
Trusted Solaris 2.5 Man Pages: 2TSOL System Calls

Sun Microsystems Federal, Inc.
A Sun Microsystems, Inc. Business
901 San Antonio Road, MS USJC01-201
Palo Alto, CA 94303
U.S.A.

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
��

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Portions  AT&T 1983-1990 and reproduced with permission from AT&T.

Preface

In the Trusted Solaris Reference Manual, each collection of information on a
particluar topic is called a man page, even though a man page may actually
consist of many pages of text.

A man page is intended to answer concisely the question “What does it do?”.
The man pages are not intended to be a tutorial. Depending what you are trying
to do, refer to the other Trusted Solaris user, developer, and administrator
manuals for when and why to use a command or other features described in
the man pages.

ACCESSING MAN PAGES
The man pages that make up the reference manual may be accessed in three
ways.

Note: The following discussion of man page viewing options uses the term
package, which is a unit of software that is typically delivered on Sun’s product
CDs. Installing the documentation packages is optional, because they are not
required for operations. Each customer’s administrators decides whether or not
the documentation packages are installed and made available.

The first means of accessing the man pages is through the use of the man(1)
command. When the contents of the man page package, SUNWman, are available
on the local system, anyone with a login account, plus a terminal emulator (such as
cmdtool(1), shelltool(1), or dtterm(1)) and the man(1) command in one of the account’s
execution profiles can view a man page on-line. (For more about Trusted Solaris
execution profiles and user accounts, see the Trusted Solaris user and administrator

i

documentation.) To view a man page, enter the man command followed by the name of
the man page. For example, to view the ls(1) man page that describes the command
used to print out a directory’s contents, a user enters the command: manls.

The second way to read man pages is in the printed Trusted Solaris Reference
Manual. The reference manual is in the Trusted Solaris documentation set, and
it may be ordered in hardcopy form from Sun by using part number: 805-8005-
10.

The third means of reading the man pages is by viewing them in AnswerBook
format. When the Trusted Solaris AnswerBook package, SUNWtab, is available
on the local system, anyone with a login account and with the answerbook() command
and a terminal emulator in an execution profile can display the Trusted Solaris reference
manual and the other user documentation. For Trusted Solaris 2.5, the Trusted Solaris
documentation AnswerBook is shipped on a separate documentation CD, but it may be
bundled on the same CD with the Trusted Solaris software in future releases.

Trusted Solaris man pages are identified with a TSOL suffix in the section
name. The TSOL suffix is used for man pages that are either new to Trusted
Solaris or modified from the base man pages from the Solaris, CDE, or Solstice
products that are bundled into Trusted Solaris. The man pages are organized
alphabetically by section.

· Section 1TSOL describes new or modified user commands available with the
Trusted Solaris operating system.

· Section 1BTSOL describes printer commands adapted for Trusted Solaris from
the Berkeley Software Distribution (BSD) print subsystem, which are used chiefly for
printing administration.

Note: Use of the equivalent System V print commands is recommended
(such as lp(1TSOL)instead of lpr(1BTSOL)) because although the BSD
commands are included for compatability, they will be removed in future
releases.

· Section 1MTSOL describes Trusted Solaris system maintenance and
administration commands.

· Section 2TSOL describes Trusted Solaris system calls. Most of these calls have
one or more error returns. An error condition is indicated by an otherwise
impossible returned value.

· 3*TSOL subsections describe functions found in various Trusted Solaris
libraries, other than those functions that directly invoke UNIX system primitives,
which are described in Section 2TSOL.

ii

Subsections include: 3CTSOL, 3NTSOL, 3RTSOL, 3TSOL, and 3X11TSOL.

· Section 4TSOL outlines the formats of various files. The C structure
declarations for the file formats are given where applicable.

· Section 5TSOL contains miscellaneous documentation such as Trusted Solaris
macros.

· 7*TSOL subsections describe various special files that refer to specific
hardware peripherals and device drivers.

Subsections include: 7DTSOL and 7TSOL.

· 9*TSOL subsections provide reference information for writing device drivers
in the kernel operating system environment.

Subsections include: 9FTSOL and 9TSOL.

Following is a generic list of headings on each man page. The man pages of
each manual section include only the headings they need. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information
about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

Preface iii

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

AVAILABILITY
This section briefly states any limitations on the availabilty of the command.
These limitations could be hardware or software specific.

A specification of a class of hardware platform, such as x86 or SPARC, denotes
that the command or interface is applicable for the hardware platform specified.

In Section 1TSOL and Section 1MTSOL, AVAILABILITY indicates which
package contains the command being described on the manual page. In order
to use the command, the specified package must have been installed with the
operating system. If the package was not installed, see pkgadd(1) for
information on how to upgrade.

MT-LEVEL
This section lists the MT-LEVEL of the library functions described in the
Section 3 manual pages. The MT-LEVEL defines the libraries’ ability to support
threads. See Intro(3TSOL) for more information.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

iv

IOCTL
This section appears on pages in Section 7TSOL only. Only the device class
which supplies appropriate parameters to the ioctl(2) system call is called ioctl
and generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option and where appropriate default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the
actions of the command.

OUTPUT
This section describes the output - standard output, standard error, or output
files - generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

Preface v

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be in an administrative role,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

FILES

vi

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

SEE ALSO
This section lists references to other man pages, in-house documentation, and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

SUMMARY OF TRUSTED SOLARIS CHANGES
On base man pages that have Trusted Solaris modifications, this section
summarizes the changes in a single easy-to-find place on the man page.

Preface vii

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME Intro, intro − introduction to system calls and error numbers

SYNOPSIS #include <errno.h>

DESCRIPTION Section 2 of the Trusted Solaris Reference Manual describes, in alphabetical order, all the
system calls available with the Trusted Solaris operating system, which is based on the
Solaris operating system, the Common Desktop Environment (CDE) window system, and
the Solstice AdminSuite set of system administration tools. Man pages whose section IDs
end with the 2TSOL suffix describe system calls that are either new or modified to work
within Trusted Solaris security policy. An example of a new Trusted Solaris system call
is secconf, which is described on the secconf(2TSOL) man page. The secconf system call
allows processes to determine the value of a configurable security-related system vari-
able, such as the variable that hides upgraded file names when set.

Modified system calls are system calls from any of the base products that have been
modified to work within the Trusted Solaris security policy, such as: link. Man pages for
modified system calls have been rewritten to remove information that is not accurate for
how the system call behaves within the Trusted Solaris system. Modified man pages,
such as link(2TSOL), also add descriptions for any new features and arguments added to
the base.

When a man page for a system call states that the calling process must have or must
assert a specified privilege or privileges, that means:

· The privilege(s) must be made available as allowed privileges on the executable,
and

· The privileges must be made available to the effective privilege set of the process
in either of these two ways:

· By inheritance from the parent process, or

· As forced privileges assigned to the executable program.

See Process Privilege Sets and Inheritable Privileges in the DEFINITIONS, and see also the
Trusted Solaris Developer’s Guide for more complete descriptions of the topics mentioned
here.

NOTE The printed version of the Trusted Solaris Reference Manual includes only the Trusted
Solaris man pages, while the on-line man pages that are viewable with the man(1) com-
mand include all the base man pages along with the Trusted Solaris man pages. Printed
versions of the unmodified base Solaris man pages are in the Solaris reference manual.
The man command without any options always displays the Trusted Solaris version, so
when both a base man page and a Trusted Solaris version exist, if you want to view the
original man page you must use the man command with the −s option to specify the base
section ID of the man page. For example, to display the link(2) man page instead of the
modified link(2TSOL) man page, you would enter: man −s2 link. To find out all the sec-
tions that contain man pages with the same name, enter: man −l <man_page_name>.

2TSOL-6 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

ERRORS Most of these calls have one or more error returns. An error condition is indicated by an
otherwise impossible returned value. This is almost always −1 or the null pointer; the
individual descriptions specify the details. An error number is also made available in the
external variable errno. errno is not cleared on successful calls, so it should be tested
only after an error has been indicated.

In the case of multithreaded applications, the _REENTRANT flag must be defined on the
command line at compilation time (−D_REENTRANT). When the _REENTRANT flag is
defined, errno becomes a macro which enables each thread to have its own errno. This
errno macro can be used on either side of the assignment , just as if it were a variable.

Applications should use bound threads rather than the _lwp_∗ system calls (see
thr_create(3T)). Using LWPs directly is not advised because libraries are only safe to use
with threads, not LWPs.

Each system call description attempts to list all possible error numbers. The following is
a complete list of the error numbers and their names as defined in <errno.h>.

1 EPERM Appropriate privilege not asserted
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or a process with the appropriate privilege. It is also returned
for attempts by ordinary users to do things that always require a privilege. See
Privilege in the DEFINITIONS.

2 ENOENT No such file or directory
A file name is specified and the file should exist but doesn’t, or one of the direc-
tories in a path name does not exist.

3 ESRCH No such process, LWP, or thread
No process can be found in the system that corresponds to the specified PID,
LWPID_t, or thread_t.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system service routine. If execution is resumed after
processing the signal, it will appear as if the interrupted routine call returned this
error condition.

In a multi-threaded application, EINTR may be returned whenever another
thread or LWP calls fork(2).

5 EIO I/O error
Some physical I/O error has occurred. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or exists beyond
the limit of the device. It may also occur when, for example, a tape drive is not
on-line or no disk pack is loaded on a drive.

modified 9 Sep 1997 2TSOL-7

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

7 E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to a member of the
exec family of routines. The argument list limit is the sum of the size of the argu-
ment list plus the size of the environment’s exported shell variables.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permis-
sions, does not start with a valid format (see a.out(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file that is open only for writing (respectively, reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or unwaited-for
child processes.

11 EAGAIN No more processes, or no more LWPs
For example, the fork routine failed because the system’s process table is full or
the user is not allowed to create any more processes, or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for more space
than the system is able to supply. This is not a temporary condition; the max-
imum size is a system parameter. On some architectures, the error may also
occur if the arrangement of text, data, and stack segments requires too many seg-
mentation registers, or if there is not enough swap space during the fork routine.
If this error occurs on a resource associated with Remote File Sharing (RFS), it
indicates a memory depletion which may be temporary, dependent on system
activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the Trusted Solaris
security policy. This type of failure due to DAC or MAC restrictions may be
bypassed at the discretion of the security administrator if the appropriate over-
ride privilege(s) are made available to be asserted by the calling process (which
privilege to use depending on the type of access being denied). See Discretionary
Access Control , File Access, Mandatory Access Control , Privilege, and Security Policy
in the DEFINITIONS.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a
routine. For example, errno potentially may be set to EFAULT any time a routine
that takes a pointer argument is passed an invalid address, if the system can
detect the condition. Because systems will differ in their ability to reliably detect
a bad address, on some implementations passing a bad address to a routine will
result in undefined behavior.

2TSOL-8 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

15 ENOTBLK Block device required
A non-block device or file was mentioned where a block device was required (for
example, in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an attempt
was made to unmount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt is
made to enable accounting when it is already enabled. The device or resource is
currently unavailable. EBUSY is also used by mutexes, semaphores, condition
variables, and r/w locks, to indicate that a lock is held. And, EBUSY is also used
by the processor control function P_ONLINE.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (for example, call to
the link routine).

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate operation to a device (for exam-
ple, read a write-only device).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required (for example, in a
path prefix or as an argument to the chdir routine).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was specified (for example, unmounting a non-mounted
device), mentioning an undefined signal in a call to the signal or kill routine.

23 ENFILE File table overflow
The system file table is full (that is, SYS_OPEN files are open, and temporarily no
more files can be opened).

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors open at a time.

25 ENOTTY Inappropriate ioctl for device
A call was made to the ioctl routine specifying a file that is not a special character
device.

26 ETXTBSY Text file busy (obsolete)
An attempt was made to execute a pure-procedure program that is currently
open for writing. Also an attempt to open for writing or to remove a pure-
procedure program that is being executed. (This message is obsolete.)

27 EFBIG File too large
The size of the file exceeded the limit specified by resource RLIMIT_FSIZE; or, the
file size exceeds the maximum supported by the file system.

modified 9 Sep 1997 2TSOL-9

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no free space
left on the device. In the fcntl routine, the setting or removing of record locks on
a file cannot be accomplished because there are no more record entries left on the
system.

29 ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-
only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links, LINK_MAX, to a
file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition
normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable within
machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the
specified message queue (see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal of an
identifier from the file system’s name space (see msgctl(2), semctl(2), and
shmctl(2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

2TSOL-10 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file and
record locking, and also applies to mutexes, semaphores, condition variables, and
r/w locks.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full (see fcntl(2)).

47 ECANCELED Operation canceled
The associated asynchronous operation was canceled before completion.

48 ENOTSUP Not supported
This version of the system does not support this feature. Future versions of the
system may provide support.

49 EDQUOT Disc quota exceeded
A write() to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because the user’s quota of disk blocks was
exhausted, or the allocation of an inode for a newly created file failed because the
user’s quota of inodes was exhausted.

58−59 Reserved

60 ENOSTR Device not a stream
A putmsg or getmsg system call was attempted on a file descriptor that is not a
STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this error is dev-
ice specific and could indicate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific operation. The status of the ioctl
operation is indeterminate. This is also returned in the case of
_lwp_cond_timedwait() or cond_timedwait().

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS head data
structures were available. This is a temporary condition; one may recover from it
if other processes release resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try to
advertise, unadvertise, mount, or unmount remote resources while the machine
has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package which
has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource which
is not on the local machine, or try to mount/unmount a device (or pathname)
that is on a remote machine.

modified 9 Sep 1997 2TSOL-11

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

67 ENOLINK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connecting to a
remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource which
has been advertised already, or try to stop RFS while there are resources still
advertised, or try to force unmount a resource when it is still advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS while
resources are still mounted by remote machines, or when a resource is readver-
tised with a client list that does not include a remote machine that currently has
the resource mounted.

70 ECOMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting for a mes-
sage from a remote machine, and the virtual circuit fails.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally not
related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote resources
which are not directly accessible.

76 EDOTDOT Error 76
This error is RFS specific. A way for the server to tell the client that a process has
transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I_RECVFD system call to a STREAMS device,
something has come to the head of the queue that can’t be processed. That some-
thing depends on the system call:

read: control information or passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see lim-
its(4).

79 EOVERFLOW
Value too large for defined data type.

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made to a file
that is open only for writing.

2TSOL-12 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

82 EREMCHG Remote address changed

83 ELIBACC Cannot access a needed shared library
Trying to exec an a.out that requires a static shared library and the static shared
library doesn’t exist or the user doesn’t have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a.out that requires a static shared library (to be linked in) and
exec could not load the static shared library. The static shared library is probably
corrupted.

85 ELIBSCN .lib section in a.out corrupted
Trying to exec an a.out that requires a static shared library (to be linked in) and
there was erroneous data in the .lib section of the a.out. The .lib section tells exec
what static shared libraries are needed. The a.out is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a.out that requires more static shared libraries than is allowed
on the current configuration of the system. See NFS Administration Guide.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path name traversal exceeds
MAXSYMLINKS

91 ESTART Restartable system call
Interrupted system call should be restarted.

92 ESTRPIPE If pipe/FIFO, don’t sleep in stream head
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a transport endpoint. Des-
tination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal message
buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested.

modified 9 Sep 1997 2TSOL-13

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

99 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a protocol.

120 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

121 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport endpoint.

123 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementa-
tion for it exists. Used for the Internet protocols.

124 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

125 EADDRINUSE Address already in use
User attempted to use an address already in use, and the protocol does not allow
this.

126 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address not on the
current machine.

127 ENETDOWN Network is down
Operation encountered a dead network.

128 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

131 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of
the connection on the remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not performed because the sys-
tem lacked sufficient buffer space or because a queue was full.

133 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint; or, a
sendto or sendmsg request on a connected transport endpoint specified a desti-
nation when already connected.

2TSOL-14 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

134 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport endpoint
is not connected and (when sending a datagram) no address was supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the com-
munication protocol.)

146 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
remote host.

147 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was down.

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an opera-
tion in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

DEFINITIONS
ACL See Access Control List

ACL Mask Created for compatability purposes, it masks out any existing ACL entries without des-
troying them when chmod(1) changes permissions on a file or directory. The masked
names can then later be restored if chmod is run again to restore the original permissions.

Access Control List A type of discretionary access control based on a list of entries that the owner can specify
for a file or directory. The access control list (ACL) restricts or permits access to any
number of individuals and groups, allowing finer-grained control than provided by the
standard UNIX permission bits.

Accreditation Range Actually not a range, but a set made up of labels. See user accreditation range and system
accreditation range for more about the two types of accreditation ranges in the Trusted
Solaris system.

modified 9 Sep 1997 2TSOL-15

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

Background Process
Group

Any process group that is not the foreground process group of a session that has esta-
blished a connection with a controlling terminal.

CMW Label A structure that holds both an information label and a sensitivity label, this construct allows
the information label and sensitivity label to be programmatically translated and manipu-
lated either as single entities or as a combined unit.

Classification The hierarchical portion of a sensitivity label, information label, or clearance, each of which
has only one classification. Each classification has an external name (text string) and an
internal number (integer), with the lowest number assigned to the lowest classification
and the other numbers assigned to the rest of the classifications in a hierarchical relation-
ship. In a sensitivity label assigned to a file or directory, a classification indicates a rela-
tive level of protection based on the sensitivity of the information contained in the file or
directory. In a clearance assigned to a user and that user’s processes, a classification indi-
cates a level of trust.

Clearance An upper bound on the set of labels whose lower bound is the minimum label assigned by
the security administrator as the initial label. Like a sensitivity label, a clearance consists of
a classification and a set of compartments. See Process Clearance.

Compartment A word associated with one or more compartment bits that may be defined in the
label_encodings(4TSOL) file to be part of a sensitivity label, information label, or clearance.
Compartments represent areas of interest or work groups associated with the labels that
contain compartments and are used in MAC decisions. Compartments have no intrinsic
ordering; however, the label_encodings file can impose constraints that may be hierarch-
ical on the allowable combinations of compartments with each other and with
classifications.

Controlling Process A session leader that established a connection to a controlling terminal.

Controlling Terminal A terminal that is associated with a session. Each session may have, at most, one control-
ling terminal associated with it and a controlling terminal may be associated with only
one session. Certain input sequences from the controlling terminal cause signals to be
sent to process groups in the session associated with the controlling terminal; see
termio(7I).

DAC See discretionary access control.

Device Objects Device objects include printers, workstations, tape drives, floppy drives, audio devices,
and internal pseudo terminal devices. See mandatory acces control for definitions of MAC
policy. Devices are subject to the read equal write equal policy.

Directory Directories organize files into a hierarchical system where directories are the nodes in the
hierarchy. A directory is a file that catalogues the list of files, including directories (sub-
directories), that are directly beneath it in the hierarchy. Entries in a directory file are

2TSOL-16 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

called links. A link associates a file identifier with a filename. By convention, a directory
contains at least two links, . (dot) and .. (dot-dot). The link called dot refers to the direc-
tory itself while dot-dot refers to its parent directory. The root directory, which is the
top-most node of the hierarchy, has itself as its parent directory. The pathname of the
root directory is / and the parent directory of the root directory is /.

Discretionary Access
Control

The type of access granted or denied by the owner of a file or directory at the discretion
of the owner. The Trusted Solaris system provides two kinds of discretionary access
(DAC) controls, permission bits and access control lists.

Disjoint When two labels of any type (sensitivity label, information label, or clearance) are compared
and neither of the two labels dominates the other, the labels are said to be disjoint. Infor-
mation flow between disjoint labels is considered to be a downgrade.

Dominate When any type of label (sensitivity label, information label, or clearance) has a security level
equal to or greater than the security level of another label to which it is being compared,
the first label is said to dominate the second. The classification of the dominant label must
equal or be higher than the classification of the second label, and the dominant label must
include all the words (compartments and markings, if present) in the other label. Sensi-
tivity labels are compared for dominance when MAC decisions are being made. See
strictly dominate and disjoint.

Downstream In a stream, the direction from stream head to driver.

Driver In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver (see
log(7D)), which is not associated with a hardware device.

Effective User ID and
Effective Group ID

An active process has an effective user ID and an effective group ID that are used to deter-
mine file access permissions (see below). The effective user ID and effective group ID are
equal to the process’s real user ID and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the set-user-ID bit or set-group-ID bit set
(see exec(2)).

File Access Even though, strictly speaking, files, directories, devices and other objects are treated as
files in the UNIX system, only the access rules for file system objects are described in this
section. Because files, directories, and devices have slightly different mandatory access
rules, these rules are separately described. See process objects, System V IPC objects,
STREAMS objects, network endpoint objects, device objects, and X window objects for the rules
that apply to these other types of objects.

A file, directory, or device may be accessed in three ways:

· The name of the file, directory, or device may be viewed,

· The contents or the attributes of the file, directory, or device may be viewed, or

· The contents or the attributes of the file, directory, or device may be modified.

modified 9 Sep 1997 2TSOL-17

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

In the Trusted Solaris system, each of these types of access is granted or denied based on
whether certain discretionary access control checks (described in File Access Permissions) and
mandatory access control checks have been passed.

All types of access require that the sensitivity label of the process dominates the sensitivity
label of all directories in the path prefix and that the owner of the process has discretion-
ary access for each directory in the path prefix. View access to the name of the file, direc-
tory, or device requires only that this part of the check is passed (unless the system is
configured to hide upgraded names).

For view access (read access) to the contents or attributes of a file or directory, the process’
sensitivity label must dominate the sensitivity label of the file or directory. For view
access to the contents of a device (for example, so you can read information on a tape in a
tape drive), the process’ sensitivity label must be equal to the sensitivity label of the dev-
ice. The owner of the process also must have discretionary read access to the file, direc-
tory, or device.

For a process to write a file or to modify its attributes, the sensitivity label of the file must
dominate the sensitivity label of the process and must be dominated by the process’ clear-
ance. (See process clearance.) For a process to write into a directory (to create a file or a
symbolic link) the label of the process must equal the sensitivity label of the directory.
For a process to write to a device (for example, store information on a tape in a tape
drive), the sensitivity label of the process must equal the sensitivity label of the device.
The owner of the process must have discretionary write access to the file, directory, or
device.

For each type of failure of a MAC or DAC check, a specific override privilege may be
asserted by the process, depending on the type of access being denied. See process
privilege sets, and inheritable privileges.

These conditions and the listed override privileges apply to any type of access:

· If the sensitivity label of the process does not dominate the sensitivity label of a
directory in the path prefix, then the process must assert the privilege to search
up (search a directory whose sensitivity label dominates the process’ sensitivity
label), which is file_mac_search.

· If the user on whose behalf the process is being executed does not assert discre-
tionary search permission for a directory in the path prefix, then the process must
have the privilege to override DAC search restrictions when accessing a directory,
which is file_dac_search.

These conditions and the listed override privileges apply to view (read) access to a file or
directory or to its attributes:

· If the sensitivity label of the process does not dominate the sensitivity label of the
file or directory, then the process must assert the privilege to override MAC read
restrictions, which is file_mac_read.

· If the user on whose behalf the process is being executed does not have discre-
tionary read permission for the file or directory, then the process must assert the
privilege to override DAC read restrictions, which is file_dac_read.

2TSOL-18 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

These conditions and the listed override privileges apply to modify (write) access to a file
or directory or to its attributes:

· If the sensitivity label of the file does not dominate or if the sensitivity of the
directory or device does not equal the sensitivity label of the process, and if the
sensitivity lable of the file, directory, or device is not dominated by the process’
clearance, the process must assert the privilege that overrides MAC write restric-
tions, allowing the user to write up and to write above the process’ clearance,
which is file_mac_write.

· If the user on whose behalf the process is being executed does not have discre-
tionary write permission for the file or directory, then the process must assert the
privilege to override DAC write restrictions, which is file_dac_write.

File Access
Permissions

Read, write, and execute or search permissions on a file or directory are granted to a pro-
cess if the mandatory access control checks are passed as described in File Access, and if one
of the following tests is true.

If an ACL exists for a file or directory, then the following tests are performed in order
until one is true, and then the requested access is granted.

· If the effective UID of the process is equal to the UID of the owner of the file or
directory and if the ACL grants the desired type of access to the owner.

· If the effective UID of the process is in the user list in the ACL and if both the ACL
for the owner and the ACL mask grant the desired type of access to the named
user.

· If the effective GID or a supplementary GID of the owner of process is equal to the
GID of the file or directory and if both the ACL entry for the owner’s group and
the ACL mask both grant the desired type of access to the owner’s group.

· If the effective GID or a supplementary GID of the owner of the process is named
in the ACL group list, and if both the ACL entry for the named group and the ACL
mask grant the desired type of acess to the group.

· If the ACL’s "other" entry grants the desired type of access to the owner of the
process.

If an ACL does not exist for the file or directory being accessed, then the following tests
are performed in order, and if one of them is passed the desired access is granted.

· If the effective UID of the process is equal to the UID of the owner of the file or
directory and if the owner portion (0700) of the file’s permissions is set to allow
the desired type of access.

· If the effective GID is equal to the GID of the file or directory and if the group por-
tion (0070) of the file’s permissions is set to allow the desired type of access.

· If one of the groups in the supplementary group list of the process is equal to the
GID of the file or directory and if the group portion (0070) of the file’s permis-
sions is set to allow the desired type of access.

· If the other portion (0007) of the file’s permission bits is set to allow the desired
type of access to all others.

modified 9 Sep 1997 2TSOL-19

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

Otherwise, access is denied, unless the process asserts the appropriate DAC override
privilege(s) described in File Access.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The value of a file descriptor is
from 0 to (NOFILES−1). A process may have no more than NOFILES file descriptors open
simultaneously. A file descriptor is returned by system calls such as open, or pipe. The
file descriptor is used as an argument by calls such as read, write, ioctl, and close.

File Name Names consisting of 1 to NAME_MAX characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding \0 (null)
and the ASCII code for / (slash).

Note that it is generally unwise to use ∗, ?, [, or] as part of file names because of the spe-
cial meaning attached to these characters by the shell (see sh(1), csh(1), and ksh(1)).
Although permitted, the use of unprintable characters in file names should be avoided.

A file name is sometimes referred to as a pathname component. The interpretation of a
pathname component is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect for the path
prefix of that component (see fpathconf(2) and limits(4)), it shall be considered an error
condition in that implementation. Otherwise, the implementation shall use the first
NAME_MAX bytes of the pathname component.

File Privilege Sets These sets consist of the allowed and forced privileges specified for use by executable files
(programs). The allowed set limits which privileges a process can use, whether the
privileges are forced on the executable file or inherited (see inheritable privileges). Any
privileges in the forced privilege set are available to any process that invokes the pro-
gram, as long as they are also in the allowed set.

File System Objects File-system objects include files (regular files, process files, and device-special files),
directories, symbolic links, FIFOs (named pipes), pipes, and UNIX domain socket rendez-
vous. See mandatory access control for definitions of the MAC policies. See File Access for
the MAC rules that apply to regular files, device files, symbolic links, and directories. The
policies for the remaining file objects are as follows. UNIX domain socket rendezvous and
FIFOs (named pipes) are subject to the write up read down policy. Pipes are subject to
the read equal write equal policy.

Foreground Process
Group

Each session that has established a connection with a controlling terminal will distinguish
one process group of the session as the foreground process group of the controlling ter-
minal. This group has certain privileges when accessing its controlling terminal that are
denied to background process groups.

Information Label A label that signifies the present actual sensitivity level of the information with which it is
associated while also representing any required markings or handling caveats that apply
to that information. An information label consists of a hieracherical classification and a set

2TSOL-20 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

of non-hierarcherical compartments that together make up the information level of the infor-
mation label, along with a set of non-hierarchical markings.

Information Label
Floating

A conjoining of two information labels that occurs when information from an object with
one information label flows to an object or process that has another information label, the
resulting information label reflects the combined security level and markings from both
information labels, according to the rules defined for valid labels in the
label_encodings(4TSOL) file.

Inheritable Privileges The privileges that a process can pass to a program across an execve(2V) without their
being affected by the new program’s forced or allowed privilege sets. [A child process
created through a fork(2) receives all of a parent process‘ privilege sets with no change.]
When a new program is executed by a process, the inheritable set of the process is set to
be equal to the inheritable set of the old program: I[process]=I[program]. The inheritable
set is not affected by the forced or allowed privileges on the currently executing program,
which allows allows privileges to be passed from programs that cannot use them to pro-
grams that can.

{IOV_MAX} Maximum number of entries in a struct iovec array.

Label A security identifier assigned to an object based on the level of protection it needs and to
a process based on the degree of trust afforded to the user on whose behalf the process is
running.

Label Range A set of sensitivity labels assigned to allocatable devices, commands and file systems,
specified by designating a maximum label and a minimum label. For allocatable devices,
the minimum and maximum labels limit the sensitivity labels at which devices may be
allocated. [See allocate(1TSOL) For commands the minimum and maximum labels limit
the sensitivity labels at at which the command may be executed. For file systems, the
minimum and maximum labels limit the sensitivity labels at which information may be
stored on each file system.

Label View Flags These flags control the translation and display of the internal ADMIN_LOW and
ADMIN_HIGH labels. If no value is set on the Label View Flag, the Default Label View
specified in the label_encodings(4TSOL) file is used. A value of External specifies that
the actual label ADMIN_LOW displays as the lowest label name in the user accreditation
range specified in the label_encodings file, and that the actual label ADMIN_HIGH
displays as the highest label name in the user accreditation range. A value of Internal
specifies that the ADMIN_LOW and ADMIN_HIGH labels are translated to the Admin Low
Name and Admin High Name strings specified in the label_encodings file. If no such
names are specified, the strings “ ADMIN_LOW” and “ ADMIN_HIGH” are used.

Label Translation
Flags

These fifteen-bit flags support the GFI FLAGS= option in the label_encodings(4TSOL) file,
which allows the use of these flags by applications written to use them. These flags are
viewable and modifiable only by a trusted path process.

modified 9 Sep 1997 2TSOL-21

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

{LIMIT} The braces notation, {LIMIT}, is used to denote a magnitude limitation imposed by the
implementation. This indicates a value which may be defined by a header file (without
the braces), or the actual value may be obtained at runtime by a call to the configuration
inquiry pathconf(2) with the name argument _PC_LIMIT.

MAC See mandatory access control.

MLD See multilevel directory.

Mandatory Access
Control

A type of control based on comparing the sensitivity label of an object to the sensitivity
label of the process that is trying to access the object. The MAC policies that apply to vari-
ous types of objects are read equal, write equal, read down , and write up. (See the individual
definitions for each object type for the policy that applies.) When the read equal policy
applies, an object may be accessed for reading only when the sensitivity label of the pro-
cess is equal to the sensitivity label of the object. When the write equal policy applies, an
object may be accessed for writing only when the sensitivity label of the process is equal
to the sensitivity label of the object. When the write up. policy applies, an object may be
accessed for writing only when the sensitivity label of the process is dominated by the
sensitivity label of the object, hence the process "writes up" to the object. The write up
policy also includes write equal. When the read down policy applies, an object may be
accessed for reading only when the sensitivity label of the process dominates the sensi-
tivity label of the object, hence the process "reads down" to the object. The read down
policy also includes read equal.

Marking A codeword, handling caveat, control or release marking word or set of words, and the
associated marking bits, that are used only in information labels. Markings have no intrin-
sic ordering, but label_encodings(4TSOL) can impose constraints that may be hierarchi-
cal on the allowable combinations of markings and compartments and classifications.

Masks The file mode creation mask of the process used during any create function calls to turn
off permission bits in the mode argument supplied. Bit positions that are set in
umask(cmask) are cleared in the mode of the created file. See also ACL Mask.

Message In a stream, one or more blocks of data or information, with associated STREAMS control
structures. Messages can be of several defined types, which identify the message con-
tents. Messages are the only means of transferring data and communicating within a
stream.

Message Queue In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue
Identifier

A message queue identifier (msqid) is a unique positive integer created by a msgget sys-
tem call. Each msqid has a message queue and a data structure associated with it. The
data structure is referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg ∗msg_first;
struct msg ∗msg_last;

2TSOL-22 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

ulong msg_cbytes;
ulong msg_qnum;
ulong msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

Here are descriptions of the fields of the msqid_ds structure:

msg_perm is an ipc_perm structure that specifies the message operation permis-
sion (see below). This structure includes the following members:

uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
mode_t mode; /∗ r/w permission ∗/
ulong seq; /∗ slot usage sequence # ∗/
key_t key; /∗ key ∗/

∗msg_first is a pointer to the first message on the queue.

∗msg_last is a pointer to the last message on the queue.

msg_cbytes is the current number of bytes on the queue.

msg_qnum is the number of messages currently on the queue.

msg_qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd opera-
tion.

msg_lrpid is the process id of the last process that performed a msgrcv opera-
tion.

msg_stime is the time of the last msgsnd operation.

msg_rtime is the time of the last msgrcv operation

msg_ctime is the time of the last msgctl operation that changed a member of the
above structure.

modified 9 Sep 1997 2TSOL-23

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

Message Operation
Permissions

In the msgop and msgctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed, interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a msqid are granted to a process if the read-equal write-
equal mandatory access control check is passed or if the process asserts the appropriate
override privilege (either PRIV_IPC_MAC_READ or PRIV_IPC_MAC_WRITE), and if one of
the following tests is true.

If a System V IPC ACL exists for the message queue, then the following tests are per-
formed in order until one is true, and then the requested access is granted.

· If the effective UID of the process is equal to the UID of the owner of message
queue and if the ACL grants the desired type of access to the owner.

· If the effective UID of the process is in the user list in the ACL and if both the ACL
for the owner and the ACL mask grant the desired type of access to the named
user.

· If the effective GID or a supplementary GID of the owner of process is equal to the
GID of the message queue and if both the ACL entry for the owner’s group and
the ACL mask both grant the desired type of access to the owner’s group.

· If the effective GID or a supplementary GID of the owner of the process is named
in the ACL group list, and if both the ACL entry for the named group and the ACL
mask grant the desired type of acess to the group.

· If the ACL’s "other" entry grants the desired type of access to the owner of the
process.

· The process has asserted the appropriate DAC privilege, PRIV_FILE_DAC_READ
or PRIV_FILE_DAC_WRITE.

If a System V IPC ACL does not exist for the message queue being accessed, then the fol-
lowing tests are performed in order, and if one of them is passed the desired access is
granted.

The effective user ID of the process matches msg_perm.cuid or msg_perm.uid in
the data structure associated with msqid and the appropriate bit of the “user”
portion (0600) of msg_perm.mode is set.

2TSOL-24 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

The effective group ID or the supplementary group ID of the process matches
msg_perm.cgid or msg_perm.gid and the appropriate bit of the “group” portion
(060) of msg_perm.mode is set.

The appropriate bit of the “other” portion (006) of msg_perm.mode is set.

The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

Module A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream’s head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that a
module contains a pair of functions which allow independent bidirectional (downstream
and upstream) data flow and processing.

Multilevel Directory A directory in which information at differing sensitivity labels is maintained in separate
subdirectories called single-level directories (SLDs), while appearing to most interfaces to
be a single directory under a single name. In the Trusted Solaris system, directories that
are used by multiple standard applications to store files at varying labels, such as the
/tmp directory, /var/spool/mail , and users’ $HOME directories are set up to be MLDs. A
process can access an MLD two ways: either by using pathname translation, and using the
adorned name. When a process refers to an MLD without the adorned name, Trusted
Solaris transparently extends the reference to the SLD that corresponds to the process’
sensitivity label. If the process is creating a file and if the correct SLD does not already
exist, Trusted Solaris creates the SLD and assigns it the process’ sensitivity label so that
the correct single-level directory exists for the file. If the process wants to access the MLD
directly, it should use the the MLD adornment on the final component of the path. The text
string .MLD. is the default adornment. The adornment is a file system attribute that may
be changed using setfsattr(1MTSOL). Use of the adornment allows programs to refer
directly to the MLD instead of to the SLD that has the same SL as the process.

Multiplexor A multiplexor is a driver that allows streams associated with several user processes to be
connected to a single driver, or several drivers to be connected to a single user process.
STREAMS does not provide a general multiplexing driver, but does provide the facilities
for constructing them and for connecting multiplexed configurations of streams.

Network Endpoint
Objects

Network endpoint objects are sockets and the transport level interface (TLI). See manda-
tory access control for definitions of the MAC policies. Network endpoint objects are sub-
ject to the read equal write equal policy.

Object Anything in the Trusted Solaris system that a process attempts to access. The six major
object types are file system objects, process objects, System V IPC objects, STREAMS objects,
network endpoint objects, device objects, and X window objects.

modified 9 Sep 1997 2TSOL-25

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

Orphaned Process
Group

A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group’s session.

Path Name A path name is a null-terminated character string starting with an optional slash (/), fol-
lowed by zero or more directory names separated by slashes, optionally followed by a
file name.

If a path name begins with a slash, the path search begins at the root directory. Other-
wise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-
existent file.

Permission Bits A type of discretionary access control in which the owner specifies a set of bits to signify
who can read, write, or execute a file or directory. Three different sets of permissions are
assigned to each file or directory: one set for the owner; one set for all members of the
group specified for the file or directory; and one set for all others. See also access control
lists.

Privilege Having appropriate privilege means having the capability to override some aspect of
security policy. If a man page states that a system call needs to have or to assert "the
appropriate privilege" to bypass DAC or MAC restrictions, see File Access Permissions for
the override privilege that applies to the type of access being denied. A privilege is only
granted by a site’s security administrator after judging that the command itself or the per-
son will use the privilege in a trustworthy manner. See File Privilege Sets and Process
Privilege Sets.

Privilege Debugging
Flag

This one bit flag indicates that the process is in privilege debugging mode, an operational
mode where any attempt by the process to use a privilege is logged. This flag can be
viewed or cleared, but can be set only by a trusted path process. This flag is set by
runpd(1MTSOL) when executing a command in privilege debugging mode, and then is
inherited by the process. It works only if the TSOL_PRIVS_DEBUG kernel switch is also
enabled (see secconf(2TSOL).

Process ID Each process in the system is uniquely identified during its lifetime by a positive integer
called a process ID. A process ID may not be reused by the system until the process life-
time, process group lifetime and session lifetime ends for any process ID, process group
ID and session ID equal to that process ID. Within a process, there are threads with
thread id’s, called thread_t and LWPID_t. These threads are not visible to the outside
process.

Parent Process ID A new process is created by a currently active process (see fork(2)). The parent process
ID of a process is the process ID of its creator.

2TSOL-26 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

Privilege Having appropriate privilege means having the capability to override system restrictions.

Process Attribute
Flags

Trusted Solaris flags that indicate security-related values that are copied from one pro-
cess to another on fork(2TSOL) and cloned without changes on exec(2TSOL). They are:
the Trusted Path Flag, the Privilege Debugging Flag, the Network Token Mapping Process Flag,
the Label View Flag (External View or Internal View), the Label Translation Flags, the Part of
Diskless Boot Flag and the Part of Cut and Past Selection Agent Flag. See pattr(1TSOL),
getpattr(2TSOL)C , and setpattr(2TSOL). Each flag has its own protection policy. Any
process may view or clear any process attributes flags except for the Label Translation
flags, which are viewable and clearable by only a process with the trusted path attribute.
Any process may set the Label View flags, but only processes with the trusted path attri-
bute may set any of the other process attribute flags.

Process Clearance At the time a process is created, the process clearance is inherited from the parent pro-
cess. A process cannot change its own sensitivity label or that of a file to a sensitivity label
that strictly dominates the process clearance and cannot access (or write up to) a file or
other process whose sensitivity label strictly dominates its clearance, without having and
using privileges.

Process Group Each process in the system is a member of a process group that is identified by a process
group ID. Any process that is not a process group leader may create a new process group
and become its leader. Any process that is not a process group leader may join an exist-
ing process group that shares the same session as the process. A newly created process
joins the process group of its parent.

Process Group Leader A process group leader is a process whose process ID is the same as its process group ID.

Process Group ID Each active process is a member of a process group and is identified by a positive integer
called the process group ID. This ID is the process ID of the group leader. This grouping
permits the signaling of related processes (see kill(2)).

