
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

WorkShop: Beyond the Basics

Part No.: 802-7044-10
Revision A, December 1996

SunSoft, Inc.

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, Sun OS, Sun WorkShop, Sun WorkShop TeamWare, Sun Performance
WorkShop, Sun Visual WorkShop, LoopTool, LockLint, Thread Analyzer, Sun C, Sun C++, Sun FORTRAN, Answerbook, and
SunExpress are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All
SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. vii

Part 1 —Using Distributed Make

1. Using DistributedMake . 3

Basic Concepts . 3

What You Should Know About DMake Before You Use It 7

How to Use DMake . 13

Part 2 —Performance Tuning Multithreaded Programs

2. Multithreaded Concepts . 19

Basic Concepts . 20

The WorkShop MP/MT Solution . 20

Other Sources of Information . 21

3. Analyzing Loops . 23

Basic Concepts . 23

Setting Up Your Environment . 24

Creating a Loop Timing File . 25

iv WorkShop: Beyond the Basics—December 1996

Starting LoopTool. 26

Using LoopTool . 27

Other Compilation Options . 32

Compiler Hints. 34

Compiler Optimizations and How They Affect Loops 38

4. Analyzing Threads . 41

Basic Concepts . 42

Compiling and Instrumenting the Source. 43

Running an Experiment . 44

Starting Thread Analyzer . 44

Exiting Thread Analyzer . 46

Loading a Trace Directory. 46

Navigating the Thread Analyzer Glyph Hierarchy 47

Thread Analyzer Menus . 48

Thread Analyzer Usage Scenarios . 53

Part 3 —Visualizing Data

5. Data Visualization . 69

Basic Concepts . 69

Specifying Proper Array Expressions . 70

Automatic Updating of Array Displays 72

Changing Your Display . 73

Analyzing Data . 77

Fortran Example Program. 80

C Example Program. 81

Contents v

Part 4 —Advanced Debugging

6. Runtime Checking . 85

Basic Concepts . 85

Using RTC. 87

Using Access Checking . 87

Using Memory Use Checking. 90

Setting Options. 95

7. Using Fix and Continue . 97

Basic Concepts . 97

Fixing Your Program . 98

Continuing after Fixing . 99

Changing Variables after Fixing. 100

Index . 103

vi WorkShop: Beyond the Basics—December 1996

vii

Preface

Sun WorkShop offers advanced programming, analysis, and debugging
features that are covered in this volume, WorkShop: Beyond the Basics, including:

• DMake™
• LoopTool™
• Thread Analyzer™
• Data Visualization
• Advanced Debugging

Who Should Use This Book
WorkShop: Beyond the Basics is directed toward the advanced developer who is
building, analyzing, debugging, or optimizing distributed, multithreaded,
and/or multiprocessor applications and programs.

Before You Read This Book

For an overview and details about using the WorkShop suite of applications,
see WorkShop: Getting Started.

DMake users will find basic information about the Sun WorkShop TeamWare
suite of applications in Sun WorkShop TeamWare: User’s Guide and Sun WorkShop
TeamWare: Solutions Guide.

The WorkShop command-line applications and utilities are described in
WorkShop: Command-Line Utilities.

viii WorkShop: Beyond the Basics—December 1996

How This Book Is Organized
WorkShop: Beyond the Basics contains the following chapters:

Chapter 1, “Using DistributedMake,” explains how to use DMake.

Chapter 2, “Multithreaded Concepts,” describes the principles behind
multithreaded programs.

Chapter 3, “Analyzing Loops,” explains how to use LoopTool to analyze
program performance.

Chapter 4, “Analyzing Threads,” describes how to use Thread Analyzer to
perform analysis of threaded programs.

Chapter 5, “Data Visualization,” describes how to use the data visualizer to
visualize an array.

Chapter 6, “Runtime Checking” describes how to automatically detect
runtime errors in an application during the development phase.

Chapter 7, “Using Fix and Continue” describes how to quickly recompile
edited source code without stopping the debugging process.

How to Get Help
This release of WorkShop includes a new documentation delivery system as
well as online manuals and video demonstrations. To find out more, you can
start in any of the following places:

• Online Help – A new help system containing extensive task-oriented,
context-sensitive help. To access the help, choose Help ➤ Help Contents.
Help menus are available in all WorkShop windows.

• WorkShop Documentation – A complete set of online manuals. These
manuals make up the complete documentation set for WorkShop and are
available using AnswerBook™ or (at the user's option) using an HTML
browser. To access the online manuals, choose Help ➤ WorkShop Manuals
in any WorkShop window.

• Video Demonstrations – These demos provide a general overview of the
WorkShop and describe how to use WorkShop to build targets or debug
programs. To access them, choose Help ➤ Demos in the WorkShop main
window.

Preface ix

• Release Notes – The Release Notes contain general information about
WorkShop and specific information about software limitations and bugs. To
access the Release Notes, choose Help ➤ Release Notes.

How to Access the AnswerBook Documentation
To access the AnswerBook online documentation for WorkShop, you must run
a script to set up your environment.

1. To start AnswerBook, type the following at a command prompt:

% workshop-answerbooks

The script sets the AB_CARDCATALOG environment variable and runs
/usr/openwin/bin/answerbook . The AnswerBook Navigator opens and
displays the available AnswerBook documents.

2. Add the WorkShop AnswerBook documents to your library by clicking
the Modify Library button.
The AnswerBook Navigator: Modify Library window is displayed.

3. Select the AnswerBook documents you wish to add to your library from
the list; then click the Apply button.
The AnswerBook documents are added to your library.

4. To view an AnswerBook document, double-click on the title you wish to
view.

Related Books
The Sun WorkShop provides comprehensive documentation. Depending on
which version of WorkShop you have, the following books are available in
online and printed forms (except where noted). Some documents are available
with all WorkShop products, others are not (as noted).

x WorkShop: Beyond the Basics—December 1996

Sun WorkShop Documentation

Available with all WorkShop products.

WorkShop Roadmap (hard copy only) Provides a documentation map to the
WorkShop printed and online documentation. Includes a
complete list of the documentation included with your
WorkShop.

WorkShop Installation and
Licensing Guide

Provides instructions about product licensing and
installation of Workshop products on Solaris™ 2.x
systems. Provides instructions for local or remote
installation for single independent license servers,
multiple independent license servers, and redundant
license servers.

WorkShop Quick Install for
Solaris

Provides quick installation instructions for product
installation and licensing.

WorkShop: Getting Started Provides a basic introduction. This book provides the
information you need to use the basic WorkShop
features.

WorkShop: Beyond the Basics Contains information about the advanced programming,
debugging, browsing, and visualization applications in
the WorkShop product suite, including: DMake,
LoopTool, Thread Analyzer, WorkShop Browsing, and
WorkShop Visual.

WorkShop: Command-Line
Utilities

Provides reference information for all of the workshop
utilities that can be run directly from the command line,
including Loop Report, LockLint Utilities, sbquery, and
all the dbx commands.

WorkShop Online Help (online only) Contains extensive task-oriented
information for all the tools included with the WorkShop

WorkShop Video
Demonstrations

(online only) Three video demonstrations providing
information about WorkShop building and debugging as
well as general product information.

Release Notes (online only) Contains any information that was too late
to get into the other documentation. To access the
Release Notes, open any Help menu and then click on
Release Notes.

Manual Pages (online only) Provide information about the WorkShop
command-line utilities.

Preface xi

Sun WorkShop TeamWare Documentation

Available only with Performance WorkShop Fortran and Visual WorkShop
C++.

Sun Visual WorkShop C++ Documentation

Available only with Sun Visual WorkShop C++.

Sun WorkShop TeamWare:
User's Guide

Describes how to use all the tools in the TeamWare
toolset, for both the command- line interface and the
graphical user interface.

Sun WorkShop TeamWare:
Solutions Guide

Provides an in-depth case study and eight scenario-
based topics to help users take full advantage of
TeamWare's features.

Sun WorkShop TeamWare
Online Help

Provides succinct task-oriented information to help you
become familiar with the application. Help volume
includes video demonstrations.

Manual Pages (online only) Provide information about the TeamWare
command-line commands and utilities.

WorkShop documentation Visual WorkShop C++ contains the entire WorkShop and
TeamWare documentation sets.

C++ User’s Guide Describes how to use the Sun C++ compiler to write
programs in C++. It covers the C++ compiler options,
programs, templates, exception handling, and more. It is
intended for the experienced C++ programmer.

C++ Library Reference Describes how to use the complex, coroutine, and
iostream libraries, and it lists the manual pages (man
pages) for these libraries.

Tools.h++ User’s Guide Describes how to use the Tools.h++ libraries to make
programs more efficient.

Tools.h++ Class Library
Reference

Describes how to use the Tools.h++ class library, and also
describes a set of C++ classes that can simplify
programming while maintaining efficiency.

C++ 4.2 Quick Reference Card Provides concise descriptions of the C++ compiler flags.
C User’s Guide Describes how to use the Sun ANSI C compiler to write

programs in C. It covers the C compiler options, the
pragmas, the lint tool, the cscope tool, and more. It is
intended for the experienced C programmer.

Making the Transition to ANSI C(online only) Provides information about the transition
from K&R C to ANSI C.

C 4.2 Quick Reference Card Provides concise descriptions of the C compiler flags.

xii WorkShop: Beyond the Basics—December 1996

Sun Performance WorkShop Fortran Documentation

Available only with Sun Performance WorkShop Fortran.

WorkShop: Visual User’s Guide Explains how to use Visual, an interactive tool for
building graphical user interfaces (GUIs) using the
widgets of the standard OSF/Motif toolkit or Microsoft
Foundation Class. It includes a tutorial as well as
reference information for the more advanced user.

Sun WorkShop 2.0 Visual Quick
Reference Card

Contains menu shortcuts and icon explanations for
Visual.

Numerical Computation Guide Describes the floating-point software and hardware for
the SPARC™, Intel, HP 700, and PowerPC system
architectures. It also contains a tutorial on floating-point
arithmetic.

Incremental Link Editor Describes how to use ild as an incremental linker to
replace ld for linking programs. ild allows you to
complete the development sequence more quickly than
is possible with a standard linker.

Performance Profiling Tools Describes the prof (1), gprof (1), and tcov (1) utilities
Manual Pages (online only) Provides information about the command-

line commands and utilities included with Visual
WorkShop C++.

WorkShop documentation Performance WorkShop Fortran contains the entire
WorkShop and TeamWare documentation sets.

Fortran User’s Guide Describes how to use the Sun Fortran 77 4.0 and Fortran
90 1.2 compilers, including the compiler command
options, debugging and development tools, program
profiling and performance tuning, mixing C and Fortran,
and making and using libraries. It is intended for
programmers with knowledge of Fortran.

FORTRAN 77 Language
Reference

Describes and defines the Fortran 77 language accepted
by the Sun f77 compiler under Solaris 1.x and 2.x. It is
intended for use by programmers with knowledge of
and experience with Fortran.

Fortran Programmer’s Guide Provides the essential information programmers need to
develop efficient applications using the Fortran 77 and
Fortran 90 compilers. Includes information on
input/output, program development, use and creation of
software libraries, program analysis and debugging,
numerical accuracy, porting, performance, optimization,
parallelization, and the C/Fortran interface.

Preface xiii

Sun WorkShop Professional Pascal Documentation

Available only with Sun WorkShop Professional Pascal.

Fortran Library Reference (online only) Describes the language and routines of the
Fortran compilers.

Sun Performance Library 1.2
Quick Reference Card

Provides a quick reference to Sun Performance Library
language routines with brief descriptions.

Fortran 90 Handbook (online only) Contains user-level information about this
release of Fortran90.

 Fortran 90 Browser Describes how to use the Sun Fortran 90 Browser, one of
the development tools in the f90 package, to view
Fortran 90 source code. It is intended for programmers
with knowledge of Fortran 90.

Fortran Quick Reference Card Lists the f77 4.0 compiler's command-line options with
brief descriptions.

C User’s Guide Describes how to use the Sun ANSI C compiler to write
programs in C. It covers the C compiler options, the
pragmas, the lint tool, the cscope tool, and more. It is
intended for the experienced C programmer.

Making the Transition to ANSI C(online only) Provides information about the transition
from K&R C to ANSI C.

C 4.2 Quick Reference Card Describes the C compiler options in a concise and easy-
to-read format.

Numerical Computation Guide Describes the floating-point software and hardware for
the SPARC™, Intel, HP 700, and PowerPC system
architectures. It also contains a tutorial on floating-point
arithmetic.

Incremental Link Editor Describes how to use ild as an incremental linker to
replace ld for linking programs. ild allows you to
complete the development sequence more quickly than
is possible with a standard linker.

Performance Profiling Tools Describes the prof (1), gprof (1), and tcov (1) utilities.
Manual Pages (online only) Provide information about the Fortran

command-line commands and utilities included with
Performance WorkShop Fortran.

WorkShop documentation WorkShop Professional Pascal contains the entire
WorkShop documentation set.

xiv WorkShop: Beyond the Basics—December 1996

Sun WorkShop Professional C Documentation

Available with Sun WorkShop Professional C only.

Pascal User’s Guide Describes how to begin writing and compiling Pascal
programs for the Solaris computing environment. Pascal
is a derivative of the Berkeley Pascal system distributed
with UNIX®4.2 BSD. It complies with FIPS PUB 109
ANSI/IEEE 770 X3.97-1983 and BS6192/ISO7185 at both
level 0 and level 1, and it includes many extensions to
the standard.

Pascal Language Reference Provides reference material for the Pascal 4.0 compiler,
an implementation of the Pascal language that includes
all the standard language elements and many extensions.
Pascal 4.0 contains a compiler switch, -xl , to provide
compatibility with Apollo DOMAIN Pascal to ease the
task of porting your Apollo Pascal applications to
workstations.

Pascal 4.2 Quick Reference Card Lists all of the Pascal 4.2 compiler options with a brief,
one-line description of each option.

Numerical Computation Guide Describes the floating-point software and hardware for
the SPARC™, Intel, HP 700, and PowerPC system
architectures. It also contains a tutorial on floating-point
arithmetic.

Incremental Link Editor Describes how to use ild as an incremental linker to
replace ld for linking programs. ild allows you to
complete the development sequence more quickly than
is possible with a standard linker.

Performance Profiling Tools Describes the prof (1), gprof (1), and tcov (1) utilities.
Manual Pages (online only) Provide information about the command-

line commands and utilities included with WorkShop
Professional Pascal.

