 00000, and the function number is 001
(0x01), then use:

If for any reason, (for example, to access Vital Product Data stored in the
PROM) the FCode needs to access PROM data, then the FCode should enable
PROM access by using the value returned by my-space and adding an offset
of 0x30 as the register address. The FCode should read the value from the
address, or the value with 1, and write the result back to that address.

ok "< parent-pci-bus-node>" select-dev
ok <bbbb.bbbb.dddd.dfff>04 config-w@ 3 or
<bbbb.bbbb.dddd.dfff>04 config-w!
ok <bbbb.bbbb.dddd.dfff>30 config-l@ 1 or
<bbbb.bbbb.dddd.dfff>30 config-l!

ok " /pci@1f,2000" select-dev
ok 81.0104 config-w@ 3 or 81.0104 config-w!
ok 81.0130 config-l@ 1 or 81.0130 config-l!

54 Writing FCode 3.x Programs —November 1997

5

Also, since the FCode would have been copied in memory, devices' memory
and I/O spaces may not be enabled. So, the FCode must enable them, using
FCode:

Packaging Error with Ethernet FCode
In trying to load the FCode from Ethernet, the code seems to load without
errors; however, when the developer tries to build the package, she gets an
error:

The error may be due to either of these causes:

1. The PCI header is attached to the PROM image, or

2. my-address is 2 32-bit numbers for PCI and only 1 32-bit number for SBus.

If the cause is 1, dump the download image beginning at 4000, for example

4000 60 dump

ok my-space h# 30 + dup config-l@ 1 or swap config-l! (enable
PROM access)
ok my-space h# 4 + dup config-w@ 3 or swap config-w! (enable
I/O, memory access)
Using the example above, you can disable expansion PROM access as:
ok my-space h# 30 + dup config-l@ 1 invert and swap config-l!
(disable PROM access)

ok 4000 dload /stand/cheerio.o
Boot device: /pci@1f,4000/network@1,1:,|stand|cheerio.o File
and args:
ok 0 0 " 0,1" " /pci@1f,2000" begin-package
ok 4000 1 byte-load
Unimplemented FCode token before address 4004
Warning: FCode sequence resulted in a net stack depth change of 1
ok

Helpful Testing and Debugging Hints 55

5

and see where f1 or fd starts. It is the beginning of the FCode data for the
byte-load. For instance, if the FCode data starts at x , use the address x in

f1 or fd is the beginning of the FCode header, 8 bytes long, as:

f1, <reserved byte>,<2 reserved bytes>,<4 bytes of FCode length>

Note – If you begin your FCode source with fcode-version1 , the first FCode
data is fd , but if you use fcode-version2 or fcode-version3 , the first
FCode data is f1 .

If the cause is 2, change your FCode to handle two numbers returned from my-
address .

One way to do this is:

Then use my-bus-addr in the creation of the "reg " property.

ok X 1 byte-load

my-address constant my-bus-addr-mid constant my-bus-addr-low

: my-bus-addr (-- paddr.low paddr.mid)
my-bus-addr-low my-bus-addr-mid
;

56 Writing FCode 3.x Programs —November 1997

5

57

Packages 6

A package is the set of methods and properties that resides in a device node. A
support package is a group of functions or methods that implements a specific
interface. A package implements a library of functions that may then be called
by FCode programs.

For many devices, this is not particularly useful, but it will be useful for FCode
programs that:

• Implement bootable devices

• Call functions or properties from other packages

• Implement functions intended to be called from other packages

A plug-in package is a package that is not permanently resident in the main
OpenBoot PROM. Plug-in packages are written in FCode. Since FCode is
represented with a machine-independent binary format, it lets the same plug-
in packages be used on machines with different CPU instruction sets.

During the linking process, a package’s references to OpenBoot PROM system
functions are resolved and the functions defined by the package made
available to other parts of OpenBoot . This occurs at run-time, when OpenBoot
interprets (probes) the package. Thus, plug-in packages do not need to be pre-
linked with a particular OpenBoot implementation.

OpenBoot only needs the beginning address of the package in order to probe it.
Once probed, the package becomes a working part of OpenBoot, until the
system is reset or turned off. A package exports its interface to OpenBoot, and
to other packages, as a vocabulary of Forth words.

58 Writing FCode 3.x Programs —November 1997

6

Many packages implement a specific interface; a standard set of functions.
Different packages may implement the same interface. For example, there may
be two display device driver packages, each implementing the standard
display device interface, but for two different display devices.

There may also be multiple instances of a single package. For example, a plug-
in disk driver may have as many instances as there are disks of that type.

Package Instances
A package consists of:

• methods (software procedures)

• properties (externally-visible information describing the package), and

• data (information used internally by the package).

The active package is the package whose methods are currently visible. dev
and find-device can be used to change the active package. However, they
only make a package’s methods visible; they do not enable the execution of
those methods.

Before a package’s methods may be executed, create an instance of the
package. Think of an instance as a working copy of the package. An instance
contains a working copy of all of the package’s private data.

An instance is created from a package by opening that package. The act of
opening a package allocates memory for the instance’s data and sets the
contents of that memory to the initial values stored in the package. The
instance exists until it is terminated by closing it. When it is closed, the
memory used to hold that instance’s private data is freed. Multiple instances
may be created from the same package, and exist simultaneously.

The current instance is the instance whose private data and methods are
available for direct use (i.e. directly by name without having to use
$call-method).

When a package method accesses a data item, it refers to the copy of that data
item associated with the current instance. The private data of the current
instance is accessible; the private data of all other instances is inaccessible.
Furthermore, to use the methods of a package, an instance of that package
must be (at least temporarily) the current instance.

Packages 59

6

A package to be opened is described by a device path or device alias. The
process of opening the package includes opening each of the nodes in the
device path from the root to the specified device (i.e. from the top of the chain
to the bottom). As each of these nodes is opened, an instance is created for the
node and all of these instances are linked together in an instance chain as shown
in Figure 6-1. When a method is accessed using the ihandle of the chain, each
node in the chain is able to access the methods of its parent with
$call-parent using the links provided by the instance chain.

Figure 6-1 An Instance Chain for /iommu/sbus/SUNW,cgsix

When the chain is no longer needed, the individual instances of the chain may
be closed or the entire chain may be closed. When closing the entire chain, the
chain is closed from bottom to top to enable a given node’s close method to
use parental methods.

The current instance is a dynamic entity. It is changed in several different ways
under several different circumstances. Specifically:

• When a package is first created, new-device :
• Creates a new device node that is a child of the active package.
• Makes that new node the active package.
• Makes that new node’s instance the current instance.

This causes any instance data/methods that are subsequently created (prior
to the execution of finish-device) to be added to this node, and enables
their later execution when an instance of this node is made current.

Instance Chain Device Tree

data

data

data

my-parent

/

iommu

/sbus

my-parent

dataihandle /SUNW,cgsix

my-parent

60 Writing FCode 3.x Programs —November 1997

6

• When open-dev creates an instance chain, the current instance is
repeatedly changed as each node of the instance chain is added to the
instance chain (i.e. the root of the chain is first made current while it is being
added to the instance chain, then the first child node is made current while
it is added to the chain, and so on down to the leaf node). Immediately
before terminating, open-dev restores the value in my-self to the value
that my-self contained prior to the execution of open-dev . open-dev
returns the ihandle of the leaf node of the newly-created instance chain. By
manipulating the current instance in this way, open-dev is able to use
instance-specific data as required.

• To execute a method not contained in the current instance, $call-method
(or one of its derivatives) is used. $call-method :
• Saves the current value of my-self .
• Stores its ihandle argument in my-self (thus changing the current

instance).
• Executes the specified method.
• Restores the saved value of my-self .

• From the user interface, you can change the current instance by setting the
value of my-self directly. This is most useful in a debugging scenario
when testing the methods of an opened package. (The select-dev method
discussed in Chapter 4, “Debugging and Testing FCode Programs” resets
my-self for just this purpose.)

If a package is in the node /packages , $open-package can be used to create
an instance of the package. Unlike packages opened with open-dev , packages
opened with $open-package are opened without opening their ancestors.
Each time a package instance is created by $open-package , that instance is
attached to the one that called $open-package . Figure 6-2 shows the
modified instance chain that results when the /iommu/sbus/ledma/le
instance opens the obp-tftp support package using $open-package .

Packages 61

6

Notice that the only additional instance created is one for the obp-tftp
package, and that this instance is linked to the /iommu/sbus/ledma/le
instance. If another instance of obp-tftp were opened by an instance in
another instance chain, the resulting instance of obp-tftp would have no
association with the instance shown in Figure 6-2.

Figure 6-2 An Instance Chain for /iommu/sbus/ledma/le with obp-tftp Support

Package Data

Package data is named, read/write RAM storage used by package methods.
Individual data items can be either initialized or zero-filled and either static or
instance-specific.

Instance Chain Device Tree

data

data

data

my-parent

ihandle

/

iommu

sbus

my-parent

packages

obp-tftp

data

data ledma

data le

62 Writing FCode 3.x Programs —November 1997

6

• Static data can be accessed at any time, regardless of whether or not the
package has been opened. There is only one copy of each static data item,
regardless of the number of currently-open instances of that package. The
process of opening a package does not in itself alter the values of static data
items (although you can, of course, write code to do so explicitly).

• Instance-specific data can only be accessed when a previously-opened
instance of its package is the current instance. The process of opening a
package creates copies of its instance-specific data items and establishes
their initial values.

• Zero-filled data items are set to zero when a package is opened.

• Initialized data items are set to possibly-non-zero initial values when a
package is opened. The initial values are established during the creation of
the package.

Initialized data items are created by the Forth defining words defer , value
and variable . Uninitialized data items are created by buffer: . Preceding
the defining word with the Forth word instance causes the defining word to
create an instance-specific item; otherwise it creates a static data item.

Static data items are used for information that applies equally to all instances
of the associated package. For example, virtual addresses of shared hardware
resources, reference counts and hardware dependent configuration data are
often stored as static data.

Instance-specific data items are used for information that differs between
instances of the same package. For example, a package that provides a driver
for a SCSI host adapter might have several simultaneous instances on behalf of
several different target devices; each instance might need to maintain
individual state information (e.g. the negotiated synchronous transfer rate) for
its target.

Static and Instance-specific Methods

There are several different kinds of package methods, depending on the
environment in which they are called and their use of static and instance-
specific data.

Static methods do not:

Packages 63

6

• Access instance-specific data either directly or by calling other instance-
specific methods.

• Attempt to call methods of their parent.

Static methods can be called when there is no open instance of their package.
When there is no instance, there is also no parent instance (which is the reason
for the prohibition about calling parent methods).

The most important example of static methods is the decode-unit method
which is called by the system during the process of searching the device tree
without opening all of the nodes that are encountered.

Instance-specific methods are permitted to:

• Use instance-specific data

• Call the methods of their parent.

There is no structural difference between static and instance-specific methods.
The concept of static methods is just a terse way of saying that some methods
have to obey the restrictions outlined above. Instance-specific methods are the
usual case; the static methods restrictions apply only to a very small set of
special-purpose methods.

Execution Tokens

A method is identified by its execution token, xt . For words in the package
being defined, the Forth word ['] returns an execution token. The execution
token is returned by find-method for other packages. (See the following
sections for more details.)

The execution token is used to execute a method in another package, and also
to schedule a method for automatic, repeated execution by the system clock
interrupt. See the alarm FCode.

Intra-package Calling Methods

A package can call its own methods directly simply by naming the target
method in a Forth colon definition. Such calls require neither a call-time name
search nor a change of the current instance. The binding of name to execution
behavior occurs at compile time, so subsequent redefinitions of a name do not
affect previously-compiled references to old versions of that named method.

64 Writing FCode 3.x Programs —November 1997

6

Infrequently, it may be desirable to call a method in the same package so that
the name search happens at run-time. To do so, use either $call-method or
find-method /call-package with my-self as the ihandle argument.
(See the next section for details.)

Accessing Other Packages

Packages often use methods of other previously-defined packages. There are
two types of packages whose methods can be used directly:

• The parent of the package being defined.

• Support packages in the /packages node of the device tree.

phandle and ihandle

A package definition is identified by its phandle . find-package returns the
phandle of a package in the /packages node. The phandle can then used to
open that support package or to examine its properties. For example:

returns either false (package not found), or phandle true .

Opening a support package with open-package returns an ihandle . This
ihandle is used primarily to call the methods of the support package, and to
close the support package when it is no longer needed.

The ihandle of the current instance is returned by my-self . An instance
argument string must be supplied when opening any package (it may be null).
The instance argument string can then be accessed from in the opened package
with the my-args FCode (see below for details). For example (assume that
phandle has already been found):

If the package cannot be opened, an ihandle of 0 is returned.

" deblocker" find-package

" 5,3,0" phandle open-package (ihandle)

Packages 65

6

$open-package includes the functions of find-package and open-
package . In most cases, it can be used in their place. The primitive functions
find-package and open-package are rarely used directly, although find-
package is sometimes used when it’s necessary to examine a support
package’s properties without opening it.

The following FCode functions are used to find and open packages (in the
/packages node):

Here is an example of using $open-package :

Table 6-1 Packaage Access FCodes

Name Stack Diagram Description

find-package (name-str name-len -- false | phandle true) Finds the package specified by the
string name-str name-len in
/packages . Returns the phandle of
the package, or false if not found.

open-package (arg-str arg-len phandle -- ihandle | false) Opens an instance of the package
phandle. Returns ihandle for the
opened package, or false if
unsuccessful. The package is opened
with an instance argument string
specified by arg-str arg-len.

$open-package (arg-str arg-len name-addr name-len -- ihandle | false) Shortcut word to find and open the
package named name-str name-len in
/packages in one operation.
Returns ihandle for the opened
package, or false if unsuccessful.

" 5,3,0" " deblocker" $open-package (ihandle | 0)

66 Writing FCode 3.x Programs —November 1997

6

Don’t confuse phandle with ihandle . Here’s how to use them:

1. Open the package with $open-package which returns an ihandle .

2. Use the ihandle to call the methods of the package.

3. When done calling the methods of the package, use the ihandle to close
the instance of the package with close-package .

A package’s phandle is primarily used to access the package’s properties
which are never instance-specific. Use ihandle>phandle to find the
phandle of an open package. my-self and my-parent return ihandle s,
which can be converted into phandle s with ihandle>phandle .

Inter-package Calling Methods

The following functions enable the calling of methods of other packages:

Table 6-2 Manipulating phandles and ihandles

Name Stack Diagram Description

my-self (-- ihandle) Return the instance handle of the currently-executing package instance.

my-parent (-- ihandle) Return the instance handle of the parent of the currently-executing
package instance.

ihandle>phandle (ihandle -- phandle) Convert an instance handle to a package handle

close-package (ihandle --) Close a package instance.

Table 6-3 Functions Enabling Calling Other Packages’ Methods

Name Stack Diagram Description

$call-method (… method-str method-len ihandle -- ???) Shortcut word that finds and executes the method
method-str method-len in the package instance
ihandle.

call-package (… xt ihandle -- ???) Executes the method xt in the instance ihandle.

Packages 67

6

$call-parent is used most-often, but is the least flexible of the above
methods; it is exactly equivalent to the sequence
“my-parent $call-method ”. Most inter-package method calling involves
calling the methods of one’s parent; $call-parent conveniently encapsulates
the process of doing so.

$call-method can call methods of non-parent packages. It is most commonly
used for calling methods of support packages. The ihandle argument of
$call-method identifies the package instance whose method is to be called.

For example:

Both $call-parent and $call-method identify their target method by
name. The method-str method-len arguments denote a text string that $call-
parent or $call-method uses to search for a method of the same name in
the target instance’s list of methods. Obviously, this run-time name search is
not as fast as directly executing a method whose address is already known.
However:

1. Most packages have a relatively small number of methods,

2. Systems typically implement a reasonably-efficient name search mechanism,
and

3. Inter-package calls tend to occur relatively infrequently.

$call-paren (… method-str method-len -- ???) Executes the method method-str method-len in the
parent’s package instance. Identical to calling
my-parent $call-method .

execute-
device-method

(… dev-str dev-len method-str method-len
 -- … false | ??? true)

Executes the method method-str method-len in the
package named dev-str dev-len. Returns false if the
method could not be executed.

find-method (method-str method-len phandle
 -- false | xt true)

Finds the method named method-str method-len in
the package phandle. Returns false if not found.

$call-parent
$open-package $call-method

Table 6-3 Functions Enabling Calling Other Packages’ Methods

Name Stack Diagram Description

68 Writing FCode 3.x Programs —November 1997

6

Consequently, the length of time spent searching is usually not a limiting
factor.

A more complete example demonstrates the use of $open-package and
$call-method :

When method name search time is a limiting factor, use find-method to
perform the name search once. Then use call-package repetitively
thereafter. find-method returns, and call-package expects, an execution
token by which a method can be called quickly.

A more complex example that is somewhat faster if called repeatedly:

Because device access time often dominates I/O operations, the benefit of this
extra code probably won’t be noticed. It is only justified if the particular
method will be called often.

: add-offset (x.byte# -- x.byte#')
 my-args " disk-label" $open-package(ihandle)
 " offset" rot (name-addr name-len ihandle)
 $call-method
;

0 value label-ihandle \ place to save the other package’s ihandle
0 value offset-method \ place to save found method's xt

: init (--)
 my-args " disk-label" $open-package (ihandle) to label-ihandle
 " offset" label-ihandle ihandle>phandle (name-addr name-len phandle)
 find-method if
 (xt) to offset-method
 else ." Error: can't find method"
 then
;
: add-offset (d.byte# -- d.byte#')
 offset-method label-ihandle call-package
;

Packages 69

6

Another use of find-method is to determine whether or not a package has a
method with a particular name. This allows you to add new methods to an
existing package interface definition without requiring version numbers to
denote which new or optional methods a package implements.

With $call-method and $call-parent , the method name search is
performed on every call. Consequently, if a new method (either one with a new
name or with the same name as a previously-existing name) is created, any
subsequent uses of $call-method or $call-parent naming that method
will find the new one. On the other hand, find-method binds a name to an
execution token and subsequent redefinitions of that name do not affect the
previous execution token, so subsequent uses of $call-method continue to
call the previous definition. In practice, this difference is rarely important, since
it is quite unusual for new methods to be created when a package is already
open. The one case where methods are routinely redefined under these
circumstances is when a programmer does it explicitly during a debugging
session; making such redefinitions is a powerful debugging technique.

All of the method calling functions described above change the current
instance to the instance of the callee for the duration of the call, restoring it to
the instance of the caller on return.

execute-device-method and apply

In addition to the inter- and intra-package method calling techniques just
described, there is another way of calling methods.
execute-device-method and its variant apply allow a user to invoke a
method of a particular package as a self-contained operation without explicitly
opening and closing the package as separate operations.
execute-device-method first opens all the package’s parents, then calls the
named method, and then closes all the parents. apply performs the same
functions as execute-device-method , but it takes its arguments from the
command line instead of from the Forth stack.

execute-device-method and apply are most often used for methods like
selftest . selftest methods are usually called with the test user interface
command, which is usually implemented with execute-device-method .

Methods that are intended to be called with execute-device-method or its
equivalent must not assume that the package’s open method has been called,
because execute-device-method does not call the open method of the

70 Writing FCode 3.x Programs —November 1997

6

package containing the target method although it opens all of the package’s
parents. Consequently, the target method must explicitly perform whatever
initialization actions it requires, perhaps by calling the open method in the
same package, or by executing some sub-sequence thereof. Before exiting, the
target method must perform the corresponding close actions to undo its
initialization actions.

execute-device-method was intentionally designed not to call the target’s
open and close methods automatically since the complete initialization
sequence of open is not always appropriate for methods intended for use with
execute-device-method . In particular, an open method usually puts its
device in a fully operational state, while methods like selftest often need to
perform a partial initialization of selected device functions.

Plug-in Device Drivers
Plug-in device drivers are plug-in packages implementing simple device drivers.
The interfaces to these drivers are designed to provide basic I/O capability.

Plug-in drivers are used for such functions as booting the operating system
from a device or displaying text on a device before the operating system has
activated its own drivers. Plug-in drivers are added to the device tree during
the probing phase of the OpenBoot PROM start-up sequence.

Plug-in drivers must be programmed to handle portability issues, such as
hardware alignment restrictions and byte ordering of external devices. With
care, you can write a driver so that it is portable to all of the systems in which
the device could be used.

Plug-in drivers are usually stored in PROM located on the device itself, so that
the act of installing the device automatically makes its plug-in driver available
to the OpenBoot PROM.

For devices with no provision for such a plug-in driver PROM, the plug-in
driver can be located elsewhere, perhaps in PROM located on a different
device or in an otherwise unused portion of the main OpenBoot PROM.
However, use of such a strategy limits such a device to certain systems and/or
system configurations.

Packages 71

6

Common Package Methods
Different packages have different collections of methods depending on the
job(s) that the packages have to do. The following four methods are found in
many device drivers. None of them can be considered to be required, however,
since the nature of a given driver governs the methods that the driver needs.

open and close are found in many drivers, but even they are not universally
required. open and close are needed only if the device will be used with
open-dev or another method that calls open-dev . Any device that has read
and/or write methods needs open and close , as does any parent device
whose children could possibly be opened.

Another way of looking at this is that open and close are needed for devices
that are used to perform a series of related operations distributed over a period
of time, relative to some other calling package. open initializes the device state
that is maintained during the series of later operations, and close destroys
that state after the series is complete.

To illustrate, a series of write calls generated by another package is such a
series. Conversely, selftest is not such a series; selftest happens
“atomically” as an indivisible self-contained operation.

Basic Methods

open

 (-- ok?)

Prepares a package for subsequent use. open typically allocates resources,
maps, initializes devices, and performs a brief sanity check (making no check
at all may be acceptable). true is returned if successful, false if not. When
open is called, the parent instance chain has already been opened, so this
method may call its parent’s methods.

close

(--)

72 Writing FCode 3.x Programs —November 1997

6

Restores a package to its “not in use” state. close typically turns off devices,
unmaps, and de-allocates resources. close is executed before the package’s
parent is closed, so the parent’s methods are available to close . It is an error
to close a package which is not open.

Recommended Methods

The following methods are highly recommended.

reset

(--)

Put the package into a “quiet” state. reset is primarily for packages that do
not automatically assume a quiet state after a hardware reset, such as devices
that turn on with interrupt requests asserted.

selftest

(-- error#)

Test the package. selftest is invoked by the OpenBoot test word. It returns
0 if no error is found or a package-specific error number if a failure is noticed.

test does not open the package before executing selftest , so selftest is
responsible for establishing any state necessary to perform its function prior to
starting the tests, and for releasing any resources allocated after completing the
tests. There should be no user interaction with selftest , as the word may be
called from a program with no user present.

If the device was already open when selftest is called, a new instance will
still be created and destroyed. A well-written selftest should handle this
possibility correctly, if appropriate.

If the device is already open, but it is not possible to perform a complete
selftest without destroying the state of the device, the integrity of the open
device should take precedence, and the selftest process should test only those
aspects of the device that can be tested without destroying device state. The
inability to fully test the device should not be reported as an error result; an
error result should occur only if selftest actually finds a device fault.

Packages 73

6

The "device already open" case happens most commonly for display devices,
which are often used as the console output device, and thus remain open for
long periods of time. When testing a display device that is already open, it is
not necessary to preserve text that may already be on the screen, but the device
state should be preserved to the extent that further text output can occur and
be visible after selftest exits. Any error messages that are displayed by the
selftest method will be sent to the console output device, so when testing an
already-open display device, such error messages should be avoided during
times when selftest has the device in a state where it is unable to display
text.

selftest is not executed in an open/close pair. When selftest executes, a
new instance is created (and destroyed). It will have its own set of variables,
values, and so forth. These quantities are not normally shared with an instance
opened with the normal open routine for the package.

Note – selftest should be written to do its own mapping and unmapping.

Package Data Definitions
The following examples show how to create static data items:

The data areas defined above are shared among all open instances of the
package. If a value is changed, for instance, the new value will persist until it
is changed again, independent of the creation and destruction of package
instances.

Any open instance of a package can access and change the value of a static
data item, which changes it for all other instances.

variable bar
5 value grinch
defer stub
create ival x , y , z ,
7 buffer: foo
ival foo 7 move \ One way to initialize a buffer

74 Writing FCode 3.x Programs —November 1997

6

The following examples show how to create instance-specific data items,
whose values are not shared among open instances:

Instance-specific data areas are re-initialized when a package instance is
created (usually by opening the package), so each instance gets its own copy of
the data area. For example, changes to bar in one instance will not affect the
contents of it in another instance. (Note that create operates across all the
instances, and cannot be made instance-specific.)

The total amount of data space needed for a package’s instance-specific data
items is remembered as part of the package definition when finish-device
finishes the package definition. Also, the contents of all the variable s,
value s, and defer s at the time finish-device executes are stored as part
of the package definition.

An instance of the package is created when that package is opened. Data space
is allocated for that instance (the amount of which was remembered in the
package definition). The portion of that data space created with variable ,
value , or defer is initialized from the values stored in the package definition.
Data space created with buffer: is set to zero.

You can add new methods and new properties to a package definition at any
time, even after finish-device has been executed for that package. To do so,
select the package and create definitions or properties.

However, you cannot add new data items to a package definition after
finish-device has been executed for that package. finish-device sets
the size of the data space for that package, and subsequently the size is fixed.

Instance Arguments and Parameters
An instance argument (my-args) is a string that is passed to a package when
it is opened. The string may contain parameters of any sort, based on the
requirements of the package, or may simply be a null-string if no parameters
are needed. A null string can be generated with either " " or 0 0 .

instance variable bar
5 instance value grinch
instance defer stub
7 instance buffer: foo

Packages 75

6

The instance argument passed can be accessed from inside the package with
the my-args FCode.

Note – A package is not required to inspect the passed arguments.

If the argument string contains several parameters separated by delimiter
characters, you can extract the subsections from the package with left-
parse-string . You can use any character as the delimiter; a comma is
commonly used for this.

Note – Avoid using blanks or the / character, since these will confuse the
parsing of pathnames.

A new value for my-args is passed when a package is opened. This can
happen under a number of circumstances:

1. The my-args string will generally be null when FCode on a Plug-in card is
interpreted automatically by the OpenBoot system at power-on.

2. The my-args string is set by a parameter to begin-package , which is
used to set up the device tree when Forth source code is downloaded and
interpreted interactively.

3. The my-args string can be set with set-args before a particular slot is
probed, if probing is being controlled from nvramrc .

The above three instances happen only once, when the package FCode is
interpreted for the first time. If you want to preserve the initial value for
my-args , the FCode program should copy it into a static buffer to preserve the
information.

Whenever a package is re-opened, a new value for my-args is supplied. The
method for supplying this new value depends on the method used to open the
package, as described below.

• The instance argument (my-args) is supplied as a string parameter to the
commands open-package or $open-package .

76 Writing FCode 3.x Programs —November 1997

6

• User Interface commands, such as open-dev , execute-device-method
and test , supply the entire pathname to the device being opened. This
approach lets an instance argument be included in the pathname. For
example, to open the SBus device SUNW,bwtwo with the argument string
5,3,0 , enter:

Here is a more complicated (and fictitious) example:

Here the string test is passed to the SUNW,fremly package as it is opened,
the string print is passed to the grumpin package as it is opened, and the
string 1034,5 is passed to the SUNW,fht package as it is opened.

Package Addresses

A package’s address relative to its parent package is another piece of
information available to a package. Again, there are two main ways to pass this
address to the package:

• Part of the pathname of the package

• A string parameter given to the probe words

As an example of the first method, suppose the following package is being
opened:

Then the address of the /sd package relative to the /esp package is 3,0 .

ok " /sbus/SUNW,bwtwo:5,3,0" open-dev
ok

ok " /sbus/SUNW,fremly:test/grumpin@7,32:print/SUNW,fht:1034,5"
ok open-dev
ok

ok " /sbus/esp/sd@3,0:b" open-dev

Packages 77

6

The package can find its relative address with my-unit , which returns the
address as a pair of numbers. The first number (high) is the number before the
comma in the example above, and the second number (low) is the number after
the comma. Note that these are numbers, not strings.

As an example of the second method, suppose a test version of an FCode
package is being interpreted:

Here the my-args parameters for the new FCode are null, the initial address is
3,0 and it will be placed under the /sbus node.

The initial address can be obtained through my-address and my-space .
Typically, you use my-space and my-address (plus an offset) to create the
package’s "reg" property, and also to map in needed regions of the device.

Package Mappings

Mappings set up by a package persist across instances unless they are
explicitly unmapped. It is usually best for each new instance to do its own
mappings, being sure to unmap resources as they are no longer needed.

nvramrc

Machines that support packages will generally also support the nvramrc
facility. nvramrc is a special area in the NVRAM that can contain user interface
commands to be executed by OpenBoot as the machine powers on. These
commands can be used to specify behavior during start up or to define changes
for later execution.

ok 0 0 " 3,0" " /sbus" begin-package

78 Writing FCode 3.x Programs —November 1997

6

For example: assume a card in SBus slot #2 (named XYZ,me) needs custom
attributes set by the user. nvramrc contents would include:

After editing nvramrc , turn on the NVRAM parameter use-nvramrc? and
reset the machine to activate the contents of nvramrc . See nvedit in
Chapter 14, “FCode Dictionary” for more about editing nvramrc contents.

Modifying Package Properties

To modify the properties of a package, first probe the package to get it into
memory, then create or modify properties by executing property or one of its
short-hand forms. Normally, probing is done automatically after the nvramrc
commands are executed.

See Chapter 7, “Properties“, for more information about properties.

Standard Support Packages
The /packages node of the device tree is unique. It has children, but instead
of describing a physical bus, /packages serves as a parent node for support
packages. The children of /packages are general-purpose software packages
not attached to any particular hardware device. The “physical address space”
defined by /packages is a trivial one: there are no addresses. Its children are
distinguished by name alone.

The children of /packages are used by other packages to perform commonly
used functions. They may be opened with the FCodes open-package or
$open-package , and closed with close-package . IEEE Standard 1275-1994
defines three support packages that are children of /packages .

probe-all
dev /sbus/XYZ,me
" type5" encode-string " xyzmode" property
device-end
install-console
banner

Packages 79

6

Sun Disk-Label Support Package

Disk (block) devices are random-access, block-oriented storage devices with
fixed-length blocks. Disks may be subdivided into several logical partitions, as
defined by a disk label—a special disk block, usually the first one, containing
information about the disk. The disk driver is responsible for appropriately
interpreting a disk label. The driver may use the standard support package
/disk-label if it does not implement a specialized label.

/disk-label interprets a standard Sun disk label, reading any partitioning
information contained in it. It includes a first-stage disk boot protocol for the
standard label. load is the most important method defined by this package.

This package uses the read and seek methods of its parent (in practice, the
package which opens this one to use the support routines). /disk-label
defines the following methods:

80 Writing FCode 3.x Programs —November 1997

6

TFTP Booting Support Package

The /obp-tftp package implements the Internet Trivial File Transfer Protocol
(TFTP) for use in network booting. It is typically used by a network device
driver for its first stage network boot protocol. Again, load is the most
important method defined by this package.

Table 6-4 Sun Disk Label Package Methods

Name
Stack
Diagram Description

open (-- flag) Reads and verifies the disk label accessed by the read and seek
methods of its parent instance. Selects a disk partition based on the text
string returned by my-args . For the standard Sun disk label format, the
argument is interpreted as follows:

. . Argument Partition

. . <none> 0

. . a or A 0

. . b or B 1

.

. . h or H 7

. . Returns -1 if the operation succeeds. As a special case, if the argument is
the string “nolabel ”, open returns -1 (success) without attempting to
read or verify the label.

close (--) Frees all resources that were allocated by open .

load (adr -- size) Reads a stand-alone program from the standard disk boot block location
for the partition specified when the package was opened. Puts the
program at memory address adr , returning its length size. For the
standard Sun disk format, the stand-alone program is 7.5K bytes
beginning 512 bytes from the start of the partition.

offset (x.rel-- x.abs) Returns the 64-bit absolute byte offset x.abs corresponding to the 64-
bit partition-relative byte offset x.rel . In other words, adds the byte
location of the beginning of the selected partition to the number on the
stack.

Packages 81

6

This package uses the read and write methods of its parent, and defines the
following methods:

Deblocker Support Package

The /deblocker package makes it easy to implement byte-oriented device
methods, using the block-oriented or record-oriented methods defined by
devices such as disks or tapes. It provides a layer of buffering between the
high-level byte-oriented interface and the low-level block-oriented interface.
/deblocker uses the max-transfer , block-size , read-blocks and
write-blocks methods of its parent, and defines the following methods:

Table 6-5 TFTP Package Methods

Name
Stack
Diagram Description

open (-- flag) Prepares the package for subsequent use, returning -1 if the operation succeeds and 0
otherwise.

close (--) Frees all resources that were allocated by open .

load (adr -- size) Reads the default stand-alone program from the default TFTP server, putting the program at
memory address adr and returning its length size. For the standard Sun TFTP booting protocol,
RARP (Reverse Address Resolution Protocol) is used to acquire the IP address corresponding
to the system’s MAC address (equivalent to its Ethernet address). From the IP address, the
default file name is constructed, of the form <Hex-IP-Address>.<architecture> (for example,
C0092E49.SUN4C). Then obp-tftp tries to TFTP read that file, first trying the server that
responded to the RARP request, and if that fails, then broadcasting the TFTP read request.

Table 6-6 Deblocker Package Methods

Name Stack Diagram Description

open (-- flag) Prepares the package for subsequent use, allocating the buffers used by the
deblocking process based on the values returned by the parent instance’s
max-transfer and block-size methods. Returns -1 if the operation
succeeds, 0 otherwise.

close (--) Frees all resources that were allocated by open .

82 Writing FCode 3.x Programs —November 1997

6

read (adr len -- actual) Reads at most len bytes from the device into the memory buffer beginning at
adr . Returns actual , the number of bytes actually read, or 0 if the read
operation failed. Uses the parent’s read-blocks method as necessary to
satisfy the request, buffering any unused bytes for the next request.

write (adr len -- actual) Writes at most len bytes from the device into the memory buffer beginning
at adr . Returns actual , the number of bytes actually read, or 0 if the write
operation failed. Uses the parent’s write-blocks method as necessary to
satisfy the request, buffering any unused bytes for the next request.

seek (x.position -- flag) Sets the device position at which the next read or write will take place.
The position is specified by the 64-bit number x.position . Returns 0 if the
operation succeeds or -1 if it fails.

Table 6-6 Deblocker Package Methods

Name Stack Diagram Description

83

Properties 7

This chapter describes characteristics of hardware devices, software and user
selections. Properties are associated with the device node in which they are
created and are accessible both by OpenBoot routines and by client programs.
Properties can be inspected and, in some cases, modified.

Each property has a property name and a property value.

• Property names are human-readable strings consisting of one to 31
printable, lower-case letters and symbols not including blanks, “/”, “\”, “:”,
“[“, “]” or “@”. Property names beginning with “+” are reserved for future
use by IEEE Standard 1275-1994.

• Property values specify the contents, or value, of a particular property. The
value is an array of bytes that may be used to encode integer numbers, text
strings, or other forms of information.

Properties are accessed by name. Given a property’s name, it is possible to
determine whether that property has been defined and, if so, what its value is.

Property values are encoded as arrays of zero or more bytes for portability
across machine architectures. The encoding and decoding procedures are
defined by IEEE Standard 1275-1994. The encoding format is independent of
hardware byte order and alignment characteristics. The encoded byte order is
big-endian and the bytes are stored in successive memory locations without
any padding.

84 Writing FCode 3.x Programs —November 1997

7

The format of the property value array associated with a given property name
is specific to that property name. There are five basic types of property value
array formats:

• Flag

Since property value arrays may be of zero length, properties may convey
“true” or “false” information by their presence or absence.

• Byte

An array of 1 or more bytes is stored in a property value array as a series of
sequential bytes in the property value array.

• 32-bit integer

A 32-bit integer is stored in a property value array in four successive bytes.
The most significant byte of the integer in the next available address in the
property value array is followed by the high middle, low middle and least
significant bytes of the integer (in other words, in big-endian format).

• Text string

A text string of n printable characters is stored in a property value array in
n+1 successive locations by storing the string in the first n locations
followed by a byte of zero value (in other words, a null terminated string).

• Composite

A composite value is made up of the concatenation of encoded bytes,
encoded 32-bit integers and/or encoded strings. Each such primitive is
stored immediately after the preceding primitive with no intervening space
(in other words, the items are packed). Here are examples of composite
values:

a. physical address range. Encoded as 4 integers: phys.lo phys.mid phys.hi size

b. array. The concatenation of n items of some type.

The standard defines a number of standard properties with specified names
and value formats. If a package uses one of these standard properties then the
value format of the property must be as defined by the standard. Packages may
define other properties whose names do not conflict with the list of standard
properties. Such newly defined properties may have any value format.

Properties 85

7

Properties may be created by FCode programs. The CPU’s OpenBoot is able to
use property names that tell it such things as the device type (e.g. disk, tape,
network, display, and so on) to determine how to use the device (if at all)
during the boot process.

Solaris recognizes other property names that give information for configuring
the operating system automatically. These properties include the driver name,
the addresses and sizes of the device’s registers, and interrupt levels and
interrupt vectors used by the device.

Other properties may be used by individual operating system device drivers.
The names of such properties and the interpretation of their values is subject to
agreement between the writers of the FCode programs and the operating
system driver, but may otherwise be arbitrarily chosen. For example, a display
device might declare width, height, and depth properties to allow a single
operating system driver to automatically configure itself for one of several
similar but different devices.

A package’s properties identify the characteristics of the package and its
associated physical device, if any. You can create a property either with the
property FCode, or with the name, reg , model , and device-type FCodes,
described below.

For example, a frame buffer package might export its register addresses,
interrupt levels, and frame buffer size. Every package has an associated
property list, which is arbitrarily extensible. The user interface
command.properties displays the names and values of the current node’s
properties.

For example, if a property named foo is created in a device node which
already has a property named foo , the new property supersedes the old one.

New properties can be added during the lifetime of a product. For backward
compatibility, an FCode or device driver program that needs the value of a
particular property should determine whether or not the property exists, and if
not the program should supply its own default value.

Standard FCode Properties
IEEE Standard 1275-1994 defines the following standard properties. A package
should never create any property using any of the following names, unless the
defined meanings and structures are used.

86 Writing FCode 3.x Programs —November 1997

7

Standard Property Names

This group of properties applies to all device nodes regardless of type. The
name property is required in all packages. The remaining properties are
optional.

Display Device Properties

Display devices include bit-mapped frame buffers, graphics displays and
character-mapped displays. Display devices are typically used for console
output. The following properties are specific to display devices:

name Name of the package.

reg Package’s registers.

device_type Characteristics that the device is expected to have.

model Manufacturer’s model number.

interrupts Interrupts used by the device.

address Virtual addresses of one or more memory-mapped regions of the device.

compatible List of devices with which this device is compatible.

status Operational status of the device.

character-set Character set (e.g. ISO8859-1).

depth Number of bits in each pixel of the display.

height Number of pixels in the “y” direction of the display.

linebytes Number of pixels between consecutive scan lines of the display.

width Number of pixels in the “x” direction of the display.

big-endian-aperture The big-endian aperture of the frame buffer.

little-endian-aperture The little-endian aperture of the frame buffer.

Properties 87

7

Network Device Properties

Network devices are packet-oriented devices capable of sending and receiving
Ethernet packets. Network devices are typically used for booting.

Memory Device Properties

Memory devices are traditional random-access memory, suitable for temporary
storage of data.

General Properties For Parent Nodes

mac-address Last used network address.

address-bits Number of address bits needed to address this device on the physical layer.

max-frame-size Maximum packet size that the device can transmit at one time.

reg Physical addresses installed in the system.

available Regions of physical addresses that are currently unallocated by OpenBoot.

#address-cells Device node’s address format.

#size-cells Number of cells that are used to encode the size field of a child’s reg property.

ranges Relationship between the physical address spaces of the parent and child nodes.

88 Writing FCode 3.x Programs —November 1997

7

Properties For PCI Parent Nodes

Properties for PCI Child Nodes

The following definitions are specified by the PCI Bus Binding to IEEE
Standard 1275-1994.

Each of the following PCI child node properties is created during the probing
process, after the device node has been created, and before evaluating the
device's FCode (if any). The property values are those found in the standard
PCI configuration registers.

#address-cells The value of this property for a PCI bus node is 3.

#size-cells The value of this property for a PCI bus node is 2, reflecting the 64-bit address
space of PCI.

device_type The value of this property for a PCI bus node is "pci ".

reg For nodes representing PCI-to-PCI bridges, the value denotes the configuration
space address of the bridges's configuration registers. The format is the same as
that for PCI child nodes.
For nodes representing bridges from some other bus to PCI, the format is as
defined for the other bus.

bus-range Specifies the range of bus numbers controlled by this PCI bus.

slot-names Describes the external labeling of add-in slots.

reg This standard property is mandatory for PCI Child nodes.

interrupts The presence of this property indicates that the function represented by this node
is connected to a PCI expansion connector's interrupt line.

alternate-reg Defines alternate access paths for addressable regions.

has-fcode The presence of this property indicates that this node was created by the
evaluation of an FCode program.

assigned-addresses Defines the configuration space's base address and size.

power-consumption Describes the device's maximum power consumption categorized by the various
power rails and the device's power-management state.

Properties 89

7

Unless otherwise specified, each of the following properties has a property
value created by encoding the value contained in the associated hardware
register with encode-int .

• "vendor-id"

• "device-id"

• "revision-id"

• "class-code"

• "interrupts"

This property is present only if the interrupt pin register is non-zero.

• "min-grant"

• "max-latency"

• "devsel-speed"

• "fast-back-to-back"

This property is present only if the fast-back-to-back bit (Bit 7) of the function's
status register is set.

Detailed Descriptions of Standard Properties

#address-cells

Applies only to bus nodes. It specifies the number of cells that are used to
represent a physical address with a bus’ address space.

The value for SBus nodes is 2, for PCI bus nodes is 3.

#size-cells

Applies only to bus nodes. It specifies the number of cells used to represent the
length of a physical address range (in other words, the size field of a child’s
reg property).

The value for SBus nodes is 1, for PCI bus nodes is 2.

90 Writing FCode 3.x Programs —November 1997

7

address

Declares currently-mapped device virtual addresses. It is generally used to
declare large regions of existing mappings in order to enable the operating
system device driver to re-use those mappings, thus conserving system
resources. This property should be created after virtual addresses have been
assigned by mapping operations. Should be deleted when the corresponding
virtual addresses are unmapped.

The property value is an arbitrary number of virtual addresses. The
correspondence between declared addresses and the set of mappable regions of
a particular device is device-dependent.

See also: free-virtual, property.

address-bits

When declared in network devices, indicates the number of address bits
needed to address this device on its network. Used as:

See also: property and Chapter 11, “Network Devices”.

-1 value my-buffers
-1 value my-dma-addr
: map-me (--)
 my-address my-space 1.0000 " map-in" $call-parent (virt1)
 to my-buffers
 2000 " dma-alloc" $call-parent (virt2) to my-dma-addr
 my-buffers encode-int my-dma-addr encode-int encode+
 " address" property
;
: unmap-me (--)
 my-dma-addr 2000 " dma-free" $call-parent
 my-buffers 1.0000 " map-out" $call-parent
 " address" delete-property
;

d# 48 encode-int " address-bits" property

Properties 91

7

alternate-reg
This property describes alternative access paths for the addressable regions
described by the "reg" property. Typically, an alternative access path exists
when a particular part of a device can be accessed either in memory space or in
I/O space, with a separate base address register for each of the two access
paths. The primary access paths are described by the "reg" property and the
secondary access paths, if any, are described by the alternate-reg property.

If no alternative paths exist, the alternate-reg property should not be
defined. If the device has alternative access paths, each entry (in other words,
each phys-addr size pair) of its value represents the secondary access path for
the addressable region whose primary access path is in the corresponding
entry of the "reg" property value. If the number of alternate-reg entries
exceeds the number of "reg" property entries, the additional entries denote
addressable regions that are not represented by "reg" property entries, and
are thus not intended to be used in normal operation; such regions might, for
example, be used for diagnostic functions. If the number of alternate-reg
entries is less than the number of "reg" entries, the regions described by the
extra "reg" entries do not have alternative access paths. An alternate-reg
entry whose phys.hi component is zero indicates that the corresponding region
does not have an alternative access path; such an entry can be used as a place-
holder to preserve the positions of later entries relative to the corresponding
"reg" entries. The first alternate-reg entry, corresponding to the "reg"
entry describing the function's configuration space registers, has a phys.hi
component of zero.

The property value is an arbitrary number of (phys-addr, size) pairs where:

• phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys .

• size is a pair of integers, each encoded with encode-int . The first integer
denotes the most-significant 32 bits of the 64-bit region size and the second
integer denotes the least-significant 32 bits thereof.

assigned-addresses

This property describes the location and size of regions of physical address
space that are specified in the device's configuration space base address
registers.

The property value is zero to six (phys-addr, size) pairs where:

92 Writing FCode 3.x Programs —November 1997

7

• phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys .

• size is a pair of integers, each encoded with encode-int . The first integer
denotes the most-significant 32 bits of the 64-bit region size and the second
integer denotes the least-significant 32 bits thereof.

Each entry (in other words, (phys-addr, size) pair) in this property value
corresponds to one (or two in the case of 64-bit-address memory space) of the
function's configuration space base address registers. The entry indicates the
physical address that has been assigned to that base address register, and the
size in bytes of the assigned region. The size is a power of two (since the
structure of PCI base address registers forces the decoding granularity to
powers of two). Please see the glossary entry for this property for a complete
description of the formatting details.

Note – There is no implied correspondence between the order of entries in the
"reg" property value and order of entries in the assigned-addresses
property value. The correspondence between the "reg" entries and
assigned-addresses entries is determined by matching the fields denoting
the base address register.

available

Defines the resources that are managed by this package (in other words,
/memory or /mmu) that are currently available for use by a client program.

The property value is an arbitrary number of (phys-addr, length) pairs where:
phys-addr is a phys.lo phys.mid phys.hi list of integers encoded with encode-
int .

• length (whose format depends on the package) is one or more integers, each
encoded with encode-int .

big-endian-aperture

This property is associated with display devices. Encoded identically to "reg"
for the corresponding bus, the property value contains the address of the big-
endian aperture of the frame buffer (in other words, the address range through
which the frame buffer can be addressed in big-endian mode).

Properties 93

7

bus-range

This property specifies the range of bus numbers controlled by this PCI bus.
The property value is two integers, each encoded with encode-int . The first
integer represents the bus number of the PCI bus implemented by the bus
controller represented by this node. The second integer represents the largest
bus number of any PCI bus in the portion of the PCI domain that is
subordinate to this node.

big-endian-aperture

Associated with display devices. Encoded identically to reg for the
corresponding bus, the property value contains the address of the big endian
“aperture” of the frame buffer (i.e. the address range through which the frame
buffer can be addressed in big-endian mode).

character-set

When declared in display or serial devices, indicates the recognized character
set for this device. The property value is a text string.

A typical value is “ISO8859-1 ”. 8859-1 is the number of the ISO specification
for that particular character set, which essentially covers the full range of
western European languages. To get a list of possible values, consult the X
registry for which there is an address in the X11R5 documentation.

Used as:

See also: property , Chapter 9, “Display Devices” and Chapter 12, “Serial
Devices”.

class-code

This property contains the value of the class code register from the
configuration space header. This register identifies the generic function of the
device and (in some cases) a specific register-level programming interface.

" ISO8859-1" encode-string " character-set" property

94 Writing FCode 3.x Programs —November 1997

7

The property value is the register's value encoded with encode-int .

See also: PCI Local Bus Specification.

compatible

This property specifies a list of devices with which this device is compatible.
The property is typically used by client programs to determine the correct
driver to use with the device in those cases where the client program does not
have a driver which matches the "name" property.

The property value is the concatenation (with encode+) of an arbitrary
number of text strings (encoded with encode-string) wherein each text
string follows the formatting conventions as described for the "name" property.

Note – Reccommended practice document on the topic “Generic Names” is
available on the Open Firmware Workink Group’s homepage. Recommended
practice documents can be obtained as described in “Related Books” in the
Preface.

See also: name.

class-code

Contains the value of the “Class Code” register from the Configuration Space
header. That register identifies the generic function of the device and (in some
cases) a specific register-level programming interface.

The property value is the register’s value encoded with encode-int .

See also: PCI Local Bus Specification

depth

Associated with display devices. Encoded with encode-int , the property
value specifies the number of bits in each pixel of the display.

Properties 95

7

device-id

This property contains the value of the device ID register from the
configuration space header. That register identifies the particular device. The
encoding of the register is determined by the device vendor.

The property value is the register's value encoded with encode-int .

See also: PCI Local Bus Specification.

device-id

Contains the value of the “Device ID” register from the Configuration Space
header. That register identifies the particular device. The encoding of the
register is determined by the device vendor.

The property value is the register’s value encoded with encode-int .

See also: PCI Local Bus Specification

device_type

Declares the type of this plug-in device. The type need not be declared, unless
this device is intended to be used for booting. If this property is declared,
using one of the following key values, the FCode program must follow the
required conventions for that particular type of device, by implementing a
specified set of properties and procedures (methods). Used as:

" display" encode-string " device_type" property

96 Writing FCode 3.x Programs —November 1997

7

Defined values for this property are:

See also: device-type , property .

devsel-speed

Contains the value of the “DEVSEL timing” field (Bits 9-10) of the “Status”
register from the Configuration Space header. This field describes the timing of
the DEVSEL# output of the device.

The property value is the register’s value encoded with encode-int . A value
of 0 indicates fast, 1 indicates medium and 2 indicates slow timing.

See also: PCI Local Bus Specification

existing

Specifies all of the regions physical addresses actually installed in the system.

Table 7-1 Standard Device Types

Device Type Device Characteristics

block Random-access, block-oriented device, such as a disk drive, usable as a boot file source. See
Chapter 8, “Block and Byte Devices” for the requirements of this type of device.

byte Random-access, byte-oriented device, such as a tape drive, usable as a boot file source. See
Chapter 8, “Block and Byte Devices” for the requirements of this type of device.

display Frame buffer or other similar display device, usable for message display during booting. See
Chapter 9, “Display Devices” for the requirements of this type of device

memory Random-access memory device. See IEEE Standard 1275-1994 for the requirements of this type of
device.

network Packet-oriented network device, such as Ethernet, can be used as a boot file source. See Chapter 11,
“Network Devices” for the requirements of this type of device.

pci A PCI bus node to which PCI plug-in devices can be attached. See Chapter 10, “Memory-Mapped
Buses” for the requirements of this type of device.

serial Byte-oriented device, such as a serial port, usable for console input and/or console output. See
Chapter 12, “Serial Devices” for the requirements of this type of device.

Properties 97

7

fast-back-to-back

This property should be present only if the fast back-to-back capable field (Bit
7) is set in the status register from the configuration space header. That field
indicates whether the device is capable of accepting fast back-to-back
transactions when the transactions are not to the same agent.

See also: PCI Local Bus Specification.

has-fcode

This property should be present only if this device node creation involved
FCode program evaluation, as opposed to being completely automatically
created from information in configuration registers.

fast-back-to-back

Should be present only if the “Fast Back-to-Back Capable” field (Bit 7) is set in
the status register from the Configuration Space header. That field indicates
whether the device is capable of accepting fast back-to-back transactions when
they are not to the same agent.

See also: PCI Local Bus Specification.

has-fcode

Should be present only if the creation of this device node involved the
evaluation of an FCode program rather than automatic creation from
information in configuration registers.

height

Associated with display devices. Encoded with encode-int , the property
value specifies the number of displayable pixels in the “y” direction of the
display.

98 Writing FCode 3.x Programs —November 1997

7

interrupts

This optional property declares the interrupt level(s) for this plug-in device.
The contents are one or more integers. Note that the bus-level interrupt (not
the CPU-level interrupt) is specified.

For SBus devices, SBus interrupt levels 1-7 are allowed. The correct choice for
your interrupt level will depend on your latency requirements. Typical usage
is: video - SBus level 5, Ethernet - SBus level 4, SCSI and DMA - SBus level 3.
SBus levels 6 and 7 should only be used with great care, otherwise significant
system performance degradation may occur.

Because of previous usage of the intr property instead of the interrupts
property in earlier systems, we recommend that both intr and interrupts
be declared in FCode for SBus cards. However, cards which only declare intr
should continue to work, as current systems automatically generate the
interrupts property for you as required.

To declare a single interrupt (level 5), used as:

To declare two interrupts (levels 3 and 5), used as:

See also: interrupts , property

For PCI devices, this property should be present only if the function
represented by this node is connected to a PCI expansion connector's interrupt
line. The value of this property is determined from the contents of the interrupt
pin register from the configuration space header.

5 encode-int “ interrupts” property

5 encode-int 3 encode-int encode+ “ interrupts” property

Properties 99

7

The property value is the register's value encoded with encode-int . The
defined values are:

The interrupts property is used to report the interrupt pin that the card
uses, strictly within the domain of interrupts defined by the PCI specification.

It is the responsibility of the operating system's PCI bus driver code to
translate the interrupts reported by its children into the interrupt domain of its
parent.

This makes it possible to write portable, system-independent FCode drivers,
because the FCode driver does not need to know system-specific information
about the way that the system handles interrupts. The system-specific
information is known by the code that handles the system component that
actually performs the hardware mapping from PCI interrupt pins to whatever
interrupt facilities exist on the system.

In some cases, the mapping may even be hierarchical. For example, a UPA-to-
PCI bus bridge might translate PCI interrupt pins into UPA interrupt vectors.

See also: PCI Local Bus Specification.

linebytes

Associated with display devices. Encoded with encode-int , the property
value specifies the number of pixels between consecutive scan lines of the
display.

Table 7-2 interrupts Property Value Encoding

Value Description

1 The device uses the INTA# interrupt line

2 The device uses the INTB# interrupt line

3 The device uses the INTC# interrupt line

4 The device uses the INTD# interrupt line

100 Writing FCode 3.x Programs —November 1997

7

little-endian-aperture

This property is associated with display devices. Encoded identically to "reg "
for the corresponding bus, the property value contains the address of the little-
endian aperture of the frame buffer (in other words, the address range through
which the frame buffer can be addressed in little-endian mode).

local-mac-address

Used with devices whose device_type is network , this should be present
only if the device has a built-in, 48-bit, IEEE 802.3-style Media Access Control
(MAC) address. The system may or may not use this address in order to access
this device. Encoded with encode-bytes .

See also: mac-address , "mac-address" , property , and Chapter 11,
“Network Devices”.

mac-address

Must be created by the open method of network devices to indicate the Media
Access Control (MAC) address that this device is currently using. This value
may or may not be the same as any local-mac-address property.
This property is typically used by client programs that determine which
network address was used by the network interface from which the client
program was loaded.

The property value is the six-byte MAC address encoded with encode-byte .
Here’s how it is made up:

1. If a plug-in device has an assigned MAC address from the factory, this
address is published as the value for local-mac-address .

2. The system (based on various factors such as presence or absence of
local-mac-address and/or the value of the NVRAM parameter
local-mac-address?) determines the address for the plug-in device to
use. The value returned by the mac-address FCode is set to this address.

3. The plug-in device then reports the address it is using by publishing the
mac-address property.

Properties 101

7

For example:
For a well-behaved plug-in “network ” device (which has a factory-unique
MAC address but can use another system-supplied MAC address if desired
by the system), the FCode would appear as:

See also: mac-address , "local-mac-address" , property and Chapter 11,
“Network Devices”.

max-frame-size

When declared in “network ” devices, indicates the maximum packet size (in
bytes) that the physical layer of the device can transmit. This property can be
used by client programs to allocate buffers of the appropriate length.

Usage:

See also: property and Chapter 11, “Network Devices”.

max-latency

This property contains the value of the Max_Lat register from the configuration
space header. That register specifies how frequently the device needs to gain
access to the PCI bus. The value is given in units of 250 nanoseconds. A value
of zero indicates that the device has no major requirements for the setting of
the Latency Timers.

The property value is the register's value encoded with encode-int .

See also: PCI Local Bus Specification.

create mac-address 8 c, 0 c, 20 c, 0 c, 14 c, 5e c,
mac-address encode-bytes " mac-address" property
(plus code to "assign" the correct mac-address value into registers)

4000 encode-int " max-frame-size" property

102 Writing FCode 3.x Programs —November 1997

7

min-grant

This property contains the value of the Min_Gnt register from the
configuration space header. That register specifies how long a burst period the
device needs assuming a clock frequency of 33 MHz. The value is given in
units of 250 nanoseconds. A value of zero indicates that the device has no
major requirements for the setting of the Latency Timers.

The property value is the register's value encoded with encode-int .
See also: PCI Local Bus Specification.

model

Identifies the model name and number (including revision) for a device, for
manufacturing and field-service purposes.

The 'model” property is useful to identify the specific piece of hardware (the
plug-in card), as opposed to the name property (since several different but
functionally-equivalent cards would have the same “name” property, thus
calling the same device driver). Although the “model” property is good to
have in general, it generally does not have any other specific purpose.

The property value format is arbitrary, but conventional usage is to begin the
string with the manufacturer’s name (as with the “name” property) and to end
it with the revision level.

Usage:

See also: "name" , model , property.

name

Specifies the manufacturer’s name and device name. All device nodes must
publish this property. The “name” property can be used to match a particular
operating system device driver with the device.

" SUNW,501-1415-1" encode-string " model" property

Properties 103

7

The property value is an arbitrary string. Any combination of one to 31
printable characters is allowed, except for “@”, “:” or “/”. The string may
contain one comma, at most. Embedded spaces are not allowed.

IEEE Standard 1275-1994 specifies three different formats for the
manufacturer’s name portion of the property value where two of those formats
are strongly preferred.

For United States companies that have publicly listed stock, the most practical
form of name is to use the company’s stock symbol (e.g. SUNW for Sun
Microsystems, Inc.). This option is also available to any company in the world
provided that there is no duplication of the company’s stock symbol on either
the New York Stock Exchange or the NASDAQ exchange. If a non-U.S.
company’s stock is traded as an American Depository Receipt (ADR), the ADR
symbol satisfies this requirement. A prime advantage of this form of
manufacturer’s name is that such stock symbols are very human-readable.

Alternatively, a company may obtain an organizationally unique identifier (OUI)
from the IEEE Registration Authority Committee. This is a 24-bit number that
is guaranteed to be unique world-wide. Companies that have obtained an OUI
would use a sequence of hexadecimal digits of the form “0NNNNNN” for the
manufacturer’s name portion of the property. This form of name has the
disadvantage that the manufacturer is not easily recognizable.

Each manufacturer may devise its own format for the device name portion of
the property value.

Here is an example usage:

You may also use the name command to create this property.

See also: name, property , device-name .

page-size

This property specifies the number of bytes in the smallest mappable region of
virtual address space managed by the /mmu package.

" SUNW,bison-printer" encode-string " name" property

104 Writing FCode 3.x Programs —November 1997

7

power-consumption

This property describes the device's maximum power consumption (in
microwatts) categorized by the various power rails and the device's power-
management state (standby or fully-on).

The property value is a list of up to ten integers encoded with encode-int in
the following order:

• Unspecified standby

• Unspecified full-on

• +5V standby

• +5V full-on

• +3.3V standby

• +3.3V full-on

• I/O power standby

• I/O power full-on

• Reserved standby

• Reserved full-on

The unspecified entries indicate that it is unknown how the power is divided
among the various rails. The unspecified entries must be zero if any of the
other entries are non-zero. The unspecified entries are provided so that the
"power-consumption " property can be created for devices without FCode,
from the information on the PRSNT1# and PRSNT2# connector pins.

If the number of integers in the encoded property value is less than ten, the
power consumption is zero for the cases corresponding to the missing entries.
For example, if there are four integers, they correspond to the two unspecified
and the two "+5" quantities, and the others are zero.

Properties 105

7

The following code would create a "power-consumption " property for a
device with +5V standby consumption of 100 mA and +5V full-on
consumption of 2.5A:

ranges

The ranges property is a list of child-to-parent physical address
correspondences required for most hierarchical devices.

ranges is a property for bus devices, particularly those buses whose children
can be accessed with CPU load and store operations (as opposed to buses like
SCSI, whose children are accessed with a command protocol).

The “ranges” property value describes the correspondence between the part
of the physical address space of the bus node’s parent available for use by the
bus node (the parent address space), and the physical address space defined by
the bus node for its children (the child address space).

The “ranges” property value is a sequence of specifications.

• child-phys is a starting address in the child physical address space defined by
the bus node

• parent-phys is a starting address in the physical address space of the parent
of the bus node

• size is the length in bytes of the address range.

The specification means that there is a one-to-one correspondence between the
child addresses and the parent addresses in that range. The parent addresses
given are always relative to the parent’s address space.

0 encode-int 0 encode-int encode+ \ Set unspecified values to zero
500000 encode-int encode+ \ 100 mA@5V = 500,000 uW standby
12500000 encode-int encode+ \ 2.5A@5V = 12,500,000 uW full-on
" power-consumption" property

child-phys parent-phys size

106 Writing FCode 3.x Programs —November 1997

7

Each starting address is represented using the physical address representation
as two 32-bit numbers (one for space and one for offset). size is encoded as
an unsigned integer.

The total size of each such specification is five 32-bit numbers (two for each of
the two addresses, plus one for the size). Successive specifications are encoded
sequentially. A space with length 2**(number of bits in a machine word) is
represented with a size of 0.

The specifications should be sorted in ascending order of the child address.
The address ranges thus described need not be contiguous in either the child
space or the parent space. Also, the entire child space must be described in
terms of parent addresses, but not all of the parent address space available to
the bus device need be used for child addresses (the bus device might reserve
some addresses for its own purposes, for instance).

For example, suppose that a 4-slot 25-bit SBus is attached to a machine whose
physical address space consists of a 32-bit memory space (space=0) and a 32-bit
I/O space (space=1). The SBus slots appear in I/O space at address
0xf800.0000, 0xfa00.0000, 0xfc00.0000, and 0xfe00.0000. In terms of the SBus’s
parent address space, the SBus device has available for its purposes the offsets
from 0xf800.0000 through 0xffff.ffff in space 1 of its parent.

The SBus device defines for its children the spaces 0, 1, 2, and 3, all starting at
offset 0 and running for 0x200.0000 bytes. In this case the SBus device uses all
the address space given to it by its parent for the SBus children, and reserves
none of the addresses for itself. The “ranges” property for the SBus device
would contain the encoded form of the following sequence of numbers:

Here the high components of the child address represent the SBus slot
numbers, and the high component of the parent address represents I/O space.

Table 7-3 Child-Parent Address Relationships

Child Address Parent Address

Space Offset Space Offset Size

0 0 1 f800.0000 200.0000

1 0 1 fa00.0000 200.0000

2 0 1 fc00.0000 200.0000

3 0 1 fe00.0000 200.0000

Properties 107

7

If ranges exists but its value is of 0 length, the bus’s child address space is
identical to its parent address space.

If the ranges property for a particular bus device node is nonexistent, code
using that device should use an appropriate default interpretation. Some
examples include the following:

• SBus node: Missing ranges means that the version of OpenBoot was
created before the ranges property came into existence. Code should
supply the correct ranges based on the machine type, from the finite set of
machines that existed before ranges came into existence.

• Machine node: The machine node has no parent. Therefore the
correspondence between its child and parent address spaces is meaningless,
and there is no need for ranges .

• SCSI host adapter node: The child address space is not directly addressable,
thus ranges would be meaningless.

The distinction between reg and ranges is as follows:

• reg is supposed to represent the actual device registers in the parent
address space. For a bus adapter, this would be such as
configuration/mode/initialization registers.

• ranges represents the correspondence between a bus adapter’s child and
parent address spaces.

Most packages do not need to be concerned with ranges . These properties are
mainly to communicate with stand-alone programs. One exception could be a
bus extender or adaptor.

See also: Chapter 10, “Memory-Mapped Buses”.