Process Lifetime A process lifetime begins when the process is forked and ends after it exits, when its ter-
mination has been acknowledged by its parent process. See wait(2).

Process Group
Lifetime

A process group lifetime begins when the process group is created by its process group
leader, and ends when the lifetime of the last process in the group ends or when the last
process in the group leaves the group.

Process Objects Process and lightweight processes (independently scheduled threads of execution), which
are subject to the write up read down policy. See objectfor definitions of the MAC policies.

Process Privilege Sets The privileges used by a process are stored in sets called the inheritable, permitted, effective,
and saved sets. When a process executes a program through the execve(2TSOL) system
call, the permitted (P) and effective (E) privilege sets are reset equal to the same value,
which is the intersection of the process’ previously existing inheritable (I) privileges and
the program file’s allowed (A) privileges intersected with the program file’s forced (F)

modified 9 Sep 1997 2TSOL-27

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

privileges: P=E=(I[process] union F[program] restricted by A[program]). The saved
privilege set is set initially to the intersection of the existing inheritable privilege set and
the file’s allowed privileges: S=(I[process] intersected by A), which allows the process to
determine which privileges it had when the currently executing program was invoked.
When a new program is invoked, the inheritable privilege set is initially set to be the
same as the inheritable privileges of the process that invoked the current program:
I[new]=I[old]. Setting the inheritable privileges without reference to the forced or
allowed privileges on an executing program allows privileges to be passed without
change from a program that cannot use them to one that can. For compatability with the
base system’s super-user capability, if the effective UID is set by setuid(2TSOL), to be dif-
ferent from the original, the effective set is copied to the saved set and the effective set is
cleared: S=E; E=0. When the process changes its effective user ID back to the original, the
saved privilege set is copied to the effective set, thus restoring its privileged state: E=S. In
addition to automatic changes in privilege sets as the result of execve or setuid, a process
may manipulate its own privilege sets with the getppriv(2TSOL) and setppriv(2TSOL)
system calls. For example, a process can use these calls to move permitted privileges into
and out of its effective privilege set, for privilege bracketing. A process with the
PRIV_SET_FPRIV privilege in its effective set can use setfpriv(2TSOL) to set privileges on a
file. See the Trusted Solaris Developer’s Guide for more details about how privileges may
be manipulated within programs using system calls.

Process Security
Attribute

Security attributes received by processes from the base Solaris system are: the process ID
(PID), the real, effective, and saved user ID, the real, effective, or saved ID, the supplemen-
tary group IDs, the user audit ID, the audit session ID, the audit preselection mask, the ter-
minal ID, and the umask(see Masks). Security attributes received by processes from the
Trusted Solaris system are: the process clearance, the CMW label , the process attribute flags ,
and the permitted, effective, inheritable, and saved process privilege sets.

Read Queue In a stream, the message queue in a module or driver containing messages moving
upstream.

Real User ID and Real
Group ID

Each user allowed on the system is identified by a positive integer (0 to MAXUID) called a
real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID and
real group ID, respectively, of the user responsible for the creation of the process.

Root Directory and
Current Working

Directory

Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. The root directory of a pro-
cess need not be the root directory of the root file system.

Saved User ID and
Saved Group ID

The saved user ID and saved group ID are the values of the effective user ID and effective
group ID prior to an exec of a file whose set user or set group file mode bit has been set
(see exec(2)).

2TSOL-28 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

SLD See single-level directory.

Security Attribute An attribute used in enforcing the Trusted Solaris security policy. Various sets of security
attributes, both from the base Solaris and the Trusted Solaris systems, are assigned to
processes, users, files, directories, file systems, hosts on the trusted network, allocatable
devices, and other entities. See Process Security Attributes.

Security Policy In the Trusted Solaris environment, the set of rules for DAC, MAC, information labeling,
and privilege interpretation that define how information may be accessed. At a customer
site, the set of rules that define the sensitivity of the information being processed at that
site and the measures that are used to protect the information from unauthorized access.

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer created by a semget system
call. Each semid has a set of semaphores and a data structure associated with it. The
data structure is referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /∗ operation permission struct ∗/
struct sem ∗sem_base; /∗ ptr to first semaphore in set ∗/
ushort sem_nsems; /∗ number of sems in set ∗/
time_t sem_otime; /∗ last operation time ∗/
time_t sem_ctime; /∗ last change time ∗/

/∗ Times measured in secs since ∗/
/∗ 00:00:00 GMT, Jan. 1, 1970 ∗/

Here are descriptions of the fields of the semid_ds structure:

sem_perm is an ipc_perm structure that specifies the semaphore operation per-
mission (see below). This structure includes the following members:

uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
mode_t mode; /∗ r/a permission ∗/
ulong seq; /∗ slot usage sequence number ∗/
key_t key; /∗ key ∗/

sem_nsems is equal to the number of semaphores in the set. Each semaphore in
the set is referenced by a nonnegative integer referred to as a sem_num.
sem_num values run sequentially from 0 to the value of sem_nsems minus 1.

sem_otime is the time of the last semop operation.

sem_ctime is the time of the last semctl operation that changed a member of the
above structure.

A semaphore is a data structure called sem that contains the following members:

ushort semval; /∗ semaphore value ∗/
pid_t sempid; /∗ pid of last operation ∗/
ushort semncnt; /∗ # awaiting semval > cval ∗/

modified 9 Sep 1997 2TSOL-29

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

ushort semzcnt; /∗ # awaiting semval = 0 ∗/

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process ID of the last process that performed a semaphore
operation on this semaphore.

semncnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become greater than its current value.

semzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become 0.

Semaphore
Operation

Permissions

In the semop and semctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed interpreted as fol-
lows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if the read-equal write-
equal mandatory access control check is passed or if the process asserts the appropriate
override privilege (either PRIV_IPC_MAC_READ or PRIV_IPC_MAC_WRITE), and if one of
the following tests is true.

If a System V IPC ACL exists for the semaphore, and then the following tests are per-
formed in order until one is true, and then the requested access is granted.

· If the effective UID of the process is equal to the UID of the owner of semaphore
and if the ACL grants the desired type of access to the owner.

· If the effective UID of the process is in the user list in the ACL and if both the ACL
for the owner and the ACL mask grant the desired type of access to the named
user.

· If the effective GID or a supplementary GID of the owner of process is equal to the
GID of the semaphore and if both the ACL entry for the owner’s group and the
ACL mask both grant the desired type of access to the owner’s group.

· If the effective GID or a supplementary GID of the owner of the process is named
in the ACL group list, and if both the ACL entry for the named group and the ACL
mask grant the desired type of acess to the group.

· If the ACL’s "other" entry grants the desired type of access to the owner of the
process.

· The process has asserted the appropriate DAC privilege, PRIV_FILE_DAC_READ
or PRIV_FILE_DAC_WRITE.

2TSOL-30 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

If a System V IPC ACL does not exist for the semaphore being accessed, then the following
tests are performed in order, and if one of them is passed the desired access is granted.

The effective user ID of the process matches sem_perm.cuid or sem_perm.uid in
the data structure associated with semid and the appropriate bit of the “user”
portion (0600) of sem_perm.mode is set.

The effective group ID or the supplementary group ID of the process matches
sem_perm.cgid or sem_perm.gid and the appropriate bit of the “group” portion
(060) of sem_perm.mode is set.

The appropriate bit of the “other” portion (06) of sem_perm.mode is set.

The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

Sensitivity Label A label that defines the level of protection afforded to an object or or the level of access
granted a process, it consists of a hieracherical classification and a set of non-hierarcherical
compartments, which together make up the level of the sensitivity label. The sensitivity
labels on objects and processes are compared for dominance (see Dominate) in all MAC
decisions by the Trusted Solaris system.

Session A session is a group of processes identified by a common ID called a session ID, capable
of establishing a connection with a controlling terminal. Any process that is not a process
group leader may create a new session and process group, becoming the session leader of
the session and process group leader of the process group. A newly created process joins
the session of its creator.

Session ID Each session in the system is uniquely identified during its lifetime by a positive integer
called a session ID, the process ID of its session leader.

Session Leader A session leader is a process whose session ID is the same as its process and process
group ID.

Session Lifetime A session lifetime begins when the session is created by its session leader, and ends when
the lifetime of the last process that is a member of the session ends, or when the last pro-
cess that is a member in the session leaves the session.

modified 9 Sep 1997 2TSOL-31

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

Shared Memory
Identifier

A shared memory identifier (shmid) is a unique positive integer created by a shmget sys-
tem call. Each shmid has a segment of memory (referred to as a shared memory seg-
ment) and a data structure associated with it. (Note that these shared memory segments
must be explicitly removed by the user after the last reference to them is removed.) The
data structure is referred to as shmid_ds and contains the following members:

struct ipc_perm shm_perm; /∗ operation permission struct ∗/
int shm_segsz; /∗ size of segment ∗/
struct region ∗shm_reg; /∗ ptr to region structure ∗/
char pad[4]; /∗ for swap compatibility ∗/
pid_t shm_lpid; /∗ pid of last operation ∗/
pid_t shm_cpid; /∗ creator pid ∗/
ushort shm_nattch; /∗ number of current attaches ∗/
ushort shm_cnattch; /∗ used only for shminfo ∗/
time_t shm_atime; /∗ last attach time ∗/
time_t shm_dtime; /∗ last detach time ∗/
time_t shm_ctime; /∗ last change time ∗/

/∗ Times measured in secs since ∗/
/∗ 00:00:00 GMT, Jan. 1, 1970 ∗/

Here are descriptions of the fields of the shmid_ds structure:

shm_perm is an ipc_perm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

uid_t cuid; /∗ creator user id ∗/
gid_t cgid; /∗ creator group id ∗/
uid_t uid; /∗ user id ∗/
gid_t gid; /∗ group id ∗/
mode_t mode; /∗ r/w permission ∗/
ulong seq; /∗ slot usage sequence # ∗/
key_t key; /∗ key ∗/

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process ID of the process that created the shared memory
identifier.

shm_lpid is the process ID of the last process that performed a shmop operation.

shm_nattch is the number of processes that currently have this segment attached.

shm_atime is the time of the last shmat operation (see shmop(2)).

shm_dtime is the time of the last shmdt operation (see shmop(2)).

shm_ctime is the time of the last shmctl operation that changed one of the
members of the above structure.

2TSOL-32 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

Shared Memory
Operation

Permissions

In the shmop and shmctl system call descriptions, the permission required for an opera-
tion is given as {token}, where token is the type of permission needed interpreted as fol-
lows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if the read-equal write-
equal mandatory access control check is passed or if the process asserts the appropriate
override privilege (either PRIV_IPC_MAC_READ or PRIV_IPC_MAC_WRITE), and if one of
the following tests is true.

If a System V IPC ACL exists for the shared memory, then the following tests are per-
formed in order until one is true, and then the requested access is granted.

· If the effective UID of the process is equal to the UID of the owner of shared
memory and if the ACL grants the desired type of access to the owner.

· If the effective UID of the process is in the user list in the ACL and if both the ACL
for the owner and the ACL mask grant the desired type of access to the named
user.

· If the effective GID or a supplementary GID of the owner of process is equal to the
GID of the shared memory and if both the ACL entry for the owner’s group and
the ACL mask both grant the desired type of access to the owner’s group.

· If the effective GID or a supplementary GID of the owner of the process is named
in the ACL group list, and if both the ACL entry for the named group and the ACL
mask grant the desired type of acess to the group.

· If the ACL’s "other" entry grants the desired type of access to the owner of the
process.

· The process has asserted the appropriate DAC privilege, PRIV_FILE_DAC_READ
or PRIV_FILE_DAC_WRITE.

If a System V IPC ACL does not exist for the shared memory being accessed, then the fol-
lowing tests are performed in order, and if one of them is passed the desired access is
granted.

The effective user ID of the process matches shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid and the appropriate bit of the “user”
portion (0600) of shm_perm.mode is set.

The effective group ID or the supplementary group ID of the process matches
shm_perm.cgid or shm_perm.gid and the appropriate bit of the “group” portion
(060) of shm_perm.mode is set.

The appropriate bit of the “other” portion (06) of shm_perm.mode is set.

modified 9 Sep 1997 2TSOL-33

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

Single-Level
Directory

A directory within an MLD containing only files at a single sensitivity label. The SLD direc-
tory name is derived from the of the process that created it. For example, the name of an
SLD in /tmp would be in the form /tmp/.SLD.<sensitivity_label_of_creating_process>/file.
All subsequent references to the file in the /tmp directory would be made transparently
as /tmp/file: because pathname translation is transparent, the process would not need to
explicitly reference the SLD directory, unless it chose to do so using the adornment and
the name of the SLD.

Special Processes The process with ID 0 and the process with ID 1 are special processes referred to as proc0
and proc1; see kill(2). proc0 is the process scheduler. proc1 is the initialization process
(init); proc1 is the ancestor of every other process in the system and is used to control the
process structure.

STREAMS A set of kernel mechanisms that support the development of network services and data
communication drivers. It defines interface standards for character input/output within
the kernel and between the kernel and user level processes. The STREAMS mechanism is
composed of utility routines, kernel facilities and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user process and driver
routines. The primary components are a stream head, a driver and zero or more modules
between the stream head and driver. A stream is analogous to a shell pipeline except that
data flow and processing are bidirectional.

Stream Head In a stream, the stream head is the end of the stream that provides the interface between
the stream and a user process. The principle functions of the stream head are processing
STREAMS-related system calls, and passing data and information between a user process
and the stream.

STREAMS Objects The only type of STREAMS object is a STREAM, which is subject to the read equal write
equal MAC policy. See Object for definitions of the MAC policies.

Strictly Dominate When any type of label (sensitivity label, information label, or clearance) has a security level
greater than the security level of another label to which it is being compared, the first
label strictly dominates the second label. Strict dominance is dominance without equality,
which occurs either when the classification of the first label is higher than that of the
second label and the first label contains all the second label’s compartments or when the
classifications of both labels are the same while the first label contains all the compart-
ments in the second label plus one or more additional compartments.

System V IPC
Objects

System V interprocess communication (IPC) objects are: messagequeues, semaphores, and
sharedmemory.

2TSOL-34 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

System Accreditation
Range

The set of all valid (well-formed) labels created according to the rules defined by each
site’s security administrator in the label_encodings(4TSOL) file, plus the two administra-
tive labels that are used in every Trusted Solaris system, ADMIN_LOW and ADMIN_HIGH.

Trusted Path Flag Also called the Trusted Path Attribute, this one-bit flag indicates that the process is exe-
cuting in the trusted path.

Upstream In a stream, the direction from driver to stream head.

Write Queue In a stream, the message queue in a module or driver containing messages moving
downstream.

X Window Objects X window objects are the windows in the common desktop environment (which is based
on the X Window system). See mandatory access control for definitions of the MAC poli-
cies. Window objects are generally subject to the read equal write equal policy. See the X
library man pages (in section 3X11TSOL) for exceptions.

Name Description

access(2TSOL) determine accessibility of a file

acl(2TSOL) get or set a file’s access control list (ACL)

adjtime(2TSOL) correct the time to allow synchronization of the system
clock

audit(2TSOL) write a record to the audit log

auditon(2TSOL) manipulate auditing

auditsvc(2TSOL) write audit log to specified file descriptor

chdir(2TSOL) change working directory

chmod(2TSOL) change access permission mode of file

chown(2TSOL) change owner and group of a file

chroot(2TSOL) change root directory

chstate(2TSOL) change the view of a host state between labeled and
unlabeled

creat(2TSOL) create a new file or rewrite an existing one

devpolicy(2TSOL) get or set device driver policy table

exec(2TSOL) execute a file

execl(2TSOL) See exec(2TSOL)

execv(2TSOL) See exec(2TSOL)

execle(2TSOL) See exec(2TSOL)

execlp(2TSOL) See exec(2TSOL)

execve(2TSOL) See exec(2TSOL)

modified 9 Sep 1997 2TSOL-35

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

execvp(2TSOL) See exec(2TSOL)

facl(2TSOL) See acl(2TSOL)

fchdir(2TSOL) See chdir(2TSOL)

fchmod(2TSOL) See chmod(2TSOL)

fchown(2TSOL) See chown(2TSOL)

fchroot(2TSOL) See chroot(2TSOL)

fcntl(2TSOL) control files

fgetfattrflag(2TSOL) See getfattrflag(2TSOL)

fgetcmwfsrange(2TSOL) See getcmwfsrange(2TSOL)

fgetcmwlabel(2TSOL) See getcmwlabel(2TSOL)

fgetfpriv(2TSOL) See getfpriv(2TSOL)

fgetfsattr(2TSOL) See getfsattr(2TSOL)

fgetmldadorn(2TSOL) See getmldadorn(2TSOL)

getrlimit(2TSOL) control maximum system resource consumption

fgetsldname(2TSOL) See getsldname(2TSOL)

fork(2TSOL) create a new process

fork1(2TSOL) See fork(2TSOL)

fpathconf(2TSOL) get configurable pathname variables

fsetcmwlabel(2TSOL) See setcmwlabel(2TSOL)

fsetfattrflag(2TSOL) See getfattrflag(2TSOL)

fsetfpriv(2TSOL) See getfpriv(2TSOL)

fstat(2TSOL) See stat(2TSOL)

fstatvfs(2TSOL) See statvfs(2TSOL)

getaudit(2TSOL) get and set process audit information

getauid(2TSOL) get and set user audit identity

getclearance(2TSOL) get process clearance

getcmwfsrange(2TSOL) get file system sensitivity label range

getcmwlabel(2TSOL) get a file’s CMW label

getcmwplabel(2TSOL) get a process’ CMW label

getdents(2TSOL) read directory entries and put in a file system indepen-
dent format

getfattrflag(2TSOL) set or get the security attribute flags for a file

getfpriv(2TSOL) get or set the privilege set for a file

getfsattr(2TSOL) get filesystem security attributes

getgroups(2TSOL) get or set supplementary group access list IDs

2TSOL-36 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

getmldadorn(2TSOL) get file system multilevel directory adornment

getmsgqcmwlabel(2TSOL) get the CMW labels associated with System V IPC struc-
tures

getpattr(2TSOL) get or set process attribute flags

getpid(2TSOL) get process, process group, and parent process IDs

getppriv(2TSOL) return or assign a privilege set associated with the
invoking process

getrlimit(2TSOL) control maximum system resource consumption

getsemcmwlabel(2TSOL) See getmsgqcmwlabel(2TSOL)

getshmcmwlabel(2TSOL) See getmsgqcmwlabel(2TSOL)

getsid(2TSOL) get or set session ID

getsldname(2TSOL) get file system single-level directory name

kill(2TSOL) send a signal to a process or a group of processes

lchown(2TSOL) See chown(2TSOL)

lgetcmwlabel(2TSOL) See getcmwlabel(2TSOL)

link(2TSOL) link to a file

llseek(2TSOL) move extended read/write file pointer

lseek(2TSOL) move read/write file pointer

lsetcmwlabel(2TSOL) See getcmwlabel(2TSOL)

lstat(2TSOL) See stat(2TSOL)

mkdir(2TSOL) make a directory

mknod(2TSOL) make a directory, or a special or ordinary file

mldgetfattrflag(2TSOL) See getfattrflag(2TSOL)

mldsetfattrflag(2TSOL) See getfattrflag(2TSOL)

mldstat(2TSOL) See stat(2TSOL)

mldlstat(2TSOL) See stat(2TSOL)

mount(2TSOL) mount a file system

msgctl(2TSOL) message-control operations

msgget(2TSOL) get message queue

msggetl(2TSOL) See msgget(2TSOL)

msgop(2TSOL) message operations

msgrcvl(2TSOL) See msgop(2TSOL)

msgsnd(2TSOL) See msgop(2TSOL)

msgrcv(2TSOL) See msgop(2TSOL)

msgsndl(2TSOL) See msgop(2TSOL)

nice(2TSOL) change priority of a process

modified 9 Sep 1997 2TSOL-37

Intro (2TSOL) TSOL System Calls Trusted Solaris 2.5

open(2TSOL) open for reading or writing

p_online(2TSOL) change processor online or offline status

priocntl(2TSOL) control process schedulers

priocntlset(2TSOL) generalized process scheduler control

pread(2TSOL) See read(2TSOL)

preadl(2TSOL) See read(2TSOL)

processor_bind(2TSOL) determine type and status of a processor

pwrite(2TSOL) See write(2TSOL)

pwritel(2TSOL) See write(2TSOL)

read(2TSOL) read from file

readl(2TSOL) See read(2TSOL)

readlink(2TSOL) read the value of a symbolic link

readv(2TSOL) See read(2TSOL)

readvl(2TSOL) See read(2TSOL)

rename(2TSOL) change the name of a file

rmdir(2TSOL) remove a directory

secconf(2TSOL) get security configuration information

semctl(2TSOL) semaphore-control operations

semget(2TSOL) get set of semaphores

semgetl(2TSOL) See semget(2TSOL)

semop(2TSOL) semaphore operations

semopl(2TSOL) See semop(2TSOL)

setaudit(2TSOL) See getaudit(2TSOL)

setauid(2TSOL) See getauid(2TSOL)

setfattrflag(2TSOL) See getattrflag(2TSOL)

setgroups(2TSOL) See getgroups(2TSOL)

setpattr(2TSOL) See getpattr(2TSOL)

setfpriv(2TSOL) See getfpriv(2TSOL)

setppriv(2TSOL) See getppriv(2TSOL)

setclearance(2TSOL) set process clearance

setcmwlabel(2TSOL) set CMW label of a file

setcmwplabel(2TSOL) set process CMW label

setegid(2TSOL) See setuid(2TSOL)

seteuid(2TSOL) See setuid(2TSOL)

setgid(2TSOL) See setuid(2TSOL)

2TSOL-38 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls Intro (2TSOL)

setregid(2TSOL) set real and effective group IDs

setreuid(2TSOL) set real and effective user IDs

setrlimit(2TSOL) See getrlimit(2TSOL)

setuid(2TSOL) set user and group IDs

shmat(2TSOL) See shmop(2TSOL)

shmctl(2TSOL) shared-memory control operations

shmdt(2TSOL) See shmop(2TSOL)

shmget(2TSOL) get shared-memory segment identifier

shmgetl(2TSOL) See shmget(2TSOL)

shmop(2TSOL shared-memory operations

sigsend(2TSOL) send a signal to a process or a group of processes

sigsendset(2TSOL) See sigsend(2TSOL)

stat(2TSOL) get file status

statvfs(2TSOL) get file system information

stime(2TSOL) set system time and date

swapctl(2TSOL) manage swap space

symlink(2TSOL) make a symbolic link to a file

sysinfo(2TSOL) get and set system information strings

tokmapper(2TSOL) manipulate kernel token mapping caches

uadmin(2TSOL) administrative control

ulimit(2TSOL) get and set process limits

umount(2TSOL) unmount a file system

unlink(2TSOL) remove directory entry

utimes(2TSOL) set file times

vfork(2TSOL) spawn new process in a virtual memory efficient way

write(2TSOL) write on a file

writel(2TSOL) See write(2TSOL)

writev(2TSOL) See write(2TSOL)

writevl(2TSOL) See write(2TSOL)

modified 9 Sep 1997 2TSOL-39

access (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME access − Determine accessibility of a file

SYNOPSIS #include <unistd.h>

int access(const char ∗path , int amode);

MT-LEVEL Async-Signal-Safe

DESCRIPTION access() checks the file to which path points for accessibility according to the bit pattern
contained in amode , using the real user ID in place of the effective user ID and the real
group ID in place of the effective group ID. This check allows a setuid process to verify
that the user running it would have had permission to access this file. The bit pattern con-
tained in amode is constructed by an OR of the access permissions to be checked (R_OK,
W_OK, and X_OK) and the existence test (F_OK). These constants are defined in
<unistd.h>:

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute or search permission.
F_OK Check existence of file.

See Intro(2TSOL) for additional information about file-access permission.

The information label of path is unchanged. The information label of the calling process is
also unchanged.

RETURN VALUES If the requested access is permitted, access returns a value of 0. Otherwise, access
returns a value of −1 and sets errno to indicate the error.

The information label of path is not changed by this system call. The information label of
the calling process is not changed by this system call.

ERRORS Access to the file is denied if any of these conditions is true:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES Permission bits of the file mode do not permit the requested
access. The calling process does not have mandatory read, write,
execute, or search access to the final component in path. To over-
ride this restriction, the calling process may assert one or more of
these privileges depending on the value in amode.
PRIV_FILE_MAC_WRITE , PRIV_FILE_DAC_WRITE,
PRIV_FILE_MAC_READ, PRIV_FILE_DAC_READ,
PRIV_FILE_MAC_SEARCH (in the case of a directory),
PRIV_FILE_DAC_SEARCH, and PRIV_FILE_DAC_EXECUTE.

EFAULT path points to an illegal address.

2TSOL-40 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls access (2TSOL)

EINTR A signal was caught during the access function.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The path argument points to an empty string or to the name of a
file that does not exist.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only file system.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information labels of path and of the calling process are unchanged.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To avoid this delay, the process
may assert the PRIV_PROC_NODELAY privilege.

SEE ALSO intro(2TSOL), chmod(2TSOL), stat(2TSOL)

modified 1 May 1996 2TSOL-41

acl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME acl, facl − Get or set a file’s access control list (ACL)

SYNOPSIS #include <sys/acl.h>

int acl(char ∗pathp, int cmd, int nentries, aclent_t ∗aclbufp)

int facl(int fildes, int cmd, int nentries, aclent_t ∗aclbufp)

DESCRIPTION acl() and facl() get or set the ACL of a file whose name is given by pathp or referenced by
the open file descriptor fildes. nentries specifies how many ACL entries fit into buffer
aclbufp. acl is used to manipulate ACL on file system objects.

These three values for cmd are available:

SETACL nentries ACL entries, specified in buffer aclbufp, are stored in the file’s
ACL. This command can be executed only by a process that has an effec-
tive user ID equal to the owner of the file. To override this restriction,
the calling process may assert the PRIV_FILE_SETDAC privilege.

All directories in the path name must be searchable.

GETACL Buffer aclbufp is filled with the file’s ACL entries. Discretionary read
access to the file is not required, but all directories in the path name
must be searchable.

GETACLCNT The number of entries in the file’s ACL is returned. Discretionary read
access to the file is not required, but all directories in the path name
must be searchable.

RETURN VALUES Upon successful completion, if cmd is SETACL, acl returns a value of 0. If cmd is GETACL
or GETACLCNT, acl returns the number of ACL entries. Upon failure, acl returns a value
of -1 and sets errno to indicate the error.

The information label of pathp or fildes and the information label of the calling process
remain unchanged.

The audit record has multiple events that represent the requested function. For SETACL,
the audit record includes the old and new ACLs.

ERRORS acl or facl will fail if any of these conditions is true:

EACCES The caller does not have search access to a component of the pathname.
To override this restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

cmd is GETACLCNT or GETACL and the calling process does not have
mandatory read access. To override this restriction, the calling process
may assert the PRIV_FILE_MAC_READ privilege.

cmd is SETACL and the calling process does not have mandatory write
access. To override this restriction, the calling process may assert the

2TSOL-42 modified 04 Apr 1995

Trusted Solaris 2.5 TSOL System Calls acl (2TSOL)

PRIV_FILE_MAC_WRITE privilege.

EINVAL cmd is not GETACL, SETACL, or GETACLCNT.

cmd is SETACL and nentries is less than three.

cmd is SETACL and the ACL specified in aclbufp is not valid.

EIO A disk I/O error has occurred while storing or retrieving the ACL.

EPERM cmd is SETACL and the effective user ID of the caller does not match the
owner of the file. To override this restriction, the calling process may
assert the PRIV_FILE_SETDAC privilege.

ENOENT A component of the path does not exist.

ENOSPC cmd is GETACL and nentries is less than the number of entries in the file’s
ACL.

ENOSPC cmd is SETACL and there is insufficient space in the file system to store
the ACL.

ENOTDIR A component of the path specified by pathp is not a directory.

cmd is SETACL and an attempt is made to set a default ACL on a file type
other than a directory.

ENOSYS cmd is SETACL and the file specified by pathp resides on a file system that
does not support ACLs. acl is not supported by this implementation.

EROFS cmd is SETACL and the file specified by pathp resides on a file system that
is mounted read-only.

EFAULT pathp or aclbufp points to an illegal address.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access or ownership checks.

The information label of pathp or fildes and the information label of the calling process
remain unchanged.

The audit record has multiple events that represent the requested function. For SETACL
the audit record includes the old and new ACLs.

SEE ALSO getfacl(1), setfacl(1), aclcheck(3), aclsort(3)

modified 04 Apr 1995 2TSOL-43

adjtime (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME adjtime − correct the time to allow synchronization of the system clock

SYNOPSIS #include <sys/time.h>

int adjtime(struct timeval ∗delta , struct timeval ∗olddelta);

DESCRIPTION adjtime() adjusts the system’s notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in the struct
timeval pointed to by delta .

The adjustment is effected by speeding up (if that amount of time is positive) or slowing
down (if that amount of time is negative) the system’s clock by some small percentage,
generally a fraction of one percent. Thus, the time is always a monotonically increasing
function. A time correction from an earlier call to adjtime() may not be finished when
adjtime() is called again. If olddelta is not a NULL pointer, then the structure it points to
will contain, upon successful return, the number of seconds and/or microseconds still to
be corrected from the earlier call. If olddelta is a NULL pointer, the corresponding infor-
mation will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and
speed up the clocks of others to bring them to the average network time.

The calling process must have the PRIV_SYS_CONFIG privilege in order to adjust the
time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN VALUES A 0 return value indicates that the call succeeded. A −1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process’s allocated address space, or
olddelta points to a region of the process’ allocated address space that is
not writable.

EINVAL tv_usec field in delta is not within valid range (−1000000 to 1000000).

EPERM The calling process does not have the PRIV_SYS_CONFIG privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_CONFIG privilege in order to use this sys-
tem call.

SEE ALSO date(1), gettimeofday(3C)

2TSOL-44 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls audit (2TSOL)

NAME audit − write a record to the audit log

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int audit(caddr_t record, int length);

AVAILABILITY Available only on Trusted Solaris systems with the auditing module enabled. (The audit-
ing module is enabled by default in the Trusted Solaris system.) See bsmconv(1MTSOL)
for more information. auditwrite(3TSOL) is the preferred interface for creating audit
records under Trusted Solaris 2.x.

DESCRIPTION The audit system call is used to write a record to the system audit log. The data pointed
to by record is written to the log after a minimal consistency check, with the length param-
eter specifying the size of the record in bytes. The data should be a well-formed audit
record as described by audit.log(4TSOL).

The kernel validates the record header token type and length, and sets the time stamp
value before writing the record to the audit log. The kernel does not do any preselection
for user-level generated events. If the audit policy is set to include sequence or trailer
tokens, the kernel will append them to the record.

If the event number is between 2048 and 32767 the calling process must have the privilege
PRIV_PROC_AUDIT_TCB in its set of effective privileges. If the event number is between
32768 and 65535, the caller must have the privilege PRIV_PROC_AUDIT_APPL in its set of
effective privileges.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS audit() fails if one or more of the following are true:

EFAULT record points outside the process’s allocated address space.

EINVAL The record header token ID is invalid or the length is either less than the
header token size or greater than MAXAUDITDATA.

EPERM The process’s effective privilege set does not contain the proper
privilege for this operation.

SUMMARY
TRUSTED
SOLARIS

CHANGES

See the DESCRIPTION section for information about which privileges are needed to use
this call when the event number being audited is in the application set or the kernel set.

SEE ALSO auditd(1MTSOL), auditon(2TSOL), auditsvc(2TSOL), getaudit(2TSOL),
auditwrite(3TSOL), audit.log(4TSOL)

modified 13 Feb 1996 2TSOL-45

auditon (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME auditon − Manipulate auditing

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int auditon(int cmd, caddr_t data , int length);

DESCRIPTION The auditon system call performs various audit-subsystem-control operations. The cmd
argument designates the particular audit-control command. The data argument is a
pointer to command-specific data that auditon returns. The length argument is the length
in bytes of the command-specific data.

COMMANDS These commands are supported:

A_GETCOND Returns the system audit on/off/disabled condition in the integer
long to which data points.

A_SETCOND Sets the system’s audit on/off condition to the value in the integer
long to which data points. If the current state is disabled, the BSM
audit module must be enabled by bsmconv(1MTSOL) before
auditing can be turned on.

A_GETCLASS Returns the event-to-class mapping for the designated audit event.
The data argument points to the au_evclass_map structure con-
taining the event number. The preselection class mask is returned
in the same structure.

A_SETCLASS Sets the event-class preselection mask for the designated audit
event. The data argument points to the au_evclass_map structure
containing the event number and class mask.

A_GETKMASK Returns the kernel preselection mask in the au_mask structure to
which data points.

A_SETKMASK Sets the kernel preselection mask. The data argument points to the
au_mask structure containing the class mask.

A_GETPINFO Returns the audit ID, preselection mask, terminal ID, and audit ses-
sion ID of the specified process in the auditpinfo structure to
which data points.

A_SETPMASK Sets the preselection mask of the specified process. The data argu-
ment points to the auditpinfo structure containing the process ID
and the preselection mask.

A_SETUMASK Sets the preselection mask for all processes with the specified audit
ID. The data argument points to the auditinfo structure containing
the audit ID and the preselection mask.

2TSOL-46 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls auditon (2TSOL)

A_SETSMASK Sets the preselection mask for all processes with the specified audit
session ID. The data argument points to the auditinfo structure
containing the audit session ID and the preselection mask.

A_GETQCTRL Returns the kernel audit-queue control parameters. These control
the high- and low-water marks of the number of audit records
allowed in the audit queue. Another parameter controls the size of
the data buffer used by auditsvc(2TSOL) to write data to the audit
trail. There is also a parameter that specifies a delay before data is
written to the audit trail. The audit-queue parameters are returned
in the au_qctrl structure to which data points.

A_SETQCTRL Sets the kernel audit-queue control parameters. The data argument
points to the au_qctrl structure containing the audit-queue control
parameters.

A_GETCWD Returns the current working directory as kept by the audit subsys-
tem. This directory is a path anchored on the real root, rather than
on the active root. The data argument points to a buffer into which
the path is copied. The length argument provides the length of the
buffer.

A_GETCAR Returns the current active root as kept by the audit subsystem.
This path may be used to anchor an absolute path for a path token
generated by an application. The data argument points to a buffer
into which the path is copied. The length argument provides the
length of the buffer.

A_GETSTAT Returns the system audit statistics in the audit_stat structure to
which data points.

A_SETSTAT Resets system audit statistics values.

A_GETPOLICY Returns the audit policy flags in the integer long to which data
points.

A_SETPOLICY Sets the audit policy flags to the values in the integer long to which
data points. The next sections lists and describes policy flags
recognized.

A process must have PRIV_SYS_AUDIT, PRIV_PROC_AUDIT_TCB, or
PRIV_PROC_AUDIT_APPL in its set of effective privileges in order to successfully execute
these commands: A_GETCOND, A_GETCLASS, A_GETPINFO, A_GETCWD, A_GETCAR,
and A_GETPOLICY.

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to suc-
cessfully execute these commands: A_SETCOND, A_SETCLASS, A_GETKMASK,
A_SETKMASK, A_SETPMASK, A_SETUMASK, A_SETSMASK, A_GETQCTRL,
A_SETQCTRL, A_GETSTAT, A_SETSTAT, and A_SETPOLICY.

modified 9 Sep 1997 2TSOL-47

auditon (2TSOL) TSOL System Calls Trusted Solaris 2.5

Policy Flags AUDIT_ACL Include in the audit data an ACL attribute for each object
accessed. Note that regardless of policy, if there is no ACL
associated with an object, an attribute will not be generated.
This information is not included by default.

AUDIT_AHLT Halt the machine if an asynchronous audit event occurs that
cannot be delivered because the audit queue has reached the
high-water mark or because there are insufficient resources
to construct an audit record. By default, records are dropped
and a count is kept of the number of dropped records.

AUDIT_CNT Do not suspend processes when audit storage is full or inac-
cessible. The default action is to suspend processes until
storage becomes available.

AUDIT_ARGV Include in the audit record the argument list for the exec(2)
system call. The default action is not to include this informa-
tion.

AUDIT_ARGE Include in the audit record the environment variables for the
execv(2) system call. The default action is not to include this
information.

AUDIT_SEQ Add a sequence token to each audit record. The default
action is not to include this token.

AUDIT_TRAIL Append a trailer token to each audit record. The default
action is not to include this token.

AUDIT_GROUP Include the supplementary groups list in audit records. The
default action is not to include it.

AUDIT_ILABEL Include ilabels in audit records unless ilabels are not enabled
on this system. This information is not included by default.

AUDIT_SLABEL Include slabels in audit records. The default action is to
include slabels in audit records.

AUDIT_PASSWD Include as part of the audit record any bad authentication
data encountered during a login operation. The default
action is not to include the password in the audit record.

AUDIT_PATH Include secondary paths in audit records. Examples of secon-
dary paths are dynamically loaded, shared library modules
and the command shell path for executable scripts.

AUDIT_WINDATA_DOWN Include in an audit record any downgraded data moved
between windows. By default, this data is not included.

AUDIT_WINDATA_UP Include in an audit record any upgraded data moved
between windows. By default, this data is not included.

RETURN VALUES Upon success, auditon returns 0. Upon failure, auditon returns −1 and sets errno to indi-
cate the error.

2TSOL-48 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls auditon (2TSOL)

ERRORS EFAULT The copy of data to/from the kernel failed.

EINVAL One of the system call arguments was illegal.

EPERM The process did not have the appropriate privilege in its effective set.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

These policy flags have been added in Trusted Solaris: AUDIT_ACL, AUDIT_AHLT,
AUDIT_ILABEL, AUDIT_SLABEL, AUDIT_PASSWD, AUDIT_WINDATA_DOWN, and
AUDIT_WINDATA_UP. The DESCRIPTION section explains which privileges are required
to use which audit-control commands.

SEE ALSO auditd(1MTSOL), bsmconv(1MTSOL), audit(2TSOL), auditsvc(2TSOL),
audit.log(4TSOL)

NOTES This functionality is active only if the audit module has been enabled. By default, this
module is enabled on Trusted Solaris systems. See bsmconv(1MTSOL) for more infor-
mation.

Trusted Solaris 2.x will soon extend the number of audit classes and introduce new but
similar structures and programming interfaces.

modified 9 Sep 1997 2TSOL-49

auditsvc (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME auditsvc − Write audit log to specified file descriptor

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int auditsvc(int fd, int limit);

DESCRIPTION The auditsvc system call specifies the audit log file to the kernel. The kernel writes audit
records to this file until an exceptional condition occurs and then the call returns. The
parameter fd is a file descriptor that identifies the audit file. Programs should open this
file for writing before calling auditsvc. The parameter limit specifies the number of free
blocks that must be available in the audit-file system; auditsvc returns when the free disk
space on the audit file system drops below this limit. Thus, the invoking program can
take action to avoid running out of disk space. The auditsvc system call does not return
until one of these conditions occurs:

· The process receives a signal that is not blocked or ignored.

· An error is encountered writing to the audit log file.

· The minimum free space (as specified by limit), has been reached.

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to execute
this call successfully.

RETURN VALUES auditsvc() returns only on an error.

ERRORS EAGAIN The descriptor referred to a stream , was marked for System V-style
non-blocking I/O, and no data could be written immediately.

EBADF fd is not a valid descriptor open for writing.

EBUSY A second process attempted to perform this call.

ENOSPC The user’s quota of disk blocks on the file system containing the file
has been exhausted.

Audit file-system space is below the specified limit.

EFBIG An attempt was made to write a file that exceeds the file-size limit of
the process or the maximum file size.

EINTR The call is forced to terminate prematurely because of the arrival of a
signal whose SV_INTERRUPT bit in sv_flags is set. [See sigvec(3B).]
signal (3C) sets this bit for any signal it catches.

EINVAL Auditing is disabled. [See auditon(2TSOL).]

fd does not refer to a file of an appropriate type. Regular files are
always appropriate.

EIO An I/O error occurred while reading from or writing to the file sys-
tem.

2TSOL-50 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls auditsvc (2TSOL)

ENOSPC There is no free space remaining on the file system containing the
file.