WorkShop documentation WorkShop Professional C contains the entire WorkShop
documentation set.

C User’s Guide Describes how to use the Sun ANSI C compiler to write
programs in C. It covers the C compiler options, the
pragmas, the lint tool, the cscope tool, and more. It is
intended for the experienced C programmer.

Making the Transition to ANSI C(online only) Provides information about the transition
from K&R C to ANSI C.

C 4.2 Quick Reference Card Describes the C compiler options in a concise and easy-
to-read format.

Preface xv

Other Related Documentation

Ordering Additional Hardcopy Documentation
You can order additional copies of the hard copy documentation by calling
SunExpress at 1-800-USE-SUNX, or visiting their web page at

http://sunexpress.usec.sun.com

Sun on the World Wide Web
World Wide Web (WWW) users can view Sun’s Developer Products site at the
following URL:

http://sun-www.EBay.Sun.COM:80/sunsoft/Developer-products/
products.html

This area is updated regularly and contains helpful information, including
current release and configuration tables, special programs, and success stories.

Numerical Computation Guide Describes the floating-point software and hardware for
the SPARC™, x86, HP 700 and PowerPC system
architectures. It also contains a tutorial on floating-point
arithmetic.

Incremental Link Editor Describes how to use ild as an incremental linker to
replace ld for linking programs. ild allows you to
complete the development sequence more quickly than
is possible with a standard linker.

Performance Profiling Tools Describes the prof (1), gprof (1), and tcov (1) utilities.
Manual Pages (online only) Provides information about the command-

line commands and utilities included with WorkShop
Professional C.

Threads Primer: A Guide to
Multithreaded Programming

(ISBN 0-13-443698-9) This SunSoft Press book by Bill
Lewis and Daniel J. Berg provides a basic understanding
of threads—what they are, how they work, and why they
are useful.

xvi WorkShop: Beyond the Basics—December 1996

Sun Education Classes
Sun Educational Services offers the following class for programmers who are
developing multithreaded applications:

Multithreaded Applications Programming (#SI-260)

This class shows you how to design, write, and debug multithreaded
applications using the Solaris 2+ libthread user threads library. The class is
designed for experienced C programmers who are proficient in system
interface programming.

For more information about this class, contact Sun Education by telephone or
email:

Sun Education Registrar 1-800-422-8020 or (408) 263-9367

training_seats@sun.com (schedule and availability)

edbrochure@sun.com (class description)

Or go to the Sun Educational Services Web site:

http://www.sun.com/sunservice/suned

Solaris Technology Camp
Multithreading Camp is offered through Solaris Technology Camps. Space and
availability are extremely limited. For dates, locations, prerequisites, course
overview, an online registration form, and other information, open the
following URL:

http://www.sun.com/cgi-bin/show?sunsoft/Dev-progs/oldfiles/tech-
camp.html

Preface xvii

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
onscreen computer output

Edit your.login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with onscreen computer
output

 machine_name% su
 Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

Korn shell running dbx (dbx)

xviii WorkShop: Beyond the Basics—December 1996

Part 1 — Using Distributed Make

3

Using DistributedMake 1

This chapter describes the way DistributedMake (DMake) distributes builds
over several hosts to build programs concurrently over a number of
workstations or multiple CPUs.

Basic Concepts
DistributedMake (DMake) allows you to concurrently distribute the process of
building large projects, consisting of many programs, over a number of
workstations and, in the case of multiprocessor systems, over multiple CPUs.
DMake parses your makefiles and:

• Determines which targets can be built concurrently

• Distributes the build of those targets over a number of hosts designated by
you

DMake is a superset of the make utility.

To understand DMake, you should know about the following:

• Configuration files
• Runtime
• Build server

Basic Concepts page 3

What You Should Know About DMake Before You Use It page 7

How to Use DMake page 13

4 Sun Workshop TeamWare Users Guide—December 1996

1

• The DMake host
• The build server

Configuration Files

DMake consults two files to determine to which build servers jobs are
distributed and how many jobs can be distributed to each.

Runtime Configuration File

DMake searches for a runtime configuration file on the DMake host to know
where to distribute jobs. Generally, this file is in your home directory on the
DMake host and is named .dmakerc . It consists of a list of build servers and
the number of jobs to be distributed to each build server. See “The DMake
Host” on page 4 for more information.

Build Server Configuration File

The /etc/opt/SPROdmake/dmake.conf file is in the file system of build
servers. It is used to specify the maximum total number of DMake jobs that can
be distributed to it by all DMake users. See “The Build Server” on page 7 for
more information.

The DMake Host

DMake searches for a runtime configuration file to know where to distribute
jobs. Generally, this file must be in your home directory on the DMake host
and is named .dmakerc . DMake searches for the runtime configuration file in
these locations and in the following order:

1. The path name you specify on the command line using the -c option

2. The path name you specify using the DMAKE_RCFILE makefile macro

3. The path name you specify using the DMAKE_RCFILE environment
variable

4. $(HOME)/.dmakerc

Using DistributedMake 5

1

If a runtime configuration file is not found, DMake distributes two jobs to the
DMake host. You edit the runtime configuration file so that it consists of a list
of build servers and the number of jobs you want distributed to each build
server. The following is an example of a .dmakerc file:

• The entries: falcon, hawk, eagle, heron, and avocet are listed build servers.

• You can specify the number of jobs you want distributed to each build
server. The default number of jobs is two.

• Any line that begins with the “#” character is interpreted as a comment.

Note – This list of build servers includes falcon which is also the DMake host.
The DMake host can also be specified as a build server. If you do not include it
in the runtime configuration file, no DMake jobs are distributed to it.

You can also construct groups of build servers in the runtime configuration file.
This provides you with the flexibility of easily switching between different
groups of build servers as circumstances warrant. For instance you may define
a different group of build servers for builds under different operating systems,
or on groups of build servers that have special software installed on them.

My machine. This entry causes dmake to distribute to it.
falcon { jobs = 1 }
hawk
eagle { jobs = 3 }
Manager’s machine. She’s usually at meetings
heron { jobs = 4 }
avocet

6 Sun Workshop TeamWare Users Guide—December 1996

1

The following is an example of a runtime configuration file that contains
groups of build servers:

• Formal groups are specified by the “group” directive and lists of their
members are delimited by braces ({}).

• Build servers that are members of groups are specified by the optional
“host” directive.

• Groups can be members of other groups.

• Individual build servers can be listed in runtime configuration files that also
contain groups of build servers; in this case DMake treats these build
servers as members of the unnamed group.

In order of precedence, DMake distributes jobs to:

earth { jobs = 2 }
mars { jobs = 3 }

group lab1 {
host falcon{ jobs = 3 }
host hawk
host eagle { jobs = 3 }

}

group lab2 {
host heron
host avocet{ jobs = 3 }
host stilt { jobs = 2 }

}

group labs {
group lab1
group lab2

}

group sunos5.x {
group labs
host jupiter
host venus{ jobs = 2 }
host pluto { jobs = 3 }

}

Using DistributedMake 7

1

1. The formal group specified on the command-line as an argument to the -g
option

2. The formal group specified by the DMAKE_GROUP makefile macro

3. The formal group specified by the DMAKE_GROUP environment variable

4. The first group specified in the runtime configuration file.

The Build Server

The /etc/opt/SPROdmake/dmake.conf file is in the file system of build
servers. Use this file to limit the maximum total number of DMake jobs (from
all users) that can run concurrently on a build server. The following is an
example of an /etc/opt/SPROdmake.conf file . This file sets the
maximum number of DMake jobs permitted to run on a build server (from all
DMake users) to be eight.

Note – If the /etc/opt/SPROdmake.conf file does not exist on a build
server, no DMake jobs will be allowed to run on that server.

What You Should Know About DMake Before You Use It
To use DMake, you use the executable file (dmake) in place of the standard
make utility. You should understand the Solaris make utility before you use
DMake. If you need to read more about the make utility see the Programming
Utilities Guide in the Solaris 2.5 Software Developer AnswerBook documentation
set. If you use the make utility, the transition to DMake requires little if any
alteration.

DMake’s Impact on Makefiles

The methods and examples shown in this section present the kinds of
problems that lend themselves to solution with DMake. This section does not
suggest that any one approach or example is the best. Compromises between
clarity and functionality were made in many of the examples.

jobs: 8

8 Sun Workshop TeamWare Users Guide—December 1996

1

As procedures become more complicated, so do the makefiles that implement
them. You must know which approach will yield a reasonable makefile that
works. The examples in this section illustrate common code-development
predicaments and some straightforward methods to simplify them using
DMake.

Using Makefile Templates

If you use a makefile template from the outset of your project, custom
makefiles that evolve from the makefile templates will be:

• More familiar
• Easier to understand
• Easier to integrate
• Easier to maintain
• Easier to reuse

The less time you spend editing makefiles, the more time you have to develop
your program or project.

Building Targets Concurrently

Large software projects typically consist of multiple independent modules that
can be built concurrently. DMake supports concurrent processing of targets on
a multiple machines over a network. This concurrency can markedly reduce
the time required to build a large project.

When given a target to build, DMake checks the dependencies associated with
that target, and builds those that are out of date. Building those dependencies
may, in turn, entail building some of their dependencies. When distributing
jobs, DMake starts every target that it can. As these targets complete, DMake
starts other targets. Nested invocations of DMake are not run concurrently by
default, but this can be changed (see “Restricting Parallelism” on page 12 for
more information).

Since DMake builds multiple targets concurrently, the output of each build is
produced simultaneously. To avoid intermixing the output of various
commands, DMake collects output from each build separately. DMake displays
the commands before they are executed. If an executed command generates

Using DistributedMake 9

1

any output, warnings, or errors, DMake displays the entire output for that
command. Since commands started later may finish earlier, this output may be
displayed in an unexpected order.

Limitations on Makefiles

Concurrent building of multiple targets places some restrictions on makefiles.
Makefiles that depend on the implicit ordering of dependencies may fail when
built concurrently. Targets in makefiles that modify the same files may fail if
those files are modified concurrently by two different targets. Some examples
of possible problems are discussed in this section.

Dependency Lists
When building targets concurrently, it is important that dependency lists be
accurate. For example, if two executables use the same object file but only one
specifies the dependency, then the build may cause errors when done
concurrently. For example, consider the following makefile fragment:

When built serially, the target aux.o is built as a dependent of prog1 and is
up-to-date for the build of prog2 . If built in parallel, the link of prog2 may
begin before aux.o is built, and is therefore incorrect. The .KEEP_STATE
feature of make detects some dependencies, but not the one shown above.

Explicit Ordering of Dependency Lists
Other examples of implicit ordering dependencies are more difficult to fix. For
example, if all of the headers for a system must be constructed before anything
else is built, then everything must be dependent on this construction. This
causes the makefile to be more complex and increases the potential for error
when new targets are added to the makefile. The user can specify the special
target .WAIT in a makefile to indicate this implicit ordering of dependents.
When DMake encounters the .WAIT target in a dependency list, it finishes
processing all prior dependents before proceeding with the following

all: prog1 prog2
prog1: prog1.o aux.o

$(LINK.c) prog1.o aux.o -o prog1
prog2: prog2.o

$(LINK.c) prog2.o aux.o -o prog2

10 Sun Workshop TeamWare Users Guide—December 1996

1

dependents. More than one .WAIT target can be used in a dependency list. The
following example shows how to use .WAIT to indicate that the headers must
be constructed before anything else.

You can add an empty rule for the .WAIT target to the makefile so that the
makefile is backward-compatible.

Concurrent File Modification
You must make sure that targets built concurrently do not attempt to modify
the same files at the same time. This can happen in a variety of ways. If a new
suffix rule is defined that must use a temporary file, the temporary file name
must be different for each target. You can accomplish this by using the
dynamic macros $@ or $* . For example, a .c.o rule which performs some
modification of the .c file before compiling it might be defined as:

Concurrent Library Update
Another potential concurrency problem is the default rule for creating libraries
that also modifies a fixed file, that is, the library. The inappropriate .c.a rule
causes DMake to build each object file and then archive that object file. When
DMake archives two object files in parallel, the concurrent updates will corrupt
the archive file.

all: hdrs .WAIT libs functions

.c.o:
awk -f modify.awk $*.c > $*.mod.c
$(COMPILE.c) $*.mod.c -o $*.o
$(RM) $*.mod.c

.c.a:
$(COMPILE.c) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Using DistributedMake 11

1

A better method is to build each object file and then archive all the object files
after completion of the builds. An appropriate suffix rule and the
corresponding library rule are:

Multiple Targets
Another form of concurrent file update occurs when the same rule is defined
for multiple targets. An example is a yacc (1) program that builds both a
program and a header for use with lex (1). When a rule builds several target
files, it is important to specify them as a group using the + notation. This is
especially so in the case of a parallel build.

This rule is actually equivalent to the two rules:

The serial version of make builds the first rule to produce y.tab.c and then
determines that y.tab.h is up-to-date and need not be built. When building
in parallel, DMake checks y.tab.h before yacc has finished building
y.tab.c and notices that it does need to be built, it then starts another yacc in
parallel with the first one. Since both yacc invocations are writing to the same
files (y.tab.c and y.tab.h), these files are apt to be corrupted and incorrect.
The correct rule uses the + construct to indicate that both targets are built
simultaneously by the same rule. For example:

.c.a:
$(COMPILE.c) -o $% $<

lib.a: lib.a($(OBJECTS))
$(AR) $(ARFLAGS) $(OBJECTS)
$(RM) $(OBJECTS)

y.tab.c y.tab.h: parser.y
$(YACC.y) parser.y

y.tab.c: parser.y
$(YACC.y) parser.y

y.tab.h: parser.y
$(YACC.y) parser.y

y.tab.c + y.tab.h: parser.y
$(YACC.y) parser.y

12 Sun Workshop TeamWare Users Guide—December 1996

1

Restricting Parallelism

Sometimes file collisions cannot be avoided in a makefile. An example is
xstr (1), which extracts strings from a C program to implement shared strings.
The xstr command writes the modified C program to the fixed file x.c and
appends the strings to the fixed file strings . Since xstr must be run over
each C file, the following new .c.o rule is commonly defined:

DMake cannot concurrently build targets using this rule since the build of each
target writes to the same x.c and strings files, nor is it possible to change
the files used. You can use the special target .NO_PARALLEL: to tell DMake not
to build these targets in concurrently. For example, if the objects being built
using the .c.o rule were defined by the OBJECTS macro, the following entry
would force DMake to build those targets serially:

If most of the objects must be built serially, it is easier and safer to force all
objects to default to serial processing by including the .NO_PARALLEL: target
without any dependents. Any targets that can be built in parallel can be listed
as dependencies of the .PARALLEL: target:

Nested Invocations of DistributedMake
When DMake encounters a target that invokes another DMake command, it
builds that target serially, rather than concurrently. This prevents problems
where two different DMake invocations attempt to build the same targets in
the same directory. Such a problem might occur when two different programs
are built concurrently, and each must access the same library. The only way for
each DMake invocation to be sure that the library is up-to-date is for each to
invoke DMake recursively to build that library. DMake only recognizes a
nested invocation when the $(MAKE) macro is used in the command line.