For a PCI node in a PowerPC Reference Platform (PPCRP) compliant machine,
the total size of each such specification is five 32-bit numbers (one for the
parent address space, three for the child address space, and one for the size).
Successive specifications are encoded sequentially. A space with length
2**(number of bits in a machine word) is represented with a size of 0.

Sort the specifications in ascending order of child-phys, in accordance with
recommendations. The address ranges thus described need not be contiguous
in either the child space or the parent space. Also, the entire child space must
be described in terms of parent addresses, but not all of the parent address
space available to the bus device need be used for child addresses (the bus
device might reserve some addresses for its own purposes, for instance).

108 Writing FCode 3.x Programs —November 1997

7

In the PPCRP machine example, consider a 4-slot 32-bit PCI bus attached to a
machine whose physical address space consists of a 32-bit “memory” space (Bit
31 = 0) and a 32-bit “I/O” space (Bit 31 = 1).

• ISA I/O space appears in the parent’s “I/O” space at 0x8000.0000; the size is
0x1.0000.

• A reserved block of addresses begins at 0x8001.0000; the size is 0x7f.0000.

• PCI configuration space begins at 0x8080.0000; the size is 0x80.0000. The
configuration registers of the individual PCI slots appear at addresses
0x8080.1000, 0x8080.2000, 0x8080.4000, and 0x8080.8000.

• PCI I/O space begins at 0x8100.0000; the size is 3e80.0000.

• Parity/interrupt vectors begin at 0xbf80.0000; their size is 0x80.0000.

• PCI memory space begins at 0xc000.0000; the size is 3e00.0000.

The PCI device defines:

Configuration spaces for Devices 1 through 4 that each begin at 0x0000.0000;
their size is 0x100 bytes.

ISA I/O space that begins at 0x0000.0000; the size is 0x1.0000.

PCI I/O space that begins at 0x0001.0000; the size is 0x3e80.0000.

A 32-bit, PCI memory space that begins at 0x0000.0000; the size is 0x3e00.0000.

The ranges property for the PCI device would contain the encoded form of
the following sequence of numbers:

Table 7-4 Child-Parent Address Relationships for a PCI Node in a PPCRP Machine

Child Address Parent
Address

Size
Function phys.hi phys.mid phys.lo

SCSI 0000.0800 0000.0000 0000.0000 8080.1000 0000.0800

Slot A 0000.1000 0000.0000 0000.0000 8080.2000 0000.0800

Slot B 0000.1800 0000.0000 0000.0000 8080.4000 0000.0800

Slot C 0000.2000 0000.0000 0000.0000 8080.8000 0000.0800

ISA I/O space 0100.0000 0000.0000 0000.0000 8000.0000 0001.0000

PCI I/O space 0100.0000 0000.0000 0001.0000 8100.0000 3e80.0000

PCI Memory space 0200.0000 0000.0000 0000.0000 c000.0000 3e00.0000

Properties 109

7

Here the phys.hi component of the child address represents the type of address
space and the PCI device numbers; Bit 31 of the parent address represents “I/O
space.” (Please see the PCI Bus Binding to IEEE Standard 1275-1994 for a
detailed description of the encoding of the phys.hi field.)

The code to create this ranges property is:

\ SCSI Configuration Space
0000.0800 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.1000 encode-int encode+
800 encode-int encode+

\ Slot A Configuration Space
0000.1000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.2000 encode-int encode+
800 encode-int encode+

\ Slot B Configuration Space
0000.1800 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.4000 encode-int encode+
800 encode-int encode+

\ Slot C Configuration Space
0000.2000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.8000 encode-int encode+
800 encode-int encode+

\ ISA I/O space
0100.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8000.0000 encode-int encode+
1.0000 encode-int encode+

\ PCI I/O space
0100.0000 encode-int encode+ 0 encode-int encode+ 1.0000 encode-int encode+
8100.0000 encode-int encode+
3e80.0000 encode-int encode+

\ PCI Memory space
0200.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
c000.0000 encode-int encode+
3e00.0000 encode-int encode+
" ranges" property

110 Writing FCode 3.x Programs —November 1997

7

If ranges exists but its value is of 0 length, the bus’s child address space is
identical to its parent address space.

If the ranges property for a particular bus device node is nonexistent, code
using that device should use an appropriate default interpretation. Here are
some examples:

• Root node: The root node has no parent. Therefore the correspondence
between its child and parent address spaces is meaningless, and there is no
need for ranges .

• SCSI host adapter node: The child address space is not directly addressable,
thus ranges would be meaningless.

• For memory-mapped bus devices where a ranges property would be
meaningful, the absence of a ranges property is conventionally interpreted
to mean that the parent and child address spaces are identical.

reg and ranges are differentiated thus:

• reg represents the device registers in the parent address space. For a bus
adapter, this would be such as configuration/mode/initialization registers.

• ranges represents the correspondence between a bus adapter’s child and
parent address spaces.

Most packages do not need to consider ranges . This property is mainly used
for bus bridges. The firmware system does not itself use this property. ranges
is mainly used by operating systems that wish to auto-configure themselves.

See also: Chapter 10, “Memory-Mapped Buses”.

reg

This property declares the location and size of onboard registers for its device.
The FCode program for every plug-in SBus and PCI device must declare this
property.

For SBus, the contents are one or more (phys, size) pairs. Each pair specifies an
addressable region of the device. An FCode PROM at location 0 of the device is
generally not declared, except in the case where there are no other regions to
declare.

Properties 111

7

For an SBus device, to declare two register fields at 10.0000-10.00ff and 20.0000-
20.037f, use the following:

In the first (phys,size) pair for a PCI device, the phys component is the
configuration space address of the beginning of the function's set of
configuration registers; the size component is zero. Each additional (phys,size)
pair specifies the address and characteristics of an addressable region of
memory space or I/O space associated with the function including the PCI
Expansion ROM.

For a PCI device, the order of the pairs should be:

• An entry describing the configuration space for the device.

• An entry for each active base address register (BAR), in configuration space
order, describing the entire space mapped by that BAR.

• An entry describing the Expansion ROM BAR, if the device has an
Expansion ROM.

• An entry for each non-relocatable addressable resource.

In the event that a function has an addressable region that can be accessed
relative to more than one base address register (for example, in memory space
relative to one base register, and in I/O space relative to another), only the
primary access path (typically, the one in memory space) is listed in the "reg "
property, and the secondary access path is listed in the alternate-reg
property.

my-address 10.0000 + my-space encode-phys \ Offset#1

100 encode-int encode+ \ Merge size#1

my-address 20.0000 + my-space encode-phys encode+ \ Merge
offset#2

380 encode-int encode+ \ Merge size#2

” reg” property

112 Writing FCode 3.x Programs —November 1997

7

For PCI, phys is (phys.lo phys.mid phys.hi), encoded with encode-phys , and size
is a pair of integers, each encoded with encode-int . The first integer denotes
the most-significant 32 bits of the 64-bit region size, and the second integer
denotes the least-significant 32 bits thereof.

For example, to declare a PCI device with:

• A register field of size 0x100 in 32-bit memory space that is controlled by the
first 32-bit base address register.

• A register field of size 0x440 in I/O space that is controlled by the second
32-bit base address register. The register field of interest is offset from the
base address register by 0x20.0000.

• A 128Kbyte PCI Expansion ROM.

• A non-relocatable field at 0-fff in I/O space.

use the following:

In some non-PCI cases, the reg command may also be used to create this
property. However, reg may only be used on buses for which #size-cells is one
and only when a single “reg” property component is required. Consequently,
reg is never used with PCI devices which require at least three “reg”
property component—in other words

• One component for the card's configuration space registers

• At least one for the device's functional registers and

hex
my-address my-space encode-phys \ Config space regs
0 encode-int encode+ 0 encode-int encode+
0 0 my-space 0200.0010 or encode-phys encode+ \ Memory space
0 encode-int encode+ 100 encode-int encode+ \ BAR at 0x10
20.0000 0 my-space 0100.0014 or encode-phys \ I/O space
encode+\ BAR at 0x14
0 encode-int encode+ 440 encode-int encode+

0 0 my-space 0200.0030 or encode-phys encode+ \ PCI Expansion ROM
0 encode-int encode+ 2.0000 encode-int encode+ \ memory space
0 0 my-space 8100.0000 or encode-phys encode+ \ Non-relocatable
0 encode-int encode+ 1000 encode-int encode+ \ memory space
" reg" property

Properties 113

7

• One for the PCI Expansion ROM).

Note – The contents of the “reg” property are used by OpenBoot firmware to
determine how large a portion of the system's virtual address space to reserve
for use by the card. It is important that the size arguments be as large as the
actual available addressable resource. If the size argument for a region were to
be declared smaller than that actually available, and if the driver or a user were
to later add a legitimate offset that was larger than size to the base address of
the region, the resulting virtual address might be within the virtual address
space of another card.

See the PCI Bus Binding to IEEE Standard 1275-1994 for the encoding details.

See also: reg , property

revision-id

This property contains the value of the revision ID register from the
configuration space header. That register specifies a device-specific revision
identifier that is chosen by the vendor. Zero is an acceptable value.

The property value is the register's value encoded with encode-int .
See also: PCI Local Bus Specification.

slot-names

This property describes the external labeling of plug-in slots.

The property value is an integer, encoded with encode-int , followed by a list
of strings, each encoded with encode-string .

The integer portion of the property value is a bit mask of available slots; for
each add-in slot on the bus, the bit corresponding to that slot's Device Number
is set. The least-significant bit corresponds to Device Number 0, the next bit
corresponds to Device Number 1, and so on. The number of following strings
is the same as the number of slots; the first string gives the label that is printed
on the chassis for the slot with the smallest Device Number, and so on.

114 Writing FCode 3.x Programs —November 1997

7

status

This optional property indicates the operational status of the device.

Absence of this property means that the operational status of the device is
unknown or okay.

If this property is present, the value is a string indicating the status of the
device, as follows:

Used as:

See also: property .

translations

This property contains an array of (phys-addr, virt-addr, size) entries describing
the address translations currently in use by OpenBoot. Those operating
systems calling on OpenBoot services while taking over the memory
management function must create all translations described by this property’s
value.

Table 7-5 status Property values

 Status Value Meaning

okay The device is believed to be operational.

disabled The device represented by this node is not operational, but it might become operational in the future
(e.g. an external switch is turned off, or something isn’t plugged in).

fail The device represented by this node is not operational because a fault has been detected, and it is
unlikely that the device will become operational without repair. No additional failure details are
available.

fail-xxx The device represented by this node is not operational because a fault has been detected, and it is
unlikely that the device will become operational without repair. “xxx” is additional human-readable
information about the particular fault condition that was detected.

" disabled" encode-string " status" property

Properties 115

7

vendor-id

This property contains the value of the vendor ID register from the
configuration space header. That register identifies the manufacturer of the
device. Vendor identifiers are assigned by the PCI SIG to ensure uniqueness.
0xffff is an invalid value for vendor-id.

The property value is the register’s value encoded with encode-int .

See also: PCI Local Bus Specification.

width

Associated with display devices. Encoded with encode-int , the property
value specifies the number of displayable pixels in the “x” direction of the
display.

Manipulating Properties

Property Creation and Modification

Use the FCode Function property to create new properties or modify values
of existing properties.

There are some special property-publishing FCodes, designed for use in
common situations:

• reg is a quick way to create a “reg” property that describes the location of
the package’s physical resources.

• model is a quick way to create the “model” property.

• device-name is a quick way to create the “name” property.

• delete-property completely removes a property.

Property Values

Various kinds of information can be stored in a property value byte array by
using property encoding and decoding methods. The encoding format is
machine-independent. Property value representation is independent of the
byte organization and word alignment characteristics of a processor.

116 Writing FCode 3.x Programs —November 1997

7

A property’s data type must be recognized by any software that uses it. In
other words, property value data types are not self-identifying. Furthermore,
the presence or absence of a property with a particular name can encode a
true/false flag; such a property may have a zero-length property value.

Property Encoding

There are three FCodes for encoding a basic piece of data into a property value
and one for concatenating the basic pieces of data for a property with multiple
values.

Property Retrieval

There are three property value retrieving words, get-my-property ,
get-inherited-property , and get-package-property .

• Use get-my-property if the property desired exists for the package being
defined.

• Use get-package-property if the property exists in some other package.
In this case, you must first find the phandle of the other package, perhaps
by using find-package .

• Use get-inherited-property if the property exists somewhere in the
chain of parent instances between the package being defined and the root
node of the machine.

Note – Using get-inherited-property can be a bad idea because you
don’t know who supplied the data.

encode-int encodes a number

encode-
string

encodes a string

encode-bytes encodes a sequence of bytes

encode+ is used to concatenate two previously encoded, basic pieces of
data

encode-phys is an FCode that encodes a physical address (hiding all the
relative addressing information)

Properties 117

7

FCode programs often do not retrieve property values. Such programs usually
know the values of their own properties implicitly, and often interact with their
parents by calling well-known parent methods.

For example, suppose a particular SBus FCode package calls DVMA to transfer
data between a device and memory.

It could use my-parent ihandle>phandle get-package-property to
find the value of a property named slave-only . slave-only will be a
property of the parent node of the package being defined, if it exists.

The value of the property is a bit mask of the SBus slots that do not support
DVMA. Then the package would look at my-unit or my-space to get its slot
number. The two pieces of information will tell the package whether or not it
can use DVMA.

Property Decoding

Once a package has found a property’s value, it must decode the value to
forms it can recognize. If the value is the representation of an integer, use
decode-int to generate the number as a binary number on the stack. If the
value is the representation of a string, use decode-string . Both of these
FCodes act as parsers — they will also return the unused portion of the value
for further decoding.

Other kinds of values can be decoded by left-parse-string or package-
specific decoders. Note that the package must be able to decode the value of a
property.

There is no decode-bytes function, but it is easy to synthesize if you need it.

: decode-bytes (addr1 len1 #bytes -- addr len2 addr1 #bytes)
 tuck - (addr1 #bytes len2)
 >r 2dup + (addr1 #bytes addr2) (R: len2)
 r> 2swap
;

118 Writing FCode 3.x Programs —November 1997

7

Property-Specific FCodes
Following is a summary of property-specific FCodes. See the individual
dictionary entries in Chapter 14, “FCode Dictionary”, for more information.

Table 7-6 Property-specific FCodes

Name Stack Diagram Description

Property Creation

property (prop-addr prop-len name-addr name-len --) Create a property named name-addr name-len
with the value prop-addr prop-len.

device-type (addr len --) Shorthand word to create the device_type
property with the value addr len.

model (addr len --) Shorthand word to create the model
property with the value addr len.

name (addr len --) Shorthand macro to create the name property
with the value addr len.

reg (phys.lo … phys.hi size --) Shorthand word to create the reg property.

device-name (addr len --) Shorthand word to create the name property
with the value addr len. Similar to name, but
uses only one FCode instead of creating a
macro.

delete-property (name-addr name-len --) Delete the desired property.

Property Encoding

encode-int (n -- prop-addr prop-len) Converts an integer to a prop-encoded-array.

encode-phys (phys.lo … phys.hi -- prop-addr prop-len) Converts a physical unit pair to a prop-
encoded-array.

encode-string (addr len -- prop-addr prop-len) Converts a text string to a prop-encoded-
array.

encode+ (prop-addr1 prop-len1 prop-addr2 prop-len2
 -- prop-addr prop-len1+2)

Concatenate two prop-encoded-array
structures. They must have been created
sequentially.

encode-bytes (addr len -- prop-addr prop-len) Converts a byte array to a prop-encoded-
array. Similar to encode-string , except no
trailing null is appended.

Property Decoding

decode-int (prop-addr prop-len --
 prop-addr2 prop-len2 n)

Converts a prop-encoded-array string to an
integer.

Properties 119

7

decode-string (prop-addr prop-len --
 prop-addr2 prop-len2 addr len)

Converts a prop-encoded-array string to a
normal string.

Property Retrieval

get-my-property (name-addr name-len --
 true | prop-addr prop-len false)

Returns the prop-encoded-array contents for
the property addr len in the current instance,
or true if not found.

get-package-
property

(addr len phandle --
 true | prop-addr prop-len false)

Returns the prop-encoded-array contents for
the property addr len in the package phandle,
or true if not found.

get-inherited-
property

(addr len -- true | prop-addr prop-len false) Returns the prop-encoded-array contents for
the property addr len, or true if not found.
The current package instance is searched
first. If not found, the parent is searched next,
then the parent’s parent, and so on.

Table 7-6 Property-specific FCodes (Continued)

Name Stack Diagram Description

120 Writing FCode 3.x Programs —November 1997

7

121

Block and Byte Devices 8

Block Devices
Block devices are nonvolatile mass storage devices whose information can be
accessed in any order. Hard disks, floppy disks, and CD-ROMs are examples of
block devices. OpenBoot typically uses block devices for booting.

This device type generally applies to disk devices, but as far as OpenBoot is
concerned, it simply means that the device “looks like a disk” at the OpenBoot
software interface level.

The block device’s FCode must declare the block device type, and implement
the methods open and close , as well as the methods described in “Required
Methods”.

Although packages of the block device type present a byte-oriented interface
to the rest of the system, the associated hardware devices are usually block-
oriented i.e. the device reads and writes data in blocks (groups of, for example,
512 or 2048 bytes). The standard /deblocker support package assists in the
presentation of a byte-oriented interface overlaying a block-oriented interface,
implementing a buffering layer that hides the underlying block length.

Block devices are often subdivided into several logical partitions, as defined by
a disk label - a special block, usually the first one on the device, which contains
information about the device. The driver is responsible for appropriately
interpreting a disk label. The driver may use the standard /disk-label
support package if the device does not implement a specialized label. The
/disk-label support package interprets a system-dependent label format.

122 Writing FCode 3.x Programs —November 1997

8

Since the disk booting protocol usually depends on the label format, the
standard /disk-label support package also implements a load method for
the corresponding boot protocol.

Byte Devices
Byte devices are sequential-access mass storage devices, for example tape
devices. OpenBoot typically uses byte devices for booting.

The byte device’s FCode program must declare the byte device type, and
implement the open and close methods in addition to those described in
“Required Methods”.

Although packages of the byte device type present a byte-oriented interface to
the rest of the system, the associated hardware devices are usually record-
oriented; the device reads and writes data in records containing more than one
byte. The records may be fixed or variable length. The standard /deblocker
support package assists in presenting a byte-oriented interface overlaying a
record-oriented interface, implementing a buffering layer that hides the
underlying record structure.

Required Methods

block-size (-- block-len)

Returns the record size block-len (in bytes) of all data transfers to or from the
device. The most common value for block-len is 512.

This method is only required if the /deblocker support package is used.

load (addr -- size)

load works differently for block and byte devices:

With block devices, it loads a stand-alone program from the device into
memory at addr. size is the size in bytes of the program loaded. If the device can
contain several such programs, the instance arguments returned by my-args
can be used to select the program desired. open is executed before load is
invoked.

Block and Byte Devices 123

8

With byte devices, load reads a stand-alone program from the tape file
specified by the value of the argument string given by my-args . That value is
the string representation of a decimal integer. If the argument string is null,
tape file 0 is used. load places the program in memory at addr, returning the
size of the read-in program in bytes.

max-transfer (-- max-len)

Returns the size in bytes of the largest single transfer that the device can
perform. max-transfer is expected to be a multiple of block-size .

This method is only required if the /deblocker support package is used.

read (addr len -- actual)

Read at most len bytes from the device into memory at addr. actual is the
number of bytes read. If the number of bytes read is 0 or negative, the read
failed. Note that len need not be a multiple of the device’s normal block size.

read-blocks (addr block# #blocks -- #read)

Read #blocks records of length block-size bytes each from the device,
starting at device block block#, into memory at address addr. #read is the
number of blocks actually read.

This method is only required if the /deblocker support package is used.

seek (poslow poshigh -- status) for block; (offset file# -- error?) for byte

seek works differently depending on whether it’s being used with a block or
byte device.

For block devices, seek sets the device position for the next read or write. The
position is the byte offset from the beginning of the device specified by the 64-
bit number which is the concatenation of poshigh and poslow. status is -1 if the
seek fails, and 0 or 1 if it succeeds.

For byte devices, it seeks to the byte offset in file file#. If offset and file# are both
0, rewind the tape. error? is -1 if seek fails, and 0 if seek succeeds.

124 Writing FCode 3.x Programs —November 1997

8

write (addr len -- actual)

Write len bytes from memory at addr to the device. actual is the number of bytes
written. If actual is less than len, the write did not succeed. len need not be a
multiple of the device’s normal block size.

write-blocks (addr block# #blocks -- #written)

Write #blocks records of length block-size bytes each to the device, starting
at block block#, from memory at addr. #written is the number of blocks actually
written.

If the device is not capable of random access (e.g. a sequential access tape
device), block# is ignored.

This method is only required if the /deblocker support package is used.

Block and Byte Devices 125

8

Required Properties

Device Driver Examples
The structure of the device tree for the sample card supported by the sample
device drivers in this chapter is as follows:

Figure 8-1 Sample Device Tree

Table 8-1 Required Properties of Block and Byte Devices

Property Name Sample Value

name " SUNW,my-scsi"

reg list of registers (device-dependent)

device_type block or byte

……

sd st

SUNW,my-scsi

sbus

126 Writing FCode 3.x Programs —November 1997

8

Simple Block Device Driver

Extended Block Device Driver

Code Example 8-1 Simple Block Device Driver

\ This is at a stage where each leaf node can be used only as a non-bootable device.
\ It only creates nodes and publishes necessary properties to identify the device.
fcode-version3
hex
 " SUNW,my-scsi" encode-string " name" property

 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 my-address scsi-offset + my-space /scsi reg

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " sd" encode-string " name" property
 finish-device

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " st" encode-string " name" property
 finish-device
end0

Code Example 8-2 Sample Driver for my-scsi Device

\ It is still a non-bootable device. The purpose is to show how an intermediate stage
\ of driver can be used to debug board during development. In addition to publishing
\ the properties, this sample driver shows methods to access, test and control
\ "SUNW,my-scsi" device.

\ The following main methods are provided for "SUNW,my-scsi" device.
\ open (-- okay?)
\ close (--)
\ reset (--)
\ selftest (-- error?)
fcode-version3
 hex
 headers

 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 d# 25.000.000 constant clock-frequency

Block and Byte Devices 127

8

 : identify-me (--)
 " SUNW,my-scsi" encode-string " name" property
 " scsi" device-type

 my-address scsi-offset + my-space /scsi reg
 ;
 identify-me

 h# 10.0000 constant dma-offset
 h# 10 constant /dma
 -1 instance value dma-chip

 \ methods to access/control dma registers
 : dmaaddress (-- addr) dma-chip 4 + ;
 : dmacount (-- addr) dma-chip 8 + ;
 : dmaaddr@ (-- n) dmaaddress rl@ ;
 : dmaaddr! (n --) dmaaddress rl! ;
 : dmacount@ (-- n) dmacount rl@ ;
 : dmacount! (n --) dmacount rl! ;
 : dma-chip@ (-- n) dma-chip rl@ ;
 : dma-chip! (n --) dma-chip rl! ;
 : dma-btest (mask -- flag) dma-chip@ and ;
 : dma-bset (mask --) dma-chip@ or dma-chip! ;
 : dma-breset (mask --) not dma-btest dma-chip! ;

 external

 \ methods to allocate, map, unmap, free dma buffers
 : decode-unit (addr len -- low high) decode-2int ;
 : dma-alloc (size -- vaddr) " dma-alloc" $call-parent ;
 : dma-free (vaddr size --) " dma-free" $call-parent ;
 : dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ;
 : dma-map-out (vaddr devaddr size --) " dma-map-out" $call-parent ;

 \ Dma-sync could be a dummy routine if the parent device doesn't support.
 : dma-sync (virt-addr dev-addr size --)
 " dma-sync" my-parent ['] $call-method catch if
 2drop 2drop 2drop
 then
 ;

 : map-in (addr space size -- virt) " map-in" $call-parent ;

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

128 Writing FCode 3.x Programs —November 1997

8

 : map-out (virt size --) " map-out" $call-parent ;

 headers
 : dma-open (--)
 my-address dma-offset + my-space /dma map-in to dma-chip
 ;
 : dma-close (--) dma-chip /dma map-out -1 to dma-chip ;

 -1 instance value scsi-init-id
 -1 instance value scsi-chip
 h# 20 constant /mbuf
 -1 instance value mbuf
 -1 instance value mbuf-dma
 d# 6 constant /sense
 -1 instance value sense-command
 -1 instance value sense-cmd-dma
 d# 8 constant #sense-bytes
 -1 instance value sense-buf
 -1 instance value sense-buf-dma
 -1 instance value mbuf0
 d# 12 constant /cmdbuf
 -1 instance value cmdbuf
 -1 instance value cmdbuf-dma
 -1 instance value scsi-statbuf

 \ mapping and allocation routines for scsi
 : map-scsi-chip (--)
 my-address scsi-offset + my-space /scsi map-in to scsi-chip
 ;
 : unmap-scsi-chip (--) scsi-chip /scsi map-out -1 to scsi-chip ;

 \ After any changes to sense-command by CPU or any changes to sense-cmd-dma by
 \ device, synchronize changes by issuing " sense-command sense-cmd-dma /sense
 \ dma-sync " Similarly after any changes to sense-buf, sense-buf-dma, mbuf,
 \ mbuf-dma, cmdbuf or cmdbuf-dma, synchronize changes by appropriately issuing
 \ dma-sync map scsi chip and allocate buffers for "sense" command and status
 : map-scsi (--)
 map-scsi-chip
 /sense dma-alloc to sense-command
 sense-command /sense false dma-map-in to sense-cmd-dma
 #sense-bytes dma-alloc to sense-buf
 sense-buf #sense-bytes false dma-map-in to sense-buf-dma

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

Block and Byte Devices 129

8

 2 alloc-mem to scsi-statbuf
 ;

 \ free buffers for "sense" command and status and unmap scsi chip
 : unmap-scsi (--)
 scsi-statbuf 2 free-mem
 sense-buf sense-buf-dma #sense-bytes dma-sync \ redundant
 sense-buf sense-buf-dma #sense-bytes dma-map-out
 sense-buf #sense-bytes dma-free
 sense-command sense-cmd-dma /sense dma-sync \ redundant
 sense-command sense-cmd-dma /sense dma-map-out
 sense-command /sense dma-free
 -1 to sense-command
 -1 to sense-cmd-dma
 -1 to sense-buf
 -1 to scsi-statbuf
 -1 to sense-buf-dma
 unmap-scsi-chip
 ;

 \ constants related to scsi commands
 h# 0 constant nop
 h# 1 constant flush-fifo
 h# 2 constant reset-chip
 h# 3 constant reset-scsi
 h# 80 constant dma-nop

 \ words to get scsi register addresses.
 \ Each chip register is one byte, aligned on a 4-byte boundary.
 : scsi+ (offset -- addr) scsi-chip + ;
 : transfer-count-lo (-- addr) h# 0 scsi+ ;
 : transfer-count-hi (-- addr) h# 4 scsi+ ;
 : fifo (-- addr) h# 8 scsi+ ;
 : command (-- addr) h# c scsi+ ;
 : configuration (-- addr) h# 20 scsi+ ;
 : scsi-test-reg (-- addr) h# 28 scsi+ ;

 \ Read only registers:
 : scsi-status (-- addr) h# 10 scsi+ ;
 : interrupt-status (-- addr) h# 14 scsi+ ;
 : sequence-step (-- addr) h# 18 scsi+ ;

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

130 Writing FCode 3.x Programs —November 1997

8

 : fifo-flags (-- addr) h# 1c scsi+ ;

 \ Write only registers:
 : select/reconnect-bus-id (-- addr) h# 10 scsi+ ;
 : select/reconnect-timeout (-- addr) h# 14 scsi+ ;
 : sync-period (-- addr) h# 18 scsi+ ;
 : sync-offset (-- addr) h# 1c scsi+ ;
 : clock-conversion-factor (-- addr) h# 24 scsi+ ;

 \ words to read from/store to scsi registers.
 : cnt@ (-- w) transfer-count-lo rb@ transfer-count-hi rb@ bwjoin ;
 : fifo@ (-- c) fifo rb@ ;
 : cmd@ (-- c) command rb@ ;
 : stat@ (-- c) scsi-status rb@ ;
 : istat@ (-- c) interrupt-status rb@ ;
 : fifo-cnt (-- c) fifo-flags rb@ h# 1f and ;
 : data@ (-- c) begin fifo-cnt until fifo@ ;
 : seq@ (-- c) sequence-step rb@ h# 7 and ;

 : fifo! (c --) fifo rb! ;
 : cmd! (c --) command rb! ;
 : cnt! (w --) wbsplit transfer-count-hi rb! transfer-count-lo rb! ;
 : targ! (c --) select/reconnect-bus-id rb! ;
 : data! (c --) begin fifo-cnt d# 16 <> until fifo! ;

 \ scsi chip noop and initialization
 : scsi-nop (--) nop cmd! ;
 : init-scsi (--) reset-chip cmd! scsi-nop ;

 : wait-istat-clear (-- error?)
 d# 1000
 begin
 1 ms 1- (count)
 dup 0= (count expired?)
 istat@ (count expired? istat)
 0= or (count clear?)
 until (count)
 0= if
 istat@ 0<> if
 cr ." Can't clear ESP interrupts: "
 ." Check SCSI Term. Power Fuse." cr
 true exit

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

Block and Byte Devices 131

8

 then
 then
 false
 ;

 : clk-conv-factor (-- n) clock-frequency d# 5.000.000 / 7 and ;

 \ initialize scsi chip, tune time amount, set async operation mode, and set scsi
 \ bus id
 : reset-my-scsi (-- error?)
 init-scsi
 h# 93 select/reconnect-timeout rb!
 0 sync-offset rb!
 clk-conv-factor clock-conversion-factor rb!
 h# 4 scsi-init-id 7 and or configuration rb!
 wait-istat-clear
 ;

 : reset-bus (-- error?)
 reset-scsi cmd! wait-istat-clear
 ;

 : init-n-test (-- ok?) reset-my-scsi 0= ;

 : get-buffers (--)
 h# 8000 dma-alloc to mbuf0
 /cmdbuf dma-alloc to cmdbuf
 cmdbuf /cmdbuf false dma-map-in to cmdbuf-dma
 ;

 : give-buffers (--)
 mbuf0 h# 8000 dma-free -1 to mbuf0
 cmdbuf cmdbuf-dma /cmdbuf dma-sync \ redundant
 cmdbuf cmdbuf-dma /cmdbuf dma-map-out
 cmdbuf /cmdbuf dma-free
 -1 to cmdbuf -1 to cmdbuf-dma
 ;

 : scsi-selftest (-- fail?) reset-my-scsi ;

 \ dma-alloc and dma-map-in mbuf-dma

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

132 Writing FCode 3.x Programs —November 1997

8

 : mbuf-alloc (--)
 /mbuf dma-alloc to mbuf
 mbuf /mbuf false dma-map-in to mbuf-dma
 ;

 \ dma-map-out and dma-free mbuf-dma
 : mbuf-free (--)
 mbuf mbuf-dma /mbuf dma-sync \ redundant
 mbuf mbuf-dma /mbuf dma-map-out
 mbuf /mbuf dma-free
 -1 to mbuf
 -1 to mbuf-dma
 ;

 external
 \ If any routine was using buffers allocated by dma-alloc, and was using dma mapped
 \ by dma-map-in, it would have to dma-sync those buffers after making any changes to
 \ them.
 : open (-- success?)
 dma-open
 " scsi-initiator-id" get-inherited-property 0= if
 decode-int to scsi-init-id
 2drop
 map-scsi
 init-n-test (ok?)
 dup if (true)
 get-buffers (true)
 else
 unmap-scsi dma-close (false)
 then (success?)
 else
 ." Missing initiator id" cr false
 dma-close
 then (success?)
 ;

 : close (--)
 give-buffers unmap-scsi dma-close
 ;

 : reset (--)
 dma-open map-scsi
 h# 80 dma-breset

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

Block and Byte Devices 133

8

 reset-my-scsi drop reset-bus drop
 unmap-scsi dma-close
 ;

 \ if scsi-selftest was actually using buffers allocated by mbuf-alloc, it would
 \ have to do dma-sync after any changes to mbuf or mbuf-dma.
 : selftest (-- fail?)
 map-scsi
 mbuf-alloc
 scsi-selftest
 mbuf-free
 unmap-scsi
 ;

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " sd" encode-string " name" property
 finish-device

 new-device \ missing "reg" indicates a SCSI "wild-card" node
 " st" encode-string " name" property
 finish-device
end0

Code Example 8-2 Sample Driver for my-scsi Device (Continued)

134 Writing FCode 3.x Programs —November 1997

8

Complete Block and Byte Device Driver

Code Example 8-3 Sample Driver for Bootable Devices

\ This driver supports "block" and "byte" type bootable devices, by using standard
\ "deblocker"and "disk-label" packages.
fcode-version3
 hex
 headers

 : copyright (--)
 ." Copyright 1992 - 1995 Sun Microsystems. All Rights Reserved" cr
 ;
 h# 20.0000 constant scsi-offset
 h# 40 constant /scsi
 d# 25.000.000 constant clock-frequency

 : identify-me (--)
 " SUNW,my-scsi" encode-string " name" property
 " scsi" device-type
 my-address scsi-offset + my-space /scsi reg

 ;
 identify-me

 h# 10.0000 constant dma-offset
 h# 10 constant /dma
 -1 instance value dma-chip

 external
 : decode-unit (addr len -- low high) decode-2int ;
 : dma-alloc (size -- vaddr) " dma-alloc" $call-parent ;
 : dma-free (vaddr size --) " dma-free" $call-parent ;
 : dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ;
 : dma-map-out (vaddr devaddr size --) " dma-map-out" $call-parent ;

 \ Dma-sync could be dummy routine if parent device doesn't support.
 : dma-sync (virt-addr dev-addr size --)
 " dma-sync" my-parent ['] $call-method catch if
 2drop 2drop 2drop
 then
 ;

 : map-in (addr space size -- virt) " map-in" $call-parent ;
 : map-out (virt size --) " map-out" $call-parent ;

Block and Byte Devices 135

8

 headers
 \ variables/values for sending commands, mapping etc.
 -1 instance value scsi-init-id
 -1 instance value scsi-chip
 -1 instance value mbuf
 -1 instance value mbuf-dma
 h# 20 constant /mbuf
 ...

 \ mapping and allocation routines for scsi
 : map-scsi-chip (--)
 my-address scsi-offset + my-space /scsi map-in to scsi-chip
 ;

 : unmap-scsi-chip (--) scsi-chip /scsi map-out -1 to scsi-chip ;

 : map-scsi (--)
 map-scsi-chip
 \ allocate buffers etc. for "sense" command and status
 ...
 ;

 : unmap-scsi (--)
 \ free buffers etc. for "sense" command and status
 ...
 unmap-scsi-chip
 ;

 \ words related to scsi commands and register access.
 ...

 : reset-my-scsi (-- error?) ... ;
 : reset-bus (-- error?) ... ;

 : init-n-test (-- ok?) ... ;
 : get-buffers (--) ... ;
 : give-buffers (--) ... ;
 : scsi-selftest (-- fail?) ... ;

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

136 Writing FCode 3.x Programs —November 1997

8

 d# 512 constant ublock
 0 instance value /block
 0 instance value /tapeblock
 instance variable fixed-len?
 ...

 external
 : set-timeout (n --) ... ;
 : send-diagnostic (-- error?)
 \ run diagnostics and return any error.
 ...
 ;

 : device-present? (lun target -- present?) ... ;
 : mode-sense (-- true | block-size false) ... ;
 : read-capacity (-- true | block-size false) ... ;

 \ Spin up a SCSI disk, coping with a possible wedged SCSI bus
 : timed-spin (target lun --) ... ;

 : disk-r/w-blocks (addr block# #blocks direction? -- #xfered)
 ... (#xfered)
 ;

 \ Execute "mode-sense" command. If failed, execute read-capacity command.
 \ If this also failed, return d# 512 as the block size.
 : disk-block-size (-- n)
 mode-sense if read-capacity if d# 512 then then
 dup to /block
 ;

 : tape-block-size (-- n) ... ;
 : fixed-or-variable (-- max-block fixed?) ... ;
 : tape-r/w-some (addr block# #blks read? -- actual# error?) ... ;

 headers

 : dma-open (--) my-address dma-offset + my-space /dma map-in to dma-chip ;

 : dma-close (--) dma-chip /dma map-out -1 to dma-chip ;

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

Block and Byte Devices 137

8

 \ After any changes to mbuf by cpu or any changes to mbuf-dma by device, synchronize
 \ changes by issuing " mbuf mbuf-dma /mbuf dma-sync "
 : mbuf-alloc (--)
 /mbuf dma-alloc to mbuf
 mbuf /mbuf false dma-map-in to mbuf-dma
 ;

 \ dma-map-out and dma-free mbuf-dma
 : mbuf-free (--)
 mbuf mbuf-dma /mbuf dma-sync \ redundant
 mbuf mbuf-dma /mbuf dma-map-out
 mbuf /mbuf dma-free
 -1 to mbuf
 -1 to mbuf-dma
 ;

 external

 \ external methods for scsi bus ("SUNW,my-scsi" node)
 : open (-- okay?)
 dma-open
 " scsi-initiator-id" get-inherited-property 0= if
 decode-int to scsi-init-id
 2drop
 map-scsi
 init-n-test (ok?)
 dup if (true)
 get-buffers (true)
 else
 unmap-scsi dma-close (false)
 then (success?)
 else
 ." Missing initiator id" cr false
 dma-close
 then (success?)
 ;

 : close (--) give-buffers unmap-scsi dma-close ;

 : reset (--)
 dma-open map-scsi
 ...
 reset-my-scsi drop reset-bus drop

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

138 Writing FCode 3.x Programs —November 1997

8

 unmap-scsi dma-close
 ;

 : selftest (-- fail?)
 map-scsi
 mbuf-alloc
 scsi-selftest
 mbuf-free
 unmap-scsi
 ;

 headers

\ start of child block device

 new-device \ missing "reg" indicates SCSI "wild-card" node

 " sd" encode-string " name" property
 " block" device-type

 0 instance value offset-low
 0 instance value offset-high
 0 instance value label-package

 \ The "disk-label" package interprets any partition information contained in
 \ the disk label. The "load" method of the "block" device uses the load method
 \ provided by "disk-label"
 : init-label-package (-- okay?)
 0 to offset-high 0 to offset-low
 my-args " disk-label" $open-package to label-package
 label-package if
 0 0 " offset" label-package $call-method
 to offset-high to offset-low
 true
 else
 ." Can't open disk label package" cr false
 then
 ;

 0 instance value deblocker
 : init-deblocker (-- okay?)
 " " " deblocker" $open-package to deblocker
 deblocker if

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

Block and Byte Devices 139

8

 true
 else
 ." Can't open deblocker package" cr false
 then
 ;

 : device-present? (lun target -- present?)
 " device-present?" $call-parent
 ;
 \ The following methods are needed for "block" device:
 \ open, close, selftest, reset, read, write, load, seek, block-size,
 \ max-transfer,read-blocks, write-blocks.
 \ Carefully notice the relationship between the methods for the "block" device
 \ and the methods pre-defined for "disk-label" and "deblocker"

 external
 \ external methods for "block" device ("sd" node)

 : spin-up (--) my-unit " timed-spin" $call-parent ;

 : open (-- ok?)
 my-unit device-present? 0= if false exit then
 spin-up \ Start the disk if necessary

 init-deblocker 0= if false exit then
 init-label-package 0= if
 deblocker close-package false exit
 then
 true
 ;

 : close (--)
 label-package close-package 0 to label-package
 deblocker close-package 0 to deblocker
 ;

 : selftest (-- fail?)
 my-unit device-present? if
 " send-diagnostic" $call-parent (fail?)
 else
 true (error)
 then
 ;

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

140 Writing FCode 3.x Programs —November 1997

8

 : reset (--) ... ;

 \ The "deblocker" package assists in the implementation of byte-oriented read and
 \ write methods for disks and tapes. The deblocker provides a layer of buffering
 \ to implement a high level byte-oriented interface "on top of" a low-level
 \ block-oriented interface.

 \ The "seek", "read" and "write" methods of this block device use corresponding
 \ methods provided by "deblocker"

 \ In order to be able to use the "deblocker" package this device has to define the
 \ following four methods, which the deblocker uses as its low-level interface
 \ to the device:
 \ 1) block-size, 2) max-transfer, 3) read-blocks and 4) write-blocks

 : block-size (-- n) " disk-block-size" $call-parent ;
 : max-transfer (-- n) block-size h# 40 * ;

 : read-blocks (addr block# #blocks -- #read)
 true " disk-r/w-blocks" $call-parent
 ;
 : write-blocks (addr block# #blocks -- #written)
 false " disk-r/w-blocks" $call-parent
 ;

 : dma-alloc (#bytes -- vadr) " dma-alloc" $call-parent ;
 : dma-free (vadr #bytes --) " dma-free" $call-parent ;
 : seek (offset.low offset.high -- okay?)
 offset-low offset-high x+ " seek" deblocker $call-method
 ;
 : read (addr len -- actual-len) " read" deblocker $call-method ;
 : write (addr len -- actual-len) " write" deblocker $call-method ;
 : load (addr -- size) " load" label-package $call-method ;

 finish-device \ finishing "block" device "sd"

 headers

\ start of child byte device

 new-device \ missing "reg" indicates "wild-card" node
 " st" encode-string " name" property

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

Block and Byte Devices 141

8

 " byte" device-type

 false instance value write-eof-mark?
 instance variable file-mark?
 true instance value scsi-tape-first-install

 : scsi-tape-rewind (-- [[xstatbuf] f-hw] error?) ... ;

 : write-eof (-- [[xstatbuf] f-hw] error?) ... ;

 0 instance value deblocker
 : init-deblocker (-- okay?)
 " " " deblocker" $open-package to deblocker
 deblocker if
 true
 else
 ." Can't open deblocker package" cr false
 then
 ;

 : flush-deblocker (--)
 deblocker close-package init-deblocker drop
 ;
 : fixed-or-variable (-- max-block fixed?)
 " fixed-or-variable" $call-parent
 ;

 : device-present? (lun target -- present?)
 " device-present?" $call-parent
 ;

 \ The following methods are needed for "byte" devices:
 \ open, close, selftest, reset, read, write, load, seek, block-size,
 \ max-transfer, read-blocks, write-blocks. Carefully notice the relationship
 \ between the methods for "byte" devices and the methods pre-defined for the
 \ standard deblocker package.

 external
 \ external methods for "byte" device ("st" node)

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

142 Writing FCode 3.x Programs —November 1997

8

 \ The "deblocker" package assists in the implementation of byte-oriented read
 \ and write methods for disks and tapes. The deblocker provides a layer of
 \ buffering to implement a high level byte-oriented interface "on top of" a
 \ low-level block-oriented interface.

 \ The "read" and "write" methods of this "byte" device use the corresponding
 \ methods provided by the "deblocker"

 \ In order to be able to use the "deblocker" package this device has to define the
 \ following four methods which the deblocker uses as its low-level interface to
 \ the device:
 \ 1) block-size, 2) max-transfer, 3) read-blocks and 4) write-blocks
 : block-size (-- n) " tape-block-size" $call-parent ;

 : max-transfer (-- n)
 fixed-or-variable (max-block fixed?)
 if
 \ Use the largest multiple of /tapeblock that to <= h# fe00
 h# fe00 over / *
 then
 ;

 : read-blocks (addr block# #blocks -- #read)
 file-mark? @ 0= if
 true " tape-r/w-some" $call-parent file-mark? ! (#read)
 else
 3drop 0
 then
 ;

 : write-blocks (addr block# #blocks -- #written)
 false " tape-r/w-some" $call-parent file-mark? !
 ;

 : dma-alloc (#bytes -- vaddr) " dma-alloc" $call-parent ;

 : dma-free (vaddr #bytes --) " dma-free" $call-parent ;

 : open (-- okay?) \ open for tape
 my-unit device-present? 0= if false exit then
 scsi-tape-first-install if
 scsi-tape-rewind if

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

Block and Byte Devices 143

8

 ." Can't rewind tape" cr
 0= if drop then
 false exit
 then
 false to scsi-tape-first-install
 then
 \ Set fixed-len? and /tapeblock
 fixed-or-variable 2drop
 init-deblocker 0= if false exit then
 true
 ;

 : close (--)
 deblocker close-package 0 to deblocker
 write-eof-mark? if
 write-eof if
 ." Can't write EOF Marker."
 0= if drop then
 then
 then
 ;
 : reset (--) ... ;
 : selftest (-- fail?)
 my-unit device-present? if
 " send-diagnostic" $call-parent (fail?)
 else
 true (error)
 then
 ;

 : read (addr len -- actual-len) " read" deblocker $call-method ;
 : write (addr len -- actual-len)
 true to write-eof-mark?
 " write" deblocker $call-method
 ;

 : load (addr -- size)
 \ use my-args to get tape file-no
 ... (addr file#)

 \ position at requested file
 ...

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

144 Writing FCode 3.x Programs —November 1997

8

 dup begin (start-addr next-addr)
 dup max-transfer read (start-addr next-addr #read)
 dup 0> (start-addr next-addr #read got-some?)
 while (start-addr next-addr #read)
 + (start-addr next-addr')
 repeat (start-addr end-addr 0)
 drop swap - (size)
 ;

 : seek (byte# file# -- error?)
 \ position at requested file
 ... (byte#)

 flush-deblocker (byte#)
 begin dup 0> while (#remaining)
 " mbuf0" $call-parent
 over ublock min read (#remaining #read)
 dup 0= if (#remaining 0)
 2drop true
 exit (error)
 then (#remaining #read)
 - (#remaining')
 repeat (0)
 drop false (no-error)
 ;

 finish-device \ finishing "byte" device "st"
end0
\ finishing "SUNW,my-scsi"

Code Example 8-3 Sample Driver for Bootable Devices (Continued)

145

Display Devices 9

This chapter discusses writing FCode programs for display devices. The
display device type applies to frame buffers and other devices appearing as
memory to the processor, with associated hardware to convert the memory
image to a visual display. Display devices can be used as console output
devices.

Required Methods
The display device’s FCode must declare the display device type, and must
implement the methods open and close .

System defer words are loaded by appropriate routines. is-install , is-
remove and is-selftest are used to create the open , close and selftest
routines. set-font initializes the values of frame-buffer-adr , char-
height and char-width , all of which are built into the system ROM and can
be used by any display device driver.

For display devices, created methods interact with OpenBoot commands in a
way that is different from that of other device types. Other device types
provide methods that are found by dictionary searches looking for specific
names.

Some FCodes are specifically designed for display devices. See Table A-36
through Table A-42 in Appendix , “FCode Reference".

146 Writing FCode 3.x Programs —November 1997

9

Required Properties

Device Driver Examples

Simple Display Device Driver

This is a sample FCode program for a display device that does not need to be
usable as a console display device during system power-up.

Table 9-1 Required Display Device Properties

Property Name Typical Value

name SUNW,cgsix

reg list of registers {device dependent}

device_type " display" {required for display devices}

Code Example 9-1 Basic Display Device Driver Example

\ cg6 (Lego) frame buffer driver
fcode-version3
hex

" SUNW,cgsix" name
" SUNW,501-xxxx" model

h# 20.0000 constant dac-offset h# 10 constant /dac
h# 30.0000 constant fhc-offset h# 10 constant /fhc
h# 30.1800 constant thc-offset h# 20 constant /thc
h# 70.0000 constant fbc-offset h# 10 constant /fbc
h# 70.1000 constant tec-offset h# 10 constant /tec
h# 80.0000 constant fb-offset h# 10.0000 constant /frame

: >reg-spec (offset size -- encoded-reg)
 >r 0 my-address d+ my-space encode-phys 0 encode-int encode+ r> encode-int encode+
;

0 0 >reg-spec \ Configuration space registers
dac-offset /dac >reg-spec encode+
fhc-offset /fhc >reg-spec encode+
thc-offset /thc >reg-spec encode+

Display Devices 147

9

Extended Display Device Driver

This sample FCode program has additional functionality to initialize and test
the device, but still is not usable as a console display device during system
power-up.

fbc-offset /fbc >reg-spec encode+
tec-offset /tec >reg-spec encode+
fb-offset /frame >reg-spec encode+
" reg" property

end0

Code Example 9-2 Extended Display Device Driver Example

\ cg6 (Lego) frame buffer driver
fcode-version3
hex

" SUNW,cgsix" name
" SUNW,501-xxxx" model

h# 20.0000 constant dac-offset h# 10 constant /dac
h# 30.0000 constant fhc-offset h# 10 constant /fhc
h# 30.1800 constant thc-offset h# 20 constant /thc
h# 70.0000 constant fbc-offset h# 10 constant /fbc
h# 70.1000 constant tec-offset h# 10 constant /tec
h# 80.0000 constant fb-offset h# 10.0000 constant /frame

: >reg-spec (offset size -- encoded-reg)
 >r 0 my-address d+ my-space encode-phys 0 encode-int encode+ r> encode-int encode+
;

0 0 >reg-spec \ Configuration space registers
dac-offset /dac >reg-spec encode+
fhc-offset /fhc >reg-spec encode+
thc-offset /thc >reg-spec encode+
fbc-offset /fbc >reg-spec encode+
tec-offset /tec >reg-spec encode+
fb-offset /frame >reg-spec encode+
" reg" property

Code Example 9-1 Basic Display Device Driver Example (Continued)

148 Writing FCode 3.x Programs —November 1997

9

-1 value dac-addr
-1 value fhc-addr
-1 value thc-addr
-1 value fbc-addr
-1 value tec-addr
-1 value fb-addr

: copyright (-- addr len) “Copyright (c) 1992 - 1996 Sun Microsystems, Inc. “ ;
: do-map-in (offset size --)
 >r (offset) (R: size) \ Move size to return stack
 0 (offset 0) (R: size) \ Convert offset to double number
 my-address (offset 0 phys.lo phys.mid) (R: size)
 d+ (phys.lo’ phys.mid) (R: size)
 my-space r> (phys.lo’ phys.mid phys.hi size) (R:)
 " map-in" $call-parent
;
: do-map-out (vaddr size --) " map-out" $call-parent ;

: dac-map (--) dac-offset /dac do-map-in to dac-addr ;
: dac-unmap (--) dac-addr /dac do-map-out -1 to dac-addr ;

: fhc-map (--) fhc-offset /fhc do-map-in to fhc-addr ;
: fhc-unmap (--) fhc-addr /fhc do-map-out -1 to fhc-addr ;

: thc-map (--) thc-offset /thc do-map-in to thc-addr ;
: thc-unmap (--) thc-addr /thc do-map-out -1 to thc-addr ;

: fbc-map (--) fbc-offset /fbc do-map-in to fbc-addr ;
: fbc-unmap (--) fbc-addr /fbc do-map-out -1 to fbc-addr ;

: tec-map (--) tec-offset /tec do-map-in to tec-addr ;
: tec-unmap (--) tec-addr /tec do-map-out -1 to tec-addr ;

: fb-map (--) fb-offset /frame do-map-in to fb-addr ;
: fb-unmap (--) fb-addr /frame do-map-out -1 to fb-addr ;

: map-regs (--) dac-map fhc-map thc-map fbc-map tec-map ;
: unmap-regs (--) tec-unmap fbc-unmap thc-unmap fhc-unmap dac-unmap ;

\ Brooktree DAC interface section

\ The Brooktree DAC has an internal address register which helps to select the
\ internal register which is to be accessed. First, the address is written to

Code Example 9-2 Extended Display Device Driver Example (Continued)

Display Devices 149

9

\ register 0, then the data is written to one of the other registers. Ibis has 3
\ separate DAC chips which appear as the three least-significant bytes of a
\ longword. All three chips may be simultaneously updated with a single longword
\ write.

: dac! (data reg# --) >r dup 2dup bljoin r> dac-addr + l! ;
: dac-ctl! (data int.addr reg# --) swap 0 dac! dac! ;

\ color! sets an overlay color register.
\ In order to be able to use either the Brooktree 457 or 458 dacs, we set the address
\ once, then store the color 3 times. The chip internally cycles each time the color
\ register is written, selecting in turn the red color, the green color, and the blue
\ color. The chip is used in "RGB mode".

: color! (r g b c# --)
 0 dac! (r g b)
 swap rot (b g r)
 4 dac! (b g)
 4 dac! (b)
 4 dac! ()
;

: lego-init-dac (--)
 40 06 8 dac-ctl! \ Control reg: enable off, overlay off, RGB on
 0 05 8 dac-ctl! \ Blinking off
 ff 04 8 dac-ctl! \ Read mask set to all ones
 ff ff ff 0 color! \ White in overlay background color register
 0 0 0 ff color! \ Black in overlay foreground color register
 64 41 b4 1 color! \ SUN-blue for logo
;

\ End of Brooktree DAC code

\ Lego Selftest section

: fbc! (value offset --) fbc-addr + l! ;
: fbc@ (offset -- value) fbc-addr + l@ ;
: tec! (value offset --) tec-addr + l! ;

: lego-selftest (-- failed?) false ;

\ Hardware configuration register section

Code Example 9-2 Extended Display Device Driver Example (Continued)

150 Writing FCode 3.x Programs —November 1997

9

: fhc! (value offset --) fhc-addr + l! ;
: thc! (value offset --) thc-addr + l! ;

: set-res-params (hcvd hcvs hchd hchsdvb hchs fhc-conf --)
 0 fhc! 0 thc! 4 thc! 8 thc! c thc! 10 thc!
;

\ Resolution params: hcvd hcvs hchd hchsdvb hchs fhc-conf

: r1024x768 (-- params) 2c032c 32c0005 110051 490000 510007 3bb ;
: r1152x900 (-- params) 2403a8 10005 15005d 570000 10009 bbb ;
: r1024x1024 (-- params) 200426 10005 180054 520000 10009 3bb ;
: r1152x870 (-- params) 2c0392 20005 120054 540000 10009 bbb ;
: r1600x1280 (-- params) 340534 534009 130045 3d0000 450007 1bbb ;

0 value lego-rez-width
0 value lego-rez-height

0 value sense-code

: set-resolution (sense-code --)
 case
 0 of d# 1152 d# 900 endof
 12 of d# 1024 d# 1024 endof
 13 of d# 1600 d# 1280 endof
 drop d# 1152 d# 900 0
 endcase
 to lego-rez-height to lego-rez-width
;

8f value thc-misc
: lego-video-on (--) thc-misc 400 or 18 thc! ;
: lego-video-off (--) thc-misc 18 thc! ;

: lego-init-hc (--)
 sense-code case
 0 of r1152x900 endof
 12 of r1024x1024 endof
 13 of r1600x1280 endof
 drop r1152x900 0
 endcase (resolution-params)
 set-res-params

Code Example 9-2 Extended Display Device Driver Example (Continued)

Display Devices 151

9

Complete Display Device Drive
This sample FCode program is for a device that would be usable as a system
console device.

 016b 14 thc! \ THC_HCREFRESH
 148f 18 thc! \ THC_HCMISC
 \ 48f 18 thc! \ THC_HCMISC
 lego-video-off \ Turn video on at install time
;

\ End of hardware configuration register section

end0

Code Example 9-3 Complete Display Device Driver Example

\ cg6 (Lego) frame buffer driver
fcode-version3
hex

" SUNW,cgsix" name
" SUNW,501-xxxx" model
" display" device-type

h# 20.0000 constant dac-offset h# 10 constant /dac
h# 30.0000 constant fhc-offset h# 10 constant /fhc
h# 30.1800 constant thc-offset h# 20 constant /thc
h# 70.0000 constant fbc-offset h# 10 constant /fbc
h# 70.1000 constant tec-offset h# 10 constant /tec
h# 80.0000 constant fb-offset h# 10.0000 constant /frame

: >reg-spec (offset size -- encoded-reg)
 >r 0 my-address d+ my-space encode-phys 0 encode-int encode+ r> encode-int encode+
;

0 0 >reg-spec \ Configuration space registers
dac-offset /dac >reg-spec encode+
fhc-offset /fhc >reg-spec encode+
thc-offset /thc >reg-spec encode+
fbc-offset /fbc >reg-spec encode+
tec-offset /tec >reg-spec encode+

Code Example 9-2 Extended Display Device Driver Example (Continued)

152 Writing FCode 3.x Programs —November 1997

9

fb-offset /frame >reg-spec encode+
" reg" property

-1 value dac-addr
-1 value fhc-addr
-1 value thc-addr
-1 value fbc-addr
-1 value tec-addr
-1 value fb-addr

: copyright (-- addr len) “Copyright (c) 1992 - 1996 Sun Microsystems, Inc. “ ;

: do-map-in (offset size --)
 >r (offset) (R: size) \ Move size to return stack
 0 (offset 0) (R: size) \ Convert offset to double number
 my-address (offset 0 phys.lo phys.mid) (R: size)
 d+ (phys.lo’ phys.mid) (R: size)
 my-space r> (phys.lo’ phys.mid phys.hi size) (R:)
 " map-in" $call-parent
;

: do-map-out (vaddr size --) " map-out" $call-parent ;
: dac-map (--) dac-offset /dac do-map-in to dac-addr ;
: dac-unmap (--) dac-addr /dac do-map-out -1 to dac-addr ;
: fhc-map (--) fhc-offset /fhc do-map-in to fhc-addr ;
: fhc-unmap (--) fhc-addr /fhc do-map-out -1 to fhc-addr ;

: thc-map (--) thc-offset /thc do-map-in to thc-addr ;
: thc-unmap (--) thc-addr /thc do-map-out -1 to thc-addr ;

: fbc-map (--) fbc-offset /fbc do-map-in to fbc-addr ;
: fbc-unmap (--) fbc-addr /fbc do-map-out -1 to fbc-addr ;

: tec-map (--) tec-offset /tec do-map-in to tec-addr ;
: tec-unmap (--) tec-addr /tec do-map-out -1 to tec-addr ;

: fb-map (--) fb-offset /frame do-map-in to fb-addr ;
: fb-unmap (--) fb-addr /frame do-map-out -1 to fb-addr ;

: map-regs (--) dac-map fhc-map thc-map fbc-map tec-map ;
: unmap-regs (--) tec-unmap fbc-unmap thc-unmap fhc-unmap dac-unmap ;

\ Brooktree DAC interface section

Code Example 9-3 Complete Display Device Driver Example (Continued)

Display Devices 153

9

\ The Brooktree DAC has an internal address register which helps to
\ select the internal register which is to be accessed.
\ First, the address is written to register 0, then the data is written
\ to one of the other registers.
\ Ibis has 3 separate DAC chips which appear as the three least-significant
\ bytes of a longword. All three chips may be simultaneously updated
\ with a single longword write.

: dac! (data reg# --) >r dup 2dup bljoin r> dac-addr + l! ;
: dac-ctl! (data int.addr reg# --) swap 0 dac! dac! ;

\ color! sets an overlay color register.
\ In order to be able to use either the Brooktree 457 or 458 dacs, we
\ set the address once, then store the color 3 times. The chip internally
\ cycles each time the color register is written, selecting in turn the
\ red color, the green color, and the blue color.
\ The chip is used in "RGB mode".

: color! (r g b c# --)
 0 dac! (r g b)
 swap rot (b g r)
 4 dac! (b g)
 4 dac! (b)
 4 dac! ()
;

: lego-init-dac (--)
 40 06 8 dac-ctl! \ Control reg: enable off, overlay off, RGB on
 0 05 8 dac-ctl! \ Blinking off
 ff 04 8 dac-ctl! \ Read mask set to all ones
 ff ff ff 0 color! \ White in overlay background color register
 0 0 0 ff color! \ Black in overlay foreground color register
 64 41 b4 1 color! \ SUN-blue for logo
;

\ End of Brooktree DAC code
\ Lego Selftest section

: fbc! (value offset --) fbc-addr + l! ;
: fbc@ (offset -- value) fbc-addr + l@ ;
: tec! (value offset --) tec-addr + l! ;

Code Example 9-3 Complete Display Device Driver Example (Continued)

154 Writing FCode 3.x Programs —November 1997

9

: lego-selftest (-- failed?) false ;

\ Hardware configuration register section

: fhc! (value offset --) fhc-addr + l! ;
: thc! (value offset --) thc-addr + l! ;

: set-res-params (hcvd hcvs hchd hchsdvb hchs fhc-conf --)
 0 fhc! 0 thc! 4 thc! 8 thc! c thc! 10 thc!
;

\ Resolution params: hcvd hcvs hchd hchsdvb hchs fhc-conf

: r1024x768 (-- params) 2c032c 32c0005 110051 490000 510007 3bb ;
: r1152x900 (-- params) 2403a8 10005 15005d 570000 10009 bbb ;
: r1024x1024 (-- params) 200426 10005 180054 520000 10009 3bb ;
: r1152x870 (-- params) 2c0392 20005 120054 540000 10009 bbb ;
: r1600x1280 (-- params) 340534 534009 130045 3d0000 450007 1bbb ;

0 value lego-rez-width
0 value lego-rez-height

0 value sense-code

: set-resolution (sense-code --)
 case
 0 of d# 1152 d# 900 endof
 12 of d# 1024 d# 1024 endof
 13 of d# 1600 d# 1280 endof
 drop d# 1152 d# 900 0
 endcase
 to lego-rez-height to lego-rez-width
;

8f value thc-misc
: lego-video-on (--) thc-misc 400 or 18 thc! ;
: lego-video-off (--) thc-misc 18 thc! ;
: lego-blink (--) lego-video-off 20 ms lego-video-on ;
: lego-init-hc (--)
 sense-code case
 0 of r1152x900 endof
 12 of r1024x1024 endof
 13 of r1600x1280 endof

Code Example 9-3 Complete Display Device Driver Example (Continued)

Display Devices 155

9

 drop r1152x900 0
 endcase (resolution-params)
 set-res-params
 016b 14 thc! \ THC_HCREFRESH
 148f 18 thc! \ THC_HCMISC
 lego-video-off \ Turn video on at install time
;

\ End of hardware configuration register section

\ Lego graphics section
: lego-install (--)
 map-regs fb-map fb-addr to frame-buffer-adr

 default-font (param ...) set-font

 frame-buffer-adr encode-int " address" property

 lego-rez-width lego-rez-height over char-width / over char-height /
 fb8-install
 ['] lego-blink to blink-screen
 lego-video-on
;

: lego-remove (--)
 lego-video-off
 unmap-regs
 fb-unmap -1 to frame-buffer-adr
;

\ End of Lego graphics section

: lego-probe (--)

 map-regs

 sense-code set-resolution

 lego-init-dac
 lego-init-hc

 unmap-regs

Code Example 9-3 Complete Display Device Driver Example (Continued)

156 Writing FCode 3.x Programs —November 1997

9

 lego-rez-width encode-int " width" property
 lego-rez-height encode-int " height" property
 d# 8 encode-int " depth" property
 lego-rez-width encode-int " linebytes" property

 ['] lego-install is-install
 ['] lego-remove is-remove
 ['] lego-selftest is-selftest
;

lego-probe

end0

Code Example 9-3 Complete Display Device Driver Example (Continued)

157

Memory-Mapped Buses 10

This chapter discusses addressing and required properties for memory-
mapped buses.

A memory-mapped bus logically extends the processor’s memory address
space to include the devices on that bus. This enables the children of the bus
device to be mapped into the CPU address space and accessed like memory
using processor load and store cycles to address those children directly.

SBus and VMEbus are examples of memory-mapped buses.

Not all bus devices fall into this category. For example, SCSI is not a
memory-mapped bus; SCSI targets are not accessed with load or store
instructions.

Required Methods
A memory-mapped bus package code must implement the open , close ,
reset , and selftest methods, as well as the following:

decode-unit (addr len -- phys.lo … phys.hi)

Convert addr len, a text string representation, to phys.lo … phys.hi , a
numerical representation of a physical address in the address space defined by
this package. The format of phys.lo … phys.hi varies from bus to bus.

158 Writing FCode 3.x Programs —November 1997

10

dma-alloc (size -- virt)

Allocate a virtual address range of length size bytes that is suitable for direct
memory access by a bus master device. The memory is allocated according to
the most stringent alignment requirements for the bus. virt is a 32-bit address
that the OpenBoot-based system can use to access the memory.