ENXIO A hangup occurred on the stream being written to.

EPERM The process did not have the proper privilege in its effective set.

EWOULDBLOCK The file was marked for 4.2BSD-style nonblocking I/O, and no data
could be written immediately.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to execute
this call successfully.

SEE ALSO auditd(1MTSOL), audit(2TSOL), auditon(2TSOL), sigvec(3B), audit.log(4TSOL)

NOTES This functionality is active only if the audit module has been enabled. By default, this
module is enabled on Trusted Solaris systems. See bsmconv(1MTSOL) for more informa-
tion.

modified 9 Sep 1997 2TSOL-51

chdir (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME chdir, fchdir − Change working directory

SYNOPSIS #include <unistd.h>

int chdir(const char ∗path);

int fchdir(int fildes);

MT-LEVEL chdir() is Async-Signal-Safe.

DESCRIPTION chdir() and fchdir() cause a directory to which path or fildes points to become the current
working directory. The starting point for path searches for path names not beginning with
/. path points to the path name of a directory. The fildes argument to fchdir() is an open
file descriptor of a directory.

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

The information labels of path and of the calling process are unchanged.

RETURN VALUES Upon successful completion, these functions return 0. Upon failure, they return −1 and
set errno to indicate the error.

ERRORS chdir() will fail and the current working directory will be unchanged if any of these con-
ditions is true:

EACCES Search permission is denied for some component of path. To over-
ride this restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT path points to an illegal address.

EINTR A signal was caught during the execution of the chdir function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT Either a component of the path prefix or the directory named by
path does not exist or is a null pathname.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path name is not a directory.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

2TSOL-52 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls chdir (2TSOL)

fchdir() will fail and the current working directory will be unchanged if any of these con-
ditions is true:

EACCES Search permission is denied for fildes. To override this restriction,
the calling process may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and PRIV_FILE_MAC_SEARCH.

EBADF fildes is not an open file descriptor.

EINTR A signal was caught during the execution of the fchdir() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOLINK fildes points to a remote machine but the link to that machine is no
longer active.

ENOTDIR The open file descriptor fildes does not refer to a directory.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information labels of path and of the calling process are unchanged.

SEE ALSO chroot(2TSOL)

modified 1 May 1996 2TSOL-53

chmod (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME chmod, fchmod − Change access permission mode of file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int chmod(const char ∗path , mode_t mode);

int fchmod(int fildes, mode_t mode);

MT-LEVEL chmod() is Async-Signal-Safe

DESCRIPTION chmod() and fchmod() set the access permission portion of the mode of the file named
path or referenced by the open file descriptor fildes to the bit pattern contained in mode .
Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution

if # is 7, 5, 3, or 1.
Enable mandatory file/record locking
if # is 6, 4, 2, or 0.

S_ISVTX 01000 Save text image after execution.
S_IRWXU 00700 Read, write, execute by owner
S_IRUSR 00400 Read by owner
S_IWUSR 00200 Write by owner
S_IXUSR 00100 Execute (search if a directory) by owner
S_IRWXG 00070 Read, write, execute by group
S_IRGRP 00040 Read by group
S_IWGRP 00020 Write by group
S_IXGRP 00010 Execute by group
S_IRWXO 00007 Read, write, execute (search) by others
S_IROTH 00004 Read by others
S_IWOTH 00002 Write by others
S_IXOTH 00001 Execute by others

Modes are constructed by ORing the access permission bits.

The effective user ID of the process must match the owner of the file or the process must
have the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit 01000
(save text image on execution) is cleared. The calling process may assert the
PRIV_SYS_CONFIG privilege to override this restriction.

If neither the process is privileged, nor the file’s group is a member of the process’s sup-
plementary group list, and the effective group ID of the process does not match the group
ID of the file, mode bit 02000 (set group ID on execution) is cleared. The calling process
may assert the PRIV_SETID privilege to override this restriction.

2TSOL-54 modified 01 May 1995

Trusted Solaris 2.5 TSOL System Calls chmod (2TSOL)

If a directory is writable and has S_ISVTX (the sticky bit) assigned, files within that direc-
tory can be removed or renamed only if any of these conditions is true [See unlink(2) and
rename(2)C]:

· The user owns the file.

· The user owns the directory.

· The file is writable by the user.

· The user is a privileged user.

If a directory has the set group ID bit assigned, a given file created within that directory
will have the same group ID as the directory if that group ID is part of the group ID set of
the process that created the file. Otherwise, the newly created file’s group ID will be set to
the effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is assigned and the mode bit 00010 (exe-
cute or search by group) is not assigned, mandatory file/record locking will exist on a
regular file. This locking may affect future calls to open(2), creat(2), read(2), and write(2)
on this file.

Upon successful completion, chmod() and fchmod() mark for update the st_ctime field
of the file. The information label of path or fildes and of the calling process is unchanged.

RETURN VALUES Upon success, the process returns a value of 0. Upon failure, the process returns a value
of −1 and sets errno to indicate the error.

ERRORS chmod() will fail and the file mode will be unchanged if any of these conditions prevails:

EACCES Search permission is denied on a component of the path prefix of
path . To override this restriction, the calling process may assert
the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not own the final object specified in path
or does not own fildes. To override this restriction, the calling pro-
cess may assert the PRIV_FILE_SETDAC privilege.

Write permission is denied on path or fildes. To override this res-
triction, the calling process may assert the PRIV_FILE_MAC_WRITE
privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while {

modified 01 May 1995 2TSOL-55

chmod (2TSOL) TSOL System Calls Trusted Solaris 2.5

_POSIX_NO_TRUNC} is in effect.

ENOENT A component of the path prefix or the file referred to by path either
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
calling process is not privileged. To override this restriction, the
calling process may assert the PRIV_FILE_SETDAC privilege.

EROFS The file referred to by path resides on a read-only file system.

fchmod() will fail and the file mode will be unchanged if if any of these conditions pre-
vails:

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while reading from or writing to the file
system.

EINTR A signal was caught during execution of the fchmod() function.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

EPERM The effective user ID does not match the owner of the file and the
process does not have appropriate privilege.

EROFS The file referred to by fildes resides on a read-only file system.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

To set the set-group-ID bit on a group not in effective or supplementary group IDs of the
calling process, the calling process may assert the PRIV_SYS_CONFIG privilege.

To set the sticky bit on a file, the calling process may assert the PRIV_SETID privilege.

The information label of path or fildes and of the calling process is unchanged.

SEE ALSO chmod(1), chown(2TSOL), creat(2TSOL), fcntl(2TSOL), mknod(2TSOL), open(2TSOL),
read(2TSOL), rename(2TSOL), stat(2TSOL), write(2TSOL), mkfifo(3C), stat(5)

System Interface Guide

2TSOL-56 modified 01 May 1995

Trusted Solaris 2.5 TSOL System Calls chown (2TSOL)

NAME chown, lchown, fchown − Change owner and group of a file

SYNOPSIS #include <unistd.h>
#include <sys/types.h>

int chown(const char ∗path , uid_t owner, gid_t group);

int lchown(const char ∗path , uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

MT-LEVEL chown() is Async-Signal-Safe.

DESCRIPTION chown() sets the owner ID and group ID of the file specified by path or referenced by the
open file descriptor fildes to owner and group respectively. If owner or group is specified as
−1, chown does not change the corresponding ID of the file.

The function lchown() sets the owner ID and group ID of the named file just as chown
does when the named file is a symbolic link. In this case, lchown changes the ownership
of the symbolic link file itself; chown changes the ownership of the file or directory to
which the symbolic link refers.

If chown, lchown, or fchown() is invoked, the set-user-ID and set-group-ID bits of the
file mode, S_ISUID and S_ISGID respectively, are cleared. [See chmod(2TSOL).] To
bypass this restriction, the process may assert the PRIV_FILE_SETID privilege.

The operating system has a configuration option, {_POSIX_CHOWN_RESTRICTED}, to
restrict ownership changes for the chown, lchown, and fchown functions. When
{_POSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the process must
match the owner of the file. To override this restriction, the calling process must assert
the PRIV_FILE_CHOWN privilege. When {_POSIX_CHOWN_RESTRICTED} is in effect, the
chown, lchown, and fchown functions require that the calling process assert the
PRIV_FILE_CHOWN privilege to change the user ID of a file. To change the group ID of a
file, the process must be the owner of the file and the new group ID must be the group of
the process ID or must be in the supplementary group list of the process. To override this
restriction, the calling process may assert the PRIV_FILE_CHOWN privilege.

Upon successful completion, chown, fchown, and lchown mark for update the st_ctime
field of the file. The information label of path or fildes and the information label of the cal-
ling process remain unchanged.

RETURN VALUES Upon successful completion, these functions return a value of 0. Upon failure, they return
a value of −1 and set errno to indicate the error.

ERRORS chown and lchown fail and the owner and group of the named file remain unchanged if
any of these conditions is true:

EACCES Search permission is denied on a component of the path prefix of
path . To override this restriction, the calling process may assert
one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

modified 1 May 1996 2TSOL-57

chown (2TSOL) TSOL System Calls Trusted Solaris 2.5

Write permission is denied on path or fildes. To override this res-
triction, the calling process may assert the PRIV_FILE_MAC_WRITE
privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during the chown or lchown functions.

EINVAL group or owner is out of range.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
but the file system type does not allow it. Too many symbolic
links were encountered in translating path .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOENT Either a component of the path prefix or the file to which path
refers does not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file. If
{_POSIX_CHOWN_RESTRICTED} is set, the calling process must
assert the PRIV_FILE_CHOWN privilege. If
{_POSIX_CHOWN_RESTRICTED} is not set, the calling process may
assert the PRIV_FILE_CHOWN privilege.

EROFS The named file resides on a read-only file system.

fchown fails and the owner and group of the named file remain unchanged if any of
these conditions is true:

EACCES fildes is opened for read, but mandatory write access is required to
perform this operation.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while reading from or writing to the file
system.

EINTR A signal was caught during execution of the function.

ENOLINK fildes points to a remote machine but the link to that machine is no
longer active.

EINVAL group or owner is out of range.

EPERM The effective user ID does not match the owner of the file or the
process is not privileged and {_POSIX_CHOWN_RESTRICTED}

2TSOL-58 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls chown (2TSOL)

indicates that privilege is required. To override this restriction, the
calling process may assert the PRIV_FILE_CHOWN privilege.

EROFS The named file to which fildes refers resides on a read-only file sys-
tem.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

When the ownership of path and fildes is changed, the set-user-ID and set-group-ID bits
are cleared. The calling process may assert the PRIV_FILE_SETID privilege to bypass this
restriction.

To change the user ID of the file when the calling process does not own the file and
{_POSIX_CHOWN_RESTRICTED} is not in effect, the calling process may assert the
PRIV_FILE_CHOWN privilege.

To change the group ID of the file when the calling process does not own the file, and the
new group ID is not in the group ID of the process or in the supplementary group list of
the process, and {_POSIX_CHOWN_RESTRICTED} is not in effect, the calling process may
assert the PRIV_FILE_CHOWN privilege.

The information label of path or fildes and the information label of the calling process
remain unchanged.

SEE ALSO chgrp(1), chown(1), chmod(2TSOL)

modified 1 May 1996 2TSOL-59

chroot (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME chroot, fchroot − Change root directory

SYNOPSIS #include <unistd.h>

int chroot(const char ∗path);

int fchroot(int fildes);

DESCRIPTION chroot() and fchroot() cause a directory to become the root directory, the starting point
for path searches for path names beginning with /. The user’s working directory is unaf-
fected by the chroot and fchroot functions.

path points to a path name naming a directory. The fildes argument to fchroot is the open
file descriptor of the directory that is to become the root.

The calling process must assert the PRIV_PROC_CHROOT privilege to use this system
call. fchroot is further restricted: although changing to the system root using this call is
always possible, change is not guaranteed to succeed in any other case, even when fildes
is valid in all respects.

The ‘‘..’’ entry in the root directory is interpreted as the root directory itself. Thus, ‘‘..’’
cannot be used to access files outside the subtree rooted at the root directory. Instead,
fchroot can be used to set the root back to a directory that was opened before the root
directory was changed.

The information labels of path and of the calling process are unchanged.

RETURN VALUES Upon successful completion, these functions return 0. Upon failure, they return −1 and
set errno to indicate the error.

ERRORS chroot will fail and the root directory will remain unchanged if any of these conditions is
true:

EACCES Search permission is denied for a component of the path prefix of
path .

Search permission is denied for the directory referred to by path .

To override these restrictions, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBADF The descriptor is not valid.

EFAULT path points to an illegal address.

EINVAL fchroot attempted to change to a directory that is not the system
root and external circumstances do not allow this.

EINTR A signal was caught during the chroot function.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

2TSOL-60 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls chroot (2TSOL)

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named directory does not exist or is a null pathname.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path name is not a directory.

EPERM The calling process must assert the PRIV_PROC_CHROOT
privilege to change the root directory.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The calling process must assert the PRIV_PROC_CHROOT privilege to change the root
directory.

The information labels of path and of the calling process are unchanged.

SEE ALSO chroot(1MTSOL)

WARNINGS The only appropriate use of fchroot() is to change back to the system root.

modified 01 May 1996 2TSOL-61

chstate (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME chstate − Change the view of a host state between labeled and unlabeled

SYNOPSIS #include <tsol/tndb.h>
int chstate(tsol_chstateop_t state , struct netbuf ∗addr);

DESCRIPTION A host regards another host as labeled or unlabeled, based on the remote host’s database
caches that are loaded in the kernel. In some cases (for example, when a diskless client
boots), the server host must initially regard the client as an unlabeled host even though
the client is a labeled host; at a later time, the server host can regard the client as a labeled
host. chstate() allows a process to toggle the view of a host between labeled and unla-
beled.

The argument state is of the following type:
typedef enum {

STATE_UNLABELED = 1,
STATE_LABELED = 2

} tsol_chstateop_t;

The argument addr is a pointer to the netbuf structure:
struct netbuf {

unsigned int maxlen;
unsigned int len;
char ∗buf;

};

where buf contains the address of the host whose view is being changed. Currently, only
the IP address format is supported; and it should be specified as type sockaddr_in.

chstate requires the PRIV_SYS_NET_CONFIG privilege.

RETURN VALUES Upon successful completion, the process returns a value of 0. Otherwise, the process
returns a value of −1 and sets errno to indicate the error.

ERRORS chstate() may fail for one of these reasons:

EFAULT The addr argument points to a bad address.

EINVAL Either the state argument is not one of the listed type constants, or the remote
host template for the host specified by addr is not available (after using fall-
back mechanism).

EPERM The calling process does not have the PRIV_SYS_NET_CONFIG privilege.

2TSOL-62 modified 22 Apr 1997

Trusted Solaris 2.5 TSOL System Calls creat (2TSOL)

NAME creat − Create a new file or rewrite an existing one

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat(const char ∗path , mode_t mode);

MT-LEVEL Async-Signal-Safe

DESCRIPTION creat() creates a new ordinary file or prepares to rewrite an existing file to which path
points.

If the file exists, the length is truncated to 0; and the mode and owner are unchanged.

If the file does not exist, the file’s owner ID is set to the effective user ID of the process.
The group ID of the file is set to the effective group ID of the process; or if the S_ISGID
bit is set in the parent directory, then the group ID of the file is inherited from the parent
directory. The access permission bits of the file mode are set to the value of mode
modified as follows:

· If the group ID of the new file does not match the effective group ID or one of the sup-
plementary group IDs, the S_ISGID bit is cleared. The calling process may assert the
PRIV_FILE_SETID privilege to override clearing of the S_ISGID bit.

· All bits set in the file mode-creation mask of the process are cleared. [See umask(2).]

· The “save text image after execution bit” of the mode is cleared. [See chmod(2TSOL)
for the values of mode.] The calling process may assert the PRIV_SYS_CONFIG
privilege to override the clearing of the S_ISVTX bit.

If the file exists, its sensitivity label is unchanged. If the file does not exist, it is created
with its sensitivity label set to the sensitivity label of the calling process.

The information label of path is set to ADMIN_LOW.

Upon successful completion, a write-only file descriptor is returned and the file is open
for writing even if the mode does not permit writing. The file pointer is set to the begin-
ning of the file. The file descriptor is set to remain open across exec functions. [See
fcntl(2).] A new file may be created with a mode that forbids writing.

The call creat(path, mode) is equivalent to

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

RETURN VALUES Upon successful completion, the function returns a nonnegative integer, the lowest-
numbered, unused file descriptor. Upon failure, the function returns −1, no files are
created or modified, and errno is set to indicate the error.

modified 1 May 1996 2TSOL-63

creat (2TSOL) TSOL System Calls Trusted Solaris 2.5

ERRORS creat fails if any of these conditions is true:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The file does not exist and the directory in which the file is to be
created does not permit writing. To override this restriction, the
calling process may assert one or both of these privileges:
PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

The file exists and write permission to path is denied. To override
this restriction, the calling process may assert one or both of these
privileges: PRIV_FILE_MAC_WRITE and PRIV_FILE_DAC_WRITE.

EAGAIN The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file. [See chmod(2).]

EDQUOT The directory in which the new file entry is being placed cannot be
extended because the user’s quota of disk blocks on that file sys-
tem has been exhausted.

The user’s quota of inodes on the file system in which the file is
being created has been exhausted.

EFAULT path points to an illegal address.

EINTR A signal was caught during the creat function.

EISDIR The named file is an existing directory.

ELOOP Too many symbolic links were encountered in translating path.

EMFILE The process has too many open files. [See getrlimit(2TSOL).]

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENFILE The system file table is full.

ENOENT A component of the path prefix does not exist.

The path name is null.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOSPC The file system is out of inodes.

ENOTDIR A component of the path prefix is not a directory.

EROFS The named file resides or would reside on a read-only file system.

2TSOL-64 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls creat (2TSOL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

To override clearing of the S_ISVTX bit, the calling process may assert the
PRIV_SYS_CONFIG privilege. To override the clearing of the S_ISGID bit, the calling pro-
cess may assert the PRIV_FILE_SETID privilege.

If path exists, its sensitivity label is unchanged. If path does not exist, it is created with its
sensitivity label set to the sensitivity label of the calling process.

The information label of path is set to ADMIN_LOW and does not float the information
label of the containing directory.

SEE ALSO chmod(2TSOL), close(2), dup(2), fcntl(2TSOL), getrlimit(2TSOL), lseek(2TSOL),
open(2TSOL), read(2TSOL), umask(2), write(2TSOL), stat(5)

modified 1 May 1996 2TSOL-65

devpolicy (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME devpolicy − get/set device driver policy table

SYNOPSIS cc [flag ...] file
#include <sys/tsol/devpolicy.h>
int devpolicy(devpolicy_op_t op , devpolicy_t ∗tbl , int ∗len)

DESCRIPTION devpolicy sets and gets the device policy table.

Allowed values for op are specified in <sys/tsol/devpolicy.h> and may be one of the fol-
lowing:

TSOL_GET_DEVPOLICY Get the device policy table. The tbl argument points to a
buffer containing the devpolicy_t array, and len contains the
length of the array. devpolicy returns in len the number of
elements that the kernel has filled in the array.

TSOL_SET_DEVPOLICY Set the device policy table. The tbl argument points to the
devpolicy_t structure to be downloaded to the kernel, and
len contains the length of the array. For this call to succeed,
the calling process must have PRIV_SYS_DEVICES in its set
of effective privileges.

SEE ALSO devpolicy(1MTSOL)

2TSOL-66 modified 18 Sep 1996

Trusted Solaris 2.5 TSOL System Calls exec (2TSOL)

NAME exec, execl, execv, execle, execve, execlp, execvp − Execute a file

SYNOPSIS #include <unistd.h>

int execl(const char ∗path , const char ∗arg0 , . . ., const char ∗argn, char ∗ /∗NULL∗/);

int execv(const char ∗path , char ∗const argv[]);

int execle (const char ∗path ,char ∗const arg0[], . . . , const char ∗argn,
char ∗ /∗NULL∗/, char ∗const envp[]);

int execve (const char ∗path , char ∗const argv[], char ∗const envp[]);

int execlp (const char ∗file, const char ∗arg0 , . . ., const char ∗argn, char ∗ /∗NULL∗/);

int execvp (const char ∗file, char ∗const argv[]);

DESCRIPTION exec() in all its forms overlays a new process image on an old process. The new process
image is constructed from an ordinary, executable file. This file is either an executable
object file or a file of data for an interpreter. There can be no return from a successful
exec because the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When an
interpreter file is exec’d, the system execs the specified interpreter. The pathname
specified in the interpreter file is passed as arg0 to the interpreter. If it was specified in the
interpreter file, arg is passed as arg1 to the interpreter. The remaining arguments to the
interpreter are arg0 through argn of the originally exec’d file.

When a C program is executed, it is called as follows:

int main (int argc, char ∗argv[], char ∗envp[]);

where argc is the argument count, argv is an array of character pointers to the arguments
themselves, and envp is an array of character pointers to the environment strings. As
indicated, argc is at least one, and the first member of the array points to a string contain-
ing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. If file does not contain a slash character, the path prefix
for this file is obtained by a search of the directories passed in the PATH environment
variable. [See environ(5).] The environment is supplied typically by the shell. If the new
process file is not an executable object file, execlp() and execvp() use the contents of that
file as standard input to the shell.

Solaris exec uses /usr/bin/sh [See sh(1).]

XPG4 exec uses the XPG4-compliant shell /usr/bin/ksh [See ksh(1).]

modified 19 Apr 1995 2TSOL-67

exec (2TSOL) TSOL System Calls Trusted Solaris 2.5

The calling process must have read and execute access to the new process file or have the
following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

The arguments arg0, . . ., argn point to null-terminated character strings. These strings
constitute the argument list available to the new process image. Conventionally, at least
arg0 should be present. It will become the name of the process as displayed by the ps
command. arg0 points to a string that is the same as path (or the last component of path).
The list of argument strings is terminated by a (char ∗)0 argument.

argv is an array of character pointers to null-terminated strings. These strings constitute
the argument list available to the new process image. By convention, argv must have at
least one member and should point to a string that is the same as path (or its last com-
ponent). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute
the environment for the new process image. envp is terminated by a null pointer. For
execl(), execv(), execvp(), and execlp(), the C run-time start-off routine places a pointer
to the environment of the calling process in the global object extern char ∗∗environ, and
it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process except for
those whose close-on-exec flag is set. [See fcntl(2).] For those file descriptors that remain
open, the file pointer is unchanged.

Signals that are being caught by the calling process are set to the default disposition in the
new process image. [See signal(3C).] Otherwise, the new process image inherits the sig-
nal dispositions of the calling process.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec sets the effec-
tive user ID of the new process to the owner ID of the new process file. Similarly, if the
set-group-ID mode bit of the new process file is set, the effective group ID of the new pro-
cess is set to the group ID of the new process file. The real user ID and real group ID of the
new process remain the same as those of the calling process.

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID bits
will be honored when the process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached to the
new process. [See shmop(2).] Memory mappings in the calling process are unmapped
before the new process begins execution. [See mmap(2).]

Profiling is disabled for the new process. [See profil(2).]

Timers created by timer_create(3R) are deleted before the new process begins execution.

Any outstanding asynchronous I/O operations may be cancelled.

2TSOL-68 modified 19 Apr 1995

Trusted Solaris 2.5 TSOL System Calls exec (2TSOL)

The new process also inherits the following attributes from the calling process:

nice value [See nice(2).]
scheduler class and priority [See priocntl(2).]
process ID
parent process ID
process group ID
supplementary group IDs
semadj values [See semop(2TSOL).]
session ID [See exit(2) and signal(3C).]
trace flag [See ptrace(2) request 0)
time left until an alarm [See alarm(2).]
current working directory
root directory
file mode creation mask [See umask(2).]
resource limits [See getrlimit(2TSOL).]
utime, stime, cutime, and cstime [See times(2).]
file-locks [See fcntl(2TSOL) and lockf(3C).]
controlling terminal
process signal mask [See sigprocmask(2).]
pending signals [See sigpending(2).]
clearance [See getclearance(2TSOL)C]
sensitivity label [See getcmwlabel(2TSOL)C]
inheritable privilege set [See getppriv(2TSOL)C]
process attribute flags [See getpattr(2TSOL)C]

The process information label of the new process is either inherited from the calling pro-
cess or reset to ADMIN_LOW depending on the system configuration. In either case, the
process information label may be floated by the program file when it is loaded for execu-
tion.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2, S2,
I2 are the four privilege sets of the new process; and F and A are the forced set and the
allowed set of the program file:

E2 = P2 = (I1 union F) intersect A
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the forced
privileges of the script and the forced privileges of the interpreter program; and the
resulting allowed privileges are the allowed privileges of the interpreter program. The
privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect A
I2 = I1

where

modified 19 Apr 1995 2TSOL-69

exec (2TSOL) TSOL System Calls Trusted Solaris 2.5

Fs is the forced privilege set of the script,
Fi is the forced privilege set of the interpreter program, and
Ai is the allowed privilege set of the interpreter program.

Upon successful completion, exec marks for update the st_atime field of the file, unless
the file is on a read-only file system. Should the exec succeed, the process image file is
considered to have been opened [with open()]. The corresponding close() is considered
to occur at a time after this open but before process termination or successful completion
of a subsequent call to exec.

RETURN VALUES If exec returns to the calling process, an error has occurred; the return value is −1 and
errno is set to indicate the error.

ERRORS exec will fail and return to the calling process if any of these conditions is true:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of 5120 bytes. The argument list
limit is the sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the path prefix
of the new process file. Moreover, the calling process does not
have PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH
to override the restriction.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

EAGAIN Total amount of system memory available when reading using
raw I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the exec function.

ELOOP Too many symbolic links were encountered in translating path or
file.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system type does not allow it.

ENAMETOOLONG The length of the file or path argument exceeds {PATH_MAX}, or
the length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or the path name is null.

ENOEXEC The exec is not an execlp() or execvp(), and the new process file
has the appropriate access permission but an invalid magic
number in its header.

ENOLINK path points to a remote machine but the link to that machine is no

2TSOL-70 modified 19 Apr 1995

Trusted Solaris 2.5 TSOL System Calls exec (2TSOL)

longer active.

ENOMEM The new process requires more memory than RLIMIT_VMEM, the
limit imposed by setrlimit(). [See brk(2).]

ENOTDIR A component of the new process path of the file prefix is not a
directory.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

MAC search and execute permissions on the executable object are required. Process
privilege sets and process information label are updated upon execution of the program.
Other Trusted Solaris process attributes, such as clearance, sensitivity label, and process
attribute flags, are unchanged.

SEE ALSO ksh(1), ps(1), sh(1), intro(2TSOL), alarm(2), brk(2), chmod(2TSOL), exit(2), fcntl(2TSOL),
fork(2TSOL), getrlimit(2TSOL), mmap(2), nice(2TSOL), priocntl(2TSOL), profil(2),
ptrace(2), semop(2TSOL), shmop(2TSOL), signal(3C), sigpending(2), sigprocmask(2),
times(2), umask(2), lockf(3C), timer_create(3R), system(3S), a.out(4), environ(5), xpg4(5)

modified 19 Apr 1995 2TSOL-71

fcntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME fcntl − Control files

SYNOPSIS #include <sys/types.h>
#include <fcntl.h>

int fcntl(int fildes, int cmd, /∗ arg ∗/ . . .);

MT-LEVEL Async_Signal_Safe

DESCRIPTION fcntl() provides for control over open files. fildes is an open file descriptor. [See
intro(2TSOL).]

fcntl may take a third argument, arg, whose data type, value, and use depend upon the
value of cmd. cmd specifies one of these operations to be performed by fcntl.

F_DUPFD Return a new file descriptor with these characteristics:

Lowest-numbered available file descriptor greater than or equal to the
integer value given as the third argument

Same open file (or pipe) as the original file

Same file pointer as the original file (That is, both file descriptors share
one file pointer.)

Same access mode (read, write, or read/write) as the original file

Shares any locks associated with the original file descriptor

Same file status flags as the original file (That is, both file descriptors
share the same file status flags.)

The close-on-exec flag (see F_GETFD) associated with the new file
descriptor is set to remain open across exec(2TSOL) functions.

F_GETFD Get the close-on-exec flag associated with fildes. If the low-order bit is 0,
the file will remain open across exec. Otherwise, the file will be closed
upon execution of exec.

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of the
integer value given as the third argument (0 or 1 as above).

F_GETFL Get fildes status flags.

F_SETFL Set fildes status flags to the integer value given as the third argument.
Only certain flags can be set. [See fcntl(5).]

F_FREESP Free storage space associated with a section of the ordinary file fildes. The
section is specified by a variable of data type struct flock to which the
third argument arg points. The data type struct flock is defined in the
<fcntl.h> header [see fcntl(5)] and contains these members: l_whence is
0, 1, or 2 to indicate that the relative offset l_start will be measured from
the start of the file, the current position, or the end of the file, respectively;
l_start is the offset from the position specified in l_whence; l_len is the
size of the section.

2TSOL-72 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls fcntl (2TSOL)

An l_len of 0 frees up to the end of the file; in this case, the end of file
(that is, file size) is set to the beginning of the section freed. Any data pre-
viously written into this section is no longer accessible.

Note that all file systems might not support all possible variations of
F_FREESP arguments. In particular, many file systems allow space to be
freed only at the end of a file.

The following values for cmd are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F_SETLK Set or clear a file-segment lock according to the flock structure to which
arg points. [See fcntl(5).] The cmd F_SETLK is used to establish read
(F_RDLCK) and write (F_WRLCK) locks as well as to remove either type
of lock (F_UNLCK). If a read or write lock cannot be set, fcntl will return
immediately with an error value of −1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock is
blocked by other locks, fcntl will block until the segment is free to be
locked.

F_GETLK If the lock request described by the flock structure to which arg points
could be created, then the structure is passed back unchanged except that
the lock type is set to F_UNLCK and the l_whence field is set to
SEEK_SET.

If a lock is found that would prevent this lock from being created, then
the structure is overwritten with a description of the first lock that is
preventing such a lock from being created. The structure also contains the
process ID and the system ID of the process holding the lock.

This command never creates a lock; the command tests whether a partic-
ular lock could be created.

A read lock prevents any process from write locking the protected area. More than one
read lock may exist for a given segment of a file at a given time. The file descriptor on
which a read lock is being placed must have been opened with read access.

A write lock prevents any process from read locking or write locking the protected area.
Only one write lock and no read locks may exist for a given segment of a file at a given
time. The file descriptor on which a write lock is being placed must have been opened
with write access.

The record to be locked or unlocked is described by the flock structure defined in
<sys/fcntl.h> (included in <fcntl.h>):

typedef struct flock {
short l_type;
short l_whence;
off_t l_start;
off_t l_len; /∗ len == 0 means until end of file ∗/
long l_sysid;
pid_t l_pid;

modified 01 May 1996 2TSOL-73

fcntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

long pad[4]; /∗ reserve area ∗/
} flock_t;

The flock structure describes the type (l_type), starting offset (l_whence), relative offset
(l_start), size (l_len), process ID (l_pid), and system ID (l_sysid) of the segment of the file
to be affected. The process ID and system ID fields are used only with the F_GETLK

2TSOL-74 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls fork (2TSOL)

NAME fork, fork1 − Create a new process

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

pid_t fork1(void);

MT-LEVEL fork() is Async-Signal-Safe.

DESCRIPTION fork() and fork1() cause creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). The child process inherits the following
attributes from the parent process:

· real user ID, real group ID, effective user ID, effective group ID
· environment
· open file descriptors
· close-on-exec flags [See exec(2TSOL).]
· signal handling settings (that is, SIG_DFL , SIG_IGN , SIG_HOLD , function address)
· supplementary group IDs
· set-user-ID mode bit
· set-group-ID mode bit
· profiling on/off status
· nice value [See nice(2TSOL).]
· scheduler class [See priocntl(2TSOL).]
· all attached shared memory segments [See shmop(2TSOL).]
· process group ID -- memory mappings [See mmap(2).]
· session ID [See exit(2).]
· current working directory
· root directory
· file mode creation mask [See umask(2).]
· resource limits [See getrlimit(2TSOL).]
· controlling terminal
· saved user ID and group ID
· effective privilege set [See intro(2TSOL).]
· permitted privilege set [See intro(2TSOL).]
· inheritable privilege set [See intro(2TSOL)]
· saved privilege set [See intro(2TSOL).]
· process attribute flags [See getpattr(2TSOL).]
· clearance [See intro(2TSOL).]
· sensitivity label [See intro(2TSOL).]
· information label [See intro(2TSOL).]

modified 08 Apr 1995 2TSOL-75

fork (2TSOL) TSOL System Calls Trusted Solaris 2.5

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that partic-
ular class [See priocntl(2TSOL).] The child process differs from the parent process in the
following ways:

· The child process has a unique process ID that does not match any active process
group ID.

· The child process has a different parent process ID (that is, the process ID of the parent
process).

· The child process has its own copy of the parent’s file descriptors and directory
streams. Each of the child’s file descriptors shares a common file pointer with the
corresponding file descriptor of the parent.

· Each shared memory segment remains attached and the value of shm_nattach is
incremented by 1.

· All semadj values are cleared. [See semop(2TSOL).]

· Process locks, text locks, data locks, and other memory locks are not inherited by the
child. [See plock(3C) and memcntl(2).]

· The child process’s tms structure is cleared: tms_utime, stime, cutime, and cstime are
set to 0. [See times(2).]

· The child processes resource utilizations are set to 0. [See getrlimit(2TSOL).] The
it_value and it_interval values for the ITIMER_REAL timer are reset to 0. [See getiti-
mer(2).]

· The set of signals pending for the child process is initialized to the empty set.

· Timers created by timer_create(3R) are not inherited by the child process.

· No asynchronous input nor asynchronous output operations are inherited by the
child.

Record locks set by the parent process are not inherited by the child process. [See
fcntl(2TSOL).]

MT fork() Solaris
Threads

The following are the fork semantics in programs that use the Solaris threads API rather
than the POSIX threads API (programs linked with −lthread but not −lpthread):

fork duplicates all the threads [See thr_create(3T).] and LWPs in the parent process in the
child process. fork1 duplicates only the calling thread (LWP) in the child process.

POSIX Threads The following are the fork semantics in programs that use the POSIX threads API rather
than the Solaris threads API (programs linked with −lpthread whether or not linked with
−lthread):

The call to fork is like a call to fork1, which replicates only the calling thread. There is no
call that forks a child with all threads and LWPs duplicated in the child.

Note that if a program is linked with both libraries (−lthread and −lpthread), the POSIX
semantics of fork prevails.

2TSOL-76 modified 08 Apr 1995

Trusted Solaris 2.5 TSOL System Calls fork (2TSOL)

Fork-safety If fork1 is called in a Solaris thread program or fork is called in a POSIX thread program,
and the child does more than just call exec(), there is a possibility of deadlocking in the
child. To ensure that it is safe with respect to this deadlock, the application should use
pthread_atfork(3T). Should there be any outstanding mutexes throughout the process,
the application should call pthread_atfork(3T) to wait for and acquire those mutexes
prior to calling fork. [See Intro(3), “MT-Level of Libraries.”)

RETURN VALUES Upon successful completion, fork and fork1 return a value of 0 to the child process and
return the process ID of the child process to the parent process. Otherwise, a value of
(pid_t)−1 is returned to the parent process, no child process is created, and errno is set to
indicate the error.

ERRORS fork fails and no child process is created if any of these conditions is true:

EAGAIN There are two conditions that will cause an EAGAIN error.

The system-imposed limit on the total number of processes under execution
by a single user would be exceeded, and the calling process does not have the
PRIV_SYS_MAXPROC effective privilege.

The total amount of system memory available is temporarily insufficient to
duplicate this process.

ENOMEM There is not enough swap space.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Process attributes introduced by Trusted Solaris are all inheritable by the child process. A
calling process with the PRIV_SYS_MAXPROC privilege is able to override the limit on the
number of processes a user may have.

SEE ALSO alarm(2), exec(2TSOL), exit(2), fcntl(2), getitimer(2), getrlimit(2TSOL), memcntl(2),
mmap(2), nice(2TSOL), priocntl(2TSOL), ptrace(2), semop(2TSOL), shmop(2TSOL),
times(2), umask(2), wait(2), exit(3C), plock(3C), pthread_atfork(3T), signal(3C),
system(3S), thr_create(3T), timer_create(3R)

NOTES Be careful to call _exit() rather than exit(3C) if you cannot execve(), because exit(3C) will
flush and close standard I/O channels and thereby corrupt the parent processes standard
I/O data structures. Using exit(3C) will flush buffered data twice. See exit(2).

When calling fork1 the thread (or LWP) in the child must not depend on any resources
that are held by threads (or LWPs) that no longer exist in the child. In particular, locks
held by these threads (or LWPs) will not be released.

In a multithreaded process, fork or fork1 can cause blocking system calls to be inter-
rupted and return with an error of EINTR.

modified 08 Apr 1995 2TSOL-77

fpathconf (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME fpathconf, pathconf − Get configurable path-name variables

SYNOPSIS #include <unistd.h>

long fpathconf(int fildes, int name);

long pathconf(const char ∗path , int name);

MT-LEVEL pathconf() is Async-Signal-Safe.

DESCRIPTION The functions fpathconf() and pathconf() return the current value of a configurable limit
or option associated with a file or directory. The path argument points to the path name
of a file or directory; fildes is an open file descriptor; and name is the symbolic constant
(defined in <unistd.h>) representing the configurable system limit or option to be
returned.

The values returned by pathconf and fpathconf depend on the type of file specified by
path or fildes. The following table contains the symbolic constants supported by pathconf
and fpathconf along with the POSIX-defined return value. The return value is based on
the type of file specified by path or fildes.

Value of name See Note

_PC_LINK_MAX 1

_PC_MAX_CANNON 2

_PC_MAX_INPUT 2

_PC_NAME_MAX 3,4

_PC_PATH_MAX 4,5

_PC_PIPE_BUF 6

_PC_CHOWN_RESTRICTED 7

_PC_NO_TRUNC 3,4

_PC_VDISABLE 2

_PC_ASYNC_IO 2

_PC_PRIO_IO 2

_PC_SYNC_IO 1

NOTES:

1) If path or fildes refers to a directory, the value returned applies to the directory itself.

2) The behavior is undefined if path or fildes does not refer to a terminal file.

3) If path or fildes refers to a directory, the value returned applies to the file names
within the directory.

4) The behavior is undefined if path or fildes does not refer to a directory.

2TSOL-78 modified 1 May 1995

Trusted Solaris 2.5 TSOL System Calls fpathconf (2TSOL)

5) If path or fildes refers to a directory, the value returned is the maximum length of a
relative path name when the specified directory is the working directory.

6) If path or fildes refers to a pipe or FIFO, the value returned applies to the pipe or FIFO.
If path or fildes refers to a directory, the value returned applies to any FIFOs that exist
or can be created within the directory. If path or fildes refer to any other type of file,
the behavior is undefined.

7) If path or fildes refers to a directory, the value returned applies to any files, other than
directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name does not change
during the lifetime of the calling process.

The information label of path or fildes and the information label of the calling process
remain unchanged.

RETURN VALUES If fpathconf or pathconf are invoked with an invalid symbolic constant or if the symbolic
constant corresponds to a configurable system limit or option not supported on the sys-
tem, these functions return a value of −1 to the invoking process. If the function fails
because the configurable system limit or option corresponding to name is not supported
on the system, the value of errno is not changed.

ERRORS fpathconf fails if either of these conditions is true:

EBADF fildes is not a valid file descriptor.

EACCES fildes is open only for writing and the calling process does not have
mandatory read access to the object to which the descriptor refers.
To override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

pathconf fails if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix.
To override this restriction, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The calling process does not have mandatory read access to path.
To override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

ELOOP Too many symbolic links are encountered while translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
but the file system type does not allow it.

ENAMETOOLONG The length of a path name exceeds {PATH_MAX}, or a path name
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT path is needed for the command specified; and the named file does

modified 1 May 1995 2TSOL-79

fpathconf (2TSOL) TSOL System Calls Trusted Solaris 2.5

not exist or the path argument points to an empty string.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

Both fpathconf and pathconf fail if this condition is true:

EINVAL name is an invalid value.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information label of path or fildes and the information label of the calling process
remain unchanged.