.c.o:
$(CC) $(CPPFLAGS) -E $*.c | xstr -c -
$(CC) $(CFLAGS) $(TARGET_ARCH) -c x.c
mv x.o $*.o

.NO_PARALLEL: $(OBJECTS)

.NO_PARALLEL:

.PARALLEL: $(LIB_OBJECT)

Using DistributedMake 13

1

If you nest commands that you know will not collide, you can force them to be
done in parallel by using the .PARALLEL: construct.

When a makefile contains many nested commands that run concurrently, the
load-balancing algorithm may force too many builds to be assigned to the local
machine. This may cause high loads and possibly other problems, such as
running out of swap space. If such problems occur, allow the nested
commands to run serially.

How to Use DMake
You execute dmake on a DMake host and distribute jobs to build servers. You can
also distribute jobs to the DMake host, in which case it is also considered to be
a build server. DMake distributes jobs based on makefile targets that DMake
determines (based on your makefiles) can be built concurrently. You can use
any machine as a build server that meets the following requirements:

• From the DMake host (the machine you are using) you must be able to use
rsh , without being prompted for a password, to remotely execute
commands on the build server. See man rsh (1) or the system AnswerBook
for more information about the rsh command. For example:

• The bin directory in which the DMake software is installed must be
accessible from the build server. See the share (1M) and mount (1M) man
pages or the system AnswerBook for more information.

• The bin directory in which the DMake software is installed must be in your
execution path when you rsh to the build server. Be sure this directory is
added to the PATH variable in your .cshrc file (or equivalent), not in your
.login file. You can verify this as follows:

• The source hierarchy you are building must be:
• accessible from the build server

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

demo% rsh build_server which dmake
/opt/SUNWspro/bin/dmake

14 Sun Workshop TeamWare Users Guide—December 1996

1

• mounted under the same name

From the DMake host you can control which build servers are used and how
many DMake jobs are allotted to each build server. The number of DMake jobs
that can run on a given build server can also be limited on that server.

Notes
• If you specify the -m option with the “parallel” argument, or set the

DMAKE_MODE variable or macro to the value “parallel,” DMake does not
scan your runtime configuration file. Therefore, you must specify the
number of jobs using the -j option or the DMAKE_MAX_JOBS
variable/macro. If you do not specify a value this way, a default of two jobs
is used.

• If you modify the maximum number of jobs using the -j option, or the
DMAKE_MAX_JOBS variable/macro when using DMake in distributed
mode (DMake default, or specified either by option, variable or macro), the
value you specify overrides the values listed in the runtime configuration
file. The value you specify is used as the total number of jobs that can be
distributed to all build servers.

Controlling DistributedMake Jobs

The distribution of DMake jobs is controlled in two ways:

1. A DMake user on a DMake host can specify the machines they want to use
as build servers and the number of jobs they want to distribute to each build
server.

2. The “owner” on a build server can control the maximum total number of
DMake jobs that can be distributed to that build server. The owner is a user
that can alter the /etc/opt/SPROdmake/dmake.conf file.

Note – If you access DMake from the GUI (Building) use the online help to
know how to specify your build servers and jobs. If you access DMake from
the CLI see the DMake man page (dmake.1).

Using DistributedMake 15

1

Getting Help on the GUI or the CLI

DMake is fully implemented in both the GUI and CLI. To use DMake from the
GUI, see the Sun WorkShop TeamWare online help.

To Access the Online Help

1. Open any Sun WorkShop TeamWare GUI from the Sun WorkShop.

2. Or, open any Sun WorkShop TeamWare from the command line. For
example, to open the Configuring GUI, enter the following:

3. Open the pull-down menu from the Help button.

4. Click on Help Contents.

To Access Help for the CLI

♦ To access the manual page for information on how to use DMake from the
CLI, enter the following. The manual page gives information on all
command-line options, variables, and macros necessary to use DMake.

demo% twconfig &

demo% man dmake.1

16 Sun Workshop TeamWare Users Guide—December 1996

1

Part 2 — Performance Tuning
Multithreaded Programs

19

Multithreaded Concepts 2

This chapter provides a brief overview of Sun WorkShop multithreaded
development tools, extending Sun’s development tools and SPARCompiler
language systems with support for development of high-performance MP/MT
(multiprocessing/multithreaded) applications.

Sun WorkShop includes multithreaded extensions to the SPARCworks
Debugger as well as multiprocessor extensions to the SPARCompiler Fortran
and C language systems. Sun WorkShop includes three tools to help you
develop MP/MT applications:

• LoopTool, a graphical user interface (GUI) application with full on-line help
• Thread Analyzer, which uses a GUI, but does not currently support on-line

help
• LockLint, a command-line application, which is covered in Sun WorkShop:

Command Line Utilities

This chapter contains the following sections:

Basic Concepts page 20

The WorkShop MP/MT Solution page 20

Other Sources of Information page 21

20 WorkShop: Beyond the Basics—December 1996

2

Basic Concepts
Multiprocessing systems and multithreaded operating environments enable
new levels of performance, responsiveness, and flexibility for applications that
use parallelism in their implementation. Solaris user-level threads offer a
powerful model for parallel, multithreaded applications that take advantage of
SPARC multiprocessor and uniprocessor systems.

The benefits of threading your application include:

• Increased performance on multiprocessor systems (which are I/O and
compute intensive)

• Increased performance on uniprocessor systems (which are I/O intensive)
• More efficient resource usage (for existing parallel applications that run in

multiple processes)

The WorkShop MP/MT Solution
Sun WorkShop supports two approaches to MP/MT application development:

• Most C and C++ developers (and some Fortran developers) thread their
applications by programming directly against Solaris user-level threads via
the libthread library. With WorkShop’s MP/MT applications, you can run
the multithread extension to the debugger for debugging programs that use
Solaris user-level threads. Use LockLint to statically check your program for
consistent use of locks and potential race conditions. Use the Thread
Analyzer to gather and display prof and gprof information for threaded
(including auto-parallelized) programs.

• Many compute-intensive Fortran applications exhibit loop-level parallelism,
where computations are performed over large datasets in loops. Sun
WorkShop lets you use this parallelism through automatic parallelization of
Fortran 77, Fortran 90, and C programs. Use the compiler to parallelize
loops in your program. Use LoopTool to examine loops parallelized by the
Fortran 77, Fortran 90, or C compiler.

Multithreaded Concepts 21

2

Other Sources of Information
The following documents contain code examples as well as conceptual
information about Solaris threads on Solaris 2, and are suggested reading for
developers who are designing and writing MP/MT applications.

Document Author/Part Number

Threads Primer: A Guide to Multithreaded Programming p/n 801-3176-10

Implementing Lightweight Threads D. Stein, D. Shah — Sunsoft, Inc
USENIX—June 1992—San Antonio, TX

SunOS Multithreaded Architecture M.L. Powell, S.R. Kleiman, S. Barton, D. Shah,
D. Stein, M. Weeks — Sun Microsystems, Inc.
USENIX—Winter 1991— Dallas, TX

Writing Multithreaded Code in Solaris S. Kleiman, B. Smaalders, D. Stein, D. Shah —
SunSoft, Inc.

22 WorkShop: Beyond the Basics—December 1996

2

23

Analyzing Loops 3

The Fortran MP and MP C compilers automatically parallelize loops for which
they determine that it is safe and profitable to do so. LoopTool is a
performance analysis tool that reads loop timing files created by these
compilers. LoopTool has a graphical user interface (GUI); LoopReport (which
is discussed in Sun WorkShop: Command Line Utilities) is the command-line
version of LoopTool.

This chapter is organized as follows:

Basic Concepts
LoopTool’s main features include the ability to:

• Time all loops, whether serial or parallel

• Produce a table of loop timings

Basic Concepts page 23

Setting Up Your Environment page 24

Creating a Loop Timing File page 25

Starting LoopTool page 26

Using LoopTool page 27

Other Compilation Options page 32

Compiler Hints page 34

Compiler Optimizations and How They Affect Loops page 38

24 WorkShop: Beyond the Basics—December 1996

3

• Collect hints from the compiler during compilation. These hints can help
you parallelize loops that were not parallelized. Hints are described further
in “Compiler Hints” on page 34.

LoopTool displays a graph of loop runtimes and shows which loops were
parallelized. You can go directly from the graphical display of loops to the
source code for any loop you want, so you can edit your source code while in
LoopTool.

LoopReport is the command-line version of LoopTool. For more information
about LoopReport, see SunSoft WorkShop: Command Line Options.

Using LoopTool is like using gprof . The three major steps are: compile, run,
and analyze.

Note – The following examples use the Fortran MP (f77 and f90) compiler. The
options shown (such as -xparallel , -Zlp) also work for MP C.

Setting Up Your Environment
1. Before compiling, set the environment variable PARALLEL to the number

of processors on your machine.
The following command makes use of psrinfo , a system utility. Note the
backquotes:

Note – If you have installed LoopTool in a nondefault directory, substitute that
path for the one shown here.

2. Before starting LoopTool, make sure the environment variable
XUSERFILESEARCHPATH is set:

% setenv PARALLEL ‘/usr/sbin/psrinfo | wc -l‘

% setenv XUSERFILESEARCHPATH \
 /opt/SUNWspro/lib/sunpro_defaults/looptool.res

Analyzing Loops 25

3

3. Set LD_LIBRARY_PATH.
If you are running Solaris 2.5:

If you are running Solaris 2.3 or 2.4:

You may want to put these commands in a shell startup file (such as .cshrc or
.profile).

Creating a Loop Timing File
To compile for automatic parallelization, typical compilation switches are
-xparallel and -xO4 . To compile for LoopTool, add -Zlp , as shown in the
following example:

Note – All examples apply to Fortran 77, Fortran 90 and C programs.

For additional information, see “Loading a Timing File” on page 26.

There are a number of other useful options for looking at and parallelizing
loops. Some of these options are shown in Table 3-1 below.

For more information, see “Other Compilation Options” on page 32.

% setenv LD_LIBRARY_PATH /usr/dt/lib:$LD_LIBRARY_PATH

% setenv LD_LIBARY_PATH \
 /opt/SUNWspro/Motif_Solaris24/dt/lib:$LD_LIBRARY_PATH

% f77 -xO4 -xparallel -Zlp source_file

Table 3-1 Some Useful Compiler Options

Option Effect

-o program Renames the executable to program

-xexplicitpar Parallelizes loops marked with DOALL pragma

-xloopinfo Prints hints to stderr for redirection to files

26 WorkShop: Beyond the Basics—December 1996

3

Run The Program

After compiling with -Zlp , run the instrumented executable. This creates the
loop timing file, program.looptimes . LoopTool processes two files: the
instrumented executable and the loop timing file.

Starting LoopTool
You can start LoopTool by giving it the name of a program (that is, an
executable) to load:

You can also start the tools with no files specified. In this case, LoopTool’s file
chooser comes up automatically so you can select a file to examine:

LoopReport is usually started like this:

Loading a Timing File

LoopTool reads the timing file associated with your program. The timing file
contains information about loops. Typically, this file has a name of the format
program.looptimes and is in the same directory as your program.

By default, LoopTool looks in the executable’s directory for a timing file.
Therefore, if the timing file is there (the usual case), you don’t need to specify
where to look for it:

% looptool program &

% looptool &

% loopreport program &

% looptool program &

Analyzing Loops 27

3

If you name a timing file on the command line, then LoopTool and LoopReport
use it.

If you use the command line option -p , LoopTool and LoopReport check for a
timing file in the directory indicated by -p :

If the environment variable LVPATH is set, the tools check that directory for a
timing file.

Using LoopTool

The Main Window

The main window displays the runtimes of your program’s loops in a bar chart
arranged in the order that the source files were presented to the compiler.

% looptool program program.looptimes &

% looptool -p timing_file_directory program &

% setenv LVPATH timing_file_directory
% looptool program &

28 WorkShop: Beyond the Basics—December 1996

3

Figure 3-1 shows the components of the main window.

Figure 3-1 LoopTool Main Window

Opening Files

Choose File ➤ Open from the File menu in the main window to open
executable and timing files.

There are two ways to specify the files you want to open:

• Type in the name of the files to open

Location of loop (name of
source file and line number
of first statement of loop)

The graph displays only
loops which account for the
percentage of the program
time that you enter here (for
example, a loop must
account for 2% or more of
the total program’s total
runtime to be displayed)

Name and location of the program

Displays a pop-up window
for loading executable and
timing files

Displays a pop-up window
for printing this graph

Specifies which editor to
use for editing source code

Click on loop to go to it in the source
code and to see compiler hints about it
(see Figure 3-3)

Creates a report on loop-
times of all loops in this
program and explains all
compiler hints (see
Figure 3-2)

Help menu: contains online
help for using LoopTool;
onitem help; a method for
sending comments about
the tool; information about
LoopTool

The horizontal axis of the
graph can be either seconds
or percentage of total runtime
(for example, it can show that
a loop takes 6 seconds or
25% of runtime)

Analyzing Loops 29

3

• Bring up a file chooser.

Once you’ve typed in the executable’s path, you don’t need to type in the
timing file, unless it’s in a different directory or has a non-default name (or
both).

For more information about opening files, see the LoopTool section of the
WorkShop Online Help.

Creating a Report on All Loops

Choose File ➤ Create Report from the File menu in the main window to open
a window with detailed information on all the loops in your program (see
Figure 3-2). The Help button in the report window links to the WorkShop
Online Help section containing compiler hints.

Figure 3-2 LoopReport

Printing the LoopTool Graph

1. Choose File ➤ Print Graph from the File menu in the main window to
open the Print pop-up window.

Explains the loop
report and all
compiler hints

30 WorkShop: Beyond the Basics—December 1996

3

2. Choose whether to print the graph of put it in a file.

3. Enter the name of the printer or filename where you want to send the
graph.

For more information about printing see the WorkShop Online Help.