Note that dma-map-in must also be called to generate a suitable DMA
address.

A child of a memory-mapped device calls dma-alloc using

For example:

dma-free (virt size --)

Free size bytes of memory previously allocated by dma-alloc at the virtual
address virt.

A child of a memory-mapped device calls dma-free by using

 For example:

 " dma-alloc" $call-parent

-1 value my-vaddr
: my-dma-alloc (size --)
 " dma-alloc" $call-parent to my-vaddr
;

 " dma-free" $call-parent

2000 value my-size
: my-dma-free (--)
 my-vaddr my-size " dma-free" $call-parent
 -1 to my-vaddr
;

Memory-Mapped Buses 159

10

dma-map-in (virt size cacheable? -- devaddr)

Convert the virtual address range virt size, previously allocated by dma-
alloc , into an address devaddr suitable for DMA on the bus. dma-map-in
can also be used to map application-supplied data buffers for DMA use if the
bus allows. If cacheable? is true, the calling child desires to use any available
fast caches for the DMA buffer. If access to the buffer is required before the
buffer is mapped out, the child must call dma-sync or dma-map-out to
ensure cache coherency with memory.
A child of a memory-mapped device calls dma-map-in using

For example:

dma-map-out (virt devaddr size --)

Remove the DMA mapping previously created with dma-map-in . Flush all
caches associated with the mapping.

A child of a memory-mapped device calls dma-map-out by using

For example:

 " dma-map-in" $call-parent

: my-vaddr-dma-map (--)
 my-vaddr my-size false " dma-map-in" $call-parent (devaddr)
 to my-vaddr-dma
;

 " dma-map-out" $call-parent

: my-vaddr-dma-free (--)
 my-vaddr my-vaddr-dma my-size " dma-map-out" $call-parent
 -1 to my-vaddr-dma
;

160 Writing FCode 3.x Programs —November 1997

10

dma-sync (virt devaddr size --)

Synchronize (flush) any memory caches associated with the DMA mapping
previously established by dma-map-in . You must interleave calls to this
method (or dma-map-out) between DMA and CPU accesses to the memory
region, or you may not obtain the most recent data written into the cache.

For example, a child of a hierarchical device calls dma-sync by using $call-
parent . This method is valid for FCode version 2.1 or later. Some early
version 2 systems do not define this method in the /sbus node. Those systems
automatically synchronize DMA and CPU access. The following example will
give correct results in all cases.

probe-self (arg-addr arg-len reg-addr reg-len fcode-addr fcode-len --)

Probe for a child of this node. fcode-addr fcode-len is a unit-address text string
that identifies the location of the FCode program for the child. reg-addr reg-len
is a probe-address text string that identifies the address of the child itself. arg-
addr arg-len is an instance-arguments text string for any device arguments for
the child (which can be retrieved in the child’s FCode program with the my-
args FCode). probe-self checks whether there is indeed FCode at the
indicated location, perhaps by mapping the device and using cpeek to ensure
that the device is present and that the first byte is a valid FCode start byte.

If the FCode exists, probe-self creates a new child device node and
interprets the FCode. If the interpretation of the FCode fails in some way, the
new device node may be empty, containing no properties or methods.

For example, to probe FCode for SBus slot #1:

: my-dma-sync (virt devadr size --)
 " dma-sync" $call-parent
;

" /sbus" open-dev
0 0 " 1,0" 2dup probe-self
device-end

Memory-Mapped Buses 161

10

map-in (phys.lo … phys.hi size -- virt)

Create a mapping associating the range of physical addresses beginning at
phys.lo … phys.hi extending for size bytes in the package’s physical
address space with a processor virtual address virt .

The number of cells in the list phys.lo … phys.hi is determined by the
value of the "#address-cells" property of the node containing map-in .

For example, a child of a memory-mapped device calls map-in with " map-
in" $call-parent . (The following example assumes that the value of the
parent’s "#address-cells" property is 3):

map-out (virt size --)

Destroy the mapping set by map-in at virtual address virt of length size bytes.
For example, a child of a memory-mapped device calls map-out with " map-
out" $call-parent :

SBus Addressing
The SBus uses geographical addressing with numbered slots.
An SBus physical address is represented numerically by the SBus slot number
as the high number and the offset from the base of that slot as the low number.
The text string representation is slot#, offset where both slot# and offset are the
ASCII representations of hexadecimal numbers.

: map-reg (--)
 my-address xx-offset 0 d+ my-space (phys.lo phys.mid phys.hi)
 xx-size " map-in" $call-parent (virt)
 to xx-vaddr ()
;

: unmap-reg (--)
 xx-vaddr xx-size (virt size)
 " map-out" $call-parent ()
 -1 to xx-vaddr
;

162 Writing FCode 3.x Programs —November 1997

10

SBus Required Properties

Device Driver Examples
The following examples of a hierarchical FCode driver are based on Sun's SBus
expansion hardware, XBox. XBox increases the number of SBus slots available
in a system by providing a bus-bridge between the platform's onboard SBus
and an SBus in the XBox hardware. XBox includes an SBus card called the
XAdaptor card which plugs into the host platform's SBus and includes an
expansion chassis called the XBox Expansion Box. Therefore XBox is an
example of a hierarchical device which implements an SBus interface to child
plug-in devices.

The example is divided into three parts: the basic device driver, the extended
device driver, and the complete device driver. In the case of a hierarchical
device, in practice, one would only want to develop and ship a driver with the
complete functionality. Otherwise, plug-in cards which rely on a full set of
parent services generally would not be able to function. The three stage
presentation of the driver simply shows how a driver might grow through the
development cycle.

Table 10-1 SBus Required Properties

Property Name Sample Value

name " SUNW,fas"

burst-sizes .

device_type " sbus"

ranges .

slot-address-bits .

Memory-Mapped Buses 163

10

Basic Hierarchical Device Driver

The basic driver simply declares most of the important properties of the
device, particularly the addresses of the various registers. A driver in this state
might be used to support the development of the OS driver which would
attach to the device name and configure itself based on the device properties
published by the FCode driver.

Code Example 10-1 Basic Hierarchical Device Driver

hex
fcode-version3

" SUNW,xbox" name
" 501-1840" model

\ XBox Registers
\ XAdaptor card registers
h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

\ XBox Exapnsion box registers
h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella
h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space encode-phys r> encode-int encode+
;

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec encode+
xac-ctl0-offset /xac-ctl0 >reg-spec encode+
xac-ctl1-offset /xac-ctl1 >reg-spec encode+
xac-elua-offset /xac-elua >reg-spec encode+
xac-ella-offset /xac-ella >reg-spec encode+

164 Writing FCode 3.x Programs —November 1997

10

xac-ele-offset /xac-ele >reg-spec encode+
xbc-err-offset /xbc-err >reg-spec encode+
xbc-ctl0-offset /xbc-ctl0 >reg-spec encode+
xbc-ctl1-offset /xbc-ctl1 >reg-spec encode+
xbc-elua-offset /xbc-elua >reg-spec encode+
xbc-ella-offset /xbc-ella >reg-spec encode+
xbc-ele-offset /xbc-ele >reg-spec encode+
" reg" property

\ Xbox can interrupt on any SBus level

1 encode-int 2 encode-int encode+ 3 encode-int encode+ 4 encode-int encode+
5 encode-int encode+ 6 encode-int encode+ 7 encode-int encode+
" interrupts" property

1 sbus-intr>cpu encode-int 0 encode-int encode+
2 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
3 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
4 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
5 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
6 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
7 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
" intr" property

\ XBox bus clock speed
d# 25.000.000 encode-int " clock-frequency" property

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f encode-int " burst-sizes" property

\ XBox has no slave-only slots
0 encode-int " slave-only" property

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare
 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;

Code Example 10-1 Basic Hierarchical Device Driver (Continued)

Memory-Mapped Buses 165

10

Extended Hierarchical Device Driver

The extended driver adds methods allowing access to various device registers
in addition to the functions of the basic driver. It provides methods to:

• Map in the registers
• Fetch from and store to the registers
• Program one of the registers which control the allocation of address space

across the various SBus slots.

: 4mhack (-- n)
 " compatible" get-inherited-property if
 d# 25 \ no "compatible" prop; assume 4c
 else decodestring " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-property if
 4mhack
 else
 decode-int nip nip
 then
;
#bits constant host-slot-size
host-slot-size encode-int " slot-address-bits" property

end0

Code Example 10-1 Basic Hierarchical Device Driver (Continued)

166 Writing FCode 3.x Programs —November 1997

10

Such an extended driver provides methods that a developer can use to read
and write registers and verify correct hardware responses. Note that the
complete driver does not use all of the device registers; read/write access
methods were included for all of them to allow easy testing during
development.

Code Example 10-2 Extended Hierarchical Device Driver

hex
fcode-version3

" SUNW,xbox" name
" 501-1840" model

\ XBox Registers

h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella
h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space encode-phys r> encode-int encode+
;

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec encode+
xac-ctl0-offset /xac-ctl0 >reg-spec encode+
xac-ctl1-offset /xac-ctl1 >reg-spec encode+
xac-elua-offset /xac-elua >reg-spec encode+
xac-ella-offset /xac-ella >reg-spec encode+
xac-ele-offset /xac-ele >reg-spec encode+
xbc-err-offset /xbc-err >reg-spec encode+

Memory-Mapped Buses 167

10

xbc-ctl0-offset /xbc-ctl0 >reg-spec encode+
xbc-ctl1-offset /xbc-ctl1 >reg-spec encode+
xbc-elua-offset /xbc-elua >reg-spec encode+
xbc-ella-offset /xbc-ella >reg-spec encode+
xbc-ele-offset /xbc-ele >reg-spec encode+
" reg" property

\ Xbox can interrupt on any SBus level

1 encode-int 2 encode-int encode+ 3 encode-int encode+ 4 encode-int encode+
5 encode-int encode+ 6 encode-int encode+ 7 encode-int encode+
" interrupts" property

1 sbus-intr>cpu encode-int 0 encode-int encode+
2 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
3 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
4 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
5 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
6 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
7 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
" intr" property

\ XBox bus clock speed
d# 25.000.000 encode-int " clock-frequency" property

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f encode-int " burst-sizes" property

\ XBox has no slave-only slots
0 encode-int " slave-only" property

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare
 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;
: 4mhack (-- n)
 " compatible" get-inherited-property if

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

168 Writing FCode 3.x Programs —November 1997

10

 d# 25 \ no "compatible" prop; assume 4c
 else decodestring " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-property if
 4mhack
 else
 decode-int nip nip
 then
;
#bits constant host-slot-size
host-slot-size encode-int " slot-address-bits" property

\ Utility display string
: .me (--) ." SBus " my-space .d ." XBox " ;

\ The XBox device has two modes opaque and transparent.

\ Upon reset the device is set to opaque mode. In this mode all
\ accesses to address space of the device are directed to the XBox H/W
\ (ie. XAdaptor Card or the XBox Expansion Box) itself.

\ In the transparent mode all accesses are mapped to the SBus cards
\ which are plugged into the XBox. In transparent mode the XBox H/W is
\ accessible only via the "write-0" register. To allow another bus
\ bridge to be plugged into the XBox all writes to the write-0 register
\ must contain a "key" which is programmed into the XBox H/W at boot
\ time. If the key field of a write to write-0 matches that programmed
\ at boot time the H/W intercepts the write. Otherwise the H/W passes
\ the write along.

\ The XBox has two sets of registers. Those of the XAdaptor card and
\ and those of the XBox Expansion Box.

\ Opaque mode host adapter registers

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

Memory-Mapped Buses 169

10

-1 value xac-err-regs
-1 value xac-ctl0 -1 value xac-ctl1
-1 value xac-elua -1 value xac-ella
-1 value xac-ele
\ Opaque mode expansion box registers
-1 value xbc-err-regs
-1 value xbc-ctl0 -1 value xbc-ctl1
-1 value xbc-elua -1 value xbc-ella
-1 value xbc-ele
\ Transparent mode register
-1 value write0-reg

: xbox-map-in (offset space size -- virt) " map-in" $call-parent ;
: xbox-map-out (virt size --) " map-out" $call-parent ;
: map-regs (--)
 write0-offset my-address + my-space /write0 xbox-map-in to write0-reg
 xac-err-offset my-address + my-space /xac-err xbox-map-in to xac-err-regs
 xac-ctl0-offset my-address + my-space /xac-ctl0 xbox-map-in to xac-ctl0
 xac-ctl1-offset my-address + my-space /xac-ctl1 xbox-map-in to xac-ctl1
 xac-elua-offset my-address + my-space /xac-elua xbox-map-in to xac-elua
 xac-ella-offset my-address + my-space /xac-ella xbox-map-in to xac-ella
 xac-ele-offset my-address + my-space /xac-ele xbox-map-in to xac-ele
 xbc-err-offset my-address + my-space /xbc-err xbox-map-in to xbc-err-regs
 xbc-ctl0-offset my-address + my-space /xbc-ctl0 xbox-map-in to xbc-ctl0
 xbc-ctl1-offset my-address + my-space /xbc-ctl1 xbox-map-in to xbc-ctl1
 xbc-elua-offset my-address + my-space /xbc-elua xbox-map-in to xbc-elua
 xbc-ella-offset my-address + my-space /xbc-ella xbox-map-in to xbc-ella
 xbc-ele-offset my-address + my-space /xbc-ele xbox-map-in to xbc-ele
;
: unmap-regs (--)
 write0-reg /write0 xbox-map-out -1 to write0-reg
 xac-err-regs /xac-err xbox-map-out -1 to xac-err-regs
 xac-ctl0 /xac-ctl0 xbox-map-out -1 to xac-ctl0
 xac-ctl1 /xac-ctl1 xbox-map-out -1 to xac-ctl1
 xac-elua /xac-elua xbox-map-out -1 to xac-elua
 xac-ella /xac-ella xbox-map-out -1 to xac-ella
 xac-ele /xac-ele xbox-map-out -1 to xac-ele
 xbc-err-regs /xbc-err xbox-map-out -1 to xbc-err-regs
 xbc-ctl0 /xbc-ctl0 xbox-map-out -1 to xbc-ctl0
 xbc-ctl1 /xbc-ctl1 xbox-map-out -1 to xbc-ctl1
 xbc-elua /xbc-elua xbox-map-out -1 to xbc-elua
 xbc-ella /xbc-ella xbox-map-out -1 to xbc-ella
 xbc-ele /xbc-ele xbox-map-out -1 to xbc-ele

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

170 Writing FCode 3.x Programs —November 1997

10

;

\ Opaque mode register access words

: xac-errd@ (-- l) xac-err-regs rl@ ;
: xac-erra@ (-- l) xac-err-regs 4 + rl@ ;
: xac-errs@ (-- l) xac-err-regs 8 + rl@ ;
: xac-ctl0@ (-- w) xac-ctl0 rl@ ;
: xac-ctl0! (w --) xac-ctl0 rl! ;
: xac-ctl1@ (-- w) xac-ctl1 rl@ ;
: xac-ctl1! (w --) xac-ctl1 rl! ;
: xac-elua@ (-- l) xac-elua rl@ ;
: xac-elua! (l --) xac-elua rl! ;
: xac-ella@ (-- w) xac-ella rl@ ;
: xac-ella! (w --) xac-ella rl! ;

: xbc-errd@ (-- l) xbc-err-regs rl@ ;
: xbc-erra@ (-- l) xbc-err-regs 4 + rl@ ;
: xbc-errs@ (-- l) xbc-err-regs 8 + rl@ ;
: xbc-ctl0@ (-- w) xbc-ctl0 rl@ ;
: xbc-ctl0! (w --) xbc-ctl0 rl! ;
: xbc-ctl1@ (-- w) xbc-ctl1 rl@ ;
: xbc-ctl1! (w --) xbc-ctl1 rl! ;
: xbc-elua@ (-- l) xbc-elua rl@ ;
: xbc-elua! (l --) xbc-elua rl! ;
: xbc-ella@ (-- w) xbc-ella rl@ ;
: xbc-ella! (w --) xbc-ella rl! ;

\ Transparent Mode register access words

external
: unique-key (-- n) " unique-key" $call-parent ;
headers
unique-key constant my-key
my-key encode-int " write0-key" property

: xbox! (w offset --) my-key h# 18 << or or write0-reg rl! ;

: write-xac-ctl0 (w --) xac-ctl0-offset xbox! ;
: write-xac-ctl1 (w --) xac-ctl1-offset xbox! ;
: write-xbc-ctl0 (w --) xbc-ctl0-offset xbox! ;
: write-xbc-ctl1 (w --) xbc-ctl1-offset xbox! ;

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

Memory-Mapped Buses 171

10

\ Some functionally oriented words

: set-key (--) my-key 8 << xac-ctl0! ;
: transparent (--) 1 xac-ctl1! ;
: opaque (--) 0 write-xac-ctl1 ;
: enable-slaves (--) h# 38 write-xbc-ctl1 ;

: xbox-errors (-- xbc-err xac-err)
 opaque xbc-errd@ xac-errd@ transparent
;

: ?.errors (xbc-err xac-err --)
 dup h# 8000.0000 and if
 cr .me ." xac-error " .h cr
 else drop
 then
 dup h# 8000.0000 and if
 cr .me ." xbc-error " .h cr
 else drop
 then
;

\ The address space of the XBox in transparent mode may be dynamically
\ allocated across its plug-in slots. This is called the
\ upper-address-decode-map (uadm). Below is a table which relates the
\ slot configuration code which is programmed in hardware to the
\ allocation of address space for each slot. The number in each cell is
\ the number of address bits needed for the slot.

decimal
create slot-sizes-array
\ slot0 slot1 slot2 slot3 slot-config
 23 c, 23 c, 23 c, 23 c, \ 00
 23 c, 23 c, 23 c, 23 c, \ 01
 23 c, 23 c, 23 c, 23 c, \ 02
 23 c, 23 c, 23 c, 23 c, \ 03
 25 c, 0 c, 0 c, 0 c, \ 04
 0 c, 25 c, 0 c, 0 c, \ 05
 0 c, 0 c, 25 c, 0 c, \ 06
 0 c, 0 c, 0 c, 25 c, \ 07
 24 c, 24 c, 0 c, 0 c, \ 08
 24 c, 0 c, 24 c, 0 c, \ 09
 0 c, 24 c, 24 c, 0 c, \ 0a

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

172 Writing FCode 3.x Programs —November 1997

10

 0 c, 0 c, 0 c, 0 c, \ 0b
 24 c, 23 c, 23 c, 0 c, \ 0c
 23 c, 24 c, 23 c, 0 c, \ 0d \ Overridden in code
 23 c, 23 c, 24 c, 0 c, \ 0e \ Overridden in code
 25 c, 0 c, 0 c, 0 c, \ 0f
 26 c, 26 c, 26 c, 26 c, \ 10
 26 c, 26 c, 26 c, 26 c, \ 11
 26 c, 26 c, 26 c, 26 c, \ 12
 26 c, 26 c, 26 c, 26 c, \ 13
 28 c, 0 c, 0 c, 0 c, \ 14
 0 c, 28 c, 0 c, 0 c, \ 15
 0 c, 0 c, 28 c, 0 c, \ 16
 0 c, 0 c, 0 c, 28 c, \ 17
 28 c, 28 c, 28 c, 28 c, \ 18
 28 c, 28 c, 28 c, 28 c, \ 19
 28 c, 28 c, 28 c, 28 c, \ 1a
 28 c, 28 c, 28 c, 28 c, \ 1b
 0 c, 0 c, 0 c, 0 c, \ 1c
 0 c, 0 c, 0 c, 0 c, \ 1d
 0 c, 0 c, 0 c, 0 c, \ 1e
 0 c, 0 c, 0 c, 0 c, \ 1f
hex

20 constant /slot-sizes-array
-1 value slot-config

: >slot-size (slot# -- size)
 slot-sizes-array slot-config la+ swap ca+ c@ 1 swap <<
 1 not and \ Could have slot size of 0.
;

\ This array is to be filled with offsets for each slot.
\ Eg. 0, 100.0000, 180.0000, 200.0000
create host-offsets 0 , 0 , 0 , 0 ,

: >host-offset (child-slot# -- adr) host-offsets swap na+ @ ;

create config-d-offsets h# 100.0000 , 0 , h# 180.0000 , 0 ,
create config-e-offsets h# 100.0000 , h# 180.0000 , 0 , 0 ,

: set-host-offsets (--)
 slot-config case
 h# d of config-d-offsets host-offsets 4 /n* move exit endof

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

Memory-Mapped Buses 173

10

Complete Hierarchical Device Driver

The complete driver includes all the required device node methods. It also
includes code to initialize the hardware at system reset. In particular, it
configures the allocation of address space across slots. It does this by either
performing an autoconfiguration or by accepting a manual override via a
property in its parent. During the configuration process, the driver interprets
the FCode of any SBus card plugged into the XBox. This results in devices
being added to the device tree.

 h# e of config-e-offsets host-offsets 4 /n* move exit endof
 endcase
 0 (initial-offset)
 4 0 do (offset)
 dup host-offsets i na+ ! (offset)
 i >slot-size + (offset')
 loop (final-offset)
 drop
;

: set-configuration (config-code --)
 is slot-config
 set-host-offsets
 slot-config 3 << my-key 8 << or
 dup write-xac-ctl0 \ set XAC
 write-xbc-ctl0 \ set XBC
 slot-config encode-int " uadm" property \ publish slot configuration
;

end0

Code Example 10-3 Complete Hierarchical Device Driver

hex
fcode-version3

" SUNW,xbox" name
" 501-1840" model
" sbus" device-type

Code Example 10-2 Extended Hierarchical Device Driver (Continued)

174 Writing FCode 3.x Programs —November 1997

10

\ XBox Registers

h# 0 constant write0-offset h# 4 constant /write0
h# 2.0000 constant xac-err-offset h# c constant /xac-err
h# 10.0000 constant xac-ctl0-offset h# 4 constant /xac-ctl0
h# 11.0000 constant xac-ctl1-offset h# 4 constant /xac-ctl1
h# 12.0000 constant xac-elua-offset h# 4 constant /xac-elua
h# 13.0000 constant xac-ella-offset h# 4 constant /xac-ella
h# 14.0000 constant xac-ele-offset h# 4 constant /xac-ele

h# 42.0000 constant xbc-err-offset h# c constant /xbc-err
h# 50.0000 constant xbc-ctl0-offset h# 4 constant /xbc-ctl0
h# 51.0000 constant xbc-ctl1-offset h# 4 constant /xbc-ctl1
h# 52.0000 constant xbc-elua-offset h# 4 constant /xbc-elua
h# 53.0000 constant xbc-ella-offset h# 4 constant /xbc-ella
h# 54.0000 constant xbc-ele-offset h# 4 constant /xbc-ele

: >reg-spec (offset size -- xdrreg)
 >r my-address + my-space encode-phys r> encode-int encode+
;

write0-offset /write0 >reg-spec
xac-err-offset /xac-err >reg-spec encode+
xac-ctl0-offset /xac-ctl0 >reg-spec encode+
xac-ctl1-offset /xac-ctl1 >reg-spec encode+
xac-elua-offset /xac-elua >reg-spec encode+
xac-ella-offset /xac-ella >reg-spec encode+
xac-ele-offset /xac-ele >reg-spec encode+
xbc-err-offset /xbc-err >reg-spec encode+
xbc-ctl0-offset /xbc-ctl0 >reg-spec encode+
xbc-ctl1-offset /xbc-ctl1 >reg-spec encode+
xbc-elua-offset /xbc-elua >reg-spec encode+
xbc-ella-offset /xbc-ella >reg-spec encode+
xbc-ele-offset /xbc-ele >reg-spec encode+
" reg" property

\ Xbox can interrupt on any SBus level

1 encode-int 2 encode-int encode+ 3 encode-int encode+ 4 encode-int encode+
5 encode-int encode+ 6 encode-int encode+ 7 encode-int encode+
" interrupts" property

1 sbus-intr>cpu encode-int 0 encode-int encode+

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 175

10

2 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
3 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
4 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
5 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
6 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
7 sbus-intr>cpu encode-int encode+ 0 encode-int encode+
" intr" property

\ XBox bus clock speed
d# 25.000.000 encode-int " clock-frequency" property

\ Burst sizes 64,32,16,8,4,2,1 bursts.
h# 7f encode-int " burst-sizes" property

\ XBox has no slave-only slots
0 encode-int " slave-only" property

\ Get the number of address bits for this SBus slot from the parent SBus
\ node without inheritance . OpenBoot 2.5 doesn't publish slot-address-bits.
\ However 2.5 is only on 4m machines, which are all 28 bits per slot.

: $= (addr1 len1 addr2 len2 -- equal?) \ string compare
 rot over - if
 drop 2drop false \ different lengths
 else comp 0=
 then
;
: 4mhack (-- n)
 " compatible" get-inherited-property if
 d# 25 \ no "compatible" prop; assume 4c
 else decode-string " sun4m" $= if
 d# 28
 else
 d# 25 \ not sun4m
 then
 nip nip
 then
;
: #bits (-- n)
 " slot-address-bits" my-parent ihandle>phandle
 get-package-property if
 4mhack
 else

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

176 Writing FCode 3.x Programs —November 1997

10

 decode-int nip nip
 then
;
#bits constant host-slot-size
host-slot-size encode-int " slot-address-bits" property

\ Utility display string
: .me (--) ." SBus " my-space .d ." XBox " ;

\ The XBox device has two modes opaque and transparent.

\ Upon reset the device is set to opaque mode. In this mode all
\ accesses to address space of the device are directed to the XBox H/W
\ (ie. XAdaptor Card or the XBox Expansion Box) itself.

\ In the transparent mode all accesses are mapped to the SBus cards
\ which are plugged into the XBox. In transparent mode the XBox H/W is
\ accessible only via the "write-0" register. To allow another bus
\ bridge to be plugged into the XBox all writes to the write-0 register
\ must contain a "key" which is programmed into the XBox H/W at boot
\ time. If the key field of a write to write-0 matches that programmed
\ at boot time the H/W intercepts the write. Otherwise the H/W passes
\ the write along.

\ The XBox has two sets of registers. Those of the XAdaptor card and
\ and those of the XBox Expansion Box.

\ Opaque mode host adapter registers
-1 value xac-err-regs
-1 value xac-ctl0 -1 value xac-ctl1
-1 value xac-elua -1 value xac-ella
-1 value xac-ele
\ Opaque mode expansion box registers
-1 value xbc-err-regs
-1 value xbc-ctl0 -1 value xbc-ctl1
-1 value xbc-elua -1 value xbc-ella
-1 value xbc-ele
\ Transparent mode register
-1 value write0-reg

: xbox-map-in (offset space size -- virt") " map-in" $call-parent ;
: xbox-map-out (virt size --) " map-out" $call-parent ;

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 177

10

: map-regs (--)
 write0-offset my-address + my-space /write0 xbox-map-in to write0-reg
 xac-err-offset my-address + my-space /xac-err xbox-map-in to xac-err-regs
 xac-ctl0-offset my-address + my-space /xac-ctl0 xbox-map-in to xac-ctl0
 xac-ctl1-offset my-address + my-space /xac-ctl1 xbox-map-in to xac-ctl1
 xac-elua-offset my-address + my-space /xac-elua xbox-map-in to xac-elua
 xac-ella-offset my-address + my-space /xac-ella xbox-map-in to xac-ella
 xac-ele-offset my-address + my-space /xac-ele xbox-map-in to xac-ele
 xbc-err-offset my-address + my-space /xbc-err xbox-map-in to xbc-err-regs
 xbc-ctl0-offset my-address + my-space /xbc-ctl0 xbox-map-in to xbc-ctl0
 xbc-ctl1-offset my-address + my-space /xbc-ctl1 xbox-map-in to xbc-ctl1
 xbc-elua-offset my-address + my-space /xbc-elua xbox-map-in to xbc-elua
 xbc-ella-offset my-address + my-space /xbc-ella xbox-map-in to xbc-ella
 xbc-ele-offset my-address + my-space /xbc-ele xbox-map-in to xbc-ele
;
: unmap-regs (--)
 write0-reg /write0 xbox-map-out -1 to write0-reg
 xac-err-regs /xac-err xbox-map-out -1 to xac-err-regs
 xac-ctl0 /xac-ctl0 xbox-map-out -1 to xac-ctl0
 xac-ctl1 /xac-ctl1 xbox-map-out -1 to xac-ctl1
 xac-elua /xac-elua xbox-map-out -1 to xac-elua
 xac-ella /xac-ella xbox-map-out -1 to xac-ella
 xac-ele /xac-ele xbox-map-out -1 to xac-ele
 xbc-err-regs /xbc-err xbox-map-out -1 to xbc-err-regs
 xbc-ctl0 /xbc-ctl0 xbox-map-out -1 to xbc-ctl0
 xbc-ctl1 /xbc-ctl1 xbox-map-out -1 to xbc-ctl1
 xbc-elua /xbc-elua xbox-map-out -1 to xbc-elua
 xbc-ella /xbc-ella xbox-map-out -1 to xbc-ella
 xbc-ele /xbc-ele xbox-map-out -1 to xbc-ele
;

\ Opaque mode register access words

: xac-errd@ (-- l) xac-err-regs rl@ ;
: xac-erra@ (-- l) xac-err-regs 4 + rl@ ;
: xac-errs@ (-- l) xac-err-regs 8 + rl@ ;
: xac-ctl0@ (-- w) xac-ctl0 rl@ ;
: xac-ctl0! (w --) xac-ctl0 rl! ;
: xac-ctl1@ (-- w) xac-ctl1 rl@ ;
: xac-ctl1! (w --) xac-ctl1 rl! ;
: xac-elua@ (-- l) xac-elua rl@ ;
: xac-elua! (l --) xac-elua rl! ;
: xac-ella@ (-- w) xac-ella rl@ ;

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

178 Writing FCode 3.x Programs —November 1997

10

: xac-ella! (w --) xac-ella rl! ;

: xbc-errd@ (-- l) xbc-err-regs rl@ ;
: xbc-erra@ (-- l) xbc-err-regs 4 + rl@ ;
: xbc-errs@ (-- l) xbc-err-regs 8 + rl@ ;
: xbc-ctl0@ (-- w) xbc-ctl0 rl@ ;
: xbc-ctl0! (w --) xbc-ctl0 rl! ;
: xbc-ctl1@ (-- w) xbc-ctl1 rl@ ;
: xbc-ctl1! (w --) xbc-ctl1 rl! ;
: xbc-elua@ (-- l) xbc-elua rl@ ;
: xbc-elua! (l --) xbc-elua rl! ;
: xbc-ella@ (-- w) xbc-ella rl@ ;
: xbc-ella! (w --) xbc-ella rl! ;

\ Transparent Mode register access words

external
: unique-key (-- n) " unique-key" $call-parent ;
headers
unique-key constant my-key
my-key encode-int " write0-key" property

: xbox! (w offset --) my-key h# 18 << or or write0-reg rl! ;

: write-xac-ctl0 (w --) xac-ctl0-offset xbox! ;
: write-xac-ctl1 (w --) xac-ctl1-offset xbox! ;
: write-xbc-ctl0 (w --) xbc-ctl0-offset xbox! ;
: write-xbc-ctl1 (w --) xbc-ctl1-offset xbox! ;

\ Some functionally oriented words

: set-key (--) my-key 8 << xac-ctl0! ;
: transparent (--) 1 xac-ctl1! ;
: opaque (--) 0 write-xac-ctl1 ;
: enable-slaves (--) h# 38 write-xbc-ctl1 ;

: xbox-errors (-- xbc-err xac-err)
 opaque xbc-errd@ xac-errd@ transparent
;

: ?.errors (xbc-err xac-err --)
 dup h# 8000.0000 and if
 cr .me ." xac-error " .h cr

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 179

10

 else drop
 then
 dup h# 8000.0000 and if
 cr .me ." xbc-error " .h cr
 else drop
 then
;

\ The address space of the XBox in transparent mode may be dynamically
\ allocated across its plug-in slots. This is called the
\ upper-address-decode-map (uadm). Below is a table which relates the
\ slot configuration code which is programmed in hardware to the
\ allocation of address space for each slot. The number in each cell is
\ the number of address bits needed for the slot.

decimal
create slot-sizes-array
\ slot0 slot1 slot2 slot3 slot-config
 23 c, 23 c, 23 c, 23 c, \ 00
 23 c, 23 c, 23 c, 23 c, \ 01
 23 c, 23 c, 23 c, 23 c, \ 02
 23 c, 23 c, 23 c, 23 c, \ 03
 25 c, 0 c, 0 c, 0 c, \ 04
 0 c, 25 c, 0 c, 0 c, \ 05
 0 c, 0 c, 25 c, 0 c, \ 06
 0 c, 0 c, 0 c, 25 c, \ 07
 24 c, 24 c, 0 c, 0 c, \ 08
 24 c, 0 c, 24 c, 0 c, \ 09
 0 c, 24 c, 24 c, 0 c, \ 0a
 0 c, 0 c, 0 c, 0 c, \ 0b
 24 c, 23 c, 23 c, 0 c, \ 0c
 23 c, 24 c, 23 c, 0 c, \ 0d \ Overridden in code
 23 c, 23 c, 24 c, 0 c, \ 0e \ Overridden in code
 25 c, 0 c, 0 c, 0 c, \ 0f
 26 c, 26 c, 26 c, 26 c, \ 10
 26 c, 26 c, 26 c, 26 c, \ 11
 26 c, 26 c, 26 c, 26 c, \ 12
 26 c, 26 c, 26 c, 26 c, \ 13
 28 c, 0 c, 0 c, 0 c, \ 14
 0 c, 28 c, 0 c, 0 c, \ 15
 0 c, 0 c, 28 c, 0 c, \ 16
 0 c, 0 c, 0 c, 28 c, \ 17
 28 c, 28 c, 28 c, 28 c, \ 18

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

180 Writing FCode 3.x Programs —November 1997

10

 28 c, 28 c, 28 c, 28 c, \ 19
 28 c, 28 c, 28 c, 28 c, \ 1a
 28 c, 28 c, 28 c, 28 c, \ 1b
 0 c, 0 c, 0 c, 0 c, \ 1c
 0 c, 0 c, 0 c, 0 c, \ 1d
 0 c, 0 c, 0 c, 0 c, \ 1e
 0 c, 0 c, 0 c, 0 c, \ 1f
hex

20 constant /slot-sizes-array
-1 value slot-config

: >slot-size (slot# -- size)
 slot-sizes-array slot-config la+ swap ca+ c@ 1 swap <<
 1 not and \ Could have slot size of 0.
;

\ This array is to be filled with offsets for each slot.
\ Eg. 0, 100.0000, 180.0000, 200.0000
create host-offsets 0 , 0 , 0 , 0 ,

: >host-offset (child-slot# -- adr) host-offsets swap na+ @ ;

create config-d-offsets h# 100.0000 , 0 , h# 180.0000 , 0 ,
create config-e-offsets h# 100.0000 , h# 180.0000 , 0 , 0 ,

: set-host-offsets (--)
 slot-config case
 h# d of config-d-offsets host-offsets 4 /n* move exit endof
 h# e of config-e-offsets host-offsets 4 /n* move exit endof
 endcase
 0 (initial-offset)
 4 0 do (offset)
 dup host-offsets i na+ ! (offset)
 i >slot-size + (offset')
 loop (final-offset)
 drop
;

: set-configuration (config-code --)
 is slot-config
 set-host-offsets
 slot-config 3 << my-key 8 << or

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 181

10

 dup write-xac-ctl0 \ set XAC
 write-xbc-ctl0 \ set XBC
 slot-config encode-int " uadm" property \ publish slot configuration
;

\ Required package methods

external

: dma-alloc (#bytes --) " dma-alloc" $call-parent ;
: dma-free (#bytes --) " dma-free" $call-parent ;
: dma-map-in (vaddr #bytes cache? -- devaddr) " dma-map-in" $call-parent ;
: dma-map-out (vaddr devaddr #bytes --) " dma-map-out" $call-parent ;
: dma-sync (virt devaddr #bytes --) " dma-sync" $call-parent ;

: map-in (offset slot# size -- virtual)
 >r (offset xbox-slot#)
 >host-offset + my-space (parent-offset parent-slot#)
 r> " map-in" $call-parent (virtual)
;

: map-out (virt size --) " map-out" $call-parent ;

: decode-unit (adr len -- address space)
 decode-2int (offset slot#)
 dup 0 3 between 0= if
 ." Invalid XBox slot number " .d cr
 1 abort
 then (offset slot#)
;

\ Hack because set-args and byte-load are not FCodes
: byte-load (adr len --) " byte-load" $find drop execute ;
: set-args (adr len adr len --) " set-args" $find drop execute ;

: probe-self (arg-adr arg-len reg-adr reg-len fcode-adr fcode-len --)

 ['] decode-unit catch if
 2drop 2drop 2drop 2drop
 exit
 then (arg-str reg-str fcode-offs,space)

 h# 10000 map-in (arg-str reg-str fcode-vaddr)

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

182 Writing FCode 3.x Programs —November 1997

10

 dup cpeek if (arg-str reg-str fcode-vaddr byte)
 dup h# f0 = swap h# fd = or if (arg-str reg-str fcode-vaddr)
 new-device (arg-str reg-str fcode-vaddr)
 >r set-args r> (fcode-vaddr)
 dup 1 byte-load (fcode-vaddr)
 finish-device
 else (arg-str reg-str fcode-vaddr)
 nip nip nip nip (fcode-vaddr)
 ." Invalid FCode start byte in " .me cr
 then (fcode-vaddr)
 else (arg-str reg-str fcode-vaddr)
 nip nip nip nip (fcode-vaddr)
 then

 h# 10000 map-out
;

: open (-- ok?) true ;
: close (--) ;

headers

\ The XBox slot configuration may be forced by the user. The mechanism
\ for doing this is a string which specifies megs/slot (eg. "16,8,8,0").

\ This string is processed into the config bits array. Then the
\ slot-sizes-array is searched for a configuration which matches or
\ exceeds the requested number for each slot. If the request is
\ unreasonable the default-slot-config is used.
\ Then the configuration is set in the XBox hardware.
\ Finally each slot is probed based on the config.

: default-slot-config (-- n)
 host-slot-size d# 25 = if
 h# c \ 1x24 bits, 2x23 bits
 else h# 10 \ 4x26 bits
 then
;

\ This array to be filled with bit sizes for each slot.
\ Eg. 24, 23, 23, 0
create config-bits 0 c, 0 c, 0 c, 0 c,

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 183

10

: config-ok? (config -- ok?)
 true
 slot-sizes-array rot 4 * ca+ (ok? slot-adr)
 4 0 do
 config-bits i ca+ c@
 over i ca+ c@ (ok? slot-adr conf-bits slot-bits)
 > if
 nip false swap leave
 then
 loop
 drop
;

: fit-config (-- config)
 default-slot-config
 /slot-sizes-array 0 do
 i config-ok? if
 drop i leave
 then
 loop
;

: megs>bits (megs -- bits) \ Convert requested megs to # of address bits
 ?dup 0= if 0 exit then
 dup 9 < if drop d# 23 exit then
 dup d# 17 < if drop d# 24 exit then
 dup d# 33 < if drop d# 25 exit then
 dup d# 65 < if drop d# 26 exit then
 dup d# 129 < if drop d# 27 exit then
 d# 257 < if d# 28 exit then
 d# 29 \ d#29 is too many bits => error
;

: request-megs (adr len --) \ Fill config-bits table
 base @ >r decimal
 4 0 do
 ascii , left-parse-string
 $number 0= if
 megs>bits config-bits i ca+ c!
 then
 loop
 2drop

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

184 Writing FCode 3.x Programs —November 1997

10

 r> base !
;

: find-config (adr len -- config)
 request-megs fit-config
;

create slot-string ascii # c, ascii , c, ascii 0 c,

: probe-slot (slot# --)
 dup >slot-size 0= if drop exit then (slot#)
 ascii 0 + slot-string c!
 " " slot-string 3 (arg-str reg-str)
 2dup (arg-str reg-str fcode-str)
 probe-self
;

: probe-children (--)
 4 0 do
 config-bits i ca+ c@ if
 i probe-slot
 then
 loop
;

: forced-configuration (adr len --)
 find-config (config-code)
 set-configuration
 probe-children
;

\ The Xbox slot configuration may be autoconfigured by the driver. The
\ autoconfiguration mechanism uses the following state transition table.
\ The table basically loops through each XBox slot with a current guess
\ at the slot config. With each slot the code then probes the slot's
\ FCode and uses the reg property information of the slot's new device
\ node to determine the amount of address space required by the slot.
\ The slot config guess is updated and a state transition is made.

\ This is the state transition table. Each entry in the table consists
\ of 16 bits. The most significant 8 bits is the XBox configuration
\ code for the next state, and the least 8 bits is the next state.

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 185

10

create states
\ Empty min mid
\ Empty 23 24 for 25 bit host SBus slot
 0501 w, 0d04 w, 0803 w, \ 0 testing slot 0
 0602 w, 0a05 w, 0a0f w, \ 1 Slot 0 empty, testing slot 1
 0706 w, 000f w, 060e w, \ 2 Slots 0,1 empty, testing slot 2
 090f w, 0c0f w, 080e w, \ 3 Slot 0 is 24 bit, testing slot 1
 0e05 w, 0e05 w, 0d0f w, \ 4 Slot 0 23 bit, testing slot 1
 000f w, 000f w, 0e0e w, \ 5 Slot 0 empty and Slot1 23 bit,
 \ or Slot 0,1 are 23 bit testing slot 2
 0c0e w, 070e w, 070e w, \ 6 Slots 0,1,2 empty, testing slot 3
\ Empty notused 26 for 28 bit host SBus slot
 1508 w, 100e w, 100b w, \ 7 testing slot 0
 1609 w, 100e w, 100c w, \ 8 Slot 0 empty, testing slot 1
 170a w, 100e w, 100d w, \ 9 Slots 0,1 empty, testing slot 2
 100e w, 100e w, 170e w, \ a Slots 0,1,2 empty, testing slot 3
 100c w, 100e w, 100c w, \ b Slot 0 is 26 bit, testing slot 1
 100d w, 100e w, 100d w, \ c Slots 0,1 are 26 bit, testing slot 2
 100e w, 100e w, 100e w, \ d Slots 0,1,2 are 26 bit,testing slot 3
 \ e
 \ f
0 value slot#
0 value start-state \ for auto-config state machine
4 value start-config
h# 100.0000 value max-card \ 25 bit default
h# 080.0000 value mid-card \ 25 bit default

: configure25 (--) \ 25 bit host SBus slots
 0 is start-state
 4 is start-config
 h# 100.0000 is max-card \ 25 bits for one Xbox slot
 h# 080.0000 is mid-card \ 24 bits per XBox slot
;
: configure28 (--) \ 28 bit host SBus slots
 7 is start-state
 h# 14 is start-config
 h# 800.0000 is max-card \ 28 bits for one XBox slot
 h# 0 is mid-card \ 26 bits per Xbox slot
;

0 value child-node

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

186 Writing FCode 3.x Programs —November 1997

10

\ Since child and peer do not appear until 2.3,
\ we include the following workarounds.
: next-peer (phandle -- phandle')
 fcode-version 2.0003 >= if
 peer
 else
 " romvec" $find drop execute 1c + @ 0 + @
 " call" $find drop execute nip
 then
;
: first-child (phandle -- phandle')
 fcode-version 2.0003 >= if
 child
 else
 " romvec" $find drop execute 1c + @ 4 + @
 " call" $find drop execute nip
 then
;

0 value extent \ 1 if card exists, but no reg prop or 0 reg

: bump-extent (n --) extent max is extent ;

: max-reg-extent (adr len --)
 begin dup while
 decode-int drop decode-int >r decode-int r> + (adr' len' extent)
 bump-extent
 repeat
 2drop
 extent 0= if \ reg prop is 0 -- fake it
 1 bump-extent
 then
;

: find-extent (--)
 0 is extent
 begin
 child-node if
 child-node next-peer
 else
 my-self ihandle>phandle first-child
 then (next-child)

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 187

10

 ?dup while
 is child-node
 " reg" child-node get-package-property 0= if (adr len)
 max-reg-extent
 else \ card has no reg prop -- fake it
 1 bump-extent
 then
 repeat
;

: evaluate-size (-- size-code)
 find-extent
 extent slot# >slot-size > if
 ." The card in slot " slot# .
 ." of " .me
 ." uses too much address space." cr
 abort
 then
 extent (max-extent)
 dup max-card > if drop 3 exit then (max-extent) \ max-size card
 dup mid-card > if drop 2 exit then (max-extent) \ mid-size card?
 0 > if 1 exit then () \ 25-small card?
 0 \ null for 28
;

: test-slot (xbox-config -- size-code)
 set-configuration ()
 slot# probe-slot ()
 evaluate-size (size-code)
;

: autoconfigure (--)
 0 is child-node
 -1 is slot#

 host-slot-size d# 25 = if configure25 else configure28 then

 start-state start-config (state# xbox-config)
 begin (state# xbox-config)
 slot# 1+ is slot# test-slot (state# size-code)
 dup 3 = if 2drop exit then (state# size-code)
 over h# f = if 2drop exit then (state# size-code)
 states rot 3 * wa+ swap wa+ w@ wbsplit (state#' xbox-config')

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

188 Writing FCode 3.x Programs —November 1997

10

 over h# e = until (state#' xbox-config')

 2drop
;

\ Initialize the XBox H/W. If the XAdaptor H/W detects that XBox
\ Expansion H/W is connected and powered-up it puts the H/W into
\ transparent mode and sets the XBox slot configuraton based on either a
\ forced configruation or the autoconfiguration algorithm.

: configuration (--)
 " xbox-slot-config" get-inherited-property 0= if
 decodestring (adr len adr len)
 find-config forced-configuration
 2drop
 else
 2drop
 autoconfigure
 then
;

: null-xdr (-- adr len)
 fcode-version 2.0001 >= if
 0 0 encodebytes
 else
 here 0
 then
;

: make-ranges (--)
 null-xdr (adr len)
 4 0 do
 i >slot-size if (adr len)
 0 i encode-phys encode+ (adr len)
 i >host-offset my-space encode-phys encode+ (adr len)
 i >slot-size encode-int encode+ (adr len)
 then
 loop
 " ranges" property
;

\ Because we go transparent in the middle and therefore the fcode prom
\ disappears the following must be in a definition.

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

Memory-Mapped Buses 189

10

: init-pkg (--)
 map-regs
 set-key \ opaque already
 xac-errs@ h# 40 and if \ Child ready?
 transparent \ Go transparent, then enable-slaves
 enable-slaves
 configuration
 make-ranges
 xbox-errors
 ?.errors
 " true"
 else
 cr .me
 ." child not ready --" cr
 ." perhaps the cable is not plugged in" cr
 ." or the expansion box is not turned on." cr
 " false"
 then (adr len)
 encodestring " child-present" property
 unmap-regs
 ['] end0 execute
;

init-pkg

end0

Code Example 10-3 Complete Hierarchical Device Driver (Continued)

190 Writing FCode 3.x Programs —November 1997

10

191

Network Devices 11

This chapter describes how to implement network device drivers.

Network devices are packet-oriented devices capable of sending and receiving
packets addressed according to IEEE 802.2 (Ethernet). OpenBoot firmware
typically uses network devices for diskless booting. The standard /obp-tftp
support package assists in the implementation of the load method for this
device type.

Normally the network device driver would have a one level tree or a two level
tree. The user can create a multi-level tree by applying new-device and
finish-device .

A one level tree could have several nodes, depending on how many net
channels the plug-in card can support, each node corresponds to one net
channel.

This chapter shows three sample network device drivers for the Quad Ethernet
device card. The device tree structure for the examples is as follows:

Each QED SBus card defines two levels:

• one qec device node

• four qe device nodes

192 Writing FCode 3.x Programs —November 1997

11

Figure 11-1 QED Device Tree

The general pathname (after sbus or sbi) for a qe node is

where S is the SBus slot number and C is the network channel number.

Required Methods
The network device FCode must declare the network device-type, and must
implement the methods open and close , as well as the following methods:

load (addr -- len)

Read the default stand-alone program into memory starting at addr using the
default network booting protocol. len is the size in bytes of the program read
in.

qec@S,20000/qe@C,0

sbus (or sbi on sun4d such as SS2000 and SC1000)

qec

qe qe qe qe

Network Devices 193

11

read (addr len -- actual)

Receive a network packet, placing at most the first len bytes in memory at addr.
Return the actual number of bytes received (not the number copied), or -2 if no
packet is currently available. Packets with hardware-detected errors are
discarded as though they were not received. Do not wait for a packet (non-
blocking).

write (addr len -- actual)

Transmit the network packet of size len bytes starting at memory address addr.
Return the number of bytes actually transmitted. The packet must be complete
with all addressing information, including source hardware address.

Required Device Properties
The required properties for a network device are:

Optional Device Properties
Several other properties may be declared for network devices:

Table 11-1 Required Network Device Properties

Name Typical Value

name " SUNW,my-net"

reg list of registers {device-dependent}

device_type " network"

mac-address 8 0 20 0c ea 41 {the MAC address currently being used.}

Table 11-2 Optional Network Device Properties

Property Name Typical Property Value

max-frame-size 0x4000

address-bits 48

slave-burst-sizes 0x7f {depends on the number of entries in the reg property}

local-mac-address 8 0 20 ef 45 44 {the built-in Media Access Control address.}

194 Writing FCode 3.x Programs —November 1997

11

Device Driver Examples

Simple Network Device Example

At minimum, a network device driver need only provide the desired tree
structure and to publish all the necessary properties to identify the devices.

Code Example 11-1 QED Identification ROM Sample

\ qed-idrom.fth

fcode-version3

 fload board.fth
 headers
 : copyright (--)
 ." Two-level QED-IDROM 1.1 " cr
 ." Copyright 1992 - 1998 Sun Microsystems, Inc.. All Rights Reserved" cr
 ;

 : identify-qed (--)
 create-qec-properties
 4 0 do
 new-device
 i create-qe-properties
 finish-device
 loop
 ;
 identify-qed

end0

\ ---
\ board.fth
\ To define required properties for QED devices.

 headers
 my-address constant my-sbus-addr
 my-space constant my-sbus-space
 headerless

Network Devices 195

11

\ Define the address map.
\ MED Address Map PA[18:0] (totally 512KB address space).
\ h# 00.0000 constant eprom-pa
\ h# 00.8000 constant /eprom \ 32KB used, 64KB total
 h# 01.0000 constant mace-regs-offset
 h# 01.0000 constant mace0-base
 h# 01.4000 constant mace1-base
 h# 01.8000 constant mace2-base
 h# 01.c000 constant mace3-base
 h# 00.4000 constant /mace-regs \ 16KB per channel, 64KB total
 h# 02.0000 constant global-regs-offset
 h# 01.0000 constant /global-regs \ 64KB total
 h# 03.0000 constant channel-regs-offset
 h# 03.0000 constant channel0-base
 h# 03.4000 constant channel1-base
 h# 03.8000 constant channel2-base
 h# 03.c000 constant channel3-base
 h# 00.4000 constant /channel-regs \ 16KB per channel, 64KB total
 h# 04.0000 constant locmem-pa
 h# 01.0000 constant /locmem \ 64KB used, 256KB total

\ Real size of mace/qec-global/qec-channel registers.
 20 constant /qec-mace-regs
 14 constant /qec-global-regs
 34 constant /qec-channel-regs

\ Miscellaneous constant definitions.
 1 constant #channels
 h# 4000 constant max-frame-size (d# 1536 for le)
 d# 48 constant address-bits
\ Hardwired SBus interrupt level for MED.
 4 constant sbus-qe-intr

 : encode-reg (addr space size -- addr len) >r encode-phys r> encode-int encode+ ;

 : encode-ranges (offs bustype phys offset size -- addr len)
 >r >r >r encode-phys r> r> r> encode-reg encode+
 ;
 : offset>physical-addr (offset -- paddr.lo paddr.hi)
 my-sbus-addr + my-sbus-space
 ;

headers

Code Example 11-1 QED Identification ROM Sample (Continued)

196 Writing FCode 3.x Programs —November 1997

11

Sample Driver With Test and Debugging Methods

This version of a network device driver is still non-bootable, but it shows how
an intermediate step of driver can be used to debug and test the device during
or after development.

The coding techniques shown in this and the following examples are:

 : create-qec-properties (--)
 " qec" name
 " SUNW,595-3198" encode-string " model" property \ 595-3198-01
 global-regs-offset offset>physical-addr /global-regs encode-reg
 locmem-pa offset>physical-addr /locmem encode-reg encode+
 " reg" property

 0 0 channel0-base offset>physical-addr /channel-regs encode-ranges
 0 1 channel1-base offset>physical-addr /channel-regs encode-ranges encode+
 0 2 channel2-base offset>physical-addr /channel-regs encode-ranges encode+
 0 3 channel3-base offset>physical-addr /channel-regs encode-ranges encode+
 0 h# 10 mace0-base offset>physical-addr /mace-regs encode-ranges encode+
 0 h# 11 mace1-base offset>physical-addr /mace-regs encode-ranges encode+
 0 h# 12 mace2-base offset>physical-addr /mace-regs encode-ranges encode+
 0 h# 13 mace3-base offset>physical-addr /mace-regs encode-ranges encode+
 " ranges" property

 #channels encode-int " #channels" property
 \ One interrupt per qec, not one interrupt per channel.
 sbus-qe-intr encode-int " interrupts" property
 ;
 : create-qe-properties (chan# --)
 >r
 " qe" encode-string " name" property
 r@ encode-int " channel#" property
 max-frame-size encode-int " max-frame-size" property
 address-bits encode-int " address-bits" property
 0 r@ /channel-regs encode-reg
 0 r@ h# 10 + /mace-regs encode-reg encode+
 " reg" property
 r> drop
 ;

Code Example 11-1 QED Identification ROM Sample (Continued)

Network Devices 197

11

• Each qe node has the same set of instance variables as each of the other qe
nodes.

• All the qe nodes use the same qe driver source code defined in the first qe
node (qe0).

Code Example 11-2 QED Test ROM Sample

\ qed-test.fth

fcode-version3
 headers
 fload board.fth
 : copyright (--)
 ." QED-TEST 1.1 " cr
 ." Copyright 1992 - 1998 Sun Microsystems, Inc.. All Rights Reserved" cr
 ;
: instance (--) fcode-revision 20001 >= if instance then ;
\ Create qec device node.
 create-qec-properties
 fload qec-test.fth \ qec test code.

\ Create qe0 device node.
 new-device
 0 create-qe-properties
 : dma-sync (virt-addr dev-addr size --) " dma-sync" $call-parent ;

 \ ***** qe0 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off
 fload qe-test.fth \ qe test code.

 \ ***** qe0 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)

198 Writing FCode 3.x Programs —November 1997

11

 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe1 device node.
 new-device
 1 create-qe-properties

 \ ***** qe1 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off

 \ ***** qe1 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe2 device node.
 new-device
 2 create-qe-properties

 \ ***** qe2 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 199

11

 my-channel# off

 \ ***** qe2 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;
 headers
 finish-device

\ Create qe3 device node.
 new-device
 3 create-qe-properties

 \ ***** qe3 instance variables *****
 0 instance value mace \ virtual address of Mace registers base
 0 instance value qecc \ virtual address of Qec channel registers base
 instance variable my-channel# \ qe channel#
 my-channel# off

 \ ***** qe3 external methods *****
 external
 : selftest (-- fail?)
 qe0-selftest
 ;
 : open (-- okay?)
 qe0-open
 ;
 : close (--)
 qe0-close
 ;
 : reset (--)
 qe0-reset
 ;

Code Example 11-2 QED Test ROM Sample (Continued)

200 Writing FCode 3.x Programs —November 1997

11

 headers
 finish-device

end0

\ ---
\ qec-test.fth
\ Test code for the qec node.

/locmem #channels / value chmem
chmem 2/ value rxbufsize

\ ***** qed utility (from qed-util.fth) *****

: lwrt-rd-cmp (mask data addr -- success?)
 2dup rl! rl@ rot and =
;
: cwrt-rd-cmp (mask data addr -- success?)
 2dup rb! rb@ rot and =
;
instance defer wrt-rd-cmp
' lwrt-rd-cmp to wrt-rd-cmp
d# 32 instance value #bits

external
: wlk-test (mask addr #bits -- success?)
 dup to #bits
 d# 32 = if ['] lwrt-rd-cmp else ['] cwrt-rd-cmp then to wrt-rd-cmp
 true -rot (true mask addr)
 #bits 0
 do (flag0 mask addr)
 over 1 i lshift and ?dup if (flag0 mask addr data)
 >r 2dup r> swap wrt-rd-cmp false = (flag0 mask addr flag)
 if rot drop false -rot leave then
 then
 loop
 2drop
;

headers
instance variable ms-timeout

external

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 201

11

: set-ms-timeout (#ms --) ms-timeout ! ;
: ms-timeout? (-- flag)
 ms-timeout @ dup if
 1- ms-timeout ! 1 ms false
 else
 drop true
 then
;
headers

\ ***** qec global register (from global.h.fth) *****
\
\ QEC Global register set.
\

\ Virtual addresses of QEC global registers.
\ The actual addresses will be assigned later.
0 instance value qecg

hex
\ global control register (RW)
: qecg-control (-- vaddr) qecg ;
: qecg-control@ (-- data) qecg-control rl@ ;
: qecg-control! (data --) qecg-control rl! ;

headerless
\ For Global Control Register.
f000.0000 constant gcr-mode \ Mode mask
4000.0000 constant gcr-mace \ Mace mode
1 constant gcr-reset \ Reset bit (0), 1 to enable reset.

headers

\ ***** qec map (from qecmap.fth) *****

0 instance value locmem-base
false value dma-sync?
0 value dma-sync-addr

: find-dma-sync (--)
 " dma-sync" my-parent ihandle>phandle find-method if
 true to dma-sync?
 to dma-sync-addr

Code Example 11-2 QED Test ROM Sample (Continued)

202 Writing FCode 3.x Programs —November 1997

11

 then
;
find-dma-sync

external
: decode-unit (addr len -- address space) decode-2int ;
: map-in (offset slot# #bytes -- virtual) " map-in" $call-parent ;
: map-out (addr len --) " map-out" $call-parent ;
: dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
: dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;
: dma-alloc (size -- addr) " dma-alloc" $call-parent ;
: dma-free (addr size --) " dma-free" $call-parent ;

\ Dma-sync could be dummy routine if parent device doesn’t support.
\ sun4c ROMs may not support it.
: dma-sync (virt-addr dev-addr size --)
 dma-sync? if
 dma-sync-addr my-parent call-package
 else
 3drop
 then
;

headers

: map-qec-regs (--)
 global-regs-offset my-sbus-addr + my-sbus-space /qec-global-regs
 " map-in" $call-parent to qecg
;
: unmap-qec-regs (--)
 qecg /qec-global-regs " map-out" $call-parent
 0 to qecg
;

: map-locmem (--)
 locmem-pa my-sbus-addr + my-sbus-space /locmem
 " map-in" $call-parent to locmem-base
;
: unmap-locmem (--)
 locmem-base /locmem " map-out" $call-parent
 0 to locmem-base
;

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 203

11

\ ***** qec test (from qectest.fth) *****
hex

headerless
\ 18 constant /qec-global-regs
\ Define the mask bits that can be tested for each global register.
create gl-reg-masks
 0000.001e , 0000.0000 , 0000.0000 , 0001.e000 ,
 0000.f000 , 0000.f000 ,

\ Test Qec global registers.
: gl-reg-test (-- success?)
 true
 /qec-global-regs 0 do (flag0)
 gl-reg-masks i + @
 qecg i + d# 32 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 /n +loop
;

\ Perform register test for the qec node.
: qec-reg-test (-- success?)
 diagnostic-mode? if
 ." Qec register test -- "
 then
 gl-reg-test
 diagnostic-mode? if
 dup if ." succeeded." else ." failed." then cr
 then
;

headers

\ ***** qec package *****

: reset-qec-global (-- fail?)
 gcr-reset qecg-control! \ Issue global reset.
 d# 100 set-ms-timeout
 begin
 qecg-control@ gcr-reset and
 while
 ms-timeout? if ." Global reset failed" cr true exit then

Code Example 11-2 QED Test ROM Sample (Continued)

204 Writing FCode 3.x Programs —November 1997

11

 repeat
 false
;
: identify-chip (-- okay?)
 qecg-control@ gcr-mode and gcr-mace =
;

external
: open (-- true)
 map-qec-regs
 identify-chip dup 0= if
 unmap-qec-regs
 then
;
: close (--)
 qecg if unmap-qec-regs then
;

: selftest (-- fail?)
 qecg (qecg)
 map-qec-regs
 qec-reg-test (qecg success?)
 unmap-qec-regs
 swap to qecg (success?)
 0= (fail?)
;

: reset (--)
 qecg
 map-qec-regs
 reset-qec-global drop
 unmap-qec-regs
 to qecg
;

headers

\ ---
\ qe-test.fth
\ Test code for the qe node.

: wlk-test (mask addr #bits -- success?) " wlk-test" $call-parent ;
: set-ms-timeout (#ms --) " set-ms-timeout" $call-parent ;

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 205

11

: ms-timeout? (-- flag) " ms-timeout?" $call-parent ;

\ ***** qe map (from qemap.fth) *****

headers
\ instance variable my-channel# my-channel# off
: my-channel#! (channel# --) my-channel# ! ;

: my-chan# (-- channel#)
 my-channel# @
;
: mace-regs (-- devaddr space size)
 my-sbus-addr mace-regs-offset + /mace-regs my-chan# * +
 my-sbus-space /qec-mace-regs
;

: map-mace (--)
 mace-regs " map-in" my-parent $call-method to mace
;
: unmap-mace (--)
 mace /qec-mace-regs " map-out" my-parent $call-method
 0 to mace
;

: channel-regs (-- devaddr space size)
 my-sbus-addr channel-regs-offset + /channel-regs my-chan# * +
 my-sbus-space /qec-channel-regs
;

: map-channel (--)
 channel-regs " map-in" my-parent $call-method to qecc
;
: unmap-channel (--)
 qecc /qec-channel-regs " map-out" my-parent $call-method
 0 to qecc
;

: map-chips (--)
 mace 0= if \ Do mapping if it is unmapped.
 map-mace
 map-channel
 then
;

Code Example 11-2 QED Test ROM Sample (Continued)

206 Writing FCode 3.x Programs —November 1997

11

: unmap-chips (--)
 mace if \ Do unmapping if it is mapped.
 unmap-channel
 unmap-mace
 then
;

\ ***** qe test (from qeregtst.fth) *****

hex

\ Define the mask bits that can be tested for each register.
create ch-reg-masks
 0000.0004 , 0000.0000 , ffff.f800 , ffff.f800 ,
 0000.0001 , 0000.0001 , 001f.001f , 1fc0.3fc0 ,
 0000.fffe , 0000.fffe , 0000.fffe , 0000.fffe ,
 0000.00ff ,
create mace-reg-masks
 00 c, 00 c, 89 c, 00 c, 00 c, 0d c, 00 c, 00 c,
 00 c, 67 c, 00 c, 70 c, f3 c, ef c, 04 c, 5f c,
 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c,
 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c, 00 c,

\ Test Qec per channel registers.
: ch-reg-test (-- flag)
 true
 /qec-channel-regs 0 do (flag0)
 ch-reg-masks i + @
 qecc i + d# 32 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 /n +loop
;
\ Test Mace registers.
: mace-reg-test (-- flag)
 true
 /qec-mace-regs 0 do (flag0)
 mace-reg-masks i + c@
 mace i + 8 wlk-test (flag0 flag)
 false = if drop false leave then (flag0)
 loop
;

\ Perform register test for the qe node.