SEE ALSO sysconf(3C), limits(4)

2TSOL-80 modified 1 May 1995

Trusted Solaris 2.5 TSOL System Calls getaudit (2TSOL)

NAME getaudit, setaudit − Get and set process audit information

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int getaudit(struct auditinfo ∗info);

int setaudit(struct auditinfo ∗info);

DESCRIPTION getaudit gets the audit ID, the preselection mask, the terminal ID, and the audit session ID
of the current process.

setaudit sets the audit ID, the preselection mask, the terminal ID, and the audit session ID
for the current process.

The auditinfo structure used to pass the process audit information contains these
members:

au_id_t ai_auid; /∗ audit user ID ∗/
au_mask_t ai_mask; /∗ preselection mask ∗/
au_tid_t ai_termid; /∗ terminal ID ∗/
au_asid_t ai_asid; /∗ audit session ID ∗/

To execute these commands successfully, a process needs certain privileges in its set of
effective privileges: for getaudit, a process needs PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL; for setaudit, PRIV_SYS_AUDIT.

RETURN VALUES Upon success, getaudit and setaudit return 0. Upon failure, they return −1 and set errno
to indicate the error.

ERRORS EFAULT The info parameter points outside the allocated address space of the process.

EPERM The process did not have the appropriate privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

As explained in DESCRIPTION, privileges are needed to run this command successfully.

SEE ALSO audit(2TSOL)

NOTES This functionality is active only if the audit module has been enabled. By default, this
module is enabled on Trusted Solaris systems. See bsmconv(1MTSOL) for more infor-
mation.

Trusted Solaris 2.x will soon extend the number of audit classes and introduce new but
similar structures and programming interfaces.

modified 9 Sep 1997 2TSOL-81

getauid (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getauid, setauid − Get and set user audit identity

SYNOPSIS cc [flag . . .] file . . . −lbsm −lsocket −lnsl −lintl [library . . .]

#include <sys/param.h>
#include <bsm/audit.h>

int getauid(au_id_t ∗auid);

int setauid(au_id_t ∗auid);

DESCRIPTION The getauid system call returns the audit user ID for the current process. This value is ini-
tially set at login time and inherited by all child processes. This value does not change
when the real/effective user IDs change, so it can be used to identify the logged-in user
even when running a setuid program. The audit user ID governs audit decisions for a
process.

The setauid system call sets the audit user ID for the current process.

Only a process with the PRIV_SYS_AUDIT privilege asserted may successfully set its user
identity. To get its identity successfully, a process must have PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL in its set of effective privileges.

RETURN VALUES Upon success, getauid returns the audit user ID of the current process. Upon failure,
getauid returns −1 and sets errno to indicate the error.

Upon success, setauid returns 0. Upon failure, setauid returns −1 and sets errno to indi-
cate the error.

ERRORS EFAULT auid points to an invalid address.

EPERM The process lacks the privilege necessary to use the command.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The privileges explained in DESCRIPTION are needed to run this command successfullly.

SEE ALSO audit(2TSOL), getaudit(2TSOL)

NOTES This functionality is active only if the audit module has been enabled. By default, this
module is enabled on Trusted Solaris systems. See bsmconv(1MTSOL) for more infor-
mation.

These system calls have been superseded by getaudit and setaudit.

2TSOL-82 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls getclearance (2TSOL)

NAME getclearance − Get process clearance

SYNOPSIS cc [flag . . .] file . . . −ltsol [library . . .]

#include <tsol/label.h>

int getclearance(bclear_t ∗clearance_p)

DESCRIPTION getclearance() obtains the clearance of the calling process. The clearance information is
placed into the memory pointed to by clearance_p.

RETURN VALUES Upon success, getclearance returns 0. Upon failure, getclearance returns −1 and sets
errno to indicate the error.

ERRORS getclearance will fail (and clearance_p will not refer to a valid clearance) if this condition
is true:

EFAULT clearance_p points to an invalid address.

SEE ALSO setclearance(2TSOL)

modified 21 Feb 1993 2TSOL-83

getcmwfsrange (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getcmwfsrange, fgetcmwfsrange − get file system sensitivity label range

SYNOPSIS #include <tsol/label.h>

int getcmwfsrange(char ∗path, brange_t ∗range_p)

int fgetcmwfsrange(int fd, brange_t ∗range_p)

DESCRIPTION getcmwfsrange() returns the sensitivity label range of a mounted file system. path is the
path name of any file within the mounted filesystem. range_p is a pointer to a sensitivity
label range structure defined as follows:

struct binary_level_range {
blevel_t lower_bound;
blevel_t upper_bound;

};
typedef struct binary_level_range brange_t; /∗ Level Range ∗/

fgetcmwfsrange() returns the same information about an open file referred to by
descriptor fd.

The information label of path or fd is unchanged. The information label of the calling pro-
cess is also unchanged.

RETURN VALUES getcmwfsrange() and fgetcmwfsrange() return:

0 On success.

−1 On failure and set errno to indicate the error.

ERRORS getcmwfsrange() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of path .
To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the PRIV_FILE_MAC_SEARCH
privilege.

EFAULT range_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V))
while {_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

2TSOL-84 modified 6 May 1996

Trusted Solaris 2.5 TSOL System Calls getcmwfsrange (2TSOL)

fgetcmwfsrange() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT range_p points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

modified 6 May 1996 2TSOL-85

getcmwlabel (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getcmwlabel, lgetcmwlabel, fgetcmwlabel − get file CMW label

SYNOPSIS #include <tsol/label.h>

int getcmwlabel(char ∗path, bclabel_t ∗label_p

int fgetcmwlabel(int fd, bclabel_t ∗label_p)

DESCRIPTION getcmwlabel() obtains the CMW label of the file named by path . Mandatory read access
to the final component of path is required or the calling process must have
PRIV_FILE_MAC_READ in its set of effective privileges. Discretionary read, write or exe-
cute permission to the final component of path is not required, but all directories in the
path prefix of path must be searchable.

If path refers to a FIFO, then the CMW label associated with the FIFO is returned. The
information label portion of label_p returned by this interface does not vary with the
information label associated with any data that is present in the FIFO.

If path refers to a directory, then the information label portion is undefined.

lgetcmwlabel() is like getcmwlabel() except in the case where the final component of
path is a symbolic link, in which case lgetcmwlabel() returns the CMW label of the link,
while getcmwlabel() returns the CMW label of the file to which the link refers.

fgetcmwlabel() obtains the CMW label of an open file referred to by the argument
descriptor, such as would be obtained by an open(2V) call. If the descriptor is only open
for writing, then mandatory read access to the object is required or the calling process
must have PRIV_FILE_MAC_READ in its set of effective privileges.

If the descriptor refers to a FIFO, then the information label portion of label_p refers to the
information label of the last data that was read. If no data has been read, then the infor-
mation label portion is set to the ADMIN_LOW information label.

label_p is a pointer to a CMW label structure defined as follows:

struct binary_cmw_label {
bslabel_t bcl_sensitivity_label;
bilabel_t bcl_information_label;

} ;

typedef struct binary_cmw_label bclabel_t;/∗ CMW Label ∗/

An exception to the access rules applies in the case of pty pseudo-terminals (/dev/ptyp∗
and /dev/ttyp∗). Normally mandatory read access is required or the calling process must
have PRIV_FILE_MAC_READ in its set of effective privileges. If the specified file is a pty
device file and the calling process does not have mandatory read access or
PRIV_FILE_MAC_READ is not in its set of effective privileges, each function returns suc-
cess and sets label_p to the ADMIN LOW sensitivity label and the ADMIN LOW information
label.

2TSOL-86 modified 6 May 1996

Trusted Solaris 2.5 TSOL System Calls getcmwlabel (2TSOL)

RETURN VALUES getcmwlabel(), lgetcmwlabel() and fgetcmwlabel() return:

0 on success.

−1 on failure and set errno to indicate the error.

ERRORS getcmwlabel() and lgetcmwlabel() fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of path .
To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the PRIV_FILE_MAC_SEARCH
privilege.

The calling process does not have mandatory read access to path because
the sensitivity label of the calling process does not dominate the sensi-
tivity label of the final component of path and the calling process does
not have PRIV_FILE_MAC_READ in its set of effective privileges.

EFAULT label_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory read access to path because
the sensitivity label of path is outside the calling processes’ clearance and
the calling process does not have PRIV_FILE_MAC_READ in its set of
effective privileges.

fgetcmwlabel() fails if one or more of the following are true:

EACCES The descriptor is only open for writing and the calling process does not
have mandatory read access to the object referred to by the descriptor
because the sensitivity label of the calling process does not dominate the
sensitivity label of the object and the calling process does not have
PRIV_FILE_MAC_READ in its set of effective privileges.

EBADF fd is not a valid open file descriptor.

EFAULT label_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO open(2V), setcmwlabel(2TSOL)

modified 6 May 1996 2TSOL-87

getcmwplabel (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getcmwplabel − Get process CMW label

SYNOPSIS cc [flag . . .] file . . . −ltsol [library . . .]

#include <tsol/label.h>

int getcmwplabel(bclabel_t ∗label_p)

DESCRIPTION getcmwplabel() obtains the CMW label of the calling process. The label information is
placed into the memory to which label_p points.

RETURN VALUES Upon success, getcmwplabel returns 0. Upon failure, getcmwplabel returns −1 and sets
errno to indicate the error.

ERRORS getcmwplabel fails (and label_p does not refer to a valid CMW label) if this condition is
true:

EFAULT label_p points to an invalid address.

SEE ALSO setcmwplabel(2TSOL)

2TSOL-88 modified 21 Feb 1995

Trusted Solaris 2.5 TSOL System Calls getdents (2TSOL)

NAME getdents − Read directory entries and put in a file system-independent format

SYNOPSIS #include <sys/dirent.h>

int getdents(int fildes, struct dirent ∗buf, size_t nbyte);

DESCRIPTION getdents() attempts to read nbyte bytes from the directory associated with the file
descriptor fildes and to format them as file system-independent directory entries in the
buffer to which buf points. Because the file system-independent-directory entries have
variable length, in most cases the actual number of bytes returned will be less than nbyte.
See dirent(4) to calculate the number of bytes.

The file system-independent directory entry is specified by the dirent structure. For a
description of this structure, see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by the file
pointer associated with fildes. Upon return from getdents, the file pointer is incremented
to point to the next directory entry.

This function was developed in order to implement the readdir routine [for a description,
see directory(3C)] and should not be used for other purposes.

The information label of the object is unchanged. If information label floating is turned on
for the system, the information label of the calling process floats according to the infor-
mation label of fildes. To stop the floating, the calling process may assert the
PRIV_PROC_NOFLOAT privilege.

RETURN VALUES Upon successful completion, getdents returns a nonnegative integer indicating the
number of bytes actually read. A value of 0 indicates that the end of the directory has
been reached. If the function fails, it returns −1 and sets errno to indicate the error.

ERRORS getdents will fail if any of these conditions is true:

EACCESS The calling process is not allowed to read the procfs file system. To override
this restriction, the calling process may assert one or both of these privileges:
PRIV_FILE_DAC_READ and PRIV_FILE_MAC_READ.

The system is configured to check mandatory read access to the directory
entries. To override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EBADF fildes is not a valid file descriptor open for reading.

EFAULT buf points to an illegal address.

EINVAL nbyte is not large enough for one directory entry.

EIO An I/O error occurred while accessing the file system.

ENOENT The current file pointer for the directory is not located at a valid entry.

ENOLINK fildes points to a remote machine but the link to that machine is no longer
active.

ENOTDIR fildes is not a directory.

modified 01 May 1996 2TSOL-89

getdents (2TSOL) TSOL System Calls Trusted Solaris 2.5

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

To prevent the process information label from floating, the calling process may assert the
PRIV_PROC_NOFLOAT privilege.

SEE ALSO directory(3C), dirent(4)

2TSOL-90 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls getfattrflag (2TSOL)

NAME fgetfattrflag, fsetfattrflag, getfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag −
set/get the security attribute flags of a file

SYNOPSIS #include <tsol/secflgs.h>

int getfattrflag(const char ∗path , secflgs_t ∗flags);

int setfattrflag(const char ∗path , secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t ∗flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char ∗path , secflgs_t ∗flags);

int mldsetfattrflag(const char ∗path , secflgs_t which, secflgs_t flags);

DESCRIPTION setfattrflag() , fsetfattrflag() , and mldsetfattrflag() set the security flags of the file whose
name is given by path or referred to by the open file descriptor fildes . The bit pattern con-
tained in which is used to indicate which flags are being affected. The corresponding bits
in flags are set to 1 or 0 to indicate whether the affected flags are being set or unset respec-
tively.

getfattrflag() , fgetfattrflag() , and mldgetfattrflag() get the security flags of the file
whose name is given by path or referred to by the open file descriptor fildes and store it in
the location pointed to by flags .

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.
FAF_PUBLIC Filesystem object is a public object.
FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR ’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the process
has mandatory as well as discretionary write access. The FAF_MLD flag, once set, cannot
be unset. Additionally, the FAF_MLD flag may only be set via the mldsetfattrflag() inter-
face. The FAF_PUBLIC flag can only be read or modified by a process possessing the
PRIV_FILE_AUDIT privilege. A process attempting to read the FAF_PUBLIC flag without
the PRIV_FILE_AUDIT privilege in effect will not fail. However the value of FAF_PUBLIC
will be returned as unset. The FAF_SLD flag can never be set. The ability to read any flag
is dependant upon the process having mandatory and discretionary read access to the
file. The ability to set any flag is dependant upon the process having mandatory and dis-
cretionary write access to the file.

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s. If
path is a multilevel directory, getfattrflag() and setfattrflag() will affect the underlying
single-level directory beneath (unless path is adorned). mldgetfattrflag() and
mldsetfattrflag() do not translate multi-level directories to underlying single-level direc-
tories. fgetfattrflag() and fsetsattrflag() affect only the file referred to by fildes .

modified 6 Nov 1997 2TSOL-91

getfattrflag (2TSOL) TSOL System Calls Trusted Solaris 2.5

The information label of path or fildes is unchanged. The information label of the calling
process is also unchanged.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS getfattrflag() and mldgetfattrflag() will fail if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path . To override this restriction, the calling process may assert
the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To over-
ride this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path/c .

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag() func-
tion.

setfattrflag() and mldsetfattrflag() will fail and the file mode is unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path . To override this restriction, the calling process may assert

2TSOL-92 modified 6 Nov 1997

Trusted Solaris 2.5 TSOL System Calls getfattrflag (2TSOL)

the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restric-
tion, the calling process may assert the PRIV_FILE_OWNER
privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds { PATH_MAX }, or the
length of a path component exceeds { NAME_MAX } while
{ _POSIX_NO_TRUNC } is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT and is
attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

EACCES The calling process does not own fildes. To override this restric-
tion, the calling process may assert the PRIV_FILE_OWNER
privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor

EIO An I/O error occurred while or writing to the file system.

modified 6 Nov 1997 2TSOL-93

getfattrflag (2TSOL) TSOL System Calls Trusted Solaris 2.5

EINTR A signal was caught during execution of the fsetfattrflag() func-
tion.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT and is
attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

SEE ALSO setfattrflag(1TSOL), getfattrflag(1TSOL)

Trusted Solaris Developer’s Guide

2TSOL-94 modified 6 Nov 1997

Trusted Solaris 2.5 TSOL System Calls getfpriv (2TSOL)

NAME getfpriv, fgetfpriv, setfpriv, fsetfpriv − return or set a privilege set associated with a file.

SYNOPSIS int getfpriv(char ∗path, priv_ftype_t type, priv_set_t ∗priv_set)

int setfpriv(char ∗path, priv_op_t op, priv_ftype_t type, priv_set_t ∗priv_set)

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t ∗priv_set)

int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t ∗priv_set)

DESCRIPTION Set or get privileges of the file that is named by path or referred to by fd. fgetfpriv() and
fsetfpriv() function exactly like getfpriv() and setfpriv() respectively, except that they
require an open reference to a file as their argument.

getfpriv() copies the privilege set indicated by type and associated with the named file
into the address specified by priv_set. Values for type are:

PRIV_FORCED The forced privilege set.

PRIV_ALLOWED The allowed privilege set.

MAC read permission is required for the named file unless the privilege FILE_MAC_READ
is effective.

setfpriv() sets/modifies the privilege set (the target set) indicated by type and associated
with the named file. Modification occurs according to the value of op and the privilege set
specified by priv_set (the specified set). Values for op are:

PRIV_ON Each privilege asserted in the specified set is asserted in the
target set.

PRIV_OFF Each privilege asserted in the specified set is cleared in the
target set.

PRIV_SET The target set is set exactly equal to the specified set.

Values for type are the same as those used for getfpriv().

In all cases, the privilege FILE_SETPRIV must be effective. In addition, only the owner of a
file may change its privilege sets, unless the privilege FILE_OWNER is effective.

The invoking process must have MAC write permission for the named file (unless the
privilege FILE_MAC_WRITE is effective). DAC write access is not required.

It is an error to attempt to assert a forced privilege if the corresponding allowed privilege
is not present. For this reason, it is recommended that the allowed privilege set be
modified first whenever both privilege sets are to be modified.

If the target set is the allowed set, all privileges cleared from the target set are also
automatically cleared from the forced set.

The following macros are provided for manipulating such privilege sets: PRIV_ASSERT (
priv_set, priv_id) asserts privilege priv_id in privilege set priv_set. PRIV_ISASSERT (
priv_set, priv_id) is non-zero if privilege priv_id in privilege set priv_set is asserted, zero
otherwise. PRIV_FILL (priv_set) initializes a privilege set priv_set to the full set.
PRIV_ISFULL (priv_set) is nonzero if the privilege set priv_set is a inverse null set, zero
otherwise. PRIV_EMPTY (priv_set) initializes a privilege set priv_set to the null set.

modified 6 May 1996 2TSOL-95

getfpriv (2TSOL) TSOL System Calls Trusted Solaris 2.5

PRIV_ISEMPTY (priv_set) is nonzero if the privilege set priv_set is a null set, zero other-
wise. PRIV_CLEAR (priv_set, priv_id) clears the privilege priv_id in the privilege set
priv_set. PRIV_ISSUBSET (set_a, set_b) is non-zero if all privileges asserted in privilege set
set_a are also asserted in privilege set set_b (i.e., if set_a is a subset of set_b). PRIV_UNION
(set_a, set_b) stores the union of set_a and set_b in set_b. PRIV_INTERSECT (set_a, set_b)
stores the intersection of set_a and set_b in set_b. PRIV_INVERSE (priv_set) stores the
inverse of priv_set in priv_set. The behavior of these macros is undefined if priv_id is less
than one or greater than PRIV_NUMPRIV.

Normally MAC read permission is required or the privilege FILE_MAC_READ must be
effective for getfpriv() to complete its operation successfully unless the named file is a
pty pseudo-terminal. If the named file is a pseudo-terminal (/dev/ptyp∗ or /dev/ttyp∗)
and the label of the process invoking getfpriv() does not dominate the label of the named
file and the privilege FILE_MAC_READ is not effective then getfpriv() returns success but
sets the privilege fields of priv_set to zero.

The information label of path or fildes is unchanged. The information label of the calling
process is also unchanged.

RETURN VALUES These routines return:

0 on success.

-1 on failure and set errno to indicate the error.

ERRORS These routines fail and the target set is not modified if:

EINVAL an illegal or undefined value is supplied for size or type.

EFAULT priv_set refers to an invalid address.

Additionally, getfpriv() and setfpriv() fail if:

EACCES search permission is denied a component of path. To override this res-
triction, the calling process may assert the PRIV_FILE_DAC_SEARCH
privilege and/or the PRIV_FILE_MAC_SEARCH privilege.

getfpriv() and fgetfpriv() fail if:

EACCES MAC read permission is denied for the named file, and privilege
FILE_MAC_READ is not effective.

ENOENT a component of the specified path does not exist.

ENOTDIR
a component of the specified path prefix is not a directory.

ENAMETOOLONG
the length of the path argument exceeds PATH_MAX, oL a pathname component
is longer than NAME_MAX while POSIX_NO_TRUNC is in effect.

setfpriv() and fsetfpriv() fail and the target set is not modified if:

EACCES MAC write permission is denied for the named file, privilege
FILE_MAC_WRITE is not effective, and the user’s clearance dominates

2TSOL-96 modified 6 May 1996

Trusted Solaris 2.5 TSOL System Calls getfpriv (2TSOL)

the sensitivity label of the file.

EINVAL (1) the named file resides on a file system that does not support
privileges (i.e., a file system other than NFS, TMPFS) or (2) an illegal
or undefined value is supplied for op. Also if privilege
FILE_MAC_WRITE is not effective.

EPERM MAC write permission is denied for the named file, and the user’s
clearance does not dominate the label of the named file, or (2)
FILE_SETPRIV is not effective, or (3) the effective uid does not match
the owner of the named file and privilege FILE_OWNER is not effec-
tive.

EROFS the named file resides on a read-only filesystem.

SEE ALSO getppriv(2TSOL) setppriv(2TSOL) priv_macros(5TSOL)

modified 6 May 1996 2TSOL-97

getfsattr (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getfsattr, fgetfsattr − get filesystem securtity attributes

SYNOPSIS #include <tsol/fsattr.h>

int getfsattr(char ∗path , u_long type , void ∗buf_p, int len)

int fgetfsattr(int fd, u_long type , void ∗buf_p, int len)

DESCRIPTION getfsattr() returns the file-system security attributes of a mounted file system. path is the
pathname of any file within the mounted file system. type is the type of attribute
requested. Values for type are:

FSA_ACLCNT The file system access ACL count.

FSA_ACL The file system access ACL.

FSA_DFACLCNT The file system default ACL count.

FSA_DFACL The file system default ACL.

FSA_APRIV The file system allowed privilege set.

FSA_FPRIV The file system forced privilege set.

FSA_LABEL The file system CMW label.

FSA_AFLAGS The file system attribute flags.

FSA_LBLRNG The file system label range.

FSA_MLDPFX The file system MLD prefix string.

buf_p is a pointer to a buffer to hold the requested attribute, and len is the buffer length.

fgetfsattr() returns the same information, but for an open file referred to by descriptor fd.
type , buf_p, and len are the same as for getfsattr().

The information label of path or fd is unchanged. The information label of the calling pro-
cess is also unchanged.

RETURN VALUES getfsattr() and fgetfsattr() return:

0 on success.

-1 on failure and set errno to indicate the error.

ERRORS getfsattr() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path . To override this restriction, the calling process may assert
the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT buf_p or path points to an invalid address.

EINVAL The requested attributed is not set.

EIO An I/O error occurred while reading from the filesystem.

2TSOL-98 modified 13 May 1997

Trusted Solaris 2.5 TSOL System Calls getfsattr (2TSOL)

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see
sysconf(2V)) while {_POSIX_NO_TRUNC} is in effect (see
pathconf(2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetfsattr() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT buf_p points to an invalid address.

EINVAL fd refers to a socket, not a file; or the requested attribute is not set.

EIO An I/O error occurred while reading from the file system.

modified 13 May 1997 2TSOL-99

getgroups (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getgroups, setgroups − Get or set supplementary group access list IDs

SYNOPSIS #include <unistd.h>

int getgroups(int gidsetsize, gid_t ∗grouplist);

int setgroups(int ngroups, const gid_t ∗grouplist);

DESCRIPTION getgroups() gets the current supplemental group access list of the calling process and
stores the result in the array of group IDs specified by grouplist. This array has gidsetsize
entries and must be large enough to contain the entire list. This list cannot be greater than
NGROUPS_MAX. If gidsetsize equals 0, getgroups returns the number of groups to which
the calling process belongs without modifying the array to which grouplist points.

setgroups() sets the supplementary group access list of the calling process from the array
of group IDs specified by grouplist. The number of entries, specified by ngroups, cannot
be greater than NGROUPS_MAX. The calling process must have PRIV_PROC_SETID in its
set of effective privileges to set new groups. If PRIV_PROC_SETID is not in the effective
privilege set, the operation fails and sets errno to EPERM.

RETURN VALUES Upon successful completion, getgroups returns the number of supplementary group IDs
set for the calling process; setgroups returns the value 0. Upon failure, these functions
return −1 and set errno to indicate the error.

ERRORS getgroups will fail if this condition is true:

EINVAL The value of gidsetsize is nonzero and less than the number of supplementary
group IDs set for the calling process.

setgroups will fail if either of these conditions is true:

EINVAL The value of ngroups is greater than NGROUPS_MAX.

EPERM The calling process does not have the PRIV_PROC_SETID privilege.

Either call will fail if this condition is true:

EFAULT A referenced part of the array to which grouplist points is an illegal address.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

To set new groups, the calling process must have PRIV_PROC_SETID in its set of effective
privileges.

SEE ALSO groups(1), chown(2), getuid(2), setuid(2TSOL), getgrnam(3C), initgroups(3C)

2TSOL-100 modified 12 Jan 1995

Trusted Solaris 2.5 TSOL System Calls getmldadorn (2TSOL)

NAME getmldadorn, fgetmldadorn − get file system multilevel directory adornment

SYNOPSIS #include <tsol/mld.h>

int getmldadorn(char ∗path_name, char adorn_buf[MLD_ADORN_MAX]

int fgetmldadorn(int fd, char adorn_buf[MLD_ADORN_MAX]

DESCRIPTION getmldadorn() returns the MLD adornment of the file system on which path_name
resides. path_name is the path name of any file within the mounted filesystem. adorn_buf
is a pointer to a buffer of at least MLD_ADORN_MAX bytes in which the null-terminated
MLD adornment is returned.

fgetmldadorn() returns the same information about an open file referred to by descriptor
fd.

The information label of path_name or fd is unchanged. The information label of the cal-
ling process is also unchanged.

RETURN VALUES getmldadorn() and fgetmldadorn() return:

0 On success.

−1 On failure and set errno to indicate the error.

ERRORS getmldadorn() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path_name . To override this restriction, the calling process may assert
the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT adorn_buf or path_name points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path_name .

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V))
while {_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT The file referred to by path_name does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

fgetmldadorn() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT adorn_buf points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

modified 6 May 1996 2TSOL-101

getmldadorn (2TSOL) TSOL System Calls Trusted Solaris 2.5

WARNINGS If the filesystem of the fd is not a CFS filesystem, no error is returned, and a zero-length
string is returned in the adorn_buf buffer.

SEE ALSO fgetsldname(2TSOL), getsldname(2TSOL)

2TSOL-102 modified 6 May 1996

Trusted Solaris 2.5 TSOL System Calls getmsgqcmwlabel (2TSOL)

NAME getmsgqcmwlabel, getshmcmwlabel, getsemcmwlabel - Get the CMW labels associated
with System V IPC structures

SYNOPSIS #include <sys/tsol/ipcl.h>

cc [flag ...] file ... −ltsol [library ...]

int getmsgqcmwlabel(int msgqid, bclabel_t ∗clabel)

int getshmcmwlabel(int shmid, bclabel_t ∗clabel)

int getsemcmwlabel(int semid, bclabel_t ∗clabel)

DESCRIPTION These functions return the value of the CMW labels associated with message queues,
shared memory, and semaphore structures.

getmsgqcmwlabel() returns the CMW label for the message queue identified by msgqid
into the label buffer to which clabel points. The information label portion of the CMW label
is undefined for message queues; therefore the sensitivity label portion may have to be
extracted using getcsl(3TSOL) in order to be useful. Information labels are stored on indi-
vidual messages and may be returned with msgrcvl(3TSOL).

getshmcmwlabel() returns the CMW label for the shared-memory segment identified by
shmid into the label buffer to which clabel points.

getsemcmwlabel() returns the CMW label for the semaphore array identified by semid
into the label buffer to which clabel points.

The calling process must have mandatory read access to the IPC or must have asserted
the PRIV_IPC_MAC_READ privilege, and must have discretionary read access to the data
structure or must have the PRIV_IPC_DAC_READ privilege in its set of effective
privileges.

DESCRIPTION Upon success, these functions return 0. Upon failure, they return −1 and set errno to
indicate the error.

ERRORS These functions will fail if any of these conditions is true:

EACCES Read access is denied to the calling process, which does not have one or both
of these privileges in its set of effective privileges: PRIV_IPC_DAC_READ and
PRIV_IPC_MAC_READ.

EINVAL msgqid,semid, or shmid is not a valid IPC object identifier.

EFAULT clabel points to an illegal address.

SEE ALSO msgget(2TSOL), semget(2TSOL), shmget(2TSOL), msgrcvl(2TSOL)

modified 26 Nov 1996 2TSOL-103

getpattr (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getpattr, setpattr − Get/set process attribute flags

SYNOPSIS #include <tsol/pattr.h>

int getpattr(pattr_type_t type , pattr_flag_t ∗value);

int setpattr(pattr_type_t type , pattr_flag_t value);

DESCRIPTION Process attribute flags are a set of flags that describe additional attributes that the process
has. Each flag in the set is separately addressable although all flags share the getpattr
and the setpattr system call interfaces. Likewise, each flag in the set has its own protec-
tion policy although all flags use the same protection mechanism. In the set are seven
types of flags, specified in <tsol/pattr.h>, and addressed by the type argument. These are
the values for type:

PAF_TRUSTED_PATH Trusted path flag

PAF_PRIV_DBG Privilege debugging flag

PAF_TOKMAPPER Network token mapping process flag

PAF_LABEL_VIEW Label view flags

PAF_LABEL_XLATE Label translation flags

PAF_DISKLESS_BOOT Part of diskless boot flag

PAF_SELAGNT Part of selection agent flag

PAF_PRINT_SYSTEM Part of trusted printing system flag

A description of each type of process attribute flag follows:

Trusted path flag This one-bit flag marks a trusted path process. This flag can be viewed and cleared, but
cannot be set. In other words, the call to setpattr(PAF_TRUSTED_PATH, 1) will always
fail. A process inherits the trusted path flag from its parent process. The init process
receives the trusted path flag from the system. A user session creator, such as login,
clears this flag before starting a user session.

Privilege debugging
flag

This one-bit flag indicates that the process is in privilege-debugging mode—a process-
operation mode in which privilege requirement is logged but not enforced. This flag can
be viewed or cleared, but cannot be set except by a trusted path process.

Network token
mapping process flag

This one-bit flag, when set, identifies the process as the network token mapping process.
The network token mapping process is exempt from network token mapping. This flag
can be viewed and cleared, but cannot be set except by a trusted path process.

Label view flags These two-bit flags support per-process label translation. These flags are viewable and
modifiable without restriction.

2TSOL-104 modified 16 May 1997

Trusted Solaris 2.5 TSOL System Calls getpattr (2TSOL)

Label translation
flags

These fifteen-bit flags support the GFI FLAGS= option in the label_encodings file. Only a
trusted path process can view or modify these flags.

Part of diskless boot
flag

This one-bit flag identifies the process as taking part in diskless booting. This flag can be
viewed and cleared, but cannot be set except by a trusted path process.

Part of selection
agent flag

This one-bit flag identifies the process as part of the “cut and paste” selection agent. This
flag can be viewed and cleared, but cannot be set except by a trusted path process.

Part of trusted
printing system flag

This one-bit flag identifies the process as a member of the Trusted Printing System. This
flag can be viewed and cleared, but cannot be set except by a trusted path process.

In short, these flag-related protection policies apply. Any process may view or clear any
process attribute flag except the label translation flags; viewing or clearing the label trans-
lation flags requires that a process have the trusted path attribute. Any process may set
label view flags; setting other flags requires that the setting process have the trusted path
attribute.

getpattr() copies the type process flag of the calling process into the pattr_flag_t variable
addressed by value. Only the lower n bits are copied, where n is the width of the flag. The
higher bits are cleared.

setpattr() copies the lower n bits of value to the type process flag of the calling process,
where n is the width of the selected process flag.

RETURN VALUES Upon successful completion, the process returns a value of 0. Otherwise, the process
returns a value of −1 and sets errno to indicate the error.

ERRORS getpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to view the type
flag.

setpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to modify the type
flag.

modified 16 May 1997 2TSOL-105

getpattr (2TSOL) TSOL System Calls Trusted Solaris 2.5

SEE ALSO pattr(1TSOL)

2TSOL-106 modified 16 May 1997

Trusted Solaris 2.5 TSOL System Calls getpid (2TSOL)

NAME getpid, getpgrp, getppid, getpgid − get process, process group, and parent process IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

MT-LEVEL Async-Signal-Safe

DESCRIPTION getpid() returns the process ID of the calling process.

getpgrp() returns the process group ID of the calling process.

getppid() returns the parent process ID of the calling process.

getpgid() returns the process group ID of the process whose process ID is equal to pid, or
the process group ID of the calling process, if pid is equal to zero. The calling process
must have MAC read access to the target process. The calling process’ real or effective
user ID must match the real or saved user ID of the target process.

RETURN VALUES Upon successful completion, all return the process group ID. On failure, getpgid()
returns a value of (pid_t) −1 and sets errno to indicate the error.

ERRORS getpgid() will fail if one or more of the following is true:

EPERM The process whose process ID is equal to pid is not in the same session as
the calling process, and the implementation does not allow access to the
process group ID of that process from the calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling pro-
cess does not have MAC read access to the target process, and does not
have PRIV_PROC_MAC_READ overriding privilege. Or, the calling
process’ real or effective user ID does not match the real or saved user
ID of the target process, and does not have PRIV_PROC_OWNER over-
riding privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

MAC and DAC policies are added to the getpgid() command. To avoid covert channel
issues, Trusted Solaris does not distinguish between failures due to policy and those due
to nonexistence of the target process.

SEE ALSO intro(2TSOL), exec(2TSOL), fork(2TSOL), getsid(2TSOL), setpgid(2), setpgrp(2),
signal(3C)

modified 23 April 1996 2TSOL-107

getppriv (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getppriv, setppriv − Return or assign a privilege set associated with the invoking process

SYNOPSIS #include <tsol/priv.h>

int getppriv(priv_ptype_t type, priv_set_t∗ pset);

int setppriv(priv_op_t op, priv_ptype_t type, priv_set_t∗ pset);

DESCRIPTION getppriv() copies the type privilege set of the invoking process into the pset address. type
may have one of four values, specified in tsol/priv.h:

PRIV_EFFECTIVE The effective privilege set

PRIV_INHERITABLE The inheritable privilege set

PRIV_PERMITTED The permitted privilege set

PRIV_SAVED The saved privilege set

setppriv() assigns or modifies the type privilege set (the target set) of the invoking pro-
cess. Modification occurs according to the values of op and of the pset privilege set (the
source set). op values are specified in tsol/priv.h:

PRIV_ON Each privilege asserted in the source set is asserted in the target set.

PRIV_OFF Each privilege asserted in the source set is cleared in the target set.

PRIV_SET The target set is made exactly equal to the source set.

Values for type are the same as those for type in getppriv(), exclusive of PRIV_SAVED.

If the target set is the permitted set, all privileges cleared from the target set are also
cleared from the effective set. Any attempted assignment of a privilege cleared in the per-
mitted set is always an error. Attempting to clear a privilege that is already cleared is not
an error.

RETURN VALUES getppriv() and setppriv() return 0 if successful. If not, they return −1 and set errno to
indicate the error.

ERRORS getppriv() fails if either of these conditions prevails:

EINVAL An illegal or undefined value was supplied for type.

EFAULT pset refers to an invalid address.

setppriv() fails and the target set is not modified if any of these conditions prevails:

EINVAL An illegal or undefined value is supplied for type or op.

EFAULT set refers to an invalid address.

EINVAL In a process privilege set, an attempt is made to assert a privilege that is cleared
in the permitted set of the process.

2TSOL-108 modified 08 Mar 1995

Trusted Solaris 2.5 TSOL System Calls getppriv (2TSOL)

SEE ALSO getfpriv(2TSOL)C , setfpriv(2TSOL)C , priv_to_str(3TSOL)C , priv_set_to_str(3TSOL)C ,
str_to_priv(3TSOL)C , str_to_priv_set(3TSOL)C , priv_macros(5TSOL)

modified 08 Mar 1995 2TSOL-109

getrlimit (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME getrlimit, setrlimit − control maximum system resource consumption

SYNOPSIS #include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit ∗rlp);

int setrlimit(int resource, const struct rlimit ∗rlp);

DESCRIPTION Limits on the consumption of a variety of system resources by a process and each process
it creates may be obtained with getrlimit() and set with setrlimit().

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated
upon as well as a resource limit. A resource limit is a pair of values: one specifying the
current (soft) limit, the other a maximum (hard) limit. Soft limits may be changed by a
process to any value that is less than or equal to the hard limit. A process may (irreversi-
bly) lower its hard limit to any value that is greater than or equal to the soft limit. Only a
process that has the PRIV_SYS_CONFIG privilege can raise a hard limit. Both hard and
soft limits can be changed in a single call to setrlimit() subject to the constraints
described above. Limits may have an “infinite” value of RLIM_INFINITY. rlp is a pointer
to struct rlimit that includes the following members:

rlim_t rlim_cur; /∗ current (soft) limit ∗/
rlim_t rlim_max; /∗ hard limit ∗/

rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t can be cast
without loss of information.

The possible resources, their descriptions, and the actions taken when the current limit is
exceeded are summarized in the table below:

RLIMIT_CORE The maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file.

The writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process.
This is a soft limit only.

SIGXCPU is sent to the process. If the process is holding or ignor-
ing SIGXCPU, the behavior is scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes.

brk(2) will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a pro-
cess. A limit of 0 will prevent the creation of a file.

SIGXFSZ is sent to the process. If the process is holding or ignor-
ing SIGXFSZ, continued attempts to increase the size of a file
beyond the limit will fail with errno set to EFBIG.

2TSOL-110 modified 5 Jun 1996

Trusted Solaris 2.5 TSOL System Calls getrlimit (2TSOL)

RLIMIT_NOFILE One more than the maximum value that the system may assign to
a newly created descriptor. This limit constrains the number of file
descriptors that a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system will
not automatically grow the stack beyond this limit.

SIGSEGV is sent to the process. If the process is holding or ignor-
ing SIGSEGV, or is catching SIGSEGV and has not made arrange-
ments to use an alternate stack (see sigaltstack(2)), the disposition
of SIGSEGV will be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space in bytes.

brk(2) and mmap(2) functions will fail with errno set to ENOMEM.
In addition, the automatic stack growth will fail with the effects
outlined above.

Because limit information is stored in the per-process information, the shell builtin ulimit
command must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementation
defined parameters:

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX
RLIMIT_NOFILE OPEN_MAX

RETURN VALUES Upon successful completion, the function getrlimit() returns a value of 0; otherwise, it
returns a value of −1 and sets errno to indicate an error.

ERRORS Under the following conditions, the functions getrlimit() and setrlimit() fail and set
errno to:

EFAULT rlp points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

EPERM The limit specified to setrlimit() would have raised the maximum limit
value, and the calling process does not have the PRIV_SYS_CONFIG
privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_CONFIG privilege in order to increase a
hard resoure limit.

SEE ALSO brk(2), open(2TSOL), sigaltstack(2), malloc(3C), signal(3C), signal(5)

modified 5 Jun 1996 2TSOL-111

getrlimit (2TSOL) TSOL System Calls Trusted Solaris 2.5

NOTES RLIMIT_STACK:
Within a process setrlimit(), will increase the limit on the size of your stack, but will
not move current memory segments to allow for that growth. Therefore, to guaran-
tee that the process stack can grow to the limit, you must alter the limit prior to the
execution of the process in which the new stack size is to be used.

2TSOL-112 modified 5 Jun 1996

Trusted Solaris 2.5 TSOL System Calls getsid (2TSOL)

NAME getsid, setsid − get or set session ID

SYNOPSIS #include <sys/types.h>

pid_t getsid(pid_t pid);

#include <sys/types.h>
#include <unistd.h>

pid_t setsid(void);

MT-LEVEL setsid() is Async-Signal-Safe

DESCRIPTION The function getsid() returns the session ID of the process whose process ID is equal to
pid. If pid is equal to (pid_t)0, getsid() returns the session ID of the calling process. The
calling process must have MAC read access to the target process. The calling process’
real or effective user ID must match the real or saved user ID of the target process.