Choosing an Editor

Choose File ➤ Options from the File menu in the main window to open the
Options pop-up window.

The Options pop-up window lets you choose an editor for editing source code.
The editors are vi , gnuemacs , and xemacs . See “Getting Hints and Editing
Source Code” on page 30 for more on editing source code.

Note – vi and xemacs are installed with LoopTool into your install directory
(usually /opt/SUNWspro/bin) if they’re not already on your system. You
must provide gnuemacs yourself. In all cases, the editor you want must be in
a directory that’s in your search path in order for LoopTool to find it. For
example, your PATH environment variable should include /usr/ucb if that’s
where vi is located on your system.

For more information about choosing an editor see the WorkShop Online Help.

Getting Hints and Editing Source Code

Clicking a loop in the main window (Figure 3-1) does two things:

• It brings up a window in which you can edit your source code (Figure 3-3).
The available editors are vi , xemacs , and gnuemacs . See “Choosing an
Editor” on page 30 for more information on choosing an editor.

For information on vi , see the vi (1) manual page. xemacs and gnuemacs
have online help (click the Help button).

The WorkShop vi editor has a special menu, Version, that allows you to
make use of the SCCS (Source Code Control System) utility for sharing files.
See the LoopTool online help, as well as the sccs (1) manual page, for more
information.

Analyzing Loops 31

3

3. It brings up a separate window that displays one or more hints about the
loop you’ve selected. The Help button in this window displays the
WorkShop online help compiler hints section. See also “Compiler Hints” on
page 34, which explains the hints in detail.

Figure 3-3 shows the editor and hint windows:

Figure 3-3 The Editor and Hints Windows

Warning – If you edit your source code, line numbers shown by LoopTool may
become inconsistent with the source. You must save and recompile the edited
source and then run LoopTool with the new executable, producing new loop
information, for the line numbers to remain consistent.

Hint window

Loop you’ve selected
(by clicking the graph
shown in Figure 3-1)

Explanation of this
compiler hint

Editor window (in this
example, xemacs is
the editor being used)

File menu: lets you open a new
file for editing, save the current
file, or start a new editor

32 WorkShop: Beyond the Basics—December 1996

3

Getting Help and Sending Comments

Choose from the Help menu (shown in Figure 3-1) to:

• See general help about starting and using LoopTool (Help Contents)
• Send comments about LoopTool (Send Comments)
• Get last-minute information (Release Notes)
• Invoke On Item Help (On Item)
• Access video demos of LoopTool and WorkShop features (Demos)
• Access WorkShop HTML documentation (WorkShop Manuals)

Other Compilation Options
Many combinations of compile switches work for LoopTool.

Either -xO3 or -xO4 can be used with -xparallel . If you don’t specify -xO3
or -xO4 but you do use -xparallel , then -xO3 is added. Table 3-2
summarizes how switches are added.

Other compilation options include -xexplicitpar and -xloopinfo.

The Fortran MP compiler switch -xexplicitpar is used with the pragma
DOALL. If you insert DOALL before a loop in your source code, you are
explicitly marking that loop for parallelization. The compiler will parallelize
this loop when you compile with -xexplicitpar .

Table 3-2 Promotion of Compiler Switches

You type: Bumped Up To:

-xparallel -xparallel -xO3

-xparallel -Zlp -xparallel -xO3 -Zlp

-xexplicitpar -xexplicitpar -xO3

-xexplicitpar -Zlp -xexplicitpar -xO3 -Zlp

-Zlp -xdepend -xO3 -Zlp

Analyzing Loops 33

3

The following code fragment shows how to mark a loop explicitly for
parallelization.

When you use -Zlp by itself, -xdepend and -xO3 are added. The switch
-xdepend instructs the compiler to perform the data dependency analysis that
it needs to do to identify loops. The switch -xparallel includes -xdepend ,
but -xdepend does not imply (or trigger) -xparallel .

The -xloopinfo option prints hints about loops to stderr (the UNIX
standard error file, on file descriptor 2) when you compile your program. The
hints include the routine names, the line number for the start of the loop,
whether the loop was parallelized, and the reason it was not parallelized, if
applicable.

The following example redirects hints about loops in the source file
gamteb.F to the file gamtab.loopinfo :

The main difference between -Zlp and -xloopinfo is that in addition to
providing compiler hints about loops, -Zlp also instruments your program
so that timing statistics are recorded at runtime. For this reason, also,
LoopTool and LoopReport analyze only programs that have been compiled
with -Zlp .

subroutine adj(a,b,c,x,n)
 real*8 a(n), b(n), c(-n:0), x
 integer n

c$par DOALL
do 19 i = 1, n*n
 do 29 k = i, n*n
 a(i) = a(i) + x*b(k)*c(i-k)

29 continue
19 continue

return
end

% f77 -xO3 -parallel -xloopinfo -Zlp gamteb.F 2> gamteb.loopinfo

34 WorkShop: Beyond the Basics—December 1996

3

Compiler Hints
LoopTool and LoopReport present somewhat cryptic hints about the
optimizations applied to a particular loop, and in particular, about why a
particular loop may not have been parallelized. Some of the hints may seem to
mean essentially the same thing.

Note – The hints are heuristics gathered by the compiler during the
optimization pass. They should be understood in that context; they are not
absolute facts about the code generated for a given loop. However, the hints
are often very useful indications of how you can transform your code so that
the compiler can perform more aggressive optimizations, including
parallelizing loops.

For some useful explanations and tips, read the sections in the Sun WorkShop
Fortran: User’s Guide that address parallelization.

Table 3-3 lists the hints about optimizations applied to loops.

Table 3-3 LoopTool Hints

Hint # Hint Definition

0 No hint available

1 Loop contains procedure call

2 Compiler generated two versions of this loop

3 Loop contains data dependency

4 Loop was significantly transformed during optimization

5 Loop may or may not hold enough work to be profitably parallelized

6 Loop was marked by user-inserted pragma, DOALL

7 Loop contains multiple exits

8 Loop contains I/O, or other function calls, that are not MT safe

9 Loop contains backward flow of control

10 Loop may have been distributed

11 Two or more loops may have been fused

12 Two or more loops may have been interchanged

Analyzing Loops 35

3

0. No hint available
None of the other hints applied to this loop. This hint does not mean that
none of the other hints might apply; it means that the compiler did not infer
any of those hints.

1. Loop contains procedure call
The loop could not be parallelized since it contains a procedure call that is
not MT safe. If such a loop were parallelized, multiple copies of the loop
might instantiate the function call simultaneously, trample on each other’s
use of any variables local to that function, or trample on return values, and
generally invalidate the function’s purpose. If you are certain that the
procedure calls in this loop are MT safe, you can direct the compiler to
parallelize this loop no matter what by inserting the DOALL pragma before
the body of the loop. For example, if foo is an MT-safe function call, then
you can force it to be parallelized by inserting c$par DOALL :

The computer interprets the DOALL pragmas only when you compile with
-parallel or -explicitpar ; if you compile with -autopar , then the
compiler ignores the DOALL pragmas.

2. Compiler generated two versions of this loop
The compiler couldn’t tell at compile time if the loop contained enough
work to be profitable to parallelize. The compiler generated two versions of
the loop, a serial version and a parallel version, and a runtime check that
will choose at runtime which version to execute. The runtime check
determines the amount of work that the loop has to do by checking the loop
iteration values.

c$par DOALL
 do 19 i = 1, n*n

 do 29 k = i, n*n
a(i) = a(i) + x*b(k)*c(i-k)
call foo()

 29 continue
 19 continue

36 WorkShop: Beyond the Basics—December 1996

3

3. Loop contains data dependency
A variable inside the loop is affected by the value of a variable in a previous
iteration of the loop. For example:

This is a contrived example, since for such a simple loop the optimizer
would simply swap the inner and outer loops, so that the inner loop could
be parallelized. But this example demonstrates the concept of data
dependency, often referred to as “data-carried dependency.”

The compiler will often be able to tell you the names of the variables that
cause the data-carried dependency. If you rearrange your program to
remove (or minimize) such dependencies, then the compiler will be able to
perform more aggressive optimizations.

4. Loop was significantly transformed during optimization
The compiler performed some optimizations on this loop that might make it
almost impossible to associate the generated code with the source code. For
this reason, line numbers may be incorrect. Examples of optimizations that
can radically alter a loop are loop distribution, loop fusion, and loop
interchange (see Hint 10, Hint 11, and Hint 12).

5. Loop may or may not hold enough work to be profitably parallelized
The compiler was not able to determine at compile time whether this loop
held enough work to warrant parallelizing. Often loops that are labeled
with this hint may also be labeled “parallelized,” meaning that the compiler
generated two versions of the loop (see Hint 2), and that it will be decided
at runtime whether the parallel version or the serial version should be used.

Since all the compiler hints, including the flag that indicates whether or not
a loop is parallelized, are generated at compile time, there’s no way to be
certain that a loop labeled “parallelized” actually executes in parallel. To
determine whether a loop executes in parallel, you need to perform
additional runtime tracing, such as can be accomplished with the Thread
Analyzer. You can compile your programs with both -Zlp (for LoopTool)

do 99 i=1,n
do 99 j = 1,m

a[i, j+1] = a[i,j] + a[i,j-1]
99 continue

Analyzing Loops 37

3

and -Ztha (for Thread analyzer) and compare the analysis of both tools to
get as much information as possible about your program’s runtime
behavior.

6. Loop was marked by user-inserted pragma, DOALL
This loop was parallelized because the compiler was instructed to do so by
the DOALL pragma. This hint is a useful reminder to help you easily identify
those loops that you explicitly wanted to parallelize.

The DOALL pragmas are interpreted by the compiler only when you compile
with -parallel or -explicitpar ; if you compile with -autopar , then
the compiler will ignore the DOALL pragmas.

7. Loop contains multiple exits
The loop contains a GOTO or some other branch out of the loop other than
the natural loop end point. For this reason, it is not safe to parallelize the
loop, since the compiler has no way of predicting the loop’s runtime
behavior.

8. Loop contains I/O, or other function calls, that are not MT safe
This hint is similar to Hint 1; the difference is that this hint often focuses on
I/O that is not MT safe, whereas Hint 1 can refer to any sort of MT-unsafe
function call.

9. Loop contains backward flow of control
The loop contains a GOTO or other control flow up and out of the body of the
loop. That is, some statement inside the loop appears to the compiler to
jump back to some previously executed portion of code. As with the case of
a loop that contains multiple exits, this loop is not safe to parallelize.

If you can reduce or minimize backward flows of control, the compiler will
be able to perform more aggressive optimizations.

10. Loop may have been distributed
The contents of the loop may have been distributed over several iterations
of the loop. That is, the compiler may have been able to rewrite the body of
the loop so that it could be parallelized. However, since this rewriting takes
place in the language of the internal representation of the optimizer, it’s
very difficult to associate the original source code with the rewritten
version. For this reason, hints about a distributed loop may refer to line
numbers that don’t correspond to line numbers in your source code.

38 WorkShop: Beyond the Basics—December 1996

3

11. Two or more loops may have been fused
Two consecutive loops were combined into one, so the resulting larger loop
contains enough work to be profitably parallelized. Again, in this case,
source line numbers for the loop may be misleading.

12. Two or more loops may have been interchanged
The loop indices of an inner and an outer loop have been swapped, to move
data dependencies as far away from the inner loop as possible, and to
enable this nested loop to be parallelized. In the case of deeply nested loops,
the interchange may have occurred with more than two loops.

Compiler Optimizations and How They Affect Loops
As you might infer from the descriptions of the compiler hints, associating
optimized code with source code can be tricky. Clearly, you would prefer to see
information from the compiler presented to you in a way that relates as
directly as possible to your source code. Unfortunately, the compiler optimizer
“reads” your program in terms of its internal language, and although it tries to
relate that to your source code, it is not always successful.

Some particular optimizations that can cause confusion are described in the
following sections.

Inlining

Inlining is an optimization applied only at optimization level -O4 and only for
functions contained with one file. That is, if one file contains 17 Fortran
functions, 16 of those can be inlined into the first function, and you compile at
-O4 , then the source code for those 16 functions may be copied into the body
of the first function. Then, when further optimizations are applied, it becomes
difficult to determine which loop on which source line number was subjected
to which optimization.

If the compiler hints seem particularly opaque, consider compiling with -O3
-parallel -Zlp , so that you can see what the compiler says about your loops
before it tries to inline any of your functions.

In particular, “phantom” loops—that is, loops that the compiler claims exist,
but you know do not exist in your source code—could well be a symptom of
inlining.

Analyzing Loops 39

3

Loop Transformations—Unrolling, Jamming, Splitting, and Transposing

The compiler performs many loop optimizations that radically change the
body of the loop. These include optimizations, unrolling, jamming, splitting,
and transpositing.

LoopTool attempts to provide hints that make as much sense as possible, but
given the nature of the problem of associating optimized code with source
code, the hints may be misleading. For more information on what
optimizations do for your code, refer to compiler books such as Compilers:
Principles, Techniques and Tools by Aho, Sethi and Ullman.

Parallel Loops Nested Inside Serial Loops

If a parallel loop is nested inside a serial loop, the runtime information
reported by LoopTool and LoopReport may be misleading because each loop is
stipulated to use the wall-clock time of each of its loop iterations. If an inner
loop is parallelized, it is assigned the wall-clock time of each iteration,
although some of those iterations are running in parallel.

However, the outer loop is assigned only the runtime of its child, the parallel
loop, which will be the runtime of the longest parallel instantiation of the inner
loop. This double timing leads to the anomaly of the outer loop apparently
consuming less time than the inner loop.

40 WorkShop: Beyond the Basics—December 1996

3

41

Analyzing Threads 4

Thread Analyzer is a tool for viewing trace information. It displays gprof and
prof tables on a per-thread basis.

This chapter describes what you need to do to prepare your program for
analysis, how to navigate the Thread Analyzer glyph hierarchy, and how to use
Thread Analyzer’s menu-driven interface.

Warning – If you are using C++ to create shared libraries, then you need to be
careful not to use -Ztha on source files containing static constructors. These
constructors will end up trying to record data before the data collection code
has been initialized, causing your program to seg fault. Unfortunately, the most
common thing that creates static constructors is including <stream.h> .