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 207

11

: qe-reg-test (-- success?)
 diagnostic-mode? if
 ." Qe register test -- "
 then
 ch-reg-test
 mace-reg-test and
 diagnostic-mode? if
 dup if ." succeeded." else ." failed." then cr
 then
;

\ ***** qe0 package *****

headerless
\ For MACE BIU Configuration Control (R11). (RW)
01 constant m-swrst \ software reset
: mace-biucc (-- vaddr) h# 0b mace + ;
: mace-biucc@ (-- data) mace-biucc rb@ ;
: mace-biucc! (data --) mace-biucc rb! ;
\ For QEC per channel control reg. (RW)
02 constant c-rst
: qecc-control (-- vaddr) qecc ;
: qecc-control@ (-- data) qecc-control rl@ ;
: qecc-control! (data --) qecc-control rl! ;

headers
: set-my-channel# (--)
\ If don’t find the channel property, use 0.
 " channel#" get-my-property if 0 else decode-int nip nip then
 my-channel#!
;
\ Reset (or stop) the qec channel.
\ Issue a soft reset to the desired Mace.
\ Then issue a soft reset to the desired channel in QEC.
\ Chip reset algorithm:
\ Set the reset bit then wait until the reset bit cleared.
\ Timeout in 0.1 sec if fail.
\
: channel-reset (-- fail?)
 m-swrst mace-biucc! \ Issue Mace reset.
 d# 100 set-ms-timeout
 begin
 mace-biucc@ m-swrst and

Code Example 11-2 QED Test ROM Sample (Continued)

208 Writing FCode 3.x Programs —November 1997

11

 while
 ms-timeout? if ." Cannot reset Mace" cr true exit then
 repeat
 c-rst qecc-control! \ Reset QEC channel registers.
 d# 100 set-ms-timeout
 begin
 qecc-control@ c-rst and
 while
 ms-timeout? if ." Cannot reset QEC channel" cr true exit then
 repeat
 false
;

external
: qe0-selftest (-- flag) \ Flag 0 if passes test.
 set-my-channel#
 map-chips
 qe-reg-test (success?)
 unmap-chips
 0= (fail?)
;

: qe0-open (-- okay?)
 set-my-channel#
 mac-address drop 6 encode-string " mac-address" property
 true
;
: qe0-close (--)
;
: qe0-reset (--)
 set-my-channel#
 map-chips channel-reset drop unmap-chips
;
headers

Code Example 11-2 QED Test ROM Sample (Continued)

Network Devices 209

11

Bootable Network Device Driver Example

The example below shows a complete version of a bootable network driver. It
implements the selftest method callable by OpenBoot test commands
and the watch-net method callable by OpenBoot watch-net and watch-
net-all commands.

Code Example 11-3 QED Bootable Driver Sample

\ qed.fth

fcode-version3
 headers
 fload board.fth
 : copyright (--)
 ." QED 1.1 " cr
 ." Copyright 1992-1998 Sun Microsystems, Inc. All Rights Reserved" cr
 ;
 : instance (--) fcode-revision 20001 >=
 if instance then
 ;
\ Create qec device node.
 create-qec-properties
 fload qec.fth \ qec driver.

\ Create qe0 device node.
 new-device
 0 create-qe-properties
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 : dma-sync (virt-addr dev-addr size --) " dma-sync" $call-parent ;
 fload qe.fth \ qe driver.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe1 device node.
 new-device
 1 create-qe-properties
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe2 device node.

210 Writing FCode 3.x Programs —November 1997

11

 new-device
 2 create-qe-properties
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device

\ Create qe3 device node.
 new-device
 3 create-qe-properties
 " network" device-type
 fload qeinstance.fth \ qe instance variables.
 fload qe-package.fth \ qe external methods.
 finish-device
end0

\ ---
\ qec.fth

/locmem #channels / value chmem
chmem 2/ value rxbufsize

fload qed-util.fth \ Not included, refer to example 2.
fload global.h.fth \ Not included.
fload qecmap.fth \ Not included, refer to example 2.
fload qectest.fth \ Not included, refer to example 2.

: reset-qec-global (-- fail?)
 gcr-reset qecg-control! \ Issue global reset.
 d# 100 set-ms-timeout
 begin
 qecg-control@ gcr-reset and
 while
 ms-timeout? if ." Global reset failed" cr true exit then
 repeat
 false
;
: qec-init (--)
 chmem qecg-memsize!
 rxbufsize qecg-rxsize!

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 211

11

 chmem rxbufsize - qecg-txsize!
 gcr-burst16 qecg-control! \ SBus parity disabled, Rx/Tx equal priority.
;
: identify-chip (-- okay?) qecg-control@ gcr-mode and gcr-mace = ;

external
: open (-- true)
 map-qec-regs
 identify-chip dup if
 qec-init
 else unmap-qec-regs
 then
;
: close (--) qecg if unmap-qec-regs then ;

: selftest (-- fail?)
 qecg (qecg)
 map-qec-regs
 qec-reg-test (qecg success?)
 unmap-qec-regs
 swap to qecg (success?)
 0= (fail?)
;

: reset (--)
 qecg
 map-qec-regs
 reset-qec-global drop
 unmap-qec-regs
 to qecg
;

headers

\ ---
\ qeinstance.fth
\ Define instance words for qe driver.

\ headerless
\ mace.h.fth:
0 instance value mace \ virtual address of Mace registers base
\ channel.h.fth:
0 instance value qecc \ virtual address of Qec channel registers base

Code Example 11-3 QED Bootable Driver Sample (Continued)

212 Writing FCode 3.x Programs —November 1997

11

\ qemap.fth:
instance variable my-channel# \ qe channel#
 my-channel# off
\ qecore.fth:
\ CPU base address of tmd, rmd, tbuf, rbuf rings.
0 instance value cpu-dma-base \ base address of dma memory object viewed by cpu
0 instance value tmd0 \ transmit message descriptor#0
0 instance value rmd0 \ receive message descriptor#0
0 instance value tbuf0 \ base address of transmit buffer
0 instance value rbuf0 \ base address of receive buffers
\ IO (or dvice) base address of tmd, rmd, tbuf, rbuf rings.
0 instance value io-dma-base \ base addr of dma memory object viewed by device
0 instance value io-tmd0 \ transmit message descriptor#0
0 instance value io-rmd0 \ receive message descriptor#0
0 instance value io-tbuf0 \ base address of transmit buffer
0 instance value io-rbuf0 \ base address of receive buffers
\ Required total Dma buffer size for all rings.
0 instance value qe-dma-size \ Amount of memory mapped
\ *** Define required variables ***
instance variable status \ Accumulated channel status word.
instance variable restart? \ Restart? flag on after serious error.
instance variable nextrmd \ Point to next rmd.
instance variable nexttmd \ tmd0 nexttmd !, never changes presently
instance variable mode \ To store loopback control & promiscuous info.
6 instance buffer: this-en-addr \ Contain ethernet address
instance defer .receive-error
instance defer .error
instance defer .transmit-error
\ timed-receive.fth:
instance variable alarmtime
instance defer handle-broadcast-packet
\ qetest.fth:
instance variable qe-verbose? \ Flag for displaying diagnostic message.
 qe-verbose? off
instance variable ext-lbt? \ Flag for execution of external loopback test.
 ext-lbt? off
\ qe0-package.fth:
6 instance buffer: macbuf \ Contain mac address.
0 instance value obp-tftp \ Contain ihandle of TFTP package.
instance variable qe-nbytes \ Buffer size of higher layer receiver.
instance variable qe-buf \ Buffer address of higher layer receiver.

headers

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 213

11

\ ---
\ qe.fth

: wlk-test (mask addr #bits -- success?) " wlk-test" $call-parent ;
: set-ms-timeout (#ms --) " set-ms-timeout" $call-parent ;
: ms-timeout? (-- flag) " ms-timeout?" $call-parent ;

fload mace.h.fth \ Not included.
fload channel.h.fth \ Not included.
fload qemap.fth \ Not included, refer to example 2.
fload qecore.fth
fload timed-receive.fth
fload qeregtest.fth \ Not included, refer to example 2.
fload qetest.fth
fload qe0-package.fth

\ ---
\ qe0-package.fth
\ Define the required methods for the network qe driver

set-my-channel#
external
: read (buf len -- -2 | actual-len)
 qe0-read
;
: write (buf len -- actual-len)
 qe0-write
;
: selftest (-- flag) \ Flag 0 if passes test.
 qe0-selftest
;
: watch-net (--)
 qe0-watch-net
;
: load (addr -- len)
 qe0-load
;
: open (-- okay?)
 qe0-open
;
: close (--)
 qe0-close
;

Code Example 11-3 QED Bootable Driver Sample (Continued)

214 Writing FCode 3.x Programs —November 1997

11

: reset (--)
 qe0-reset
;

headers

\ ---
\ qecore.fth
\ Main core of QEC/MACE per channel Tx/Rx drivers.

\
\ SQEC has the following features:
\ - Supports four independent IEEE 802.3 10BASE-T twisted pair interfaces.
\ - Supports SBus parity checking.
\ - Supports 32 bit of DVMA addressing.
\ - Automatic rejection/discard of receive/transmit packets
\ when receive/transmit suffers from errors.
\

headerless
\ *** Rx/Tx Ring Descriptor Layout ***

struct (Rx/Tx Descriptor)
4 field >flags \ OWN, SOP, EOP, size/length
4 field >addr \ buffer address
(total-length) constant /md

hex
\ Definition for >flag field.
\ Bit[10:0] - Rx for W is buffer size, Rx for R is byte count, Tx for W is byte count.
8000.0000 constant own \ For both Rx & Tx.
4000.0000 constant stp \ For Tx only.
2000.0000 constant enp \ For Tx only.
 07ff constant lenmask

\ Value to write to message descriptor to enable it for use
enp stp or own or constant ready

\ *** buffer sizes and counts ***

\ Xmit/receive buffer structure.
\ This structure is organized to meet the following requirements:
\ - starts on an QEBURSTSIZE (64) boundary.

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 215

11

\ - qebuf is an even multiple of QEBURSTSIZE.
\ - qebuf is large enough to contain max frame (1518) plus
\ QEBURSTSIZE for alignment adjustments.
\
\ Similar to the 7990 ethernet controller, the QEC and the Software driver
\ communicate via ring descriptors. There are separate Rx & Tx descriptor
\ rings of 256 entries. Unlike 7990 the number of descriptor entries
\ is not programmable (fixed at 256 entries).

decimal
 /md constant /rmd \ rmd size = 8
 /md constant /tmd \ tmd size = 8
1792 constant /rbuf \ 7*256 receive buffer size at least 1518+128=1636
1600 constant /tbuf \ transmit buffer size
 256 constant #rmds
 256 constant #tmds
\ 1 constant #tbufs \ Just allocate one buffer for transmiter buffer pool.
 32 constant #rbufs \ # buffers allocated for receiver buffer pool.

#rmds /rmd * value /rmds
#tmds /tmd * value /tmds

headers

: restart?-on (--) restart? on ;

\ Conversion between cpu dma address and io dma address.
: cpu>io-addr (cpu-addr -- io-addr) cpu-dma-base - io-dma-base + ;
: io>cpu-addr (io-addr -- cpu-addr) io-dma-base - cpu-dma-base + ;

\ buffer# to address calculations
: rmd#>rmdaddr (n -- addr) /rmd * rmd0 + ;
: rbuf#>rbufaddr (n -- addr) #rbufs mod /rbuf * io-rbuf0 + ;
: tmd#>tmdaddr (n -- addr) /tmd * tmd0 + ;
\ address to buffer# calculations
: rmdaddr>rmd# (addr -- n) rmd0 - /rmd / ;

\ *** Qe message descriptor ring access ***

\ Get current rx/tx message descriptor ring pointer (on CPU side).
: nextrmd@ (-- cpu-rmd-addr) nextrmd @ ;
: nexttmd@ (-- cpu-tmd-addr) nexttmd @ ;

Code Example 11-3 QED Bootable Driver Sample (Continued)

216 Writing FCode 3.x Programs —November 1997

11

\ get location of buffer
: addr@ (rmd/tmd-addr -- buff-addr) >addr rl@ ;

: status@ (rmd/tmd-addr -- statusflag) >flags rl@ ;

\ gets length of incoming message, receive only
: length@ (rmdaddr -- messagelength) >flags rl@ lenmask and ;

\ Set current rx/tx message descriptor ring pointer (on CPU side).
: nextrmd! (cpu-rmd-addr --) nextrmd ! ;
: nexttmd! (cpu-tmd-addr --) nexttmd ! ;

\ Store buffer address into message descriptor
: addr! (buff-addr rmd/tmd-addr --) >addr rl! ;

\ Set length of message to be sent - transmit only
: length! (length rmd/tmd-addr --) >flags rl! ;

\ *** Qe synchronization ***

\ Sync the message descriptor after cpu or device writes it.
: qesynciopb (md --)
 dup cpu>io-addr /md (cpu-addr io-addr size)
 dma-sync
;
\ Sync the transmitting/received buffer after cpu/device writes it.
: qesyncbuf (md --)
 dup addr@ dup io>cpu-addr swap (md cpu-buf-addr io-buf-addr)
 rot length@ (cpu-buf-addr io-buf-addr size)
 dma-sync
;

\ The buffer was already put back, put the descriptor in the chip’s ready list
: give-buffer (rmd/tmd-addr --)
 dup >flags dup rl@ ready or swap rl! (md)
 \ Sync the descriptor so the device sees it.
 qesynciopb ()
;

\ *** Qe error handling ***

: get-qe-status (-- channel-status)
 qecc-status@ status @ or dup status !

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 217

11

;

\ get receive errors, receive only
: rerrors@ (-- errorsflag) get-qe-status c-rerr-mask and ;

\ gets transmit errors, transmit only
: xerrors@ (-- errorsflag) get-qe-status c-terr-mask and ;

\ Clear transmit/receive/all error flags
: clear-terrors (--) status @ c-terr-mask not and status ! ;
: clear-rerrors (--) status @ c-rerr-mask not and status ! ;
: clear-errors (--) status off restart? off ;
: clear-tint (--) status @ c-tint not and status ! ;

\ *** Basic initialization routines ***

\ words to set loopback control mode in UTR(R29) & promiscuous mode in MACCC(R13)
\ Bit<7> to control promiscuous mode, Bits<2:1> to control loopback mode,
\ Bit<0> to test the cable connection.
1 constant m-cable

: set-loop-mode (--) mode @ m-loop-mask and m-rpa or mace-utr! ;
: set-prom-mode (--) mode @ m-prom and mace-maccc! ;
: check-cable-mode? (-- flag) mode @ m-cable = ;
: external-loopback? (-- flag) mode @ m-loop-mask and m-loop-ext = ;

\ Check existence of no-tpe-test property to initialize disable-tpe-link-test bit.
\ Enable tpe-link-test if the property doesn’t exist,
\ or disable tpe-link-test if the property exists.
: init-link-test (--)
 \ Disable link test for external loopback mode.
 external-loopback? if m-dlnktst mace-phycc! exit then
 " no-tpe-test" get-my-property if 0
 else 2drop m-dlnktst then
 mace-phycc!
;
\ Enable/disable tpe-link-test
: setup-link-test (enable-flag --)
 " no-tpe-test" " get-property" eval if
 \ Property doesn’t exist, already enabled.
 0= if 0 0 " no-tpe-test" property then
 else 2drop \ Currently disabled.
 if " no-tpe-test" delete-property then

Code Example 11-3 QED Bootable Driver Sample (Continued)

218 Writing FCode 3.x Programs —November 1997

11

 then
;
\
\ After doing a port select of the twisted pair port, the
\ driver needs to give ample time for the MACE to start
\ sending pulses to the hub to mark the link state up.
\ Loop here and check of the link state has gone into a
\ pass state.
\
: link-state-fail? (-- fail?)
 d# 1000 set-ms-timeout
 begin
 mace-phycc@ m-lnkst and
 while
 ms-timeout? if
 check-cable-mode? if
 ." failed, transceiver cable problem? or check the hub." cr
 true
 else
\ m-dlnktst mace-phycc!
 false
 then
 exit
 then
 repeat
 check-cable-mode? if ." passed." cr then
 false
;

: set-physical-address (--)
 m-addrchg mace-iac!
 begin mace-iac@ m-addrchg and 0= until
 m-phyaddr mace-iac!
 \ Store least significant byte first.
 this-en-addr 6 bounds do i c@ mace-paddr! loop
 0 mace-iac!
;

: set-address (en-addr len --)
 drop this-en-addr 6 move ;

: set-logaddr-filter (--)
 m-addrchg mace-iac!

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 219

11

 begin mace-iac@ m-addrchg and 0= until
 m-logaddr mace-iac!
 8 0 do 0 mace-laddrf! loop
 0 mace-iac!
;

\ Reset (or stop) the qec channel.
\ Issue a soft reset to the desired Mace.
\ Then issue a soft reset to the desired channel in QEC.
\ Chip reset algorithm:
\ Set the reset bit then wait until the reset bit cleared.
\ Timeout in 0.1 sec if fail.
\

: channel-reset (-- fail?)
 m-swrst mace-biucc! \ Issue Mace reset.
 d# 100 set-ms-timeout
 begin
 mace-biucc@ m-swrst and
 while
 ms-timeout? if ." Cannot reset Mace" cr true exit then
 repeat
 c-rst qecc-control! \ Reset QEC channel registers.
 d# 100 set-ms-timeout
 begin
 qecc-control@ c-rst and
 while
 ms-timeout? if ." Cannot reset QEC channel" cr true exit then
 repeat
 false
;

\ Initialize a single message descriptor
: rmd-init (rbufaddr rmdaddr --)
 /rbuf over length! \ Buffer length
 addr! \ Buffer address
;

\ Set up the data structures necessary to receive a packet
: init-rxring (--)
 rmd0 nextrmd!
 #rmds 0 do i rbuf#>rbufaddr i rmd#>rmdaddr rmd-init loop

Code Example 11-3 QED Bootable Driver Sample (Continued)

220 Writing FCode 3.x Programs —November 1997

11

;
\
\ Initially first N=#rbufs descriptors with one-to-one association with a
\ buffer are made ready, the rest (256-N) not ready, then turn on receiver.
\ Whenver a receive buffer is processed, the information is copied out,
\ the buffer will be linked to the ((current+N)%256) entry then make the
\ entry is ready. Ie. The window of N ready descriptor/buffer pair is
\ moving around the ring.
\
: enable-rxring (--)
 #rbufs 0 do i rmd#>rmdaddr give-buffer loop
;

\ transmit buffer initialize routine
: init-txring (--)
 tmd0 nexttmd!
 #tmds 0 do io-tbuf0 i tmd#>tmdaddr addr! loop
;

\ *** Receive packet routines ***

\ Utility words used in .rerr-text & .terr-text.
: bits (mask #right-bits -- mask' right-bits)
 >r dup /n 8 * r@ - tuck << swap >> (mask bits ; RS: #bits)
 swap r> >> swap (mask' bits)
;

: 1bit (mask -- mask' rightest-bit-value) 1 bits ;
: .rerr-text (--)
 rerrors@
 1bit if ." SBus Rx Error Ack " restart?-on then
 1bit if ." SBus Rx Parity " restart?-on then
 1bit if ." SBus Rx Late " restart?-on then
 1bit if ." Data Buffer Too Small " then
\ 1bit if ." Rx packet Dropped " then
 1bit drop \ Skip drop error, happens all the time
 1bit drop \ Skip receive interrupt bit.
 1bit if ." CRC error " then
 1bit if ." Framing error " then
 1bit if ." MACE Rx Late Collision " then
 1bit if ." MACE FIFO overflow " then
 1bit if ." MACE Missed Counter Overflow " then
 1bit if ." MACE Runt Counter Overflow " then

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 221

11

 1bit if ." MACE Rx Coll Counter Overflow " then
 1bit if ." Collision error " then
 drop cr
;

: (.receive-error (--)
 rerrors@ if .rerr-text then
;
' (.receive-error to .receive-error
' (.receive-error to .error

: to-next-rmd (--)
 /rmd nextrmd +!
 nextrmd@ rmd0 - /rmds >= if rmd0 nextrmd! then
;

\ *** Transmit packet routines ***

: to-next-tmd (--)
 /tmd nexttmd +!
 nexttmd@ tmd0 - /tmds >= if tmd0 nexttmd! then
;

\ Ignores the size argument, and uses the standard buffer.
: get-buffer (dummysize -- buffer)
 drop nexttmd@ addr@ (io-tbuf)
 io>cpu-addr (cpu-tbuf)
;

\ Display time domain reflectometry information
\ : .tdr (--) ;

: .terr-text (--)
 xerrors@
 d# 16 bits drop \ Skip the receiver bits.
 1bit if ." SBus Tx Error Ack " restart?-on then
 1bit if ." SBus Tx Parity " restart?-on then
 1bit if ." SBus Tx Late " restart?-on then
 1bit if ." QEC Chained Tx Descriptor Error " restart?-on then
 1bit if ." QEC Tx Retry Counter Overflow " then
 1bit drop \ Skip transmit interrupt bit
 1bit if ." MACE >1518 Babble " then
 1bit if ." MACE Jabber " then

Code Example 11-3 QED Bootable Driver Sample (Continued)

222 Writing FCode 3.x Programs —November 1997

11

 1bit if ." MACE FIFO Underflow " then
 1bit if ." Tx Late Collision " then
 1bit if ." Too Many Retries " then
 1bit if ." Lost Carrier (transceiver cable problem?) " then
 1bit if ." Excessive Defer " then
 drop cr
;

\ print summary of any HARD errors
: (.transmit-error (--)
 xerrors@ if .terr-text then
;
' (.transmit-error to .transmit-error

\ Set up CPU page maps
: map-qe-buffers (--)
 #rbufs /rbuf *
\ 2KB (8*256) for tmds & 2KB (8*256) for rmds & 4KB for tbuf
\ ie. one page for tmds & rmds, one page for tbuf, the rest for rbufs.
 h# 2000 +
 to qe-dma-size

 \ Allocate and map that space
 qe-dma-size dma-alloc (dma-addr)

 \ Set the addresses of the various DMA regions used by the cpu.
 dup to cpu-dma-base
 dup to tmd0 h# 800 + (next-address)
 dup to rmd0 h# 800 + (next-address) \ Enough for 256 entries
 dup to tbuf0 h# 1000 + (next-address) \ Enough for max packet
 to rbuf0 ()
 tmd0 qe-dma-size false dma-map-in (io-dma-addr)
 \ Set the addresses of the various DMA regions used by the qec chip.
 dup to io-dma-base
 dup to io-tmd0 h# 800 + (next-address)
 dup to io-rmd0 h# 800 + (next-address) \ Enough for 256 entries
 dup to io-tbuf0 h# 1000 + (next-address) \ Enough for max packet
 to io-rbuf0 ()

;
: unmap-qe-buffers (--)
 tmd0 io-tmd0 qe-dma-size dma-map-out
 tmd0 qe-dma-size dma-free

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 223

11

 0 to tmd0
;

\ *** Chips initialization routines ***

\ Initializes the QEC/Mace chips.
: channel-init (-- fail?)
 \ *** Initialize QEC per channel registers.
 io-rmd0 qecc-rxring!
 io-tmd0 qecc-txring!
 c-rintmask qecc-rintmask! \ Mask RINT.
 c-tintmask qecc-tintmask! \ Mask XINT.
 my-chan# chmem * dup qecc-lmrxwrite! dup qecc-lmrxread!
 rxbufsize + dup qecc-lmtxwrite! qecc-lmtxread!
 c-qecerrmask qecc-qecerrmask!
 c-macerrmask qecc-macerrmask!
 \ *** Initialize MACE registers.
\ 0 mace-xmtfc!
 m-apadxmt mace-xmtfc! \ Set auto pad transmit for transmit frame control
 0 mace-rcvfc! \ Init. receive frame control.
 \ Init. Interrupt Mask Register to mask rcvint & cerr and unmask xmtint
 \ according QEC spec.
 m-cerrm m-rcvintm or mace-imr!
 \ Init. Bus Interface Unit Configuration Control to transmit after 64 bytes
 \ have been loaded & byte swap.
 m-xmtsp64 m-xmtspshift << m-bswp or mace-biucc!
 \ Init. FIFO Conf Control to set transmit/receive fifo watermark update
 m-xmtfw16 m-rcvfw32 or m-xmtfwu or m-rcvfwu or mace-fifocc!
 m-10base-t mace-plscc! \ Select twisted pair mode.
 init-link-test \ Init. tpe link test mode.
 set-physical-address \ Set mac address.
 set-logaddr-filter \ Set logical address filter.
 0 mace-iac!
 link-state-fail? \ Wait and check the link state marked up.
 mace-mpc@ drop \ Read to reset counter and to prevent an invalid int.
 set-loop-mode \ Set UTR
 set-prom-mode \ Set MACCC
 m-apadxmt not mace-xmtfc@ and mace-xmtfc!
 m-astrprcv not mace-rcvfc@ and mace-rcvfc!
;

\ Turn on the Mace, ready to tx/rx packets.
: enable-mace (--)

Code Example 11-3 QED Bootable Driver Sample (Continued)

224 Writing FCode 3.x Programs —November 1997

11

 m-enxmt m-enrcv or mace-maccc@ or mace-maccc!
;

\ *** Ethernet on/off routines ***

\ Initializes the QEC/Mace chips, allocating the necessary memory,
\ and enabling the transmitter and receiver.
: net-on (-- flag) \ true if net-on succeeds
 clear-errors
 mac-address set-address
 channel-reset 0= if
 init-txring
 init-rxring
 channel-init 0= dup if
 enable-rxring
 enable-mace
 then
 else false
 then
;

\ Stop the activity of this net channel.
: net-off (--) channel-reset drop init-link-test ;

\ *** Main receive routines ***

\
\ Whenver a receive buffer is processed, the information is copied out,
\ the buffer will be linked to the ((current+N)%256)th entry then make the
\ entry is ready ie.the window of N ready descriptor/buffer pair is
\ moving around the ring.
\
\ If 256 (#rmds) is multiples of N (#rbufs=32), we don’t need to link the
\ next-ready-rmd with the current processed rx buffer dynamically. They can
\ be set at the initialization time statically. For run time, we just need
\ to make the ((current+N)%256)th rmd ready.
\
: return-buffer (buf-handle --)
 rmdaddr>rmd# ([io-rbuf] rmd#)
 #rbufs + #rmds mod ([io-rbuf] next-ready-rmd#)
 rmd#>rmdaddr ([io-rbuf] next-ready-rmd)
 dup addr@ over rmd-init (next-ready-rmd ; Set length)
 give-buffer (; Make it ready)

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 225

11

 to-next-rmd \ Bump SW nextrmd to next one
;

: receive-ready? (-- packet-waiting?)
 restart? @ if net-on drop then
 nextrmd@ (rmd)
 \ Sync RMD before CPU looking at it.
 dup qesynciopb (rmd)
 status@ own and 0= (flag)
;

: receive (-- buf-handle buffer len) \ len non-zero if packet ok
 nextrmd@ dup addr@ (rmd io-rbuf-addr)
 io>cpu-addr (rmd cpu-rbuf-addr)
 over length@ (rmd cpu-rbuf-addr len)
 rerrors@ if
 .receive-error clear-rerrors
 then
 dup if (rmd cpu-rbuf-addr len)
 \ Sync the received buffer before CPU looking at it.
 nextrmd@ qesyncbuf (rmd cpu-rbuf-addr len)
 then
;

\ *** Main transmit routines ***

: set-timeout (interval --) get-msecs + alarmtime ! ;

: timeout? (-- flag) get-msecs alarmtime @ >= ;

: 10us-wait (--) d# 10 begin 1- dup 0= until drop ;

\ Wait until transmission completed
: send-wait (--)
\ Wait the packet to get to the local memory, ready for MACE to xmit.
 d# 2000 set-timeout \ 2 second timeout.
 begin
 get-qe-status

Code Example 11-3 QED Bootable Driver Sample (Continued)

226 Writing FCode 3.x Programs —November 1997

11

 c-tint and \ Transmit interrupt bit set?
 timeout? or \ Or timeout?
 until
 timeout? if
 ." TINT was not set!" cr true exit
 then
 \ Transmit completion, sync TMD before looking at it.
 nexttmd@ dup qesynciopb (tmd)
 status@ own and if (flag)
 ." Tx descriptor still owned by QEC!" cr
 then
\ Wait the packet to get to net, make sure at most one xmit packet in MACE FIFO.
 d# 1000 set-timeout \ 1 second timeout.
 begin
 10us-wait
 qecc-lmtxwrite@ qecc-lmtxread@ =
 timeout? or
 until
 timeout? if
 ." Tx packet not out to net!" cr
 then
 false
;

\ This send routine does not enforce the minimum packet length. It is
\ used by the loopback test routines.
: short-send (buffer length -- error?)
 clear-tint \ Erase tint status bit.
 \ discard buffer address, assumes using nexttmd
 nip nexttmd@ (length tmd)
 tuck length! (tmd ; Set length)
 \ Sync the transmit buffer so the device sees it.
 dup qesyncbuf (tmd)
 give-buffer (; Give tmd to chip)
 c-tdmd qecc-control! \ Bang the chip, let chip look at it right away
 send-wait (fail?) \ wait for completion
 xerrors@ dup if (fail? error?)
 .transmit-error clear-terrors
 then or (error?)
 to-next-tmd (error?)
 restart? @ if net-on drop then (error?)
 c-hard-terr-mask and (hard-error?)
;

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 227

11

\ Transmit packet routine, no S/W retry on this layer.
: net-send (buffer length -- error?) \ error? is contents of chan-status
 d# 64 max \ force minimum length to be 64
 short-send (error?)
;

\ ---
\ timed-receive.fth
\ Implements a network receive that will timeout after a certain interval.

decimal

: multicast? (handle data-address length -- handle data-address length flag)
 \ Check for multicast/broadcast packets
 over (... data-address)
 c@ h# 80 and dup if \ Look at the multicast bit
 (handle data-address length multicast?)
 handle-broadcast-packet
 then
;

: receive-good-packet (-- [buffer-handle data-address length] | 0)
 begin
 begin
 timeout? if false exit then
 receive-ready?
 until
 receive dup 0=
 while
 .error 2drop return-buffer
 repeat
;
: receive-unicast-packet (-- [buffer-handle data-address length] | 0)
 begin
 receive-good-packet dup 0= if exit then
 multicast?
 while
 2drop return-buffer
 repeat
;
\ Receive a packet, filtering out broadcast packets and timing
\ out if no packet comes in within a certain time.

Code Example 11-3 QED Bootable Driver Sample (Continued)

228 Writing FCode 3.x Programs —November 1997

11

: timed-receive (timeout-msecs -- [buffer-handle data-address length] err?)
 set-timeout receive-unicast-packet ?dup 0=
;

\ ---
\ qetest.fth
\ Define Qec/Mace loopback-test, net-init & watch-test routines.

\ This file contains Qec/Mace selftest routines.
\ It defines the following external words:
\ loopback-test (internal/external-flag -- success?)
\ net-init (-- success?)
\ watch-test (--)
\ Also it defines the following external variable.
\ qe-verbose? - Flag to indicate if want the test messages displayed.
\ ext-lbt? - Flag to indicate if run the external loopback test.
\
\ The algorithme for the loopback test:
\ Set internal or external loopback with no promiscuous mode.
\ Turn on the Qec/Mace Ethernet port.
\ If it succeeds, send out a short packet containing walking 0/1 patterns.
\ If it succeeds, wait for a period, check if receive the loopback packet.
\ If so, verify the length of the received packet is right.
\ Also check if the data of the received packet is right.
\ Return true if everything is fine, otherwise return false.

hex
headerless
create loopback-prototype
 ff c, 00 c, \ Ones and zeroes
 01 c, 02 c, 04 c, 08 c, 10 c, 20 c, 40 c, 80 c, \ Walking ones
 fe c, fd c, fb c, f7 c, ef c, 0df c, 0bf c, 7f c, \ Walking zeroes
 55 c, aa c,

: loopback-buffer (-- addr len)
 d# 32 get-buffer (addr)
 mac-address drop over 6 move \ Set source address
 mac-address drop over 6 + 6 move \ Set destination address
 loopback-prototype over d# 12 + d# 20 move \ Set buffer contents
 d# 32
;

: pdump (addr --)

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 229

11

 base @ >r hex
 dup d# 10 bounds do i c@ 3 u.r loop cr
 d# 10 + d# 10 bounds do i c@ 3 u.r loop cr
 r> base !
;

\ Print loopback control type for verbose mode.
: .loopback (--)
 mode @ m-loop-mask and
 ?dup if
 dup m-loop-ext = if ." External " drop
 else ." Internal " m-loop-intmen = if ." (including Mendec) " then
 then
 ." loopback test -- "
 then
;

\ Print loopback control type for non-verbose mode,
\ it is used after any error occurs.
: ?.loopback (--)
 qe-verbose? @ 0= if .loopback then
;

: switch-off (-- false) qe-verbose? off false ;

: bad-rx-data (buf-handle data-address -- false)
 ?.loopback
 ." Received packet contained incorrect data. Expected: " cr
 loopback-prototype pdump
 ." Observed:" cr
 d# 12 + pdump
 switch-off
;
\ Check the data of the received packet, return true if data is ok.
: check-data (buf-handle data-address length -- ok?)
 drop (buf-handle data-address)
 dup d# 12 + loopback-prototype d# 20 comp
 if bad-rx-data
 else drop (buf-handle)
 return-buffer
 qe-verbose? @ if ." succeeded." cr then
 mode off true
 then

Code Example 11-3 QED Bootable Driver Sample (Continued)

230 Writing FCode 3.x Programs —November 1997

11

;

\ Check the length & data of the received packet, return true if data & len ok.
: check-len&data (buf-handle data-address length -- ok?)
 \ The CRC is appended to the packet, thus it is 4 bytes longer than
 \ the packet we sent.
 dup d# 36 <>
 if ?.loopback
 ." Wrong packet length; expected 36, observed " .d cr
 switch-off
 else check-data
 then
;

headers
\ Run internal or external loopback test, return true if the test passes.
: loopback-test (internal/external -- pass?)
 mode !
 qe-verbose? @ if ." " .loopback then
 net-on if
 loopback-buffer short-send if
 ?.loopback ." send failed." cr
 switch-off
 else
 d# 2000 timed-receive if
 ?.loopback
 ." Did not receive expected loopback packet." cr
 switch-off
 else (buf-handle data-address length)
 check-len&data
 then
 then
 else
 switch-off
 then
 net-off mode off
;

\ If there is a normal external loopback test, then we don’t need this.
\ MACE external loopback test requires a special cable. Don’t run external
\ loopback test for selftest & watch-net.
: check-cable? (-- ok?)
 m-cable mode ! ." Link state check -- "

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 231

11

 net-on (success?)
 net-off mode off
;
\ Turn on the Ethernet port after pass loopback test.
\ Return true if net-init succeeds, otherwise return false if it fails.
: net-init (-- flag)
 mode @ \ Save requested mode because loopback changes it.
 m-loop-int loopback-test
 if (mode-saved ; Pass internal loopback test.)
 ext-lbt? @ \ Run external loopback test if the ext-lbt? flag is set.
 \ qe internal loopback with mendec is equivalent to external loopback of le.
 if m-loop-intmen loopback-test else true then (mode-saved)
 swap mode ! \ Restore the mode.
 if net-on \ Pass loopback test, turn on the ethernet port.
 else false
 then
 else mode ! false
 then
;

headerless
: wait-for-packet (--)
 begin key? receive-ready? or until
;

headers
\ Check for incoming Ethernet packets.
\ Use promiscuous mode to check for all incoming packets.
: watch-test (--)
 ." Looking for Ethernet packets." cr
 ." ‘.’ is a good packet. ‘X’ is a bad packet." cr
 ." Type any key to stop." cr
 begin
 wait-for-packet
 receive-ready?
 if receive
 if ." ." else ." X" then
 drop return-buffer
 then
 key? dup if key drop then
 until
;

Code Example 11-3 QED Bootable Driver Sample (Continued)

232 Writing FCode 3.x Programs —November 1997

11

\ ---
\ qe0-package.fth
\ Implements the architectural interface for the qe driver

headerless
\
\ The network driver uses the standard "obp-tftp" support package for
\ implementation. The "obp-ftfp" package implements the Internet Trivial File
\ Transfer Protocol (TFTP) for use in network booting. The "obp-tftp" package
\ defines the following methods to be used by the network driver:
\ open (-- okay?)
\ close (--)
\ load (addr -- size)
\ The "obp-tftp" package uses the read and write methods of the network driver
\ for receiving and transmitting packets. The package assums the size of the
\ maximum transfer packet is 1518 bytes. If the network driver needs bigger
\ maximum packet size, then it requires the method "max-transfer" defined,
\ the method will be called by the obp-tftp package to define the maximum
\ transfer packet size.
\
: init-obp-tftp (-- okay?)
 " obp-tftp" find-package if (phandle)
 my-args rot open-package (ihandle)
 else 0
 then
 dup to obp-tftp (ihandle | 0)
 dup 0= if
 ." Can’t open OBP standard TFTP package" cr
 then
;
: set-my-channel# (--)
\ If don’t find the channel property, use 0.
 " channel#" get-my-property if 0 else decode-int nip nip then
 my-channel#!
;

headers
: qe-xmit (bufaddr nbytes -- #sent)
 tuck get-buffer (nbytes bufaddr ether-buffer)
 tuck 3 pick move (nbytes ether-buffer)
 over net-send if drop 0 then (#sent)
;

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 233

11

: qe-poll (bufaddr nbytes -- #received)
 qe-nbytes ! qe-buf ! ()
 receive-ready? 0= if 0 exit then \ Bail out if no packet ready
 receive ?dup if (rmd ether-buffer length)
 dup >r (rmd ether-buffer length)
 qe-nbytes @ min (rmd ether-buffer length')
 qe-buf @ swap move (rmd)
 return-buffer r> (#received)
 else
 drop return-buffer 0 (0)
 then
;
: set-vectors (--)
 ['] (.receive-error to .error
 ['] (.transmit-error to .transmit-error
 ['] noop to handle-broadcast-packet
;
: map-qe (--)
 mace 0= if \ Do mapping if it is unmapped.
 map-chips
 map-qe-buffers
 then
;
: unmap-qe (--)
 mace if \ Do unmapping if it is mapped.
 unmap-qe-buffers
 unmap-chips
 then
;
: qe-loopback-test (-- flag) \ flag true if passes test
 set-vectors
 mode off qe-verbose? on
 ext-lbt? on
 net-init
 ext-lbt? off
 dup if net-off drop check-cable? then
 qe-verbose? off
;
: (watch-net) (--)
 map-qe
 set-vectors
 m-prom mode !
 qe-verbose? off

Code Example 11-3 QED Bootable Driver Sample (Continued)

234 Writing FCode 3.x Programs —November 1997

11

 ext-lbt? off
 net-init if watch-test net-off then
 unmap-qe
;

external
: qe0-read (buf len -- -2 | actual-len)
 qe-poll ?dup 0= if -2 then
;
: qe0-write (buf len -- actual-len) qe-xmit ;
: qe0-selftest (-- flag) \ Flag 0 if passes test.
 map-qe
 qe-reg-test (success?)
 if
 qe-loopback-test 0= \ Alternate the return flag.
 else
 true
 then (failure?)
 unmap-qe
;
: qe0-watch-net (--)
 qe0-selftest 0= if (watch-net) then
;

: qe0-load (addr -- len) " load" obp-tftp $call-method ;
: qe0-open (-- okay?)
 map-qe
 set-vectors
 mode off qe-verbose? off
 net-init 0= if unmap-qe false exit then

 mac-address drop macbuf 6 move \ Update macbuf.
 macbuf 6 encode-string " mac-address" property

 init-obp-tftp 0= if close false exit then
 true
;
: qe0-close (--)
 obp-tftp ?dup if close-package then
 mace if net-off then
 unmap-qe
;
: qe0-reset (--)

Code Example 11-3 QED Bootable Driver Sample (Continued)

Network Devices 235

11

 mace if net-off
 else map-chips net-off unmap-chips then
;
headers

Code Example 11-3 QED Bootable Driver Sample (Continued)

236 Writing FCode 3.x Programs —November 1997

11

237

Serial Devices 12

This chapter describes programming requirements for serial devices, and gives
examples of serial device drivers. Serial devices are byte-oriented, sequentially-
accessed devices such as asynchronous communication lines (often attached to
a dumb terminal).

Required Methods
The serial device driver must declare the serial device type, and must
implement the methods open and close , as well as the following:

install-abort (--)

Instruct the driver to begin periodic polling for a keyboard abort sequence.
install-abort is executed when the device is selected as the console input
device.

read (addr len -- actual)

Read len bytes of data from the device into memory starting at addr. Return the
number of bytes actually read, actual, or -2 if no bytes are currently available
from the device. -1 is returned if other errors occur.

238 Writing FCode 3.x Programs —November 1997

12

remove-abort (--)

Instruct the driver to cease periodic polling for a keyboard abort sequence.
remove-abort is executed when the console input device is changed from
this device to another.

write (addr len -- actual)

Write len bytes of data to the device from memory starting at addr. Return the
number of bytes actually written, actual.

Required Properties
These are the standard properties of a serial driver:

Device Driver Examples
The following three examples are serial device drivers for the Zilog 8530 SCC
(UART) chip.

• The first sample is a short driver which simply creates a device node and
declare the properties for the device.

• The second sample is a more sophisticated driver that defines methods to
control and access the device.

• The third sample shows the complete serial device driver.

Table 12-1 Serial Driver Required Properties

Property Name Value

name " SUNW,zs"

reg list of registers {device-dependent}

device_type " serial"

Serial Devices 239

12

Simple Serial FCode Program

Extended Serial FCode Program

\ This driver creates a device node and publishes the minimum required set of
\ properties.
fcode-version3
 hex
 " SUNW,zs" name
 my-address 10.0000 + my-space 8 reg
 7 encode-int " interrupts" property
end0

Code Example 12-1 Extended Serial FCode Program

\ In addition to publishing the properties, this sample driver
\ provides methods to access and control the serial ports.
\
\ The following main methods are provided:
\ - usea (--)
\ Selects serial port A. All subsequent operations will
\ be directed to port A
\ - useb (--)
\ Selects serial port B. All subsequent operations will
\ be directed to port B
\ - uemit (char --)
\ Emits a given character to the selected serial port.
\ - ukey (-- key)
\ Retrieves a character from the selected serial port.
\ - read (addr len -- #read)
\ Reads "len" number of characters from the selected port,
\ and store them at "addr".
\ - write (addr len -- #written)
\ Writes "len" number of characters from the buffer located
\ at "addr" to the selected serial port.

fcode-version3
hex

 " SUNW,zs" name
 my-address 10.0000 + my-space 8 reg
 7 encode-int " interrupts" property

240 Writing FCode 3.x Programs —November 1997

12

 : >phys-addr (offset -- phys.lo phys.mid phys.hi)
 >r my-address r> 0 d+ my-space
 ;
 : do-map-in (offset size -- virt)
 >r >phys-addr r> " map-in" $call-parent
 ;
 : do-map-out (virt size --) " map-out" $call-parent ;

 : /string (addr len n -- addr+n len-n) tuck - -rot + swap ;

 1 constant RXREADY \ received character available
 4 constant TXREADY \ transmit buffer empty

 0 instance value uart \ define uart as an "per-instance" value.
 0 instance value uartbase
 h# ff instance value mask-#data \ mask for #data bits
 h# 10 instance buffer: mode-buf

 \ The following line assumes that A2 selects the channel within the chip
 : usea (--) uartbase 4 + to uart ;
 : useb (--) uartbase to uart ;
 : uctl! (c --) uart rb! ;
 : uctl@ (-- c) uart rb@ ;

 \ The following line assumes that A1 chooses the command vs. data port
 : udata! (c --) uart 2 + rb! ;
 : udata@ (-- c) uart 2 + rb@ ;

 \ Test for "break" character received.
 : ubreak? (-- flag) 10 uctl! uctl@ h# 80 and 0<> ;

 \ Clear the break flag
 : clear-break (--)
 begin ubreak? 0= until \ Let break finish
 udata@ drop \ Eat the null character
 30 uctl! \ Reset errors
 ;

 : uemit? (-- flag) uctl@ TXREADY and ;
 : uemit (char --) begin uemit? until udata! ;

Code Example 12-1 Extended Serial FCode Program (Continued)

Serial Devices 241

12

Complete Serial FCode Program

 : ukey? (-- flag) uctl@ RXREADY and ;
 : ukey (-- key) begin ukey? until udata@ ;

 : uwrite (addr len -- #written)
 tuck bounds ?do (len)
 i c@ uemit (len)
 loop (len)
 ;

 : uread (addr len -- #read) \ -2 for none available right now
 ukey? 0= if 2drop -2 exit then (addr len)
 tuck (len addr len)
 begin dup 0<> ukey? 0<> and while (len addr len)
 over ukey mask-#data and swap c! (len addr len)
 1 /string (len addr' len')
 repeat (len addr' len')
 nip - (#read)
 ;

external
 : read (addr len -- #read) uread ;
 : write (addr len -- #written) uwrite ;

end0

Code Example 12-2 Complete Serial FCode Program

\ In addition to the methods defined in the above driver sample,
\ this version defines more methods to initialize, test, and access
\ the serial ports.
\ The new main methods are:
\ - inituarts (--)
\ Initializes both serial ports A and B.
\ - open (-- okay?)
\ Maps in the uart chip. Selects port A on default, then check
\ my-args, if port B was specified, then selects port B instead.
\ - close (--)
\ Unmap the uart chip.
\ - selftest (--)

Code Example 12-1 Extended Serial FCode Program (Continued)

242 Writing FCode 3.x Programs —November 1997

12

\ Performs selftest on both Port A and B.
\ - install-abort (--)
\ Sets up alarm to do poll-tty every 10 miliseconds.
\ - remove-abort (--)
\ Removes the poll-tty alarm.

fcode-version3
hex

 " SUNW,zs" name
 my-address 10.0000 + my-space 8 reg
 7 encode-int " interrupts" property
 " serial" device-type

 : >phys-addr (offset -- phys.lo phys.mid phys.hi)
 >r my-address r> 0 d+ my-space
 ;

 : do-map-in (offset size -- virt) >r >phys-addr r> " map-in" $call-parent ;
 : do-map-out (virt size --) " map-out" $call-parent ;

 : /string (addr len n -- addr+n len-n) tuck - -rot + swap ;

 fload inituarts.fth
 fload ttydriver.fth
end0

\--
\ inituarts.fth

hex
headerless
create uart-init-table
\ 9 c, c0 c, \ Master reset channel a (80), channel b (40)

 9 c, 2 c, \ Don't respond to intack cycles (02)

 4 c, 44 c, \ No parity (00), 1 stop bit (04), x16 clock (40)

 3 c, c0 c, \ receive 8 bit characters (c0)
 5 c, 60 c, \ transmit 8 bits (60)
 e c, 82 c, \ Processor clock is baud rate source (02)

Code Example 12-2 Complete Serial FCode Program (Continued)

Serial Devices 243

12

 b c, 55 c, \ TRxC = xmit clk (01), enable TRxC (04), Tx clk is baud (10),
 \ Rx clk is baud (40)
 c c, e c, \ Time constant low
 d c, 0 c, \ Time constant high

 3 c, c1 c, \ receive 8 bit characters (c0), enable (01)
 5 c, 68 c, \ transmit 8 bits (60), enable (08)
 e c, 83 c, \ Processor clock is baud rate source (02), Tx enable (01)

 0 c, 10 c, \ Reset status bit latches

ff c, ff c, \ Mark end of data

\--
\ ttydriver.fth - Driver for Zilog 8530 SCC (UART) chips.

hex
0 instance value uartbase

create default-mode
\ 0 1 2 3 4 5 6 7
 00 c, 00 c, 00 c, c1 c, 44 c, 68 c, 00 c, 00 c,

\ 8 9 a b c d e f
 00 c, 02 c, 00 c, 55 c, 0e c, 00 c, 83 c, 00 c,

 0 instance value uart \ define uart as an "per-instance" value.
 h# ff instance value mask-#data \ mask for #data bits
 h# 10 instance buffer: mode-buf

 create masks 1f c, 7f c, 3f c, ff c,

 \ The following line assumes that A2 selects the channel within the chip
 : usea (--) uartbase 4 + to uart ;
 : useb (--) uartbase to uart ;
 : uctl! (c --) uart rb! ;
 : uctl@ (-- c) uart rb@ ;

 \ The following line assumes that A1 chooses the command vs. data port
 : udata! (c --) uart 2 + rb! ;
 : udata@ (-- c) uart 2 + rb@ ;

 \ Write all the initialization sequence to both uarts

Code Example 12-2 Complete Serial FCode Program (Continued)

244 Writing FCode 3.x Programs —November 1997

12

 : inituart (--)
 uart-init-table
 begin dup c@ ff <> while
 dup c@ uctl! dup ca1+ c@ uctl!
 /c 2* +
 repeat
 drop
 ;

 : inituarts (--) usea inituart useb inituart usea ;

 \ Test for "break" character received.
 : ubreak? (-- break?) 10 uctl! uctl@ h# 80 and 0<> ;

 \ Clear the break flag
 : clear-break (--)
 begin ubreak? 0= until \ Let break finish
 udata@ drop \ Eat the null character
 30 uctl! \ Reset errors
 ;

 1 constant RXREADY \ received character available
 4 constant TXREADY \ transmit buffer empty

 : uemit? (-- emit?) uctl@ TXREADY and ;
 : uemit (char --) begin uemit? until udata! ;

 : ukey? (-- key?) uctl@ RXREADY and ;
 : ukey (-- key) begin ukey? until udata@ ;

 : uwrite (addr len -- #written)
 tuck bounds ?do (len)
 i c@ uemit (len)
 loop (len)
 ;

 : uread (addr len -- #read) \ -2 for none available right now
 ukey? 0= if 2drop -2 exit then (addr len)
 tuck (len addr len)
 begin dup 0<> ukey? 0<> and while (len addr len)
 over ukey mask-#data and swap c! (len addr len)
 1 /string (len addr' len')
 repeat (len addr' len')

Code Example 12-2 Complete Serial FCode Program (Continued)

Serial Devices 245

12

 nip - (#read)
 ;
 : poll-tty (--)
 ttylock @ if exit then
 ubreak? if clear-break user-abort then
 ;

external
 : open (-- okay?)
 phys-addr 8 do-map-in to uartbase
 usea
 my-args (arg-str)
 ascii , left-parse-string if (rem addr)
 c@ ascii b = if (rem)
 2drop ()
 useb ()
 then (rem)
 else (rem addr)
 drop 2drop ()
 then ()

 true
 ;

 : close (--) uartbase 8 do-map-out ;

headers
 : utest (-- 0) h# 7f bl ?do i uemit loop 0 ;

external
 : selftest (-- error?)
 open 0= if ." Can't open device" true exit then
 my-args if (addr)
 c@ case
 ascii a of usea endof
 ascii b of useb endof
 (default) ." Bad zs port letter" drop false exit
 endcase
 else \ No port letter so test both ports.
 drop
 usea utest
 useb utest
 or close exit (fail?)

Code Example 12-2 Complete Serial FCode Program (Continued)

246 Writing FCode 3.x Programs —November 1997

12

 then
 utest (fail?)
 close
 ;
 : read (addr len -- #read) uread ;
 : write (addr len -- #written) uwrite ;
 : install-abort (--) ['] poll-tty d# 10 alarm ;
 : remove-abort (--) ['] poll-tty 0 alarm ;

 \ "seek" might be implemented to select a load file name
 \ Implement "load" (optional)
headers

Code Example 12-2 Complete Serial FCode Program (Continued)

247

PCI FCode Driver Example 13

This example PCI FCode driver illustrates how to handle PCI-related registers
in FCode.

id: %Z%%M% %I% %E%
purpose: A sample network PCI FCode driver showing use of Vital Product Data and
access to ROM.
copyright: Copyright 1994-1998 Sun Microsystems, Inc. All Rights Reserved

\ Each sample PCI card will define one hme device node:
\
\ pci
\ |
\ |
\ |
\ hme
\
\ The general pathname (after pci) for a hme node is
\ hme@D,1
\ where D is Device#.
\

248 Writing FCode 3.x Programs —November 1997

13

\ name hme
\ Phys.hi Phys.mid Phys.lo Size.hi Size.lo
\ ------- --------- --------- --------- ---------
\ reg 00BB.XX00 0000.0000 0000.0000 0000.0000 0000.0000 (Cfg)

\ 02BB.XX10 0000.0000 0000.0000 0000.0000 0000.7020 (memory)

\
\ where "BB" = PCI Bus #
\ where "XX" = PCI Device # | Function #
\

Fcode-version3

hex

\ 3.x token interpreter extends bit[31] all the way to bit[63].
\ To create numbers with bit[31] set, but not extended to bit[63],
\ we need to use x-num
ff ff ff ff bljoin constant num-32
: x-num (n -- l) num-32 and ;
: and (a b -- a-and-b) and x-num ;
: or (a b -- a-or-b) or x-num ;
: lshift (x n -- x') lshift x-num ;
: rshift (x n -- x') rshift x-num ;

f200.0000 x-num constant xreg-mask
\ my-address gives two 32 bit numbers for PCI case.
my-address constant my-bus-addr-mid constant my-bus-addr-low
my-space constant my-bus-space
2 constant pci-hme-intr \ for PCI card

: my-bus-addr (-- paddr.low paddr.mid)
 my-bus-addr-low my-bus-addr-mid
;

PCI FCode Driver Example 249

13

...

...

\ for mac id on the fcode prom itself
h# 24 constant vpdp-loc
h# c000 value vpd-base
0 value cheer-rombase
0 value vpd-addr
h# 1.0000 value /cheer-rom

\ HappyMeal Enet Address Map
hex
000.0000 constant global-regs-offset
7020 constant /total-reg-space

h# 4000 constant max-frame-size(d# 1536 for le)
d# 48 constant address-bits
h# 10 constant cfg-bar0
h# 4 constant cfg-cmd-reg
h# 30 constant cfg-rom-base
h# 200.0000 constant 32-bit-mem-ss

: encode-ints (nn .. n1 n -- adr len)
 0 0 encode-bytes rot 0 ?do rot encode-int encode+ loop
;

: xdrreg (addr space size -- adr len)
 >r encode-phys r> 0 2 encode-ints encode+
;

: offset>physical-addr (offset -- paddr.lo paddr.mid paddr.hi)
 my-bus-addr >r + r> my-bus-space
 32-bit-mem-ss or cfg-bar0 or \ OR in "ss" = memory, base reg=10
;

: create-hme-attributes (--)

 " SUNW,hme" name
 " SUNW,cheerio" encode-string " model" property

" pci108e,1001" encode-string " pciclass,060000" encode-string
 encode+ " compatible" property

250 Writing FCode 3.x Programs —November 1997

13

 my-bus-addr my-bus-space 0 xdrreg
 global-regs-offset offset>physical-addr /total-reg-space
 xdrreg encode+
 " reg" property

 max-frame-size encode-int " max-frame-size" property
 address-bits encode-int " address-bits" property
 pci-hme-intr encode-int " interrupts" property
 " network" device-type
 " %I%" encode-string " version" property \ FCode PROM version
;

: enable-cheer-cmd-reg (--)
 \ PCI Command Register Settings
 \ h# 100 = SERR# Enable
 \ h# 40 = Parity Error Enable
 \ h# 4 = Mastering Enable
 \ h# 2 = Memory Access Enable
 my-bus-space cfg-cmd-reg + " config-w@" $call-parent (cmd-reg)
 \ Set PCI Command bits
 h# 146 or
 my-bus-space cfg-cmd-reg + " config-w!" $call-parent
;

: enable-cheer-rom (--)
 my-bus-space cfg-rom-base + " config-l@" $call-parent (cmd-reg)
 \ enable rom accesses
 h# 1 or
 my-bus-space cfg-rom-base + " config-l!" $call-parent
;

: disable-cheer-rom (--)
 my-bus-space cfg-rom-base + " config-l@" $call-parent (cmd-reg)
 \ disable rom accesses
 h# 1 invert and
 my-bus-space cfg-rom-base + " config-l!" $call-parent
;
: map-cheer-rom (--)
 0 0 my-bus-space 32-bit-mem-ss or cfg-rom-base or /cheer-rom
 " map-in" $call-parent to cheer-rombase
;

PCI FCode Driver Example 251

13

 : unmap-cheer-rom (--)
 cheer-rombase /cheer-rom " map-out" $call-parent
 0 to cheer-rombase
;

\ the Vital Product Data for sample ethernet card looks like this:
\
\ (Offsets are in decimal.)
\ Offset Item Value
\ 0 Large Resource Type VPD Tag (0x10) 0x90
\ 1 Length 0x0009
\ 3 VPD Keyword "NA"
\ 5 Length 6
\ 6 Ethernet Address 0x080020.??????
\ 12 Small Resource Type End Tag (0xf) 0x79
\ 13 Data (nominally checksum) 0
\
\

: uw@ (adr -- w) dup c@ swap 1+ c@ swap bwjoin ;

: set-vpdp-value (--) \ set pointer to vpd
 enable-cheer-cmd-reg
 map-cheer-rom
 enable-cheer-rom
 cheer-rombase vpdp-loc + rw@ cheer-rombase + to vpd-addr
;

: unset-vpdp-value (--)
 disable-cheer-rom
 unmap-cheer-rom
 0 to vpd-addr
;
: get-macid-header (-- tag len1 keyword len2)
 vpd-addr dup c@ (tag)
 swap 1+ dup uw@ (tag len1)
 swap 2+ dup uw@ (tag len1 keyword)
 swap 2+ c@ (tag len1 keyword len2)
;

252 Writing FCode 3.x Programs —November 1997

13

: verify-macid-header-ok? (tag len1 keyword len2 -- ok?)
 h# 6 <> if 2drop drop false exit then
 (tag len1 keyword)
 ("NA") h# 4e41 <> if 2drop false exit then
 (tag len1)
 h# 9 <> if drop false exit then
 h# 90 <> if false else true then
;
6 buffer: my-loc-mac-addr

: loc-mac-prop (addr --)
 6 encode-bytes " local-mac-address" property
;
: make-loc-mac (--) my-loc-mac-addr loc-mac-prop ;
: get-macid (-- valid?)
 get-macid-header
 verify-macid-header-ok? if
 vpd-addr 6 + my-loc-mac-addr 6 cmove
 true
 else
 diagnostic-mode? if
 ." Wrong Vital Product Data/Network Address header" cr
 then
 false
 then
;
: make-macid (--)
 get-macid if
 make-loc-mac
 then
;

: create-macid (--)
 set-vpdp-value
 make-macid
 unset-vpdp-value
;
create-hme-attributes \ Create ENET port device node.
create-macid

...

PCI FCode Driver Example 253

13

...

headers
: do-map-in (offset slot# #bytes -- virtual) " map-in" $call-parent ;
: do-map-out (adr len --) " map-out" $call-parent ;
: do-dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
: do-dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;
: do-dma-alloc (size -- addr) " dma-alloc" $call-parent ;
: do-dma-free (addr size --) " dma-free" $call-parent ;

: do-dma-sync (virt-adr dev-adr size --)
 " dma-sync" ['] $call-parent catch if
 3drop 2drop
 then
;

...

...

0 instance value obp-tftp \ Contain ihandle of TFTP package.

: init-obp-tftp (-- okay?)
 " obp-tftp" find-package if (phandle)
 my-args rot open-package (ihandle)
 else 0
 then
 dup to obp-tftp (ihandle | 0)
 dup 0= if
 ." Can't open OBP standard TFTP package" cr
 then
;

...

...

external
: read (buf len -- actual-len)
 ...

;

254 Writing FCode 3.x Programs —November 1997

13

: write (buf len -- actual-len)
 ...
 ...
;

: seek (-- okay?)
 ." Unimplemented driver procedure: seek " cr 0
;

: selftest (-- failed?) \ Flag 0 if passes test.
 ...
 ...
;

: watch-net (--) \ to watch network activity
 ...
 ...
;

: close (--)
 ...
 ...
 obp-tftp ?dup if close-package then
 ...
 ...
;

: open (-- okay?) \ return true on successful open
 ...
 ...

 init-obp-tftp 0= if close false exit then
 true
;

: load (adr -- len)
 " load" obp-tftp $call-method
;

end0

255

FCode Dictionary 14

This dictionary describes all of the FCodes defined by IEEE Standard 1275-1994
and supported in the 3.x tokenizer. This dictionary includes the pre-defined
FCode words that you can use as part of FCode source code programs. It also
includes tokenizer directives and macros. Appendix A, “FCode Reference”,
contains a command summary, with words grouped by function.

The words are listed alphabetically in this chapter, sorted by the first
alphabetic character in the word’s name. For example, the words mod and
*/mod are adjacent to each other. Words having no alphabetic characters in
their names are placed at the beginning of the chapter, in ASCII order.

The boot PROM and tokenizer are case-insensitive (all Forth words are
converted to lowercase internally). The only exceptions are literal text, such as
text inside " strings and text arguments to the ascii command, which are left
in the original form. In general, you may use either uppercase or lowercase. By
convention, OpenBoot drivers are written in lowercase.

Defining words create a header by calling external-token , named-token ,
or new-token . See the definitions of these words for more details.

All FCode byte values listed in this chapter are in hexadecimal.

!
stack: (x a-addr --)
code: 72

Stores x at a-addr. For more portable code, use l! if you explicitly want a 32-bit
access. a-addr must be aligned as given by variable .

256 Writing FCode 3.x Programs —November 1997

14

See also: c! , w! , l! ,x! , rb! , rw! , rl! , rx!

"
stack: (x a-addr --)
code: 12 len xx xx xx ...
generates: b(") len-byte xx-byte … xx-byte

Gathers the immediately following text string or hex data until reaching the
terminator "<whitespace >.

At execution time, the address and length of the string is left on the stack. For
example:

You can embed control characters and 8-bit binary numbers in strings. This is
similar in principle to the \n convention in C, but syntactically tuned for Forth.
This feature applies to the string arguments of the words " and ."

The escape character is ‘" ’. Here is the list of escape sequences:

" followed by any other printable character not mentioned above is equivalent
to that character.

 " SUNW,new-model" encode-string " model" property

Table 14-1 Escape Sequences in Text Strings

Syntax Function

"" quote (")

"n newline

"r carriage return

"t tab

"f formfeed

"l linefeed

"b backspace

"! bell

"^x control x, where x is any printable character

"(hh
hh)

Sequence of bytes, one byte for each pair of hex digits hh . Non-hex
characters will be ignored

FCode Dictionary 257

14

"(means to start parsing pairs of hexadecimal digits as one or more 8-bit
characters in the range 0x00 through 0xFF, delimited by a trailing) and
ignoring non-hexadecimal digits between pairs of hexadecimal digits. Both
uppercase and lowercase hexadecimal digits are recognized. Since non-hex
characters (such as space or comma) are ignored between
"(<space> and <space>) , these characters make useful delimiters.

Any characters thus recognized are appended to any previous text in the string
being assembled. After the) is recognized, text assembly continues until a
trailing "<whitespace> .

For example:

Note – The use of "n for line breaks is discouraged. The preferred method is to
use cr , rather than embedding the line break character inside a string. Use of
cr results in more accurate display formatting, because Forth updates its
internal line counter when cr is executed.

When " is used outside a colon definition, only two interpreted strings of up to
80 characters each can be assembled concurrently. This limitation does not
apply in colon definitions.

See also: b(")

#
stack: (ud1 -- ud2)
code: C7

Converts a digit ud1 in pictured numeric output conversion. Typically used
between <# and #>.

See also: fcode-version3

#>
stack: (ud -- str len)
code: C9

 " This is "(01 32,8e)abc"nA test xyzzy "!"! abcdefg""hijk"^bl"
 ^^^^^^ ^ ^ ^ ^ ^
 3 bytes newline 2 bells " control b

258 Writing FCode 3.x Programs —November 1997

14

Ends pictured numeric output conversion. str is the address of the resulting
output array. len is the number of characters in the output array. str and len
together are suitable for type . See (.) and (u.) for typical usages.

See also: fcode-version3

’
stack:("name (-- xt)
code: “ 11 FCode (name)
generates: b(’)

Returnss the execution token (xt) of the word immediately following ' in the
input stream. ' should only be used outside of definitions. See b('), ['] for
more details.