If the calling process is not already a process group leader, setsid() sets the process
group ID and session ID of the calling process to the process ID of the calling process,
and releases the process’s controlling terminal.

See intro(2) for more information on process groups and controlling terminals.

RETURN VALUES Upon successful completion, getsid() and setsid() return the session ID of the specified
process. Otherwise, getsid() returns a value of (pid_t)−1 and sets errno to indicate an
error, and setsid() returns a value of −1 and sets errno to indicate the error.

ERRORS Under the following conditions, getsid() fails and sets errno to:

EPERM The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the session
ID of that process from the calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling process
does not have MAC read access to the target process, and does not have
PRIV_PROC_MAC_READ overriding privilege. Or, the calling process’ real
or effective user ID does not match the real or saved user ID of the target pro-
cess, and does not have PRIV_PROC_OWNER overriding privilege.

setsid() will fail and return an error if the following is true:

EPERM The calling process is already a process group leader, or there are processes
other than the calling process whose process group ID is equal to the process
ID of the calling process.

modified 23 April 1996 2TSOL-113

getsid (2TSOL) TSOL System Calls Trusted Solaris 2.5

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

MAC and DAC policies are added to the getsid() command.

SEE ALSO intro(2TSOL), exec(2TSOL), fork(2TSOL), getpid(2TSOL), setpgid(2TSOL)

WARNINGS A call to setsid() by a process that is a process group leader will fail. A process can
become a process group leader by being the last member of a pipeline started by a job
control shell. Thus, a process that expects to be part of a pipeline, and that calls setsid(),
should always first fork; the parent should exit and the child should call setsid(). This
will ensure that the calling process will work reliably when started by both job control
shells and non-job control shells.

2TSOL-114 modified 23 April 1996

Trusted Solaris 2.5 TSOL System Calls getsldname (2TSOL)

NAME getsldname, fgetsldname − Get file system single-level directory name

SYNOPSIS #include <tsol/label.h>

int getsldname(char ∗path_name , bslabel_t ∗slabel_p , char ∗name_buf, const int length)

int fgetsldname(const int fd, const bslabel_t ∗slabel_p, char ∗name_buf , const int length)

AVAILABILITY SUNWtsolu

DESCRIPTION getsldname() returns the SLD name associated with the sensitivity label to which slabel_p
refers within the context of the file system on which path_name resides. path_name is the
path name of any multilevel directory within the mounted filesystem. name_buf is a
pointer to a buffer of at least SLD_NAME_MAX bytes.

fgetsldname() returns the SLD name associated with the sensitivity label to which
slabel_p refers if the MLD to which descriptor fd refers was opened by the directory name
(not by the fully adorned, multilevel directory name.) If the MLD to which descriptor fd
refers was opened using the fully adorned, multilevel directory name, fgetsldname
returns the MLD and the SLD name associated with the sensitivity label to which slabel_p
refers.

If it does not exist, the single-level directory that corresponds to slabel_p is created with
the attributes of the parent multilevel directory, the specified sensitivity label, and an
ADMIN_LOW information label. If the sensitivity label of the calling process is equal to
slabel_p, no additional privileges are needed. If the sensitivity label of the calling process
is strictly dominated by slabel_p, the calling process may assert the
PRIV_FILE_UPGRADE_SL privilege to create the directory. Otherwise, the calling process
may assert the PRIV_FILE_DOWNGRADE_SL privilege to create the directory.

RETURN VALUES Upon success, these functions return 0. Upon failure, they return −1 and set errno to
indicate the error.

ERRORS getsldname fails if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix of
path_name. To override this restriction, the calling process may
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH
and PRIV_FILE_MAC_SEARCH.

The single-level directory specified does not exist, the system is
configured to require write access to create a single-level directory,
and the calling process does not have discretionary write access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_DAC_WRITE privilege.

EFAULT name_buf, path_name , or slabel_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file

modified 17 Sep 1993 2TSOL-115

getsldname (2TSOL) TSOL System Calls Trusted Solaris 2.5

system

ELOOP Too many symbolic links were encountered in translating
path_name .

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} [see
sysconf(2V)] while {_POSIX_NO_TRUNC} is in effect. [See
pathconf(2V).]

ENOENT The file to which path_name refers does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_DOWNGRADE privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the cal-
ling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

fgetsldname fails if any of these conditions is true:

EBADF fd is not a valid open file descriptor.

EFAULT name_buf or slabel_p points to an invalid address.

EINVAL fd does not refer to a multilevel directory.

EIO An I/O error occurred while reading from the file system.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_UPGRADE_SL privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the cal-
ling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

WARNINGS If the file system that contains path_name or the object referred to by fd does not support
MLDs, no error is returned and the first {SLD_NAME_MAX} bytes in the name_buf are
cleared.

SEE ALSO fgetmldadorn(2TSOL), getmldadorn(2TSOL)

2TSOL-116 modified 17 Sep 1993

Trusted Solaris 2.5 TSOL System Calls kill (2TSOL)

NAME kill − Send a signal to a process or a group of processes

SYNOPSIS #include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

MT-LEVEL Async-Signal-Safe

DESCRIPTION kill() sends a signal to a process or a group of processes specified by pid. The signal that
is to be sent, specified by sig, is either one from the list given in signal [see signal(5)], or
0. If sig is 0 (the null signal), error checking is performed but no signal is actually sent.
This method can be used to check the validity of pid.

The sending process must have MAC write access to the receiving processes. The real or
effective user ID of the sending process must match the real or saved [from exec(2)] user
ID of the receiving process unless the sending process has the PRIV_PROC_OWNER effec-
tive privilege, or sig is SIGCONT and the sending process has the same session ID as the
receiving process.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to pid.

If pid is negative but not (pid_t)−−1, sig will be sent to all processes whose process group
ID is equal to the absolute value of pid and for which the process has permission to send a
signal.

If pid is 0, sig will be sent to all processes excluding special processes [see intro(2)] whose
process group ID is equal to the process group ID of the sender.

If pid is (pid_t)−−1 and the sender does not have PRIV_PROC_OWNER in its effective
privilege set, sig will be sent to all processes excluding special processes whose real user
ID is equal to the effective user ID of the sender.

If pid is (pid_t)−−1 and the sender does not have PRIV_PROC_OWNER in its effective
privilege set, sig will be sent to all processes excluding special processes.

RETURN VALUES Upon successful completion, kill returns a value of 0. Upon failure, kill returns a value
of −1 is returned and sets errno to indicate the error.

ERRORS kill will fail and no signal will be sent if any of these conditions is true:

EINVAL sig is not a valid signal number.

EPERM The calling process failed in MAC write access to the receiving process and
does not have PRIV_PROC_MAC_WRITE overriding privilege.

sig is SIGKILL and pid is (pid_t)1. (That is, the calling process does not have
permission to send the signal to any of the processes specified by pid).

The effective user of the calling process does not match the real or saved user
and the sending process does not have PRIV_PROC_OWNER privilege, and the
calling process is not sending SIGCONT to a process that shares the same ses-
sion ID.

modified 27 Feb 1996 2TSOL-117

kill (2TSOL) TSOL System Calls Trusted Solaris 2.5

ESRCH No process or process group can be found corresponding to that specified by
pid.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Process MAC write policy and the process owner policy is checked.

SEE ALSO kill(1), intro(2TSOL), exec(2TSOL), getpid(2TSOL), getsid(2TSOL), setpgrp(2), sigac-
tion(2), sigsend(2TSOL), signal(3C), signal(5)

NOTES sigsend(2) is a more versatile way to send signals to processes.

2TSOL-118 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls link (2TSOL)

NAME link − Link to a file

SYNOPSIS #include <unistd.h>

int link(const char ∗existing, const char ∗new);

MT-LEVEL Async-Signal-Safe

DESCRIPTION link() creates a new link (directory entry) for the existing file and increments its link
count by one. existing points to an existing file. new points to a new directory entry to be
created.

For creation of hard links, both files must be on the same file system. Both the old and the
new link share equal access and rights to the underlying object. A calling process that
has asserted the PRIV_SYS_CONFIG privilege may make multiple links to a directory.

Upon successful completion, link marks for update the st_ctime field of the file. Also, the
st_ctime and st_mtime fields of the directory that contains the new entry are marked for
update.

RETURN VALUES Upon successful completion, link returns 0. Upon failure, link returns −1 and sets errno
to indicate the error.

ERRORS link() will fail and no link will be created if any of these conditions is true:

EACCES A component of either path prefix denies search permission. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_MAC_SEARCH and
PRIV_FILE_DAC_SEARCH.

The requested link requires writing in a directory with a mode that
denies write permission. To override this restriction, the calling
process may assert one or both of these privileges:
PRIV_FILE_MAC_WRITE and PRIV_FILE_DAC_WRITE.

The calling process needs both mandatory read and write access to
existing and does not have that combination. To override this res-
triction, the calling process may assert one or both of these
privileges: PRIV_FILE_MAC_READ and PRIV_FILE_MAC_WRITE.

EDQUOT The directory in which the entry for the new link is being placed
cannot be extended because the user’s quota of disk blocks on that
file system has been exhausted.

EEXIST The link named by new exists.

EFAULT existing or new points to an illegal address.

EINTR A signal was caught during the link function.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to a file would be exceeded.

modified 01 May 1996 2TSOL-119

link (2TSOL) TSOL System Calls Trusted Solaris 2.5

EMULTIHOP Components of existing or new require hopping to multiple remote
machines and the file system type does not allow it.

ENAMETOOLONG The length of the existing or new argument exceeds {PATH_MAX},
or the length of a existing or new component exceeds {NAME_MAX}
while {_POSIX_NO_TRUNC} is in effect.

ENOENT existing or new is a null path name.

A component of either path prefix does not exist.

The file named by existing does not exist.

ENOLINK existing or new points to a remote machine but the link to that
machine is no longer active.

ENOSPC The directory that would contain the link cannot be extended.

ENOTDIR A component of either path prefix is not a directory.

EPERM The file named by existing is a directory and the calling process has
not asserted the PRIV_SYS_CONFIG privilege.

EROFS The requested link requires writing in a directory on a read-only
file system.

EXDEV The link named by new and the file named by existing are on dif-
ferent logical devices (file systems).

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

If existing is a directory, the calling process must assert the PRIV_SYS_CONFIG privilege.

SEE ALSO symlink(2TSOL), unlink(2TSOL)

2TSOL-120 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls llseek (2TSOL)

NAME llseek − Move the extended read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

offset_t llseek(int fildes, offset_t offset , int whence);

DESCRIPTION llseek() sets the 64-bit extended file pointer associated with the open file descriptor
specified by fildes as follows:

· If whence is SEEK_SET, the pointer is set to offset bytes.

· If whence is SEEK_CUR, the pointer is set to its current location plus offset .

· If whence is SEEK_END, the pointer is set to the size of the file plus offset .

On success, llseek returns the resulting pointer location, measured in bytes from the
beginning of the file.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened. If
fildes is open for writing, a check is made that the calling process has mandatory read
access in case fildes is open for a write-up. The calling process may assert the
PRIV_FILE_MAC_READ prvilege to bypass this check. If mandatory read access is not
granted, this system call succeeds; but offset data is not returned.

The information labels of fildes and of the calling process are unchanged.

RETURN VALUES Upon successful completion, llseek returns the resulting file pointer. Remote file descrip-
tors are the only ones that allow negative file pointers. Upon failure, llseek returns −1
and sets errno to indicate the error.

ERRORS llseek fails and the file pointer remains unchanged if any of these conditions is true:

EBADF fildes is not an open file descriptor.

EINVAL whence is not SEEK_SET, SEEK_CUR, nor SEEK_END.

EINVAL offset is not a valid offset for this file-system type.

EINVAL fildes is not a remote file descriptor, and the resulting file pointer would be
negative.

ESPIPE fildes is associated with a pipe or FIFO.

Some devices are incapable of seeking. The value of the file pointer associated with such a
device is undefined.

LIMITATIONS Although each file has a 64-bit file pointer associated with it, existing file-system types do
not support the full range of 64-bit offsets. In particular, nondevice files remain limited to
offsets of less than two gigabytes. Device drivers may support offsets of up to 1024 giga-
bytes for device special files.

modified 01 May 1996 2TSOL-121

llseek (2TSOL) TSOL System Calls Trusted Solaris 2.5

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened. The
calling process may assert the PRIV_FILE_MAC_READ prvilege to perform a write-up.

The information labels of fildes and of the calling process are unchanged.

SEE ALSO creat(2TSOL), dup(2), fcntl(2TSOL), lseek(2TSOL), open(2TSOL)

2TSOL-122 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls lseek (2TSOL)

NAME lseek − Move the read/write file pointer

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

off_t lseek(int fildes, off_t offset , int whence);

MT-LEVEL Async-Signal-Safe

DESCRIPTION lseek() sets the file pointer associated with the open file descriptor specified by fildes as
follows:

· If whence is SEEK_SET, the pointer is set to offset bytes.

· If whence is SEEK_CUR, the pointer is set to its current location plus offset .

· If whence is SEEK_END, the pointer is set to the size of the file plus offset .

On success, lseek returns the resulting pointer location measured in bytes from the
beginning of the file. Note that if fildes is a remote file descriptor and offset is negative,
lseek returns the file pointer even if it is negative.

lseek allows the file pointer to be set beyond the existing data in the file. If data is later
written at this point, subsequent reads in the gap between the previous end of data and
the newly written data will return bytes of value 0 until data is written into the gap.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened. If
fildes is open for writing, a check is made that the calling process has mandatory read
access in case fildes is open for a write-up. The calling process may assert the
PRIV_FILE_MAC_READ privilege to bypass this check. If mandatory read access is not
granted, this system call succeeds; but offset data is not returned.

The information labels of fildes and of the calling process are unchanged.

RETURN VALUES Upon successful completion, lseek returns the resulting file pointer. Remote file descrip-
tors are the only ones that allow negative file pointers. Upon failure, lseek returns −1 and
sets errno to indicate the error.

ERRORS lseek() fails and the file pointer remains unchanged if any of these conditions is true:

EBADF fildes is not an open file descriptor.

EINVAL whence is not SEEK_SET, SEEK_CUR, nor SEEK_END.

EINVAL fildes is not a remote file descriptor, and the resulting file pointer would be
negative.

ESPIPE fildes is associated with a pipe or FIFO.

Some devices are incapable of seeking. The value of the file pointer associated with such a
device is undefined.

modified 01 May 1996 2TSOL-123

lseek (2TSOL) TSOL System Calls Trusted Solaris 2.5

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened. The
calling process may assert the PRIV_FILE_MAC_READ privilege to perform a write-up.

The information labels of fildes and of the calling process are unchanged.

SEE ALSO creat(2TSOL), dup(2), fcntl(2TSOL), open(2TSOL), read(2TSOL), write(2TSOL)

NOTES In multithreaded programs, using lseek() in conjunction with a read() or write() on a file
descriptor shared among more than one thread is not an atomic operation. To ensure
atomicity, use pread() or pwrite().

2TSOL-124 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls mkdir (2TSOL)

NAME mkdir − Make a directory

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char ∗path , mode_t mode);

MT-LEVEL Async-Signal-Safe

DESCRIPTION mkdir() creates a new directory with the path name to which path points. The mode of
the new directory is initialized from mode . [See chmod(2TSOL) for values of mode.] The
protection part of the mode argument is modified by the file-creation mask of the process.
[See umask(2).]

The directory’s owner ID is set to effective user ID of the process. The directory’s group ID
is set to effective group ID of the process; or if the S_ISGID bit is set in the parent direc-
tory, then the group ID of the directory is inherited from the parent. The S_ISGID bit of
the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty except for entries for itself (.) and its parent direc-
tory (..).

Upon successful completion, mkdir marks for update the st_atime, st_ctime, and
st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the directory
that contains the new entry are marked for update. This system call will not create a
directory in a multilevel directory. Single-level directories are automatically created as
needed during path-name lookup and the getsldname(2TSOL) system call.

Trusted Solaris distinguishes multilevel directories from regular directories by their
names. A multilevel directory has the adornment MLD; a single-level directory has the
adornment SLD and a number. Use the mldpwd command within a multilevel directory
to see the adorned names of the multilevel directory and the single-level directories. For
example, executing the mldpwd command within the user_name home directory shows
this output:

/export/home/.MLD.user_name/.SLD.2

Use the mldrealpath command to see the adorned name for a file or directory within a
multilevel directory. For example, mldrealpath file.c shows this output:

/export/home/.MLD.user_name/.SLD.2/file.c

The new directory is created with its sensitivity label set to the sensitivity label of the cal-
ling process.

If the new directory’s containing directory has a default access control list (ACL), the
default and access ACLs of the new directory are set to the default ACL of the containing
directory.

modified 01 May 1996 2TSOL-125

mkdir (2TSOL) TSOL System Calls Trusted Solaris 2.5

The information label of the new directory is set to ADMIN_LOW.

RETURN VALUES Upon successful completion, mkdir returns 0. Upon failure, mkdir returns −1 and sets
errno to indicate the error.

ERRORS mkdir() fails and creates no directory if any of these conditions is true:

EACCES Either a component of the path prefix denies search permission or
write permission is denied on the parent directory of the directory
to be created. To override these restrictions, the calling process
may assert one or more of these privileges:
PRIV_FILE_DAC_SEARCH, PRIV_FILE_MAC_SEARCH,
PRIV_FILE_DAC_WRITE, and PRIV_FILE_MAC_WRITE.

EINVAL An attempt was made to create a directory at a sensitivity label
outside the range of the file system.

EDQUOT The directory in which the new file entry is being placed cannot be
extended because the user’s quota of disk blocks on that file sys-
tem has been exhausted.

The new directory cannot be created because the user’s quota of
disk blocks on that file system has been exhausted.

The user’s quota of inodes on the file system in which the file is
being created has been exhausted.

EEXIST The named file already exists.

EFAULT path points to an illegal address.

EIO An I/O error has occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to the parent directory would be
exceeded.

EMULTIHOP Components of path require hopping to multiple remote machines,
and the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of the path prefix does not exist or is a null path
name.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOSPC No free space is available on the device containing the directory.

ENOTDIR A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

2TSOL-126 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls mkdir (2TSOL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

SEE ALSO chmod(2TSOL), mknod(2TSOL), umask(2), stat(5)

modified 01 May 1996 2TSOL-127

mknod (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME mknod − Make a directory or a special or an ordinary file

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int mknod(const char ∗path , mode_t mode , dev_t dev);

DESCRIPTION mknod() creates a new file with the path name to which path points. The file type and
permissions of the new file are initialized from mode . This system call will not create an
object in a multilevel directory. Single-level directories are automatically created during
path-name lookup and getsldname(2TSOL).

The new object is created with its sensitivity label set to the sensitivity label of the calling
process. If the containing directory has a default access control list (ACL), the ACL is
copied to the new object as its access ACL.

The information label of the final component of path is set to ADMIN_LOW.

The file type is specified in mode by the S_IFMT bits, which must be set to one of these
values:

S_IFIFO FIFO special
S_IFCHR character special
S_IFDIR directory
S_IFBLK block special
S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be con-
structed by an OR of these values:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1.

Enable mandatory file/record locking if # is 6, 4, 2, or 0.
S_ISVTX 01000 Save text image after execution.
S_IRWXU 00700 Read, write, execute by owner
S_IRUSR 00400 Read by owner
S_IWUSR 00200 Write by owner
S_IXUSR 00100 Execute (search if a directory) by owner
S_IRWXG 00070 Read, write, execute by group
S_IRGRP 00040 Read by group
S_IWGRP 00020 Write by group
S_IXGRP 00010 Execute by group
S_IRWXO 00007 Read, write, execute (search) by others
S_IROTH 00004 Read by others
S_IWOTH 00002 Write by others
S_IXOTH 00001 Execute by others

The owner ID of the file is set to the effective user ID of the process. The group ID of the
file is set to the effective group ID of the process. However, if the S_ISGID bit is set in the
parent directory, then the group ID of the file is inherited from the parent. If the group ID

2TSOL-128 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls mknod (2TSOL)

of the new file does not match the effective group ID or one of the supplementary group
IDs, the S_ISGID bit is cleared. To override this restriction,the calling process may assert
the PRIV_FILE_SETID privilege.

If the file is not a directory, mode bit 01000 (save text image on execution) is cleared. The
calling process may assert the PRIV_SYS_CONFIG privilege to override this restriction.

The access permission bits of mode are modified by the file-mode creation mask of the
process: all bits set in the file-mode creation mask of the process are cleared. [See
umask(2).] If mode indicates a block or character special file, dev is a configuration-
dependent specification of a character or block I/O device. If mode does not indicate a
block special or character special device, dev is ignored. [See makedev(3C).]

mknod may be invoked only by a privileged user for file types other than FIFO special.

If path is a symbolic link, it is not followed.

RETURN VALUES Upon successful completion, mknod returns 0. Upon failure, mknod returns −1 and sets
errno to indicate the error.

ERRORS mknod() fails and creates no new file if any of these conditions is true:

EACCESS The calling process does not have search access to all directories in
the object’s path. To override this restriction, the calling process
may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and PRIV_FILE_MAC_SEARCH.

The calling process does not have write access to the object’s con-
taining directory. To override this restriction, the calling process
may assert one or both of these privileges: PRIV_FILE_DAC_WRITE
and PRIV_FILE_MAC_WRITE.

EDQUOT The directory in which the new file entry is being placed cannot be
extended because the user’s quota of disk blocks on that file sys-
tem has been exhausted.

The user’s quota of inodes on the file system in which the file is
being created has been exhausted.

EEXIST The named file exists.

EFAULT path points to an illegal address.

EINTR A signal was caught during the mknod function.

EINVAL dev is invalid.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines,
and the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of the path prefix does not exist or is a null path

modified 01 May 1996 2TSOL-129

mknod (2TSOL) TSOL System Calls Trusted Solaris 2.5

name.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOSPC No space is available.

ENOTDIR A component of the path prefix is not a directory.

EPERM The value in mode is not a FIFO and the calling process has not
asserted the PRIV_SYS_DEVICES privilege.

EROFS The directory in which the file is to be created is located on a read-
only file system.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The new object is created with its sensitivity label set to the sensitivity label of the calling
process. If the containing directory has a default access control list (ACL), the ACL is
copied to the new object as its access ACL.

SEE ALSO chmod(2TSOL), exec(2TSOL), mkdir(2TSOL), umask(2), makedev(3C), mkfifo(3C),
stat(5)

NOTES Normally, applications should use the mkdir(2) routine to make a directory because
mknod may not establish directory entries for the directory itself (.) and its parent direc-
tory) (..), and special privileges are not required. Similarly, mkfifo(3C) should be used in
preference to mknod in order to create FIFOs.

2TSOL-130 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls mount (2TSOL)

NAME mount − Mount a file system

SYNOPSIS #include <sys/types.h>
#include <sys/mount.h>

int mount(const char ∗spec, const char ∗dir, int mflag , /∗ char ∗fstype,
const char ∗dataptr , int datalen ∗/ . . .);

DESCRIPTION mount() requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are pointers
to path names. fstype is the file system type, which can be determined by the sysfs(2)
function. If both the MS_DATA and MS_FSS flag bits of mflag are off, the file system type
defaults to the root file system type. Only if either flag is on is fstype used to indicate the
file system type.

If the MS_DATA flag is set in mflag, the system expects the dataptr and datalen arguments
to be present. Together they describe a block of file-system-specific data at address dataptr
of length datalen . This data is interpreted by file-system-specific code within the operat-
ing system and its format depends on the file system type. If a particular file system type
does not require this data, dataptr and datalen should both be zero. Note that MS_FSS is
obsolete and is ignored if MS_DATA is also set; but if MS_FSS is set and MS_DATA is not,
dataptr and datalen are both assumed to be zero.

After a successful call to mount, all references to the file dir refer to the root directory on
the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file system:
if that flag is 1, writing is forbidden; otherwise writing is permitted according to indivi-
dual file accessibility.

The mount system call may be invoked for all file system types except namefs by a calling
process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling pro-
cess must either be the owner of dir or assert the PRIV_FILE_OWNER privilege.

RETURN VALUES Upon successful completion, mount returns a value of 0. Upon failure, mount returns a
value of −1 and sets errno to indicate the error.

ERRORS mount fails if any of these conditions is true:

EACCES Search permission is denied on a component of spec or dir. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied to the namefs file system specified in
dir. To override this restriction, the calling process may assert one
or both of these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

modified 01 May 1996 2TSOL-131

mount (2TSOL) TSOL System Calls Trusted Solaris 2.5

EBUSY dir is currently mounted on, is someone’s current working direc-
tory, or is otherwise busy.

The device associated with spec is currently mounted.

EFAULT spec, dir, or datalen points outside the allocated address space of
the process.

EINVAL The super block has an invalid magic number or the fstype is
invalid.

ELOOP Too many symbolic links were encountered in translating spec or
dir.

EMULTIHOP Components of path require hopping to multiple remote machines
but the file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT None of the named files exists or the path name is null.

ENOTBLK spec is not a block special device.

ENOTDIR dir is not a directory.

EPERM The calling process does not own dir and dir is type namefs. To
override this restriction, the calling process may assert the
PRIV_FILE_OWNER privilege.

dir is not a file system of type namefs and the calling process has
not asserted the PRIV_SYS_MOUNT privilege.

EREMOTE spec is remote and cannot be mounted.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENXIO The device associated with spec does not exist.

EROFS spec is write protected and mflag requests write permission.

ENOSPC The file system state in the super-block is not FsOKAY and mflag
requests write permission.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access or ownership checks.

The mount system call may be invoked for all file system types except namefs by a calling
process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling pro-
cess must either be the owner of dir or assert the PRIV_FILE_OWNER privilege.

SEE ALSO mount(1MTSOL), sysfs(2), umount(2TSOL)

2TSOL-132 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls msgctl (2TSOL)

NAME msgctl − Message-control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds ∗buf);

DESCRIPTION msgctl() provides a variety of message-control operations as specified by cmd. These
cmds are available:

IPC_STAT Place the current value of each member of the data structure associated
with msqid into the structure to which buf points. The contents of this struc-
ture are defined in intro(2).

If it does not have discretionary read access to the data structure, the calling
process must have PRIV_IPC_DAC_READ
in its set of effective privileges. If it does not have mandatory read access to
the data structure, the calling process must have PRIV_IPC_MAC_READ in
its set of effective privileges.

IPC_SET Set the value of these members of the data structure associated with msqid
to the corresponding value found in the structure to which buf points:

msg_perm.uid
msg_perm.gid
msg_perm.mode /∗ only access permission bits ∗/
msg_qbytes

A process whose effective user ID does not match the value of
msg_perm.cuid or msg_perm.uid must have the PRIV_IPC_OWNER
privilege in its set of effective privileges. A process must have mandatory
write access to the data structure or must have asserted the
PRIV_IPC_MAC_WRITE privilege. Only a process with
PRIV_SYS_IPC_CONFIG asserted can raise the value of msg_qbytes.

IPC_RMID Remove from the system the message-queue identifier specified by msqid
and destroy the message queue and data structure associated with it. This
cmd can be executed only by a process that has an effective user ID equal to
that of msg_perm.cuid or msg_perm.uid in the data structure associated
with msqid, or has the PRIV_IPC_OWNER privilege asserted. A process must
also have mandatory write access to the data structure or must have
asserted the PRIV_IPC_MAC_WRITE privilege. buf is ignored.

RETURN VALUES Upon successful completion, this call returns a value of 0. Upon failure, the call returns a
value of −1 and sets errno to indicate the error.

modified 9 Sep 1997 2TSOL-133

msgctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

ERRORS msgctl() fails if any of these conditions is true:

EACCES cmd is IPC_STAT, operation permission is denied to the calling process
[see intro(2TSOL)], and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EFAULT buf points to an illegal address.

EINVAL msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is IPC_SET and msg_perm.uid or msg_perm.gid is not valid.

EPERM cmd is IPC_RMID or IPC_SET, the discretionary and/or mandatory access
checks failed, and the process did not have the appropriate override
privilege asserted.

cmd is IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the process did not have the appropriate override
privilege asserted.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure to
which buf points.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

SEE ALSO intro(2TSOL), msgget(2TSOL), msgop(2TSOL)

2TSOL-134 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls msgget (2TSOL)

NAME msgget, msggetl - Get message queue

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key , int msgflg);

cc [flag ...] file ... -ltsol [library ...]
#include <sys/tsol/ipcl.h>

int msggetl(key_t key, int msgflg, const bslabel_t ∗slabel);

DESCRIPTION A message queue is identified by a unique combination of key and sensitivity label. This
qualification of keys by sensitivity labels allows applications that use message queues to
be run at multiple process sensitivity labels without inadvertently sharing data.

msgget() returns the message-queue identifier associated with the union of key and the
sensitivity label of the calling process.

msggetl() returns the message-queue identifier associated with the union of key and sla-
bel. If the value of slabel does not match the sensitivity label of the calling process, then the
effective privilege set of the process must contain PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of msgflg is denied
to the calling process, msgget() and msggetl() require one or both of these privileges:
PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A message-queue identifier and associated message queue and data structure [see
intro(2)] are created for key if one of the following is true:

key is IPC_PRIVATE.

key does not already have a message queue identifier associated with it, and
(msgflg &IPC_CREAT) is true.

On creation, the data structure associated with the new message- queue identifier is ini-
tialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set,
respectively, to the effective user ID and effective group IDs of the calling process.

The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits of msgflg .

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.

msg_ctime is set to the current time.

msg_qbytes is set to the system limit.

The sensitivity label on the message-queue internal is set either to the sensitivity label of
the process or to slabel, depending on which interface was used.

modified 26 Nov 1996 2TSOL-135

msgget (2TSOL) TSOL System Calls Trusted Solaris 2.5

RETURN VALUES Successful completion returns a nonnegative integer, namely a message-queue identifier.
Failure returns a value of −1 and sets errno to indicate the error.

ERRORS msgget and msggetl fail if any of these conditions is true:

EACCES A semaphore-structure identifier exists for the union of key and sensitivity
label, but operation permission [see intro(2)] as specified by the low-order 9
bits of semflg would not be granted; or the sensitivity label check did not pass,
and the calling process does not have the appropriate privilege override(s) in
its set of effective privileges.

EEXIST A message queue identifier exists for key but (msgflg&IPC_CREAT) and
(msgflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

ENOENT A message-queue identifier does not exist for the union of key and sensitivity
label; and (msgflg &IPC_CREAT) is false.

ENOSPC A message-queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message-queue identifiers systemwide
would be exceeded.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine message-queue identifiers.

SEE ALSO intro(2TSOL), msgctl(2TSOL), msgop(2TSOL), stdipc(3C)

2TSOL-136 modified 26 Nov 1996

Trusted Solaris 2.5 TSOL System Calls msgop (2TSOL)

NAME msgop, msgsnd, msgsndl, msgrcv, msgrcvl − Message operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void ∗msgp, size_t msgsz, int msgflg);

int msgrcv(int msqid, void ∗msgp, size_t msgsz, long msgtyp, int msgflg);

cc [flag ...] file ... -ltsol [library ...]
#include <sys/tsol/ipcl.h>

int msgsndl(int msqid, const void ∗msgp, size_t msgsz, int msgflg,
const bilabel_t ∗ilabel);

int msgrcvl(int msqid, void ∗msgp, size_t msgsz, long msgtyp, int msgflg,
bilabel_t ∗ilabel);

DESCRIPTION In Trusted Solaris, individual messages within a message queue are labeled with an infor-
mation label. This label does not float and cannot be modified once the message has been
placed in the queue. The message-queue sensitivity label must dominate the information
labels of all messages within the queue.

msgsnd() sends a message to the queue associated with the message-queue identifier
specified by msqid. msgp points to a user-defined buffer that must contain first a field of
type long integer that will specify the type of the message, and then a data portion that
will hold the text of the message.

msgsnd() uses the current information label of the process to label a message. msgsndl()
is identical to msgsnd but allows the calling process to label a message with a particular
information label as specified by ilabel. If ilabel does not match the current information
label of the process, msgsndl requires that the effective privilege set of the calling process
include PRIV_IPC_UPGRADE_IL if the supplied label specifies an upgrade or
PRIV_IPC_DOWNGRADE_IL if the supplied label specifies a downgrade.

Both msgsnd and msgsndl require either that a process have discretionary and manda-
tory write access to msqid, or that the effective privilege set of the calling process include
PRIV_IPC_DAC_WRITE and PRIV_IPC_MAC_WRITE.

If information labels are enabled on this system and PRIV_IPC_NOFLOAT is asserted, no
information label is placed on the message. Therefore the receiving process will not float
as a result of receiving this message.

The following is an example of members that might be in a user-defined buffer (mymsg).

long mtype; /∗ message type ∗/
char mtext[]; /∗ message text ∗/

mtype is a positive integer that can be used by the receiving process for message selec-
tion. mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-imposed
maximum.

modified 26 Nov 1996 2TSOL-137

msgop (2TSOL) TSOL System Calls Trusted Solaris 2.5

msgflg specifies the action to be taken if one or both of these conditions are true:

The number of bytes already on the queue is equal to msg_qbytes [see
intro(2TSOL)].

The total number of messages on all queues systemwide is equal to the system-
imposed limit.

These are the actions to take:

If (msgflg&IPC_NOWAIT) is true, the message is not sent and the calling process
returns immediately.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of these conditions occurs:

· The condition responsible for the suspension no longer exists, in which case
the message is sent.

· msqid is removed from the system. [See msgctl(2TSOL).] When this removal
occurs, errno is set to EIDRM, and a value of −1 is returned.

· The calling process receives a signal that is to be caught. In this case, the mes-
sage is not sent and the calling process resumes execution in the manner
prescribed in signal(3C).

msgrcv() reads a message from the queue associated with the message-queue identifier
specified by msqid and places the message in the user-defined structure to which msgp
points. The structure must contain a message-type field followed by the area for the mes-
sage text. (See the structure mymsg earlier.) mtype is the received message’s type as
specified by the sending process. mtext is the text of the message. msgsz specifies the size
in bytes of mtext.

msgrcvl() is identical to msgrcv() but allows the calling process to retrieve the informa-
tion label ilabelassociated with a message.

Both msgrcvl() and msgrcv() require either that a process have discretionary and man-
datory read access to msqid, or that the effective privilege set of the calling process
include one or both of these privileges to override the corresponding check:
PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ privileges. In addition, both calls must
either have mandatory write access to msqid or have PRIV_IPC_MAC_WRITE asserted.

The received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg&MSG_NOERROR) is true. The truncated part of the message is lost and no indica-
tion of the truncation is given to the calling process.

msgtyp specifies the type of message requested:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or
equal to the absolute value of msgtyp is received.

2TSOL-138 modified 26 Nov 1996

Trusted Solaris 2.5 TSOL System Calls msgop (2TSOL)

msgflg specifies the action to be taken if a message of the desired type is not on the
queues:

If (msgflg&IPC_NOWAIT) is true, the calling process returns immediately with a
return value of −1 and sets errno to ENOMSG.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of these conditions occurs:

· A message of the desired type is placed on the queue.

· msqid is removed from the system. When this removal occurs, errno is set to
EIDRM, and a value of −1 is returned.

· The calling process receives a signal that is to be caught. In this case, a mes-
sage is not received and the calling process resumes execution in the manner
prescribed in signal(3C).

If information-label floating is enabled on this system, retrieving a message from a queue
using msgrcv or msgrcvl can cause the information label of the calling process to float up
to the information label of the message. The float will fail if the resulting information
label is not dominated by the sensitivity label of the process; this failure will in turn cause
msgrcv or msgrcvl to fail unless the effective privilege set of the calling process includes
PRIV_PROC_NOFLOAT. If this failure occurs, the message is lost.

RETURN VALUES If msgsnd(), msgsndl(), msgrcv(), or msgrcvl(), return because of the receipt of a signal,
they return a value of −1 and set errno to EINTR. If they return because of removal of
msqid from the system, they return a value of −1 and set errno to EIDRM.

Upon successful completion, msgsnd returns a value of 0 and msgrcv returns the number
of bytes actually placed into mtext .

Upon failure, they return a value of −1 and set errno to indicate the error.

ERRORS msgsnd and msgsndl fail and send no message if any of these conditions is true:

EACCES Operation permission is denied to the calling process [see intro(2TSOL)], and
the process did not have the appropriate privilege in its set of effective
privileges.

The sensitivity label of msqid does not match the sensitivity label of the calling
process, and the calling process does not have the appropriate privilege
override(s) in its set of effective privileges.

EAGAIN The message cannot be sent for one of the reasons cited earlier and
(msgflg&IPC_NOWAIT) is true.

EFAULT msgp points to an illegal address.

ilabel points to an illegal address.

EINVAL msqid is not a valid message-queue identifier.

mtype is less than 1.

msgsz is less than zero or greater than the system-imposed limit.

EINVAL The label to which ilabel points is not a valid information label.

modified 26 Nov 1996 2TSOL-139

msgop (2TSOL) TSOL System Calls Trusted Solaris 2.5

If sent to the message queue, this message would cause the information label
of the message to dominate the sensitivity label of the queue, and the calling
process does not have the appropriate privilege override(s) in its set of effec-
tive privileges.

EPERM This call is trying either to upgrade or to downgrade the information label but
is not suitably privileged.

Upon successful completion, these actions are taken with respect to the data structure
associated with msqid [see intro(2TSOL)]:

msg_qnum is incremented by 1.

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

msgrcv() and msgrcvl() fail and receive no message if any of these conditions is true:

E2BIG The length of mtext is greater than msgsz and (msgflg&MSG_NOERROR) is
false.

EACCES Operation permission is denied to the calling process, and the calling process
does not have the appropriate privilege override(s) in its set of effective
privileges.

The sensitivity label of msqid does not match the sensitivity label of the calling
process, and the calling process does not have the appropriate privilege
override(s) in its set of effective privileges.

EFAULT msgp points to an illegal address.

ilabel points to an illegal address.

EINVAL msqid is not a valid message-queue identifier.

msgsz is less than 0.

The read from the message queue would cause the information label of the
calling process to float above its sensitivity label, and the calling process does
not have the PRIV_PROC_NOFLOAT privilege in its set of effective privileges.

ENOMSG The queue does not contain a message of the desired type and
(msgtyp&IPC_NOWAIT) is true.

Upon successful completion, these actions are taken with respect to the data structure
associated with msqid [see intro(2TSOL)]:

msg_qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_rtime is set to the current time.

SUMMARY OF
TRUSTED
SOLARIS

2TSOL-140 modified 26 Nov 1996

Trusted Solaris 2.5 TSOL System Calls msgop (2TSOL)

CHANGES

Appropriate privilege is required to override access checks.

modified 26 Nov 1996 2TSOL-141

msgop (2TSOL) TSOL System Calls Trusted Solaris 2.5

SEE ALSO
SEE ALSO intro(2TSOL), msgctl(2TSOL), msgget(2TSOL), signal(3C)

2TSOL-142 modified 26 Nov 1996

Trusted Solaris 2.5 TSOL System Calls nice (2TSOL)

NAME nice − Change priority of a process

SYNOPSIS #include <unistd.h>

int nice(int incr);

DESCRIPTION nice() allows a process to change its priority. The invoking process must be in a schedul-
ing class that supports the nice system call. The priocntl function is a more general inter-
face to scheduler functions.

nice adds the value of incr to the nice value of the calling process. A nice value of a pro-
cess is a nonnegative number for which a more positive value results in lower CPU prior-
ity.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system.
(The default nice value is 20.) Requests for values above or below these limits result in the
nice value being set to the corresponding limit.

RETURN VALUES Upon successful completion, nice returns the new nice value minus 20. Upon failure, nice
returns a value of −1 and sets errno to indicate the error.

ERRORS nice fails if either of these conditions is true:

EINVAL nice is called by a process in a scheduling class other than time-sharing.

EPERM incr is negative or greater than 40 and the PRIV_SYS_CONFIG privilege of the
calling process is not asserted.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Use of the PRIV_SYS_CONFIG privilege replaces the super-user check in base Solaris.