Basic Concepts page 42

Compiling and Instrumenting the Source page 43

Running an Experiment page 44

Starting Thread Analyzer page 44

Exiting Thread Analyzer page 46

Loading a Trace Directory page 46

Navigating the Thread Analyzer Glyph Hierarchy page 47

Thread Analyzer Menus page 48

Thread Analyzer Usage Scenarios page 53

42 WorkShop: Beyond the Basics—December 1996

4

Basic Concepts
Thread Analyzer displays standard profiling information for each thread in
your program, as well as metrics specific to a particular thread such as Mutex
wait time and semaphore wait time.

Thread Analyzer displays:

• Tables of metrics

• Graphs of these metrics

Metrics Collected by Thread Analyzer

Metrics apply to objects. An object can be the entire program, a single thread,
or a single function. If a metric refers to a single function, it refers to the total
number of times that function was called by a particular thread. Function calls
are implicitly divided up according to the thread that made the call.

Note – Thread Analyzer does not support metrics for forked programs.

Table 4-1 briefly describes each metric collected by Thread Analyzer.

Table 4-1 Metrics Collected by Thread Analyzer

Metric Description

CPU Time Measures the amount of time an object was scheduled by the operating
system and was running on a CPU.

Wall Clock Time Measures the amount of time between when an object was created and
when it was destroyed. The obvious difference from CPU time is that
when a thread is suspended (for instance, waiting for a mutex), the
thread still exists even though it isn’t taking up CPU time.

Mutex Wait Time Measures the wall-clock time an object spends suspended waiting to
acquire a mutex lock.

Join Wait Time Measures the wall-clock time an object spends suspended in the
thr_join function waiting for another thread to terminate.

Semaphore Wait Time Measures the wall-clock time an object spends suspended waiting to
acquire a semaphore.

Condition Variable Wait Time Measures the wall-clock time an object spends suspended waiting to
be signaled on a condition variable.

Analyzing Threads 43

4

Compiling and Instrumenting the Source
Compile your program with the -Ztha option. This option instruments your
program; that is, it inserts instrumentation points at the beginning and end of
each function.

Note – If you execute an instrumented program that calls fork , the forked
process does not contribute trace data until it calls exec .

The -Ztha option instruments C++ and Fortran programs as well as C
programs. The C syntax looks like this:

RW Read Lock Wait Measures the wall-clock time an object spends suspended waiting to
acquire a read lock on a Reader/Writer style lock.

RW Write Lock Wait Measures the wall-clock time an object spends suspended waiting to
acquire a write lock on a Reader/Writer style lock.

Total Sync Wait Time Measures the total wall-clock time spent waiting on any of the six
forms of threads synchronization.

Read Wait Time Measures the amount of time spent blocked on read system calls.

File Write (bytes) Measures the number of bytes written per second by write system
calls.

File Writes (ops) Measures the number of write system calls made per second by a
certain object.

File Reads (bytes) Measures the number of bytes read per second by read system calls.

File Reads (ops) Measures the number of read system calls made per second by a
certain object.

File IO (bytes) Measures the number of bytes read or written per second by an object
via the read and write system calls.

File IO (ops) Measures the combined number of read and write system calls made
by an object per second.

% cc -Ztha -o prog1 prog1.c

Table 4-1 Metrics Collected by Thread Analyzer (Continued)

Metric Description

44 WorkShop: Beyond the Basics—December 1996

4

Note – Do not use -Ztha on files containing definitions of the C++ generic
“new” operator, signal handlers, malloc , or free .

Running an Experiment
Run the executable file to write trace data to files in a tha .pid directory, where
pid is the unique process id of the particular invocation of the object.

Caution – Do not use Control-C to stop a running instrumented program.
Control-C can leave the trace directory in an inconsistent state. A subsequent
invocation of Thread Analyzer on that trace directory might not process its
trace data.

Starting Thread Analyzer
To analyze the trace data collected for your program, start Thread Analyzer
from the command line:

Optionally, you can direct Thread Analyzer to load a tha .pid trace data
directory from the command line.

Note – Thread Analyzer expects to find the executable in the same directory as
the trace directory. There are known problems related to correctly finding the
executable associated with a trace directory. If you encounter problems in this
area, use the -exec command-line option to specify the path name to the
executable.

You can use Thread Analyzer’s -exec option, in conjunction with the SunOS
ls command, to specify a relative path name or full path name to the
executable to be used in conjunction with a particular trace data directory.

% tha &

Analyzing Threads 45

4

The following examples show two variations of specifying a full path name for
the executable. In each case, tha.1234 is the directory containing the trace
information files.

is equivalent to

The following example shows how to specify a relative path name:

Figure 4-1 shows Thread Analyzer’s main window:

Figure 4-1 Thread Analyzer Main Window

% tha -exec /bin/ls tha.1234 &

% tha tha.1234 -exec /bin/ls &

% tha -exec ls tha.1234 &

46 WorkShop: Beyond the Basics—December 1996

4

This window displays a hierarchy of glyphs representing the threads and
functions that make up a program. The glyph hierarchy is described in
“Navigating the Thread Analyzer Glyph Hierarchy” on page 47.

The Load button loads a trace directory. The View menu allows you to choose
the metric you are interested in and whether to display the information as a
table or graph. For more information see “Load Button” and “View Button” on
page 49.

Exiting Thread Analyzer
From the Window Manager, select ➤ Quit to exit the Thread Analyzer session.

Loading a Trace Directory
If you did not specify the tha .pid trace data file in the command line, use the
Load button to display a window, shown in Figure 4-2, where you can specify
the path to your trace data directory.

Figure 4-2 Thread Analyzer Load File Window

Analyzing Threads 47

4

Note – If you load a trace file with the command line, Thread Analyzer makes
the Load button unavailable; that is, Thread Analyzer loads only one trace
directory per session.

Type the path name of the trace directory generated by the instrumented
program, or click the icon of the desired trace directory in the displayed list.
Then click Open. If Thread Analyzer does not recognize the path name you
type, check for typographic errors and retype the path name.

Navigating the Thread Analyzer Glyph Hierarchy
Thread Analyzer glyphs are ordered as shown in Figure 4-3.

Figure 4-3 The Thread Analyzer Glyph Hierarchy

The program glyph is the root of the hierarchy.

The thread level is next in the hierarchy. All threads are displayed across the
width of the main window. To see obscured threads, move the slider along the
horizontal scrollbar located at the bottom of the window. (See Figure 4-4.)

The function level is the bottom of the tree. Thread Analyzer displays the
function (thread children) glyphs in alphabetical order, from left to right. The
children of a given thread are the procedures called within that thread. Use the
scrollbar to scan function glyphs hidden from view (see Figure 4-4).

Program level

Thread level

Function level

48 WorkShop: Beyond the Basics—December 1996

4

Figure 4-4 Scrollbar and Footer Help

To select a particular glyph, place the pointer over that glyph and click the
SELECT mouse button. The selected glyph becomes highlighted.

To expand the glyph hierarchy (that is, show a node’s children) or collapse the
glyph hierarchy (that is, hide a node’s children), place the pointer over the
desired glyph and click the MENU mouse button. The MENU mouse button
acts as a toggle to alternate between expand and collapse.

To hide an individual node, place the pointer over the desired glyph and click
the ADJUST mouse button.

As shown in Figure 4-4, Thread Analyzer displays error messages in the footer
of the main canvas.

The thread that contains main() is named with the program name; all other
threads are named numerically in order of creation.

Thread Analyzer Menus
Thread Analyzer uses the following conventions for menus:

• An inverted triangle (▼) in a button indicates there are more entries to be
revealed. Place the pointer over the glyph and click the MENU mouse
button to reveal the entries.

• Checkboxes (❒) in property sheets allow you to select items from a list of
properties. Click the SELECT mouse button to select or unselect an item.

• Buttons allow you to specify an action such as Apply or Cancel. Click the
SELECT mouse button to activate.

• Menus are pinnable; that is, they stay up if you pin them to the canvas.

Analyzing Threads 49

4

The Load and View buttons are the main menu buttons.

Load Button

The Load button allows you to specify the directory that contains the trace data
file. See “Loading a Trace Directory” on page 46.

View Button

Use the View menu to specify the particular metric you are interested in and
whether you wish to see it as a table or graph. You can apply a CPU time filter
to the glyph display to show only those threads or functions that exceed or
equal a particular threshold.

To open the View Menu (see Figure 4-5), click the View button. You can also
open the menu with the mouse MENU button and use the pushpin to pin the
menu to the canvas.

Figure 4-5 Thread Analyzer View Menu

Metric Graph Property Sheet

Graphs plot the value of a metric against wall-clock time.

1. To display the Metric Graph Property Sheet (see Figure 4-6), choose View
➤ Graph from the View menu.

2. Click the SELECT mouse button when the cursor is over the checkboxes
for the particular metrics you want to graph.

50 WorkShop: Beyond the Basics—December 1996

4

3. Click Apply to generate the graph.

Figure 4-6 Thread Analyzer Metric Graph Property Sheet

Note – Thread Analyzer allows you to display a maximum of ten graphs at a
time and emits an audible beep if you attempt to simultaneously display more
than the ten-graph maximum.

See “Scenario 2: Identifying Initial Bottlenecks From Graphical Data” on
page 60 for an example of how to display CPU time versus wall-clock time.

gprof Table

gprof tables display call-graph profile data in the form of a list of functions
called by threads.

To generate a gprof table for a particular level in the hierarchy, select a glyph
at that particular level. Then choose View ➤ Gprof Table from the View menu.

See page 56 for an example of how to display a gprof table.

Analyzing Threads 51

4

prof Table

prof tables display profile data for the program, threads, and functions. The
program-level prof table shows the total time for the entire program. The
thread-level prof table has an entry for each thread (with a total of all function
calls made by the thread). The function-level prof table has an entry for each
thread-function combination.

To generate a prof table for a particular level in the hierarchy, select a glyph at
that particular level. Then choose View ➤ Prof Table from the View menu.

See page 55 for an example of how to display a prof table.

Sorted Metric Profile Table Property Sheet

A sorted metric profile table shows a designated metric for all nodes for a
particular glyph level.

To display the sorted metric profile table property sheet, select a glyph from
the desired level in the hierarchy. Then choose View ➤ Sorted Metric Profile
Table from the View menu.

Figure 4-7 Thread Analyzer Sorted Metric Profile Table Property Sheet

Click the SELECT mouse button when the cursor is over the metric you want
to graph—you may select only one from this list. Grayed-out entries signify
metrics that are not available. Click Apply to generate the table.

See page 59 for an example of how to generate a sorted metric table.

52 WorkShop: Beyond the Basics—December 1996

4

Metric Table

A metric table shows multiple metrics for a particular thread or function. For a
function, the metrics are shown for calls of that function made by the thread
that is that function’s parent.

To display the metric table property sheet, select a glyph from the desired level
in the hierarchy. Then choose View ➤ Metric Table from the View menu.

Figure 4-8 Thread Analyzer Metric Table Property Sheet

Click the SELECT button when the cursor is over the checkbox for the metrics
you want to graph. Then click Apply to generate the table.

See page 58 for an example of how to generate a metric table.

Analyzing Threads 53

4

Filter Threads by CPU

The filter shown in Figure 4-9 displays the thread glyphs whose percent of
CPU time is equal to or greater than a designated threshold.

Figure 4-9 Thread Analyzer: Filter Threads by CPU Time

Type the threshold value and click Apply.

See page 63 for an example of how to filter threads by CPU time.

Filter Functions by CPU

The filter shown in Figure 4-10 displays the function glyphs whose percent of
CPU time is equal to or greater than a designated threshold.

Figure 4-10 Thread Analyzer: Filter Functions by CPU Time

Type the threshold value and click Apply.

Thread Analyzer Usage Scenarios
This section contains scenarios demonstrating the use of Thread Analyzer.

• Scenario 1: Initial Investigation —CPU Time Tabular Data
• Scenario 2: Identifying Initial Bottlenecks From Graphical Data
• Scenario 3: Identifying Focused Bottlenecks From Graphical Data
• Scenario 4: CPU Time Filter

54 WorkShop: Beyond the Basics—December 1996

4

Scenario 1: Initial Investigation —CPU Time Tabular Data

The initial investigation gathers an overview of what your program is doing.

Looking at CPU time is a good starting point to discover where your program
is spending its time.

1. Display the thread-level nodes.
If the thread-level nodes are not already displayed, place the cursor over the
Program node and click the mouse MENU button to expand the glyph
display to the thread-level nodes (see Figure 4-11).

Figure 4-11 Displaying Thread-Level Nodes

Analyzing Threads 55

4

2. Request a prof table for all threads.
Select any thread glyph. Choose View ➤ Prof Table from the View menu to
display prof information for all the threads in your program (see
Figure 4-12).

Figure 4-12 prof Information for Threads

3. Analyze the prof table data.
The prof table shows the percent of CPU time spent by all threads of the
program. Table elements are arranged in descending order of CPU time.

Figure 4-13 Thread-Level Profile

See if any threads consume a disproportionate amount of CPU time. In
Figure 4-13 the phil thread accounts for 42 percent of the CPU time, and is
a likely candidate for further investigation.

56 WorkShop: Beyond the Basics—December 1996

4

4. Focus on a particular thread.
Move the cursor to the phil node and click the mouse MENU button; this
action causes the children (function nodes) of the phil node to be displayed
as shown in Figure 4-14.

Figure 4-14 Focus on a Particular Thread

5. Request a gprof table for a particular thread.
To generate a gprof table for a particular thread—phil is still
selected—choose View ➤ Gprof Table from the View menu.

Thread Analyzer displays a thread-specific gprof table for the phil thread,
as shown in Figure 4-15. See the gprof(1) manual page for more
information.

Analyzing Threads 57

4

Figure 4-15 Thread Analyzer: gprof Table

Note – called+self shows direct recursion; <cycle> shows indirect
recursion.

58 WorkShop: Beyond the Basics—December 1996

4

6. Request a metric table for a particular function.
Select the glyph for a particular function. Then choose View ➤ Metric Table
from the View menu. Click the CPU Time checkbox, then click Apply. You
can select multiple metrics from this menu).

Figure 4-16 Thread Analyzer Metric Table Property Sheet

The resultant table shows the CPU time used by the port_select function
in the phil thread.