For example:

(
stack: (--)
code: none

Causes the compiler/interpreter to ignore subsequent text after the "(" up to
a delimiting ") " . Note that a space is required after the (. Although either (or
\ may be used equally well for documentation, by common convention we use
(…) for stack comments and \ … for all other text comments and
documentation.

For example:

(.)
stack: (n -- str len)
code: 47 2D 96 9A 49 98 97
generates: dup abs <# u#s swap sign u#>

 defer opt-word (--) ' noop is opt-word

: 4drop (a b c d --)
 2drop (a b)
 2drop ()
;

FCode Dictionary 259

14

Converts a number into a text string according to the value in base .This is the
numeric conversion primitive, used to implement display words such as "." If n
is negative, the first character in the array will be a minus (-) sign.

For example:

*
stack: (nu1 nu2 -- prod)
code: 20

prod is the arithmetic product of nu1 times nu2. If the result cannot be
represented in one stack entry, the least significant bits are kept.

*/
stack: (n1 n2 n3 -- quot)
code: 30 20 31 21

Calculates n1* n2/ n3.

+
stack: (nu1 nu2 -- sum)
code: 1E

sum is the arithmetic sum of nu1 plus nu2.

+!
stack: (nu a-addr --)
code: 6C

nu is added to the value stored at a-addr . This sum replaces the original value
at a-addr. a-addr must be aligned as given by variable .

,
stack: (x --)
code: D3

Reserves one cell of storage in data-space and stores x in the cell.The data
space pointer must be aligned prior to the execution of , .

" CPU boot: show-version (--)
 .rom version is " base @ d# 16 base ! (old-base)
 firmware-version (old-base version)
 lwsplit (.) type ascii . emit .h cr base ! ()

260 Writing FCode 3.x Programs —November 1997

14

For example, to create an array containing integers 40004000 23 45 6734:

-
stack: (nu1 nu2 -- diff)
code: 1F

diff is the result of subtracting nu1 minus nu2.

.
stack: (nu --)
code: 9D

Displays the absolute value of nu in a free field format with a leading minus
sign if nu is negative, and a trailing space.

If the base is hexadecimal, . displays the number in unsigned format, since
signed hex display is hardly ever wanted. Use s. to display signed hex
numbers.

See also: s.

."
stack: ([text<">] --)
code: 12 len xx xx ... 90
generates: b(“) len text type

This word compiles a text string, delimited by "<whitespace> e.g.
." hello world" .

At execution time, the string is displayed. This word is equivalent to using
" text" type .

." is normally used only in a definition. The text string will be displayed later
when that definition is called. You may wish to follow it with cr to flush out
the text buffer immediately. Use .(for any printing to be done immediately.

See also: " , .(, tokenizer[

.(
stack: ([text<)>] --)
code: 12 len xx xx ... 90

 create my-array 40004000 , 23 , 45 , 6734 ,

FCode Dictionary 261

14

Gathers a text string, delimited by) , to be immediately displayed. For
example:

This word is equivalent to: " text" type

Use .(to print out text immediately. (You may wish to follow it with a cr to
flush out the text buffer immediately.) .(may be called either inside or outside
of definitions; the text is immediately displayed in either case.

Note that during FCode interpretation the string will typically be printed on
serial port A, since any frame buffer present may not yet be activated when
devicess are being probed. Use ." for any printing to be done when new
words are later executed.

See also ." , tokenizer[

/
stack: (n1 n2 -- quot)
code: 21

Returns n1 divided by n2. An error condition results if the divisor (n2) is zero.
See /mod .

:
stack: ("new-name< >" -- colon-sys) (E: … -- ???)
code: (header) B7
generates: new-token|named-token|external-token b(:)

Begins a new definition, terminated by ; Used in the form:

Later usage of my-newname is equivalent to usage of the contents of the
definition.

See named-token , new-token , and external-token for more information
on header formats.

;
stack: (colon-sys --)

.(hello world)

: my-newname … ;

262 Writing FCode 3.x Programs —November 1997

14

code: C2
generates: b(;)

Ends the compilation of a colon definition.

See also: :

<
stack: (n1 n2 -- less_than?)
code: 3A

less_than? is true if n1 is less than n2. n1 and n2 are signed integers.

<#
stack: (--)
code: 96

Initializes pictured numeric output conversion. You can use the words:

to specify the conversion of a number into an ASCII character string stored in
right-to-left order. See (.) and (u.) for example usages.

<<
stack: (x1 u -- x2)
code: 27
generates: lshift

x2 is the result of logically left shifting x1 by u places. Zeroes are shifted into
the least-significant bits. Synonymous with lshift .

For example:

<=
stack: (n1 n2 -- less_than_or_equal?)
code: 43

<# # #s hold sign #>

: bljoin (byte.low byte.lowmid byte.highmid byte.high -- l)
 8 << + 8 << + 8 << +
;

FCode Dictionary 263

14

less_than_or_equal? is true if n1 is less than or equal to n2. n1 and n2 are signed
integers.

<>
stack: (x1 x2 -- not_equal?)
code: 3D

not_equal? is true if x1 is not equal to x2. x1 and x2 are signed integers.

=
stack: (x1 x2 -- equal?)
code: 3C

equal? is true if x1 is equal to x2. x1 and x2 are signed integers.

>
stack: (n1 n2 -- greater_than?)
code: 3B

greater_than? is true if n1 is greater than n2. n1 and n2 are signed integers.

>=
stack: (n1 n2 -- greater_than_or_equal?)
code: 42

greater_than_or_equal? is true if n1 is greater than or equal to n2. n1 and n2 are
signed integers.

>>
stack: (x1 u -- x2)
code: 28
generates: rshift

x2 is the result of logically right shifting x1 by u places. Zeroes are shifted into
the most-significant bits. Use >>a for signed shifting. Synonym for rshift .

For example:

?
stack: (a-addr --)

: wbsplit (w -- b.low b.high)
 dup h# ff and swap 8 >>
 h# ff and
;

264 Writing FCode 3.x Programs —November 1997

14

code: 6D 9D
generates: @ .

Fetches and prints the value at the given address. A standard Forth word,
primarily used interactively.

@
stack: (a-addr -- x)
code: 6D

x is the value stored at a-addr. a-addr must be aligned as given by variable .

See also: c@, w@, l@, rb@, rw@, rl@

[
stack: (--)
code: none

Enter interpretation state.

[']
stack: ([old-name< >] -- xt)
code: 11 FCode
generates: b(') old-FCode#

' or ['] is used to generate the execution token (xt) of the word immediately
following the ' or ['] .

' should only be used outside definitions; ['] may be used either inside or
outside definitions. Examples shown usually use ['] , since it will always
generate the intended result:

or

In normal Forth, ' may be used in definitions for the creation of language
extensions, but such usage is not applicable to FCode Programs.

\
stack: ([rest-of-line<eol> --)

: my-probe … ['] my-install is-install … ;

['] my-install is-install

FCode Dictionary 265

14

code: none

Causes the compiler/interpreter to ignore the rest of the input line after the \ .
\ can occur anywhere on an input line. Note that a space must be present after
\ .

For example:

See also: (, (s

]
stack: (--)
code: none

Enter compilation state.

0
stack: (-- 0)
code: A5

Leaves the value 0 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, they are assigned individual FCodes to save space.

0<
stack: (n -- less_than_0?)
code: 36

less_than_0? is true if n is less than zero (negative).

0<=
stack: (n -- less_than_or_equal_to_0?)
code: 37

less_than_or_equal_to_0? is true if n is less than or equal to zero.

0<>
stack: (n -- not_equal_to_0?)
code: 35

not_equal_to_0? is true if n is not zero.

0 value his-ihandle \ place to save someone's ihandle

266 Writing FCode 3.x Programs —November 1997

14

0=
stack: (n -- equal_to_0?)
code: 34

equal_to_0? is true if n is zero. This word will invert any flag.

0>
stack: (n -- greater_than_0?)
code: 38

greater_than_0? is true if n is greater than zero.

0>=
stack: (n -- greater_than_or_equal_to_0?)
code: 39

greater_than_or_equal_to_0? is true if n is greater than or equal to zero.

1
stack: (-- 1)
code: A6

Leaves the value 1 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

1+
stack: (nu1 -- nu2)
code: A6 1E
generates: 1 +

nu2 is the result of adding 1 to nu1.

1-
stack: (nu1 -- nu2)
code: A6 1F
generates: 1 -

nu2 is the result of subtracting 1 from nu1.

-1
stack: (-- -1)
code: A4

FCode Dictionary 267

14

Leaves the value -1 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

2
stack: (-- 2)
code: A7

Leaves the value 2 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

2!
stack: (x1 x2 a-addr --)
code: 77

x1 and x2 are stored in consecutive locations starting at a-addr. x2 is stored at
the lower address. This is equivalent to: swap over ! cell+ ! .

2*
stack: (x1 -- x2)
code: 59

x2 is the result of shifting x1 left one bit. A zero is shifted into the vacated bit
position. This is equivalent to multiplying by 2.

2+
stack: (nu1 -- nu2)
code: A7 1E
generates: 2 +

nu2 is the result of adding 2 to nu1.

2-
stack: (nu1 -- nu2)
code: A7 1F
generates: 2 -

nu2 is the result of subtracting 2 from nu1.

2/
stack: (x1 -- x2)
code: 57

x2 is the result of arithmetically shifting x1 right one bit. The sign is included
in the shift and remains unchanged. This is equivalent to dividing by 2.

268 Writing FCode 3.x Programs —November 1997

14

2@
stack: (a-addr -- x1 x2)
code: 76

x1 and x2 are two numbers stored in consecutive 32-bit locations starting at
a-addr. x2 is the number that was stored at the lower address. This is equivalent
to: dup cell+ @ swap @ .

3
stack: (-- 3)
code: A8

Leaves the value 3 on the stack. The only numbers that are not encoded using
b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so
frequently, these values are assigned individual FCodes to save space.

>>a
stack: (x1 u -- x2)
code: 29

x2 is the result of arithmetically right shifting x1 by u places. The sign bit of x1
is shifted into the most-significant bits (i.e. sign extend the high bit).

For example:

abort
stack: (… --) (R: … --)
code: 2 16

Aborts program execution, clearing the data and return stacks. Control returns
to the ok prompt. Called after encountering fatal errors.

For example:

ok ffff.0000 6 >>a .h
fffffc00
ok ffff.0000 6 >> .h
3fffc00

: probe-loop (addr --)
 begin dup l@ drop key? if abort then again
 \ generate a tight probe loop until any key is pressed.
;

FCode Dictionary 269

14

abs
stack: (n -- u)
code: 2D

u is the absolute value of n. If n is the maximum negative number, u is the
same value since the maximum negative number in two’s complement
notation has no positive equivalent.

accept
stack: (addr len1 -- len2)
code: 88 6D 4B 8A 88 6D 49 88 72
generates: span @ -rot expect span @ swap span !

Get an edited input line, storing it at addr.

again
stack: (C: dest-sys --) (--)
code: 13
generates: bbranch - offset

Used in the form begin…again to generate an infinite loop. Use a keyboard
abort, or abort or exit , to terminate such a loop. Use this word with caution!

For example:

See also: repeat , until , while

alarm
stack: (xt n --)
code: 2 13

Arranges to execute the package method xt at periodic intervals of n
milliseconds (to the best accuracy possible). If n is 0, stop the periodic
execution of xt in the current instance context (leaving unaffected any periodic
execution of xt that was established in a different instance).

: probe-loop (addr --)
 \ generate a tight probe loop until any key is pressed.
 begin dup l@ drop key? if abort then again
;

270 Writing FCode 3.x Programs —November 1997

14

xt is the execution token, as returned by ['] . Each time the method is called,
the current instance will be set to the same as the current instance at the time
that alarm was executed and the current instance will then be restored to its
previous value afterwards.

xt must be the execution token of a method which neither expects stack
arguments nor leaves stack results i.e. whose stack diagram is (--) .

A common use of alarm would be to implement a console input device’s
polling function.

For example:

alias
stack: ("new-name< >old-name< >" --)
code: none

alias creates a new name, with the exact behavior of some other existing
name. The new name can then be used interchangeably with the old name and
have the same effect.

The tokenizer does not generate any FCode for an alias command, but
instead simply updates its own lookup table of existing words. Any occurrence
of new-name causes the assigned FCode value of old-name to be generated. One
implication is that new-name will not appear in the OpenBoot dictionary after
the FCode Program is compiled. If this behavior is undesirable, use a colon
definition instead.

If the original FCode source text is downloaded and interpreted directly,
without being tokenized or detokenized, then any new alias words will show
up and be usable directly.

For example:

: my-checker (--) test-dev-status if user-abort then ;
: install-abort (--) ['] my-checker d# 10 alarm ;

alias pkg-prop get-package-property

FCode Dictionary 271

14

align
stack: (--)
code: none

Allocates dictionary bytes as necessary to leave the top of the dictionary
variable aligned.

aligned
stack: (n1 -- n1 | a-addr)
code: AE

Increases n1 as necessary to yield a variable aligned address. If n1 is already
aligned, returns n. Otherwise, returns the next higher variable aligned address,
a-addr.

alloc-mem
stack: (len -- a-addr)
code: 8B

Allocates a buffer of len of physical memory that has been aligned to the most
stringent requirements of the processor. If successful, returns the associated
virtual address. If not successful, throw will be called with an appropriate
error message as with abort" .

Memory allocated by alloc-mem is not suitable for DMA.

See also: abort" , dma-alloc , free-mem , throw .

To detect an out-of-memory condition:

allot
stack: (len --)
code: none
generates: 0 max 0 ?do 0 c, loop

Allocates len bytes in the dictionary. If the operation fails, a throw will be
called with an appropriate error message as with abort" . Error conditions can
be detected and handled properly with the phrase ['] allot catch .

h# 100 ['] alloc-mem catch ?dup if
 throw
else
 (virt) constant my-buff
then

272 Writing FCode 3.x Programs —November 1997

14

and
stack: (x1 x2 -- x3)
code: 23

x3 is the bit-by-bit logical and of x1 with x2.

ascii
stack: ([text< >] -- char)
code: 10 00 00 00 xx
generates: b(lit) 00 00 00 value

Skips leading space delimiters and puts the ASCII value of the first letter in
text on the stack. For example:

b(")
stack: (-- str len)
code: 12 len xx xx xx ...

An internal word, generated by " , ." and .(which leaves a text string on the
stack. Never use the word b(") in source code.

b(')
stack: (-- xt)
code: 11 FCode#

An internal word, generated by ' and ['] which leaves the execution token of
the immediately following word on the stack. The FCode for b(') should
always be followed by the FCode of the desired word. Never use the word
b(') in source code.

b(:)
stack: (--)
code: B7

An internal word generated by the defining word : . Never use the word b(:)
in source code.

ascii C (equals hex 43)
ascii c (equals hex 63)

FCode Dictionary 273

14

b(;)
stack: (--)
code: C2

An internal word generated by ; to end a colon definition. Never use the word
b(;) in source code.

base
stack: (-- addr)
code: A0

base is the variable that contains the current numeric conversion radix to be
used when the FCode Program is executing, such as 10 for decimal, 16 for hex,
8 for octal, and so on. Like any variable, base leaves its address on the stack.

For example, to print the current value of base , use:

The tokenizer words decimal or hex are also available for changing the value
in base as desired. However, these words behave differently depending
whether they occur in a definition or outside of a definition.

If decimal or hex occur in a definition, then it will be compiled, later causing
a change to the value in base when that definition is executed.

If decimal or hex occur outside of a definition, however, then it is interpreted
as a command to the tokenizer program itself, thus affecting the interpretation
of all subsequent numbers in the text.

Note that changes to base affect the numeric base of the User Interface, which
can create much confusion for any user (the default value for base is
hexadecimal). If you must change the base, it is recommended that you save
and then restore the original base, as in:

base @ .d

: .o (n --) \ Print n in octal
 base @ swap (oldbase n)
 8 base ! .(oldbase)
 base !
;

274 Writing FCode 3.x Programs —November 1997

14

In general, only numeric output will be affected by the value in base . Fixed
numbers in FCode source are interpreted by the tokenizer program. Most
numeric input is controlled by decimal , hex , d# , and h# , but these words
only affect the tokenizer input base; they but do not affect the value in base .

For example:

If this all seems confusing, simply follow these guidelines:

Good: Initially declare hex just after fcode-version2 , and make liberal use
of d# , h# , .h and.d .

Bad: Changing base either directly or by calling decimal or hex in a
definition.

branch
stack: (--)
code: 13 offset

An internal word generated by again , repeat , and else which causes an
unconditional branch. Never use the word branch in source code.

 (assume the initial value in base is 16, i.e. User Interface is in hex)
 (no assumptions should be made about the initial tokenizer base)
version1
hex (tokenizer in base 16; later execution, using base, in base 16)
20 . (compile decimal 32, later print "20" when FCode executes)
decimal (tokenizer is in base 10, later execution is in base 16)
20 . (compile decimal 20, later print "14" since FCode executes in hex)
: TEST (--)
 8base !(still compiling in decimal, later change base when TEST executes)
 20 . (compiles decimal 20, prints "24" since base was just changed)
 h# 20 .d (compiles decimal 32, prints "32"; no permanent base changes)
 20 . (compiles decimal 20, prints "24")
;
20 . (compile decimal 20, later print "14")
TEST (prints "24 32 24"; has a side-effect of changing the base)
20 . (compile decimal 20, later print 24 since TEST changed base)
hex (tokenizer is in base 16; later execution, using base, still in base 8)
20 . (compile decimal 32, later print "40")

FCode Dictionary 275

14

branch
stack: (flag --)
code: 14 offset

An internal word generated by until , while , and if which causes a
conditional branch. Never use the word branch in source code.

buffer:)
stack: (n --)
code: BD

An internal word generated by the defining word buffer: which allocates n
bytes of storage space. Never use the word buffer:) in source code.

because
stack: (sel-- sel)
code: C4

An internal word generated by case . Never use the word b(case) in source
code.

b(constant)
stack: (n --)
code: BA

An internal word generated by the defining word constant . Never use the
word b(constant) in source code.

b(create)
stack: (--)
code: BB

An internal word generated by the defining word create . Never use the word
b(create) in source code.

b(defer)
stack: (--)
code: BC

An internal word generated by the defining word defer . Never use the word
b(defer) in source code.

276 Writing FCode 3.x Programs —November 1997

14

b(do)
stack: (end start --)
code: 17
generates: +offset

An internal word generated by do . Never use the word b(do) in source code.

b(?do)
stack: (end start --)
code: 18 +offset

An internal word generated by ?do . Never use the word b(?do) in source
code.

begin
stack: C: -- dest-sys) (--)
code: B1
generates: b(<mark)

Marks the beginning of a conditional loop, such as begin …until ,
begin …while … repeat , or begin …again . See these other words for more
details.

behavior
stack: (defer-xt -- contents-xt)
code: DE

This command is used to retrieve the execution contents of a defer word.

A typical use would be to fetch and save the current execution of a defer word,
change the behavior temporarily and later restore the original behavior. For
example:

defer my-func
0 value old-func
['] framus is my-func …
['] my-func behavior is old-func
['] foo is my-func
… my-func …
old-func is my-func

FCode Dictionary 277

14

bell
stack: (-- 0x07)
code: AB

Leave the ASCII code for the bell character on the stack.

b(endcase)
stack: (sel | <nothing>--)
code: C5

An internal word generated by endcase . Never use the word b(endcase) in
source code.

b(endof)
stack: (--)
code: C6 +offset

An internal word generated by endof . Never use the word b(endof) in
source code.

between
stack: (n min max -- min<=n<=max?)
code: 44

min<=n<=max? is true if n is between min and max, inclusive of both endpoints.

See within for a different form of comparison.

b(field)
stack: (addr -- addr+offset)
code: BE

An internal word generated by the defining word field . Never use the word
b(field) in source code.

bl
stack: (-- 0x20)
code: A9

Leaves the ASCII code for the space character on the stack.

278 Writing FCode 3.x Programs —November 1997

14

blank
s tack: (addr len --)
code: A9 79
generates: bl fill

Sets len bytes of memory beginning at addr to the ASCII character value for
space (hex 20). No action is taken if len is zero.

b(leave)
stack: (--)
code: 1B

An internal word generated by leave . Never use the word b(leave) in
source code.

blink-screen
stack: (--)
code: 1 5B

A defer word, called by the terminal emulator, when it has processed a
character sequence that calls for ringing the console bell, but the console input
device package has no ring-bell method.

blink-screen is initially empty, but must be loaded with a system-
dependent routine in order for the terminal emulator to function correctly. The
routine must cause some momentary discernible effect that leaves the screen in
the same state as before.

This can be done with to , or it can be loaded automatically with
fb1-install or fb8-install (which loads fb1-blink-screen or
fb8-blink-screen , respectively). These default routines invert the screen
(twice) by xor-ing every visible pixel. This is quite slow.

A replacement routine simply disables the video for 20 milliseconds or so, i.e.

Of course, this example assumes that your display hardware is able to quickly
enable and disable the video without otherwise affecting the state.

: my-blink-screen (--) video-off 20 ms video-on ;
…
 \ load default behaviors with fbx-install, then:
 ['] my-blink-screen to blink-screen
;

FCode Dictionary 279

14

b(lit)
stack: (-- n)
code: 10 xx xx xx xx

An internal word used to save numbers. Never use the word b(lit) in source
code.

The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2,
or 3. Because these numbers occur so frequently, these values are assigned
individual FCodes to save space.

bljoin
stack: (byte.lo byte2 byte3 byte.hi -- quad)
code: 7F

Merges four bytes into a single 32-bit word. Incorrect results may be generated
unless the high bytes of each input stack item are zero.

b(loop)
stack: (--)
code: 15 -offset

An internal word generated by loop . Never use the word b(loop) in source
code.

b(+loop)
stack: (n --)
code: 16 -offset

An internal word generated by +loop . Never use the word b(+loop) in
source code.

b(<mark)
stack: (--)
code: B1

An internal word generated by begin . Never use the word b(<mark) in
source code.

body>
stack: (a-addr -- xt)
code: 85

Converts the data field address of a word to its execution token.

280 Writing FCode 3.x Programs —November 1997

14

>body
stack: (xt -- a-addr)
code: 86

Converts the execution token of a word to its data field address.

b(of)
stack: (testval --)
code: 1C +offset

An internal word generated by of . Never use the word b(of) in source code.

bounds
stack: (start cnt -- start+cnt start)
code: AC

Converts a starting value and count into the form required for a do or ?do
loop. For example, to perform a loop 20 times, counting up from 4000 to 401f
inclusive, use:

This is equivalent to:

b(>resolve)
stack: (--)
code: B2

An internal word generated by repeat and then . Never use the word
b(>resolve) in source code.

bs
stack: (-- 0x08)
code: AA

Leaves the ASCII code for the backspace character on the stack.

4000 20 bounds do…loop

4020 4000 do…loop

FCode Dictionary 281

14

b(to)
stack: (--)
code: C3

An internal word generated by to . Never use the word b(to) in source code.

buffer:
stack: (len "new-name< >" --)(E: -- addr)
code: (header)
generates: new-token|named-token|external-token b(buffer:)

Allocates len bytes of storage space and creates a name, new-name. When
new-name is executed, it leaves the address of the first byte of the buffer on the
stack.

For example:

b(value)
stack: (n --)
code: B8

An internal word generated by the defining word value . Never use the word
b(value) in source code.

b(variable)
stack: (--)
code: B9

An internal word generated by the defining word variable . Never use the
word b(variable) in source code.

bwjoin
stack: (byte.lo byte.hi -- w)
code: B0

Merges two bytes into the low 16-bits of a stack entry whose upper bytes are
zeroed. Incorrect results may be generated unless the high bytes of each input
stack item are zero.

200 buffer: my-name
my-name (addr)

282 Writing FCode 3.x Programs —November 1997

14

bxjoin
stack: (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o)
code: 02 41

Joins 8 bytes to form an octlet. Combines the eight least-significant bits of each
operand to form an octlet. Other operand bits are ignored.

byte-load
stack: (addr xt --)
code: 02 3E

Interprets the FCode Program located at addr . If xt is 1, use rb@ to read the
FCode Program, otherwise use xt as the execution token of the definition to be
used to read the FCode Program. Continue reading and interpreting the
program until end0 is encountered.

Be aware that byte-load does not itself create a new device node as a
“container” for any properties and methods defined by the FCode Program
that byte-load evaluates. If the FCode Program is intended to create such a
node, appropriate preparation must be done before and after executing byte-
load . For example, new-device and set-args can be executed before and
finish-device can be executed after byte-load is executed.

If byte-load is to be executed from the User Interface, additional set up is
usually necessary before executing new-device .

c!
stack: (x addr --)
code: 75

Stores the least significant 8 bits of x in the byte at addr.

See also: rb!

c,
stack: (byte --)
code: D0

Compiles a byte into the dictionary. c, can be used, in conjunction with
create , to create an array-type structure, as:

create yellow 77 c, 23 c, ff c, ff c, 47 c, 22 c, …

FCode Dictionary 283

14

Later execution of yellow leaves the address of the first byte of the array (the
address of the byte “77”) on the stack.

/c
stack: (-- n)
code: 5A

Leaves the number of address units to a byte (i.e. 1) on the stack.

See also: /w , /l , /n

/c*
stack: (nu1 -- nu2)
code: 66
generates: chars

Synonym for chars .

c@
stack: (addr -- byte)
code: 71

Fetches the byte at address addr and leaves it on top of the stack with the high
order bytes filled with zeroes.

See also: rb@

ca+
stack: (addr1 index -- addr2)
code: 5E

Increments addr1 by index times the value of /c . ca+ should be used in
preference to + when calculating addresses because it more clearly expresses
the intent of the operation and is more portable.

ca1+
stack: (addr1 -- addr2)
code: 62

Synonym for char+ .

284 Writing FCode 3.x Programs —November 1997

14

$call-method
stack: (??? method-str method-len ihandle -- ???)
code: 02 0E

Executes the device interface method method-str method-len in the open package
instance ihandle. The question marks (???) indicate that the contents of the stack
before and after the method is called depend on the particular method being
called.

For example:

 See also: open-package .

call-package
stack: (??? xt ihandle -- ???)
code: 02 08

Executes the device interface method xt in the open package instance ihandle.
The question marks (???) indicate that the contents of the stack before and after
the method is called depend on the particular method being called.

For example:

: dma-alloc (#bytes -- vaddr) " dma-alloc" my-parent $call-method ;

Code Example 0-1

0 value label-ihandle \ place to save the ihandle of other
package
0 value offset-method \ place to save the xt of found method
: init (--)
 my-args " disk-label" $open-package (ihandle)
 to label-ihandle
 " offset" label-ihandle
 ihandle>phandle (name-addr name-len phandle)
 find-method if
 to offset-method
 else
 ." Can't find offset method "
 then
;init
: add-offset (d.byte# -- d.bytes#)
 offset-method label-ihandle call-package
;

FCode Dictionary 285

14

See also: find-method , open-package

$call-parent
stack: (??? method-str method-len -- ???)
code: 02 09

Calls the method named by method-str method-len in the parent instance. If the
called package has no such method, an error is signaled with throw .
Equivalent to:

The question marks (???) indicate that the contents of the stack before and after
the method is called depend on the particular method being called.

For example:

carret
stack: (-- 0x0D)
code: 10 00 00 00 0D
generates: b(lit) 00 00 00 0x0D

Leaves the ASCII code for “carriage return” on the stack.

Xcase
stack: (sel -- sel)
code: C4
generates: b(case)

Starts a case statement that selects its action based on the value of sel.
Example of use:

my-parent $call-method

: my-dma-alloc (-- vaddr) h# 2000 " dma-alloc" $call-parent ;

: foo (selector --)
 case
 0 of ." It was 0" endof
 5 of ." It was 5" endof
 -2 of ." It was -2" endof
 (selector) ." It was " dup u. \ default clause
 endcase
;

286 Writing FCode 3.x Programs —November 1997

14

of tests the top of the stack against the selector at run time. If they are the
same, the selector is dropped and the following Forth code is executed. If they
are not the same, execution continues at the point just following the matching
endof .

The default clause is optional. When an of clause is executed, the selector is
not on the stack. When a default clause is executed, the selector is on the stack.
The default clause may use the selector, but must not remove it from the stack
(it will be automatically removed by endcase). If the default case adds to the
stack, the selector must be moved to top of stack from which it will be
dropped. For example:

case statements can be used both inside and outside of colon definitions.

catch
stack: (??? xt -- ??? error-code | ??? false)
code: 02 17

Creates a new error handling context and executes xt in that context.

If a throw (see below) is called during the execution of xt,

1. The error handling context is removed

2. The stack depth is restored to the depth that existed prior to the execution of
xt (not counting the xt stack item)

3. The error code that was passed to throw is pushed onto the stack

4. catch returns

If throw is not called during the execution of xt, the error handling context is
removed and catch returns a false . The stack effect is otherwise the same as
if xt were executed using execute .

: bar (selector -- value)
 case
 3 of 21 endof
 4 of 33 endof
 27 swap \ default clause
 endcase
;

FCode Dictionary 287

14

For example:

Note that, given this definition:

shows:

while:

may show something like:

Note – On a non-zero throw , only the stack depth is guaranteed to be the same
as before catch , not the data stack contents.

: add-n-check-limit (n1 n2 n3 -- n)
 + + dup h# 30 > if true throw then
;
: add-me (n1 n2 n3 -- a b c | n1+n2+n3)
 ['] add-n-check-limit catch if
 ." Sum exceeds limit " .s
 else
 ." Sum is within limit. Sum = " .s
 then cr
;

1 2 3 add-me

Sum is within limit. Sum = 6

10 20 30 add-me

Sum exceeds limit 50 9 12

288 Writing FCode 3.x Programs —November 1997

14

cell+
stack: (addr1 -- addr2)
code: 65

Increments addr1 by the value of /n . cell+ should be used in preference to
wa1+ or la1+ when the intent is to address items that are the same size as
items on the stack.

cells
stack: (nu1 -- nu2)
code: 69

nu2 is the result of multiplying nu1 by /n , the length in bytes of a normal stack
item. This is useful for converting an index into a byte offset.

char-height
stack: (-- height)
code: 01 6C

A value , containing the standard height (in pixels) for all characters to be
drawn. This number, when multiplied by #lines , determines the total height
(in pixels) of the active text area.

This word must be set to the appropriate value if you wish to use any fb1- or
fb8- utility routines or >font . This can be done with to , but is normally done
by calling set-font .

chars
stack: (nu1 -- nu2)
code: 66

nu2 is the result of multiplying nu1 by /c , the length in bytes of a byte. This is
useful for converting an index into a byte offset.

char-width
stack: (-- width)
code: 01 6D

A value , containing the standard width (in pixels) for all characters to be
drawn. This number, when multiplied by #columns , determines the total
width (in pixels) of the active text area.

This word must be set to an appropriate value if you want to use any fb1- or
fb8- utility routines. This can be done with to , but is normally done by
calling set-font .

FCode Dictionary 289

14

child
stack: (parent-phandle -- child-phandle)
code: 02 3B

Returns the phandle of the package that is the first child of the package
parent-phandle.

child returns zero if the package parent-phandle has no children.

You will generally use child , together with peer , to enumerate (possibly
recursively) the children of a particular device. One common use could be for
bus adapter device drivers to use the phrase my-self ihandle>phandle to
develop the parent-phandle argument.

For example:

close-package
stack: (ihandle --)
code: 02 06

Closes the package instance identified by ihandle by calling that package’s
close method and then destroying the instance.

For example:

cmove>
stack: (adr1 adr2 len --)
code: 78
generates: move

Copy len bytes of an array starting at adr1 to adr2 . This word is an alias for
move.

: my-children (--) \ shows phandles of all children
 my-self ihandle>phandle child (first-child)
 begin ?dup while dup .h peer repeat
;

: tftp-load-avail? (-- exist?)
 0 0 " obp-tftp" $open-package (ihandle)
 dup ihandle>phandle " load" rot
 find-method if drop true else false then
 close-package
;

290 Writing FCode 3.x Programs —November 1997

14

column#
stack: (-- column#)
code: 01 53

A value , set and controlled by the terminal emulator, that contains the current
horizontal position of the text cursor. A value of 0 represents the left-most
cursor position of the text window, not the left-most pixel of the frame buffer.

column# can (and should) be looked at as needed if your FCode Program is
implementing its own set of frame buffer primitives.

For example:

See also: window-left .

#columns
stack: (-- columns)
code: 01 51

This is a value that returns the number of columns of text in the text window
i.e. the number of characters in a line, to be displayed using the boot PROM’s
terminal emulator.

#columns must be set to a proper value in order for the terminal emulator to
function correctly. The open method of any package that uses the terminal
emulator package must set #columns to the desired width of the text region.
This can be done with to , or it can be handled automatically as one of the
functions performed by fb1-install or fb8-install .

For example:

See also: is-install , fb1-install , fb8-install

: set-column (column# --)
 0 max #columns 1- min to column#
;

: set-column (column# --)
 0 max #columns 1- in to column#
;

FCode Dictionary 291

14

comp
stack: (addr1 addr2 len -- n)
code: 7A

Compares two strings of length len starting at addresses addr1 and addr2 and
continuing for len bytes. n is 0 if the arrays are the same. n is 1 if the first
differing character in the array at addr1 is numerically greater than the
corresponding character in the array at addr2. n is -1 if the first differing
character in the array at addr1 is numerically less than the corresponding
character in the array at addr2.

For example:

compile,
stack: (xt --)
code: DD

Compiles the behavior of the word given by xt.

[compile]
stack: ([old-name< >] --)
code: none

Compiles the immediately-following command.

constant
stack: (x "new-name< >" --) (E: -- value)
code: (header) BA
generates: new-token|named-token|external-token b(constant)

Creates a named constant. The name is initially created with:

where 108 is the desired value for purple .

ok " this" drop " that" comp .h
1
ok " thisismy" drop " this" comp .h
0
ok " thin" drop " this" comp .h
ffffffff

108 constant purple

292 Writing FCode 3.x Programs —November 1997

14

Later occurrences of purple will leave the 108on the stack. If you wish to
change the value of a constant in a program, you should use value instead
of constant .

control
stack: ([text< >] -- char)
code: 10 00 00 00 xx
generates: b(lit) 00 00 00 xx-byte

Causes the compiler/interpreter to interpret the next letter as a control-code.
For example:

count
stack: (pstr -- addr len)
code: 84

Converts a packed string into a byte-array format. pstr is the address of a
packed string, where the byte at address pstr is the length of the string and the
string itself starts at address pstr+1.

Packed strings are generally not used in FCode. Virtually all string operations
are in the "addr len" format.

For example:

cpeek
stack: (addr -- false | byte true)
code: 02 20

Tries to read the 8-bit byte at address addr. Returns the data and true if the
access was successful. A false return indicates that a read access error occurred.

See also: rb@

control c (equals 03)

h# 100 alloc-mem constant my-buff
" This is a string" my-buff pack (pstr) count type

FCode Dictionary 293

14

cpoke
stack: (byte addr -- okay?)
code: 02 23

Attempts to write the 8-bit byte at address addr. Returns true if the access was
successful. A false return indicates that a write access error occurred.

Note – cpoke may be unreliable on bus adapters that buffer write accesses.

See also: rb!

cr
stack: (--)
code: 92

A defer word used to terminate the line on the display and go to the next
line. The default implementation transmits a carriage return and line feed to
the display, clears #out and adds 1 to #line .

Use cr whenever you want to start a new line of output, or to force the display
of any previously buffered output text. This forcing is valuable for outputting
error messages, to ensure that the error message is sent before any system crash.

For example:

(cr
stack: (--)
code: 91

Outputs only the carriage return character (carret , 0x0D). The most common
use of (cr is for reporting the progress of a test that has many steps. By using
(cr instead of cr , the progress report appears on a single line instead of
scrolling.

create
stack: ("new-name< >" --) (E: -- addr)
code: (header) BB
generates: new-token|named-token|external-token b(create)

: show-info (--)
 ." This is the first line of output " cr
 ." This is the second line of output " cr
;

294 Writing FCode 3.x Programs —November 1997

14

Creates the name new-name. When new-name is subsequently executed, it
returns the address of memory immediately following new-name in the
dictionary. You can use create to build an array-type structure, as:

Later execution of green leaves the address of the first byte of the array (here,
the address of the byte “12”) on the stack. The returned address will be two-
byte aligned.

create may not be used in definitions in an FCode Program. The common
Forth construct create…does> is not supported.

d#
stack: ([number< >] -- n)
code: 10 value
generates: b(lit) xx-byte xx-byte xx-byte xx-byte

Causes the compiler/interpreter to interpret the next number in decimal (base
10), regardless of any previous settings of hex , decimal or octal . Only the
immediately following number is affected, the default numeric base setting is
unchanged. For example:

See also: h# .

d+
stack: (d1 d2 -- d.sum)
code: D8

Adds two double numbers, leaving the double sum on the stack.

For example:

create white 12 c, 08 c, 36 c, 25 c, 27 c, 5 c, …

hex
d# 100 (equals decimal 100)
100 (equals decimal 256)

ok 1234.0000 0056.7800 9abc 3400.009a d+ .s
1234.9abc 3456.789a

FCode Dictionary 295

14

d-
stack: (d1 d2 -- d.diff)
code: D9

Subtracts two double numbers, leaving the double result on the stack.

For example:

.d
stack: (n --)
code: A0 6D 49 10 00 00 00 0A A0 72 9D A0 72
generates: base @ swap d# 10 bas e ! . base !

Displays n in decimal with a trailing space. The value of base is not
permanently affected.

decimal
stack: (--)
code: 10 00 00 00 0A A0 72
generates: d# 10 base !

If used outside of a definition, commands the tokenizer program to interpret
subsequent numbers in decimal (base 10).

If used in a definition, appends the phrase 10 base ! to the FCode Program
that is being created thus affecting later numeric output when the FCode
Program is executed.

See also: base

decode-bytes
stack: (prop-addr1 prop-len1 data-len --
prop-addr2 prop-len2 data-addr data-len)
code: none
generates: >r over r@ + swap r@ - rot r>

Decodes data-len bytes from a property value array and returns the remainder
of the array and the decoded byte array.

ok 0 6 1 0 d- .s
ffff.ffff 5
ok 4444.8888 aaaa.bbbb 2222.1111 5555.2222 d- .s
2222.7777 5555.9999

296 Writing FCode 3.x Programs —November 1997

14

decode-int
stack: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n)
code: 02 1B

Decodes a number from the beginning of a property value array and returns
the remainder of the property value array and the number n.

For example:

decode-phys
stack: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi)
code: 01 28

Decodes a unit address from a property value array and returns the remainder
of the array and the decoded list of address components. The number of cells
in the list phys.lo … phys.hi is determined by the value of the
#address-cells property of the parent node.

decode-string
stack: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len)
code: 02 1C

Decodes a string from the beginning of a property value array and returns the
remainder of the property value array and the string str len.

For example:

: show-clock-frequency (--)
 " clock-frequency" get-inherited-property 0= if
 ." Clock frequency: " decode-int .h cr 2drop
 then
;

: show-model (--)
 " model" get-my-property 0= if decode-string type 2drop then
;

FCode Dictionary 297

14

default-font
stack: (-- fontaddr charwidth charheight #fontbytes #firstchar #chars)
code: 01 6A

Returns all the necessary information about the character font that is built into
the boot PROM. This font defines the appearance of every character to be
displayed. To load this font, simply pass these parameters to set-font , with:

The actual parameters returned by default-font are:

fontaddr - The address of the beginning of the built-in font table

charwidth - The width of each character in pixels

charheight - The height of each character in pixels

#fontbytes - The separation (in bytes) between each scan line entry

#firstchar - The ASCII value for the first character actually stored in the
font table.

#chars - The total number of characters stored in the font table.

defer
stack: ("new-name< >" --) (E: -- ???)
code: (header) bc
generates: new-token|named-token|external-token b(defer)

Creates a command new-name that is a defer word i.e. a word whose behavior
can be altered with to . new-name is initially created with execution behavior
that indicates that it is an uninitialized defer word. For example:

default-font set-font

ok defer blob
ok blob
<--deferred word not initialized

298 Writing FCode 3.x Programs —November 1997

14

Later, this behavior can then be altered to be that of another existing word by
placing that second word’s execution token on the stack and loading it into
new-name with to . For example:

defer words are useful for generating recursive routines. For example:

defer words can also be used for creating words with different behaviors
depending on your needs. For example:

In FCode source, defer cannot appear inside a colon definition.

See also: behavior .

['] foobar to blob

defer hold2 \ Will execute action2
: action1
 …
 hold2 (really action2)
 … ;
: action2
 …
 action1
 … ;
' action2 to hold2

defer .special (n --) \ Print a value, using special techniques
: print-em-all (--)
 … .special
 … .special
 … .special
;

(.d prints in decimal
(.h prints in hexadecimal)
(.sp prints in a custom format)
: print-all-styles
 ['] .d to .special print-em-all
 ['] .h to .special print-em-all
 ['] .sp to .special print-em-all
;

FCode Dictionary 299

14

delete-characters
stack: (n --)
code: 01 5E

Deletes n characters to the right of the cursor.

delete-characters is one of the defer words of the display device
interface. The terminal emulator package executes delete-characters
when it has processed a character sequence that requires the deletion of
characters to the right of the cursor. The cursor position is unchanged, the
cursor character and the first n-1 characters to the right of the cursor are
deleted. All remaining characters to the right of the cursor, including the
highlighted character, are moved left by n places. The end of the line is filled
with blanks.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-delete-characters or fb8-delete-characters ,
respectively).

See also: fb8-install .

delete-lines
stack: (n --)
code: 01 60

Deletes n lines at and below the cursor line.

delete-lines is one of the defer words of the display device interface. The
terminal emulator package executes delete-lines when it has processed a
character sequence that requires the deletion of lines of text below the line
containing the cursor. All lines below the deleted lines are scrolled upwards by
n lines, and n blank lines are placed at the bottom of the active text area.

Use this word for scrolling, by temporarily moving the cursor to the top of the
screen and then calling delete-lines .

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-delete-lines or fb8-delete-lines , respectively).

See also: fb8-install .

300 Writing FCode 3.x Programs —November 1997

14

delete-property
stack: (name-str name-len --)
code: 02 1E

Deletes the property named by name-str name-len in the active package, if such
a property exists.

For example:

depth
stack: (-- u)
code: 51

u is the number of entries contained in the data stack, not counting itself. Note
that when an FCode Program is called, there could be other items on the stack
from the calling program.

depth is especially useful for before/after stack depth checking, to determine
if the stack was corrupted by a particular operation.

device-name
stack: (str len --)
code: 02 01

Creates a name property with the given string value. For example:

This is equivalent to using the name macro or

except that device-name performs the same function with only 2 bytes of
FCode, instead of 10 bytes. This word could be useful for devices with
extremely limited FCode space.

See also: name.

: unmap-me (--)
 my-reg my-size " map-out" $call-parent
 " address" delete-property
;

" SUNW,ffb" device-name

encode-string " name" property

FCode Dictionary 301

14

diagnostic-mode?
stack: (-- diag?)
code: 01 20

FCode Programs can use diagnostic-mode? to control the extent of the
selftests performed. If diagnostic-mode? is true, more extensive tests can be
performed and more messages displayed.

For example:

FCode should not generate character output during probing unless
diagnostic-mode? is true , or unless an error is encountered. Error output
during probing typically goes to the system serial port.

diagnostic-mode? will return true if any of the following conditions are
met:

• diag-switch? is true.

• A machine diagnostic switch (system-dependent) is ON.

• Other system-dependent indicators request extensive diagnostics.

digit
stack: (char base -- digit true | char false)
code: A3

If the character char is a digit in the specified base, returns the numeric value of
that digit under true, else returns the character under false. Appropriate
characters are hex 30-39 (for digits 0-9) and hex 61-66 (for digits a-f),
depending on base .

For example:

diagnostic-mode?
if do-extended-tests
else do-normal-tests
then

: probe-slot (slot# --) … ;
: probe-slots (addr cnt --)
 bounds ?do
 i c@ d# 16 digit if probe-slot else drop then
 loop
;

302 Writing FCode 3.x Programs —November 1997

14

do
stack: (C: -- dodest-sys) (limit start --) (R: -- sys)
code: 17 +offset
generates: b(do) +offset

Begins a counted loop in the form do…loop or do…+loop . The loop index
begins at start, and terminates based on limit. See loop and +loop for details
on how the loop is terminated. The loop is always executed at least once. For
example:

do may be used either inside or outside of colon definitions.

?do
stack: (C: -- dodest-sys) (limit start --) (R: -- sys)
code: 18 +offset
generates: b(?do) +offset

Begin a counted loop in the form ?do…loop or ?do…+loop . The loop index
begins at start, and terminates based on limit. See loop and +loop for details
on how the loop is terminated. Unlike do , if start is equal to limit the loop is
executed zero times. For example:

?do can be used in place of do in nearly all circumstances. ?do may be used
either inside or outside of colon definitions.

draw-character
stack: (char --)
code: 01 57

A defer word that is called by the terminal emulator in order to display a
single character on the screen at the current cursor location.

8 3 do i . loop \ would print 3 4 5 6 7
9 3 do i . 2 +loop \ would print 3 5 7

8 1 ?do i . loop \ would print 1 2 3 4 5 6 7
2 1 ?do i . loop \ would print 1
1 1 ?do i . loop \ would print nothing
1 1 do i . loop \ would print 1 2 3 4 5 6 7 8 9 …
…

FCode Dictionary 303

14

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-draw-character or fb8-draw-character , respectively).

draw-logo
stack: (line# addr width height --)
code: 01 61

A defer word that is called by the system to display the power-on logo (the
graphic displayed on the left side during power-up, or by banner).

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-draw-logo or fb8-draw-logo , respectively).

It is possible to pack a custom logo into the FCode PROM and then re-initialize
draw-logo to output the custom logo instead.

draw-logo is called by the system using the following parameters:

line# - The text line number at which to draw the logo.

addr - The address of the logo template to be drawn. In practice, this will
always be either the address of the oem-logo field in NVRAM, the address
of a custom logo in the FCode PROM, or the address of the built-in system
logo. In any case, the logo is an array of 64x64 (hex) pixels.

width - The width of the passed-in logo (in pixels).

height- The height of the passed-in logo (in pixels).

drop
stack: (x --)
code: 46

Removes one item from the stack.

2drop
stack: (x1 x2 --)
code: 52

Removes two items from the stack.

304 Writing FCode 3.x Programs —November 1997

14

3drop
stack: (x1 x2 x3 --)
code: 46 52
generates: drop 2drop

Removes three items from the stack.

dup
stack: (x -- x x)
code: 47

Duplicates the top stack item.

2dup
stack: (x1 x2 -- x1 x2 x1 x2)
code: 53

Duplicates the top two stack items.

3dup
stack: (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
code: A7 4E A7 4E A7 4E
generates: 2 pick 2 pick 2 pick

Duplicates the top three stack items.

?dup
stack: (x -- 0 | x x)
code: 50

Duplicates the top stack item unless it is zero.

else
stack: (C: orig-sys1 -- orig-sys2) (--)
code: 13 +offset B2
generates: bbranch +offset b(>resolve)

Begin the else clause of an if …else …then statement. See if for more
details.

emit
stack: (char --)
code: 8F

A defer word that outputs the indicated ASCII character. For example, h# 41
emit outputs an “A”, h# 62 emit outputs a “b”, h# 34 emit outputs a “4”.

FCode Dictionary 305

14

emit-byte
stack: (FCode# --)
code: N
generates: n

An FCode-only command used to manually output a desired byte of FCode.
Use it together with tokenizer[as follows:

emit-byte would be useful, for example, if you wished to generate a new
FCode command that the tokenizer did not understand. This command should
be used with caution or else an invalid FCode Program will result.

See also: tokenizer[

encode+
stack: (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3)
code: 01 12

Merge two property value arrays into a single property value array. The two
input arrays must have been created sequentially with no intervening
dictionary allocation or other property value arrays having been created. This
can be called repeatedly, to create complex, multi-valued property value arrays
for passing to property .

For example, suppose you wished to create a property named myprop with the
following information packed sequentially:

This could be written in FCode as follows:

tokenizer[
 44 emit-byte 20 emit-byte
]tokenizer

"size" 2000 "vals" 3 128 40 22

: encode-string,num (addr len number --)
 >r encode-string
 r> encode-int encode+
;
" size" 2000 encode-string,num
" vals" 3 encode-string,num encode+
128 encode-int encode+

306 Writing FCode 3.x Programs —November 1997

14

encode-bytes
stack: (data-addr data-len -- prop-addr prop-len)
code: 01 15

Encodes a byte array into a property value array. The external representation of
a byte array is the sequence of bytes itself, with no appended null byte.

For example:

encode-int
stack: (n -- prop-addr prop-len)
code: 01 11

Convert an integer into a property value array, suitable for passing as a value
to property . For example:

encode-phys
stack: (phys.lo … phys.hi -- prop-addr prop-len)
code: 01 13

Encodes a unit-address into a property value array by property encoding the
list of cells denoting a unit address in the order of phys.hi followed by the
encoding of the component that appears on the stack below phys.hi, and so on,
ending with the encoding of the phys.lo component.

The number of cells in the list phys.lo … phys.hi is determined by the value of
the "#address-cells" property of the parent node.

For example:

40 encode-int encode+
22 encode-int encode+
" myprop" property

my-idprom h# 20 encode-bytes " idprom" property

1152 encode-int " hres" property

my-address my-space encode-phys " resetloc" property

FCode Dictionary 307

14

encode-string
stack: (str len -- prop-addr prop-len)
code: 01 14

Converts an ordinary string, such as created by " , into a property value array
suitable for property . For example:

end0
stack: (--)
code: 00

A word that marks the end of an FCode Program. This word must be present
at the end of your program or erroneous results may occur.

If you want to use end0 inside a colon definition, for example in a conditional
clause, use something like:

end1
stack: (--)
code: FF

An alternate word for end0 , to mark the end of an FCode Program. end0 is
recommended.

end 1 is not intended to appear in source code. It is defined as a guard against
misprogrammed ROMs. Unprogrammed regions of PROM usually appear as
all ones or all zeroes.Having both 0x00 and 0xFF defined as end codes stops
the FCode interpreter if it enters an unprogrammed region of a PROM.

endcase
stack: (C: case-sys --) (sel | <nothing> --)
code: C5
generates: b(endcase)

Marks the end of a case statement. See case for more details.

" NSL,DTE,AUU" encode-string " authors" property

: exit-if-version1 fcode-revision h# 20000 < if ['] end0 execute then ;

308 Writing FCode 3.x Programs —November 1997

14

endof
stack: (C: case-sys1 of-sys -- case-sys2) (--)
code: C6 +offset
generates: b(endof) +offset

Marks the end of an of clause in a case statement. See case for more details.

erase
stack: (addr len --)
code: 95 79
generates: 0 fill

Sets len bytes of memory beginning at addr to zero. No action is taken if len is
zero.

erase-screen
stack: (--)
code: 01 5A

A defer word that is called once during the terminal emulator initialization
sequence in order to completely clear all pixels on the display. This word is
called just before reset-screen , so that the user doesn’t actually see the
frame buffer data until it has been properly scrubbed.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-erase-screen or fb8-erase-screen , respectively).

eval
stack: (??? str len -- ???)
code: CD
generates: evaluate

Synonym for evaluate .

evaluate
stack: (??? str len -- ???)
code: CD

Executes a string as a sequence of Forth commands. The overall stack effect
depends on the commands being executed. For example:

" 4000 20 dump" evaluate

FCode Dictionary 309

14

You can use evaluate , like $find , to find and execute Forth commands that
are not FCodes.

The same cautions apply to evaluate as for $find in that programs
executing Forth commands are likely to encounter portability problems when
moved to other systems.

execute
stack: (??? xt -- ???)
code: 1D

Executes the word definition whose execution token is xt. An error condition
exists if xt is not an execution token.

For example:

exit
stack: (--) (R: sys --)
code: 33

Compiled in a colon definition. When encountered, execution leaves the
current word and returns control to the calling word. If used in a do loop must
be preceded by unloop .

For example:

See also: leave , unloop .

: my-word (addr len --)
 ." Given string is: " type cr
;
" great" ['] my-word execute

: probe-loop (addr --)
 \ generate a tight probe loop until any key is pressed.
 begin dup l@ drop key? if drop exit then again
;

310 Writing FCode 3.x Programs —November 1997

14

expect
stack: (addr len --)
code: 8A

A defer word that receives a line of characters from the keyboard and stores
them into memory, performing line editing as the characters are typed.
Displays all characters actually received and stored into memory. The number
of received characters is stored in span .

The transfer begins at addr proceeding towards higher addresses one byte per
character until either a carriage return is received or until len characters have
been transferred. No more than len characters will be stored. The carriage
return is not stored into memory. No characters are received or transferred if
len is zero.

For example:

external
stack: (--)
code: none

After issuing external , all subsequent definitions are created so that names
are later compiled into RAM, regardless of the value of the NVRAM variable
fcode-debug? . external is used to define the package methods that may be
called from other software external to the package, and whose names must
therefore be present.

external stays in effect until headers or headerless is encountered.

For example:

h# 10 buffer: my-name-buff
: hello (--)
 ." Enter Your First name " my-name-buff h# 10 expect
 ." Sun Microsystems Welcomes " my-name-buff span @ type cr
;

external
: open (-- ok?) … ;

FCode Dictionary 311

14

external-token
stack: (--)
code: CA

A token-type that is used to indicate that this word should always be compiled
with the name header present. Activated by external , all subsequent words
are created with external-token until deactivated with either headers or
headerless . See named-token for more details. This word should never be
used in source code.

false
stack: (-- false)
code: A5
generates: 0

Leaves the value for false (i.e. zero) on the stack.

fb1-blink-screen
stack: (--)
code: 01 74

The built-in default routine to blink or flash the screen momentarily on a
generic 1-bit-per-pixel frame buffer. This routine is loaded into the defer
word blink-screen by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fb1-invert-screen twice. In
practice, this can be quite slow (around one full second). It is quite common for
a frame buffer FCode Program to replace fb1-blink-screen with a custom
routine that simply disables the video for 20 milliseconds or so. For example:

: my-blink-screen (--) video-off 20 ms video-on ;
…
fb1-install
…
['] my-blink-screen to blink-screen

312 Writing FCode 3.x Programs —November 1997

14

fb1-delete-characters
stack: (n --)
code: 01 77

The built-in default routine to delete n characters at and to the right of the
cursor, on a generic 1-bit-per-pixel frame buffer. This routine is loaded into the
defer word delete-characters by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, the cursor character and the next n-1
characters to the right of the cursor are deleted, and the remaining characters
to the right are moved left by n places. The end of the line is filled with blanks.

fb1-delete-lines
stack: (n --)
code: 01 79

The built-in default routine to delete n lines, starting with the line below the
cursor line, on a generic 1-bit-per-pixel frame buffer. This routine is loaded into
the defer word delete-lines by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The n lines at and below the cursor line are deleted. All lines above the cursor
line are unchanged. The cursor position is unchanged. All lines below the
deleted lines are scrolled upwards by n lines, and n blank lines are placed at
the bottom of the active text area.

fb1-draw-character
stack: (char --)
code: 01 70

The built-in default routine for drawing a character on a generic 1-bit-per-pixel
frame buffer, at the current cursor location. This routine is loaded into the
defer word draw-character by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? is true , then characters are drawn inverted (white-on-black).
Otherwise (the normal case) they are drawn black-on-white.

FCode Dictionary 313

14

fb1-draw-logo
stack: (line# logoaddr logowidth logoheight --)
code: 01 7A

The built-in default routine to draw the logo on a generic 1-bit-per-pixel frame
buffer. This routine is loaded into the defer word draw-logo by calling
fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

See draw-logo for more information on the parameters passed.

fb1-erase-screen
stack: (--)
code: 01 73

The built-in default routine to clear (erase) every pixel in a generic 1-bit-per-
pixel frame buffer. This routine is loaded into the defer word erase-screen
by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-
screen? is true , then all pixels are set to 1, resulting in a black screen.
Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb1-insert-characters
stack: (n --)
code: 01 76

The built-in default routine to insert n blank characters to the right of the
cursor, on a generic 1-bit-per-pixel frame buffer. This routine is loaded into the
defer word insert-characters by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to
the right of the cursor are moved right by n places. An error condition exists if
an attempt is made to create a line longer than the maximum line size (the
value in #columns).

314 Writing FCode 3.x Programs —November 1997

14

fb1-insert-lines
stack: (n --)
code: 01 78

The built-in default routine to insert n blank lines below the cursor on a
generic 1-bit-per-pixel frame buffer. This routine is loaded into the defer
word insert-lines by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position on the screen is unchanged. The cursor line is pushed
down, but all lines above it are unchanged. Any lines pushed off of the bottom
of the active text area are lost.

fb1-install
stack: (width height #columns #lines --)
code: 01 7B

This built-in routine installs all of the built-in default routines for driving a
generic 1-bit-per-pixel frame buffer. It also initializes most necessary value s
needed for using these default routines.

set-font must be called, and frame-buffer-adr initialized, before
fb1-install is called, because the char-width and char-height values
set by set-font are needed when fb1-install is executed.

fb1-install loads the following defer routines with their corresponding
fb1- (whatever) equivalents: reset-screen , toggle-cursor , erase-
screen , blink-screen , invert-screen , insert-characters , delete-
characters , insert-lines , delete-lines , draw-character , draw-
logo.

The following value s are initialized:

screen-width - set to the value of the passed-in parameter width (screen
width in pixels)

screen-height - set to the value of the passed-in parameter height (screen
height in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#columns, and the NVRAM parameter screen-#columns

FCode Dictionary 315

14

#lines - set to the smaller of the following two: the passed-in parameter
#lines, and the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height
(screen-height) and the height of the active text area (#lines times
char-height)

window-left - set to half of the difference between the total screen width
(screen-width) and the width of the active text area (#columns times
charwidth), then rounded down to the nearest multiple of 32 (for
performance reasons)

Several internal value s used by various fb1- routine are also set.

fb1-invert-screen
stack: (--)
code: 01 75

The built-in default routine to invert every visible pixel on a generic 1-bit-per-
pixel frame buffer. This routine is loaded into the defer word invert-
screen by calling fb1-install .

This routine is invalid unless the FCode Program has called fb1-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just the ones in the active text area).

316 Writing FCode 3.x Programs —November 1997

14

fb1-reset-screen
stack: (--)
code: 01 71

The built-in default routine to enable a generic 1-bit-per-pixel frame buffer to
display data. This routine is loaded into the defer word reset-screen by
calling fb1-install . (reset-screen is called just after erase-screen
during the terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode Program will define a
hardware-dependent routine to enable video, and then replace this generic
function with:

fb1-slide-up
stack: (n --)
code: 01 7C

This is a utility routine. It behaves exactly like fb1-delete-lines , except
that it doesn’t clear the lines at the bottom of the active text area. Its only
purpose is to scroll the enable plane for frame buffers that have 1-bit overlay
and enable planes.

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fb1-toggle-cursor
stack: (--)
code: 01 72

The built-in default routine to toggle the cursor location in a generic 1-bit-per-
pixel frame buffer. This routine is loaded into the defer word toggle-
cursor by calling fb1-install . The behavior is to invert every pixel in the
one-character-size space for the current position of the text cursor.

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

: my-video-enable (--) … :

fb1-install
…
['] my-video-enable to reset-screen

FCode Dictionary 317

14

fb8-blink-screen
stack: (--)
code: 01 84

The built-in default routine to blink or flash the screen momentarily on a
generic 8-bit-per-pixel frame buffer. This routine is loaded into the defer
word blink-screen by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fb8-invert-screen twice. In
practice, this can be very slow (several seconds). It is quite common for a frame
buffer FCode Program to replace fb8-blink-screen with a custom routine
that simply disables the video for 20 milliseconds or so. For example:

fb8-delete-characters
stack: (n --)
code: 01 87

The built-in default routine to delete n characters to the right of the cursor, on
a generic 8-bit-per-pixel frame buffer. This routine is loaded into the defer
word delete-characters by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged. The cursor character and the next n-1
characters to the right of the cursor are deleted, and the remaining characters
to the right are moved left by n places. The end of the line is filled with blanks.

: my-blink-screen (--) video-off 20 ms video-on ;
…
fb8-install
…
['] my-blink-screen to blink-screen

318 Writing FCode 3.x Programs —November 1997

14

fb8-delete-lines
stack: (n --)
code: 01 89

The built-in default routine to delete n lines, starting with the line below the
cursor line, on a generic 8-bit-per-pixel frame buffer. This routine is loaded into
the defer word delete-lines by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The n lines at and below the cursor line are deleted. All lines above the cursor
line are unchanged. The cursor position is unchanged. All lines below the
deleted lines are scrolled upwards by n lines, and n blank lines are placed at
the bottom of the active text area.

fb8-draw-character
stack: (char --)
code: 01 80

The built-in default routine for drawing a character on a generic 8-bit-per-pixel
frame buffer, at the current cursor location. This routine is loaded into the
defer word draw-character by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? is true , then characters are drawn inverted (white-on-black).
Otherwise (the normal case) they are drawn black-on-white.

fb8-draw-logo
stack: (line# addr width height --)
code: 01 8A

The built-in default routine to draw the logo on a generic 8-bit-per-pixel frame
buffer. This routine is loaded into the defer word draw-logo by calling
fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

See draw-logo for more information on the parameters passed.

FCode Dictionary 319

14

fb8-erase-screen
stack: (--)
code: 01 83

The built-in default routine to clear (erase) every pixel in a generic 8-bit-per-
pixel frame buffer. This routine is loaded into the defer word erase-screen
by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-
screen? is true , then all pixels are set to 0xff, resulting in a black screen.
Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb8-insert-characters

stack: (n --)
code: 01 86

The built-in default routine to insert n blank characters to the right of the
cursor, on a generic 8-bit-per-pixel frame buffer. This routine is loaded into the
defer word insert-characters by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to
the right of the cursor are moved right by n places. An error condition exists if
an attempt is made to create a line longer than the maximum line size (the
value in #columns).

fb8-insert-lines
stack: (n --)
code: 01 88

The built-in default routine to insert n blank lines below the cursor on a
generic 8-bit-per-pixel frame buffer. This routine is loaded into the defer
word insert-lines by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

320 Writing FCode 3.x Programs —November 1997

14

The cursor position is unchanged. The cursor line is pushed down, but all lines
above it are unchanged. Any lines pushed off of the bottom of the active text
area are lost.

fb8-install
stack: (width height #columns #lines --)
code: 01 8B

This built-in routine installs all of the built-in default routines for driving a
generic 8-bit-per-pixel frame buffer. It also initializes most necessary value s
needed for using these default routines.

set-font must be called, and frame-buffer-adr initialized, before
fb8-install is called, because the char-width and char-height values
set by set-font are needed when fb8-install is executed.

fb8-install loads the following defer routines with their corresponding
fb8- (whatever) equivalents: reset-screen , toggle-cursor , erase-
screen , blink-screen , invert-screen , insert-characters , delete-
characters , insert-lines , delete-lines , draw-character , draw-
logo

The following values are initialized:

screen-width - set to the value of the passed-in parameter width (screen
width in pixels)

screen-height - set to the value of the passed-in parameter height (screen
height in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#columns, and the NVRAM parameter screen-#columns

#lines - set to the smaller of the following two: the passed-in parameter
#lines, and the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height
(screen-height) and the height of the active text area (#lines times
char-height)

window-left - set to half of the difference between the total screen width
(screen-width) and the width of the active text area (#columns times
char-width), then rounded down to the nearest multiple of 32 (for
performance reasons)

FCode Dictionary 321

14

Several internal value s are also set that are used by various fb8- routines.

fb8-invert-screen
stack: (--)
code: 01 85

The built-in default routine to XOR (with hex 0xFF) every visible pixel on a
generic 8-bit-per-pixel frame buffer. This routine is loaded into the defer
word invert-screen by calling fb8-install .