SEE ALSO nice(1TSOL), exec(2TSOL), priocntl(2TSOL)

modified 27 Feb 1996 2TSOL-143

open (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME open − Open for reading or writing

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char ∗path , int oflag , /∗ mode_t mode ∗/ . . .);

MT-LEVEL Async-Signal-Safe

DESCRIPTION open() opens a file descriptor for the file to which path points and sets the file status flags
according to the value of oflag . oflag values are constructed by OR-ing flags from the fol-
lowing list:

NOTE: The first three flags are mutually exclusive.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY or O_NONBLOCK
These flags may affect subsequent reads and writes. [See read(2TSOL)
and write(2TSOL).] If both O_NDELAY and O_NONBLOCK are set,
O_NONBLOCK takes precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY or O_NONBLOCK is set, an open for reading only will
return without delay; an open for writing only will return an error if
no process currently has the file open for reading.

If O_NDELAY and O_NONBLOCK are clear, an open for reading only
will block until a process opens the file for writing; an open for writ-
ing only will block until a process opens the file for reading.

When opening a file associated with a terminal line:

If O_NDELAY or O_NONBLOCK is set, the open will return without
waiting for the device to be ready or available; subsequent behavior
of the device is device specific.

If O_NDELAY and O_NONBLOCK are clear, the open will block until
the device is ready or available.

O_APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_DSYNC Write I/O operations on the file descriptor complete as defined by syn-
chronized I/O data integrity completion.

O_RSYNC Read I/O operations on the file descriptor complete at the same level of
integrity as specified by the O_DSYNC and O_SYNC flags. If both

2TSOL-144 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls open (2TSOL)

O_DSYNC and O_RSYNC are set in oflag , all I/O operations on the file
descriptor complete as defined by synchronized I/O data integrity com-
pletion. If both O_SYNC and O_RSYNC are set in oflag , all I/O operations
on the file descriptor complete as defined by synchronized I/O file
integrity completion.

O_SYNC When opening a regular file, this flag affects subsequent writes. If set,
each write(2TSOL) will wait for both the file data and file status to be
physically updated. Write I/O operations on the file descriptor complete
as defined by synchronized I/O file integrity completion.

O_NOCTTY If set and the file is a terminal, the terminal will not be allocated as the
controlling terminal of the calling process.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL.
Otherwise, the file is created and the owner ID of the file is set to the
effective user ID of the process; the group ID of the file is set to the effec-
tive group ID of the process; or if the S_ISGID bit is set in the directory in
which the file is being created, the file’s group ID is set to the group ID of
its parent directory. If the group ID of the new file does not match the
effective group ID or one of the supplementary groups IDs, the S_ISGID
bit is cleared. The calling process must assert the PRIV_FILE_SETID
privilege to override clearing the S_ISGID bit. The access permission bits
of the file mode are set to the value of mode, modified as follows: [See
creat(2TSOL).]

· All bits set in the file mode-creation mask of the process are cleared.
[See umask(2).]

· The “save text image after execution bit” of the mode is cleared. [See
chmod(2TSOL).] O_SYNC write I/O operations on the file descriptor
complete as defined by synchronized I/O file integrity completion.
[See fcntl(5) definition of O_SYNC .]

· The calling process must assert the PRIV_SYS_CONFIG privilege to
override clearing the S_ISVTX bit.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists. The check
for the existence of the file and the creation of the file if it does not exist
are atomic with respect to other processes executing open naming the
same file name in the same directory with O_EXCL and O_CREAT set.

O_TRUNC If the file exists, its length is truncated to 0; and the mode and owner are
unchanged. O_TRUNC has no effect on FIFO special files or directories.

When opening a STREAMS file, oflag may be constructed from O_NDELAY or
O_NONBLOCK OR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them.The values of
O_NDELAY and O_NONBLOCK affect the operation of STREAMS drivers and certain

modified 1 May 1996 2TSOL-145

open (2TSOL) TSOL System Calls Trusted Solaris 2.5

functions. [See read(2TSOL), getmsg(2), putmsg(2), and write(2TSOL).] For drivers, the
implementation of O_NDELAY and O_NONBLOCK is device specific. Each STREAMS dev-
ice driver may treat these options differently.

When open is invoked to open a named stream, and the connld module [see
connld(7M)] has been pushed on the pipe, open blocks until the server process has
issued an I_RECVFD ioctl [see streamio(7I)] to receive the file descriptor.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the beginning of
the file.

The new file descriptor is the lowest-numbered file descriptor available and is set to
remain open across exec functions. [See fcntl(2).]

As described in fcntl(2), certain flag values can be set following open.

If O_CREAT is set and the file did not previously exist, upon successful completion, open
marks for update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime
and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open
marks for update the st_ctime and st_mtime fields of the file.

For file system objects that support exclusive (OEXCL) open (such as procfs) or exclusive
(TIOCEXCL) access (such as many devices), the calling process may assert the
PRIV_SYS_DEVICES privilege to override the exclusive restriction.

In the case of procfs, the calling process cannot open a process whose program file has the
set-user-ID or set-group-ID mode bits set, or has the use of privilege. The calling process
may assert the PRIV_PROC_OWNER privilege to bypass this restriction.

Directories can be opened only for reading. There is no privilege to override this restric-
tion.

The information label of the calling process is unchanged. However, when the open
causes the specified file to be truncated, the information label of the file is set to
ADMIN_LOW. Otherwise, the file information label is unchanged.

RETURN VALUES Upon successful completion, open returns the file descriptor. Upon failure, open returns
−1 and sets errno to indicate the error.

ERRORS The named file is opened unless any of these conditions is true:

EACCES The file does not exist and write permission is denied by the parent
directory of the file to be created. To override this restriction, the
calling process may assert one or both of these privileges:
PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

EACCES O_TRUNC is specified and write permission is denied To override
this restriction, the calling process may assert one or both of these
privileges: PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

A component of the path prefix denies search permission. To

2TSOL-146 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls open (2TSOL)

override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

O_RDWR or O_WRONLY is specified and the calling process does
not have write access to the file. To override this restriction, the
calling process may assert one or both of these privileges:
PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

O_RDWR or O_RDONLY is specified, the file is opened for reading,
and the calling process does not have read access to the file. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_READ and
PRIV_FILE_MAC_READ.

EAGAIN The file exists with enforced record locking enabled, record locks
are on the file [see chmod(2)], and O_TRUNC is specified.

EDQUOT The file does not exist, O_CREAT is specified, and the directory in
which the new file entry is being placed cannot be extended
because the user’s quota of disk blocks on that file system has been
exhausted.

The file does not exist, O_CREAT is specified, and the user’s quota
of inodes on the file system in which the file is being created has
been exhausted.

EEXIST O_CREAT and O_EXCL are set, and the named file exists.

EFAULT path points to an illegal address.

EINTR A signal was caught during the open function.

EIO A hangup or error occurred during the open of the STREAMS-
based device.

EISDIR The named file is a directory and oflag is write or read/write.

ELOOP Too many symbolic links were encountered in translating path.

EMFILE The process has too many open files. [See getrlimit(2TSOL).]

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENFILE The system file table is full.

ENOENT O_CREAT is not set and the named file does not exist.

O_CREAT is set and a component of the path prefix does not exist
or is a null path name.

ENOLINK path points to a remote machine, but the link to that machine is no
longer active.

modified 1 May 1996 2TSOL-147

open (2TSOL) TSOL System Calls Trusted Solaris 2.5

ENOMEM The system is unable to allocate a send descriptor.

ENOSPC O_CREAT and O_EXCL are set and the file system is out of inodes.

O_CREAT is set and the directory that would contain the file can-
not be extended.

ENOSR Unable to allocate a stream

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the
device associated with this special file does not exist.

O_NDELAY or O_NONBLOCK is set, the named file is a FIFO,
O_WRONLY is set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

EROFS The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT, or O_TRUNC is set in oflag (if
the file does not exist).

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

To open a file system object that supports exclusive open or exclusive access, the calling
process may assert the PRIV_SYS_DEVICES privilege. In the case of procfs, the calling pro-
cess cannot open a process whose program file has the S_ISUID or S_ISGUID mode bits set
or has the use of privilege. The calling process may assert the PRIV_PROC_OWNER
privilege. When used to create a new file, the calling process may need to assert one or
both of these privileges: PRIV_SYS_CONFIG to override clearing the S_ISVTX bit, and
PRIV_FILE_SETID to override clearing the S_ISGID bit.

SEE ALSO intro(2TSOL), chmod(2TSOL), close(2), creat(2TSOL), dup(2), exec(2TSOL),
fcntl(2TSOL), getmsg(2), getrlimit(2TSOL), lseek(2TSOL), putmsg(2), read(2TSOL),
stat(2TSOL), umask(2), write(2TSOL), fcntl(5), stat(5), connld(7M), streamio(7I)

2TSOL-148 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls p_online (2TSOL)

NAME p_online − change processor online or offline status

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>

int p_online(processorid_t processorid , int flag);

DESCRIPTION The processor specified by the first argument is set online or offline or is unchanged,
depending on whether the flag argument is P_ONLINE, P_OFFLINE, or P_STATUS.

When a flag of P_ONLINE is specified, the processor, if previously offline, is brought
online and allowed to process LWPs and perform system activities.

When P_OFFLINE is specified, and the processor is not already offline, it is taken offline
and not allowed to process LWPs. The processor will become as inactive as possible.

When P_STATUS is specified, no change occurs, but the current status is returned.

RETURN VALUES On successful completion, the value returned is the previous state of the processor,
P_ONLINE or P_OFFLINE. Otherwise, a value of −1 is returned and errno is set to indi-
cate the error.

ERRORS EPERM The calling process does not have the PRIV_SYS_CONFIG privilege.

EINVAL An non-existent processor ID was specified or flag was invalid.

EBUSY flag was P_OFFLINE and the specified processor is the only online pro-
cessor, there are currently LWPs bound to the processor, or the processor
performs some essential function that cannot be performed by another
processor.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_CONFIG privilege in order to perform the
P_ONLINE and P_OFFLINE operations.

SEE ALSO psradm(1M), psrinfo(1M), processor_bind(2TSOL), processor_info(2), sysconf(3C)

modified 5 Jun 1996 2TSOL-149

priocntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME priocntl − Control process schedulers

SYNOPSIS #include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, /∗ arg ∗/ . . .);

DESCRIPTION priocntl() provides for control over the scheduling of an active light-weight process
(LWP).

LWPs fall into distinct classes with a separate scheduling policy applied to each class. The
two classes currently supported are the real-time class and the time-sharing class. The
characteristics of these classes are described under the corresponding headings that fol-
low. The class attribute of an LWP is inherited across the fork(2TSOL), exec(2TSOL), and
_lwp_create(2) system calls. priocntl can be used to dynamically change the class and
other scheduling parameters associated with a running LWP or set of LWPs given the
appropriate permissions explained hereafter.

In the default configuration, a runnable real-time LWP runs before any other LWP. There-
fore, inappropriate use of a real-time LWP can have a dramatic negative impact on system
performance.

priocntl provides an interface for specifying a process, set of processes, or an LWP to
which the function is to apply. The priocntlset(2TSOL) system call provides the same
functions as priocntl but allows a more general interface for specifying the set of LWPs to
which the function is to apply.

For priocntl, the idtype and id arguments are used together to specify the set of LWPs.
The interpretation of id depends on the value of idtype. These are possible values for
idtype and corresponding interpretations of id:

P_LWPID id is an LWP ID. The priocntl() system call applies to the LWP with the
specified ID within the calling process.

P_PID id is a process ID specifying a single process. The priocntl system call
applies to all LWPs currently associated with the specified process.

P_PPID id is a parent process ID. The priocntl system call applies to all LWPs
currently associated with processes with the specified parent process ID.

P_PGID id is a process group ID. The priocntl system call applies to all LWPs
currently associated with processes in the specified process group.

P_SID id is a session ID. The priocntl system call applies to all LWPs currently asso-
ciated with processes in the specified session.

P_CID id is a class ID (returned by priocntl PC_GETCID as explained hereafter).
The priocntl system call applies to all LWPs in the specified class.

P_UID id is a user ID. The priocntl system call applies to all LWPs with this effec-
tive user ID.

2TSOL-150 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls priocntl (2TSOL)

P_GID id is a group ID. The priocntl system call applies to all LWPs with this effec-
tive group ID.

P_ALL The priocntl system call applies to all existing LWPs. The value of id is
ignored. The permission restrictions described below still apply.

An id value of P_MYID can be used in conjunction with the idtype value to specify the cal-
ling LWP’s LWP ID, parent process ID, process group ID, session ID, class ID, user ID, or
group ID.

In order to change the scheduling parameters of an LWP (using the PC_SETPARMS com-
mand as explained hereafter) the calling LWP must have process MAC write access, and
the real or effective user ID of the LWP calling priocntl must match the real or effective
user ID of the receiving LWP or the calling LWP must have the PRIV_PROC_OWNER
privilege. These are the minimum permission requirements enforced for all classes. An
individual class may impose additional permissions requirements when setting LWPs to
that class and/or when setting class-specific scheduling parameters.

A special sys scheduling class exists for the purpose of scheduling the execution of cer-
tain special system processes (such as the swapper process). It is not possible to change
the class of any LWP to sys. In addition, any processes in the sys class that are included in
a specified set of processes are disregarded by priocntl. For example, an idtype of P_UID
and an id value of zero would specify all processes with a user ID of zero except
processes in the sys class and (if changing the parameters using PC_SETPARMS) the
init(1M) process.

The init process is a special case. In order for a priocntl call to change the class or other
scheduling parameters of the init process (process ID 1), it must be the only process
specified by idtype and id. The init process may be assigned to any class configured on the
system, but the time-sharing class is almost always the appropriate choice. (Other choices
may be highly undesirable; see the UNKNOWN TITLE ABBREVIATION: SYSADMIN2 for
more information.)

The data type and value of arg are specific to the type of command specified by cmd.

A structure with the following members is used by the PC_GETCID and PC_GETCLINFO
commands:

id_t pc_cid; /∗ Class id ∗/
char pc_clname[PC_CLNMSZ]; /∗ Class name ∗/
long pc_clinfo[PC_CLINFOSZ]; /∗ Class information ∗/

pc_cid is a class ID returned by priocntl PC_GETCID. pc_clname is a buffer of size
PC_CLNMSZ (defined in <sys/priocntl.h>) used to hold the class name (RT for real-time
or TS for time-sharing).

pc_clinfo is a buffer of size PC_CLINFOSZ (defined in <sys/priocntl.h>) used to return
data describing the attributes of a specific class. The format of this data is class-specific
and is described under the appropriate heading (REAL-TIME CLASS or TIME-SHARING
CLASS) following.

modified 27 Feb 1996 2TSOL-151

priocntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

A structure with the following elements is used by the PC_SETPARMS and
PC_GETPARMS commands:

id_t pc_cid; /∗ LWP class ∗/
long pc_clparms[PC_CLPARMSZ]; /∗ Class-specific params ∗/

pc_cid is a class ID (returned by priocntl PC_GETCID). The special class ID PC_CLNULL
can also be assigned to pc_cid when using the PC_GETPARMS command as explained
hereafter.

The pc_clparms buffer holds class-specific scheduling parameters. The format of this
parameter data for a particular class is described under the appropriate heading.
PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in <sys/priocntl.h>.

Commands These are available priocntl commands:

PC_GETCID Get class ID and class attributes for a specific class given class name.
The idtype and id arguments are ignored. If arg is not null, it points to
a structure of type pcinfo_t. The pc_clname buffer contains the name
of the class whose attributes you are getting.

On success, the class ID is returned in pc_cid, the class attributes are
returned in the pc_clinfo buffer, and the priocntl call returns the total
number of classes (including the sys class) configured in the system. If
the class specified by pc_clname is invalid or is not currently
configured, the priocntl call returns −1 with errno set to EINVAL. The
format of the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described
under the appropriate heading hereafter.

If arg is a NULL pointer, no attribute data is returned, but the priocntl
call still returns the number of configured classes.

PC_GETCLINFO Get class name and class attributes for a specific class given class ID.
The idtype and id arguments are ignored. If arg is non-null, it points to
a structure of type pcinfo_t. pc_cid is the class ID of the class whose
attributes you are getting.

On success, the class name is returned in the pc_clname buffer, the
class attributes are returned in the pc_clinfo buffer, and the priocntl
call returns the total number of classes (including the sys class)
configured in the system. The format of the attribute data returned for
a given class is defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h>
header file and described under the appropriate heading hereafter.

If arg is a NULL pointer, no attribute data is returned, but the priocntl
call still returns the number of configured classes.

2TSOL-152 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls priocntl (2TSOL)

PC_SETPARMS Set the class and class-specific scheduling parameters of the specified
LWP(s) associated with the specified process(es). When it is used with
the idtype of P_LWPID, this command will set the class and class-
specific scheduling parameters of the LWP. arg points to a structure of
type pcparms_t. pc_cid specifies the class you are setting, and the
pc_clparms buffer contains the class-specific parameters you are set-
ting. The format of the class-specific parameter data is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header and described under
the appropriate class heading hereafter.

When setting parameters for a set of LWPs, priocntl acts on the LWPs
in the set in an implementation-specific order. If it encounters an
error for one or more of the target processes, priocntl may or may not
continue through the set of LWPs depending on the nature of the
error. If the error is related to permissions (EPERM), priocntl contin-
ues through the LWP set, resetting the parameters for all target LWPs
for which the calling LWP has appropriate permissions. priocntl then
returns −1 with errno set to EPERM to indicate that the operation
failed for one or more of the target LWPs. If it encounters an error
other than permissions, priocntl does not continue through the set of
target LWPs but returns the error immediately.

PC_GETPARMS Get the class and/or class-specific scheduling parameters of an LWP.
arg points to a structure of type pcparms_t.

If pc_cid specifies a configured class and a single LWP belonging to
that class is specified by the idtype and id values or the procset struc-
ture, then the scheduling parameters of that LWP are returned in the
pc_clparms buffer. If the LWP specified does not exist or does not
belong to the specified class, the priocntl call returns −1 with errno set
to ESRCH.

If pc_cid specifies a configured class and a set of LWPs is specified, the
scheduling parameters of one of the specified LWPs belonging to the
specified class are returned in the pc_clparms buffer and the priocntl
call returns the process ID of the selected LWP. The criteria for select-
ing an LWP to return in this case is class dependent. If none of the
specified LWPs exists or none of them belongs to the specified class,
the priocntl call returns −1 with errno set to ESRCH.

If pc_cid is PC_CLNULL and a single LWP is specified, the class of the
specified LWP is returned in pc_cid and its scheduling parameters are
returned in the pc_clparms buffer.

PC_ADMIN This command provides functionality needed for the implementation
of the dispadmin(1MTSOL) command and is not intended for general
use by other applications.

modified 27 Feb 1996 2TSOL-153

priocntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

REAL-TIME
CLASS

The real-time class provides a fixed-priority, preemptive scheduling policy for those
LWPs requiring fast and deterministic response and absolute user/application control of
scheduling priorities. If it is configured in the system, the real-time class should have
exclusive control of the highest range of scheduling priorities on the system to ensure that
a runnable real-time LWP is given CPU service before any LWP belonging to any other
class.

The real-time class has a range of real-time priority (rt_pri) values that may be assigned
to an LWP within the class. Real-time priorities range from 0 to x where the value of x is
configurable and can be determined for a specific installation by using the priocntl
PC_GETCID or PC_GETCLINFO command.

The real-time scheduling policy is a fixed-priority policy. The scheduling priority of a
real-time LWP is never changed except as the result of an explicit request by the
user/application to change the rt_pri value of the LWP.

For an LWP in the real-time class, the rt_pri value is, for all practical purposes, equivalent
to the scheduling priority of the LWP. The rt_pri value completely determines the
scheduling priority of a real-time LWP relative to other LWPs within its class. Numerically
higher rt_pri values represent higher priorities. Since it controls the highest range of
scheduling priorities in the system, the real-time class is guaranteed that the runnable
real-time LWP with the highest rt_pri value is always selected to run before any other
LWPs in the system.

In addition to providing control over priority, priocntl provides for control over the
length of the time quantum allotted to the LWP in the real-time class. The time quantum
value specifies the maximum amount of time an LWP may run assuming that it does not
complete or enter a resource or event wait state (sleep). Note that if another LWP
becomes runnable at a higher priority, the currently running LWP may be preempted
before receiving its full time quantum.

The system’s process scheduler keeps the runnable real-time LWPs on a set of scheduling
queues. There is a separate queue for each configured real-time priority, and all real-time
LWPs with a given rt_pri value are kept together on the appropriate queue. The LWPs on
a given queue are ordered in FIFO order (that is, the LWP at the front of the queue has
been waiting longest for service and receives the CPU first). Real-time LWPs that wake up
after sleeping, LWPs that change to the real-time class from some other class, LWPs that
have used their full time quantum, and runnable LWPs whose priority is reset by priocntl
are all placed at the back of the appropriate queue for their priority. An LWP that is
preempted by a higher priority LWP remains at the front of the queue (with whatever
time is remaining in its time quantum) and runs before any other LWP at this priority.
Following fork(2TSOL) or _lwp_create(2) system calls by a real-time LWP, the parent
LWP continues to run while the child LWP (which inherits its parent’s rt_pri value) is
placed at the back of the queue.

A structure with the following members (defined in <sys/rtpriocntl. h>) defines the for-
mat used for the attribute data for the real- time class:

short rt_maxpri; /∗ Maximum real-time priority ∗/

2TSOL-154 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls priocntl (2TSOL)

The priocntl PC_GETCID and PC_GETCLINFO commands return real-time class attributes
in the pc_clinfo buffer in this format.

rt_maxpri specifies the configured maximum rt_pri value for the real-time class. (If
rt_maxpri is x, the valid real-time priorities range from 0 to x.)

A structure with the following members (defined in <sys/rtpriocntl. h>) defines the for-
mat used to specify the real-time, class- specific scheduling parameters of an LWP:

short rt_pri; /∗ Real-Time priority ∗/
ulong rt_tqsecs; /∗ Seconds in time quantum ∗/
long rt_tqnsecs; /∗ Additional nanoseconds in quantum ∗/

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies
the real-time class, the data in the pc_clparms buffer is in this format.

The aforementioned commands can be used to set the real-time priority to the specified
value or get the current rt_pri value. Setting the rt_pri value of an LWP that is currently
running or runnable (not sleeping) causes the LWP to be placed at the back of the schedul-
ing queue for the specified priority. The LWP is placed at the back of the appropriate
queue regardless of whether the priority being set is different from the previous rt_pri
value of the LWP. Note that a running LWP can voluntarily release the CPU and go to the
back of the scheduling queue at the same priority by resetting its rt_pri value to its
current real-time priority value. In order to change the time quantum of an LWP without
setting the priority or affecting the LWP’s position on the queue, the rt_pri field should be
set to the special value RT_NOCHANGE (defined in <sys/rtpriocntl.h>). Specifying
RT_NOCHANGE when changing the class of an LWP to real-time from some other class
results in the real-time priority being set to zero.

For the priocntl PC_GETPARMS command, if pc_cid specifies the real-time class and
more than one real-time LWP is specified, the scheduling parameters of the real-time LWP
with the highest rt_pri value among the specified LWPs are returned and the LWP ID of
this LWP is returned by the priocntl call. If there is more than one LWP sharing the
highest priority, the one returned is implementation- dependent.

The rt_tqsecs and rt_tqnsecs fields are used for getting or setting the time quantum asso-
ciated with an LWP or group of LWPs. rt_tqsecs is the number of seconds in the time
quantum and rt_tqnsecs is the number of additional nanoseconds in the quantum. For
example setting rt_tqsecs to 2 and rt_tqnsecs to 500,000,000 (decimal) would result in a
time quantum of two and one-half seconds. Specifying a value of 1,000,000,000 or greater
in the rt_tqnsecs field results in an error return with errno set to EINVAL. Although the
resolution of the tq_nsecs field is very fine, the specified time quantum length is rounded
up by the system to the next integral multiple of the system clock’s resolution. The max-
imum time quantum that can be specified is implementation-specific and equal to
LONG_MAX ticks (defined in <limits.h>). Requesting a quantum greater than this max-
imum results in an error return with errno set to ERANGE (although infinite quantums
may be requested using a special value as explained hereafter). Requesting a time quan-
tum of zero (setting both rt_tqsecs and rt_tqnsecs to 0) results in an error return with
errno set to EINVAL.

modified 27 Feb 1996 2TSOL-155

priocntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

The rt_tqnsecs field can also be set to one of the following special values (defined in
<sys/rtpriocntl.h>), in which case the value of rt_tqsecs is ignored:

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority. [See
rt_dptbl(4).]

RT_NOCHANGE Do not set the time quantum. This value is useful when you
wish to change the real-time priority of an LWP without affect-
ing the time quantum. Specifying this value when changing the
class of an LWP to real-time from some other class is equivalent
to specifying RT_TQDEF.

In order to change the class of an LWP to real-time (from any other class), the LWP invok-
ing priocntl must have the PRIV_SYS_CONFIG privilege. In order to change the priority
or time quantum setting of a real-time LWP, the LWP invoking priocntl must have the
PRIV_PROC_OWNER privilege or must itself be a real-time LWP whose real or effective
user ID matches the real of effective user ID of the target LWP.

The real-time priority and time quantum are inherited across the fork(2TSOL) and
exec(2TSOL) system calls.

TIME-SHARING
CLASS

The time-sharing scheduling policy provides for a fair and effective allocation of the CPU
resource among LWPs with varying CPU consumption characteristics. The objectives of
the time-sharing policy are to provide good response time to interactive LWPs and good
throughput to CPU-bound jobs while providing a degree of user/application control over
scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri hereafter)
values that may be assigned to LWPs within the class. A ts_upri value of zero is defined
as the default base priority for the time-sharing class. User priorities range from −x to +x
where the value of x is configurable and can be determined for a specific installation by
using the priocntl PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control
over the scheduling of LWPs in the time-sharing class. Raising or lowering the ts_upri
value of an LWP in the time-sharing class raises or lowers the scheduling priority of the
LWP. It is not guaranteed, however, that an LWP with a higher ts_upri value will run
before one with a lower ts_upri value because the ts_upri value is just one factor used to
determine the scheduling priority of a time-sharing LWP. The system may dynamically
adjust the internal scheduling priority of a time-sharing LWP based on other factors such
as recent CPU usage.

In addition to the systemwide limits on user priority (returned by the PC_GETCID and
PC_GETCLINFO commands) there is a per LWP user priority limit (see ts_uprilim
hereafter), which specifies the maximum ts_upri value that may be set for a given LWP;
by default, ts_uprilim is zero.

2TSOL-156 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls priocntl (2TSOL)

A structure with the following member (defined in <sys/tspriocntl. h>) defines the for-
mat used for the attribute data for the time- sharing class:

short ts_maxupri; /∗ Limits of user priority range ∗/

The priocntl PC_GETCID and PC_GETCLINFO commands return time-sharing class attri-
butes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time-sharing
class. If ts_maxupri is x, the valid range for both user priorities and user priority limits is
from −x to +x.

A structure with the following members (defined in <sys/tspriocntl. h>) defines the for-
mat used to specify the time-sharing class- specific scheduling parameters of an LWP:

short ts_uprilim; /∗ Time-Sharing user priority limit ∗/
short ts_upri; /∗ Time-Sharing user priority ∗/

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid specifies
the time-sharing class, the data in the pc_clparms buffer is in this format.

For the priocntl PC_SETPARMS command, if pc_cid specifies the time-sharing class and
more than one time-sharing LWP is specified, the scheduling parameters of the time-
sharing LWP with the highest ts_upri value among the specified LWPs is returned and the
LWP ID of this LWP is returned by the priocntl call. If there is more than one LWP sharing
the highest user priority, the one returned is implementation-dependent.

Any time-sharing LWP may lower its own ts_uprilim (or that of another LWP with the
same user ID). Only a time-sharing LWP with the PRIV_SYS_CONFIG privilege may raise
a ts_uprilim. When changing the class of an LWP to time-sharing from some other class,
the PRIV_SYS_CONFIG privilege is required in order to set the initial ts_uprilim to a
value greater than zero. Attempts by a nonprivileged LWP to raise a ts_uprilim or set an
initial ts_uprilim greater than zero fail with a return value of −1 and errno set to EPERM.

Any time-sharing LWP may set its own ts_upri (or that of another LWP with the same
user ID) to any value less than or equal to the LWP’s ts_uprilim. Attempts to set the
ts_upri above the ts_uprilim (and/or set the ts_uprilim below the ts_upri) result in the
ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value TS_NOCHANGE
(defined in <sys/tspriocntl. h>) in order to set one of the values without affecting the
other. Specifying TS_NOCHANGE for the ts_upri when the ts_uprilim is being set to a
value below the current ts_upri causes the ts_upri to be set equal to the ts_uprilim being
set. Specifying TS_NOCHANGE for a parameter when changing the class of an LWP to
time-sharing (from some other class) causes the parameter to be set to a default value.
The default value for the ts_uprilim is 0 and the default for the ts_upri is to set it equal to
the ts_uprilim that is being set.

The time-sharing user priority and user-priority limit are inherited across the fork and
exec functions.

modified 27 Feb 1996 2TSOL-157

priocntl (2TSOL) TSOL System Calls Trusted Solaris 2.5

RETURN VALUES Unless otherwise noted earlier, priocntl returns a value of 0 on success. priocntl returns
−1 on failure and sets errno to indicate the error.

ERRORS priocntl fails if any of these conditions is true:

EAGAIN An attempt to change the class of an LWP failed because of insufficient
resources other than memory (for example, class-specific kernel data struc-
tures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was
specified, or one of the parameters specified was invalid.

ENOMEM An attempt to change the class of an LWP failed because of insufficient
memory.

EPERM The calling LWP does not have required privileges.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified LWPs exists.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Super-user checks in base Solaris are replaced by privilege checks. MAC policy is
enforced in addition to DAC.

SEE ALSO priocntl(1), dispadmin(1MTSOL), init(1M), _lwp_create(2), exec(2TSOL), fork(2TSOL),
nice(2TSOL), priocntlset(2TSOL), rt_dptbl(4)

System Interface Guide

2TSOL-158 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls priocntlset (2TSOL)

NAME priocntlset − Control process scheduler

SYNOPSIS #include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset(procset_t ∗psp, int cmd, /∗ arg ∗/ . . .);

DESCRIPTION priocntlset() changes the scheduling properties of running processes. priocntlset has the
same functions as the priocntl() function but a more general way of specifying the set of
processes whose scheduling properties are to be changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose type
depends on cmd. See priocntl(2TSOL) for the valid values of cmd and the corresponding
arg structures.

psp is a pointer to a procset structure, which priocntlset uses to specify the set of
processes whose scheduling properties are to be changed. The procset structure contains
the following members:

idop_t p_op; /∗∗ operator connecting left/right sets ∗∗/
idtype_t p_lidtype; /∗∗ left set ID type ∗∗/
id_t p_lid; /∗∗ left set ID ∗∗/
idtype_t p_ridtype; /∗∗ right set ID type ∗∗/
id_t p_rid; /∗∗ right set ID ∗∗/

p_lidtype and p_lid specify the ID type and ID of one (left) set of processes; p_ridtype
and p_rid specify the ID type and ID of a second (right) set of processes. ID types and IDs
are specified just as for the priocntl() function. p_op specifies the operation to be per-
formed on the two sets of processes to get the set of processes the function is to apply to.
The valid values for p_op and the processes they specify are

POP_DIFF Set difference: processes in left set and not in right set

POP_AND Set intersection: processes in both left and right sets

POP_OR Set union: processes in either left or right sets or both

POP_XOR Set EXCLUSIVE OR: processes in left or right set but not in both

The following macro, which is defined in procset.h, offers a convenient way to initialize a
procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)→→p_op = (op), \
(psp)→→p_lidtype = (ltype), \
(psp)→→p_lid = (lid), \
(psp)→→p_ridtype = (rtype), \
(psp)→→p_rid = (rid),

modified 27 Feb 1996 2TSOL-159

priocntlset (2TSOL) TSOL System Calls Trusted Solaris 2.5

RETURN VALUES Upon success, priocntlset returns a value of 0. priocntlset returns −1 on failure and sets
errno to indicate the error.

ERRORS priocntlset fails if any of these conditions is true:

EAGAIN An attempt to change the class of a process failed because of insufficient
resources other than memory (for example, class-specific kernel data struc-
tures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class was
specified, or one of the parameters specified was invalid.

ENOMEM An attempt to change the class of a process failed because of insufficient
memory.

EPERM The calling process does not have required privileges.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified processes exists.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

This system call is a generalized interface of the priocntl(2TSOL) system call. Privilege
requirements as described in priocntl(2TSOL) apply here as well.

SEE ALSO priocntl(1), priocntl(2TSOL)

2TSOL-160 modified 27 Feb 1996

Trusted Solaris 2.5 TSOL System Calls processor_bind (2TSOL)

NAME processor_bind − bind LWPs to a processor

SYNOPSIS #include <sys/types.h>
#include <sys/processor.h>
#include <sys/procset.h>

int processor_bind(idtype_t idtype, id_t id, processorid_t processorid,
processorid_t ∗obind);

DESCRIPTION The LWP or set of LWPs specified by idtype and id are bound to the processor specified by
processorid. Additionally, if obind is not NULL, the processorid_t variable pointed to by
obind will be set to the previous binding of one of the specified LWPs, or to PBIND_NONE
if the selected LWP was not bound.

If idtype is P_PID, the binding effects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding effects the LWP of the current process with LWP ID id.

If id is P_MYID, the specified LWP or process is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The calling process must have the PRIV_PROC_OWNER privilege, or its real or effective
user ID must match the real or effective user ID of the LWPs being bound. If the calling
process does not have permission to change all of the specified LWPs, the bindings of the
LWPs for which it does have permission will be changed even though an error is
returned.

RETURN VALUES processor_bind returns 0 if successful; otherwise, −1 is returned and errno is set to reflect
the error.

ERRORS ESRCH No processes or LWPs were found to match the criteria specified by
idtype and id.

EINVAL An non-existent or offline processor was specified.

EINVAL idtype was not P_PID or P_LWPID.

EFAULT The location pointed to by obind was not NULL and not writable by the
user.

EPERM The calling process does not have the PRIV_PROC_OWNER privilege,
and its real or effective user ID does not match the real or effective user
ID of one of the LWPs being bound.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The real or effective user ID of the calling process must match the real or effective user ID
of the target process. The calling process must have the PRIV_PROC_OWNER privilege in
order to override this restriction.

modified 5 Jun 1996 2TSOL-161

processor_bind (2TSOL) TSOL System Calls Trusted Solaris 2.5

SEE ALSO psradm(1M), psrinfo(1M), p_online(2TSOL), sysconf(3C)

2TSOL-162 modified 5 Jun 1996

Trusted Solaris 2.5 TSOL System Calls read (2TSOL)

NAME read, readl, pread, preadl, readv, readvl − Read from a file

SYNOPSIS #include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t read(int fildes, void ∗buf, size_t nbyte);

ssize_t pread(int fildes, void ∗buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec ∗iov , int iovcnt);

#include <tsol/rdwrl.h>
ssize_t readl(int fildes, void ∗buf, size_t nbyte, bclabel_t ∗label_p);

ssize_t preadl(int fildes, void ∗buf, size_t nbyte, off_t offset , bclabel_t ∗label_p);

ssize_t readvl(int fildes, struct iovec ∗iov , int iovcnt, bclabel_t ∗label_p);

MT-LEVEL read() is Async-Signal-Safe.

DESCRIPTION read() attempts to read nbyte bytes from the file associated with fildes into the buffer to
which buf points. If nbyte is zero, read returns zero and has no other results. fildes is an
open file descriptor.

On devices capable of seeking, the read starts at a position in the file given by the file
pointer associated with fildes. On return from read, the file pointer is incremented by the
number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of
a file pointer associated with such a file is undefined.

pread() performs the same action as read, except that pread reads from a given position
in the file without changing the file pointer. The first three arguments for pread are the
same as those for read with the addition of a fourth argument offset for the desired posi-
tion inside the file. An attempt to perform a pread on a file that is incapable of seeking
results in an error.

readv() performs the same action as read, but places the input data into the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt− 1].

The iovec structure contains these members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where data
should be placed. readv always fills one buffer completely before proceeding to the next.

On success, read and readv return the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if the file is associated with a communication
line [see ioctl(2) and termio(7I)] or if the number of bytes left in the file is less than nbyte
or if the file is a pipe or a special file. A value of 0 is returned when an end-of-file has
been reached.

modified 03 June 1996 2TSOL-163

read (2TSOL) TSOL System Calls Trusted Solaris 2.5

read reads data previously written to a file. If any portion of an ordinary file prior to the
end of file has not been written, read returns the number of bytes read as 0. For example,
the lseek routine allows the file pointer to be set beyond the end of existing data in the
file. If additional data is written at this point, subsequent reads in the gap between the
previous end of data and newly written data return bytes with a value of 0 until data is
written into the gap.

A read or readv from a STREAMS [see intro(2TSOL)] file can operate in three different
modes: byte-stream mode, message-nondiscard mode, and message-discard mode. The
default is byte-stream mode. This default can be changed using the I_SRDOPT ioctl(2)
request [see streamio(7I)], and can be tested with the I_GRDOPT ioctl(2) request.

In byte-stream mode, read and readv retrieve data from the stream until they have
retrieved nbyte bytes or until there is no more data to be retrieved. Byte-stream mode
ignores message boundaries.

In STREAMS message-nondiscard mode, read and readv retrieve data until they have read
nbyte bytes or until they reach a message boundary. If read or readv does not retrieve all
the data in a message, the remaining data is replaced on the stream and can be retrieved
by the next read or readv call. Message-discard mode also retrieves data until it has
retrieved nbyte bytes or it reaches a message boundary. However, unread data remaining
in a message after the read or readv returns is discarded and is not available for a subse-
quent read, readv, or getmsg. [See getmsg(2).]

When attempting to read from a regular file with mandatory file/record locking set [see
chmod(2TSOL)], when a write lock owned by another process exists on the segment of
the file to be read,

· If O_NDELAY or O_NONBLOCK is set, read returns −1 and sets errno to EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, read sleeps until the blocking record lock
is removed.

When attempting to read from an empty pipe or FIFO,

· If no process has the pipe open for writing, read returns 0 to indicate end-of-file.

· If some process has the pipe open for writing and O_NDELAY is set, read returns 0.

· If some process has the pipe open for writing and O_NONBLOCK is set, read returns
−1 and sets errno to EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, read blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently avail-
able,

· If O_NDELAY is set, read returns 0.

· If O_NONBLOCK is set, read returns −1 and sets errno to EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, read blocks until data become available.

When attempting to read a file associated with a stream that is not a pipe nor FIFO nor
terminal, and that has no data currently available,

2TSOL-164 modified 03 June 1996

Trusted Solaris 2.5 TSOL System Calls read (2TSOL)

· If O_NDELAY or O_NONBLOCK is set, read returns −1 and sets errno to EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, read blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined by the
current read-mode setting. In byte-stream mode, read accepts data until it has read nbyte
bytes or until there is no more data to read or until a zero-byte message block is encoun-
tered. read then returns the number of bytes read, and places the zero-byte message back
on the stream to be retrieved by the next read or getmsg(). [See getmsg(2).] In the two
other modes, a zero-byte message returns a value of 0 and the message is removed from
the stream. When a zero-byte message is read as the first message on a stream, a value of
0 is returned regardless of the read mode.

A read or readv from a STREAMS file returns the data in the message at the front of the
stream-head read queue, regardless of the priority band of the message.

Normally, a read from a STREAMS file can process only messages with data and without
control information.The read fails if a message containing control information is encoun-
tered at the stream head. This default action can be changed by placing the stream in
either control-data mode or control-discard mode with the I_SRDOPT ioctl(2). In
control-data mode, control messages are converted to data messages by read. In control-
discard mode, control messages are discarded by read, but any data associated with the
control messages is returned to the user.

readl, preadl, and readvl perform the same actions as read, pread, and readv, respec-
tively, and additionally return in label_p the CMW label of the data read. The label
returned is determined according to these conditions:

· If the descriptor refers to a regular file or FIFO, the sensitivity label portion of label_p is
set to the sensitivity label associated with the file-system object.