✓

Analyzing Threads 59

4

To display a metric table for a thread, select its glyph in the hierarchy.
Repeat the request for a metric table for CPU Time. The resultant table
shows the CPU time used by the phil thread

7. Request a sorted metric profile table for all threads.
Thread Analyzer displays a sorted metric profile table for a single metric for
all functions in all threads (see Figure 4-17).

Select any function in the glyph hierarchy. Then choose View➤ Sorted
Metric Profile Table from the View menu. Select CPU Time in the property
sheet, then click Apply.

Figure 4-17 Sorted Metric Profile Table Property Sheet

Thread Analyzer displays CPU time for all functions in all threads. The
table is sorted in descending order of percentage of time spent.

60 WorkShop: Beyond the Basics—December 1996

4

Scenario 2: Identifying Initial Bottlenecks From Graphical Data

Thread Analyzer can plot time graphs of the metrics to help discern the
performance of your program. In particular, this feature helps discover
performance bottlenecks. A common metric to view is the consumption of CPU
time versus wall-clock time.

1. Select the node of interest
Select the glyph for the thread to be analyzed. Then choose View ➤ Graph
from the View menu.

2. Designate the metric
Click the CPU Time checkbox and then click Apply (see Figure 4-18).

Figure 4-18 Metric Graph Property Sheet

✓

Analyzing Threads 61

4

Thread Analyzer plots percentage of CPU Time (y axis) versus wall-clock
time (x axis) as shown in Figure 4-19.

Figure 4-19 CPU Time versus Wall-clock Time

Except for a few “spikes,” a small amount of CPU time is being consumed.
This fact suggests a bottleneck in I/O or thread synchronization (see
“Scenario 3: Identifying Focused Bottlenecks From Graphical Data” next).

Scenario 3: Identifying Focused Bottlenecks From Graphical Data

Thread Analyzer graphs can plot the time spent waiting on a resource. Such
graphs can help you diagnose performance bottlenecks caused by blocking on
I/O or thread synchronization.

1. Select the node of interest
Select the phil glyph in the hierarchy. Then choose View ➤ Graph from the
View menu.

2. Designate the metric
In the metric graph property sheet, click the checkbox for the metrics you
wish to graph, then click Apply. In Figure 4-20, the synchronization-related
metrics are selected.

62 WorkShop: Beyond the Basics—December 1996

4

Figure 4-20 Metric Graph Property Sheet

Thread Analyzer plots percentage of time waiting for a resource (y axis)
versus wall-clock time (x axis). Thread Analyzer shows each metric with a
different line representation (see the legend at the bottom of the graph in
Figure 4-21).

Analyzing Threads 63

4

Figure 4-21 Percent of Resource-Waiting Time Versus Wall-clock Time

This graph shows that most of the time waiting for a resource was spent in
CV (condition variable) wait time.

Scenario 4: CPU Time Filter

The filter threads by CPU operation modifies the glyph display to show only
those threads that spend the designated percentage of total CPU time.

64 WorkShop: Beyond the Basics—December 1996

4

1. Display the thread level nodes
Expand the glyph hierarchy to show all threads, as shown in Figure 4-22.
Select a thread icon.

Figure 4-22 Expanded Glyph Hierarchy

2. Specify the Filter Value
Choose View ➤ Filter Threads by CPU from the View menu.

Figure 4-23 Filter Functions by CPU

In the box that appears (see Figure 4-23) type the threshold value (8 for our
example) and click Apply.

Analyzing Threads 65

4

The canvas collapses to show only those threads that account for at least 8
percent of the CPU time of the program run (see Figure 4-24).

Figure 4-24 Threads Displayed Above CPU Time Threshold

66 WorkShop: Beyond the Basics—December 1996

4

Part 3 — Visualizing Data

69

Data Visualization 5

If you need a way to display your data graphically as you debug your program
from Sun WorkShop, you can use Data Visualization.

This chapter contains the following sections:

Basic Concepts
Data visualization can be used during debugging to help you explore and
comprehend large and complex datasets, simulate results, or interactively steer
computations. The Data Graph window gives you the ability to “see” program
data and analyze that data graphically. The graphs can be printed out or
printed to a file.

Basic Concepts page 69

Specifying Proper Array Expressions page 70

Automatic Updating of Array Displays page 72

Changing Your Display page 73

Analyzing Data page 77

Fortran Example Program page 80

C Example Program page 81

70 WorkShop: Beyond the Basics—December 1996

5

Specifying Proper Array Expressions
To display your data you must specify the array, and how it should be
displayed. You can invoke the Data Graph window from the WorkShop
Debugging window by typing an array name in the Expression text box. All
scalar array types are supported except for complex (Fortran) array types.

Single-dimensional arrays are graphed (a vector graph) with the x-axis
indicating the index and the y-axis indicating the array values. In the default
graphic representation of a two-dimensional array (an area graph), the x-axis
indicates the index of the first dimension, the y-axis indicates the index of the
second dimension, while the z-axis represents the array values. You can
visualize arrays of n dimensions, but at most, only two of those dimensions
can vary.

You do not have to examine an entire dataset. You can specify slices of an
array, as shown in the following examples. The figures show the bf array from
the sample Fortran program given at the end of this chapter.

Figure 5-1 Graph of (left) bf array name only, (right) bf(0:3,1:20)

Data Visualization 71

5

The next two figures show the array with a range of values

Figure 5-2 Graph of array bf : (left) bf(-3:3,:) , (right) bf(:,-7:7)

Graphing an Array

Before you can graph an array, you need to follow these preliminary steps:

1. Load a program into the Debugging window.
Choose Debug ➤ New Program to load your program. If the program was
previously loaded in the current WorkShop session, choose the program
from the program list in the Debug menu.

2. Set at least one breakpoint in the program.
You can set a single breakpoint at the end of the program or you can set one
or more at points of interest in your program.

3. Run your program.
When the program stops at the breakpoint, decide which array you want to
examine.

Now you can graph the array. WorkShop provides multiple ways to graph an
array through WorkShop:

From the Debugging window—you can enter an array in the Expression text
field and choose Data ➤ Graph Expression or you can select an array in a text
editor and choose Data ➤ Graph Selected in the Debugging window.

72 WorkShop: Beyond the Basics—December 1996

5

From the Data Display window—you can choose the Graph command from
the Data menu or from the identical pop-up menu (right-click to open the pop-
up). If the array in the Data Display window can be graphed, the Graph
command is active.

From the Data Graph window—you can choose Graph ➤ New, enter an array
name in the Expression text field in the Data Graph: New window and click
Graph.

If you click the Replace current graph button, the new graph is replaces the
current one. Otherwise, a new Data Graph window is opened.

From the Dbx Commands window—you can display a Data Grapher directly
from the dbx command line with the vitem command (you must have opened
the Dbx Commands window from WorkShop):

array-expr specifies the array expression to be displayed. Additional options
and arguments for the vitem command can be found in the manual, WorkShop:
Command Line Utilities.

Automatic Updating of Array Displays
The value of an array expression can change as the program runs. You can
choose whether to show the array expression's new values at specific points
within the program or at fixed time intervals with the Update at field in the
graph options.

If you want the values of an array updated each time the program stops at a
breakpoint, you must turn on the Update at: Program stops option. As you
step through the program, you can observe the change in array value at each
stop. Use this option when you want to view the data change at each
breakpoint. The default setting for this feature is off.

If you have a long-running program, choose the Update at: Fixed time interval
option to observe changes in the array value over time. With a fixed time
update, a timer is automatically set for every nth period. The default time is set
for 1 second intervals. To change the default setting, choose Graph ➤ Default
Options and change the time interval in the Debugging Options dialog box
(make sure you are in the Data Grapher category).

(dbx) vitem -new array-expr

Data Visualization 73

5

Note – Every time the timer reaches the nth period, WorkShop tries to update
the graph display; however, the array could be out of scope at that particular
time and no update can be made.

Since the timer is also used in collecting data and when checking for memory
leaks and access checking, you cannot use the Update at Fixed time interval
setting when you are running the Behavior Data Collector or the run-time
checking feature.

Changing Your Display
Once your data is graphically displayed, you can adjust and customize the
display using the controls in the Data Graph window. This section presents
examples of some of graph displays that you can examine.

The Data Graph window opens with the Magnify and Shrink options present.
when graphing any type of array. With an area graph, the window includes the
Axis Rotation and Perspective Depth fields. These options enable you to
change your view of the graph by rotating its axis or increasing or decreasing
the depth perspective. To quickly rotate the graph, hold the right mouse button
down with the cursor on the graph and drag to turn the graph. You can also
enter the degree of rotation for each axis in the Axis Rotation field.

Click the Show Options button for more options. If the options are already
shown, click on the Hide button to hide the additional options.

The following figure shows two displays of the same array. The figure on the
left shows the array with a Surface graph type with the Wire Mesh texture. The
figure on the right shows the array with a Contour graph type delineated by
range lines.

74 WorkShop: Beyond the Basics—December 1996

5

When you choose a Contour graph type, the range options enable you to see
areas of change in the data values.

Data Visualization 75

5

The display options for the Surface graph type are texture, shading, and fill.
Texture choices include Wire Mesh or Range Lines as shown here:

Figure 5-3 Surface graph with (left to right) Wire Mesh, Range Lines

Shading choices for the Surface graph type include Light Source or Range
Colors:

Turn on Fill to shade in areas of a graph or to create a solid surface graph.

76 WorkShop: Beyond the Basics—December 1996

5

Choose Contour as the graph type to display an area graph using data range
lines. With the Contour graph type, you have the additional options of
displaying the graph in lines, in color, or both.

Figure 5-4 Contour graph with (left to right) Range Lines, Range Colors, Both

You can change the number of data value ranges being shown by changing the
value in the Ranges: No. of steps.field.

Figure 5-5 Number of steps (left to right): 5, 10, 15

Be aware that if you choose a large number of steps, you can adversely affect
the color map.

Click on the Show range legend button if you want a legend to display your
range intervals.

Data Visualization 77

5

Analyzing Data
There are different ways to update the data being visualized, depending on
what you are trying to accomplish. For example, you can update upon
demand, at breakpoints, or at specified time intervals. You can observe changes
or analyze final results. This section provides several scenarios illustrating
different situations.

Two sample programs, dg_fexamp (Fortran) and dg_cexamp (C), are
included with WorkShop. These sample programs are used in the following
scenarios to illustrate data visualization.

You can also use these programs for practice. They are located in
/etc/opt/SUNWspro/WS4.0/examples . To use the programs, change to
this directory and type make, the executable programs are created for you.

Scenario 1: Comparing Different Views of the Same Data

The same data can be graphed multiple times which allows different graph
types and different segments of data to be compared.

1. Load the C or Fortran sample program.

2. Set a breakpoint at the end of the program.

3. Start the program, running the program to that breakpoint.

4. Type bf into the Expressions text field in the Debugging window.

5. Choose Data ➤ Graph Expression, which brings up a Surface graph of
both dimensions of the bf array.

6. Choose Data ➤ Graph Expressions again to bring up a duplicate graph.

7. Click Show Options and select Contour for the graph type. Now you can
compare different views of the same data (Surface vs. Contour).

8. Type bf(1,:) for the Fortran or bf[1][..] for the C example program
into the Expression text field.

9. Now Choose Data ➤ Graph Expression to bring up a graph of a section of
the data contained in the bf array.

All these different views of the data can now be compared.

78 WorkShop: Beyond the Basics—December 1996

5

Scenario 2: Updating Graphs of Data Automatically.

The updating of a graph can be controlled automatically by turning on the
Update at: Program stops option. This feature enables you to make
comparisons of data as it changes during the execution of the program.

1. Load the C or Fortran sample program.

2. Set a breakpoint at the end of the outer loop of the bf function.

3. Start the program, running the program to that breakpoint.

4. Type bf into the Expressions text field.

5. Choose Data ➤ Graph Expression. A graph of the values in the bf array
after the first loop iteration appear.

6. Click Show Options and select Update At: Program stops.

7. Choose the Go command to cause the execution of several other loop
iterations of the program. Each time the program stops at the breakpoint,
the graph is updated with the values set in the previous loop iteration.

8. Utilizing the automatic update feature can save time when an up to date
view of the data is desired at each breakpoint.

Scenario 3: Comparing Data Graphs at Different Points in Program

The updating of a graph can also be controlled manually.

1. Load the C or Fortran example program.

2. Set a breakpoint at the end of the outer loop of the af function.

3. Start the program, running the program to that breakpoint.

4. Type af into the Expression: text field.

5. Choose Data ➤ Graph Expression. A graph of the values in the af array
after the first loop iteration appears. Make sure automatic updating is
turned off on this graph (the default setting).

6. Execute another loop iteration of the program using the Go command.

Data Visualization 79

5

7. Bring up another graph of the af array choosing Data ➤ Graph
Expression. This graph contains the data values set in the second iteration
of the outer loop.

8. The data contained in the two loop iterations of the af array can now be
compared. Any graph with automatic updating turned off can be used as a
reference graph to a graph that is continually being updated automatically
or manually.

Scenario 4: Comparing Data Graphs from Different Runs of Same Program

Data graphs persist between different runs of the same program. Graphs from
previous runs will no be overwritten unless they are manually updated or
automatic updating is turned on.

1. Load the C or Fortran example program.

2. Set a breakpoint at the end of the program.

3. Start the program, running the program to the breakpoint.

4. Type vec into the expressions text field, and choose Data ➤ Graph
Expression.

5. A graph of the vec array appears (as a sine curve).

6. Now you can edit the program (for example, replace sin with cos). Use fix
and continue to recompile the program and continue (click the Fix tool bar
button).

7. Restart the program.

8. Because automatic updating is turned off, the previous graph does not get
updated when the program reaches the breakpoint.

9. Choose Data ➤ Graph Expression (vec is still in the Expressions text
field), a graph of the current vec values appear alongside the graph of the
previous run.

10. The data from the two runs can now be compared. The graph of the
previous run will only change if it is updated manually using the update
button, or if automatic updating is turned on.