This routine is invalid unless the FCode Program has called fb8-install and
has initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just those in the active text area).

fb8-reset-screen
stack: (--)
code: 01 81

The built-in default routine to enable a generic 8-bit-per-pixel frame buffer to
display data. This routine is loaded into the defer word reset-screen by
calling fb8-install . (reset-screen is called just after erase-screen
during the terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode Program will define a
hardware-dependent routine to enable video, and then replace this generic
function with:

fb8-toggle-cursor
stack: (--)
code: 01 82

The built-in default routine to toggle the cursor location in a generic 8-bit-per-
pixel frame buffer. This routine is loaded into the defer word toggle-
cursor by calling fb8-install . The behavior is to XOR every pixel with
0xFF in the one-character-size space for the current position of the text cursor.

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

: my-video-enable (--) … :
fb8-install
…
['] my-video-enable to reset-screen

322 Writing FCode 3.x Programs —November 1997

14

fcode-revision
stack: (-- n)
code: 87

Returns a 32-bit number identifying the version of the device interface. The
high 16 bits is the major version number and the low 16 bits is the minor
version number. The revision of the device interface described by IEEE
Standard 1275-1994 is “3.0”. In a system compatible with that specification,
fcode-revision will return 0x0003.0000.

For example:

fcode-version1
stack: (--)
code: FD 00
generates: version1 (null)(reserved)(length)

This tokenizer macro is used to start FCode programs intended to be
compatible with early OpenBoot systems.

fcode-version1 generates the FCode header for an FCode program (based
on tokenizer switches). If the default tokenizer switches are used, fcode-
version1 begins the header with the version1 FCode as:

The length field specifies the total usable length of FCode data, from
version1 to end0 inclusive. Additional end0 bytes are appended to the end
of the data, if needed, to leave a total length which is evenly divisible by 4. The
null byte position may be used to carry a version number or other information.

: exit-if-not-1275-1994 (--)
 fcode-revision h# 30000 < if ['] end0 execute then
;

(fd) version1 (1 byte)

(00) null byte (1 byte)

(xxyy) reserved (2 bytes)

(aabbccdd) length (4 bytes)

FCode Dictionary 323

14

fcode-version2
stack: (--)
code: F1 00

generates: start1 (null) (reserved) (length)

Starts a version2 FCode program, generating an 8-byte header similar to
fcode-version1 , except that the starting byte is start1 (f1) instead of
version1 (fd).

For example:

Caution – FCode programs created with fcode-version2 will only run on
OpenBoot 2 or later systems. They will not work on OpenBoot 1.0 systems.

ferror
stack: (--)
code: FC

Displays an “Unimplemented FCode” error message and stops FCode
interpretation at the completion of the function whose evaluation resulted in
the execution of ferror . All unimplemented FCode numbers resolve to
ferror in OpenBoot.

The intended use of ferror is to determine whether or not a particular FCode
is implemented, without checking the FCode version number.

For example:

fcode-version2

" SUNW,nvsimm" encode-string " name" property

...

end0

: implemented? (xt -- flag) ['] ferror <> ;
: my-peer (prev -- next)
 ['] peer implemented? if
 peer
 else

324 Writing FCode 3.x Programs —November 1997

14

field
stack: (E: addr -- addr+offset) (offset size “new-name<>” -- offset+size)
code: (header) BE
generates: new-token|named-token|external-token b(field)

struct and field are used to create named offset pointers into a structure.
For each field in the structure, a name is assigned to the location of that field
(as an offset from the beginning of the structure).

The structure being described is:

The field definitions are shown below. (The numbers in parentheses show the
stack after each word is created.)

 ." peer is not implemented" cr
 then
;

\ size Bytes 0 - 1

\ flags Bytes 2 - 5

\ bits Byte 6

\ key Byte 7

\ fullname Bytes 8 - 17

\ initials Bytes 8 - 9

\ lastname Bytes 10 - 17

\ age Bytes 18 - 19

struct (0)
2 field size (2) \ equivalent to: : size 0 + ;
4 field flags (6) \ equivalent to: : flags 2 + ;
1 field bits (7) \ equivalent to: : bits 6 + ;
1 field key (8) \ equivalent to: : key 7 + ;
0 field fullname (8) \ equivalent to: : fullname 8 + ;
2 field initials (10) \ equivalent to: : initials 8 + ;
8 field lastname (18) \ equivalent to: : lastname 10 + ;
2 field age (20) \ equivalent to: : age 18 + ;
constant /record () \ equivalent to: 20 constant /record

FCode Dictionary 325

14

Typical usage of these defined words would be:

Note that struct is primarily a documentation aid that the initial value of the
structure’s size (i.e. 0) on the stack.

fill
stack: (addr len byte --)
code: 79

Sets len bytes of memory beginning at addr to the value byte . No action is
taken if len = 0.

$find
stack: (name-str name-len -- xt true | name-str name-len false)
code: CB

Takes a string from the stack and searches the current search order for it.
During normal FCode evaluation, the search order consists of the vocabulary
containing the visible methods of the current device node, followed by the
Forth vocabulary.

If the word is not found, the original string is left on the stack, with a false on
top of the stack. If the word is found, the execution token of that word is left on
the stack with true on top of the stack.

$find is an escape hatch, allowing an FCode Program to perform any function
that is available in the OpenBoot User Interface but that is not defined as part
of the standard FCode interface.

Use $find with caution! Different systems or even different versions of
OpenBoot may implement different subsets of the User Interface. If your
FCode Program depends on a User Interface word, it might not work on some
systems.

/record buffer: myrecord \ Create the "myrecord" buffer

myrecord flags l@ \ get flags data
myrecord key c@ \ get key data
myrecord size w@ \ get size data

/record \ get total size of the array

326 Writing FCode 3.x Programs —November 1997

14

Example of use:

find-method
stack: (method-str method-len phandle -- false | xt true)
code: 02 07

Locates the method named by method-str method-len in the package phandle.
Returns false if the package has no such method, or xt and true if the operation
succeeds. Subsequently, xt can be used with call-package .

For example:

find-package
stack: (name-str name-len -- false | phandle true)
code: 02 04

Locates a package whose name is given by the string name-str name-len. If the
package can be located, returns its phandle and true. Otherwise returns false.

The name is interpreted relative to the /packages device node. For example,
if name-str name-len represents the string "disk-label" , the package in the
device tree at “/packages/disk-label ” will be located.

If there are multiple packages with the same name (in the /packages node),
the phandle for the most recently created one is returned.

For example:

" root-info" $find (addr len false | xt true)
if execute \ if found, then do the function
else (addr len) type ." was not found!" cr
then

: tftp-load-avail? (-- exist?)
 " obp-tftp" find-package if (phandle)
 " load" rot find-method if (xt)
 drop true exit
 then
 then
 false
;

: tftp-load-avail? (-- exist?)
 " obp-tftp" find-package if (phandle)
 " load" rot find-method if (xt)

FCode Dictionary 327

14

finish-device
stack: (--)
code: 01 27

The two words finish-device and new-device let a single FCode Program
declare more than one entry into the device tree. This capability is useful when
a single SBus card contains two or more essentially independent devices, to be
controlled by two or more separate operating system device drivers.

Typical usage:

There is an implicit new-device call at the beginning of an FCode Program
(at version1 or start1), and an implicit finish-device call at the end of
an FCode Program (at end0). Thus, FCode Programs that only define a single
device and driver will never need to call finish-device or new-device .

fload
stack: ([filename<cr>] --)
code: none

This command allows FCode text programs to be broken into function blocks
for better clarity, portability and re-use. It behaves similarly to the #include
statement in the C language. Arbitrary nesting of files with fload is allowed
i.e. an fload ’d file may include fload commands.

When fload is encountered, the Tokenizer continues tokenizing the FCode
found in the file filename . When the filename has been tokenized, tokenizing
resumes on the file that called filename with fload .

 drop true exit
 then
 then
 false
;

version1
…driver#1…
finish-device \ terminate device tree entry#1
new-device \ begin a new device tree entry
…driver#2
finish-device \ terminate device tree entry#2
new-device \ begin a new device tree entry
…driver#3…
end0

328 Writing FCode 3.x Programs —November 1997

14

For example:

Note – fload commands won’t work when downloading text in source-code
form. You can either manually merge the files into one larger text file and use
dl for downloading, or you can tokenize the files first and then download and
execute the FCode in binary form.

>font
stack: (char -- addr)
code: 01 6E

This routine converts a character value (ASCII 0-0xFF) into the address of the
font table entry for that character. For the normal, built-in font, only ASCII
values 0x21-0x7E result in a printable character, other values will be mapped to
a font entry for “blank”.

This word is only of interest if you are implementing your own character-
drawing routines. Note that >font will generate invalid results unless set-
font has been called to initialize the font table to be used.

fontbytes
stack: (-- bytes)
code: 01 6F

A value , containing the interval between successive entries in the font table.
Each entry contains the next scan line bits for the desired character. Each scan
line is normally 12 pixels wide, and is stored as one bit per pixel, thus taking 1
1/2 bytes per scan line. The standard value for fontbytes is 2, meaning that
the next scan line entry is 2 bytes after the previous one (the last 1/2 byte is
wasted space).

This word must be set to the appropriate value if you wish to use any fb1- or
fb8- utility routines or >font . This can be done with to , but is normally done
by calling set-font .

The standard value for fontbytes is one of the parameters returned by
default-font .

fload my-disk-package.fth

FCode Dictionary 329

14

frame-buffer-adr
stack: (-- addr)
code: 01 62

This value returns the virtual address of the beginning of the current frame
buffer memory. It must be set to an appropriate virtual address (using to) in
order to use any of the fb1- or fb8- utility routines. It is suggested that this
same value variable be used in any of your custom routines that require a
frame buffer address, although of course you are free to create and use your
own variable if you wish.

Generally, you should only map in the frame buffer memory just before you
are ready to use it, and unmap it if it is no longer needed. Typically, this means
you should do your mapping in your “install” routine, and unmap it in your
“remove” routine (see is-install and is-remove). Here’s some sample
code:

h# 2.0000 constant /frame \ # of bytes in frame buffer
h# 40.0000 constant foffset \ Location of frame buffer

: video-map (--)
 my-address foffset + /frame map-low to frame-buffer-adr
;
: video-unmap (--)
 frame-buffer-adr /frame free-virtual
 -1 to frame-buffer-adr \ Flag accidental accesses to a
 \ now-illegal address
;

: power-on-selftest (--)
 video-map
 (test video memory)
 video-unmap
;
power-on-selftest

: my-install (--)
 video-map
 …
;
: my-remove (--)
 video-unmap
 …
;

330 Writing FCode 3.x Programs —November 1997

14

free-mem
stack: (a-addr len --)
code: 8C

Frees up len memory allocated by alloc-mem . The arguments a-addr and len
must be the same as those used in a previous alloc-mem command.

For example:

free-virtual
stack: (virt size --)
code: 01 05

Destroys an existing mapping and any "address" property.

If the package associated with the current instance has an "address"
property whose first value encodes the same address as virt, delete that
property. In any case, execute the parent instance’s map-out method with virt
size as its arguments.

get-inherited-property
stack: (name-str name-len -- true | prop-addr prop-len false)
code: 02 1D

Locates, in the package associated with the current instance or any of its
parents, the property whose name is name-addr name-len. If the property exists,
returns the property value array prop-addr prop-len and false. Otherwise returns
true.

…
['] my-install is-install
['] my-remove is-remove

0 value my-string \ Holds address of temporary
: .upc-string (addr len --) \ convert to uppercase and print.
 dup alloc-mem to my-string (addr len)
 tuck my-string swap move (len)
 my-string over bounds ?do i c@ upc i c! loop (len)
 my-string over type (len)
 my-string swap free-mem
;

FCode Dictionary 331

14

The order in which packages are searched is the current instance first, followed
by its immediate parent, followed by its parent’s parent, and so on. This is
useful for properties with default values established by a parent node, with the
possibility of a particular child node “overriding” the default value.

For example:

get-msecs
stack: (-- n)
code: 01 25

Returns the current value in a free-running system counter. The number
returned is a running total, expressed in milliseconds. You can use this for
measuring time intervals (by comparing the starting value with the ending
value). No assumptions should be made regarding the absolute number
returned; only relative interval comparisons are valid.

No assumptions should be made regarding the precision of the number
returned. In some systems, the value is derived from the system clock, which
typically ticks once per second. Thus, the value returned by get-msecs on
such a system will be seen to increase in jumps of 1000 (decimal), once per
second.

For a delay timer of millisecond accuracy, see ms.

get-my-property
stack: (name-str name-len -- true | prop-addr prop-len false)
code: 02 1A

Locates, in the package associated with the current instance, the property
named by name-addr name-len. If the property exists, returns the property value
array val-addr val-len and false. Otherwise returns true.

For example:

: clock-frequency (-- val.addr len false | true)
 " clock-frequency" get-inherited-property
;

: show-model-name (--)
 " model" get-my-property 0= if (val.addr len)
 ." model name is " type cr
 else ()

332 Writing FCode 3.x Programs —November 1997

14

get-package-property
stack: (name-str name-len phandle -- true | prop-addr prop-len false)
code: 02 1F

Locates, in the package phandle, the property named by name-addr name-len. If
the property exists, returns the property value array prop-addr prop-len and
false. Otherwise returns true.

For example:

get-token
stack: (fcode# -- xt immediate?)
code: DA

Returns the execution token xt of the word associated with FCode number
fcode# and a flag immediate? that is true if and only if that word will be
executed (rather than compiled) when the FCode Evaluator encounters its
FCode number while in compilation state.

h# number
stack: (--)
code: 10 xx xx xx xx xx xx xx xx
generates: b(lit) value

Causes the compiler/interpreter to interpret the immediately following
number as a hexadecimal number (base sixteen), regardless of any previous
settings of hex , or decimal . Only the immediately following number is
affected. The value of base is unchanged.

 ." model property is missing " cr
 then ()
;

: show-model-name (--)
 my-self ihandle>phandle (phandle)
 " model" rot get-package-property 0= if (val.addr len)
 ." model name is " type cr
 else ()
 ." model property is missing " cr
 then ()
;

FCode Dictionary 333

14

For example:

See also: d# .

.h
stack: (n --)
code: a0 6d 49 10 00 00 00 10 a0 72 9d a0 72
generates: base @ swap d# 16 bas e ! . base !

Displays n in hex (using .) The value of base is not permanently affected.

headerless
stack: (--)
code: none

Causes all subsequent FCode definitions to be created without the name field
(the “head”). (See named-token and new-token .) This is sometimes done to
save space in the final FCode PROM, or possibly to make it more difficult to
reverse-engineer an FCode Program.

All such headerless words can be used normally in the FCode Program, but
cannot be called interactively from the User Interface for testing and
development purposes.

Unless PROM space and/or dictionary space is a major consideration, try not
using headerless words, because they make debugging more difficult.

headerless remains in effect until headers or external is encountered.

For example:

headers
stack: (--)
code: none

Causes all subsequent definitions to be saved with the name field (the “head”)
intact. This is the initial default behavior.

decimal
h# 100 (equals decimal 256)
100 (equals decimal 100)

headerless
h# 3 constant reset-scsi

334 Writing FCode 3.x Programs —November 1997

14

Note that even normal FCode words (with heads) cannot be called
interactively from the User Interface unless the NVRAM parameter fcode-
debug? has been set to true before a system reset.

headers remains in effect until headerless or external is encountered.

For example:

here
stack: (-- addr)
code: AD

here returns the address of the next available dictionary location.

hex
stack: (--)
code: 10 00 00 00 10 a0 72
generates: b(lit) 16 base !

If used outside of a definition, commands the tokenizer program to interpret
subsequent numbers in hex (base 16). If used in a definition, changes the value
in base affecting later numeric output when the FCode Program is executed.

See also: base .

hold
stack: (char --)
code: 95

Inserts char into a pictured numeric output string. Typically used between <#
and #>.

headers
: cnt@ (-- w)
 transfer-count-lo rb@
 transfer-count-hi rb@
 bwjoin
;

FCode Dictionary 335

14

For example:

i
stack: (-- index) (R: sys -- sys)
code: 19

index is a copy of the loop index. May only be used inside of a do or ?do loop.

For example:

if
stack: (C: -- orig-sys) (do-next? --)
code: 14 +offset
generates: b?branch +offset

Execute the following code if do-next? is true. Used in the form:

or

If do-next? is true, the words following if are executed and the words
following else are skipped. The else part is optional. If do-next? is false,
words from if through else , or from if through then (when no else is
used), are skipped.

: .32 (n --)
 base @ >r hex
 <# # # # # ascii . hold # # # # #> type
 r> base !
 space
;

: simple-loop (start len --)
 bounds ?do i .h cr loop
;

do-next? if…else…then

do-next? if…then

336 Writing FCode 3.x Programs —November 1997

14

ihandle>phandle
stack: (ihandle -- phandle)
code: 02 0B

Returns the phandle of the package from which the instance ihandle was created.
This is often used with get-package-property to read the properties of the
package corresponding to a given ihandle.

For example:

insert-characters
stack: (n --)
code: 01 5D

insert-characters is one of the defer words of the display device
interface. The terminal emulator package executes insert-characters
when it has processed a character sequence that calls for opening space for
characters to the right of the cursor. Without moving the cursor, insert-
characters moves the remainder of the line to the right, thus losing the n
rightmost characters in the line, and fills the n vacated character positions with
the background color.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-insert-characters or fb8-insert-characters ,
respectively).

insert-lines
stack: (n --)
code: 01 5F

insert-lines is one of the defer words of the display device interface. The
terminal emulator package executes insert-lines when it has processed a
character sequence that calls for opening space for lines of text below the

: show-parent (--)
 my-parent ihandle>phandle " name" rot
 get-package-property 0= if
 ." my-parent is " type cr
 then
;

FCode Dictionary 337

14

cursor. Without moving the cursor, insert-lines moves the cursor line and
all following lines down, thus losing the n bottom lines. and fills the n vacated
lines with the background color.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-insert-lines or fb8-insert-lines , respectively).

instance
stack: (--)
code: C0

Modifies the next occurrence of value , variable , defer or buffer: to
create instance-specific data instead of static data. Re-allocates the data each
time a new instance of this package is created.

For example:

inverse?
stack: (-- white-on-black?)
code: 01 54

This value is part of the display device interface. The terminal emulator
package sets inverse? to true when the escape sequences that it has
processed have indicated that subsequent characters are to be shown with
foreground and background colors exchanged, and to false , indicating
normal foreground and background colors, otherwise.

The fb1- and fb8- frame buffer support packages draw characters with
foreground and background colors exchanged if inverse? is true , and with
normal foreground and background colors if inverse? is false .

inverse? affects the character display operations draw-character ,
insert-characters , and delete-characters , but not the other
operations such as insert-lines , delete-lines and erase-screen .

inverse-screen? should be monitored as needed if your FCode Program is
implementing its own set of frame buffer primitives.

See also: inverse-screen?

-1 instance value my-chip-reg

338 Writing FCode 3.x Programs —November 1997

14

inverse-screen?
stack: (-- black?)
code: 01 55

This value is part of the display device interface. The terminal emulator
package sets inverse-screen? to true when the escape sequences that it
has processed have indicated that the foreground and background colors are to
be exchanged for operations that affect the background, and to false ,
indicating normal foreground and background colors, otherwise.

The fb1- and fb8- frame buffer support packages perform screen drawing
operations other than character drawing operations with foreground and
background colors exchanged if inverse-screen? is true , and with normal
foreground and background colors is false.

inverse-screen? affects background operations such as insert-lines ,
delete-lines and erase-screen , but not character display operations
such as draw-character , insert-characters and delete-characters .

When inverse-screen? and inverse? are both true, the colors are
exchanged over the entire screen, and subsequent characters are not
highlighted with respect to the (inverse) background. For exchanged screen
colors and highlighted characters, the setting are inverse-screen? true
and inverse? false .

inverse-screen? should be monitored as needed if your FCode Program is
implementing its own set of frame buffer primitives.

invert
stack: (x1 -- x2)
code: 26

x2 is the one’s complement of x1 i.e. all the one bits in x1 are changed to zero,
and all the zero bits are changed to one.

For example:

See also 0=.

: clear-lastbit (--)
 my-reg rl@ 1 not and my-reg rl!
;

FCode Dictionary 339

14

invert-screen
stack: (--)
code: 01 5C

invert-screen is one of the defer words of the display device interface.
The terminal emulator package executes invert-screen when it has
processed a character sequence that calls for exchanging the foreground and
background colors (e.g. changing from black-on-white to white-on-black).

invert-screen changes all pixels on the screen so that pixels of the
foreground color are given the background color, and vice versa, leaving the
colors that will be used by subsequent text output unaffected.

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-invert-screen or fb8-invert-screen , respectively).

is-stack
stack: (param [old-name <>] --)
code: C3 old FCode #

Synonym for to .

Creates open , write , and draw-logo methods for display devices.

For any SBus frame buffer that is to be used by the boot PROM before or
during booting, is-install declares the FCode procedure that should be
used to install (i.e. initialize) that frame buffer. Note that this is distinct from
any once-only power-on initialization that should be performed during the
probing process itself.

is-install
stack: (xt --)
code: 01 1C

Creates open , write , and draw-logo methods for display devices.

For any SBus frame buffer that is to be used by the boot PROM before or
during booting, is-install declares the FCode procedure that should be
used to install (i.e. initialize) that frame buffer. Note that this is distinct from
any once-only power-on initialization that should be performed during the
probing process itself.

340 Writing FCode 3.x Programs —November 1997

14

The is-install routine and is-remove routine should comprise a matched
pair that may be performed alternately as many times as needed. Typically, the
is-install routine performs mapping functions and some initialization, and
the is-remove performs any cleanup functions and then does a
complementary unmapping.

A partial, typical code example follows:

version1
…
: power-on (--) \ Once-only, power-on initialization
 map-register
 init-register
 unmap-register
;
…
: map-devices (--) \ Map register and buffer
 map-register
 map-buffer
;
…
: install-me (--) \ Do this to start using this device
 map-devices
 initialize-devices
;
: remove-me (--) \ Do this to stop using this device
 reset-buffers
 unmap-devices
;
…
\ This routine executed during the probe of this FCode
: my-probe (--) \ First, define the routine
 power-on \ Power-on initialization
 ['] install-me is-install \ Declare "install" routine
 ['] remove-me is-remove \ Declare "remove" routine
 ['] test-me is-selftest \ Declare "selftest" routine
; \ End of the defintion
my-probe \ Now execute the routine
end0

FCode Dictionary 341

14

is-remove
stack: (xt --)
code: 01 1D

Creates a close method for display devices that will de-allocate a frame
buffer that is no longer going to be used. Typical de-allocation would include
unmapping memory and clearing buffers. For example:

The routine loaded with is-remove should form a matched pair with the
routine loaded with is-install . See is-install for more details.

version1
…
: remove-me (--) \ Do this to stop using this device
 reset-buffers
 unmap-devices
;
…
\ This routine executed during the "probe" of this FCode
: my-probe (--) \ First, define the routine
 power-on \ Power-on initialization
 ['] install-me is-install \ Declare "install" routine
 ['] remove-me is-remove \ Declare "remove" routinea
 ['] test-me is-selftest \ Declare "selftest" routine
; \ End of the definition
my-probe \ Now, execute this routine
end0

342 Writing FCode 3.x Programs —November 1997

14

is-selftest
stack: (xt --)
code: 01 1E

Creates a selftest method for display devices that will perform a self test of
the frame buffer. For example:

This declaration is typically performed in the same place in the code as is-
install and is-remove .

The self test routine should return a status parameter on the stack indicating
the results of the test. A zero value indicates that the test passed. Any nonzero
value indicates that the self test failed, but the actual meaning for any nonzero
value is not specified. (memory-test-suite returns a flag meeting these
specifications.)

selftest is not automatically executed. For automatic testing, devices should
perform a quick sanity check as part of the install routine. See “selftest” on
page 72.

(is-user-word)
stack: (E: … -- ???) (name-str name-len xt --)
code: 02 14

Creates a Forth word (not a package method) whose name is given by name-str
name-len and whose behavior is given by the execution token xt which must
refer to a static method. This allows an FCode Program to define new User
Interface commands.

version1
…
: test-me (-- fail?) \ self test method
 …
;
…
\ This routine executed during the "probe" of this FCode
: my-probe (--) \ First, define the routine
 power-on \ Power-on initialization
 ['] install-me is-install \ Declare "install" routine
 ['] remove-me is-remove \ Declare "remove" routine
 ['] test-me is-selftest \ Declare "selftest" routine
; \ End of the definition
my-probe \ Now, execute this routine
end0

FCode Dictionary 343

14

For example:

j
stack: (-- index) (R: sys -- sys)
code: 1A

index is a copy of the index of the next outer loop. May only be used in a
nested do or ?do loop. For example:

Usually, do loops should not be nested this deeply inside a single definition.
Forth programs are generally more readable if inner loops are defined inside a
separate word.

key
stack: (-- char)
code: 8E

A defer word that reads the next ASCII character from the keyboard. If no
character has been typed since key or expect was last executed, key waits
until a new character is typed. All valid ASCII characters can be received.
Control characters are not processed by the system for any editing purpose.
Characters received by key are not displayed.

For example:

See also: key?

" xyz-abort" ' my-abort (is-user-word)

do
 …
 do … j … loop
 …
loop

: continue? (-- continue?)
 ." Want to Continue? Enter Y/N" key dup emit
 dup ascii Y = ascii y rot = or
;

344 Writing FCode 3.x Programs —November 1997

14

key?
stack: (-- pressed?)
code: 8D

A defer word returning true if a character has been typed on the keyboard
since the last time that key or expect was executed. The keyboard character is
not consumed.

Use key? to make simple, interruptible infinite loops:

The contents of the loop will repeat indefinitely until any key is pressed.

See also: key

l!
stack: (quad qaddr --)
code: 73

The 32-bit value quad is stored at location qaddr. qaddr must be 32-bit aligned.

See also: rl!

l,
stack: (quad --)
code: D2

Compile a 32-bit number into the dictionary. The dictionary pointer must be
2-byte-aligned.

For example:

l@
stack: (qaddr -- quad)
code: 6E

Fetch the 32-bit number stored at qaddr. qaddr must be 32-bit aligned.

See also: rl@

begin … key? until

\ to create an array containing integers 40004000 23 45 6734
create my-array 40004000 l, 23 l, 45 l, 6734 l,

FCode Dictionary 345

14

/l
stack: (-- n)
code: 5C

n is the number of address units to a 32-bit word, typically 4.

/l*
stack: (nu1 -- nu2)
code: 68

nu2 is the result of multiplying nu1 by /l . This is the portable way to convert
an index into a byte offset.

<l@
stack: (qaddr -- n)
code: 02 42

Fetch quadlet from qaddr, sign-extended.

la+
stack: (addr1 index -- addr2)
code: 60

Increments addr1 by index times the value of /l . This is the portable way to
increment an address.

la1+
stack: (addr1 -- addr2)
code: 64

Increments addr1 by the value of /l . This is the portable way to increment an
address.

lbflip
stack: (quad1 -- quad2)
code: 02 27

Reverse the bytes in a 32-bit datum.

lbflips
stack: (qaddr len --)
code: 02 28

Reverse the bytes in each 32-bit datum in the given region.

The region begins at qaddr and spans len bytes. The behavior is undefined if len
is not a multiple of /l .

346 Writing FCode 3.x Programs —November 1997

14

lbsplit
stack: (quad -- byte1.lo byte2 byte3 byte4.hi)
code: 7E

Splits a 32-bit datum into four bytes. The high bytes of each stack result are all
zeroes.

lcc
stack: (char1 -- char2)
code: 82

char2 is the lower case version of char1. If char1 is not an upper case letter, it is
unchanged. For example:

See also: upc

leave
stack: (--) (R: sys --)
code: 1B
generates: b(leave)

Transfers execution to just past the next loop or +loop . The loop is terminated
and loop control parameters are discarded. May only be used in a do or ?do
loop.

leave may appear in other control structures that are nested in the do loop
structure. More than one leave may appear in a do loop.

For example:

See also: exit , unloop

ok ascii M lcc emit
m
ok

: search-pat (pat addr len -- found?)
 rot false swap 2swap (false pat addr len)
 bounds ?do (flag pat)
 i @ over = if drop true swap leave then
 loop
 drop
;

FCode Dictionary 347

14

?leave
stack: (exit? --) (R: sys --)
code: 14 + offset 1B B2
generates: if leave then

If exit? is true (nonzero), ?leave transfers control to just beyond the next loop
or +loop . The loop is terminated and loop control parameters are discarded. If
exit? is zero, no action is taken. May only be used in a do or ?do loop.

?leave may appear in other control structures that are nested in the do loop
structure. More than one ?leave may appear in a do loop.

For example:

left-parse-string
stack: (str len char -- R-str R-len L-str L-len)
code: 02 40

Splits the input string at the first occurrence of delimiter char. For example:

would leave the address and length of two strings on the stack:

“in;g ” and “test ”.

The delimiter character may be any ASCII character. Note that if the delimiter
is not found in the string, the effect is as if the delimiter was found at the very
end. For example:

would leave on the stack “” and “testing ”.

: show-mem (vaddr --) \ display h# 10 bytes
 dup h# 9 u.r 5 spaces h# 10 bounds do i c@ 3 u.r loop
;
: .mem (vaddr size --)
 bounds ?do i show-mem key? ?leave h# 10 +loop
;

" test;in;g" ascii ; left-parse-string

" testing" ascii q left-parse-string

348 Writing FCode 3.x Programs —November 1997

14

line#
stack: (-- line#)
code: 01 52

A value , set and controlled by the terminal emulator, that contains the current
cursor line number. A value of 0 represents the topmost line of available text
space — not the topmost pixel of the frame buffer.

This word should be monitored as needed if your FCode Program is
implementing its own set of frame buffer primitives.

For example:

See also: window-top .

#line
stack: (-- a-addr)
code: 94

A variable containing the number of output lines since the last user
interaction i.e. since the last ok prompt. #line is incremented whenever cr
executes. The value in this variable is used to determine when to pause
during long display output, such as dump. Its value is reset each time the
ok prompt displays.

See also: exit?

linefeed
stack: (-- 0x0A)
code: 10 00 00 00 0A
generates: b(lit) 00 00 00 0x0A

Leaves the ASCII code for the linefeed character on the stack.

#lines
stack: (-- rows)
code: 01 50

#lines is a value that is part of the display device interface. The terminal
emulator package uses it to determine the height (number of rows of
characters) of the text region that it manages. The fb1- and fb8- frame buffer
support packages also use it for a similar purpose.

: set-line (line --) 0 max #lines 1- min to line# ;

FCode Dictionary 349

14

The value of #lines must be set to the desired height of the text region. This
can be done with to , or it can be handled automatically as one of the functions
performed by fb1-install or fb8-install . The value set by fbx-
install is the smaller of the passed #lines parameter and the screen-
#rows NVRAM parameter.

For example:

loop
stack: (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2)
code: 15 -offset
generates: b(loop) -offset

Terminates a do or ?do loop. Increments the loop index by one. If the index
was incremented across the boundary between limit-1 and limit, the loop is
terminated and loop control parameters are discarded. When the loop is not
terminated, execution continues just after the corresponding do or ?do .

For example, the following do loop:

terminates when the loop index changes from 7 to 8. Thus, the loop will iterate
with loop index values from 0 to 7, inclusive.

loop may be used either inside or outside of colon definitions.

+loop
stack: (C: dodest-sys --) (n --) (R: sys1 -- <nothing> | sys2)
code: 16 -offset
generates: b(+loop) -offset

Terminates a do or ?do loop. Increments the loop index by n (or decrements
the index if n is negative). If the index was incremented (or decremented)
across the boundary between limit-1 and limit the loop is terminated and loop
control parameters are discarded. When the loop is not terminated, execution
continues just after the corresponding do or ?do .

: set-line (line --) 0 max #lines 1- min to line# ;

8 0 do…loop

350 Writing FCode 3.x Programs —November 1997

14

The following do loop:

terminates when the loop index crosses the boundary between 7 and 8. Thus,
the loop will iterate with loop index values of 0, 2, 4, 6.

By contrast, a do loop created as follows:

terminates when the loop index crosses the boundary between -1 and 0. Thus,
the loop will iterate with loop index values of 8, 6, 4, 2, 0.

+loop may be used either inside or outside of colon definitions.

lpeek
stack: (qaddr -- false | quad true)
code: 02 22

Tries to read the 32-bit word at address qaddr. Returns quad and true if the
access was successful. A false return indicates that a read access error occurred.
qaddr must be 32-bit aligned.

lpoke
stack: (quad qaddr -- okay?)
code: 02 25

Tries to write quad at address qaddr. Returns true if the access was successful. A
false return indicates a write access error. qaddr must be 32-bit aligned.

Note – lpoke may be unreliable on bus adapters that “buffer” write accesses.

lshift
stack: (x1 u -- x2)
code: 27

Shifts x1 left by u bit-places. Zero-fills the low bits.

8 0 do…2 +loop

0 8 do…-2 +loop

FCode Dictionary 351

14

lwflip
stack: (quad1 -- quad2)
code: 02 26

Swaps the doublets in a quadlet.

lwflips
stack: (qaddr len --)
code: 02 37

Swaps the order of the 16-bit words in each 32-bit word in the memory buffer
qaddr len. qaddr must be four-byte-aligned. len must be a multiple of /l .

For example:

lwsplit
stack: (quad -- w1.lo w2.hi)
code: 7C

Splits the 32-bit value quad into two 16-bit words. The upper bytes of the two
generated words are zeroes.

lxjoin
stack: (quad.lo quad.hi -- o)
code: 02 43

Joins two quadlets to form an octlet. Combines the 32 least-significant bits of
each operand to form an octlet. Ignores the high-order bits of each operand.

mac-address
stack: (-- mac-str mac-len)
code: 01 A4

Usually used only by the "network" device type, this FCode returns the value
for the Media Access Control, or MAC address, that this device should use for its
own address. The data is encoded as a byte array, generally 6 bytes long.

The value returned by mac-address is system-dependent.

See also: "mac-address" , "local-mac-address" , and "network" in
Chapter 7, “Properties” and Chapter 11, “Network Devices”.

ok h# 12345678 8000 l!
ok 8000 4 lwflips
ok 8000 l@ .h
56781234

352 Writing FCode 3.x Programs —November 1997

14

map-low
stack: (phys.lo … size -- virt)
code: 01 30

Creates a mapping associating the range of physical addresses beginning at
phys.lo … my-space and extending for size bytes in this device’s physical
address space with a processor virtual address. Return that virtual address virt.

Equivalent to:

The number of cells in the list phys.lo … is one less than the number
determined by the value of the "#address-cells " property of the parent
node.

If the requested operation cannot be performed, throw is called with an
appropriate error message.

Out-of-memory conditions can be detected and handled with the phrase:
['] map-low catch

See also: map-out

mask
stack: (-- a-addr)
code: 01 24

This variable defines which bits out of every 32-bit word will be tested by
memory-test-suite . To test all 32-bits, set mask to all ones with:

To test only the low-order byte out of each word, set the lower bits of mask
with:

Any arbitrary combination of bits can be tested or masked.

my-space swap " map-in" $call-parent

ffff.ffff mask !

0000.00ff mask !

FCode Dictionary 353

14

max
stack: (n1 n2 -- n1|n2)
code: 2F

Returns the greater of n1 and n2.

memory-test-suite
stack: (addr len -- fail?)
code: 01 22

Performs a series of tests on the memory beginning at addr for len bytes. If any
of the tests fail, failed? is true and a failure message is displayed on a
system-dependent diagnostic output device.

The actual tests performed are machine specific and often vary depending on
whether diagnostic-mode? is true or false . Typically, if diagnostic-
mode? is true , a message is sent to the console output device giving the name
of each test.

The value stored in mask controls whether only some or all data lines are
tested.

For example:

See also: diag-switch?

min
stack: (n1 n2 -- n1|n2)
code: 2E

Returns the lesser of n1 and n2.

mod
stack: (n1 n2 -- rem)
code: 22

rem is the remainder after dividing n1 by the divisor n2. rem has the same sign
as n2 or is zero. An error condition results if the divisor is zero.

: test-result (--)
 frame-buffer-adr my-frame-size memory-test-suite (failed?)
 encode-int “ test-result” property
;

354 Writing FCode 3.x Programs —November 1997

14

*/mod
stack: (n1 n2 n3 -- rem quot)
code: 30 20 31 2A

Calculates n1 * n2 / n3 and returns the remainder and quotient. The inputs,
outputs, and intermediate products are all 32-bit. rem has the same sign as n3
or is zero. An error condition results if the divisor is zero.

/mod
stack: (n1 n2 -- rem quot)
code: 2A

rem is the remainder and quot is the quotient of n1 divided by the divisor n2.
rem has the same sign as n2 or is zero. An error condition results if the divisor
is zero.

model
stack: (str len --)
code: 01 19

This is a shorthand word for creating a "model" property. By convention,
"model" identifies the model name/number for a SBus card, for
manufacturing and field-service purposes. A sample usage would be:

This is equivalent to:

The "model" property is useful to identify the specific piece of hardware (the
SBus card), as opposed to the "name" property (since several different but
functionally-equivalent cards would have the same "name" property, thus
calling the same operating system device driver).

See also: property , "model" in Chapter 7, “Properties”.

" SUNW,501-1623-1" model

" SUNW,501-1623-1" encode-string " model" property

FCode Dictionary 355

14

move
stack: (src_addr dest_addr len --)
code: 78

len bytes starting at src_addr (through src_addr+len-1 inclusive) are moved to
address dest_addr (through dest_addr+len-1 inclusive). If len is zero then nothing
is moved.

The data are moved such that the len bytes left starting at address dest_addr are
the same data as was originally starting at address src_addr. If src_addr >
dest_addr then the first byte of src_addr is moved first, otherwise the last byte
(src_addr+len-1) is moved first. Thus, moves between overlapping fields are
properly handled.

move will perform 16-bit, 32-bit or possibly even 64-bit operations (for better
performance) if the alignment of the operands permits. If your hardware
requires explicit 8-bit or 16-bit accesses, you will probably wish to use an
explicitly-coded do … loop instead.

ms
stack: (n --)
code: 01 26

Delays all execution for at least n milliseconds, by executing an empty delay
loop for an appropriate number of iterations. The maximum allowable delay
will vary from system to system, but is guaranteed to be valid for all values up
to at least 1,000,000 (decimal). No other CPU activity takes place during delays
invoked with ms, although generally this is not a problem for FCode drivers
since there is nothing else to do in the meantime anyway. If this word is used
excessively, noticeable delays could result.

For example:

: probe-loop-wait (addr --)
 \ wait h# 10 ms before doing another probe at the location
 begin dup l@ drop h# 10 ms key? until drop
;

356 Writing FCode 3.x Programs —November 1997

14

my-address
stack: (-- phys.lo …)
code: 01 02

Returns the low component(s) of the device’s probe address, suitable for use
with the map-in method, and with reg and encode-phys . The returned
number, along with my-space , encodes the address of location 0 of this device
in a bus-specific format. The number of cells in the list phys.lo … is one less
than the number determined by the value of the "#address-cells"
property of the parent node.

The OpenBoot PROM automatically sets my-address to the correct value
before each slot is probed. Usually, this value is used to calculate the location(s)
of the device registers, which are then saved as the property value of the
"reg" property and later accessed with my-unit .

For example for a SBus device:

my-args
stack: (-- arg-str arg-len)
code: 02 02

Returns the instance argument string arg-str arg-len that was passed to the
current instance when it was created, if the argument string exists. Otherwise
returns with a length of 0.

For example:

fcode-version2
 " audio" encode-string " name" property
 my-address my-space encode-phys \ SBus Configuration
Space
 0 encode-int encode+ 0 encode-int encode+
 …
 " reg" property
end0

ok " /obio:TEST-ARGS" open-dev my-args type
TEST-ARGS

FCode Dictionary 357

14

my-parent
stack: (-- ihandle)
code: 02 0A

Returns the ihandle of the instance that opened the current instance. For device
driver packages, the relationships of parent/child instances mimic the
parent/child relationships in the device tree.

For example for an SBus device:

my-self
stack: (-- ihandle)
code: 02 03

A value word that returns the current instance’s ihandle. If there is no current
instance, the value returned is zero.

For example:

my-space
stack: (-- phys.hi)
code: 01 03

Returns the high component of the device’s probe address representing the
device space that this card is plugged into. The meaning of the returned value
is bus-specific.

: show-parent (--)
 my-parent ihandle>phandle " name" rot
 get-package-property 0= if
 ." my-parent is " type cr
 then
;

: show-model-name (--)
 my-self ihandle>phandle (phandle)
 " model" rot get-package-property 0= if (val.addr,len)
 ." model name is " type cr
 else ()
 ." model property is missing " cr
 then ()
;

358 Writing FCode 3.x Programs —November 1997

14

For example for an SBus device:

See my-address for more details.

my-unit
stack: (-- phys.lo … phys.hi)
code: 02 0D

Returns the unit address phys.lo … phys.hi of the current instance. The unit
address is set when the instance is created, as follows:

• If the node-name used to locate the instance’s package contained an explicit
unit-address, that is the instance’s unit address. This handles the case of a
“wildcard” node with no associated "reg" property.

• Otherwise, if the device node associated with the package from which the
instance was created contains a "reg" property, the first component of its
"reg" property value is the instance’s unit address.

• Otherwise, the instance’s unit address is 0 0.

The number of cells in the list phys.lo … phys.hi is determined by the value
of the "#address-cells" property of the parent node.

/n
stack: (-- n)
code: 5D

The number of address units in a cell.

/n*
stack: (nu1 -- nu2)
code: 69

Synonym for cells .

na+
stack: (addr1 index -- addr2)
code: 61

fcode-version1
 " audio" encode-string " name" property
 my-address h# 130.0000 + my-space h# 8 reg
 …
end0

FCode Dictionary 359

14

Increments addr1 by index times the value of /n .

na+ should be used in preference to wa+ or la+ when the intent is to address
items that are the same size as items on the stack.

na1+
stack: (addr1 -- addr2)
code: 65

Synonym for cell+ .

name
stack: (adr len --)
code: 1 14 12 04 6E 61 6D 65 1 10
generates: encode-string " name" property

A shorthand word for creating a “name” property, used to match a device node
with the appropriate Solaris driver. The “name” declaration is required for
booting with Solaris, and should be present in every FCode program. For
example:

is equivalent to:

See also property , device-name .

See “name” in Chapter 7, “Properties”.

named-token
stack: (--) (F: /FCode-string FCode#/ --)
code: B6

Creates a new, possibly-named FCode function. named-token should never
be used directly in source code.

negate
stack: (n1 -- n2)
code: 2C

n2 is the negation of n1. This is equivalent to 0 swap - .

“ SUNW,bison” name

“ SUNW,bison” encode-string “ name” property

360 Writing FCode 3.x Programs —November 1997

14

new-device
stack: (--)
code: 01 1F

Starts a new entry in the device tree. This word is used for creating multiple
devices in a single FCode Program.

See also: finish-device

new-token
stack: (--) (F: /FCode#/ --)
code: B5

Creates a new unnamed FCode function. new-token should never be used
directly in source code.

next-property
stack: (previous-str previous-len phandle -- false | name-str name-len true)
code: 02 3D

Returns the name of the property following previous-string of phandle.

name-string is a null-terminated string that is the name of the property
following previous-string in the property list for device phandle. If previous-string
is zero or points to a zero-length string, name-string is the name of phandle’s
first property. If there are no more properties after previous-string or if
previous-string is invalid (i.e. names a property which does not exist in phandle),
name-string is a pointer to a zero-length string.

nip
stack: (x1 x2 -- x2)
code: 4D

Removes the second item on the stack.

noop
stack: (--)
code: 7B

Does nothing. This can be used to provide short delays or as a placeholder for
patching in other commands later.

not
stack: (x1 -- x2)
code: 26

FCode Dictionary 361

14

Synonym for invert .

See also: 0=

$number
stack: (addr len -- true | n false)
code: A2

A numeric conversion primitive that converts a string to a number, according
to the current base value. An error flag is returned if an inconvertible
character is encountered.

For example:

of
stack: (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)
code: 1C +offset
generates: b(of) +offset

Begins the next test clause in a case statement. See case for more details.

off
stack: (a-addr --)
code: 6B

Sets the contents at a-addr to false (i.e. zero).

offset16
stack: (--)
code: CC

Instructs the tokenizer program, and the boot PROM, to expect all further
branch offsets to be 16-bit values. This word is automatically generated by
some current tokenizers.

ok hex
ok " 123f" $number .s
123f 0
ok " 123n" $number .s
ffffffff

362 Writing FCode 3.x Programs —November 1997

14

Once offset16 is executed, the offset size remains 16 bits for the duration of
the FCode Program; it cannot be set back to 8 bits. Multiple calls of offset16
have no additional effect. offset16 is only useful in an FCode Program that
begins with version1 . All other starting tokens (start0 , start1 , start2 ,
and start4) automatically set the offset size to 16 bits.

See also: fcode-version2

on
stack: (a-addr --)
code: 6A

Set the contents at a-addr to true (i.e. -1).

open-package
stack: (arg-str arg-len phandle -- ihandle | 0)
code: 02 05

Creates an instance of the package identified by phandle, saves in that instance
an argument string specified by arg-str arg-len, and invokes the package’s open
method. The parent instance of the new instance is the instance that invoked
open-package .

Returns the instance handle ihandle of the new instance if it can be opened. It
returns 0 if the package could not be opened, either because that package has
no open method or because its open method returned false indicating an error.
In this case, the current instance is not changed.

For example:

$open-package
stack: (arg-str arg-len name-str name-len -- ihandle | 0)
code: 02 0F

Similar to using find-package open-package except that if find-
package fails, 0 is returned immediately, without calling open-package .

: test-tftp-open (-- ok?)
 " obp-tftp" find-package if (phandle)
 0 0 rot open-package if true else false then
 else
 false
 then
;

FCode Dictionary 363

14

The name is interpreted relative to the /packages device node. For example,
if name-str name-len represents the string "disk-label" , the package in the
device tree at “/packages/disk-label ” will be located.

If there are multiple packages with the same name (in the /packages node),
the most recently created one is opened.

For example:

or
stack: (x1 x2 -- x3)
code: 24

x3 is the bit-by-bit inclusive-or of x1 with x2.

#out
stack: (-- a-addr)
code: 93

A variable containing the current column number on the output device. This
is updated by emit , cr and some other words that modify the cursor position.
It is used for display formatting.

For example:

over
stack: (x1 x2 -- x1 x2 x1)
code: 48

The second stack item is copied to the top of the stack.

2over
stack: (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
code: 54

Copies the third and fourth stack items to the stack top.

pack
stack: (str len addr -- pstr)

0 0 " obp-tftp" $open-package (ihandle)

: to-column (column --) #out @ - 1 max spaces ;

364 Writing FCode 3.x Programs —November 1997

14

code: 83

Stores the string specified by str len as a packed string at the location addr
returning pstr (which is the same address as addr). The byte at address pstr is
the length of the string and the string itself starts at address pstr+1. A packed
string can contain at most 255 characters.

Packed strings are generally not used in FCode. Virtually all string operations
are in the addr len format.

For example:

parse-2int
stack: (str len -- val.lo val.hi)
code: 01 1B

Converts a “hi,lo” string into a pair of values according to the current value in
base .

If the string does not contain a comma, val.lo is zero and val.hi is the result of
converting the entire string. If either component contains non-numeric
characters, according to the value in base , the result is undefined.

For example:

peer
stack: (phandle -- phandle.sibling)
code: 02 3C

peer returns the phandle phandle.sibling of the package that is the next child of
the parent package phandle.

If there are no more siblings, peer returns 0.

If phandle is 0, peer returns phandle of the root node.

h# 20 buffer: my-packed-string
" This is test string " my-packed-string pack

ok " 4,ff001200" parse-2int .s
ff001200 4
ok " 4" parse-2int .s
0 4

FCode Dictionary 365

14

Together with child , peer lets you enumerate (possibly recursively) the
children of a particular device. A common application would be for a device
driver to use child to determine the phandle of a node’s first child, and use
peer multiple times to determine the phandles of the node’s other children.
For example:

pick
stack: (xu … x1 x0 u -- xu … x1 x0 xu)
code: 4E

Copies the u-th stack value, not including u itself, where the remaining stack
items have indices beginning with 0. u must be between 0 and two less than
the total number of elements on the stack (including u).

For the sake of readability, the use of pick should be minimized.

property
stack: (prop-addr prop-len name-str name-len --)
code: 01 10

Creates a new property with the specified name and previously prop-encoded
value. If there is a current instance, creates the property in the package from
which the current instance was created. Otherwise, if there is an active
package, creates the property in the active package. If there is neither a current
instance nor an active package, the result is undefined.

If a property with the specified name already exists in the active package in
which the property would be created, replace its value with the new value.

Properties provide a mechanism for an FCode Program to pass information to
an operating system device driver. A property consists of a property name
string and a property value array. The name string gives the name of the

: my-children (--)
 my-self ihandle>phandle child (first-child)
 begin ?dup while dup . peer repeat
;

0 pick is equivalent to dup (n1 -- n1 n1)
1 pick is equivalent to over (n1 n2 -- n1 n2 n1)
2 pick is equivalent to (n1 n2 n3 -- n1 n2 n3 n1)

366 Writing FCode 3.x Programs —November 1997

14

property, and the value array gives the value associated with that name. For
example, a frame buffer may wish to declare a property named "hres" (for
horizontal resolution) with a value of 1152.

The property command requires two arrays on the stack — the value array
and the name string. The name string is an ordinary Forth string, such as any
string created with " . This string should be written in lower case, since the
property name is stored only after converting uppercase letters, if any, to lower
case. For example:

is stored as if entered

The value array, however, must be in the property value array format. See
Chapter 7, “Properties” for more information on creating property value
arrays.

All properties created by an FCode Program are stored in a “device tree” by
OpenBoot. This tree can then be queried by an operating system device driver,
using the Client Interface’s getprop or nextprop services.

The FCode Program and the operating system device driver may agree on any
arbitrary set of names and values to be passed, with virtually no restrictions.
Several property names, though, are reserved and have specific meanings. For
many of them, a shorthand command also exists that makes the property
declaration a bit simpler.

For example:

See also: "name" , device-name , model , reg and Chapter 7, “Properties” for
more information.

" A21-b" encode-string " New_verSION" property

" A21-b" encode-string " new_version" property

" SUNW,new-model" encode-string model

FCode Dictionary 367

14

r>
stack: (-- x) (R: x --)
code: 31

Removes x from the return stack and places it on the stack. See >r for
restrictions on the use of this word.

For example:

r@
stack: (-- x) (R: x -- x)
code: 32

Places a copy of the top of the return stack on the stack.

For example:

See >r for more details.

.r
stack: (n size --)
code: 9E

Converts n using the value of base and then displays it right-aligned in a field
size digits wide. Displays a leading minus sign if n is negative. A trailing space
is not displayed.

If the number of digits required to display n is greater than size, displays all the
digits required with no leading spaces in a field as wide as necessary.

For example:

: copyout (buf addr len -- len) >r swap r@ move r> ;

: copyout (buf addr len -- len) >r swap r@ move r> ;

: formatted-output (--)
 my-length h# 8 .r ." length" cr
 my-width h# 8 .r ." width" cr
 my-depth h# 8 .r ." depth" cr
;

368 Writing FCode 3.x Programs —November 1997

14

>r
stack: (x --) (R: -- x)
code: 30

Removes x from the stack and places it on the top of the return stack.

The return stack is a second stack, occasionally useful as a place to temporarily
place numeric parameters i.e. to “get them out of the way” for a little while.
For example:

However, since the return stack is also used by the system for transferring
control from word to word (and by do loops), improper use of >r or r> is
guaranteed to crash your program. Some restrictions that must be observed are:

• All values placed on the return stack in a colon definition must be removed
before the colon definition is exited by normal termination, exit or throw ,
or else the program will crash.

• No values from the return stack should be removed from in a colon
definition unless they were placed there in that definition.

• Entering a do loop automatically places values onto the return stack.
Therefore,
• Values placed on the return stack before the loop was started will not be

accessible from in the loop.
• Values placed on the return stack in the loop must be removed before

loop , +loop , or leave is encountered.
• The loop indices i or j will no longer be valid when additional values

have been placed on the return stack in the loop.

rb!
stack: (byte addr --)
code: 02 31

Stores an 8-bit byte to a device register at addr with identical bit ordering as the
input stack item. Data is stored with a single access operation and flushes any
intervening write buffers, so that the data reaches its final destination before
the next FCode Function is executed.

: encode-intr (int-level vector --)
 >r sbus-intr>cpu encode-int r> encode-int encode+
;

FCode Dictionary 369

14

For example:

rb@
stack: (addr -- byte)
code: 02 30

Fetches byte from the device register at addr. Data is read with a single access
operation. The result has identical bit ordering as the original register data.

For example:

reg
stack: (phys.lo … phys.hi size --)
code: 01 16

This is a shorthand word for declaring the "reg" property. Typical usage for
an SBus device:

This declares that the device registers are located at offset 40.0000 through
40.001f in this slot. The following code would accomplish the same thing:

Note that if you need to declare more than one block of register addresses, you
must repeatedly use encode-phys , encode-int and encode+ to build the
structure to be passed into the "reg" property.

: my-stat! (byte --) my-stat rb! ;

: my-stat@ (-- byte) my-stat rb@ ;

my-address 40.0000 + my-space 20 reg

my-address 40.0000 + my-space encode-phys
20 encode-int encode+
" reg" property

370 Writing FCode 3.x Programs —November 1997

14

For example, to declare two register fields at 10.0000-10.00ff and 20.0000-
20.037f on a SBus device, use the following:

See also: property , "reg" in Chapter 7, “Properties”.

repeat
stack: (C: orig-sys dest-sys --) (--)
code: 13 -offset b2
generates: bbranch -offset b(>resolve)

Terminates a begin …while …repeat conditional loop. See while for more
details.

reset-screen
stack: (--)
code: 01 58

reset-screen is one of the defer words of the display device interface. The
terminal emulator package executes reset-screen when it has processed a
character sequence that calls for resetting the display device to its initial state.
reset-screen puts the display device into a state in which display output is
visible (e.g. enable video).

This word is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to ,
or it can be loaded automatically with fb1-install or fb8-install (which
loads fb1-reset-screen or fb8-reset-screen , respectively). These
words are NOPs, so it is very common to first call fbx-install and then to
override the default setting for reset-screen with:

See also: blink-screen

my-address 10.0000 + my-space encode-phys \ Offset#1
100 encode-int encode+ \ Merge size#1
my-address 20.0000 + my-space encode-phys encode+ \ Merge offset#2
380 encode-int encode+ \ Merge size#2
" reg" property

 ['] my-video-on to reset-screen

FCode Dictionary 371

14

 rl!
stack: (quad qaddr --)
code: 02 35

Stores a 32-bit word to a device register at qaddr with identical bit ordering as
the input stack item. qaddr must be 32-bit aligned. Data is stored with a single
access operation and flushes any intervening write buffers, so that the data
reaches its final destination before the next FCode Function is executed.

For example:

rl@
stack: (qaddr -- quad)
code: 02 34

Fetches a 32-bit word from the device register at qaddr. qaddr must be 32-bit
aligned. Data is read with a single access operation. The result has identical bit
ordering as the original register data.

For example:

roll
stack: (xu … x1 x0 u -- xu-1 … x1 x0 xu)
code: 4F

Removes the u-th stack value, not including u itself, where the remaining stack
items have indices beginning with 0. The u-th stack item is then placed on the
top of the stack, moving the remaining items down one position. u must be
between 0 and two less than the total number of elements on the stack
(including u).

For the sake of readability and performance, minimize your use of roll .

: my-reg! (n --) my-reg rl! ;

: my-reg@ (-- n) my-reg rl@ ;

0 roll is a null operation
1 roll is equivalent to swap (n1 n2 -- n2 n1)
2 roll is equivalent to rot (n1 n2 n3 -- n2 n3 n1)
3 roll is equivalent to (n1 n2 n3 n4 -- n2 n3 n4 n1)

372 Writing FCode 3.x Programs —November 1997

14

rot
stack: (x1 x2 x3 -- x2 x3 x1)
code: 4A

Rotates the top three stack entries, bringing the deepest to the top.

-rot
stack: (x1 x2 x3 -- x3 x1 x2)
code: 4B

Rotates the top three stack entries in the direction opposite from rot , putting
the top number underneath the other two.

2rot
stack: (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
code: 56

Rotates the top three pairs of numbers, bringing the third pair to the top of the
stack.

rshift
stack: (x1 u -- x2)
code: 28

Shifts x1 right by u bit-places while zero-filling the high bits.

rw!
stack: (w waddr --)
code: 02 33

Stores a 16-bit word to a device register at waddr. waddr must be 16-bit aligned.
Data is stored with a single access operation and flushes any intervening write
buffers, so that the data reaches its final destination before the next FCode
Function is executed.

The register is stored with identical bit ordering as the input stack item.

For example:

: my-count! (w --) my-count rw! ;

FCode Dictionary 373

14

rw@
stack: (waddr -- w)
code: 02 32

Fetches a 16-bit word from the device register at waddr. waddr must be 16-bit
aligned. Data is read with a single access operation. The result has identical bit
ordering as the original register data.

For example:

rx@
stack: (o addr -- o)
code: 02 2E

Fetches an octlet from device register at oaddr. Reads data with a single-access
operation. The result has identical bit ordering as the original register data..

rx!
stack: (o addr --)
code: 02 2F

Stores an octlet to device register at oaddr.

Stores data with a single-access operation and flushes any intervening write
buffers so that data reaches its final destination before the next “word” is
executed. Stores the result with identical bit ordering as the input stack item.

s"
stack: ([text<">] -- text-str text-len)
code: 12
generates: b(") len-byte xx-byte xx-byte … xx-byte

Gather the immediately-following string delimited by " . Return the location of
the string text-str text-len.

Since an implementation is only required to provide two temporary buffers, a
program cannot depend on the system’s ability to simultaneously maintain
more than two distinct interpreted strings. Compiled strings do not have this
limitation, since they are not stored in the temporary buffers.

: my-count@ (-- w) my-count rw@ ;

374 Writing FCode 3.x Programs —November 1997

14

s.
stack: (n --)
code: 47 2D 96 9A 49 98 97 90 A9 8F
generates: (.) type space

Displays the absolute value of n in a free-field format according to the current
value of base . Displays a trailing space and, if n is negative, a leading minus
sign. Even if the base is hexadecimal, n will be printed in signed format

See also: .

#s
stack: (ud -- 0 0)
code: C8

Converts the remaining digits in pictured numeric output.

.s
stack: (… -- …)
code: 9F

Displays the contents of the data stack (using .) according to base . The top of
the stack appears on the right. The contents of the stack are unchanged.

For example:

sbus-intr>cpu
stack: (sbus-intr# -- cpu-intr#)
code: 01 31

Convert the SBus interrupt level (1-7) to the CPU interrupt level. The mapping
performed will be system-dependent.

This word is included because of the possibility that, even on systems that
nominally do not support SBus, SBus devices might be used via a bus-to-bus
bridge.

ok 1 2 3 .s
1 2 3
ok . . .
3 2 1

FCode Dictionary 375

14

screen-height
stack: (-- height)
code: 01 63

A value , containing the total height of the display (in pixels). It can also be
interpreted as the number of “lines” of memory.

screen-height is an internal value used by the fb1- and fb8- frame buffer
support packages. In particular, this value is used in fbx-invert , fbx-
erase-screen , fbx-blink-screen and in calculating window-top . fb1-
install and fb8-install set it to the value of their height argument.

This function is included for historical compatibility. There is little reason for
an FCode Program to use it. In fact, “standard” FCode Programs are forbidden
from altering its value directly.

screen-width
stack: (-- width)
code: 01 64

A value , containing the width of the display (in pixels). It can also be
interpreted as the number of pixels (in memory) between one screen location
and the next location immediately below it. The latter definition takes
precedence if there is a conflict (e.g. there are unused/invisible memory
locations at the end of each line).

screen-width is an internal value used by the fb1- and fb8- frame buffer
support packages. fb1-install and fb8-install set it to their width
argument.

This function is included for historical compatibility. There is little reason for
an FCode Program to use it. In fact, “standard” FCode Programs are forbidden
from altering its value directly.

set-args
stack: (arg-str arg-len unit-str unit-len --)
code: 02 3F

Sets the address and arguments of a new device node.

unit-string is a text string representation of a physical address in the address
space of the parent device. set-args translates unit-string to the
equivalent numerical representation by executing the parent instance’s

376 Writing FCode 3.x Programs —November 1997

14

decode-unit method, and sets the current instance’s probe-address (i.e. the
values returned by my-address and my-space) to that numerical
representation.

set-args then copies the string arg-string to instance-specific storage, and
arranges for my-args to return the address and length of that copy when
executed from the current instance.

set-args is typically used just after new-device . new-device creates and
selects a new device node, and set-args sets its probe-address and
arguments. Subsequently, the device node’s properties and methods are
created by interpreting an FCode Program with byte-load or by interpreting
Forth source code.

The empty string is commonly used as the arguments for a new device node.
For example:

set-font
stack: (addr width height advance min-char #glyphs --)
code: 01 6B

This routine declares the font table to be used for printing characters on the
screen. This routine must be called if you wish to use any of the fb1- or fb8-
utility routines or >font .

Normally, set-font is called just after default-font . default-font
leaves the exact set of parameters needed by set-font on the stack. This
approach allows your FCode Program to inspect and/or alter the default
parameters if desired. See default-font for more information on these
parameters.

set-token
stack: (xt immediate? fcode# --)
code: DB

Assigns the FCode number fcode# to the FCode function whose execution token
is xt, with compilation behavior specified by immediate? as follows:

0 0 " 3.0" set-args

FCode Dictionary 377

14

• If immediate? is zero, then the FCode Evaluator will execute the function’s
execution semantics if it encounters that FCode number while in
interpretation state, or append those execution semantics to the current
definition if it encounters that FCode number while in compilation state.

• If immediate? is nonzero, the FCode Evaluator will execute the functions’s
FCode Evaluation semantics anytime it encounters that FCode number.

sign
stack: (n --)
code: 98

If n is negative, appends an ASCII “-” (minus sign) to the pictured numeric
output string. Typically used between <# and #>. See (.) for a typical usage.

space
stack: (--)
code: A9 8F
generates: bl emit

Displays a single ASCII space character.

spaces
stack: (cnt --)
code: A5 2F A5 18 +offset A9 8F 15 -offset
generates: 0 max 0 ?do space loop

Displays cnt ASCII space characters. Nothing is displayed if cnt is zero.

span
stack: (-- a-addr)
code: 88

A variable containing the count of characters actually received and stored by
the last execution of expect .

For example:

h# 10 buffer: my-name-buff
: hello (--)
 ." Enter Your First name " my-name-buff h# 10 expect
 ." Sun Microsystems Welcomes " my-name-buff span @ type cr
;

378 Writing FCode 3.x Programs —November 1997

14

start0
stack: (--)
code: F0

start0 may only be used as the first byte of an FCode Program. start0 :

• Sets the spread value to 0 causing the FCode Evaluator to read successive
bytes of the current FCode Program from the same address.

• Establishes the use of 16-bit branches.
• Reads an FCode header from the current FCode Program and either

discards it or uses it to verify the integrity of the current FCode program in
an implementation-dependent manner.

See also: fcode-version2 , start1 , start2 , start4 , version1

start1
stack: (--)
code: F1

start1 may only be used as the first byte of an FCode Program. start1 :

• Sets the spread value to 1 causing the FCode Evaluator to read successive
bytes of the current FCode Program from addresses one address unit apart.

• Establishes the use of 16-bit branches.
• Reads an FCode header from the current FCode Program and either

discards it or uses it to verify the integrity of the current FCode program in
an implementation-dependent manner.

See also: fcode-version2 , start0 , start2 , start4 , version1

start2
stack: (--)
code: F2

start2 may only be used as the first byte of an FCode Program. start2 :

• Sets the spread value to 2 causing the FCode Evaluator to read successive
bytes of the current FCode Program from addresses two address units apart.

• Establishes the use of 16-bit branches.
• Reads an FCode header from the current FCode Program and either

discards it or uses it to verify the integrity of the current FCode program in
an implementation-dependent manner.