· If the descriptor refers to a regular file, then the information label portion is set to the
information label of the file.

· If the descriptor refers to a FIFO, then the information label portion is set to the infor-
mation label that is associated with the data.

Later description details how the information label is associated with the data in a FIFO.

In all other respects, the readl, preadl, and readvl interfaces are analogous to the read,
pread, and readv interfaces.

For the read, readl, pread, preadl, readv, and readvl interfaces, if the set of effective
privileges of the calling process includes the PRIV_PROC_NOFLOAT privilege, then the
information label of the calling process is not floated. Otherwise, the information label of
the calling process is floated in this way:

· If the descriptor refers to a regular file, then the information label associated with the
file is conjoined with the information label of the calling process.

· If the descriptor refers to a FIFO, then the information label is more complex. In a FIFO,
like all conduits, each quantum of data has an associated set of attributes, including
an information label. There may be multiple quanta of data in the FIFO at any one
time.

modified 03 June 1996 2TSOL-165

read (2TSOL) TSOL System Calls Trusted Solaris 2.5

If a read operation on a FIFO spans multiple quanta, then the information label associated
with the data is the conjunction of the information labels associated with each quanta of
data that was spanned. The information label associated with the data is conjoined with
the information label of the calling process.

Under base Solaris, read normally allows a process to read the contents of directories on
some local file systems. This functionality is not supported under Trusted Solaris. If the
file descriptor refers to a directory, read will return EISDIR.

The last access time is updated only when the calling process has both mandatory read
and write access to the file-system object. There is no privilege to override this restriction.

RETURN VALUES On success, these functions return a nonnegative integer indicating the number of bytes
actually read. Upon failure, the functions return −1 and set errno is set to indicate the
error.

ERRORS read, readl, pread, preadl, readv, and readvl fail if any of these conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK
was set, and there was a blocking record lock.

Total amount of system memory available when reading using raw I/O
is temporarily insufficient.

No data is waiting to be read on a file associated with a tty device, and
O_NONBLOCK was set.

No message is waiting to be read on a stream, and O_NDELAY or
O_NONBLOCK was set.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG The message waiting to be read on a stream is not a data message.

EDEADLK The read was about to go to sleep and cause a deadlock to occur.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL Attempted to read from a stream linked to a multiplexor

EIO A physical I/O error has occurred; or the process is in a background pro-
cess group and is attempting to read from its controlling terminal, and
either the process is ignoring or blocking the SIGTTIN signal or the pro-
cess group of the process is orphaned.

EISDIR fildes refers to a directory.

ENOLCK The system record lock table was full, so the read or readv could not go
to sleep until the blocking record lock was removed.

ENOLINK fildes is on a remote machine but the link to that machine is no longer
active.

ENXIO The device associated with fildes is a block special or character special

2TSOL-166 modified 03 June 1996

Trusted Solaris 2.5 TSOL System Calls read (2TSOL)

file and the value of the file pointer is out of range.

In addition, readv may return one of these errors:

EFAULT iov points to an illegal address.

EINVAL iovcnt was less than or equal to 0, or greater than or equal to {IOV_MAX}.
[See intro(2TSOL) for a definition of {IOV_MAX}.]

The sum of the iov_len values in the iov array overflowed an int.

In addition, pread fails and the file pointer remains unchanged if this true:

ESPIPE fildes is associated with a pipe or FIFO.

A read from a STREAMS file also fails if an error message is received at the stream head.
In this case, errno is set to the value returned in the error message. If a hangup occurs on
the stream being read, read continues to operate normally until the stream-head read
queue is empty. Thereafter, read returns 0.

In addition, readl, preadl, and readvl may set errno to

EFAULT label_p points to an illegal address.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

readl, preadl, and readvl return in the buffer referenced by label_p the CMW label associ-
ated with the data that was read.

The last access time is updated only when the calling process has both mandatory read
and write access to the file-system object. There is no privilege to override this restriction.

For conduits, a sensitivity label is associated with each byte of data.

The calling process may assert the PRIV_PROC_NOFLOAT privilege to prevent the float-
ing of its information label.

SEE ALSO intro(2TSOL), chmod(2TSOL), creat(2TSOL), dup(2), fcntl(2TSOL), getmsg(2), ioctl(2),
open(2TSOL), pipe(2), streamio(7I), termio(7I)

modified 03 June 1996 2TSOL-167

readlink (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME readlink − Read the value of a symbolic link

SYNOPSIS #include <unistd.h>

int readlink(const char ∗path , void ∗buf, size_t bufsiz);

DESCRIPTION readlink() places the contents of the symbolic link to which path points in the buffer buf,
which has size bufsiz. The contents of the link are not null-terminated when returned.

The information label of the link is unchanged. The information label of the calling pro-
cess floats according to the information label of the symbolic link unless the calling pro-
cess asserts the PRIV_PROC_NOFLOAT privilege.

RETURN VALUES Upon successful completion, readlink returns the number of characters placed in the
buffer. Upon failure, readlink returns −1 and places an error code in errno.

ERRORS readlink() fails and the buffer remains unchanged if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert
one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Read permission is denied to the link. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ
privilege.

EFAULT path or buf points to an illegal address.

EINVAL The named file is not a symbolic link.

EIO An I/O error occurs while reading from or writing to the file sys-
tem.

ELOOP Too many symbolic links are encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist.

ENOSYS The file system does not support symbolic links.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information label of the calling process is floated by the information label of the sym-
bolic link unless the calling process asserts the PRIV_PROC_NOFLOAT privilege.

SEE ALSO stat(2TSOL), symlink(2TSOL)

2TSOL-168 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls rename (2TSOL)

NAME rename − Change the name of a file

SYNOPSIS #include <stdio.h>

int rename(const char ∗old , const char ∗new);

MT-LEVEL Async-Signal-Safe

DESCRIPTION The rename function changes the name of a file. old points to the path name of the file to
be renamed. new points to the new path name of the file.

If old and new both refer to the same existing file, the rename function returns success-
fully and performs no other action.

If old points to the path name of a file that is not a directory, new must not point to the
path name of a directory. If it exists, the link named by new will be removed and old will
be renamed to new. In this case, a link named new must remain visible to other processes
throughout the renaming operation and will refer to either the file referred to as new or
the file referred to as old before the operation began.

If old points to the path name of a directory, new must not point to the path name of a file
that is not a directory. If it exists, the directory named as new will be removed and old will
be renamed to new. In this case, a link named new will exist throughout the renaming
operation and will refer to either the file named as new or the file named as old before the
operation began. Thus, if new names an existing directory, it must be an empty directory.

The new path name must not contain a path prefix that includes old. Write access permis-
sion is required for both the directory containing old and the directory containing new. If
old points to the path name of a directory, write access permission is required for the
directory named by old and for the directory named by new if it exists.

If the directory containing old has the sticky bit set, at least one of these conditions must
be true:

· The user must own old.

· The user must own the directory containing old.

· old must be writable by the user.

· The user must be a privileged user.

If new exists, and the directory containing new is writable and has the sticky bit set, at
least one of these conditions must be true:

· The user must own new.

· The user must own the directory containing new.

· new must be writable by the user.

· The user must be a privileged user.

If the link named by new exists, the link count of the file becomes zero when it is
removed, and no process has the file open, then the space occupied by the file will be
freed and the file will no longer be accessible. If one or more processes have the file open

modified 01 May 1996 2TSOL-169

rename (2TSOL) TSOL System Calls Trusted Solaris 2.5

when the last link is removed, the link will be removed before rename returns; but the
removal of the file contents will be postponed until all references to the file have been
closed.

Upon successful completion, the rename function will mark for update the st_ctime and
st_mtime fields of the parent directory of each file.

A single-level directory cannot be renamed (single-level directories are always contained
in multilevel directories). A multilevel directory cannot be the new containing directory.
There is no privilege to bypass these restrictions.

If the old containing directory is now empty, its information label is set to ADMIN_LOW.

RETURN VALUES Upon successful completion, rename returns 0. Upon failure, rename returns −1 and sets
errno to indicate an error.

ERRORS rename fails and sets errno accordingly if any of these conditions is true:

EACCES A component of either path prefix denies search permission; either
the directory containing old or the directory containing new denies
write permissions; or write permission is denied by a directory to
which either old or new points. To bypass ownership restrictions,
the calling process may assert one or more of these privileges:
PRIV_FILE_DAC_SEARCH, PRIV_FILE_MAC_SEARCH,
PRIV_FILE_MAC_WRITE, PRIV_FILE_DAC_WRITE, and
PRIV_FILE_OWNER.

EBUSY new is a directory and the mount point for a mounted file system.

EDQUOT The directory in which the new name entry is being placed cannot
be extended because the user’s quota of disk blocks on that file sys-
tem has been exhausted.

EEXIST The link named by new is a directory containing entries other than
the directory itself (.) and its parent directory (..).

EINVAL new directory path name contains a path prefix that includes the
old directory.

EISDIR new points to a directory but old points to a file that is not a direc-
tory.

ELOOP Too many symbolic links were encountered in translating the path
name.

ENAMETOOLONG The length of old or new exceeds {PATH_MAX}, or a path name
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

EMLINK The file named by old is a directory, and the link count of the
parent directory of new would exceed {LINK_MAX}.

ENOENT The link named by old does not exist; or either old or new points to
an empty string.

2TSOL-170 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls rename (2TSOL)

ENOSPC The directory that would contain new cannot be extended.

ENOTDIR A component of either path prefix is not a directory; or old names a
directory and new names a nondirectory file.

EROFS The requested operation requires writing in a directory on a read-
only file system.

EXDEV The links named by old and new are on different file systems.

EIO An I/O error occurred while making or updating a directory entry.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

A single-level directory cannot be renamed. A multilevel directory cannot be the new
containing directory. There is no privilege to bypass these restrictions.

SEE ALSO chmod(2TSOL), link(2TSOL), unlink(2TSOL)

NOTES The system can deadlock if there is a loop in the file system graph. Such a loop occurs
when an entry in directory a (say a/name1) is a hard link to directory b, and an entry in
directory b (say b/name2) is a hard link to directory a. When such a loop exists and two
separate processes attempt to rename a/name1 to b/name2 and to rename b/name2 to
a/name1, the system may deadlock attempting to lock both directories for modification.
Use symbolic links instead of hard links for directories.

modified 01 May 1996 2TSOL-171

rmdir (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME rmdir − Remove a directory

SYNOPSIS #include <unistd.h>

int rmdir(const char ∗path);

MT-LEVEL Async-Signal-Safe

DESCRIPTION rmdir() removes the directory to which path points. The directory must not have any
entries other than “.” and “..”.

If the directory’s link count becomes zero and no process has the directory open, the
space occupied by the directory is freed and the directory is no longer accessible. If one or
more processes have the directory open when the last link is removed, the “.” and “..”
entries, if present, are removed before rmdir returns; and no new entries may be created
in the directory; but the directory is not removed until all references to the directory have
been closed.

Upon successful completion, rmdir marks for update the st_ctime and st_mtime fields of
the parent directory. A multilevel directory can be removed only when all its contained
single-level directories are empty.

The information label of the calling process is unchanged.

RETURN VALUES Upon successful completion, this function returns 0. Upon failure, this function returns
−1 and sets errno to indicate the error.

ERRORS The named directory is removed unless any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix.
To override this restriction, the calling process must assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES Write permission is denied on the directory containing the direc-
tory to be removed. To bypass discretionary or mandatory write
restrictions, the calling process must assert one or both of these
privileges: PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

EACCES If the containing directory has the the S_ISVTX variable set, the cal-
ling process must either be the owner of the containing directory
or the directory to be deleted, or must have write access to the
directory to be deleted. To override this restriction, the calling pro-
cess may assert one or more of these privileges:
PRIV_FILE_MAC_WRITE, PRIV_FILE_DAC_WRITE, and
PRIV_FILE_OWNER.

EBUSY The directory to be removed is the mount point for a mounted file
system.

EEXIST The directory contains entries other than “.” and “..”.

2TSOL-172 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls rmdir (2TSOL)

EFAULT path points to an illegal address.

EINVAL The directory to be removed is the current directory.

EINVAL The final component of path is ‘‘.’’.

EIO An I/O error occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named directory does not exist or is a null pathname.

ENOLINK path points to a remote machine, but the connection to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry to be removed is part of a read-only file sys-
tem.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

A multilevel directory can be removed only when all its contained single-level directories
are empty.

The information label of the calling process is unchanged.

SEE ALSO mkdir(1), rm(1), mkdir(2TSOL)

modified 1 May 1996 2TSOL-173

secconf (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME secconf − get security configuration information

SYNOPSIS #include <tsol/secconf.h>

long secconf(int name);

AVAILABILITY Available only on Trusted Solaris 2.x systems

DESCRIPTION The secconf() system call provides a method for an application to determine the current
value of a configurable security system limit or option.

The name argument represents the system variable to be queried.

int name Variable Name Description
_TSOL_CLEAN_WINDOWS tsol_clean_windows Force cleaning of unused

register windows before
return from system call
(SPARC architecture only)

_TSOL_ENABLE_IL tsol_enable_il ILs are allowed to be set (or
displayed)

_TSOL_ENABLE_IL_FLOATING tsol_enable_il_floating Enables IL floating

_TSOL_FLOAT_SYSV_MSG_IL tsol_float_sysv_msg_il Enables IL floating on
SVIPC message queues

_TSOL_FLOAT_SYSV_SEM_IL tsol_float_sysv_sem_il Enables IL floating on
SVIPC semaphores

_TSOL_FLOAT_SYSV_SHM_IL tsol_float_sysv_shm_il Enables IL floating on
SVIPC shared memory seg-
ments

_TSOL_FLUSH_BUFFERS tsol_flush_buffers Force flushing of file data
blocks before inode updates

_TSOL_HIDE_UPGRADED_NAMES tsol_hide_upgraded_names Hide upgrade directory
entries

_TSOL_PRIVS_DEBUG tsol_privs_debug Enables privilege debugging
mode

_TSOL_RESET_IL_ON_EXEC tsol_reset_il_on_exec Reset IL to admin_low
before exec

2TSOL-174 modified 14 Oct 1997

Trusted Solaris 2.5 TSOL System Calls secconf (2TSOL)

RETURN VALUES If name is an invalid value, secconf() will return −1 and set errno to indicate the error. If
secconf() fails due to a value of name that is not defined on the system, the call will
return a value of −1 without changing the value of errno.

ERRORS The function will return the following errors:

EINVAL The parameter name is unknown.

FILES system(4) system configuration information file

SEE ALSO pathconf(2), sysconf(3C)

modified 14 Oct 1997 2TSOL-175

semctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME semctl − Semaphore-control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, . . .);

DESCRIPTION semctl() provides a variety of semaphore-control operations as specified by cmd. The
fourth argument is optional, depending upon the operation requested. If required, the
fourth argument is of type union semun, which must be explicitly declared by the appli-
cation program.

union semun {
int val;
struct semid_ds ∗buf;
ushort ∗array

} arg ;

The permission required for a semaphore operation is given as {token}, where token is the
type of permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

The commands described hereafter as [READ] operations all require that the calling pro-
cess have discretionary read access to the data structure referenced by semid, or that the
effective privilege set of the process include PRIV_IPC_DAC_READ. Likewise, the com-
mands described as [ALTER] operations all require that the calling process have discre-
tionary write access to the data structure referenced by semid, or that the effective
privilege set of the process include PRIV_IPC_DAC_WRITE.

If the sensitivity label of the object does not match the sensitivity label of the calling pro-
cess, then the process must have these privileges asserted: PRIV_IPC_MAC_READ for
[READ] operations; PRIV_IPC_MAC_WRITE for [ALTER] operations.

See the Semaphore Operation Permissions subsection of the DEFINITIONS section of
intro(2TSOL) for more information. These semaphore operations as specified by cmd are
executed with respect to the semaphore specified by semid and semnum.

GETVAL Return the value of semval. [See intro(2TSOL).] {READ}

SETVAL Set the value of semval to arg.val. {ALTER}. When this command is success-
fully executed, the semadj value corresponding to the specified semaphore
in all processes is cleared.

GETPID Return the value of (int) sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

2TSOL-176 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls semctl (2TSOL)

GETZCNT Return the value of semzcnt. {READ}

The following operations return and set, respectively, every semval in the set of sema-
phores:

GETALL Place semvals into array to which arg.array points. {READ}

SETALL Set semvals according to the array to which arg.array points. {ALTER}. When
this cmd is successfully executed, the semadj values corresponding to each
specified semaphore in all processes are cleared.

If information-label floating is enabled on this system, the SETALL and SETVAL opera-
tions may float the information label of the semaphore group unless the
PRIV_IPC_NOFLOAT privilege is asserted. Likewise, the GETALL and GETVAL operations
may float the information label of the process unless the PRIV_PROC_NOFLOAT privilege
is asserted.

These operations are also available:

IPC_STAT Place the current value of each member of the data structure associated with
semid into the structure to which arg.buf points. The contents of this struc-
ture are defined in intro(2TSOL). {READ}

IPC_SET Set the value of these members of the data structure associated with semid to
the corresponding value found in the structure to which arg.buf points:

sem_perm.uid
sem_perm.gid
sem_perm.mode /∗ only access permission bits ∗/

This command can be executed only by a process that either has an effective
user ID equal to sem_perm.cuid or sem_perm.uid in the data structure asso-
ciated with semid, or has the PRIV_IPC_OWNER privilege in its set of effec-
tive privileges. In addition, the process must either have mandatory write
access to the Semaphore set or have asserted the PRIV_IPC_MAC_WRITE
privilege.

IPC_RMID Remove from the system the semaphore identifier specified by semid and
destroy the set of semaphores and data structure associated with that
identifier. This command can be executed only by a process that either has an
effective user ID equal to sem_perm.cuid or sem_perm.uid in the data struc-
ture associated with semid, or has the PRIV_IPC_OWNER privilege asserted.
In addition, the process must also have mandatory write access to the Sema-
phore set or have asserted the PRIV_IPC_MAC_WRITE privilege.

RETURN VALUES Upon successful completion, the value returned depends on cmd:

GETVAL The value of semval

GETPID The value of (int) sempid

GETNCNT The value of semncnt

GETZCNT The value of semzcnt

modified 9 Sep 1997 2TSOL-177

semctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

All other successful completions return 0; failures return −1 and set errno to indicate the
error.

ERRORS semctl fails if any of these conditions is true:

EACCES Operation permission is denied to the calling process [see Intro(2TSOL)],
and the process lacks the appropriate privilege override(s) in its set of
effective privileges.

EINVAL semid is not a valid semaphore identifier.

semnum is less than 0 or greater than sem_nsems −1.

cmd is not a valid command.

cmd is IPC_SET and sem_perm.uid or sem_perm.gid is not valid.

For GETVAL or GETALL, the operation would float the information label of
the process above its sensitivity label.

For SETVAL or SETALL, the operation would float the information label of
the object above its sensitivity label.

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user of the calling
process is not equal to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid, and the appropriate privilege is
not asserted.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure to
which arg.buf points.

ERANGE cmd is SETVAL or SETALL and the value to which semval is to be set is
greater than the system-imposed maximum.

SUMMARY OF
TRUSTED
SOLARIS

DIFFERENCES

Appropriate privilege is required to override access checks.

SEE ALSO ipcs(1TSOL), intro(2TSOL), semget(2TSOL), semop(2TSOL)

2TSOL-178 modified 9 Sep 1997

Trusted Solaris 2.5 TSOL System Calls semget (2TSOL)

NAME semget, semgetl − Get set of semaphores

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key , int nsems, int semflg);

cc [flag ...] file ... -ltsol [library ...]
#include <sys/tsol/ipcl.h>

int semgetl(key_t key, int nsems, int semflg, const bslabel_t ∗slabel);

DESCRIPTION A semaphore structure is identified by a unique combination of key and sensitivity label.
This qualification of keys by sensitivity labels allows applications that use semaphore
structures to be run at multiple process sensitivity labels without inadvertently sharing
data.

semget() returns the semaphore identifier associated with the union of key and the sensi-
tivity label of the calling process. semgetl() returns the semaphore-structure identifier
associated with the union of key and slabel. If the value of slabel does not match the sensi-
tivity label of the calling process, then the effective privilege set of the process must
include both PRIV_IPC_MAC_READ and PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of semflg is denied
to the calling process, semget and semgetl require one or both of these privileges:
PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A semaphore identifier and associated data structure and set containing nsems sema-
phores [see intro(2)] are created for key if one of these conditions is true:

· key is equal to IPC_PRIVATE.

· key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is initialized
as follows:

· sem_perm.cuid and sem_perm.uid are set equal to the effective user ID, and
sem_perm.cgid and sem_perm.gid are set equal to the effective group ID of the cal-
ling process.

· The access permission bits of sem_perm.mode are set equal to the access permission
bits of semflg.

· sem_nsems is set equal to the value of nsems.

· sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

If information labels are enabled on this system, the information label on a new sema-
phore set is ADMIN_LOW.

modified 27 Nov 1996 2TSOL-179

semget (2TSOL) TSOL System Calls Trusted Solaris 2.5

RETURN VALUES Upon successful completion, semget and semgetl return a nonnegative integer, namely a
semaphore identifier. Upon failure, semget and semgetl return −1 and sets errno to indi-
cate the error.

ERRORS semget and semgetl fail if any of these conditions is true:

EACCES A semaphore-structure identifier exists for the union of key and sensitivity
label, but operation permission [see intro(2)] as specified by the low-order 9
bits of semflg would not be granted; or the sensitivity label check did not pass,
and the calling process does not have the appropriate privilege override(s) in
its set of effective privileges.

EEXIST A semaphore identifier exists for key but (semflg&IPC_CREAT) and
(semflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

nsems is either less than or equal to zero or greater than the system-imposed
limit.

A semaphore identifier exists for key , but the number of semaphores in the set
associated with it is less than nsems, and nsems is not equal to zero.

ENOENT A semaphore-structure identifier does not exist for the union of key and sensi-
tivity label, and (semflg&IPC_CREAT) is false.

ENOSPC A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphore identifiers systemwide would be
exceeded.

A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores systemwide would be exceeded.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine semaphore-group identifiers.

SEE ALSO ipcs(1TSOL), ipcrm(1TSOL), intro(2TSOL), semctl(2TSOL), semop(2TSOL), stdipc(3C)

2TSOL-180 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls semop (2TSOL)

NAME semop, semopl − Semaphore operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf ∗sops , size_t nsops);

cc [flag ...] file ... -ltsol [library ...]
#include <sys/tsol/ipcl.h>

int semopl(int semid, struct sembuf ∗sops, size_t nsops,
bilabel_t ∗ilabel);

DESCRIPTION semop() is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid. sops is a pointer
to the array of semaphore-operation structures. nsops is the number of such structures in
the array. The contents of each structure includes these members:

short sem_num; /∗ semaphore number ∗/
short sem_op; /∗ semaphore operation ∗/
short sem_flg; /∗ operation flags ∗/

semop() uses the current information label of the process to label a semaphore group.
semopl() is identical to semop() but allows the calling process to label a semaphore
group with a particular information label as specified by ilabel. If ilabel does not match the
current information label of the process, semopl requires that the effective privilege set of
the calling process include these privileges:

· PRIV_IPC_UPGRADE_IL if ilabel specifies an upgrade

· PRIV_IPC_DOWNGRADE_IL if ilabel specifies a downgrade

Each semaphore operation specified by sem_op is performed on the corresponding sema-
phore specified by semid and sem_num. The permission required for a semaphore opera-
tion is given as {token}, where token is the type of permission needed. The types of permis-
sion are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions section of intro(2TSOL) for more information.

modified 27 Nov 1996 2TSOL-181

semop (2TSOL) TSOL System Calls Trusted Solaris 2.5

sem_op specifies the {ALTER} token if its value is negative or positive, and the {READ}
token if its value is zero. What may occur depends on the value of sem_op:

sem_op is a negative integer; {ALTER}

· If semval [see intro(2TSOL)] is greater than or equal to the absolute value of sem_op,
the absolute value of sem_op is subtracted from semval. Also, if (sem_flg&SEM_UNDO)
is true, the absolute value of sem_op is added to the semadj value of the calling pro-
cess [see exit(2)] for the specified semaphore.

· If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is true,
semop() returns immediately.

· If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT) is false,
semop() increments the semncnt associated with the specified semaphore and
suspends execution of the calling process until one of these conditions occurs:

· semval becomes greater than or equal to the absolute value of sem_op. When this
condition occurs, the value of semncnt associated with the specified semaphore is
decremented; the absolute value of sem_op is subtracted from semval; and if
(sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added to the calling
process’s semadj value for the specified semaphore.

· The semid for which the calling process is awaiting action is removed from the sys-
tem. [See semctl(2TSOL).] When this removal occurs, errno is set equal to EIDRM,
and a value of −1 is returned.

· The calling process receives a signal that is to be caught. When this reception
occurs, the value of semncnt associated with the specified semaphore is decre-
mented, and the calling process resumes execution in the manner prescribed in
signal(3C).

sem_op is a positive integer; {ALTER}

· The value of sem_op is added to semval; and if (sem_flg&SEM_UNDO) is true, the
value of sem_op is subtracted from the calling process’s semadj value for the specified
semaphore.

sem_op is zero; {READ}

· If semval is zero, semop() returns immediately.

· If semval is not equal to zero and (sem_flg&IPC_NOWAIT) is true, semop() returns
immediately.

· If semval is not equal to zero and (sem_flg&IPC_NOWAIT) is false, semop() incre-
ments the semzcnt associated with the specified semaphore and suspends execution
of the calling process until one of the conditions occurs:

· semval becomes zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

· The semid for which the calling process is awaiting action is removed from the sys-
tem. When this removal occurs, errno is set equal to EIDRM, and a value of −1 is
returned.

· The calling process receives a signal that is to be caught. When this reception

2TSOL-182 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls semop (2TSOL)

occurs, the value of semzcnt associated with the specified semaphore is decre-
mented, and the calling process resumes execution in the manner prescribed in
signal(3C).

If sem_op is zero {READ}, the process must have discretionary and mandatory read access
to the semaphore structure to which semid refers. Overriding these checks requires that
the effective privilege set of the process include one or both of these privileges as neces-
sary: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

If sem_op is a positive or a negative number {ALTER}, the process must have discretionary
and mandatory write access to the semaphore structure to which semid refers. Overriding
these checks requires that the effective privilege set of the process include one or both of
these privileges as necessary: PRIV_IPC_DAC_WRITE and PRIV_IPC_MAC_WRITE.

Unlike messages within a message queue, the individual semaphores within a semaphore
structure are not labeled with an information label.

If information label floating is enabled on this system, this system call may cause the
information label of the subject or the object to float. For semop()-{ALTER}, the informa-
tion label of the semaphore group is combined with the information label of the subject to
“float up” the semaphore group’s information label unless the subject has asserted the
PRIV_IPC_NOFLOAT privilege. For semopl, the information label of the semaphore
group is combined with the information label supplied by the caller. The supplied infor-
mation label must be dominated by the sensitivity label of the semaphore set. If the sup-
plied information label dominates but is not equal to the information label of the subject
(an upgrade), the subject must assert the PRIV_IPC_UPGRADE_IL privilege. If the sup-
plied information label does not dominate the information label of the subject (a down-
grade), the subject must assert the PRIV_IPC_DOWNGRADE_IL privilege. If sem_op is
zero, the information label of the semaphore is unchanged.

If sem_op is zero-{READ}, then the information label of the process is combined with the
information label of the semaphore group to “float up” the information label of the sub-
ject unless the subject has asserted PRIV_PROC_NOFLOAT.

RETURN VALUES Upon successful completion, semop and semopl return a value of zero. Upon failure,
semop and semopl return a value of −1 and sets errno to indicate the error.

ERRORS semop and semopl fail if any of these conditions is true for any of the semaphore opera-
tions specified by sops :

E2BIG nsops is greater than the system-imposed maximum.

EACCES Operation permission is denied to the calling process ([see intro(2)], and the
calling process does not have the appropriate privilege(s) in its set of effective
privileges.

EAGAIN The operation would result in suspension of the calling process but
(sem_flg&IPC_NOWAIT) is true.

EFAULT sops points to an illegal address.

The address to which ilabel points is illegal.

modified 27 Nov 1996 2TSOL-183

semop (2TSOL) TSOL System Calls Trusted Solaris 2.5

EFBIG sem_num is less than zero or greater than or equal to the number of sema-
phores in the set associated with semid.

EIDRM semop() A semid was removed from the system.

EINTR A signal was received.

EINVAL semid is not a valid semaphore identifier, or the number of individual sema-
phores for which the calling process requests a SEM_UNDO would exceed the
limit.

This operation would cause the information label of the semaphore group to
dominate the sensitivity label of the group, and the calling process does not
have the appropriate privilege override(s) in its set of effective privileges.

This operation would cause the information label of the calling process to
float above its sensitivity label, and the calling process does not have the
appropriate privilege override in its set of effective privileges.

The label to which ilabel points is not a valid information label.

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

EPERM This call is trying either to upgrade or to downgrade the new information
label from the IL of the process but is not suitably privileged.

ERANGE An operation would cause a semval or a semadj value to overflow the
system-imposed limit.

Upon successful completion, the value of sempid for each semaphore specified in the
array to which sops points is set equal to the process ID of the calling process.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

SEE ALSO ipcs(1TSOL), intro(2TSOL), exec(2TSOL), exit(2), fork(2TSOL), semctl(2TSOL),
semget(2TSOL)

2TSOL-184 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls setclearance (2TSOL)

NAME setclearance − Set process clearance

SYNOPSIS #include <tsol/label.h>

int setclearance(bclear_t ∗clearance_p);

DESCRIPTION setclearance() is used to set the clearance for the calling process provided it has the
PRIV_PROC_SETCLR privilege in its set of effective privileges. setclearance() verifies
that the information pointed to by clearance_p is formatted correctly, and that the result-
ing clearance will dominate the sensitivity label of the process.

RETURN VALUES setclearance() returns 0 if successful. If not, setclearance returns −1 and sets errno to
indicate the error.

ERRORS setclearance() fails and does not set the process clearance if any of these conditions pre-
vails:

EFAULT The clearance_p argument points to an invalid address.

EINVAL The clearance_p argument does not point to a properly formatted clearance.

EINVAL The clearance pointed to by clearance_p does not dominate the process sensi-
tivity label.

EPERM The calling process does not have the necessary privilege
(PRIV_PROC_SETCLR) to set the clearance.

SEE ALSO getclearance(2TSOL)

modified 21 Feb 1995 2TSOL-185

setcmwlabel (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME setcmwlabel, fsetcmwlabel, lsetcmwlabel − Set CMW label of a file

SYNOPSIS #include <tsol/label.h>

int setcmwlabel(const char ∗ path, const bclabel_t ∗ label_p
const setting_flag_t flag);

int fsetcmwlabel(int fd, const bclabel_t ∗ label_p,
const setting_flag_t flag);

int lsetcmwlabel(const char ∗ path, const bclabel_t ∗ label_p,
const setting_flag_t flag);

DESCRIPTION The file that is named by path or referred to by fd has its CMW label changed as specified
provided the file resides on a UFS or TMPFS file system.

If flag equals SETCL_ALL, then both parts of the file’s CMW label are to be set and the fol-
lowing checks must be made:

· The sensitivity label must dominate the information label.

· The sensitivity label of label_p must be in the sensitivity label range of the containing
file system.

· If the information label of label_p does not dominate the existing information label (a
downgrade) and the calling process is not the owner of the file, then the calling pro-
cess must have PRIV_FILE_OWNER in its set of effective privileges.

· If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

· If the sensitivity label of label_p dominates but does not equal the existing sensitivity
label (an upgrade), then the calling process must have PRIV_FILE_UPGRADE_SL in its
set of effective privileges.

· If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in its
set of effective privileges.

· If the sensitivity label operation is a downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set of
effective privileges.

If flag is equal to SETCL_IL, then the information label of the file’s CMW label is to be set
and the following checks must be made:

· The existing sensitivity label must dominate the information label of label_p.

· If the information label of label_p equals the existing information label, then neither
PRIV_FILE_UPGRADE_IL nor PRIV_FILE_DOWNGRADE_IL is required.

· If the information label of label_p dominates but does not equal the existing informa-
tion label (an upgrade), then the calling process must have PRIV_FILE_UPGRADE_IL
in its set of effective privileges.

· If the information label of label_p does not dominate the existing information label (a

2TSOL-186 modified 8 Oct 1993

Trusted Solaris 2.5 TSOL System Calls setcmwlabel (2TSOL)

downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_IL in its
set of effective privileges.

· If the operation is an information label downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set of
effective privileges.

If flag equals SETCL_SL, then the sensitivity label of the file’s CMW label is to be set and
the following checks must be made:

· The sensitivity label of label_p must dominate the existing information label.

· The sensitivity label of label_p must be in the sensitivity label range of the containing
file system.

· If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

· If the sensitivity label of label_p dominates but does not equal the existing sensitivity
label (an upgrade), then the calling process must have PRIV_FILE_UPGRADE_SL in its
set of effective privileges.

· If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in its
set of effective privileges.

· If the operation is a sensitivity label downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set of
effective privileges.

There are several checks that are applicable if either the information label or the sensi-
tivity label is being changed:

· The calling process must have discretionary write access to the file.

· If there is an open file descriptor reference to the file, then the calling process must
have PRIV_PROC_TRANQUIL in its set of effective privileges.

setcmwlabel() and lsetcmwlabel() function identically except when the final component
is a symbolic link. If the final component is a symbolic link, lsetcmwlabel() sets the CMW
label of the symbolic link, but setcmwlabel() sets the CMW label of the object referred to
by the symbolic link.

NOTES If the sensitivity label is being set, then the calling process is responsible for verifying that
sensitivity label is within the accreditation range of the system.

RETURN VALUES setcmwlabel() , fsetcmwlabel() , and lsetcmwlabel() return 0 if successful. If not, they
return −1 and set errno to indicate the error.

ERRORS setcmwlabel() , and lsetcmwlabel() fail and the file is unchanged if any of these condi-
tions prevails:

EACCES Search permission is denied for a component of the path prefix of path.

The calling process does not have mandatory write access to the final

modified 8 Oct 1993 2TSOL-187

setcmwlabel (2TSOL) TSOL System Calls Trusted Solaris 2.5

component of path because the sensitivity label of the final component of
path does not dominate the sensitivity label of the calling process and the
calling process does not have PRIV_FILE_MAC_WRITE in its set of effec-
tive privileges.

The calling process does not have discretionary write access to the final
component of path .

EBUSY There is an open file descriptor reference to the final component of path
and the calling process does not have PRIV_PROC_TRANQUIL in its set
of effective privileges.

EFAULT path or label_p points outside the allocated address space of the process.

EINVAL path does not reside on a UFS or TMPFS file system.

flag is SETCL_ALL and the sensitivity label of label_p does not dominate
the information label of label_p.

flag is SETCL_IL and the existing sensitivity label does not dominate the
information label of label_p.

flag is SETCL_SL and the sensitivity label of label_p does not dominate
the existing information label.

The sensitivity label of label_p is not in the sensitivity label range of the
containing file system.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path .

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} [See sysconf(2V)]
while {_POSIX_NO_TRUNC} is in effect [See pathconf(2V)].

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory write access to the final
component of path because the sensitivity label of the final component of
path is outside the clearance of the calling process and the calling pro-
cess does not have PRIV_FILE_MAC_WRITE in its set of effective
privileges.

The calling process attempted to upgrade the information label associ-
ated with the final component of path but did not have
PRIV_FILE_UPGRADE_IL in its set of effective privileges.

The calling process attempted to downgrade the information label asso-
ciated with the final component of path but did not have
PRIV_FILE_DOWNGRADE_IL in its set of effective privileges.

A calling process that is not the owner of the file attempted to down-
grade the information label or sensitivity label associated with the final

2TSOL-188 modified 8 Oct 1993

Trusted Solaris 2.5 TSOL System Calls setcmwlabel (2TSOL)

component of path but did not have PRIV_FILE_OWNER in its set of
effective privileges.

The calling process attempted to upgrade the sensitivity label associated
with the final component of path but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label associ-
ated with the final component of path but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by path resides on a read-only file system.

fsetcmwlabel() fails if if any of these conditions prevails:

EACCES The descriptor is open only for reading, the calling process does not
have mandatory write access to the object referred to by the descriptor
because the sensitivity label of the object does not dominate the sensi-
tivity label of the calling process, and the calling process does not have
PRIV_FILE_MAC_WRITE in its set of effective privileges.

The calling process does not have discretionary write access to the object
referred to by the descriptor.

EBADF fd does not refer to a valid descriptor.

EBUSY There is an open file descriptor reference to the object referred to by the
descriptor and the calling process does not have
PRIV_PROC_TRANQUIL in its set of effective privileges.

EFAULT label_p points outside the allocated address space of the process.

EINVAL fd refers to a socket, not a file.

fd does not refer to a file on a UFS or TMPFS file system.

flag is SETCL_ALL and the sensitivity label of label_p does not dominate
the information label of label_p.

flag is SETCL_IL and the existing sensitivity label does not dominate the
information label of label_p.

flag is SETCL_SL and the sensitivity label of label_p does not dominate
the existing information label.

The sensitivity label of label_p is not in the sensitivity label range of the
containing file system.

EIO An I/O error occurred while reading from or writing to the file system.

EPERM The calling process attempted to upgrade the information label associ-
ated with the file but did not have PRIV_FILE_UPGRADE_IL in its set of
effective privileges.

The calling process attempted to downgrade the information label asso-
ciated with the file but did not have PRIV_FILE_DOWNGRADE_IL in its
set of effective privileges.

modified 8 Oct 1993 2TSOL-189

setcmwlabel (2TSOL) TSOL System Calls Trusted Solaris 2.5

The calling process is not the owner of the file, attempted to downgrade
the information label or sensitivity label associated with the file, but did
not have PRIV_FILE_OWNER in its set of effective privileges.

The calling process attempted to upgrade the sensitivity label associated
with the file but did not have PRIV_FILE_UPGRADE_SL in its set of effec-
tive privileges.

The calling process attempted to downgrade the sensitivity label associ-
ated with the file but did not have PRIV_FILE_DOWNGRADE_SL in its
set of effective privileges.

EROFS The file referred to by fd resides on a read-only file system.

SEE ALSO getcmwfsrange(2TSOL), getcmwlabel(2TSOL)

2TSOL-190 modified 8 Oct 1993

Trusted Solaris 2.5 TSOL System Calls setcmwplabel (2TSOL)

NAME setcmwplabel − Set process CMW label

SYNOPSIS cc [flag . . .] file . . . −ltsol [library . . .]

#include <tsol/label.h>

int setcmwplabel(bclabel_t ∗label_p, setting_flag_t flag)

DESCRIPTION setcmwplabel() sets the information label, the sensitivity label, or both labels for the pro-
cess making the call. The flag argument identifies which label(s) to set:

SETCL_ALL Set the entire CMW label of the process.

SETCL_SL Set only the sensitivity label.

SETCL_IL Set only the information label.

setcmwplabel verifies that the CMW label to which label_p points is formatted correctly
and that the resulting label would satisfy the requirement that the clearance must dom-
inate the sensitivity label, which must dominate the information label of the process.

When flag limits the setting to a single portion of the CMW label, setcmwplabel ignores
the other value in label_p. If the specified values for sensitivity label or information label
do not match current values of the process, the set of effective privileges of the calling
process must include PRIV_PROC_SETSL or PRIV_PROC_SETIL, respectively.

RETURN VALUES Upon success, setcmwplabel returns 0. Upon failure, setcmwplabel returns −1 and sets
errno to indicate the error

ERRORS setcmwplabel fails and does not set the process CMW label if any of these conditions is
true:

EFAULT The label_p argument points to an invalid address.

EINVAL The label_p argument points to an improperly formatted label.

The label_p argument and the flag argument would cause the process informa-
tion label not to be dominated by the process sensitivity label.

The label_p argument and the flag argument would cause the process sensi-
tivity label not to be dominated by the clearance.

EPERM The calling process lacks the PRIV_PROC_SETIL privilege necessary to set the
information label specified by flag.