80 WorkShop: Beyond the Basics—December 1996

5

Fortran Example Program

real vec(100)
real af(50,50)
real bf(-3:3,-10:20)
real cf(50, 100, 200)

do x = 1,100
 ct = ct + 0.1
 vec(x) = sin(ct)
enddo

do x = 1,50
 do y = 1,50
 af(x,y) = (sin(x)+sin(y))*(20-abs(x+y))
 enddo
 enddo

do x = -3,3
 do y = -10,20
 bf(x,y) = y*(y-1)*(y-1.1)-10*x*x*(x*x-1)
 enddo
enddo

do x = 1,50
 do y = 1,100
 do z = 1,200
 cf(x,y,z) = 3*x*y*z - x*x*x - y*y*y - z*z*z
 enddo
 enddo
enddo

end

Data Visualization 81

5

C Example Program

#include <math.h>
main()
{
 int x,y,z;
 float ct=0;
 float vec[100];
 float af[50][50];
 float bf[10][20];
 float cf[50][100][200];

 for (x=0; x<100; x++)
 {
 ct = ct + 0.1;
 vec[x] = sin(ct);
 }
 for (x=0; x<50; x++)
 {
 for (y=0; y<50; y++)
 {
 af[x][y] = (sin(x)+sin(y))*(20-abs(x+y));
 }
 }
 for (x=0; x<10; x++)
 {
 for (y=0; y<20; y++)
 {
 bf[x][y] = y*(y-1)*(y-1.1)-10*x*x*(x*x-1);
 }
 }
 for (x=0; x<50; x++)
 {
 for (y=0; y<100; y++)
 {
 for (z=0; z<200; z++)
 {
 cf[x][y][z] = 3*x*y*z - x*x*x - y*y*y - z*z*z ;
 }
 }
 }
}

82 WorkShop: Beyond the Basics—December 1996

5

Part 4 — Advanced Debugging

85

Runtime Checking 6

Runtime Checking (RTC) allows you to automatically detect runtime errors in
an application during the development phase. RTC lets you detect runtime
errors such as memory access errors and memory leak errors, and monitor
memory usage.

The following topics are covered in this chapter:

Basic Concepts
Because RTC is an integral debugging feature, all debugging functions such as
setting breakpoints, examining variables and so on, can be used with RTC,
except the Collector.

The following list briefly describes the features of RTC:

• Detects memory access errors
• Detects memory leaks
• Collects data on memory use
• Works with all languages

Basic Concepts page 85

Using RTC page 87

Using Access Checking page 87

Using Memory Use Checking page 90

Setting Options page 95

86 WorkShop: Beyond the Basics—December 1996

6

• Works on code that you do not have the source for, such as system libraries
• Works with multithreaded code.
• Requires no recompiling, relinking, or Makefile changes.

Compiling with the -g flag provides source line number correlation in the RTC
error messages. RTC can also check programs compiled with the optimization
-O flag. There are some special considerations with programs not compiled
with the -g option. See Sun WorkShop: Command Line Utilities, “Default
Suppressions” on page 127, for more information.

When to Use RTC

One way to avoid seeing a large number of errors at once is to use RTC earlier
in the development cycle, as you are developing the individual modules that
make up the program. Write a unit test to drive each module and use RTC
incrementally to check each module one at a time. That way, you deal with a
smaller number of errors at a time. When you integrate all of the modules into
the full program, you are likely to encounter few new errors. When you reduce
the number of errors to zero, you need to run RTC again only when you make
changes to a module.

Requirements
• Programs compiled using a Sun Compiler

• Dynamic linking with libc

• Use of the standard libc malloc/free/realloc functions or allocators
based on those functions

dbx does provide an API to handle other allocators; see Sun WorkShop:
Command Line Utilities, “Using Fix & Continue with RTC” on page 125.

• Programs that are not fully stripped. Programs stripped with strip -x are
acceptable

Limitations
• Does not handle program text areas and data areas larger than 8Mb.

A possible solution is to insert special files in the executable image to handle
program text areas and data areas larger than 8Mb.

Runtime Checking 87

6

For more detailed information on any aspect of RTC, see the online help.

Using RTC
To use Runtime Checking, you enable the type of checking you want to use.

To turn on the desired checking mode from the Debugging window:

♦ Choose Checks ➤ Enable Memuse Checking.

-or-

♦ Choose Checks ➤ Enable Access Checking.
In the Debugging window status area, you see an indicator that RTC is
enabled.

• For memory use checking, a blue recycling symbol with three arrows
pointing in a circle.

• For access checking, a red circle with a white minus sign in the middle
(the international Do Not Enter sign.)

♦ Choose Execute ➤ Go or click Go to start the program.

When RTC detects an error, it reports the type and location of the error and
returns control to the user. You can perform any of the usual debugging
activities such as setting breakpoints and examining variables.

Leak errors are reported after the program finishes execution. The Memory Use
window opens with the leak and block information listed.

You can selectively suppress reporting of RTC errors using the dbx command
suppress . For more information, see the dbx online help for suppress .

Using Access Checking
RTC checks whether your program accesses memory correctly by monitoring
each read, write, and memory free operation.

Programs may incorrectly read or write memory in a variety of ways; these are
called memory access errors. For example, the program may reference a block
of memory which has been de-allocated through a free() call for a heap
block, or because a function returned a pointer to a local variable. Access errors

88 WorkShop: Beyond the Basics—December 1996

6

may result in wild pointers in the program and can cause incorrect program
behavior, including wrong outputs and segmentation violations. Some kinds of
memory access errors can be very hard to track down.

RTC maintains a table that tracks the state of each block of memory being used
by the program. When the program performs a memory operation, RTC checks
the operation against the state of the block of memory it involves, to determine
whether the operation is valid. The possible memory states are:

• Unallocated—initial state. Memory has not been allocated. It is illegal to
read, write, or free this memory because it is not owned by the program.

• Allocated, but uninitialized. Memory has been allocated to the program but
not initialized. It is legal to write to or free this memory, but is illegal to read
it because it is uninitialized. For example, upon entering a function, stack
memory for local variables is allocated, but uninitialized.

• Read-only. It is legal to read, but not write or free, read-only memory.

• Allocated and initialized. It is legal to read, write, or free allocated and
initialized memory.

The program runs normally, except that it runs slower because each memory
access is checked for validity just before it actually occurs. If an invalid access
is detected, the Access Checking window opens and an error message giving
specific information about the error is listed. The program is then suspended
and control is returned to you. If the error is not a fatal error, you can continue
execution of the program. The program continues to the next error or
breakpoint, whichever is detected first.

Using RTC to find memory access errors is not unlike using a compiler to find
syntax errors in your program. In both cases a list of errors is produced, with
each error message giving the cause of the error and the program location
where the error occurred. In both cases you should fix the errors in the
program starting at the top of the error list and working your way down. The
reason is that one error can cause the other errors in a sort of chain reaction.
The first error in the chain is therefore the “first cause,” and fixing that error
may also fix some subsequent errors. For example, a read from an uninitialized
section of memory can create an incorrect pointer, which when dereferenced
can cause another invalid read or write, which can in turn lead to other errors.

Runtime Checking 89

6

Memory Access Errors

RTC detects the following memory access errors:

• Read from uninitialized memory (rui)
• Read from unallocated memory (rua)
• Write to unallocated memory (wua)
• Write to read-only memory (wro)
• Misaligned read (mar)
• Misaligned write (maw)
• Duplicate free (duf)
• Bad free (baf)
• Misaligned free (maf)
• Out of memory (oom)

For a more detailed description of each memory access error checked by RTC,
see the manual Command-Line Utilities.

Understanding the Memory Access Error Report

RTC prints the following information for memory access errors:

type Type of error.

access Type of access attempted (read or write).

size Address of attempted access.

addr Size of attempted access.

detail More detailed information about addr. For example, if
addr is in the vicinity of the stack, then its
position relative to the current stack pointer is
given. If addr is in the heap, then the address, size,
and relative position of the nearest heap block is
given.

stack Call stack at time of error (with batch mode).

allocation If addr is in the heap, then the allocation trace of
the nearest heap block is given.

90 WorkShop: Beyond the Basics—December 1996

6

The following example shows a typical access error:

Using Memory Use Checking
A memory leak is a dynamically allocated block of memory that has no
pointers pointing to it anywhere in the data space of the program. Such blocks
are orphaned memory. Because there are no pointers to the blocks, the program
cannot even reference them, much less free them. RTC finds and reports such
blocks.

Memory leaks result in increased virtual memory consumption and generally
result in memory fragmentation. This may slow down the performance of your
program and the whole system.

Typically, memory leaks occur because allocated memory is not freed and you
lose a pointer to the allocated block. Here are some examples of memory leaks:

location Where the error occurred. If line number information
is available, this information includes line number
and function . If line numbers are not available, RTC
provides function and address .

Read from uninitialized (rui):
Attempting to read 4 bytes at address 0xeffff67c

which is 1268 bytes above the current stack pointer
Location of error: Basic.c, line 56,
 read_uninited_memory()

No free of s. Once foo
returns, there is no
pointer pointing to the
malloc'ed block, so that
block is leaked.

void
foo()
{
 char *s;
 s = (char *) malloc(32);

 strcpy(s, "hello world");

 return; /* }
}

Runtime Checking 91

6

A leak can result from incorrect use of an API:

Memory leaks can be avoided by following a good programming practice of
always freeing memory when it is no longer needed and paying close attention
to library functions which return allocated memory. If you use such functions,
remember to free up the memory appropriately.

Sometimes, the term “memory leak” is used to refer to any block that has not
been freed. This is a much less useful definition of a memory leak, because it is
a common programming practice not to free memory if the program will
terminate shortly anyway. RTC does not report a block as a leak if the program
still retains one or more pointers to it.

Possible Leaks

There are two cases where RTC may report a “possible” leak. The first case is
when no pointers were found pointing to the beginning of the block, but a
pointer found pointing to the interior of the block. This case is reported as an
Address in Block (aib) error. If it was a stray pointer that happened to point
into the block, this would be a real memory leak. However, some programs
deliberately move the only pointer to an array back and forth as needed to
access its entries. In this case it would not be a memory leak. Because RTC
cannot distinguish these two cases, it reports them as possible leaks, allowing
the user to make the determination.

The second type of possible leak occurs when no pointers to a block were
found in the data space, but a pointer was found in a register. This case is
reported as an Address in Register (air) error. If the register happens to point to
the block accidentally, or if it is an old copy of a memory pointer that has since
been lost, then this is a real leak. However, the compiler can optimize

libc function getcwd()
returns a pointer to the
malloc'ed area when the
first argument is NULL.
The program should
remember to free this.
In this case, the block
is not freed and results
in a leak.

void
printcwd()
{

 printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN));

 return;
}

92 WorkShop: Beyond the Basics—December 1996

6

references and place the only pointer to a block in a register without ever
writing the pointer to memory. In such cases, this would not be a real leak. In
all other cases, it is likely to be a real leak.

Note – RTC leak checking requires use of the standard libc
malloc/free/realloc functions or allocators based on those functions

Checking for Leaks

If memory leaks checking is turned on, a scan for memory leaks is
automatically performed just before the program being tested exits. Any
detected leaks are reported. The program should not be killed with the kill
command. Here is a typical memory leak error message:

Clicking on the call stack location hypertext link takes you to that line of the
source code in the editor window.

UNIX programs have a main procedure (called MAIN in f77) which is the top-
level user function for the program. Normally, a program terminates either by
calling exit(3) or by simply returning from main . In the latter case, all
variables local to main go out of scope after the return, and any heap blocks
they pointed to are reported as leaks (unless globals point to those same
blocks).

It is a common programming practice not to free heap blocks allocated to local
variables in main , because the program is about to terminate anyway, and then
return from main without calling (exit()). To prevent RTC from reporting
such blocks as memory leaks, stop the program just before main returns by
setting a breakpoint on the last executable source line in main. When the
program halts there, use the RTC showleaks command to report all the true
leaks, omitting the leaks that would result merely from main 's variables going
out of scope.

Memory leak (mel):
Found leaked block of size 6 at address 0x21718
At time of allocation, the call stack was:

[1] foo() at line 63 in test.c
[2] main() at line 47 in test.c

Runtime Checking 93

6

Detecting Memory Leak Errors

Note – RTC only finds leaks of malloc memory. If your program does not use
malloc , RTC cannot find memory leaks.

RTC detects the following memory leak errors:

• Memory Leak (mel)

• Possible leak — Address in Register (air)

• Possible leak — Address in Block (aib)

For a more detailed description of each memory leak error RTC reports, see the
Command-Line Utilities manual.

Memory Use Error Reporting

You have two choices for reporting memory blocks, a summary report and a
detailed report.

To switch report types:

1. From the Debugging window, choose Windows ➤ Memory Use Checking.

2. From the Leaks menu or the Blocks menu, choose Summary Report or
Detailed Report to toggle on the report option you want to use.

You can also set your default reporting option using the Debugging Options
dialog box. See “Setting Options” on page 95 for more information.

Memory Use Error Types

Both reports include the following information for memory leak errors:

location location where leaked block was allocated

addr address of leaked block

size size of leaked block

stack call stack at time of allocation, as constrained by check -frames .

94 WorkShop: Beyond the Basics—December 1996

6

Because the number of individual leaks can be very large, RTC automatically
combines leaks that were allocated at the same place into a single combined
leak report.

However, the summary report capsulizes the error information into a table,
while the detailed report gives you a separate error message for each error.
They both contain a hypertext link to the location of the error in the source
code.

Detailed Leak Report

A typical detailed report contains the following:

Summary Leak Report

When you use a summary report, the error information is summarized, and
displayed as follows:

The location on the call stack is a blue hypertext link that takes you to the
appropriate place on the stack.

Actual leaks report (actual leaks: 1 total size: 16 bytes)
Memory leak (mel):
Found leaked block of size 16 bytes at address 0x21590
At time of allocation, the call stack was:
 main

Possible leaks report (possible leaks: 0 total size: 0 bytes)

Blocks in use report (blocks in use: 0 total size: 0 bytes)

Actual leaks report (actual leaks: 1 total size: 16 bytes)
Total Num of Leaked Allocation call stack
Size Blocks Block Address
===== ===== ======= =======================
 16 1 0x21590 main

Runtime Checking 95

6

Setting Options
You can set options to control the reporting operation of RTC.

To set Debugging Runtime Checking options:

♦ Choose Debug ➤ Debugging Options.

♦ Choose Category ➤ Runtime Checking.

When you set an option here, you can choose to apply it to the current
debugging session by clicking OK, or you can save it as the new default by
clicking Save As Default and then clicking OK.

Access Checking Reporting

Automatic blocks report at exit
Sets whether your blocks report for Access Checking is automatically
generated in detailed or summary form at program exit, or if no report is
generated.

Automatic leaks report at exit
Sets whether your leaks report for Access Checking is automatically generated
in detailed or summary form at program exit, or if no report is generated.

Error Reporting

Max. errors to report
Sets the maximum number of errors that RTC reports. The default is 1000.