See also: fcode-version2 , start0 , start1 , start4 , version1

FCode Dictionary 379

14

start4
stack: (--)
code: F3

start4 may only be used as the first byte of an FCode Program. start4 :

• Sets the spread value to 4 causing the FCode Evaluator to read successive
bytes of the current FCode Program from addresses four address units
apart.

• Establishes the use of 16-bit branches.
• Reads an FCode header from the current FCode Program and either

discards it or uses it to verify the integrity of the current FCode program in
an implementation-dependent manner.

See also: fcode-version2 , start0 , start1 , start2 , version1

state
stack: (-- a-addr)
code: DC

A variable containing true if the system is in compilation state.

struct
stack: (-- 0)
code: A5
generates: 0

Initializes a struct …field structure by leaving a zero on the stack to define
the initial offset. See field for details.

suspend-fcode
stack: (--)
code: 02 15

Tells the FCode interpreter that the device identification properties for the
active package have been declared, and that the interpreter may postpone
interpreting the remainder of the package if it so chooses.

If the FCode interpreter postpones (suspends) interpretation, it saves the state
of the interpretation process so that interpretation can continue later. Attempts
to open a suspended package cause the FCode interpreter to resume and
complete the interpretation of that package before executing the package’s
open method.

380 Writing FCode 3.x Programs —November 1997

14

For example:

This feature is intended to save memory space and reduce the system start-up
time by preventing the compilation of FCode drivers that are not actually used.

swap
stack: (x1 x2 -- x2 x1)
code: 49

Exchanges the top two stack items.

2swap
stack: (x1 x2 x3 x4 -- x3 x4 x1 x2)
code: 55

Exchanges the top two pairs of stack items.

then
stack: (C: orig-sys --) (--)
code: B2
generates: b(>resolve)

Terminates an if …then or an if …else …then conditional structure. See if
for more details.

throw
stack: (… error-code -- ??? error-code | …)
code: 02 18

Transfers control to the most recent dynamically enclosing error handling
context, passing the indicated error code to that handler. error-code must be
nonzero. If the value of error-code is zero, the zero is removed from the stack,
but no other action is taken.

See catch for an example of use.

version1
 " SUNW,my-name" name
 " SUNW,my-model" encode-string " model" property
 suspend-fcode
 …
end0

FCode Dictionary 381

14

to
stack: (param [old-name< >] --)
code: C3 old-FCode#
generates: b(to) old-FCode#

Changes the contents of a value or a defer word:

toggle-cursor
stack: (--)
code: 01 59

toggle-cursor is one of the defer words of the display device interface.
The terminal emulator package executes toggle-cursor when it is about to
process a character sequence that might involve screen drawing activity, and
executes it again after it has finished processing that sequence. The first
execution removes the cursor from the screen so that any screen drawing will
not interfere with the cursor, and the second execution restores the cursor,
possibly at a new position, after the drawing activity related to that character
sequence is finished. toggle-cursor is also called once during the terminal
emulator initialization sequence.

If the text cursor is on, toggle-cursor turns it off. If the text cursor is off,
toggle-cursor turns it on. (On a bitmapped display, a typical
implementation of this function inverts the pixels of the character cell to the
right of the current cursor position.)

toggle-cursor is initially empty, but must be loaded with an appropriate
routine in order for the terminal emulator to function correctly. This can be
done with to , or it can be loaded automatically with fb1-install or
fb8-install (which load fb1-toggle-cursor or fb8-toggle-cursor ,
respectively).

If the display device hardware has internal state (for example color map
settings) that might have been changed by external software without
firmware’s knowledge, that hardware state should be re-established to the state
that the firmware driver requires when the cursor is toggled to the “off” state
(which indicates that firmware drawing operations are about to begin). This

number to name (for a value)
xt to name (for a defer word)

382 Writing FCode 3.x Programs —November 1997

14

situation can occur, for example, when an operating system is using a display
device, but that operating system uses firmware text output services from time
to time, e.g. for critical warning messages.

See also: to , fb1-install , fb8-install.

tokenizer[
stack: (--)
code: none

This is a tokenizer command that ends FCode byte generation and begins
interpretation of the following text as tokenizer commands (up to the closing
]tokenizer). A tokenizer[…]tokenizer sequence may be used
anywhere in an FCode Program, either in any definition or outside of
definitions.

One plausible use for tokenizer[would be to generate debugging text
during the tokenizing process. (A cr flushes the text from the output buffer
immediately, which is useful if the tokenizer crashes.) For example:

emit-byte can be used with tokenizer[to output a desired byte of FCode.
This would be useful, for example, if you wished to generate a new FCode
command that the tokenizer did not understand. For example:

]tokenizer
stack: (--)
code: none

Ends a tokenizer-only command sequence. See tokenizer[.

…
tokenizer[.(step a) cr]tokenizer
…
tokenizer[.(step b) cr]tokenizer
…

…
tokenizer[1 emit-byte 27 emit-byte]tokenizer
\ manually output finish-device fcode
…

FCode Dictionary 383

14

true
stack: (-- true)
code: A4
generates: -1

Leaves the value for the true flag (which is -1) on the stack.

tuck
stack: (x1 x2 -- x2 x1 x2)
code: 4C

Copies the top stack item underneath the second stack item.

type
stack: (text-str text-len --)
code: 90

A defer word that transfers text-len characters to the output beginning with
the character at address text-str and continuing through text-len consecutive
addresses. No action is taken if text-len is zero.

For example:

The output will go either to a frame buffer or to a serial port depending on
which is enabled.

u#
stack: (u1 -- u2)
code: 99

The remainder of u1 divided by the value of base is converted to an ASCII
character and appended to the output string with hold . u2 is the quotient and
is maintained for further processing. Typically used between <# and #>.

h# 10 buffer: my-name-buff
: hello (--)
 ." Enter Your First name " my-name-buff h# 10 expect
 ." Sun Microsystems Welcomes " my-name-buff span @ type cr
;

384 Writing FCode 3.x Programs —November 1997

14

u#>
stack: (u -- str len)
code: 97

Pictured numeric output conversion is ended dropping u. str is the address of
the resulting output array. len is the number of characters in the output array.
str and len together are suitable for type . See (.) and (u.) for typical usages.

u#s
stack: (u1 -- u2)
code: 9A

u1 is converted, appending each resultant character into the pictured numeric
output string until the quotient is zero (see: #). A single zero is added to the
output string if u1 was initially zero. Typically used between <# and #>. See
(.) and (u.) for typical usages.

This word is equivalent to calling # repeatedly until the number remaining is
zero.

u.
stack: (u --)
code: 9B

Displays u as an unsigned number in a free-field format according to the value
in base . A trailing space is also displayed.

For example:

u<
stack: (u1 u2 -- unsigned-less?)
code: 40

Returns true if u1 is less than u2 where u1 and u2 are treated as unsigned
integers.

ok hex -1 u.
ffffffff

FCode Dictionary 385

14

u<=
stack: (u1 u2 -- unsigned-less-or-equal?)
code: 3F

Returns true if u1 is less than or equal to u2 where u1 and u2 are treated as
unsigned integers.

u>
stack: (u1 u2 -- unsigned-greater?)
code: 3E

Returns true if u1 is greater than u2 where u1 and u2 are treated as unsigned
integers.

u>=
stack: (u1 u2 -- unsigned-greater-or-equal?)
code: 41

Returns true if u1 is greater than or equal to u2 where u1 and u2 are treated as
unsigned integers.

(u.)
stack: (u -- addr len)
code: 96 9A 97
generates: <# u#s u#>

This is a numeric conversion primitive used to implement display words such
as u. . It converts an unsigned number into a string according to the value in
base .

For example:

u2/
stack: (x1 -- x2)
code: 58

x2 is the result of x1 logically shifted right one bit. A zero is shifted into the
vacated sign bit.

ok hex d# -12 (u.) type
fffffff4

386 Writing FCode 3.x Programs —November 1997

14

For example:

um*
stack: (u1 u2 -- ud.prod)
code: D4

Multiplies two unsigned 32-bit numbers yielding an unsigned 64-bit product.

For example:

um/mod
stack: (ud u -- urem uquot)
code: D5

Divides an unsigned 64-bit number by an unsigned 32-bit number yielding an
unsigned 32-bit remainder and quotient

u/mod
stack: (u1 u2 -- urem uquot)
code: 2B

rem is the remainder and quot is the quotient after dividing u1 by u2. All values
and arithmetic are unsigned. All values are 32-bit.

For example:

unloop
stack: (--) (R: sys --)
code: 89

Discards loop control parameters.

ok -2 u2/ .s
7fffffff

ok hex 3 3 u*x .s
9 0
ok 4 ffff.ffff u*x .s
fffffffc 3

ok -1 5 u/mod .s
0 33333333

FCode Dictionary 387

14

until
stack: (C: dest-sys --) (done? --)
code: 14 -offset
generates: b?branch -offset

Marks the end of a begin …until conditional loop. When until is
encountered, done? is removed and tested. If done? is true, the loop is
terminated and execution continues just after the until . If done? is false,
execution jumps back to just after the corresponding begin .

For example:

upc
stack: (char1 -- char2)
code: 81

char2 is the upper case version of char1. If char1 is not a lower case letter, it is
left unchanged.

For example:

See also: lcc

u.r
stack: (u size --)
code: 9C

u is converted according to the value of base and then displayed as an
unsigned number right-aligned in a field size digits wide. A trailing space is not
displayed.

If the number of digits required to display u is greater than size, all the digits
are displayed with no leading spaces in a field as wide as necessary.

: probe-loop (addr --)
 \ generate a tight 'scope loop until a key is pressed.
 begin dup l@ drop key? until drop
;

: continue? (-- continue?)
 ." Want to Continue? Enter Y/N" key dup emit
 upc ascii Y =
;

388 Writing FCode 3.x Programs —November 1997

14

For example:

user-abort
stack: (… --) (R: … --)
code: 02 19

Used in an alarm routine to signify that the user has typed an abort sequence.
When alarm finishes, instead of returning to the program that was interrupted
by the execution of alarm , it enters the OpenBoot command interpreter by
calling abort .

For example:

value
stack: (E: -- x) (x "new-name< >" --)
code: (header) B8
generates: new-token|named-token|external-token b(value)

Creates and initializes a value with the name new-name. When later executed,
new-name leaves its value on the stack. The value of new-name can be changed
with to .

For example:

In FCode Source, value cannot appear inside a colon definition.

: formatted-output (--)
 my-base h# 8 u.r ." base" cr
 my-offset h# 8 u.r ." offset" cr
;

: test-dev-status (-- error?) … ;
: my-checker (--) test-dev-status if user-abort then ;
: install-abort (--) ['] my-checker d# 10 alarm ;

ok 123 value foo foo .
123
ok 456 to foo foo .
456

FCode Dictionary 389

14

variable
stack: (E: -- a-addr) ("new-name< >" --)
code: (header) B9
generates: new-token|named-token|external-token b(variable)

Creates an uninitialized variable named new-name. When later executed,
new-name leaves its address on the stack. The alignment of the returned
address is system-dependent. The address holds a 32-bit value.

The value of new-name can be changed with ! and fetched with @ .

For example:

In FCode Source, value cannot appear inside a colon definition.

version1
stack: (--)
code: FD

version1 may only be used as the first byte of an FCode Program.
version1 :

• Sets the spread value to 1 causing the FCode Evaluator to read successive
bytes of the current FCode Program from successive addresses.

• Establishes the use of 8-bit branches.
• Reads an FCode header from the current FCode Program and either

discards it or uses it to verify the integrity of the current FCode program in
an implementation-dependent manner.

See also: fcode-version2 , start0 , start1 , start2 , start4

ok variable foo 123 foo ! foo @ .
123
ok 456 foo ! foo ?
456

390 Writing FCode 3.x Programs —November 1997

14

versionx?
stack: (-- flag)
code: ??

A group of tokenizer macros to determine the FCode version of the system
running the FCode interpreter. They include:

Each returns true if the named version matches the system running the FCode
interpreter.

w!
(n adr --)

code: 74

The low-order 16-bits of n are stored at location adr (through adr+1). The
higher byte is stored at adr ; the lower byte is stored at adr+1 . adr must be
on a 16-bit boundary; it must be evenly divisible by 2.

w,
(n --)

code: D1

Compile two bytes into the dictionary. The dictionary pointer must be two-
byte-aligned.

See c, for limitations.

Word Generates

version1? version b(lit) 2000.0000 <

version2? version b(lit) 2000.0000 >=
version b(lit) 3000.0000 <

version2.0? version b(lit) 2000.0000 =

version2.1? version b(lit) 2000.0001 =

version2.2? version b(lit) 2000.0002 =

version2.3? version b(lit) 2000.0003 =

FCode Dictionary 391

14

w@
(adr -- n)

code: 6F

Fetch the 16-bit number stored at adr (through adr+1). The higher byte is at
adr ; the lower byte is at adr+1 . The remaining high bytes of n are set to zero.
adr must be on a 16-bit boundary; it must be evenly divisible by 2.

/w
(-- n)

code: 5B

n is the size in bytes of a 16-bit word: 2.

/w*
stack: (nu1 -- nu2)
code: 67

nu2 is the result of multiplying nu1 by /w . This is the portable way to convert
an index into a byte offset.

<w@
stack: (waddr -- n)
code: 70

Fetches the 16-bit number stored at waddr and extends its sign into the upper
bytes. waddr must be 16-bit-aligned.

For example:

wa+
stack: (addr1 index -- addr2)
code: 5F

Increments addr1 by index times the value of /w . This is the portable way to
increment an address.

ok 9123 8000 w! 8000 <w@ .h
ffff9123
ok 8000 w@ .h
9123

392 Writing FCode 3.x Programs —November 1997

14

wa1+
stack: (addr1 -- addr2)
code: 63

Increments addr1 by the value of /w . This is the portable way to increment an
address.

wbflip
stack: (w1 -- w2)
code: 80

w2 is the result of exchanging the two low-order bytes of the number w1. The
two upper bytes of w1 must be zero, or erroneous results will occur.

wbflips
stack: (waddr len --)
code: 02 36

Swaps the order of the bytes in each 16-bit word in the memory buffer waddr
len.

waddr must be 16-bit-aligned. len must be a multiple /w .

wbsplit
stack: (w -- b1.lo b2.hi)
code: AF

Splits the two lower bytes of w into two separate bytes (stored as the lower
byte of each resulting item on the stack). The upper bytes of w must be zero.

FCode Dictionary 393

14

while
stack: (C: dest-sys -- orig-sys dest-sys) (continue? --)
code: 14 +offset
generates: b?branch +offs et

Tests the exit condition for a begin …while …repeat conditional loop. When
the while is encountered, continue? is removed from the stack and tested. If
continue? is true, execution continues from just after the while through to the
repeat which then jumps back to just after the begin . If continue? is false, the
loop is exited by causing execution to jump ahead to just after the repeat .

For example:

window-left
stack: (-- border-width)
code: 01 66

A value , containing the offset (in pixels) of the left edge of the active text area
from the left edge of the visible display. The “active text area” is where
characters are actually printed. (There is generally a border of unused blank
area surrounding it on all sides.) window-left contains the size of the left
portion of the unused border.

The size of the right portion of the unused border is determined by the
difference between screen-width and the sum of window-left plus the
width of the active text area (#columns times char-width).

This word is initially set to 0, but should always be set explicitly to an
appropriate value if you wish to use any fb1- or fb8- utility routines. This
can be done with to , or it can be set automatically by calling fb1-install or
fb8-install .

When set with fbx-install , a calculation is done to set window-left so
that the available unused border area is split between the left border and the
right border. (The calculated value for window-left is rounded down to the
nearest multiple of 32, though. This allows all pixel-drawing to proceed more
efficiently.) If you wish to use fbx-install but desire a different value for
window-left , simply change it with to after calling fbx-install .

: probe-loop (addr --)
 \ generate a tight 'scope loop until a key is pressed.
 begin key? 0= while dup l@ drop repeat drop
;

394 Writing FCode 3.x Programs —November 1997

14

 window-top
stack: (-- border-height)
code: 01 65

A value , containing the offset (in pixels) of the top of the active text area from
the top of the visible display. The “active text area” is where characters are
actually printed. (There is generally a border of unused blank area surrounding
it on all sides.) window-top contains the size of the top portion of the unused
border.

The size of the bottom portion of the unused border is determined by the
difference between screen-height and the sum of window-top plus the
height of the active text area (#lines times char-height).

This word is initially set to 0, but should always be set explicitly to an
appropriate value if you wish to use any fb1- or fb8- utility routines. This
can be done with to , or it can be set automatically by calling fb1-install or
fb8-install . When set with fbx-install , a calculation is done to set
window-top so that the available unused border area is split between the top
border and the bottom border. If you wish to use fbx-install but desire a
different value for window-top , simply change it with to after calling fb x-
install .

within
stack: (n min max -- min<=n<max?)
code: 45

min<=n<max? is true if n is between min and max, inclusive of min and
exclusive of max.

See also: between.

wljoin
stack: (w.lo w.hi -- quad)
code: 7D

Merges two 16-bit numbers into a 32-bit number. The high bytes of w.lo and
w.hi must be zero.

FCode Dictionary 395

14

wpeek
stack: (waddr -- false | w true)
code: 02 21

Tries to read the 16-bit word at address waddr. Returns w and true if the access
was successful. A false return indicates that a read access error occurred. waddr
must be 16-bit aligned.

wpoke
stack: (w waddr -- okay?)
code: 02 24

Tries to write the 16-bit word at address waddr. Returns true if the access was
successful. A false return indicates that a write access error occurred. waddr
must be 16-bit aligned.

Note: wpoke may be unreliable on bus adapters that buffer write accesses.

wxjoin
stack: (w.lo w.2 w.3 w.hi -- o)
code: 02 44

Joins 4 doublets to form an octlet. Combines the sixteen least-significant bits of
each operand to form an octlet. Ignores the high-order bits of each operand.

x,
stack: (o --)
code: 02 45

Compiles an octlet, o, into the dictionary (doubly-aligned).

x@
stack: (oaddr -- o)
code: 02 46

Fetches and octlet from an octlet-aligned address.

x!
stack: (o oaddr --)
code: 02 47

Stores an octlet to an octlet-aligned address.

396 Writing FCode 3.x Programs —November 1997

14

/x
stack: (-- n)
code: 02 48

The number of address units in an octlet, typically eight.

xa+
stack: (addr1 index -- addr2)
code: 02 4a

.Increments addr1 by index times the value of /x.

xa1+
stack: (addr1 -- addr2)
code: 02 4b

Increments addr1 by the value of /x.

xbflip
stack: (oct1 -- oct2)
code: 02 4c

Reverses the bytes in an octlet..

xbflips
stack: (oaddr len --)
code: 02 4d

Reverses the bytes in each octlet in the given region. The region begins at
oaddr and spans len bytes. The behavior is undefined if lenis not a multiple of
/x .

xbsplit
stack: (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi)
code: 02 4e

Splits an octlet into 8 bytes. The bits of greater significance than the eight
least-significant bits of each of the eight resulting values are zero.

xlflip
stack: (oct1 -- oct2)
code: 02 4f

Reverses the quadlets in an octlet. Does not reverse the bytes in each quadlet.

FCode Dictionary 397

14

xlflips
stack: (oaddr len --)
code: 02 50

Reverses the quadlets in each octlet in the given region. Does not reverse the
bytes in each quadlet. The region begins at oaddr and spans len bytes.

xlsplit
stack: (o -- quad.lo quad.hi)
code: 02 51

Splits an octlet into 2 quadlets. The more-significant-bits than the 32 least-
significant bits of each of the two resulting values are zero.

xor
stack: (x1 x2 -- x3)
code: 25

x3 is the bit-by-bit exclusive-or of x1 with x2.

xwflip
stack: (oct1 -- oct2)
code: 02 52

Reverses doublets in an octlet. Does not reverse bytes in each doublet.

xwflips
stack: (oaddr len --)
code: 02 53

Reverses doublets in each octlet in the given region. Does not reverse the bytes
in each doublet.The region begins at oaddr and spans len bytes.

xwsplit
stack: (0 -- w.lo w.2 w.3 w.hi)
code: 02 54

Splits an octlet into four doublets. The more-significant-bits than the 16 least-
significant bits of each of the four resulting values are zero..

398 Writing FCode 3.x Programs —November 1997

14

399

FCode Reference A

FCode Primitives
This appendix contains three lists:

• FCodes sorted according to functional group

• FCodes sorted by byte value

• FCodes sorted alphabetically by name

FCodes by Function
The following tables describe FCodes currently supported by OpenBoot. Both
the FCode token values and Forth names are included. A token value entry of
CR indicates a tokenizer-generated sequence, while - indicates that no FCode
is generated.

Table A-1 Stack Manipulation

Value Function Stack Description

51 depth (??? -- ??? u) Number of items on stack

46 drop (x --) Removes the top item from the stack

52 2drop (x1 x2 --) Removes 2 items from stack

CR 3drop (x1 x2 x3 --) Removes 3 items from stack

47 dup (x -- x x) Duplicates x

53 2dup (x1 x2 -- x1 x2 x1 x2) Duplicates 2 stack items

400 Writing FCode 3.x Programs —November 1997

A

CR 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) Copies top 3 stack items

50 ?dup (x -- 0 | x x) Duplicates x if it is non-zero

4D nip (x1 x2 -- x2) Discards the second stack item

48 over (x1 x2 -- x1 x2 x1) Copies second stack item to top of stack

54 2over (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) Copies 2 stack items

4E pick (xu … x1 x0 u -- xu … x1 x0 xu) Copies u-th stack item

30 >r (x --) (R: -- x) Moves a stack item to the return stack

31 r> (-- x) (R: x --) Moves the top item from return stack to data stack

32 r@ (-- x) (R: x -- x) Copies the top of the return stack to the data stack

4F roll (xu … x1 x0 u -- xu-1 … x1 x0 xu) Rotates u stack items

4A rot (x1 x2 x3 -- x2 x3 x1) Rotates 3 stack items (Same as 3roll)

4B -rot (x1 x2 x3 -- x3 x1 x2) Rotates top 3 stack items in reverse order of rot

56 2rot (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) Rotates 3 pairs of stack items

49 swap (x1 x2 -- x2 x1) Exchanges the top 2 stack items

55 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2) Exchanges 2 pairs of stack items

4C tuck (x1 x2 -- x2 x1 x2) Copies the top stack item below the second item

Table A-2 Arithmetic Operations

Value Function Stack Description

20 * (nu1 nu2 -- prod) Multiplies nu1 and nu2

1E + (nu1 nu2 -- sum) Adds nu1 to nu2

1F - (nu1 nu2 -- diff) Subtracts nu2 from nu1

21 / (n1 n2 -- quot) Divides n1 by n2

CR 1+ (nu1 -- nu2) Adds 1

CR 1- (nu1 -- nu2) Subtracts 1

CR 2+ (nu1 -- nu2) Adds 2

CR 2- (nu1 -- nu2) Subtracts 2

59 2* (x1 -- x2) Multiplies by 2

57 2/ (x1 -- x2) Divides by 2

27 lshift (x1 u -- x2) Left shifts x1 by u places

Table A-1 Stack Manipulation (Continued)

Value Function Stack Description

FCode Reference 401

A

28 rshift (x1 u -- x2) Right shifts x1 by u places

CR <<a (n1 u -- n2) Arithmetic left shifts (same as lshift)

29 >>a (x1 u -- x2) Arithmetic right shifts x1 by u places

2D abs (n -- u) Absolute value

AE aligned (n1 -- |a-addr) Adjusts an address to a machine word boundary

23 and (x1 x2 -- x3) Logical and

AC bounds (start len -- end start) Converts start,len to end,start for do loop

2F max (n1 n2 -- n3) n3 is maximum of n1 and n2

2E min (n1 n2 -- n3) n3 is minimum of n1 and n2

22 mod (n1 n2 -- rem) Remainder of n1/n2

CR */mod (n1 n2 n3 -- rem quot) Remainder, quotient of n1*n2/n3

2A /mod (n1 n2 -- rem quot) Remainder, quotient of n1/n2

2C negate (n1 -- n2) Changes the sign of n1

26 invert (x1 -- x2) One’s complement

26 not (x1 -- x2) Synonym for invert

24 or (x1 x2 -- x3) Logical or

2B u/mod (u1 u2 -- urem uquot) Unsigned single precision divide of u1/u2

58 u2/ (x1 -- x2) Logical right shifts 1 bit

25 xor (x1 x2 -- x3) Exclusive or

D4 um* (u1 u2 -- ud.prod) Multiplies two unsigned quadlets, yields an unsigned double
precision product.

D5 um/mod (ud u -- urem uquot) Divides an unsigned double precision number by an unsigned single
precision number, yields a single precision remainder and quotient

D8 d+ (d1 d2 -- d.sum) Adds two double precision numbers

D9 d- (d1 d2 -- d.diff) Subtracts two double precision numbers

Table A-2 Arithmetic Operations (Continued)

Value Function Stack Description

402 Writing FCode 3.x Programs —November 1997

A

Table A-3 Memory Operations

Value Function Stack Description

72 ! (x a-addr --) Stores a number at a-addr

6C +! (n a-addr --) Adds n to the number stored at a-addr

77 2! (x1 x2 a-addr --) Stores 2 numbers at a-addr; x2 at lower address

76 2@ (a-addr -- x1 x2) Fetches 2 numbers from a-addr; x2 from lower address

6D @ (a-addr -- x) Fetches a number from at a-addr

CR ? (a-addr --) Displays the number at a-addr

75 c! (byte addr --) Stores byte at addr

71 c@ (addr -- byte) Fetches byte from addr

CR blank (addr len --) Sets len bytes of memory to ASCII space, starting at addr

7A comp (addr1 addr2 len -- n) Compares two byte arrays including case. n=0 if same

CR erase (addr len --) Sets len bytes of memory to zero, starting at addr

79 fill (addr len byte --) Sets len bytes of memory to value byte starting at addr

0228 lbflips (qaddr len --) Reverses bytes within each quadlet in given region

0237 lwflips (qaddr len --) Exchanges doublets within quadlets in qaddr len

73 l! (quad qaddr --) Stores the quadlet at qaddr, must be 32-bit aligned

6E l@ (qaddr -- quad) Fetches the quadlet at qaddr, must be 32-bit aligned

78 move (src-addr dest-addr len --) Copies len bytes from src-addr to dest-addr

6B off (a-addr --) Stores false at a-addr

6A on (a-addr --) Stores true at a-addr

0236 wbflips (waddr len --) Exchanges bytes within doublets in the specified region

74 w! (w waddr --) Stores doublet w at waddr, must be 16-bit aligned

6F w@ (waddr -- w) Fetches the unsigned doublet at waddr, must be 16-bit aligned

70 <w@ (waddr -- n) Fetches the signed doublet at waddr, must be 16-bit aligned

FCode Reference 403

A

Table A-4 Atomic Access

Value Function Stack Description

0230 rb@ (addr -- byte) Reads the 8-bit value at the given address, atomically

0231 rb! (byte addr --) Writes the 8-bit value at the given address, atomically

0232 rw@ (waddr -- w) Reads the doublet at the given address, atomically

0233 rw! (w waddr --) Writes the doublet at the given address, atomically

0234 rl@ (qaddr -- quad) Reads the quadlet at the given address, atomically

0235 rl! (quad qaddr --) Writes the quadlet at the given address, atomically

Table A-5 Data Exception Tests

Value Function Stack Description

0220 cpeek (addr -- false | byte true) Reads 8-bit value at addr, returns false if unsuccessful

0221 wpeek (waddr -- false | w true) Reads doublet at addr, returns false if unsuccessful

0222 lpeek (qaddr -- false | quad true) Reads quadlet at addr, returns false if unsuccessful

0223 cpoke (byte addr -- okay?) Writes 8-bit value at addr, returns false if unsuccessful

0224 wpoke (w waddr -- okay?) Writes doublet to addr, returns false if unsuccessful

0225 lpoke (quad qaddr -- okay?) Writes quadlet to addr, returns false if unsuccessful

Table A-6 Comparison Operations

Value Function Stack Description

36 0< (n -- less-than-0?) True if n < 0

37 0<= (n -- less-or-equal-to-0?) True if n <= 0

35 0<> (n -- not-equal-to-0?) True if n <> 0

34 0= (n -- equal-to-0?) True if n = 0, also inverts any flag

38 0> (n -- greater-than-0?) True if n > 0

39 0>= (n -- greater-or-equal-to-0?) True if n >= 0

3A < (n1 n2 -- less?) True if n1 < n2

43 <= (n1 n2 -- less-or-equal?) True if n1 <= n2

3D <> (n1 n2 -- not-equal?) True if n1 <> n2

404 Writing FCode 3.x Programs —November 1997

A

3C = (x1 x2 -- equal?) True if x1 = x2

3B > (n1 n2 -- greater?) True if n1 > n2

42 >= (n1 n2 -- greater-or-equal?) True if n1 >= n2

44 between (n min max -- min<=n<=max?
)

True if min <= n <= max

CR false (-- false) The value false (0)

CR true (-- true) The value true (1)

40 u< (u1 u2 -- unsigned-less?) True if u1 < u2, unsigned

3F u<= (u1 u2 -- unsigned-less-or-
equal?)

True if u1 <= u2, unsigned

3E u> (u1 u2 -- unsigned-greater?) True if u1 > u2, unsigned

41 u>= (u1 u2 -- unsigned-greater-or-
equal?)

True if u1 >= u2, unsigned

45 within (n min max -- min<=n<max?) True if min <= n < max

Table A-7 Text Input

Value Function Stack Description

- (([text<)> --) Begins a comment (All text until next close parenthesis “) ” is
ignored)

- \ (--) Ignore rest of line (comment)

CR ascii ([text< >] -- char) ASCII value of next character

CR control ([text< >] -- char) Interprets next character as ASCII control character

8E key (-- char) Reads a character from the keyboard

8D key? (-- pressed?) True if a key has been typed on the keyboard

CR accept (addr len1 -- len2) Gets an edited input line, stores it at addr

8A expect (addr len --) Gets a line of edited input from the keyboard; stores it at addr

88 span (-- a-addr) Variable containing the number of characters read by expect

Table A-6 Comparison Operations (Continued)

Value Function Stack Description

FCode Reference 405

A

Table A-8 ASCII Constants

Value Function Stack Description

AB bell (-- 0x07) The ASCII code for the bell character; decimal 7

A9 bl (-- 0x20) The ASCII code for the space character; decimal 32

AA bs (-- 0x08) The ASCII code for the backspace character; decimal 8

CR carret (-- 0x0D) The ASCII code for the carriage return character; decimal 13

CR linefeed (-- 0x0A) The ASCII code for the linefeed character; decimal 10

CR newline (-- 0x0A) The ASCII code for the newline character; decimal 10

Table A-9 Numeric Input

Value Function Stack Description

A4 -1 (-- -1) Constant -1

A5 0 (-- 0) Constant 0

A6 1 (-- 1) Constant 1

A7 2 (-- 2) Constant 2

A8 3 (-- 3) Constant 3

CR d# ([number< >] -- n) Interprets next number in decimal

- decimal (--) If outside definition, input numbers in decimal

CR h# ([number< >] -- n) Interprets next number in hexadecimal

- hex (--) If outside definition, input numbers in hexadecimal

Table A-10 Numeric Primitives

Value Function Stack Description

99 u# (u1 -- u2) Converts a digit in pictured numeric output

97 u#> (u -- str len) Ends pictured numeric output

96 <# (--) Initializes pictured numeric output

C7 # (ud1 -- ud2) Converts a digit in pictured numeric output conversion

C9 #> (ud -- str len) Ends pictured numeric output conversion

A0 base (-- a-addr) Variable containing number base

406 Writing FCode 3.x Programs —November 1997

A

A3 digit (char base -- digit true | char false) Converts a character to a digit

95 hold (char --) Inserts the char in the pictured numeric output string

C8 #s (ud -- 0 0) Converts remaining digits in pictured numeric output

9A u#s (u1 -- u2) Converts rest of the digits in pictured numeric output

98 sign (n --) Sets sign of pictured output

A2 $number (addr len -- true | n false) Converts a string to a number

Table A-11 Numeric Output

Value Function Stack Description

9D . (nu --) Displays a number in the current base

CR .d (n --) Displays number in decimal

CR decimal (--) If inside definition, numeric output in decimal

CR .h (n --) Displays number in hexadecimal

CR hex (--) If inside definition, numeric output in hexadecimal

9E .r (n size --) Displays a number in a fixed width field

9F .s (… -- …) Displays the contents of the data stack

CR s. (n --) Displays n as a signed number

9B u. (u --) Displays an unsigned number

9C u.r (u size --) Prints an unsigned number in a fixed width field

Table A-12 General-purpose Output

Value Function Stack Description

CR .(([text<)>] --) Displays a string now

91 (cr (--) Outputs ASCII CR character; decimal 13

92 cr (--) Starts a new line of display output

8F emit (char --) Displays the character

Table A-10 Numeric Primitives (Continued)

Value Function Stack Description

FCode Reference 407

A

CR space (--) Outputs a single space character

CR spaces (n --) Outputs n spaces

90 type (text-addr text-len --) Displays the text string

Table A-13 Formatted Output

Value Function Stack Description

94 #line (-- a-addr) Variable holding the line number on the output device

93 #out (-- a-addr) Variable holding the column number on the output device

Table A-14 begin Loops

Value Function Stack Description

CR again (C: dest-sys --) Ends begin …again (infinite) loop

CR begin (C: -- dest-sys) (--) Starts conditional or infinite loop

CR repeat (C: orig-sys dest-sys --) (--) Returns to loop start (begin keyword)

CR until (C: dest-sys --) (done? --) If not false , exits begin …until loop

CR while (C: dest-sys -- orig-sys dest-sys)
(continue? --)

If not false , continues begin …while …repeat loop,
else exits loop

Table A-15 Conditionals

Value Function Stack Description

CR if (C: -- orig-sys) (do-next? --) If not false , executes next FCode(s)

CR else (C: orig-sys1 -- orig-sys2) (--) Executes next FCode(s) if if failed

CR then (C: orig-sys --) (--) Terminates if …else …then construct

Table A-12 General-purpose Output (Continued)

Value Function Stack Description

408 Writing FCode 3.x Programs —November 1997

A

Table A-16 Case Statements

Value Function Stack Description

CR case (C: -- case-sys) (sel -- sel) Begins a case (multiple selection) statement

CR endcase (C: case-sys --) (sel | <nothing> --) Marks end of a case statement

CR of (C: case-sys1 -- case-sys2 of-sys)
 (sel of-val -- sel | <nothing>)

Marks beginning of conditional execution clause
based on case selector.

CR endof (C: case-sys1 of-sys -- case-sys2) (--) Marks the end of an of clause

Table A-17 do Loops

Value Function Stack Description

CR do (C: -- dodest-sys)
 (limit start --) (R: -- sys)

Marks beginning of loop which will execute with index
value ranging from start to limit-1, inclusive

CR ?do (C: -- dodest-sys)
 (limit start --) (R: -- sys)

Like do , but skips loop if limit = start

19 i (-- index) (R: sys -- sys) Returns current loop index value

1A j (-- index) (R: sys -- sys) Returns value of next outer loop index

CR leave (--) (R: sys --) Exits do loop immediately

CR ?leave (exit? --) (R: sys --) If flag is not false , exits do loop

CR loop (C: dodest-sys --) (--)
 (R: sys1 -- <nothing> | sys2)

Increments index, returns to do

CR +loop (C: dodest-sys --) (n --)
 (R: sys1 -- <nothing> | sys2)

Increments index by n, returns to do .

89 unloop (--) (R: sys --) Discards loop control parameters

Table A-18 Control Words

Value Function Stack Description

1D execute (… xt -- ???) Executes the word whose compilation address is on the stack

33 exit (--) (R: sys --) Returns from the current word

FCode Reference 409

A

Table A-19 Strings

Value Function Stack Description

CR " ([text<">< >] -- text-str text-len) Collects a string

CR s" ([text<">] -- text-str text-len) Gathers the immediately-following string

84 count (pstr -- str len) Unpacks a packed string

82 lcc (char1 -- char2) Converts char1 to lower case

83 pack (strlen addr -- pstr) Makes a packed string from addr strlen, placing
it at pstr

81 upc (char1 -- char2) Converts char1 to upper case

0240 left-parse-
string

(str len char
 -- R-str R-len L-str L-len)

Splits a string at the given delimiter (which is
discarded)

011B parse-2int (str len -- val.lo val.hi) Converts a string into a physical address and
space

Table A-20 Defining Words

Value Function Stack Description

CR : (colon) name (--) Begins colon definition

CR ; (semicolon) (--) Ends colon definition

- alias (E: … -- ???)
("new-name< >old-name< >" --)

Defines a new-name with behavior of
old-name

CR buffer: (E: -- a-addr)
(len "new-name< >" --)

Creates data array of len bytes

CR constant (E: -- x) (x "new-name< >" --) Creates a constant

CR create (E: -- a-addr) ("new-name< >" --) Generic defining word

CR defer (E: … -- ???) ("new-name< >" --) Execution vector (change with to)

CR field (E: addr -- addr+offset)
(offset size "new-name< >" -- offset+size)

Creates a named offset pointer

C0 instance (--) Declare a data type to be local

CR struct (-- 0) Initializes for field creation

CR variable (E: -- a-addr) ("new-name< >"--) Creates a variable

CR value (E: -- x) (x "new-name< >"--) Creates a value

410 Writing FCode 3.x Programs —November 1997

A

Table A-21 Dictionary Compilation

Value Function Stack Description

D3 , (x --) Places a number in the dictionary

D0 c, (byte --) Places a byte in the dictionary

AD here (-- addr) Address of top of dictionary

D2 l, (quad --) Places a quadlet in the dictionary

D1 w, (w --) Places a doublet in the dictionary

CR allot (len --) Allocates len bytes in the dictionary

CR to (param [old-name< >] --) Changes value in a defer word or a value

DD compile (--) Compiles following command at run time

DC state (-- a-addr) Variable containing true if in compilation state

Table A-22 Dictionary Search

Value Function Stack Description

CR ' ("old-name< >" -- xt) Finds the named word (while executing)

CR ['] name (-- xt) Finds the named word (while compiling)

CB $find (name-str name-len
 -- xt true | name-str name-len false)

Finds the execution token corresponding to the name
string in the dictionary

CD eval (… str len -- ???) Executes Forth commands within a string

CD evaluate (… str len -- ???) Interprets Forth text from the given string

Table A-23 Conversion Operators

Value Function Stack Description

7F bljoin (bl.lo b2 b3 b4.hi -- quad) Joins four bytes to form a quadlet

B0 bwjoin (b.lo b.hi -- w) Joins two bytes to form a doublet

5A /c (-- n) Address increment for a byte; 1

- /c* (nu1 -- nu2) Synonym for chars

66 chars (nu1 -- nu2) Multiplies by /c

5E ca+ (addr1 index -- addr2) Increments addr1 by index times /c

FCode Reference 411

A

CR ca1+ (addr1 -- addr2) Synonym for char+

62 char+ (addr1 -- addr2) Increments addr1 by /c

80 wbflip (w1 -- w2) Swaps the bytes within a doublet

5C /l (-- n) Address increment for a quadlet; 4

68 /l* (nu1 -- nu2) Multiplies by /l

60 la+ (addr1 index -- addr2) Increments addr1 by index times /l

64 la1+ (addr1 -- addr2) Increments addr1 by /l

0227 lbflip (quad1 -- quad2) Reverses the bytes within a quadlet

7E lbsplit (quad -- b.lo b2 b3 b4.hi) Splits a quadlet into four bytes

7E lwflip (quad1 -- quad2) Swaps the doublets within a quadlet

7C lwsplit (quad -- w1.lo w2.hi) Splits a quadlet into two doublets

5D /n (-- n) Address increment for a cell

CR /n* (nu1 -- nu2) Synonym for cells

69 cells (nu1 -- nu2) Multiplies by /n

61 na+ (addr1 index -- addr2) Increments addr1 by index times /n

CR na1+ (addr1 -- addr2) Synonym for cell+

65 cell+ (addr1 -- addr2) Increments addr1 by /n

5B /w (-- n) Address increment for a doublet; 2

67 /w* (nu1 -- nu2) Multiplies by /w

5F wa+ (addr1 index -- addr2) Increments addr1 by index times /w

63 wa1+ (addr1 -- addr2) Increments addr1 by /w

AF wbsplit (w -- b1.lo b2.hi) Splits a doublet into two bytes

7D wljoin (w.lo w.hi -- quad) Joins two doublets to form a quadlet

Table A-24 64-bit Operations

Value Function Stack Description

022E rx@ (oaddr -- o) Reads the 64-bit value at the given address, atomically

022F rx! (o oaddr --) Writes the 64-bit value at the given address, atomically

0241 bxjoin (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) Joins 8 bytes to form a octlet

0242 <l@ (qaddr -- n) Fetches a sign-extended quadlet at qaddr

Table A-23 Conversion Operators (Continued)

Value Function Stack Description

412 Writing FCode 3.x Programs —November 1997

A

0243 lxjoin (quad.lo quad.hi -- o) Joins two quadlets to form an octlet

0244 wxjoin (w.lo w.2 w.3 w.hi -- o) Joins four doublets to form an octlet

0245 x, (o --) Places an octlet in the dictionary

0246 x@ (oaddr -- o) Fetches the octlet at oaddr, must be 64-bit aligned

0247 x! (o oaddr --) Stores an octlet at oaddr, must be 64-bit aligned

0248 /x (-- n) Address increment for an octlet; 8

0249 /x* (nu1 -- nu2) Multiplies by /x

024A xa+ (addr1 index -- addr2) Increments addr1 by index times /x

024B xa1+ (addr1 -- addr2) Increments addr1 by /x

024C xbflip (oct1 -- oct2) Reverse bytes within octlet

024D xbflips (oaddr len --) Reverse bytes within each octlet in given region

024E xbsplit (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) Splits an octlet into 8 bytes

024F xlflip (oct1 -- oct2) Reverse quadlets within octlet

0250 xlflips (oaddr len --) Reverse quadlets within each octlet in given region

0251 xlsplit (o -- quad.lo quad.hi) Splits an octlet into 2 quadlets

0252 xwflip (oct1 -- oct2) Reverse doublets within octlet

0253 xwflips (oaddr len --) Reverse doublets within each octlet in given region

0254 xwsplit (o -- w.lo w.2 w.3 w.hi) Splits an octlet into 4 doublets

Table A-25 Memory Buffers Allocation

Value Function Stack Description

8B alloc-mem (n -- a-addr) Allocates n bytes of memory and returns its address

8C free-mem (n len --) Frees memory allocated by alloc-mem

Table A-26 Miscellaneous Operators

Value Function Stack Description

86 >body (xt -- a-addr) Finds parameter field address from compilation address

85 body> (a-addr -- xt) Finds compilation address from parameter field address

DA get-token (FCode# -- xt immediate?) Converts FCode Number to function execution token

DB set-token (xt immediate? FCode# --) Assigns FCode Number to existing function

Table A-24 64-bit Operations

Value Function Stack Description

FCode Reference 413

A

00 end0 (--) Marks the end of FCode

FF end1 (--) Alternates form for end0 (not recommended)

CR fcode-version1 (--) Begins FCode program

023E byte-load (addr xt --) Interprets FCode beginning at location addr

- fload ([filename<cr>] --) Begins tokenizing filename

- headerless (--) Creates new names with new-token (no name fields)

- headers (--) Creates new names with named-token (default)

7B noop (--) Does nothing

CC offset16 (--) All further branches use 16-bit offsets (instead of 8-bit)

- tokenizer[(--) Begins tokenizer program commands

-]tokenizer (--) Ends tokenizer program commands

CR fcode-version2 (--) Begins 2.0 FCode program, compiles start1

- external (--) Creates new names with external-token

CR fcode-version3 (--) Begins 3.0 FCode program, compiles start1

Table A-27 Internal Operators (invalid for program text)

Value Function Stack Description

01-0F First byte of a two byte FCode

10 b(lit) (-- n) (F: /FCode-num32/ --) Followed by 32-bit#. Compiled by numeric data

11 b(') (-- xt) (F: /FCode#/ --) Followed by a token (1 or 2-byte code) . Compiled by
[’] or ’

12 b(") (-- str len)
(F: /FCode-string/ --)

Followed by count byte, text. Compiled by " or ."

C3 b(to) (x --) Compiled by to

FD version1 (--) Followed by reserved byte, checksum (2 bytes) , length
(4 bytes). Compiled by fcode-version1 , as the first
FCode bytes

13 bbranch (--)
(F: /FCode-offset/ --)

Followed by offset. Compiled by else or again

14 b?branch (don’t-branch? --)
(F: /FCode-offset/ --)

Followed by offset. Compiled by if or until

Table A-26 Miscellaneous Operators (Continued)

Value Function Stack Description

414 Writing FCode 3.x Programs —November 1997

A

15 b(loop) (--) (F: /FCode-offset/ --) Followed by offset. Compiled by loop

16 b(+loop) (delta --)
(F: /FCode-offset/ --)

Followed by offset. Compiled by +loop

17 b(do) (limit start --)
(F: /FCode-offset/ --)

Followed by offset. Compiled by do

18 b(?do) (limit start --)
(F: /FCode-offset/ --)

Followed by offset. Compiled by ?do

1B b(leave) (F: --) Compiled by leave or ?leave

B1 b(<mark) (F: --) Compiled by begin

B2 b(>resolve) (--) (F: --) Compiled by else or then

C4 b(case) (sel -- sel) (F: --) Compiled by case

C5 b(endcase) (sel | <nothing> --) (F: --) Compiled by endcase

C6 b(endof) (--) (F: /FCode-offset/ --) Compiled by endof

1C b(of) (sel of-val -- sel | <nothing>)
(F: /FCode-offset/ --)

Followed by offset. Compiled by of

B5 new-token (--) (F: /FCode#/ --) Followed by table#, code#, token-type. Compiled by
any defining word.

B6 named-token (--)
(F: /FCode-string FCode#/ --)

Followed by packed string (count,text), table#, code#,
token-type. Compiled by any defining word (: value
constant etc.)

B7 b(:) (E: … -- ???)
(F: -- colon-sys)

Token-type compiled by :

B8 b(value) (E: -- x) (F: x --) Token-type compiled by value

B9 b(variable) (E: -- a-addr) (F: --) Token-type compiled by variable

BA b(constant) (E: -- n) (F: n --) Token-type compiled by constant

BB b(create) (E: -- a-addr) (F: --) Token-type compiled by create

BC b(defer) (E: … -- ???) (F: --) Token-type compiled by defer

BD b(buffer:) (E: -- a-addr) (F: size --) Token-type compiled by buffer:

BE b(field) (E: addr -- addr+offset)
(F: offset size -- offset+size)

Token-type compiled by field

C2 b(;) (--) (F: colon-sys --) End a colon definition. Compiled by ;

CA external-token (--)
(F: /FCode-string FCode#/ --)

Create a new named FCode function.

Table A-27 Internal Operators (invalid for program text) (Continued)

Value Function Stack Description

FCode Reference 415

A

F0 start0 (--) Like version1 , but for version 2.x and 3.x FCodes.
Uses 16-bit branches. Fetches successive tokens from
same address

F1 start1 (--) Like version1 , but for version 2.x and 3.x FCodes.
Uses 16-bit branches. Fetches successive tokens from
consecutive addresses. Compiled by fcode-
version2

F2 start2 (--) Like version1 , but for version 2.x and 3.x FCodes.
Uses 16-bit branches. Fetches successive tokens from
consecutive 16-bit addresses

F3 start4 (--) Like version1 , but for version 2.x and 3.x FCodes.
Uses 16-bit branches. Fetches successive tokens from
consecutive 32-bit addresses

Table A-28 Virtual Memory Allocation

Value Function Stack Description

0105 free-virtual (virt size --) Frees virtual memory obtained using map-low .

0130 map-low (phys-low size -- virt) Allocate virtual memory.

Table A-29 Properties

Value Function Stack Description

01 10 property (prop-addr prop-len name-str name-len --) Declares a property with the given
value structure, for the given name
string.

02 1E delete-property (name-str name-len --) Deletes the property with the given
name

01 15 encode-bytes (data-addr data-len -- prop-addr prop-len) Converts a byte array into an prop-
format string

01 11 encode-int (n -- prop-addr prop-len) Converts a number into an prop-format
string

01 13 encode-phys (phys.lo … phys.hi -- prop-addr prop-len) Converts physical address and space
into an prop-format string

Table A-27 Internal Operators (invalid for program text) (Continued)

Value Function Stack Description

416 Writing FCode 3.x Programs —November 1997

A

01 14 encode-string (str len -- prop-addr prop-len) Converts a string into an prop-format
string

01 12 encode+ (prop-addr1 prop-len1 prop-addr2 prop-len2
 -- prop-addr3 prop-len3)

Merges two prop-format strings. They
must have been created sequentially

CR decode-bytes (prop-addr1 prop-len1 data-len --
 prop-addr2 prop-len2 data-addr data-len)

Decodes a byte array from a prop-
encoded-array

02 1B decode-int (prop-addr1 prop-len1
 -- prop-addr2 prop-len2 n)

Converts the beginning of an prop-
format string to an integer

02 1C decode-string (prop-addr1 prop-len1
 -- prop-addr2 prop-len2 str len)

Converts the beginning of a prop-
format string to a normal string

01 28 decode-phys (prop-addr1 prop-len1 --
 prop-addr2 prop-len2 phys.lo … phys.hi)

Decode a unit-address from a prop-
encoded array

02 1A get-my-property (name-str name-len
 -- true | prop-addr prop-len false)

Returns the prop-format string for the
given property name

02 1D get-inherited-
property

(name-str name-len
 -- true | prop-addr prop-len false)

Returns the value string for the given
property, searches parents’ properties if
not found

02 1F get-package-
property

(name-str name-len phandle
 -- true | prop-addr prop-len false)

Returns the prop-format string for the
given property name in the package
phandle

Table A-30 Commonly-used Properties

Value Function Stack Description

0116 reg (phys.lo … phys.hi size --) Declares location and size of device registers

0119 model (str len --) Declares model# for this device, such as " SUNW,501-1623-
01"

011A device-type (str len --) Declares type of device, e.g. " display ", " block ", "
network ", or " byte "

CR name (addr len --) Declares driver name, as in " SUNW,zebra "

0201 device-name (str len --) Creates the "name" property with the given value

Table A-29 Properties (Continued)

Value Function Stack Description

FCode Reference 417

A

Table A-31 System Version Information

Value Function Stack Description

87 fcode-revision (-- n) Returns major/minor FCode interface version

Table A-32 Device Activation Vector Setup

Value Function Stack Description

01 1C is-install (xt --) Identifies "install " routine to allocate a frame buffer

01 1D is-remove (xt --) Identifies "remove " routine, to deallocate a frame buffer

01 1E is-selftest (xt --) Identifies "selftest " routine for this frame buffer

01 1F new-device (--) Creates a new device node

01 27 finish-device (--) Completes current device

Table A-33 Self-test Utility Routines

Value Function Stack Description

01 20 diagnostic-mode? (-- diag?) Returns true if extended diagnostics are desired

01 21 display-status (n --) Obsolete

01 22 memory-test-suite (addr len -- fail?) Calls memory tester for given region

01 24 mask (-- a-addr) Variable, holds "mask" used by memory-test-suite

Table A-34 Time Utilities

Value Function Stack Description

01 25 get-msecs (-- n) Returns the current number of milliseconds

01 26 ms (n --) Delays for n milliseconds. Resolution is 1 millisecond

02 13 alarm (xt n --) Periodically execute xt. If n=0, stop.

418 Writing FCode 3.x Programs —November 1997

A

Note – Table A-36 through Table A-42 apply only to display device-types.

Table A-35 Machine-specific Support

Value Function Stack Description

01 30 map-low (phys.lo … size -- virt) Maps a region of memory in device’s physical address space

01 31 sbus-
intr>cpu

(sbus-intr# -- cpu-intr#) Translates SBus interrupt# into CPU interrupt#

Table A-36 User-set Terminal Emulation Values

Value Function Stack Description

01 50 #lines (-- rows) Number of lines of text being used for display. This word must be initialized
(using to). fbx-install does this automatically

01 51 #columns (-- columns) Number of columns (chars/line) used for display. This word must be initialized
(using to). fbx-install does this automatically

Table A-37 Terminal-set Terminal Emulation Values

Value Function Stack Description

01 52 line# (-- line#) Current cursor position (row). 0 is top line

01 53 column# (-- column#) Current cursor position (column). 0 is left char.

01 54 inverse? (-- white-on-black?) True if output is inverted (white-on-black)

01 55 inverse-screen? (-- black?) True if screen has been inverted (black background)

Table A-38 Terminal Emulation Routines*

Value Function Stack Description

01 57 draw-character (char --) Paints the given character and advances the cursor

01 58 reset-screen (--) Initializes the display device

01 59 toggle-cursor (--) Draws or erases the cursor

01 5A erase-screen (--) Clears all pixels on the display

01 5B blink-screen (--) Flashes the display momentarily

FCode Reference 419

A

01 5C invert-screen (--) Changes all pixels to the opposite color

01 5D insert-characters (n --) Inserts n blanks just before the cursor

01 5E delete-characters (n --) Deletes n characters to the right of the cursor
Remaining chars slide left

01 5F insert-lines (n --) Inserts n blank lines just before the current line,
lower lines are scrolled downward

01 60 delete-lines (n --) Deletes n lines starting with the current line, lower
lines are scrolled upward

01 61 draw-logo (line# addr width height --) Draws the logo

*defer -type loadable routines.

Table A-39 Frame Buffer Parameter Values*

Value Function Stack Description

016C char-height (-- height) Height (in pixels) of a character (usually 22)

016D char-width (-- width) Width (in pixels) of a character (usually 12)

016F fontbytes (-- bytes) Number of bytes/scan line for font entries (usually 2)

0162 frame-buffer-
adr

(-- addr) Address of frame buffer memory

0163 screen-height (-- height) Total height of the display (in pixels)

0164 screen-width (-- width) Total width of the display (in pixels)

0165 window-top (-- border-height) Distance (in pixels) between display top and text window

0166 window-left (-- border-width) Distance (in pixels) between display left edge and text window left
edge

*These must all be initialized before using any fbx- routines.

Table A-38 Terminal Emulation Routines* (Continued)

Value Function Stack Description

420 Writing FCode 3.x Programs —November 1997

A

Table A-40 Font Operators

Value Function Stack Description

016A default-
font

(-- addr width height advance min- char #glyphs) Returns default font values, plugs directly
into set-font

016B set-font (addr width height advance min-char #glyphs --) Sets the character font for text output

016E >font (char -- addr) Returns font address for given ASCII
character

Table A-41 One-bit Frame Buffer Utilities

Value Function Stack Description

0170 fb1-draw-character (char --) Paints the character and advance the
cursor

0171 fb1-reset-screen (--) Initializes the display device (noop)

0172 fb1-toggle-cursor (--) Draws or erases the cursor

0173 fb1-erase-screen (--) Clears all pixels on the display

0174 fb1-blink-screen (--) Inverts the screen, twice (slow)

0175 fb1-invert-screen (--) Changes all pixels to the opposite color

0176 fb1-insert-characters (n --) Inserts n blanks just before the cursor

0177 fb1-delete-characters (n --) Deletes n characters, starting at with
cursor character, rightward. Remaining
chars slide left

0178 fb1-insert-lines (n --) Inserts n blank lines just before the
current line, lower lines are scrolled
downward

0179 fb1-delete-lines (n --) Deletes n lines starting with the current
line, lower lines are scrolled upward

017A fb1-draw-logo (line# addr width height --) Draws the logo

017B fb1-install (width height #columns #lines --) Installs the one-bit built-in routines

017C fb1-slide-up (n --) Like fb1-delete-lines , but doesn’t
clear lines at bottom

FCode Reference 421

A

Table A-42 eight-bit Frame Buffer Utilities

Value Function Stack Description

0180 fb8-draw-character (char --) Paints the character and advance the cursor

0181 fb8-reset-screen (--) Initializes the display device (noop)

0182 fb8-toggle-cursor (--) Draws or erases the cursor

0183 fb8-erase-screen (--) Clears all pixels on the display

0184 fb8-blink-screen (--) Inverts the screen, twice (slow)

0185 fb8-invert-screen (--) Changes all pixels to the opposite color

0186 fb8-insert-characters (n --) Inserts n blanks just before the cursor

0187 fb8-delete-characters (n --) Deletes n characters starting with cursor
char, rightward. Remaining chars slide left

0188 fb8-insert-lines (n --) Inserts n blank lines just before the current
line, lower lines are scrolled downward

0189 fb8-delete-lines (n --) Deletes n lines starting with the current line,
lower lines are scrolled upward

018A fb8-draw-logo (line# addr width height --) Draws the logo

018B fb8-install (width height #columns #lines --) Installs the eight-bit built-in routines

Table A-43 Package Support

Value Function Stack Description

0129 push-package (phandle --) Make phandle the active package

012A pop-package (--) Undo the effect of the most recent
push-package relative to each
execution of pop-package

012B interpose (adr len phandle --) Can add more capabilities on top
of unmodified OpenBoot device
drivers

023C peer (phandle -- phandle.sibling) Returns phandle of package that is
the next child of the the parent of
the package

023B child (phandle.parent -- phandle.child) Returns phandle of the package that
is the first child of the package
parent phandle

422 Writing FCode 3.x Programs —November 1997

A

0204 find-package (name-str name-len -- false | phandle true) Finds a package named name-str

0205 open-package (arg-str arg-len phandle -- ihandle | 0) Opens an instance of the package
phandle, passes arguments arg-str
arg-len

020F $open-package (arg-str arg-len name-str name-len -- ihandle | 0) Finds a package name-str name-len
then opens it with arguments arg-
str arg-len

020A my-parent (-- ihandle) Returns the ihandle of the parent of
the current package instance

0203 my-self (-- ihandle) Returns the ihandle of currently-
executing package instance

020B ihandle>phandle (ihandle -- phandle) Converts an ihandle to a phandle

0206 close-package (ihandle --) Closes an instance of a package

0207 find-method (method-str method-len phandle -- false | xt true) Finds the method (command)
named method-str in the package
phandle

0208 call-package (… xt ihandle -- ???) Executes the method xt in the
instance ihandle

020E $call-method (… method-str method-len ihandle -- ???) Executes the method named
method-str in the instance ihandle

0209 $call-parent (… method-str method-len -- ???) Executes the method method-str in
the parent’s package

0202 my-args (-- arg-str arg-len) Returns the argument string
passed when this package was
opened

020D my-unit (-- phys.lo … phys.hi) Returns the physical unit number
pair for this package

0102 my-address (-- phys.lo …) Returns the physical addr of this
plug-in device. Phys is a "magic"
number, usable by other routines

0103 my-space (-- phys.hi) Returns address space of plug-in
device. Space is a "magic" number,
usable by other routines

Table A-43 Package Support (Continued)

Value Function Stack Description

FCode Reference 423

A

Table A-44 Asynchronous Support

Value Function Stack Description

0213 alarm (xt n --) Executes method (command) indicated by xt every n milliseconds

0219 user-abort (… --) (R: … --) Abort after alarm routine finishes execution

Table A-45 Miscellaneous Operations

Value Function Stack Description

0214 (is-user-word) (E: … -- ???)
 (name-str name-len xt --)

Creates a new word called name-str which executes xt

01A4 mac-address (-- mac-str mac-len) Returns the MAC address

Table A-46 Interpretation

Value Function Stack Description

0215 suspend-fcode (--) Suspends execution of FCode, resumes later if an undefined command is
required

Table A-47 Error Handling

Value Function Stack Description

0216 abort (… --) (R:… --) Aborts FCode execution, returns to the "ok" prompt

0217 catch (… xt -- ??? error-code | ??? false) Executes xt, returns throw error code or 0 if throw not
encountered

0218 throw (… error-code -- ??? error-code | …) Returns given error code to catch

FC ferror (--) Displays “Unimplemented FCode” and stops FCode
interpretation

424 Writing FCode 3.x Programs —November 1997

A

FCodes by Byte Value
The following table lists, in hexadecimal order, currently-assigned FCode byte
values.

Table A-48 FCodes by Byte Value

Value Function Stack

00 end0 (--)

10 b(lit) (-- n) (F: /FCode-num32/ --)

11 b(') (-- xt) (F: /FCode#/ --)

12 b(") (-- str len) (F: /FCode-string/ --)

13 bbranch (--) (F: /FCode-offset/ --)

14 b?branch (don’t-branch? --) (F: /FCode-offset/ --)

15 b(loop) (--) (F: /FCode-offset/ --)

16 b(+loop) (delta --) (F: /FCode-offset/ --)

17 b(do) (limit start --) (F: /FCode-offset/ --)

18 b(?do) (limit start --) (F: /FCode-offset/ --)

19 i (-- index) (R: sys -- sys)

1A j (-- index) (R: sys -- sys)

1B b(leave) (F: --)

1C b(of) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --)

1D execute (… xt -- ???)

1E + (nu1 nu2 -- sum)

1F - (nu1 nu2 -- diff)

20 * (nu1 nu2 -- prod)

21 / (n1 n2 -- quot)

22 mod (n1 n2 -- rem)

23 and (x1 x2 -- x3)

24 or (x1 x2 -- x3)

25 xor (x1 x2 -- x3)

26 invert (x1 -- x2)

27 lshift (x1 u -- x2)

28 rshift (x1 u -- x2)

29 >>a (x1 u -- x2)

FCode Reference 425

A

2A /mod (n1 n2 -- rem quot)

2B u/mod (u1 u2 -- urem uquot)

2C negate (n1 -- n2)

2D abs (n -- u)

2E min (n1 n2 -- n1|n2)

2F max (n1 n2 -- n1|n2)

30 >r (x --) (R: -- x)

31 r> (-- x) (R: x --)

32 r@ (-- x) (R: x -- x)

33 exit (--) (R: sys --)

34 0= (nulflag -- equal-to-0?)

35 0<> (n -- not-equal-to-0?)

36 0< (n -- less-than-0?)

37 0<= (n -- less-or-equal-to-0?)

38 0> (n -- greater-than-0?)

39 0>= (n -- greater-or-equal-to-0?)

3A < (n1 n2 -- less?)

3B > (n1 n2 -- greater?)

3C = (x1 x2 -- equal?)

3D <> (x1 x2 -- not-equal?)

3E u> (u1 u2 -- unsigned-greater?)

3F u<= (u1 u2 -- unsigned-less-or-equal?)

40 u< (u1 u2 -- unsigned-less?)

41 u>= (u1 u2 -- unsigned-greater-or-equal?)

42 >= (n1 n2 -- greater-or-equal?)

43 <= (n1 n2 -- less-or-equal?)

44 between (n min max -- min<=n<=max?)

45 within (n min max -- min<=n<max?)