The error limit is used separately for access errors and leak errors. For
example, if the error limit is set to 5, then a maximum of 5 access errors and 5
memory leaks are shown in the report at the end of the run.

Log errors to file and continue
Causes RTC not to stop upon finding an error, but to continue running. The
program stops when breakpoints are encountered or if the program is
interrupted.

96 WorkShop: Beyond the Basics—December 1996

6

All errors are redirected to the default file /tmp/dbx.errlog.<pid> . You
can select a different file to save errors to. To redirect all errors to the terminal,
set the filename to /dev/tty.

Note – If the filename filename, already exists, the contents of that file are
erased before output is redirected to that file.

Suppress duplicate error messages
Causes a particular error at a particular location to be reported only the first
time it is encountered. This is useful for preventing multiple copies of the same
error report when an error occurs in a loop which is executed many times.

97

Using Fix and Continue 7

Fixing allows you to quickly recompile edited source code without stopping
the debugging process.

This chapter is organized into the following sections:

Basic Concepts
The fix and continue feature allows you to modify and recompile a source file
and continue executing without rebuilding the entire program. By updating
the .o files and splicing them into your program, you don’t need to relink.

The advantages of fixing and continuing are:

• You do not have to relink the program.
• You do not have to reload the program for debugging.
• You can resume running the program from the fix location.

Note – Do not use fix if a build is in process; the output from the two
processes will intermingle in the Building window.

Basic Concepts page 97

Fixing Your Program page 99

Continuing after Fixing page 99

Changing Variables after Fixing page 100

98 WorkShop: Beyond the Basics—December 1996

7

How Fix and Continue Operate

The modified files are compiled and shared object (.so) files are created.
Semantic tests are done by comparing the old and new files. The new object file
is linked to your running process using the runtime linker. If the function on
top of the stack is being fixed, the new stopped in function is the beginning of
the same line in the new function. All the breakpoints in the old file are moved
to the new file. The modified source replaces the old source in the editor
window, and you can resume debugging from the exact point where you
stopped.

Modifying Source Using Fix and Continue

You can modify source code in the following ways when using fix and
continue :

• Add, delete, or change lines of code in functions
• Add or delete functions
• Add or delete global and static variables

Restrictions

WorkShop might have problems when functions are mapped from the old file
to the new file. To minimize such problems when editing a source file:

• Do not change the name of a function.

• Do not add, delete, or change the type of arguments to a function.

• Do not add, delete, or change the type of local variables in functions
currently active on the stack.

• Do not make changes to the declaration of a template or to template
instances. Only the body of a C++ template function definition can be
modified.

If you need to make any of the proceeding changes, rebuild your program.

Fixing Your Program
To fix your file:

1. Save the changes to your source.

Using Fix and Continue 99

7

WorkShop automatically saves your changes if you forget this step.

2. Choose Execute ➤ Fix Changes or click the Fix icon on the tool bar.

The Build Output window opens and lets you know that your fix is underway.
Any compile-time errors are listed and underscored, denoting links to source
files.

Although you can do an unlimited number of fixes, if you have done several
fixes in a row, consider rebuilding your program. Fixing changes the program
image in memory, but not on the disk. As you do more fixes, the memory
image gets out of sync with what is on the disk.

fix does not make the changes within your executable file, but only changes
the .o files and the memory image. Once you have finished debugging a
program, you need to rebuild your program to merge the changes into the
executable.

For more information on customizing the Fix command, see Using Fix and
Continue in the manual, Command-Line Utilities.

Continuing after Fixing
You can continue executing using Go, Step Into, or Start.

Before resuming program execution, you should be aware of the following
conditions:

Changing an executed function

If you made changes in a function that has already executed, the changes will
have no effect until:

• You run the program again.

• That function is called the next time.

If your modifications involve more than simple changes to variables, use Fix
then Go. Using Go is faster than using Build because it does not relink the
program.

Changing a function not yet called

If you made changes in a function not yet called, the changes will be in effect
when that function is called.

100 WorkShop: Beyond the Basics—December 1996

7

Changing a function currently being executed

If you made changes to the function currently being executed, Fix's impact
depends on where the change is relative to the stopped in function:

• If the change is in already executed code, the code is not re-executed.
Execute the code by popping the current function off the stack and
continuing from where the changed function is called. You need to know
your code well enough to figure out whether the function has side effects
that can't be undone (for example, opening a file).

• If the change is in code yet to be executed, the new code is run.

Changing a function presently on the stack

If you made changes to a function presently on the stack, but not the stopped
in function, the changed code will not be used for the present call of that
function. When the stopped in function returns, the old versions of the
function on the stack execute.

There are two ways to solve this problem:

• Do a Fix and then Go.

• Pop the stack until all changed functions are removed from the stack. You
need to know your code to be sure that there are no ill effects.

If there are breakpoints in modified functions on the stack, the breakpoints are
moved to the new versions of the functions. If the old versions are executed,
the program does not stop in those functions.

Changing Variables after Fixing
Changes made to global variables are not undone using Fix or by popping the
stack. To manually reassign correct values to global variables, use the Data
History pane of the Debugging window.

Using Fix and Continue 101

7

The following example shows how a simple bug can be fixed. The application
gets a segmentation violation in line 6 when trying to dereference a NULL
pointer:

1. Change line 14 to copy to buf instead of 0 and save the file

2. Choose Execute ➤ Fix Changes.

If the program is continued from here, it still gets a SEGV because the zero-
pointer is still pushed on the stack.

1 #include <stdio.h>
2
3 char *from = "ships";
4 void copy(char *to)
5 {
6 while ((*to++ = *from++) != ’\0’);
7 *to = ’\0’;
8 }
9
10 main()
11 {
12 char buf[100];
13
14 copy(0);
15 printf("%s\n", buf);
16 return 0;
17 }

signal SEGV (no mapping at the fault address) in copy at line 6
in

file "testfix.cc"
6 while ((*to++ = *from++) != ’\0’);

modified line 14 copy(buf);

fixing “testfix.cc”.....
pc moved to “testfix.cc”:6
stopped in copy at line 6 in file “testfix.cc”

6 while ((*to++ = *from++) != ’\0’);

102 WorkShop: Beyond the Basics—December 1996

7

3. Pop one frame of the stack by choosing Execute ➤ Pop.

If the program is continued from here, it runs, but it will not contain the correct
value because the global variable from has already been incremented by one.
The program would print hips and not ships .

4. Use the Assign button in the Debugging window to restore the global
variable.

5. Click Go.

Now the program prints the correct string:

stopped in main at line 14 in file “testfix.cc”
14 copy(buf);

ships

103

Index

Symbols
.NO_PARALLEL: special target, 12
.PARALLEL: special target, 12
.WAIT special target, 9

A
About box, 32
archiving libraries, 10
array

graphing, 71
array display, 73
arrays

automatic updating, 72
automatic parallelization

-parallel compiler switch, 25

B
Build Server Configuration File, 4
build servers, 13

C
C array example program, 81
call-graph profile

threads, 50
changing array display perspective, 73

changing the array display, 73
compiler switch

-depend, 33
-loopinfo, 33
-O4, 25
-parallel, 25
promotion of, 32
-Zlp, 25
-Ztha (Thread Analyzer), 43

concurrent file modification, 10
condition variable

time spent wating for signal, 42
contour array graph, 73

D
-depend (perform data dependency

analysis), 33
dependency lists, 9

explicit ordering, 9
implicit ordering, 9

distributed make, explanation of, 3
DMake host, 13
Dmake, basic concept, 3
DOALL pragma

mark loop for parallelization, 32

104 WorkShop: Beyond the Basics—December 1996

E
effects of optimizations applied to loops

inlining, 38
phantom loops, 38

environment variable
LD_LIBRARY_PATH, 25
PARALLEL, 24

exit Thread Analyzer, 46
explicit parallelization, 32
, 32
-explicitpar, 32

F
file

collision, 12
concurrent modification, 10

fix and continue, 97
conditions, 99
example, 101
restrictions, 98
using, 98

Fortran array example program, 80
function glyph (Thread Analyzer), 47

G
gnuemacs editor, help with, 30
graphing an array, 71
graphing an array from dbx, 72

H
hints about optimizations applied to

loops, 34
compiler generated two versions of

this loop, 35
loop contains backward flow of

control, 37
loop contains data dependency, 36
loop contains I/O, or other function

calls, that are not MT
safe, 37

loop contains multiple exits, 37

loop contains procedure call, 35
loop marked by user-inserted

pragma, DOALL, 37
loop may have been distributed, 37
loop may or may not hold enough

work to be profitably
parallelized, 36

loop significantly transformed during
optimization, 36

no hint available, 35
two or more loops may have been

fused, 38
two or more loops may have been

interchanged, 38

I
inlining, 38
instrumenting a program with-Ztha, 43

L
LD_LIBRARY_PATH environment

variable, 25
library update, concurrent, 10
limitations on makefiles, 9
loop contains backward flow of

control, 37
loop contains procedure call, 35
loop may have been distributed, 37
-loopinfo (print hints about loops), 33
LoopReport

loading timing file, 26
starting, 26

loops,phantom, 38
LoopTool

bar chart of loop runtimes, 27
choosing an editor, 30
creating a detailed report on loops, 29
editing source code, 30
getting help, 32
gettting hints, 30
graphical user interface, 26
LD_LIBRARY_PATH, 25
loading timing file, 26

Index 105

looptool command, 27
LVPATH environment variable, 27
online explanation of all compiler

hints, 29
opening files, 28
printing the LoopTool graph, 29
sending comments, 32
setting default search paths, 30
specified via command line (looptool

command), 27
starting, 26
Version menu in editor, 30
XUSERFILESEARCHPATH, 24

LVPATH environment variable, 27

M
macro

dynamic, 10
makefiles, limitations, 9
metrics collected by Thread Analyzer, 48
multiple targets, 11
multiprocessing, 19
multiprocessors, how many, 24
multithreaded, 19

N
naming convention, thread, 48
ncpus utility, 24
No hint available, 35

O
optimizations applied to loops

inlining, 38
loop transformations

jamming, 39
transposition, 39
unrolling, 39

phantom loops, 38

P
LoopReport

, 27
LoopTool

, 27
-p option, 27
-parallel (automatic parellelization), 32
PARALLEL environment variable, 24
parallel loop nested inside serial loop

wallclock anomaly, 39
parallelism, 20

restricting, 12
parallelize loop marked by DOALL

pragma
-explicitpar, 32

phantom loops, 38
pragma

DOALL, 32
processors, how many on your

machine, 24
profile data

functions, 51
program, 51
threads, 51

program glyph (Thread Analyzer), 47
promotion of compiler switches, 32

Q
quit Thread Analyzer, 46

R
read system call

number per second, 43
reader/writer read lock

time spent wating to acquire, 43
reader/writer write lock

time spent waiting to acquire, 43
restricting parallelism, 12
restrictions on makefiles, 9
rotating array display, 73
runtime checking

features, 85
limitations, 86

106 WorkShop: Beyond the Basics—December 1996

memory access error checking, 87
memory access error reporting, 89
memory access errors, 89
memory leak error reporting, 93
memory leak errors, 93
memory leaks checking, 90
setting options, 95
starting, 87

Runtime Configuration File, 4

S
surface array graph, 73

T
targets

.NO_PARALLEL: , 12

.PARALLEL: , 12

.WAIT , 9
multiple, 11

Thread Analyzer, 41 to 53, 53 to 65
blocking on I/O or thread

synchronization, 61
bottleneck, narrowing focus, 61 to 63
call-graph profile for threads, 50
collapse glyph hierarchy, 48
collecting metrics, 44
conventions, 48
CPU time filter, 63 to 65
display graph, 49
display table, 49
error messages, 48
exit, 46
expand glyph hierarchy, 48
filter, 53
glyph hierarchy, 48
gprof table, 50
gprof table for particular thread, 56
graph condition variable wait

time, 63
hierarchy navigation, 48
horizontal scrollbar, 47
identified via graphical data, 60 to ??
initial investigation, 54 to 59
instrumenting program, 43

interactive error messages, 48
Load button, 49
load trace directory, 49
loading a trace directory via

command line, 44
manipulating menus, 48
metric

condition variable wait time, 42
CPU time, 42
file reads (ops), 43
file write (bytes), 43
file writes (ops), 43
reader/writer read lock wait, 43
reader/writer write lock, 43
total sync wait time, 43
wall clock time, 42

metric graph, 49
metric graph property sheet, 49
metric scope, entire program, 42
metric scope, single function, 42
metric scope, single thread, 42
metric table, 52
metric table for particular

function, 58
metrics, 48

collected by, 48
mouse gestures, 48
multiple metrics for particular thread

or function, 52
multiple metrics, particular

function, 52
multiple metrics, particular

thread, 52
navigating through glyph

hierarchy, 48
particular glyph level, 51
performance bottlenecks, 60 to 61
plot CPU time versus wallclock

time, 60
prof table, 51
prof table for all threads, 55
profile data for functions, 51
profile data for program, 51
profile data for threads, 51
property sheet, 49, 51
quit, 46

Index 107

select metric, 49
sorted metric profile table, 51
sorted metric profile table for all

threads, 59
sorted metric profile table property

sheet, 51
specifying pathname to executable

via command line, 44
start ThA via comand line, 44
tha.pid directory, 44
thread naming convention, 48
threshold CPU time for function, 53
threshold CPU time for thread, 53
trace data file, 46
View menu, 49
write trace data files, 44
-Ztha, 43

thread glyph (Thread Analyzer), 47
thread naming convention, 48
thread synchronization

time spent on, 43
timing file, 26
timing file location

LoopTool
current directory, 26
specified via environment

variable, 27
specified via -p option, 27

Two or more loops may have been
fused, 38

two or more loops may have been
interchanged, 38

U
updating array displays, 72

V
Version menu, in LoopTool, 30
vi editor, help with, 30
vitem, 72

W
wallclock anomaly

parallel loop nested inside serial
loop, 39

write system call
number of bytes written, 43
number per second, 43

X
xemacs editor, help with, 30
XUSERFILESEARCHPATH (LoopTool

environment variable), 24

Z
-Ztha

instrument program
C, 43
C++, 43
FORTRAN, 43

-Ztha compiler option for Thread
Analyzer, 43

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunOS, Sun WorkShop, LoopTool, LockLint, Thread Analyzer, Sun C, Sun C++, et Sun
FORTRAN sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et
dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems,
Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit de X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