46 drop (x --)

47 dup (x -- x x)

48 over (x1 x2 -- x1 x2 x1)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

426 Writing FCode 3.x Programs —November 1997

A

49 swap (x1 x2 -- x2 x1)

4A rot (x1 x2 x3 -- x2 x3 x1)

4B -rot (x1 x2 x3 -- x3 x1 x2)

4C tuck (x1 x2 -- x2 x1 x2)

4D nip (x1 x2 -- x2)

4E pick (xu … x1 x0 u -- xu … x1 x0 xu)

4F roll (xu … x1 x0 u -- xu-1 … x1 x0 xu)

50 ?dup (x -- 0 | x x)

51 depth (-- u)

52 2drop (x1 x2 --)

53 2dup (x1 x2 -- x1 x2 x1 x2)

54 2over (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

55 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2)

56 2rot (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)

57 2/ (x1 -- x2)

58 u2/ (x1 -- x2)

59 2* (x1 -- x2)

5A /c (-- n)

5B /w (-- n)

5C /l (-- n)

5D /n (-- n)

5E ca+ (addr1 index -- addr2)

5F wa+ (addr1 index -- addr2)

60 la+ (addr1 index -- addr2)

61 na+ (addr1 index -- addr2)

62 char+ (addr1 -- addr2)

63 wa1+ (addr1 -- addr2)

64 la1+ (addr1 -- addr2)

65 cell+ (addr1 -- addr2)

66 chars (nu1 -- nu2)

67 /w* (nu1 -- nu2)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

FCode Reference 427

A

68 /l* (nu1 -- nu2)

69 cells (nu1 -- nu2)

6A on (a-addr --)

6B off (a-addr --)

6C +! (nu a-addr --)

6D @ (a-addr -- x)

6E l@ (qaddr -- quad)

6F w@ (waddr -- w)

70 <w@ (waddr -- n)

71 c@ (addr -- byte)

72 ! (x a-addr --)

73 l! (quad qaddr --)

74 w! (w waddr --)

75 c! (byte addr --)

76 2@ (a-addr -- x1 x2)

77 2! (x1 x2 a-addr --)

78 move (src-addr dest-addr len --)

79 fill (addr len byte --)

7A comp (addr1 addr2 len -- n)

7B noop (--)

7C lwsplit (quad -- w1.lo w2.hi)

7D wljoin (w.lo w.hi -- quad)

7E lbsplit (quad -- b.lo b2 b3 b4.hi)

7F bljoin (bl.lo b2 b3 b4.hi -- quad)

80 wbflip (w1 -- w2)

81 upc (char1 -- char2)

82 lcc (char1 -- char2)

83 pack (str len addr -- pstr)

84 count (pstr -- str len)

85 body> (a-addr -- xt)

86 >body (xt -- a-addr)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

428 Writing FCode 3.x Programs —November 1997

A

87 fcode-revision (-- n)

88 span (-- a-addr)

89 unloop (--) (R: sys --)

8A expect (addr len --)

8B alloc-mem (len -- a-addr)

8C free-mem (a-addr len --)

8D key? (-- pressed?)

8E key (-- char)

8F emit (char --)

90 type (text-str text-len --)

91 (cr (--)

92 cr (--)

93 #out (-- a-addr)

94 #line (-- a-addr)

95 hold (char --)

96 <# (--)

97 u#> (u -- str len)

98 sign (n --)

99 u# (u1 -- u2)

9A u#s (u1 -- u2)

9B u. (u --)

9C u.r (u size --)

9D . (nu --)

9E .r (n size --)

9F .s (… -- …)

A0 base (-- a-addr)

A2 $number (addr len -- true | n false)

A3 digit (char base -- digit true | char false)

A4 -1 (-- -1)

A5 0 (-- 0)

A6 1 (-- 1)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

FCode Reference 429

A

A7 2 (-- 2)

A8 3 (-- 3)

A9 bl (-- 0x20)

AA bs (-- 0x08)

AB bell (-- 0x07)

AC bounds (n cnt -- n+cnt n)

AD here (-- addr)

AE aligned (n1 -- n1|a-addr)

AF wbsplit (w -- b1.lo b2.hi)

B0 bwjoin (b.lo b.hi -- w)

B1 b(<mark) (F: --)

B2 b(>resolve) (--) (F: --)

B5 new-token (--) (F: /FCode#/ --)

B6 named-token (--) (F: /FCode-string FCode#/ --)

B7 b(:) (E: … -- ???) (F: -- colon-sys)

B8 b(value) (E: -- x) (F: x --)

B9 b(variable) (E: -- a-addr) (F: --)

BA b(constant) (E: -- n) (F: n --)

BB b(create) (E: -- a-addr) (F: --)

BC b(defer) (E: … -- ???) (F: --)

BD b(buffer:) (E: -- a-addr) (F: size --)

BE b(field) (E: addr -- addr+offset) (F: offset size -- offset+size)

C0 instance (--)

C2 b(;) (--) (F: colon-sys --)

C3 b(to) (x --)

C4 b(case) (sel -- sel) (F: --)

C5 b(endcase) (sel | <nothing> --) (F: --)

C6 b(endof) (--) (F: /FCode-offset/ --)

C7 # (ud1 -- ud2)

C8 #s (ud -- 0 0)

C9 #> (ud -- str len)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

430 Writing FCode 3.x Programs —November 1997

A

CA external-token (--) (F: /FCode-string FCode#/ --)

CB $find (name-str name-len -- xt true | name-str name-len false)

CC offset16 (--)

CD evaluate (… str len -- ???)

D0 c, (byte --)

D1 w, (w --)

D2 l, (quad --)

D3 , (x --)

D4 um* (u1 u2 -- ud.prod)

D5 um/mod (ud u -- urem uquot)

D8 d+ (d1 d2 --d.sum)

D9 d- (d1 d2 -- d.diff)

DA get-token (fcode# -- xt immediate?)

DB set-token (xt immediate? fcode# --)

DC state (-- a-addr)

DD compile, (xt --)

DE behavior (defer-xt -- contents-xt)

F0 start0 (--)

F1 start1 (--)

F2 start2 (--)

F3 start4 (--)

FC ferror (--)

FD version1 (--)

FF end1 (--)

0102 my-address (-- phys.lo …)

0103 my-space (-- phys.hi)

0105 free-virtual (virt size --)

0110 property (prop-addr prop-len name-str name-len --)

0111 encode-int (n -- prop-addr prop-len)

0112 encode+ (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3)

0113 encode-phys (phys.lo … phys.hi -- prop-addr prop-len)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

FCode Reference 431

A

0114 encode-string (str len -- prop-addr prop-len)

0115 encode-bytes (data-addr data-len -- prop-addr prop-len)

0116 reg (phys.lo … phys.hi size --)

0119 model (str len --)

011A device-type (str len --)

011B parse-2int (str len -- val.lo val.hi)

011C is-install (xt --)

011D is-remove (xt --)

011E is-selftest (xt --)

011F new-device (--)

0120 diagnostic-mode? (-- diag?)

0121 display-status (n --)

0122 memory-test-suite (addr len -- fail?)

0124 mask (-- a-addr)

0125 get-msecs (-- n)

0126 ms (n --)

0127 finish-device (--)

0128 decode-phys (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi)

0129 push-package (phandle --)

012A pop-package (--)

012B interpose (adr len phandle --)

0130 map-low (phys.lo … size -- virt)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0150 #lines (-- rows)

0151 #columns (-- columns)

0152 line# (-- line#)

0153 column# (-- column#)

0154 inverse? (-- white-on-black?)

0155 inverse-screen? (-- black?)

0157 draw-character (char --)

0158 reset-screen (--)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

432 Writing FCode 3.x Programs —November 1997

A

0159 toggle-cursor (--)

015A erase-screen (--)

015B blink-screen (--)

015C invert-screen (--)

015D insert-characters (n --)

015E delete-characters (n --)

015F insert-lines (n --)

0160 delete-lines (n --)

0161 draw-logo (line# addr width height --)

0162 frame-buffer-adr (-- addr)

0163 screen-height (-- height)

0164 screen-width (-- width)

0165 window-top (-- border-height)

0166 window-left (-- border-width)

016A default-font (-- addr width height advance min-char #glyphs)

016B set-font (addr width height advance min-char #glyphs --)

016C char-height (-- height)

016D char-width (-- width)

016E >font (char -- addr)

016F fontbytes (-- bytes)

0170 fb1-draw-character (char --)

0171 fb1-reset-screen (--)

0172 fb1-toggle-cursor (--)

0173 fb1-erase-screen (--)

0174 fb1-blink-screen (--)

0175 fb1-invert-screen (--)

0176 fb1-insert-characters (n --)

0177 fb1-delete-characters (n --)

0178 fb1-insert-lines (n --)

0179 fb1-delete-lines (n --)

017A fb1-draw-logo (line# addr width height --)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

FCode Reference 433

A

017B fb1-install (width height #columns #lines --)

017C fb1-slide-up (n --)

0180 fb8-draw-character (char --)

0181 fb8-reset-screen (--)

0182 fb8-toggle-cursor (--)

0183 fb8-erase-screen (--)

0184 fb8-blink-screen (--)

0185 fb8-invert-screen (--)

0186 fb8-insert-characters (n --)

0187 fb8-delete-characters (n --)

0188 fb8-insert-lines (n --)

0189 fb8-delete-lines (n --)

018A fb8-draw-logo (line# addr width height --)

018B fb8-install (width height #columns #lines --)

01A4 mac-address (-- mac-str mac-len)

0201 device-name (str len --)

0202 my-args (-- arg-str arg-len)

0203 my-self (-- ihandle)

0204 find-package (name-str name-len -- false | phandle true)

0205 open-package (arg-str arg-len phandle -- ihandle | 0)

0206 close-package (ihandle --)

0207 find-method (method-str method-len phandle -- false | xt true)

0208 call-package (… xt ihandle -- ???)

0209 $call-parent (… method-str method-len -- ???)

020A my-parent (-- ihandle)

020B ihandle>phandle (ihandle -- phandle)

020D my-unit (-- phys.lo … phys.hi)

020E $call-method (… method-str method-len ihandle -- ???)

020F $open-package (arg-str arg-len name-str name-len -- ihandle | 0)

0213 alarm (xt n --)

0214 (is-user-word) (E: … -- ???) (name-str name-len xt --)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

434 Writing FCode 3.x Programs —November 1997

A

0215 suspend-fcode (--)

0216 abort (… --) (R:… --)

0217 catch (… xt -- ??? error-code | ??? false)

0218 throw (… error-code -- ??? error-code | …)

0219 user-abort (… --) (R: … --)

021A get-my-property (nam-str nam-len -- true | prop-addr prop-len false)

021B decode-int (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n)

021C decode-string (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len)

021D get-inherited-property (nam-str nam-len -- true | prop-addr prop-len false)

021E delete-property (nam-str nam-len --)

021F get-package-property (name-str name-len phandle -- true | prop-addr prop-len false)

0220 cpeek (addr -- false | byte true)

0221 wpeek (waddr -- false | w true)

0222 lpeek (qaddr -- false | quad true)

0223 cpoke (byte addr -- okay?)

0224 wpoke (w waddr -- okay?)

0225 lpoke (quad qaddr -- okay?)

0226 lwflip (quad1 -- quad2)

0227 lbflip (quad1 -- quad2)

0228 lbflips (qaddr len --)

0230 rb@ (addr -- byte)

0231 rb! (byte addr --)

0232 rw@ (waddr -- w)

0233 rw! (w waddr --)

0234 rl@ (qaddr -- quad)

0235 rl! (quad qaddr --)

0236 wbflips (waddr len --)

0237 lwflips (qaddr len --)

023B child (phandle.parent -- phandle.child)

023C peer (phandle -- phandle.sibling)

023D next-property (previous-str previous-len phandle -- false | name-str name-len true)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

FCode Reference 435

A

023E byte-load (addr xt --)

023F set-args (arg-str arg-len unit-str unit-len --)

0240 left-parse-string (str len char -- R-str R-len L-str L-len)

022E rx@ (xaddr -- o)

022F rx! (o xaddr --)

0241 bxjoin (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o)

0242 <l@ (qaddr -- n)

0243 lxjoin (quad.lo quad.hi -- o)

0244 wxjoin (w.lo w.2 w.3 w.hi -- o)

0245 x, (o --)

0246 x@ (xaddr -- o)

0247 x! (o xaddr --)

0248 /x (-- n)

0249 /x* (nu1 -- nu2)

024A xa+ (addr1 index -- addr2)

024B xa1+ (addr1 -- addr2)

024C xbflip (oct1 -- oct2)

024D xbflips (xaddr len --)

024E xbsplit (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi)

024F xlflip (oct1 -- oct2)

0250 xlflips (xaddr len --)

0251 xlsplit (o -- quad.lo quad.hi)

0252 xwflip (oct1 -- oct2)

0253 xwflips (xaddr len --)

0254 xwsplit (o -- w.lo w.2 w.3 w.hi)

Table A-48 FCodes by Byte Value (Continued)

Value Function Stack

436 Writing FCode 3.x Programs —November 1997

A

Table A-49 Tokenizer Directives

Value Function Stack

- (([text<)> --)

-]tokenizer (--)

- \ (--)

- alias (E: … -- ???)
(“new-name< >old-name< >” --)

- decimal (--)

- external (--)

- fload ([filename<cr>] --)

- headerless (--)

- headers (--)

- hex (--)

- octal (--)

- tokenizer[(--)

CR " ([text<">< >] -- text-str text-len)

CR ' ("old-name< >" -- xt)

CR (.) (n -- str len)

CR ." ([text<)>] --)

CR .(([text<)>] --)

CR : (colon) ("new-name< >" -- colon-sys) (E: … -- ???)

CR ; (semicolon) (--)

CR << (x1 u -- x2)

CR >> (x1 u -- x2)

CR ? (addr --)

CR ['] ([old-name< >] -- xt)

CR 1+ (nu1 -- nu2)

CR 1- (nu1 -- nu2)

FCode Reference 437

A

CR 2+ (nu1 -- nu2)

CR 2- (nu1 -- nu2)

CR accept (addr len1 -- len2)

CR again (C: dest-sys --)

CR allot (len --)

CR ascii ([text< >] -- char)

CR begin (C: -- dest-sys) (--)

CR blank (addr len --)

CR buffer: (E: -- a-addr) (len "new-name< >" --)

CR /c* (nu1 -- nu2)

CR ca1+ (addr1 -- addr2)

CR carret (-- 0x0D)

CR case (C: -- case-sys) (sel -- sel)

CR constant (E: -- x) (x "new-name< >" --)

CR control ([text< >] -- char)

CR create (E: -- a-addr) ("new-name< >" --)

CR d# ([number< >] -- n)

CR .d (n --)

CR decimal (--)

CR decode-bytes (prop-addr1 prop-len1 data-len -- prop-addr2 prop-len2 data-addr data-len)

CR defer (E: … -- ???) ("new-name< >" --)

CR do (C: -- dodest-sys) (limit start --) (R: -- sys)

CR ?do (C: -- dodest-sys) (limit start --) (R: -- sys)

CR 3drop (x1 x2 x3 --)

CR 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)

CR else (C: orig-sys1 -- orig-sys2) (--)

CR endcase (C: case-sys --) (sel | <nothing> --)

Table A-49 Tokenizer Directives (Continued)

Value Function Stack

438 Writing FCode 3.x Programs —November 1997

A

CR endof (C: case-sys1 of-sys -- case-sys2) (--)

CR erase (addr len --)

CR eval (… str len -- ???)

CR false (-- false)

CR fcode-version2 (--)

CR fcode-version3 (--)

CR field (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size)

CR h# ([number< >] -- n)

CR .h (n --)

CR hex (--)

CR if (C: -- orig-sys) (do-next? --)

CR leave (--) (R: sys --)

CR ?leave (exit? --) (R: sys --)

CR linefeed (-- 0x0A)

CR loop (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2)

CR +loop (C: dodest-sys --) (delta --) (R: sys1 -- <nothing> | sys2)

CR /n* (nu1 -- nu2)

CR na1+ (addr1 -- addr2)

CR not (x1 -- x2)

CR of (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)

CR repeat (C: orig-sys dest-sys --) (--)

CR s" ([text<“>] -- test-str text-len)

CR s. (n --)

CR space (--)

CR spaces (cnt --)

CR struct (-- 0)

CR then (C: orig-sys --) (--)

Table A-49 Tokenizer Directives (Continued)

Value Function Stack

FCode Reference 439

A

CR to (param [old-name< >] --)

CR true (-- true)

CR (u.) (u -- str len)

CR until (C: dest-sys --) (done? --)

CR value (E: -- x) (x "new-name< >"--)

CR variable (E: -- a-addr) ("new-name< >"--)

CR while (C: dest-sys -- orig-sys dest-sys) (continue? --)

Table A-49 Tokenizer Directives (Continued)

Value Function Stack

440 Writing FCode 3.x Programs —November 1997

A

FCodes by Name
The following table lists, in alphabetic order, currently-assigned FCodes.

Table A-50 FCodes and Tokenizer Directives by Name

Value Function Stack

72 ! (x a-addr --)

CR " ([text<">< >] -- text-str text-len)

C7 # (ud1 -- ud2)

C9 #> (ud -- str len)

CR ' ("old-name< >" -- xt)

- (([text<)> --)

CR (.) (n -- str len)

20 * (nu1 nu2 -- prod)

1E + (nu1 nu2 -- sum)

6C +! (nu a-addr --)

D3 , (x --)

1F - (nu1 nu2 -- diff)

9D . (nu --)

CR ." ([text<)>] --)

CR .(([text<)>] --)

21 / (n1 n2 -- quot)

CR : (colon) ("new-name< >" -- colon-sys) (E: … -- ???)

CR ; (semicolon) (--)

3A < (n1 n2 -- less?)

96 <# (--)

CR << (x1 u -- x2)

43 <= (n1 n2 -- less-or-equal?)

3D <> (n1 n2 -- not-equal?)

3C = (n1 n2 -- equal?)

0B > (n1 n2 -- greater?)

FCode Reference 441

A

42 >= (n1 n2 -- greater-or-equal?)

CR >> (x1 u -- x2)

CR ? (addr --)

6D @ (a-addr -- x)

CR ['] ([old-name< >] -- xt)

- \ (--)

-]tokenizer (--)

A5 0 (-- 0)

36 0< (n -- less-than-0?)

37 0<= (n -- less-or-equal-to-0?)

35 0<> (n -- not-equal-to-0?)

34 0= (nulflag -- equal-to-0?)

38 0> (n -- greater-than-0?)

39 0>= (n -- greater-or-equal-to-0?)

A6 1 (-- 1)

CR 1+ (nu1 -- nu2)

CR 1- (nu1 -- nu2)

A4 -1 (-- -1)

A7 2 (-- 2)

77 2! (x1 x2 a-addr --)

59 2* (x1 -- x2)

CR 2+ (nu1 -- nu2)

CR 2- (nu1 -- nu2)

57 2/ (x1 -- x2)

76 2@ (a-addr -- x1 x2)

A8 3 (-- 3)

29 >>a (x1 u -- x2)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

442 Writing FCode 3.x Programs —November 1997

A

0216 abort (… --) (R:… --)

2D abs (n -- u)

CR accept (addr len1 -- len2)

CR again (C: dest-sys --)

0213 alarm (xt n --)

- alias (E: … -- ???) (“new-name< >old-name< >” --)

AE aligned (n1 -- n1|a-addr)

8B alloc-mem (len -- a-addr)

CR allot (len --)

23 and (x1 x2 -- x3)

CR ascii ([text< >] -- char)

12 b(") (-- str len) (F: /FCode-string/ --)

11 b(') (-- xt) (F: /FCode#/ --)

B7 b(:) (E: … -- ???) (F: -- colon-sys)

C2 b(;) (--) (F: colon-sys --)

A0 base (-- a-addr)

13 bbranch (--) (F: /FCode-offset/ --)

14 b?branch (don’t-branch? --) (F: /FCode-offset/ --)

BD b(buffer:) (E: -- a-addr) (F: size --)

C4 b(case) (sel -- sel) (F: --)

BA b(constant) (E: -- n) (F: n --)

BB b(create) (E: -- a-addr) (F: --)

BC b(defer) (E: … -- ???) (F: --)

17 b(do) (limit start --) (F: /FCode-offset/ --)

18 b(?do) (limit start --) (F: /FCode-offset/ --)

CR begin (C: -- dest-sys) (--)

DE behavior (defer-xt -- contents-xt)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 443

A

AB bell (-- 0x07)

C5 b(endcase) (sel | <nothing> --) (F: --)

C6 b(endof) (--) (F: /FCode-offset/ --)

44 between (n min max -- min<=n<=max?)

BE b(field) (E: addr -- addr+offset) (F: offset size -- offset+size)

A9 bl (-- 0x20)

CR blank (addr len --)

1B b(leave) (F: --)

015B blink-screen (--)

10 b(lit) (-- n) (F: /FCode-num32/ --)

7F bljoin (bl.lo b2 b3 b4.hi -- quad)

15 b(loop) (--) (F: /FCode-offset/ --)

16 b(+loop) (delta --) (F: /FCode-offset/ --)

B1 b(<mark) (F: --)

85 body> (a-addr -- xt)

86 >body (xt -- a-addr)

1C b(of) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --)

AC bounds (n cnt -- n+cnt n)

B2 b(>resolve) (--) (F: --)

AA bs (-- 0x08)

C3 b(to) (x --)

CR buffer: (E: -- a-addr) (len "new-name< >" --)

B8 b(value) (E: -- x) (F: x --)

B9 b(variable) (E: -- a-addr) (F: --)

B0 bwjoin (b.lo b.hi -- w)

02 41 bxjoin (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o)

023E byte-load (addr xt --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

444 Writing FCode 3.x Programs —November 1997

A

75 c! (byte addr --)

D0 c, (byte --)

5A /c (-- n)

- /c* (nu1 -- nu2)

71 c@ (addr -- byte)

5E ca+ (addr1 index -- addr2)

CR ca1+ (addr1 -- addr2)

62 char+ (addr1 -- addr2)

020E $call-method (… method-str method-len ihandle -- ???)

0208 call-package (… xt ihandle -- ???)

0209 $call-parent (… method-str method-len -- ???)

CR carret (-- 0x0D)

CR case (C: -- case-sys) (sel -- sel)

0217 catch (… xt -- ??? error-code | ??? false)

65 cell+ (addr1 -- addr2)

69 cells (nu1 -- nu2)

62 char+ (addr1 -- addr2)

016C char-height (-- height)

66 chars (nu1 -- nu2)

016D char-width (-- width)

0236 child (phandle.parent -- phandle.child)

0206 close-package (ihandle --)

0153 column# (-- column#)

0151 #columns (-- columns)

7A comp (addr1 addr2 len -- n)

DD compile, (xt --)

CR constant (E: -- x) (x "new-name< >" --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 445

A

CR control ([text< >] -- char)

84 count (pstr -- str len)

0220 cpeek (addr -- false | byte true)

0223 cpoke (byte addr -- okay?)

92 cr (--)

91 (cr (--)

CR create (E: -- a-addr) ("new-name< >" --)

CR d# ([number< >] -- n)

D8 d+ (d1 d2 --d.sum)

D9 d- (d1 d2 -- d.diff)

CR .d (n --)

- decimal (--)

CR decimal (--)

021B decode-int (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n)

0128 decode-phys (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi)

021C decode-string (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len)

016A default-font (-- addr width height advance min-char #glyphs)

CR defer (E: … -- ???) ("new-name< >" --)

015E delete-characters (n --)

0160 delete-lines (n --)

021E delete-property (nam-str nam-len --)

51 depth (-- u)

0201 device-name (str len --)

011A device-type (str len --)

0120 diagnostic-mode? (-- diag?)

A3 digit (char base -- digit true | char false)

0121 display-status (n --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

446 Writing FCode 3.x Programs —November 1997

A

CR do (C: -- dodest-sys) (limit start --) (R: -- sys)

CR ?do (C: -- dodest-sys) (limit start --) (R: -- sys)

0157 draw-character (char --)

0161 draw-logo (line# addr width height --)

46 drop (x --)

52 2drop (x1 x2 --)

CR 3drop (x1 x2 x3 --)

47 dup (x -- x x)

53 2dup (x1 x2 -- x1 x2 x1 x2)

CR 3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)

50 ?dup (x -- 0 | x x)

CR else (C: orig-sys1 -- orig-sys2) (--)

8F emit (char --)

0112 encode+ (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3)

0115 encode-bytes (data-addr data-len -- prop-addr prop-len)

0111 encode-int (n -- prop-addr prop-len)

0113 encode-phys (phys.lo … phys.hi -- prop-addr prop-len)

0114 encode-string (str len -- prop-addr prop-len)

00 end0 (--)

FF end1 (--)

CR endcase (C: case-sys --) (sel | <nothing> --)

CR endof (C: case-sys1 of-sys -- case-sys2) (--)

CR erase (addr len --)

015A erase-screen (--)

CR eval (… str len -- ???)

CD evaluate (… str len -- ???)

1D execute (… xt -- ???)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 447

A

33 exit (--) (R: sys --)

8A expect (addr len --)

- external (--)

CA external-token (--) (F: /FCode-string FCode#/ --)

CR false (-- false)

0174 fb1-blink-screen (--)

0177 fb1-delete-characters (n --)

0179 fb1-delete-lines (n --)

0170 fb1-draw-character (char --)

017A fb1-draw-logo (line# addr width height --)

0173 fb1-erase-screen (--)

0176 fb1-insert-characters (n --)

0178 fb1-insert-lines (n --)

017B fb1-install (width height #columns #lines --)

0175 fb1-invert-screen (--)

0171 fb1-reset-screen (--)

017C fb1-slide-up (n --)

0172 fb1-toggle-cursor (--)

0184 fb8-blink-screen (--)

0187 fb8-delete-characters (n --)

0189 fb8-delete-lines (n --)

0180 fb8-draw-character (char --)

018A fb8-draw-logo (line# addr width height --)

0183 fb8-erase-screen (--)

0186 fb8-insert-characters (n --)

0188 fb8-insert-lines (n --)

018B fb8-install (width height #columns #lines --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

448 Writing FCode 3.x Programs —November 1997

A

0185 fb8-invert-screen (--)

0181 fb8-reset-screen (--)

0182 fb8-toggle-cursor (--)

87 fcode-revision (-- n)

CR fcode-version2 (--)

FC ferror (--)

CR field (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size)

79 fill (addr len byte --)

CB $find (name-str name-len -- xt true | name-str name-len false)

0207 find-method (method-str method-len phandle -- false | xt true)

0204 find-package (name-str name-len -- false | phandle true)

0127 finish-device (--)

016E >font (char -- addr)

- fload ([filename<cr>] --)

016F fontbytes (-- bytes)

0162 frame-buffer-adr (-- addr)

8C free-mem (a-addr len --)

0105 free-virtual (virt size --)

021d get-inherited-property (nam-str nam-len -- true | prop-addr prop-len false)

0125 get-msecs (-- n)

021A get-my-property (nam-str nam-len -- true | prop-addr prop-len false)

021F get-package-property (name-str name-len phandle -- true | prop-addr prop-len false)

DA get-token (fcode# -- xt immediate?)

CR h# ([number< >] -- n)

CR .h (n --)

- headerless (--)

- headers (--)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 449

A

AD here (-- addr)

- hex (--)

CR hex (--)

95 hold (char --)

19 i (-- index) (R: sys -- sys)

CR if (C: -- orig-sys) (do-next? --)

020B ihandle>phandle (ihandle -- phandle)

015D insert-characters (n --)

015F insert-lines (n --)

C0 instance (--)

01 2B interpose (adr len phandle --)

0154 inverse? (-- white-on-black?)

0155 inverse-screen? (-- black?)

26 invert (x1 -- x2)

015C invert-screen (--)

011C is-install (xt --)

011D is-remove (xt --)

011E is-selftest (xt --)

0214 (is-user-word) (E: … -- ???) (name-str name-len xt --)

1A j (-- index) (R: sys -- sys)

8E key (-- char)

8D key? (-- pressed?)

73 l! (quad qaddr --)

D2 l, (quad --)

6E l@ (qaddr -- quad)

02 42 <l@ (qaddr -- n)

5C /l (-- n)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

450 Writing FCode 3.x Programs —November 1997

A

68 /l* (nu1 -- nu2)

60 la+ (addr1 index -- addr2)

64 la1+ (addr1 -- addr2)

0227 lbflip (quad1 -- quad2)

0228 lbflips (qaddr len --)

7E lbsplit (quad -- b.lo b2 b3 b4.hi)

82 lcc (char1 -- char2)

CR leave (--) (R: sys --)

CR ?leave (exit? --) (R: sys --)

0240 left-parse-string (str len char -- R-str R-len L-str L-len)

0152 line# (-- line#)

94 #line (-- a-addr)

CR linefeed (-- 0x0A)

0150 #lines (-- rows)

CR loop (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2)

CR +loop (C: dodest-sys --) (delta --) (R: sys1 -- <nothing> | sys2)

0222 lpeek (qaddr -- false | quad true)

0225 lpoke (quad qaddr -- okay?)

27 lshift (x1 u -- x2)

0226 lwflip (quad1 -- quad2)

0237 lwflips (qaddr len --)

7C lwsplit (quad -- w1.lo w2.hi)

02 43 lxjoin (quad.lo quad.hi -- o)

01A4 mac-address (-- mac-str mac-len)

0130 map-low (phys.lo … size -- virt)

0124 mask (-- a-addr)

2F max (n1 n2 -- n1|n2)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 451

A

0122 memory-test-suite (addr len -- fail?)

2E min (n1 n2 -- n1|n2)

22 mod (n1 n2 -- rem)

2A /mod (n1 n2 -- rem quot)

0119 model (str len --)

78 move (src-addr dest-addr len --)

0126 ms (n --)

0102 my-address (-- phys.lo …)

0202 my-args (-- arg-str arg-len)

020A my-parent (-- ihandle)

0203 my-self (-- ihandle)

0103 my-space (-- phys.hi)

020D my-unit (-- phys.lo … phys.hi)

5D /n (-- n)

CR /n* (nu1 -- nu2)

61 na+ (addr1 index -- addr2)

CR na1+ (addr1 -- addr2)

B6 named-token (--) (F: /FCode-string FCode#/ --)

2C negate (n1 -- n2)

011F new-device (--)

B5 new-token (--) (F: /FCode#/ --)

023D next-property (previous-str previous-len phandle -- false | name-str name-len true)

4D nip (x1 x2 -- x2)

7B noop (--)

CR not (x1 -- x2)

A2 $number (addr len -- true | n false)

CR of (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

452 Writing FCode 3.x Programs —November 1997

A

6B off (a-addr --)

CC offset16 (--)

6A on (a-addr --)

0205 open-package (arg-str arg-len phandle -- ihandle | 0)

020F $open-package (arg-str arg-len name-str name-len -- ihandle | 0)

24 or (x1 x2 -- x3)

93 #out (-- a-addr)

48 over (x1 x2 -- x1 x2 x1)

54 2over (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

83 pack (str len addr -- pstr)

011B parse-2int (str len -- val.lo val.hi)

023C peer (phandle -- phandle.sibling)

4E pick (xu … x1 x0 u -- xu … x1 x0 xu)

0110 property (prop-addr prop-len name-str name-len --)

012A pop-package (--)

0129 push-package (phandle --)

31 r> (-- x) (R: x --)

32 r@ (-- x) (R: x -- x)

9E .r (n size --)

30 >r (x --) (R: -- x)

0231 rb! (byte addr --)

0230 rb@ (addr -- byte)

0116 reg (phys.lo … phys.hi size --)

CR repeat (C: orig-sys dest-sys --) (--)

0158 reset-screen (--)

0235 rl! (quad qaddr --)

0234 rl@ (qaddr -- quad)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 453

A

4F roll (xu … x1 x0 u -- xu-1 … x1 x0 xu)

4A rot (x1 x2 x3 -- x2 x3 x1)

4B -rot (x1 x2 x3 -- x3 x1 x2)

56 2rot (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)

28 rshift (x1 u -- x2)

0233 rw! (w waddr --)

0232 rw@ (waddr -- w)

022E rx@ (xaddr -- o)

022F rx! (o xaddr --)

CR s" ([text<“>] -- test-str text-len)

CR s. (n --)

C8 #s (ud -- 0 0)

9F .s (… -- …)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0163 screen-height (-- height)

0164 screen-width (-- width)

023F set-args (arg-str arg-len unit-str unit-len --)

016B set-font (addr width height advance min-char #glyphs --)

DB set-token (xt immediate? fcode# --)

98 sign (n --)

CR space (--)

CR spaces (cnt --)

88 span (-- a-addr)

F0 start0 (--)

F1 start1 (--)

F2 start2 (--)

F3 start4 (--)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

454 Writing FCode 3.x Programs —November 1997

A

DC state (-- a-addr)

CR struct (-- 0)

0215 suspend-fcode (--)

49 swap (x1 x2 -- x2 x1)

55 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2)

CR then (C: orig-sys --) (--)

0218 throw (… error-code -- ??? error-code | …)

CR to (param [old-name< >] --)

0159 toggle-cursor (--)

- tokenizer[(--)

CR true (-- true)

4C tuck (x1 x2 -- x2 x1 x2)

90 type (text-str text-len --)

99 u# (u1 -- u2)

97 u#> (u -- str len)

9A u#s (u1 -- u2)

9B u. (u --)

40 u< (u1 u2 -- unsigned-less?)

3F u<= (u1 u2 -- unsigned-less-or-equal?)

3E u> (u1 u2 -- unsigned-greater?)

41 u>= (u1 u2 -- unsigned-greater-or-equal?)

CR (u.) (n -- addr len)

58 u2/ (x1 -- x2)

D4 um* (u1 u2 -- ud.prod)

D5 um/mod (ud u -- urem uquot)

2B u/mod (u1 u2 -- urem uquot)

89 unloop (--) (R: sys --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

FCode Reference 455

A

CR until (C: dest-sys --) (done? --)

81 upc (char1 -- char2)

9C u.r (u size --)

0219 user-abort (… --) (R: … --)

CR value (E: -- x) (x "new-name< >"--)

CR variable (E: -- a-addr) ("new-name< >"--)

FD version1 (--)

74 w! (w waddr --)

D1 w, (w --)

6F w@ (waddr -- w)

5B /w (-- n)

67 /w* (nu1 -- nu2)

70 <w@ (waddr -- n)

5F wa+ (addr1 index -- addr2)

63 wa1+ (addr1 -- addr2)

80 wbflip (w1 -- w2)

0236 wbflips (waddr len --)

AF wbsplit (w -- b1.lo b2.hi)

CR while (C: dest-sys -- orig-sys dest-sys) (continue? --)

0166 window-left (-- border-width)

0165 window-top (-- border-height)

45 within (n min max -- min<=n<max?)

7D wljoin (w.lo w.hi -- quad)

0221 wpeek (waddr -- false | w true)

0224 wpoke (w waddr -- okay?)

0244 wxjoin (w.lo w.2 w.3 w.hi -- o)

0245 x, (o --)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

456 Writing FCode 3.x Programs —November 1997

A

0246 x@ (xaddr -- o)

0247 x! (o xaddr --)

0248 /x (-- n)

0249 /x* (nu1 -- nu2)

024a xa+ (addr1 index -- addr2)

024b xa1+ (addr1 -- addr2)

024c xbflip (oct1 -- oct2)

024d xbflips (xaddr len --)

024e xbsplit (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi)

024f xlflip (oct1 -- oct2)

0250 xlflips (xaddr len --)

0251 xlsplit (o -- quad.lo quad.hi)

25 xor (x1 x2 -- x3)

0252 xwflip (oct1 -- oct2)

0253 xwflips (xaddr len --)

0254 xwsplit (o -- w.lo w.2 w.3 w.hi)

Table A-50 FCodes and Tokenizer Directives by Name (Continued)

Value Function Stack

457

FCode Memory Allocation B

To get general-purpose memory, use buffer : or alloc-mem . Use free-mem
to de-allocate memory obtained with alloc-mem .

To map in portions of your SBus device for ordinary access, use " map-in "

$call-parent as in:

To later map out those portions of your device, use " map-out" $call-parent

as in:

my-address offset + my-space size " map-in" $call-parent (virt)

(virt) size " map-out" $call-parent

458 Writing FCode 3.x Programs —November 1997

B

To use a region of system memory for DMA (for example, for both direct CPU
access and DMA access from a device), first define the following mapping and
allocation routines, then follow the steps below to ensure data coherency.

1. Allocate the DMA region with:

a. dma-alloc

b. dma-map-in

2. CPU accesses the region using virt from dma-alloc , then perform
dma-sync.

3. Start DMA operation, using devaddr from dma-map-in .

a. Wait for DMA complete status.

b. Repeat DMA as needed, then perform dma-sync

4. Repeat Steps 2 and 3 as needed

5. Deallocate the region when completed, with:

a. dma-map-out

b. dma-free

: dma-alloc (size -- virt) " dma-alloc" $call-parent ;

: dma-free (virt size --) " dma-free" $call-parent ;

: dma-map-in (virt size cache? -- devaddr)

 " dma-map-in" $call-parent

;

: dma-map-out (virt devaddr size --) " dma-map-out" $call-parent ;

: dma-sync (virt devaddr size --) \ Correct even if "dma-sync" missing

 " dma-sync" ['] $call-parent catch if

 2drop 3drop

 then

;

459

Coding Style C

This appendix describes the coding style used in some OpenBoot
implementations. These guidelines are a living document that first came into
existence in 1985. By following these guidelines in your own code
development, you will produce code that is similar in style to a large body of
existing OpenBoot work. This will make your code more easily understood by
others in the OpenBoot community.

Typographic Conventions
The following typographic conventions are used in this document:

• The symbol ✜ is used to represent space characters (i.e. ASCII 0x20).

• The symbol … is used to represent an arbitrary amount of Forth code.

• Within prose descriptions, Forth words are show in this font.

Use of Spaces
Since Forth code can be very terse, use spaces to increase readability.

Two consecutive spaces are used to separate a definition’s name from the
beginning of the stack diagram, another two consecutive spaces (or a newline)
are used to separate the stack diagram from the word’s definition, and two
consecutive spaces (or a newline) separate the last word of a definition from
the closing semi-colon. For example:

460 Writing FCode 3.x Programs —November 1997

C

: new-name ✜✜(✜stack-before ✜-- ✜stack-after ✜) ✜✜foo ✜✜bar ✜✜;

: new-name ✜✜(✜stack-before ✜-- ✜stack-after ✜)

✜✜✜foo ✜bar ✜framus ✜dup ✜widget ✜foozle ✜ribbit ✜grindle
;

Forth words are usually separated by one space. If a phrase consisting of
several words performs some function, that phrase should be separated from
other words/phrases by two consecutive spaces or a newline.

: name ✜✜(✜stack before ✜-- ✜stack after ✜) ✜✜qqq ✜yyy ✜✜ggg ✜ppp ✜✜;

When creating multiple line definitions, all lines except the first and last
should be indented by three (3) spaces. If additional indentation is needed with
control structures, the left margin of each additional level of indentation
should start three (3) spaces to the right of the preceding level.

: name (stack before -- stack after)

✜✜✜qqq…

✜✜✜✜✜✜qqq…

✜✜✜✜✜✜qqq…

✜✜✜qqq…

;

if…then…else

In if…then or if…else…then control structures that occupy no more than
one line, two spaces should be used both before and after each if , else or
then .

✜✜if ✜✜qqq ✜✜then ✜✜

✜✜if ✜✜qqq ✜✜else ✜✜ppp ✜✜then ✜✜

Longer constructs should be structured like this:

<code to generate flag> ✜✜if

✜✜✜<true clause>

then

<code to generate flag> ✜✜if

✜✜✜<true clause>

else

✜✜✜<false clause>

then

Coding Style 461

C

do…loop

In do…loop constructs that occupy no more than one line, two spaces should
be used both before and after each do or loop .

<code to calculate limits> ✜✜do✜✜qqq ✜✜loop ✜✜

Longer constructs should be structured like this:

<code to calculate limits> ✜✜do

✜✜✜<body>

loop

The longer +loop construct should be structured like this:

<code to calculate limits> ✜✜do

✜✜✜<body>

<incremental value> ✜+loop

begin…while…repeat

In begin…while…repeat constructs that occupy no more than one line, two
spaces should be used both before and after each begin , while or repeat).

✜✜begin ✜✜<flag code> ✜✜while ✜✜<body> ✜✜repeat ✜✜

Longer constructs:

begin ✜✜<short flag code> ✜✜while

✜✜✜<body>

repeat

begin

✜✜✜<long flag code>

while

✜✜✜<body>

repeat

462 Writing FCode 3.x Programs —November 1997

C

begin…until…again

In begin…until and begin…again constructs that occupy no more than one
line, two spaces should be used both before and after each begin , until or
again .

✜✜begin ✜✜<body> ✜✜until

✜✜begin ✜✜<body> ✜✜again

Longer constructs:

begin

✜✜✜<body>

until

begin

✜✜✜<body>

again

Block Comments
Block comments begin with \ ✜. All text following the space is ignored until
after the next newline. While it would be possible to delimit block comments
with parentheses, the use of parentheses is reserved by convention for stack
comments.

Precede each non-trivial definition with a block comment giving a clear and
concise explanation of what the word does. Put more comments at the very
beginning of the file to describe external words which could be used from the
User Interface.

Stack Comments
Stack comments begin with (✜ and end with) . Use stack comments liberally in
definitions. Try to structure each definition so that, when you put stack
comments at the end of each line, the stack picture makes a nice pattern.

: name (stack before -- stack after)

✜✜✜qqq ppp bar (stack condition after the execution of bar)

✜✜✜qqq ppp foo (stack condition after the execution of foo)

Coding Style 463

C

✜✜✜qqq ppp dup (stack condition after the execution of dup)

;

Return Stack Comments
Return stack comments are also delimited with parentheses. In addition, the
notation r: is used at the beginning of the return stack comment to
differentiate it from a parameter stack comment.

Place return stack comments on any line that contains one or more words that
cause the return stack to change. (This limitation is a practical one; it is often
difficult to do otherwise due to lack of space.) The words >r and r> must be
paired inside colon definitions and inside do…loop constructs.

: name (stack before -- stack after)

✜✜✜qqq >r (r: addr)

✜✜✜qqq r>(r:)

;

Numbers
Hexadecimal numbers should be typed in lower case. If a given number
contains more than 4 digits, the number may be broken into groups of four
digits with periods. For example:

dead.beef

Since the default number base is hexadecimal, the convention is not to precede
hexadecimal numbers with h# .

464 Writing FCode 3.x Programs —November 1997

C

465

Differences Between FCode 2.x
and 3.x D

This appendix discusses the FCodes and macros that have changed between
FCode 2.x and FCode 3.x. The 3.x tokenizer will still tokenize code correctly
using FCode 2.x names (excepting old #>, # and #s). The function of each of
the equivalent FCodes is unchanged. The existing tokenized FCode programs
using 2.x FCodes will not be affected on 3.x OpenBoot PROMs. The only
functional exception is in the FCode 2.x names #>, #, and #s . FCode 3.x has the
same names associated with functionally different FCodes and different byte
values. If you have tokenized FCode using the 2.x tokenizer with these FCodes
(for instance, #), you will get the same response (since the operation of old # is
equivalent to new u# and tokenized code has 0x99 as byte value for your
old#).

Table D-1 FCode Names Changed in Version 3.x

FCode 2.x FCode 3.x (equivalent) Byte Value

not invert 26

<< lshift 27

>> rshift 28

ca1+ char+ 62

na1+ cell+ 65

/c* chars 66

/n* cells 69

flip wbflip 80

version FCode-revision 37

466 Writing FCode 3.x Programs —November 1997

D

b(is) b(to) C3

eval evaluate CD

u*x um* D4

xu/mod um/mod D5

x+ d+ D8

x- d- D9

attribute property 0110

xdrint encode-int 0111

xdr+ encode+ 0112

xdrphys encode-phys 0113

xdrstring encode-string 0114

xdrbytes encode-bytes 0115

decode-2int parse-2int 011B

map-sbus map-low 0130 (stack diag. enhanced)

get-my-attribute get-my-property 021A

xdrtoint decode-int 021B

xdrtostring decode-string 021C

get-inherited-attribute get-inherited-property 021D

delete-attribute delete-property 021E

get-package-attribute get-package-property 02 1F

wflips wbflips 0236

lflips lwflips 0237

is to

Table D-1 FCode Names Changed in Version 3.x (Continued)

FCode 2.x FCode 3.x (equivalent) Byte Value

Differences Between FCode 2.x and 3.x 467

D

Note – The following 2.x FCodes have changed names. The new 3.x FCodes
with the same names function differently.

So if you are using the 3.x tokenizer to elicit the old response from #>, #, and
#s , the source code must be changed so that the commands are replaced by
u#> , u# and u#s respectively. For code previously tokenized using the 2.x
tokenizer, the result is the same on both OpenBoot 2.x and 3.x PROMs .

To access the functionality provided by dma-alloc , do:

: my-dma-alloc (size -- addr) “ dma-alloc” $call-parent ;

and use my-dma-alloc .

Table D-2 FCode 2.x Changed Names and Equivalent FCode 3.x Names

FCode 2.x
FCode 3.x
(equivalent) Byte Value

#> u#> 97

u# 99

#s u#s 9A

Table D-3 FCode 2.x Commands Deleted in FCode 3.x

FCode 2.x Byte Value

4-byte-id FE

dma-alloc 0101

memmap 0104

>physical 0106

my-params 010F

intr 0117

driver 0118

group-code 0123

processor-type 0210

firmware-version 0211

fcode-version 0212

probe 0238

probe-virtual 0239

468 Writing FCode 3.x Programs —November 1997

D

To access the functionality provided by memmap, use map-low appropriately.

To replace intr , create “intr” properties using property .

To access the functionality provided by firmware-version or fcode-
version , use firmware-revision .

Table D-4 New FCodes Added in 3.x

FCode 3.x ByteValue

unloop 89

get-token DA

set-token DB

state DC

compile, DD

behavior DE

decode-phys 0128

push-package 0129

pop-package 012A

interpose 012B

lwflip 0226

lbflip 0227

lbflips 0228

next-property 023D

byte-load 023E

set-args 023F

Table D-5 Differently Functioning 3.x FCodes With Changed Byte Values

FCode 3.x Byte Value

C7

#s C8

#> C9

Differences Between FCode 2.x and 3.x 469

D

Table D-6 3.x FCodes Related to 64-bit Operations

3.x FCodes Stack Diagrams Byte Value

rx@ (oaddr -- o) 022E

rx! (o oaddr --) 022F

bxjoin (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) 0241

<l@ (qaddr -- n) 0242

lxjoin (quad.lo quad.hi -- o) 0243

wxjoin (w.lo w.2 w.3 w.hi -- o) 0244

x, (o --) 0245

x@ (oaddr -- o) 0246

x! (o oaddr --) 0247

/x (-- n) 0248

/x* (nu1 -- nu2) 0249

xa+ (addr1 index -- addr2) 024A

xa1+ (addr1 -- addr2) 024B

xbflip (oct1 -- oct2) 024C

xbflips (oaddr len --) 024D

xbsplit (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) 024E

xlflip (oct1 -- oct2) 024F

xlflips (oaddr len --) 0250

xlsplit (o -- quad.lo quad.hi) 0251

xwflip (oct1 -- oct2) 0252

xwflips (oaddr len --) 0253

xwsplit (o -- w.lo w.2 w.3 w.hi) 0254

470 Writing FCode 3.x Programs —November 1997

D

The following device-handling-related user interface commands have changed
between OpenBoot 2.x and OpenBoot 3.x. Their functional behavior is the
same. Determine your system’s OpenBoot PROM version by entering
.version at the ok> prompt, then using the appropriate commands from the
following table.

Table D-7 Device-related User Interface Commands Changed in 3.x

OpenBoot 2.x Command OpenBoot 3.x Command

.attributes .properties

cd dev

reset (to reset full system) reset-all

1

Index

Symbols
"alternate-reg" , 92
"assigned-addresses" , 92
"big-endian-aperture" , 93
"fast-back-to-back" , 97
"has-fcode" , 97
:, 12
;, 13
['] , 63

Numerics
0xfd, 2
3.x tokenizer, 50
66Mhz-capable , 9
68, 57

A
a.out header, 5
accessing

packages, 74
accessing a PCI device’s configuration

space registers, 45
active package, 58
adding a PCI header to a PROM, 45
address , 90

address-bits , 90
#address-cells , 89
addressing

packages, 76
SBus, 161

ANS Forth
and FCode, 11

apply , 69
assigned-addresses property, 9
auto-boot? , 28
available , 92

B
begin-package , 34, 75, 77
begin-select-dev , 40
binary executable programs, 32
binary format

FCode, 11
boot scenario, Solaris, 51
boot software roles, 51
booting FCode image, 5
buffer: , 62
byte-load , 35

2 Writing FCode 3.x Programs —November 1997

C
cache-line-size , 9
$call-method , 60, 64, ?? to 69
call-package , 64
$call-parent , ?? to 69
map-in $call-parent , 44
character-set , 93
class-code , 9
code examples

$open-package , 65
begin-package , 77
data

instance-specific, 74
static, 73

find-package , 64
open-dev , 76
reg , 19

colon definition, 12 to 13
command line editor, 30
compatible , 94
compile state, 12
configuration space base address, 51
configuration space command register, 52
configuration variables

auto-boot? , 28
fcode-debug? , 28

CPU PROM-generated properties, 8
current instance, 58

D
data

initialized, 62
instance-specific, 62
package, 61
packages, 58
static, 62
zero-filled, 62

data definition
packages, 73

deblocker support, 81
decode-unit , 63, 157

defer , 62
defining

Forth words, 12
depth , 94
dev , 36, 58
device

drivers, plug-in, 70
identification, 2
node, 3
tree, 3

device addressing
SBus, 161

device methods
block-size , 122
decode-unit , 157
dma-alloc , 158
dma-free , 158, 237
dma-map-in , 159
dma-map-out , 159
dma-sync , 160
load , 122, 192
map-in , 161
map-out , 161
max-transfer , 123
probe-self , 160
read , 123, 193, 237
read-blocks , 123
seek , 123
write , 124, 193
write-blocks , 124

device node
browsing, 36
creating with begin-package , 34
creating with end-package , 34

device property generation, 51
device_type , 95
device-end , 36
device-id , 9
devsel-speed , 9, 96
dloading FCode image, 5
dma-alloc , 158
dma-free , 158, 237
dma-map-in , 159

Index 3

dma-map-out , 159
dma-sync , 160
driver

and boot PROM, 1
function, 1

E
end0, 2
end1, 2
end-package , 35
execute-device-method , 41, 69
executing

methods, 63
execution token, 63

obtaining, 63
expansion FCode PROM access, 53

F
fakeboot , 5
fast-back-to-back , 9
FCode

/w , 391
and ANS Forth, 11
binary format, 11
characteristics, 11
compile state, 12
defining words, 12
device identification, 2
in PROM, 1
interpret state, 12
interpretation, 2
interpreting, 34
one-byte, 20
programming style, 14 to 16
property-specific FCodes, 118
source format, 11
stack, 12
tokenizing, 12
two-byte, 20
valid program, 2
w! , 390
w, , 390
w@, 391

words, 11
FCode programs, 32

testing in source form, 42
FCode PROM

body, 2
end token, 2
header, 2
magic number, 2
organization, 2
size, 2

FCode source, 25 to 26
FCode types

interface, 21
local, 22
primitives, 20

fcode-debug? , 24, 28
FCodes

- , 260
#, 257
#>, 237, 238, 257
#columns , 290
#line , 348
#lines , 348
#out , 363
#s , 374
$call-method , 58, 60, 64, ?? to 69,

284
$call-parent , ?? to 69, 285
$find , 325
$number , 361
$open-package , 60 , 65 , 75, 362
' , 258
(, 258
(cr , 293
(is-user-word) , 342
* , 259
+, 259
+! , 259
+loop , 349
, , 259
. , 260
.r , 367
.s , 374
/ , 261
/c , 283

4 Writing FCode 3.x Programs —November 1997

/l , 345
/l* , 345
/mod , 354
/n , 358
/w* , 391
<, 262
<#, 262
<=, 262
<>, 263
<w@, 391
=, 263
>, 263
>=, 263
>>a , 268
>body , 280
>font , 328
>r , 368
?dup , 304
@, 264
0, 265
0<, 265
0<= , 265
0<> , 265
0=, 266
0>, 266
0>= , 266
-1 , 266
1, 266
2, 267
2! , 267
2* , 267
2/ , 267
2@, 268
2drop , 303
2dup , 304
2over , 363
2rot , 372
2swap , 380
3, 268
abort , 268
abs , 269
alarm , 269
aligned , 271
alloc-mem , 271
and , 272
b(") , 272

b(') , 272
b(+loop) , 279
b(:) , 272
b(;) , 273
b(<mark) , 279
b(>resolve) , 280
b(?do) , 276
b(case) , 275
b(constant) , 275
b(create) , 275
b(defer) , 275
b(do) , 276
b(endcase) , 277
b(endof) , 277
b(field) , 277
b(leave) , 278
b(lit) , 279
b(loop) , 279
b(of) , 280
b(to) , 281
b(value) , 281
b(variable) , 281
b?branch , 275
base , 273
bbranch , 274
behavior , 276
bell , 277
between , 277
bl , 277
blink-screen , 278
bljoin , 279
body> , 279
bounds , 280
bs , 280
bwjoin , 281, 282
byte-load , 282
c! , 282
c, , 282
c@, 283
ca+ , 283
call-package , 64, 284
catch , 286
cell+ , 288
cells , 288
char-height , 288
chars , 288

Index 5

char-width , 288
child , 289
close-package , 289
column# , 290
comp, 291
compile, , 291
count , 292
cpeek , 292
cpoke , 293
cr , 293
d- , 295
d+, 294
decode-int , 296
decode-phys , 296
decode-string , 296
default-font , 297
delete-characters , 299
delete-lines , 299
delete-property , 300
depth , 300
device-name , 300
diagnostic-mode? , 301
digit , 301
draw-character , 302
draw-logo , 303
drop , 303
dup , 304
emit , 304
encode+ , 305
encode-bytes , 306
encode-int , 306
encode-phys , 306
encode-string , 307
end0 , 307
end1 , 307
erase-screen , 308
evaluate , 308
execute , 309
exit , 309
expect , 310
external-token , 311
fb1-blink-screen , 311
fb1-delete-lines , 312
fb1-draw-character , 312
fb1-draw-logo , 313
fb1-erase-screen , 313

fb1-insert-characters , 313
fb1-insert-lines , 314
fb1-install , 314
fb1-invert-screen , 315
fb1-reset-screen , 316
fb1-slide-up , 316
fb1-toggle-cursor , 316
fb8-blink-screen , 317
fb8-delete-characters , 317
fb8-delete-lines , 318
fb8-draw-character , 318
fb8-draw-logo , 318
fb8-erase-screen , 319
fb8-insert-characters , 319
fb8-insert-lines , 319
fb8-install , 320
fb8-invert-screen , 321
fb8-reset-screen , 321
fb8-toggle-cursor , 321
fcode-revision , 322
ferror , 323
fill , 325
find-method , 63, ?? to 69, 326
find-package , 64, 326
finish-device , 36, 74, 327
fontbytes , 328
frame-buffer-adr , 329
free-mem , 330
free-virtual , 330
get-inherited-property , 330
get-msecs , 331
get-my-property , 331
get-package-property , 332
get-token , 332
here , 334
hold , 334
i , 335
ihandle>phandle , 336
insert-characters , 336
insert-lines , 336
instance , 62, 337
inverse? , 337
inverse-screen? , 338
invert , 338
invert-screen , 339
is-install , 339

6 Writing FCode 3.x Programs —November 1997

is-remove , 341
is-selftest , 342
j , 343
key , 343
key? , 344
l! , 344
l, , 344
l@, 344
la+ , 345
la1+ , 345
lbflip , 345
lbflips , 345
lbsplit , 346
lcc , 346
left-parse-string , 75, 347
line# , 348
lpeek , 350
lpoke , 350
lshift , 350
lwflip , 351
lwflips , 351
lwsplit , 351
mac-address , 351
map-low , 352
mask, 352
max, 353
memory-test-suite , 353
min , 353
mod, 353
model , 115, 354
move, 355
ms, 355
my-address , 356
my-args , 75, 356
my-parent , 357
my-self , 64, 357
my-space , 357
my-unit , 77, 358
na+ , 358
named-token , 359
negate , 359
new-device , 59, 360
new-token , 360
next-property , 360
nip , 360
noop , 360

off , 361
on , 362
open-package , 64, 75, 362
or , 363
over , 363
pack , 363
parse-2int , 364
peer , 364
pick , 365
property , 115, 365
r> , 367
r@, 367
rb! , 368
rb@, 369
reg , 369
reset-screen , 370
rl! , 371
rl@ , 371
roll , 371
-rot , 372
rot , 372
rshift , 372
rw! , 372, 373
rw@, 373
sbus-intr>cpu , 374
screen-height , 375
screen-width , 375
set-args , 75, 375
set-font , 376
set-token , 376
sign , 377
span , 377
start0 , 378
start1 , 378
start2 , 378
start4 , 379
state , 379
suspend-fcode , 379
swap , 380
throw , 380
toggle-cursor , 381
tuck , 383
type , 383
u# , 383
u#> , 384
u#s , 384

Index 7

u. , 384
u.r , 387
u/mod , 386
u<, 384
u<= , 385
u>, 385
u>= , 385
u2/ , 385
um*, 386
um/mod, 386
unloop , 386
upc , 387
user-abort , 388
version1 , 389
w! , 391
wa+, 391
wa1+, 392
wbflip , 392
wbflips , 392
wbsplit , 392
window-left , 393
window-top , 394
within , 394
wljoin , 394
wpeek , 395
wpoke , 395
xor , 395, 397

find-device , 58
find-method , 63, ?? to 69, 326
find-package , 64, 326
finish-device , 36, 74, 327
fload , 26, 327
Forth

compile state, 12
interpret state, 12
programs, 33
stack, 12
tokenizing, 12
words, 11

G
get-inherited-property , 36
get-my-property , 36

H
height , 97

I
ihandle , 64

avoiding confusion with
phandle , 66

initialized data, 62
instance

arguments, 74
creation, 58
package, 58, 58
parameters, 74

instance , 62
instance chain, 59
instance-specific

data, 62
methods, 63

interpret, 57
interpret state, 12
interpreting FCode, 2, 34 to 36

L
left-parse-string , 75
linebytes , 98
loading/executing files

Forth over serial port A, 33
local-mac-address , 100
ls , 36

M
mac-address , 100
map?, 44
map-in , 48, 161
map-out , 161
mapping

packages, 77
max-frame-size , 101
max-latency , 9
methods

8 Writing FCode 3.x Programs —November 1997

calling other package methods, 66
executing, 63
instance-specific, 63
package, 58

min-grant , 9
model , 102, 115
my-args , 75
my-self , 64
my-unit , 77

N
name, 102
new-device , 59
node

machine, 107
SBus, 107
SCSI, 107

NVRAM parameters
setting, 28

NVRAM variable fcode-debug? , 24
nvramrc , 77

O
open-dev , 60
$open-package , 60, 65, 66, 75, 362

open-package , 64, 75, 362
organizationally unique identifier, 19
OUI, 19

P
package, 57

deblocker, 81
TFTP, 80

package method
reset , 71, 72
selftest , 72

package methods
reset , 71, 72

/packages , 64, 65, 78
packages

accessing, 74

active, 58
addressing, 76
and linking, 57
data, 58, 61
data definition, 73
instance, 58
instances, 58
interface, 58
mapping, 77
methods, 58, 71
plug-in, 57
properties, 58

packaging PCI FCode, 23
PCI

data structure, 5
device configuration register

access, 8
FCode PROM header format, 5

PCI expansion PROM
data structure, 6
header, 5
header format, 6

pcia , 46
pcia-probe-list , 49
pcib , 46, 49
pcib-probe-list , 49
pcimsg? , 24
phandle , 332

avoiding confusion with
ihandle , 66

phandle s, 64
phys.hi , 7, 48
phys.hi cell, 51
phys.lo , 7, 48
phys.mid , 7, 48
physical addresses, finding and using, 47
plug-in

device drivers, 70
package, 57
PCI device physical address, 49

probe, 57
probemsg? , 24
probe-self , 160

Index 9

probing sequence, 78
expansion bus, 29
modifying with NVRAM script, 29

programming style
FCode, 14 to 16

PROM
contents, 1

˙properties , 36
properties

"alternate-reg" , 92
"assigned-addresses" , 92
"big-endian-aperture" , 93
"fast-back-to-back" , 97
"has-fcode" , 97
#address-cells , 89
#size-cells , 89
address , 90
address-bits , 90
available , 92
block or byte device, 125
character-set , 93
compatible , 94
depth , 94
device_type , 95
devsel-speed , 96
display device, 86, 146
height , 97
linebytes , 98
list, 3
local-mac-address , 100
mac-address , 100
max-frame-size , 101
memory device, 87
model , 102
modifying from User Interface, 78
name, 3, 102, 359
network device, 87, 193
packages, 58
parent node, 87
ranges , 105
reg , 110, 358
serial device, 238
vendor-id , 115
width , 115

property

creation, 85, 115
decoding, 117
encoding, 116
modification, 115
name, 83
property value, 115
ranges , 107
reg , 107
retrieval, 116
standard names, 86
value, 3, 83
value array formats, 84

property , 115
pwd, 36

R
ranges , 105, 107
rb! , 368
rb@, 369
reg , 107, 110, 358, 369
reg property physical address format, 7,

8
reset , 71, 72
restricting system use, 25
reverse polish notation, 12
revision-id , 9
rl! , 371
rl@ , 371
rw! , 372, 373
rw@, 373

S
SBus

addressing, 161
node, 107

SBus addressing, 161
SCSI

node, 107
see , 36, 39
select-dev , 38 to 40, 60
selftest , 72

10 Writing FCode 3.x Programs —November 1997

set fcode-verbose? from
NVRAMRC, 24

set-args , 75
show-devs , 36
size

FCode PROM, 2
size.hi , 7
size.lo , 7
#size-cells , 89
source format

FCode, 11
stack, 12

comments, 13, 16
operation, 13

standard methods
decode-unit , 63

standard support packages, 78
state , 379
static data, 62
subsystem-id , 9
subsystem-vendor-id , 9
Sun Ultra-1 UPA/PCI-related nodes, 46
system cache line size, 45
system flags and FCode debugging, 24

T
TFTP

support, 80
tokenizer, 33

description, 25
directives, 21
macros, 20

tokenizer directives
.(, 260
\ , 264
]tokenizer , 382
alias , 270
decimal , 295
emit-byte , 305
external , 310
false , 311
fload , 26, 327

headerless , 333
headers , 333
hex , 334
offset16 , 361
tokenizer[, 382

tokenizer macros
" , 256
(.) , 258
(u.) , 385
." , 260
.d , 295
.h , 333
/c* , 283
/n* , 358
: , 261
; , 261
<<, 262
>>, 263
?, 263
?do , 302
?leave , 347
['] , 63, 264
1- , 266
1+, 266
2- , 267
2+, 267
3drop , 304
3dup , 304
accept , 269
again , 269
allot , 271
ascii , 272
begin , 276
blank , 278
buffer: , 62, 281
ca1+ , 283
carret , 285
case , 285
constant , 291
control , 292
create , 293
d# , 294
decimal , 295
decode-bytes , 295
defer , 62, 297

Index 11

do , 302
else , 304
endcase , 307
endof , 308
erase , 308
eval , 308
fcode-version1 , 322
fcode-version2 , 323
field , 324
h# , 332
if , 335
leave , 346
linefeed , 348
loop , 349
na1+ , 359
not , 360
of , 361
repeat , 370
s" , 373
s. , 374
space , 377
spaces , 377
struct , 379
then , 380
to , 381
true , 383
until , 387
value , 62, 388
variable , 62, 389
while , 393

tokenizing, 12

U
udf-supported , 9
unit-address , 358
unselect-dev , 40
unselect-device , 36
User Interface

*/ , 259
*/mod , 354
[, 264
[compile] , 291
] , 265
apply , 69

begin-package , 75
browsing device nodes, 36

˙properties , 36
dev , 36
device-end , 36
get-inherited-

property , 36
get-my-property , 36
ls , 36
pwd, 36
see , 36
show-devs , 36
words , 36

byte-load , 35
command line editor, 30
dev , 58
end-package , 35
execute-device-method , 69
find-device , 58
interpreting FCode, 34 to 36
modifying properties, 78
nvramrc , 77
open-dev , 60
s" , 373
testing a device driver, 38 to 42

begin-select-dev , 40
execute-device-method , 41
patch , 40
see , 39
select-dev , 38
unselect-dev , 40

unselect-device , 36

V
value

of property, 115
property, 3

value , 62
variable , 62
variable fcode-debug? , 24
vendor-id , 8, 115
Vital Product Data, 7, 53

12 Writing FCode 3.x Programs —November 1997

W
width , 115
words

FCode, 11
Forth, 11

words , 36

X
xxx clip-num , 50

Index 13

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduits
sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y
en a.

Des parties de ce produit pourront être derivées du système UNIX® et du système Berkeley 4.3 BSD licencié par l’Université de
Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open
Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, et Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains d’autres pays. Toutes les marques SPARC, utilisées sous license, sont des marques déposées ou enregistrées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