The calling process lacks the PRIV_PROC_SETSL privilege necessary to set the
sensitivity label specified by flag.

SEE ALSO getcmwplabel(2TSOL)

modified 21 Feb 1995 2TSOL-191

setregid (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME setregid − set real and effective group IDs

SYNOPSIS #include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

DESCRIPTION setregid() is used to set the real and effective group IDs of the calling process. If rgid is
−1, the real GID is not changed; if egid is −1, the effective GID is not changed. The real and
effective GIDs may be set to different values in the same call.

If the calling process has the PRIV_PROC_SETID privilege, the real GID and the effec-
tive GID can be set to any legal value.

If the calling process does not have the PRIV_PROC_SETID privilege, either the real GID
can be set to the saved setGID from execve(2), or the effective GID can either be set to the
saved setGID or the real GID. Note: if a setGID process sets its effective GID to its real GID,
it can still set its effective GID back to the saved setGID.

In either case, if the real GID is being changed (that is, if rgid is not −1), or the effective GID
is being changed to a value not equal to the real GID, the saved setGID is set equal to the
new effective GID.

RETURN VALUES setregid() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS setregid() will fail and neither of the group IDs will be changed if:

EINVAL The value of rgid or egid is less than 0 or greater than USHRT_MAX
(defined in <limits.h>).

EPERM The calling process does not have the PRIV_PROC_SETID privilege
and a change other than changing the real GID to the saved setGID, or
changing the effective GID to the real GID or the saved GID, was
specified.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The super-user check in base Solaris is replaced by privilege check in Trusted Solaris.

SEE ALSO execve(2TSOL), getgid(2), setreuid(2TSOL), setuid(2TSOL),

2TSOL-192 modified 11 Mar 1996

Trusted Solaris 2.5 TSOL System Calls setreuid (2TSOL)

NAME setreuid − set real and effective user IDs

SYNOPSIS #include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION setreuid() is used to set the real and effective user IDs of the calling process. If ruid is −1,
the real user ID is not changed; if euid is −1, the effective user ID is not changed. The real
and effective user IDs may be set to different values in the same call.

If the calling process has the PRIV_PROC_SETID privilege, the real user ID and the
effective user ID can be set to any legal value.

If the calling process does not have the PRIV_PROC_SETID privilege, either the real
user ID can be set to the effective user ID, or the effective user ID can either be set to the
saved set-user ID from execve(2) or the real user ID. Note: if a set-UID process sets its
effective user ID to its real user ID, it can still set its effective user ID back to the saved
set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not −1), or the effective
user ID is being changed to a value not equal to the real user ID, the saved set-user ID is
set equal to the new effective user ID.

RETURN VALUES setreuid() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS setreuid() will fail and neither of the user IDs will be changed if:

EINVAL The value of ruid or euid is less than 0 or greater than USHRT_MAX
(defined in <limits.h>).

EPERM The calling process does not have the PRIV_PROC_SETID privilege
and a change other than changing the real user ID to the effective user
ID, or changing the effective user ID to the real user ID or the saved set-
user ID, was specified.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The super-user check in base Solaris is replaced by privilege check in Trusted Solaris.

SEE ALSO execve(2TSOL), getuid(2), setregid(2TSOL), setuid(2TSOL)

modified 11 Mar 1996 2TSOL-193

setuid (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME setuid, setegid, seteuid, setgid − Set user and group IDs

SYNOPSIS #include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

MT-LEVEL setuid()andsetgid() are Async-Signal-Safe.

DESCRIPTION The setuid() function sets the real user ID, effective user ID, and saved user ID of the cal-
ling process. The setgid function sets the real group ID, effective group ID, and saved
group ID of the calling process. The setegid and seteuid functions set the effective group
and the effective user IDs respectively for the calling process. See intro(2TSOL) for more
information on real, effective, and saved user and group IDs.

At login time, the real user ID, effective user ID, and saved user ID of the login process are
set to the login ID of the user responsible for the creation of the process. The same is true
for the real, effective, and saved group IDs; they are set to the group ID of the user
responsible for the creation of the process.

When a process calls exec(2TSOL) to execute a file (program), the user and/or group
identifiers associated with the process can change. If the file executed is a set-user-ID file,
the effective and saved user IDs of the process are set to the owner of the file executed. If
the file executed is a set-group-ID file, the effective and saved group IDs of the process are
set to the group of the file executed. If the file executed is not a set-user-ID or set-group-ID
file, the effective user ID, saved user ID, effective group ID, and saved group ID are not
changed.

If the process calling setuid has the PRIV_PROC_SETID privilege, the real, effective, and
saved user IDs are set to the uid parameter.

If the process calling setuid does not have the PRIV_PROC_SETID privilege, but uid is
either the real user ID or the saved user ID of the calling process, the effective user ID is
set to uid.

If the new user ID differs from the initial user ID under which this program began execu-
tion, the saved privilege set is replaced by the effective privilege set; and the effective
privilege set is cleared. If the new user ID matches the initial user ID under which this
program began execution, the saved privilege set replaces the effective privilege set.

If the process calling setgid has the PRIV_PROC_SETID privilege, the real, effective, and
saved group IDs are set to the gid parameter.

If the process calling setgid does not have the PRIV_PROC_SETID privilege, but gid is
either the real group ID or the saved group ID of the calling process, the effective group
ID is set to gid.

2TSOL-194 modified 21 Feb 1995

Trusted Solaris 2.5 TSOL System Calls setuid (2TSOL)

RETURN VALUES Upon successful completion, these functions return a value of 0. Otherwise, they return a
value of −1 and set errno to indicate the error.

ERRORS setuid and setgid fail if either of these conditions is true:

EINVAL The uid or gid is out of range.

EPERM For setuid and seteuid, the calling process does not have PRIV_PROC_SETID
in its effective set of privileges, and the uid parameter does not match either
the real or saved user IDs.

For setgid and setegid, the calling process does not have PRIV_PROC_SETID
in its effective set of privileges, and the gid parameter does not match either
the real or the saved group ID.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

A check for PRIV_PROC_SETID replaces super-user checks in the base Solaris.

SEE ALSO intro(2TSOL), exec(2TSOL), getgroups(2TSOL), getuid(2), stat(5)

modified 21 Feb 1995 2TSOL-195

shmctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME shmctl − Shared-memory control operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds ∗buf);

DESCRIPTION shmctl() provides a variety of shared-memory control operations as specified by cmd.
The permission required for a shared-memory control operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2TSOL) for more informa-
tion.

The following operations require the specified tokens:

IPC_STAT Place the current value of each member of the data structure associated
with shmid into the structure to which buf points. The contents of this
structure are defined in intro(2TSOL). {READ}

The calling process must either have mandatory read access to the
shared-memory segment or have asserted the PRIV_IPC_MAC_READ
privilege, and either have discretionary read access to the data structure
or have PRIV_IPC_DAC_READ in its set of effective privileges.

IPC_SET Set the value of the following members of the data structure associated
with shmid to the corresponding value found in the structure to which
bufpoints:

shm_perm.uid
shm_perm.gid
shm_perm.mode /∗ only access permission bits ∗/

This command can be executed only by a process that either has an
effective user ID equal to sem_perm.cuid or sem_perm.uid in the data
structure associated with semid, or has PRIV_IPC_OWNER in its set of
effective privileges. In addition, the process must either have mandatory
write access to the semaphore set or have asserted the
PRIV_IPC_MAC_WRITE privilege.

IPC_RMID Remove from the system the shared-memory identifier specified by

2TSOL-196 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls shmctl (2TSOL)

shmid and destroy the shared-memory segment and data structure asso-
ciated with the identifier. This command can be executed only by a pro-
cess that either has an effective user ID equal to shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid, or has
PRIV_IPC_OWNER in its set of effective privileges. In addition, the pro-
cess must either have mandatory write access to the shared memory
segment or have asserted the PRIV_IPC_MAC_WRITE privilege.

SHM_LOCK Lock the shared-memory segment specified by shmid in memory. This
command can be executed only by a process that has discretionary and
mandatory read access (or the appropriate privilege override) and also
has PRIV_SYS_CONFIG in its effective privilege set.

SHM_UNLOCK Unlock the shared-memory segment specified by shmid. This command
can be executed only by a process that has discretionary and mandatory
read access (or the appropriate privilege override) and also has
PRIV_SYS_CONFIG in its effective privilege set.

RETURN VALUES Upon successful completion, shmctl returns a value of 0. Upon failure, shmctl returns a
value of −1 and sets errno to indicate the error.

ERRORS shmctl() fails if any of these conditions is true:

EACCES cmd is equal to IPC_STAT. {READ} operation permission is denied to the
calling process, and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EFAULT buf points to an illegal address.

EINVAL shmid is not a valid shared-memory identifier.

cmd is not a valid command.

cmd is IPC_SET and shm_perm.uid or shm_perm.gid is not valid.

ENOMEM cmd is equal to SHM_LOCK and there is not enough memory.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure
to which buf points.

EPERM cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling
process does not match the value of shm_perm.cuid or shm_perm.uid
in the data structure associated with shmid; or the mandatory access
check failed; and the calling process does not have the appropriate
privilege overrides(s) in its set of effective privileges.

cmd is equal to SHM_LOCK or SHM_UNLOCK and PRIV_SYS_CONFIG is
not in the effective privilege set of the process.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

modified 27 Nov 1996 2TSOL-197

shmctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

Appropriate privilege is required to override access checks.

SEE ALSO ipcs(1TSOL), intro(2TSOL), shmget(2TSOL), shmop(2TSOL)

NOTES The user must explicitly remove shared-memory segments after the last reference to them
has been removed.

2TSOL-198 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls shmget (2TSOL)

NAME shmget, shmgetl − Get shared-memory segment identifier

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key , size_t size, int shmflg);

cc [flag ...] file ... -ltsol [library ...]
#include <sys/tsol/ipcl.h>

int shmgetl(key_t key, size_t size, int shmflg, const bslabel_t ∗slabel);

DESCRIPTION A shared-memory segment is identified by a unique combination of key and sensitivity
label. This qualification of keys by sensitivity labels allows applications that use shared-
memory segments to be run at multiple process sensitivity labels without inadvertently
sharing data.

shmget() returns the shared-memory identifier associated with the union of key and the
sensitivity label of the calling process.

shmgetl() returns the shared-memory identifier associated with the union of key and sla-
bel. If the value of slabel does not match the sensitivity label of the calling process, then the
effective privilege set of the process must include the necessary privileges:
PRIV_IPC_MAC_READ and PRIV_IPC_MAC_WRITE.

If discretionary read/write access is denied to the calling process as speci- fied by the
low-order 9 bits of shmflg, both shmget and shmgetl require one or both of these
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A shared-memory identifier and associated data structure and shared-memory segment
of at least size bytes [see intro(2)] are created for key if one of these conditions is true:

key is equal to IPC_PRIVATE.

key does not already have a shared-memory identifier associated with it, and
(shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared-memory identifier is
initialized as follows:

shm_perm.cuid and shm_perm.uid are set equal to the effective user ID, and
shm_perm.cgid, and shm_perm.gid are set equal to the effective group IDs of the
calling process.

The access permission bits of shm_perm.mode are set equal to the access permis-
sion bits of shmflg. shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal to 0.

shm_ctime is set equal to the current time.

modified 27 Nov 1996 2TSOL-199

shmget (2TSOL) TSOL System Calls Trusted Solaris 2.5

If information labels are enabled, a new shared-memory segment is labeled ADMIN_LOW.
An existing shared-memory segmentt remains unchanged.

RETURN VALUES Upon successful completion, shmget and shmgetl return a nonnegative integer, namely,
a shared-memory identifier, is returned. Upon failure, shmget and shmgetl return a
value of −1 and set errno to indicate the error.

ERRORS shmget and shmgetl fail if any of these conditions is true:

EACCES A semaphore-structure identifier exists for the union of key and sensitivity
label, but operation permission [see intro(2)] as specified by the low-order 9
bits of semflg would not be granted.

The calling process, which failed the check for discretionary or mandatory
access, does not have the appropriate privilege override(s) in its set of effec-
tive privileges.

EEXIST A shared-memory identifier exists for key , but both (shmflg&IPC_CREATE)
and (shmflg&IPC_EXCL) are true.

EFAULT slabel points to an illegal address.

EINVAL size is less than the system-imposed minimum or greater than the system-
imposed maximum.

A shared-memory identifier exists for key , but the size of the segment associ-
ated with it is less than size, which is not equal to 0.

The label pointed to by slabel is not a valid sensitivity label.

ENOENT A shared memory identifier does not exist for the union of key and sensi-
tivity label, and (shmflg&IPC_CREATE) is false.

ENOMEM A shared-memory identifier and associated shared-memory segment are to
be created, but the amount of available memory is not sufficient to fill the
request.

ENOSPC A shared-memory identifier is to be created, but the system-imposed limit on
the maximum number of allowed shared-memory identifiers systemwide
would be exceeded.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine shared-memory identifiers.

SEE ALSO intro(2TSOL), shmctl(2TSOL), shmop(2TSOL), stdipc(3C)

NOTES The user must explicitly remove shared-memory segments after the last reference to them
has been removed.

2TSOL-200 modified 27 Nov 1996

Trusted Solaris 2.5 TSOL System Calls shmop (2TSOL)

NAME shmop, shmat, shmdt − Shared-memory operations

SYNOPSIS #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void ∗shmat(int shmid, const void ∗shmaddr, int shmflg);

int shmdt(void ∗shmaddr);

DESCRIPTION shmat() attaches the shared-memory segment associated with the shared-memory
identifier specified by shmid to the data segment of the calling process.

The permission required for a shared-memory control operation is given as {token}, where
token is the type of permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2TSOL) for more informa-
tion.

A process attempting to map a shared-memory segment as read-only
(shmflg&SHM_RDONLY) must either have discretionary and mandatory read access to
the shared-memory object or have the necessary privileges in its set of effective
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ. Otherwise, mapping the
shared-memory segment for reading and writing requires that the process have discre-
tionary and mandatory read access and discretionary and mandatory write access to the
shared memory object, or that the effective privilege set of the process include these
privileges as necessary: PRIV_IPC_DAC_READ, PRIV_IPC_MAC_READ,
PRIV_IPC_DAC_WRITE, and PRIV_IPC_MAC_WRITE.

When (shmflg&SHM_SHARE_MMU) is true, virtual-memory resources in addition to
shared memory itself are shared among processes that use the same shared memory.

The shared-memory segment is attached to the data segment of the calling process at the
address specified based on one of these criteria:

· If shmaddr is equal to (void ∗) 0, the segment is attached to the first available address
as selected by the system.

· If shmaddr is equal to (void ∗) 0 and (shmflg&SHM_SHARE_MMU) is true, then the
segment is attached to the first available aligned address. See NOTES for the align-
ment requirement.

· If shmaddr is not equal to (void ∗) 0 and (shmflg&SHM_RND) is true, the segment is
attached to the address given by (shmaddr - (shmaddr modulus SHMLBA)).

modified 29 Nov 1996 2TSOL-201

shmop (2TSOL) TSOL System Calls Trusted Solaris 2.5

· If shmaddr is not equal to (void ∗) 0 and (shmflg&SHM_RND) is false, the segment is
attached to the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}; otherwise,
the segment is attached for reading and writing {READ/WRITE}.

When (shmflg&SHM_SHARE_MMU) is set, however, the permission given by shmget
determines whether the segment is attached for reading or for reading and writing.

If information-label floating is enabled on this system, shmat may cause the information
label of a process or of a shared-memory segment to float.

If the shared-memory segment is attached for reading only, the information label of the
shared-memory segment is unchanged; and the process information label of the subject is
floated by combining it with information label of the shared-memory segment unless the
subject has asserted the PRIV_PROC_NOFLOAT privilege.

If the shared-memory segment allows writing, the information label of the shared-
memory segment is floated by the information label of the subject unless the subject has
asserted the PRIV_IPC_NOFLOAT privilege. Whenever the information label of the subject
is floated, the information label of the shared-memory segment is also floated unless the
subject has asserted the PRIV_IPC_NOFLOAT privilege. The information label of the sub-
ject will also be floated whenever the information label of the shared-memory segment is
floated unless the subject has asserted the PRIV_PROC_NOFLOAT privilege. The process
information label of the subject is floated by combining it with the information label of
the shared-memory segment.

shmdt() detaches from the data segment of the calling process the shared-memory seg-
ment located at the address specified by shmaddr.

RETURN VALUES Upon successful completion,: shmat returns the data-segment start address of the
attached shared-memory segment; shmdt returns 0. Upon failure, they return −1 and set
errno to indicate the error.

ERRORS shmat fails and does not attach the shared-memory segment if any of these conditions is
true:

EACCES Operation permission is denied to the calling process [see intro(2)], and the
calling process does not have the appropriate privilege(s) in its set of effec-
tive privileges.

EINVAL shmid is not a valid shared-memory identifier.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

shmaddr is not equal to zero, (shmflg&SHM_RND) is false, and shmaddr is an
illegal address.

shmaddr is not equal to zero, (shmfg&SHM_SHARE_MMU) is true, and
shmaddr is not aligned properly.

shmdt() fails and does not detach the shared-memory segment if shmaddr is
not the data-segment start address of a shared-memory segment.

2TSOL-202 modified 29 Nov 1996

Trusted Solaris 2.5 TSOL System Calls shmop (2TSOL)

EINVAL SHM_SHARE_MMU is not supported in certain architectures.

This operation would cause the information label of the shared-memory seg-
ment to dominate its sensitivity label, and the calling process does not have
the appropriate privilege override(s) in its set of effective privileges.

This operation would cause the information label of the calling process to
float above its sensitivity label, and the calling process does not have the
appropriate privilege override in its set of effective privileges.

EMFILE The number of shared-memory segments attached to the calling process
would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the shared-
memory segment.

EPERM The LOCK and UNLOCK operation does not have the appropriate privilege in
its set of effective privileges.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

SEE ALSO intro(2TSOL), exec(2TSOL), exit(2), fork(2TSOL), shmctl(2TSOL), shmget(2TSOL),
xpg4(5)

NOTES The user must explicitly remove shared-memory segments after the last reference to them
has been removed.

The alignment requirement, which varies on different machines, is determined by the
mapping size of the virtual-memory system.

modified 29 Nov 1996 2TSOL-203

sigsend (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME sigsend, sigsendset − send a signal to a process or a group of processes

SYNOPSIS #include <signal.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t ∗psp, int sig);

DESCRIPTION sigsend() sends a signal to the process or group of processes specified by id and idtype.
The signal to be sent is specified by sig and is either 0 or one of the values listed in sig-
nal(5). If sig is 0 (the null signal), error checking is performed but no signal is actually
sent. This value can be used to check the validity of id and idtype.

The sending process must have MAC write access to the receiving processes. The real or
effective user ID of the sending process must match the real or saved user ID of the receiv-
ing process, unless the sending process has the PRIV_PROC_OWNER privilege, or sig is
SIGCONT and the sending process has the same session ID as the receiving process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idtype is P_PGID, sig is sent to any process with process group ID id.

If idtype is P_SID, sig is sent to any process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id (see
priocntl(2TSOL)).

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID of 1
is excluded unless idtype is equal to P_PID.

sigsendset() provides an alternate interface for sending signals to sets of processes. This
function sends signals to the set of processes specified by psp. psp is a pointer to a struc-
ture of type procset_t, defined in <sys/procset.h>, which includes the following
members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

2TSOL-204 modified 09 Jun 1997

Trusted Solaris 2.5 TSOL System Calls sigsend (2TSOL)

p_lidtype and p_lid specify the ID type and ID of one (“left”) set of processes; p_ridtype
and p_rid specify the ID type and ID of a second (“right”) set of processes. ID types and
IDs are specified just as for the idtype and id arguments to sigsend(). p_op specifies the
operation to be performed on the two sets of processes to get the set of processes the
function is to apply to. The valid values for p_op and the processes they specify are:

POP_DIFF set difference: processes in left set and not in right set

POP_AND set intersection: processes in both left and right sets

POP_OR set union: processes in either left or right set or both

POP_XOR set exclusive-or: processes in left or right set but not in both

RETURN VALUES On success, sigsend() returns 0. On failure, it returns −1 and sets errno to indicate the
error.

ERRORS sigsend() and sigsendset() fail if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL idtype is not a valid idtype field.

EINVAL sig is SIGKILL, idtype is P_PID
and id is 1 (proc1).

EPERM The calling process does not have the PRIV_PROC_OWNER privilege,
and its real or effective user ID does not match the real or saved user ID
of the receiving process, and the calling process is not sending SIGCONT
to a process that shares the same session.

ESRCH No process can be found corresponding to that specified by id and
idtype. Or, the sending process does not have MAC write access to the
specified process.

In addition, sigsendset() fails if:

EFAULT psp points to an illegal address.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The sending process is required to have MAC write access to the target processes. The
PRIV_PROC_MAC_WRITE and PRIV_PROC_OWNER privileges are recognized.

SEE ALSO kill(1), getpid(2TSOL), kill(2TSOL), priocntl(2TSOL), signal(3C), signal(5)

modified 09 Jun 1997 2TSOL-205

stat (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME stat, lstat, fstat, mldstat, mldlstat − Get file status

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

int stat(const char ∗path , struct stat ∗buf);

int lstat(const char ∗path , struct stat ∗buf);

int fstat(int fildes, struct stat ∗buf);

int mldstat(const char ∗path , struct stat ∗buf);

int mldlstat(const char ∗path , struct stat ∗buf);

MT-LEVEL stat(), fstat(), mldstat(), and mldlstat() are Async-Signal-Safe.

DESCRIPTION stat() obtains information about the file to which path points. The calling process must
have mandatory read access to path , and all directories listed in the path name must be
searchable.

lstat() obtains file attributes similar to those that stat obtains except when the named file
is a symbolic link; in that case, lstat returns information about the link; stat returns infor-
mation about the file that the link references.

fstat() obtains information about an open file known by the file descriptor fildes, obtained
from a successful open, creat, dup, fcntl, or pipe function.

buf is a pointer to a stat structure into which information concerning the file is placed.

The contents of the structure to which buf points include these members:

mode_t st_mode; /∗ File mode [See mknod(2TSOL).] ∗/
ino_t st_ino; /∗ Inode number ∗/
dev_t st_dev; /∗ ID of device containing ∗/

/∗ a directory entry for this file ∗/
dev_t st_rdev; /∗ ID of device ∗/

/∗ This entry is defined only for ∗/
/∗ char special or block special files ∗/

nlink_t st_nlink; /∗ Number of links ∗/
uid_t st_uid; /∗ User ID of the file’s owner ∗/
gid_t st_gid; /∗ Group ID of the file’s group ∗/
off_t st_size; /∗ File size in bytes ∗/
time_t st_atime; /∗ Time of last access ∗/
time_t st_mtime; /∗ Time of last data modification ∗/
time_t st_ctime; /∗ Time of last file status change ∗/

/∗ Times measured in seconds since ∗/
/∗ 00:00:00 UTC, Jan. 1, 1970 ∗/

long st_blksize; /∗ Preferred I/O block size ∗/
long st_blocks; /∗ Number of 512 byte blocks allocated∗/

2TSOL-206 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls stat (2TSOL)

st_mode The mode of the file as described in mknod(2TSOL). In addition to the modes
described in mknod(2TSOL), the mode of a file may also be S_IFLNK if the file
is a symbolic link. [Note that S_IFLNK may be returned only by lstat.]

st_ino This field uniquely identifies the file in a given file system. The pair st_ino and
st_dev uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. The value of
the field may be used as input to the ustat() function to determine more infor-
mation about this file system. No other meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is valid only
for block special or character special files and has meaning only on the system
where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner

st_gid The group ID of the file’s group

st_size For regular files, this is the address of the end of the file. For block special or
character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by these functions: creat,
mknod, pipe, utime, and read.

st_mtime Time when data was last modified. Changed by these functions: creat,
mknod, pipe, utime, and write.

st_ctime Time when file status was last changed. Changed by these functions: chmod,
chown, creat, link, mknod, pipe, unlink, utime, and write.

st_blksize A hint as to the "best" unit size for I/O operations. This field is not defined for
block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually allocated on
disk. This field is not defined for block special or character special files.

mldstat() obtains file attributes similar to those that stat obtains except when the refer-
enced file is an SLD; in that case, mldstat returns information about the MLD; stat returns
information about the underlying SLD.

mldlstat obtains file attributes similar to those that lstat obtains except when the named
file is a MLD; in that case, mldlstat returns information about the MLD; lstat returns infor-
mation about the underlying SLD.

stat, lstat, fstat, mldstat, and mldlstat require mandatory read access to the final com-
ponent of path or the calling process must have the PRIV_FILE_MAC_READ privilege in its
set of effective privileges. If the descriptor is open only for writing, fstat requires manda-
tory read access to the object to which the descriptor refers or the calling process must
have the PRIV_FILE_MAC_READ privilege in its set of effective privileges. If the file being
accessed is a pseudo-terminal (/dev/ttyp∗ or /dev/ptyp∗) and the calling process does not
have mandatory read access or the calling process does not have PRIV_FILE_MAC_READ
in its set of effective privileges, stat, lstat, and fstat return the values indicated for these
elements of the stat structure:

modified 01 May 1996 2TSOL-207

stat (2TSOL) TSOL System Calls Trusted Solaris 2.5

mode_t st_mode; /∗ file mode - set to zero ∗/
nlink_t st_nlink; /∗ number of hard links - set to one ∗/
uid_t st_uid; /∗ user ID of owner - set to zero ∗/
gid_t st_gid; /∗ group ID of owner - set to zero ∗/
time_t st_atime; /∗ last access time - set to current time ∗/
time_t st_mtime; /∗ last modify time - set to current time ∗/
time_t st_ctime;/∗ last status change - set to current time∗/

The information label of path and that of the calling process remain unchanged.

RETURN VALUES Upon successful completion, these functions return a value of 0. Upon failure, they return
a value of −1 and set errno to indicate the error.

ERRORS stat and lstat fail if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix.
To override this restriction, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES The calling process does not have mandatory read access to the
final component of path. To override this restriction, the calling
process may assert the PRIV_FILE_MAC_READ privilege.

EFAULT buf or path points to an illegal address.

EINTR A signal was caught during the stat or lstat function.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
but the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is a null path name.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW A component is too large to store in the structure to which buf
points.

fstat fails if any of these conditions is true:

EBADF fildes is not a valid open file descriptor.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the fstat function.

ENOLINK fildes points to a remote machine but the link to that machine is no
longer active.

2TSOL-208 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls stat (2TSOL)

EOVERFLOW A component is too large to store in the structure to which buf
points.

EIO An I/O error occurred while reading from or writing to the file
system.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

mldstat returns information about the MLD when the referenced file is an SLD.

mldlstat returns information about the MLD when the named file is an MLD.

The information label of path and that of the calling process remain unchanged.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the process
may assert the PRIV_PROC_NODELAY privilege.

SEE ALSO chmod(2TSOL), chown(2TSOL), creat(2TSOL), link(2TSOL), mknod(2TSOL), pipe(2),
read(2TSOL), time(2), unlink(2TSOL), utime(2), write(2TSOL), fattach(3C), stat(5)

modified 01 May 1996 2TSOL-209

statvfs (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME statvfs, fstatvfs − Get file system information

SYNOPSIS #include <sys/types.h>
#include <sys/statvfs.h>

int statvfs(const char ∗path , struct statvfs ∗buf);

int fstatvfs(int fildes, struct statvfs ∗buf);

DESCRIPTION statvfs() returns a “generic superblock” describing a file system; the function can be used
to acquire information about mounted file systems. buf is a pointer to a structure
(described hereafter) that is filled by the function.

path should name a file that resides on that file system. The file system type is known to
the operating system. Discretionary read, write, or execute permission for the named file
is not required; but all directories listed in the path name leading to the file must be
searchable.

The statvfs() structure to which buf points includes these members:

u_long f_bsize; /∗ preferred file system block size ∗/
u_long f_frsize; /∗ fundamental filesystem block size

(if supported) ∗/
u_long f_blocks; /∗ total # of blocks on file system

in units of f_frsize ∗/
u_long f_bfree; /∗ total # of free blocks ∗/
u_long f_bavail; /∗ # of free blocks avail to

non-super-user ∗/
u_long f_files; /∗ total # of file nodes (inodes) ∗/
u_long f_ffree; /∗ total # of free file nodes ∗/
u_long f_favail; /∗ # of inodes avail to

non-super-user∗/
u_long f_fsid; /∗ file system id (dev for now) ∗/
char f_basetype[FSTYPSZ]; /∗ target fs type name,

null-terminated ∗/
u_long f_flag; /∗ bit mask of flags ∗/
u_long f_namemax; /∗ maximum file name length ∗/
char f_fstr[32]; /∗ file system specific string ∗/
u_long f_filler[16]; /∗ reserved for future expansion ∗/

f_basetype contains a null-terminated FSType name of the mounted target.

These flags can be returned in the f_flag field:

ST_RDONLY 0x01 /∗ read-only file system ∗/
ST_NOSUID 0x02 /∗ does not support setuid/setgid

semantics ∗/
ST_NOTRUNC 0x04 /∗ does not truncate file names

longer than {NAME_MAX}∗/

2TSOL-210 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls statvfs (2TSOL)

fstatvfs() is similar to statvfs except that the file named by path in statvfs is instead
identified by an open file descriptor fildes obtained from a successful open(2TSOL),
creat(2TSOL), dup(2), fcntl(2TSOL), or pipe(2) function.

The information label of path or fildes and the information label of the calling process
remain unchanged.

RETURN VALUES Upon successful completion, these calls return a value of 0. Upon failure, they return a
value of −1 and set errno to indicate the error.

ERRORS statvfs fails if any of these conditions is true:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The calling process does not have mandatory read access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_MAC_READ privilege.

EFAULT path or buf points to an illegal address.

EINTR A signal was caught during statvfs execution.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in translating path .

EMULTIHOP Components of path require hopping to multiple remote machines
but the file system type does not allow it.

ENAMETOOLONG The length of a path component exceeds {NAME_MAX} characters,
or the length of path exceeds {PATH_MAX} characters.

ENOENT Either a component of the path prefix or the file to which path
refers does not exist.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix of path is not a directory.

fstatvfs fails if any of these conditions is true:

EACCES The descriptor is open only for writing and the calling process
does not have mandatory read access to the object to which the
descriptor refers. To override this restriction, the calling process
may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

EFAULT buf points to an illegal address.

EINTR A signal was caught during fstatvfs execution.

EIO An I/O error occurred while reading the file system.

modified 1 May 1996 2TSOL-211

statvfs (2TSOL) TSOL System Calls Trusted Solaris 2.5

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information label of path or fildes and the information label of the calling process
remain unchanged.

SEE ALSO chmod(2TSOL), chown(2TSOL), creat(2TSOL), dup(2), fcntl(2TSOL), link(2TSOL),
mknod(2TSOL), open(2TSOL), pipe(2), read(2TSOL), time(2), unlink(2TSOL), utime(2),
write(2TSOL)

BUGS The values returned for f_files, f_ffree, and f_favail may not be valid for NFS-mounted
file systems.

2TSOL-212 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls stime (2TSOL)

NAME stime − set system time and date

SYNOPSIS #include <unistd.h>

int stime(const time_t ∗tp);

DESCRIPTION stime() sets the system’s idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTC January 1, 1970. The calling process must have
the PRIV_SYS_CONFIG privilege in order to use this system call.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

ERRORS stime() will fail if:

EPERM The calling process does not have the PRIV_SYS_CONFIG privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_CONFIG privilege in order to use this sys-
tem call.

SEE ALSO time(2)

modified 9 Sep 1997 2TSOL-213

swapctl (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME swapctl − manage swap space

SYNOPSIS #include <sys/stat.h>
#include <sys/swap.h>

int swapctl(int cmd, void ∗arg);

DESCRIPTION swapctl() adds, deletes, or returns information about swap resources. cmd specifies one
of the following options contained in <sys/swap.h>:

SC_ADD /∗ add a resource for swapping ∗/
SC_LIST /∗ list the resources for swapping ∗/
SC_REMOVE /∗ remove a resource for swapping ∗/
SC_GETNSWP /∗ return number of swap resources ∗/

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure con-
taining the following members:

char ∗sr_name; /∗ pathname of resource ∗/
off_t sr_start; /∗ offset to start of swap area ∗/
off_t sr_length; /∗ length of swap area ∗/

sr_start and sr_length are specified in 512-byte blocks.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the fol-
lowing members:

int swt_n; /∗ number of swapents following ∗/
struct swapent swt_ent[]; /∗ array of swt_n swapents ∗/

A swapent structure contains the following members:

char ∗ste_path; /∗ name of the swap file ∗/
off_t ste_start; /∗ starting block for swapping ∗/
off_t ste_length; /∗ length of swap area ∗/
long ste_pages; /∗ number of pages for swapping ∗/
long ste_free; /∗ number of ste_pages free ∗/
long ste_flags; /∗ ST_INDEL bit set if swap file ∗/

/∗ is now being deleted ∗/

SC_LIST causes swapctl() to return at most swt_n entries. The return value of swapctl()
is the number actually returned. The ST_INDEL bit is turned on in ste_flags if the swap
file is in the process of being deleted.

When SC_GETNSWP is specified, swapctl() returns as its value the number of swap
resources in use. arg is ignored for this operation.

The SC_ADD and SC_REMOVE functions will fail if calling process does not have
appropriate privileges.

2TSOL-214 modified 20 Jun 1997

Trusted Solaris 2.5 TSOL System Calls swapctl (2TSOL)

RETURN VALUES Upon successful completion, the function swapctl() returns a value of 0 for SC_ADD or
SC_REMOVE, the number of struct swapent entries actually returned for SC_LIST, or
the number of swap resources in use for SC_GETNSWP. Upon failure, the function
swapctl() returns a value of −1 and sets errno to indicate an error.

ERRORS Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST Part of the range specified by sr_start and sr_length is already
being used for swapping on the specified resource (SC_ADD).

EFAULT arg , sr_name, or ste_path points to an illegal address.

EINVAL The specified function value is not valid, the path specified is not a
swap resource (SC_REMOVE), part of the range specified by
sr_start and sr_length lies outside the resource specified
(SC_ADD), or the specified swap area is less than one page
(SC_ADD).

EISDIR The path specified for SC_ADD is a directory.

ELOOP Too many symbolic links were encountered in translating the
pathname provided to SC_ADD or SC_REMOVE .

ENAMETOOLONG The length of a component of the path specified for SC_ADD or
SC_REMOVE exceeds {NAME_MAX} characters or the length of
the path exceeds {PATH_MAX} characters and
{_POSIX_NO_TRUNC} is in effect.

ENOENT The pathname specified for SC_ADD or SC_REMOVE does not
exist.

ENOMEM An insufficient number of struct swapent structures were pro-
vided to SC_LIST, or there were insufficient system storage
resources available during an SC_ADD or SC_REMOVE, or the
system would not have enough swap space after an
SC_REMOVE.

ENOSYS The pathname specified for SC_ADD or SC_REMOVE is not a file
or block special device.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

EPERM The effective user of the calling process is not super-user. To over-
ride this restriction, the calling process must assert the
PRIV_SYS_MOUNT privilege.

EROFS The pathname specified for SC_ADD is a read-only file system.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

For a successful call, the calling process must assert the PRIV_SYS_MOUNT privilege.

modified 20 Jun 1997 2TSOL-215

symlink (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME symlink − Make a symbolic link to a file

SYNOPSIS #include <unistd.h>

int symlink(const char ∗name1, const char ∗name2);

DESCRIPTION symlink() creates a symbolic link name2 to the file name1. Either name may be an arbi-
trary path name, the files need not be on the same file system, and name1 may be nonex-
istent.

The file to which the symbolic link points is used when an open(2TSOL) operation is per-
formed on the link. A stat(2TSOL) on a symbolic link returns the linked-to file; an lstat
returns information about the link itself. This difference can lead to surprising results
when a symbolic link is made to a directory. To avoid confusion in programs, the
readlink(2TSOL) call can be used to read the contents of a symbolic link.

The containing directory cannot be a multilevel directory. There is no privilege to bypass
this restriction.

2TSOL-216 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls sysinfo (2TSOL)

NAME sysinfo − get and set system information strings

SYNOPSIS #include <sys/systeminfo.h>

long sysinfo(int command, char ∗buf, long count);

DESCRIPTION sysinfo() copies information relating to the operating system on which the process is exe-
cuting into the buffer pointed to by buf. sysinfo() can also set certain information where
appropriate commands are available. count is the size of the buffer.

The POSIX P1003.1 interface sysconf(3C) provides a similar class of configuration infor-
mation, but returns an integer rather than a string.

The commands available are:

SI_SYSNAME Copy into the array pointed to by buf the string that would be
returned by uname(2) in the sysname field. This is the name of the
implementation of the operating system, for example, SunOS or
UTS.

SI_HOSTNAME Copy into the array pointed to by buf a string that names the
present host machine. This is the string that would be returned by
uname(2) in the nodename field. This hostname or nodename is
often the name the machine is known by locally.

The hostname is the name of this machine as a node in some net-
work. Different networks may have different names for the node,
but presenting the nodename to the appropriate network directory
or name-to-address mapping service should produce a transport
end point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter-
minating null).

SI_SET_HOSTNAME Copy the null-terminated contents of the array pointed to by buf
into the string maintained by the kernel whose value will be
returned by succeeding calls to sysinfo() with the command
SI_HOSTNAME. This command requires that the calling process
have the PRIV_SYS_NET_CONFIG privilege.

SI_RELEASE Copy into the array pointed to by buf the string that would be
returned by uname(2) in the release field. Typical values might be
5.2 or 4.1.

SI_VERSION Copy into the array pointed to by buf the string that would be
returned by uname(2) in the version field. The syntax and seman-
tics of this string are defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be
returned by uname(2) in the machine field, for example, sun4c,
sun4d, or sun4m.

modified 5 Jun 1996 2TSOL-217

sysinfo (2TSOL) TSOL System Calls Trusted Solaris 2.5

SI_ARCHITECTURE Copy into the array pointed to by buf a string describing the
instruction set architecture of the current system, for example,
sparc, mc68030, m32100, or i386. These names may not match
predefined names in the C language compilation system.

SI_PLATFORM Copy into the array pointed to by buf a string describing the
specific model of the hardware platform, for example,
SUNW,Sun_4_75, SUNW,SPARCsystem-600, or i86pc.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the array
pointed to by buf.

SI_HW_SERIAL Copy into the array pointed to by buf a string which is the ASCII
representation of the hardware-specific serial number of the physi-
cal machine on which the function is executed. Note that this may
be implemented in Read-Only Memory, using software constants
set when building the operating system, or by other means, and
may contain non-numeric characters. It is anticipated that
manufacturers will not issue the same “serial number” to more
than one physical machine. The pair of strings returned by
SI_HW_PROVIDER and SI_HW_SERIAL is likely to be unique
across all vendor’s SVR4 implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain name into the
array pointed to by buf.

SI_SET_SRPC_DOMAIN
Set the string to be returned by sysinfo() with the
SI_SRPC_DOMAIN command to the value contained in the array
pointed to by buf. This command requires that the calling process
have the PRIV_SYS_NET_CONFIG privilege.

RETURN VALUES Upon successful completion, the value returned indicates the buffer size in bytes required
to hold the complete value and the terminating null character. If this value is no greater
than the value passed in count, the entire string was copied. If this value is greater than
count, the string copied into buf has been truncated to count −1 bytes plus a terminating
null character.

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS sysinfo() will fail if one or more of the following are true:

EFAULT buf does not point to a valid address.

EINVAL The data for a SET command exceeds the limits established by the
implementation.

EPERM The calling process does not have the PRIV_SYS_NET_CONFIG privilege.

2TSOL-218 modified 5 Jun 1996

Trusted Solaris 2.5 TSOL System Calls sysinfo (2TSOL)

USAGE In many cases there is no corresponding programmatic interface to set these values; such
strings are typically settable only by the system administrator modifying entries in the
/etc/system directory or the code provided by the particular OEM reading a serial
number or code out of read-only memory, or hard-coded in the version of the operating
system.

A good starting guess for count is 257, which is likely to cover all strings returned by this
interface in typical installations.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_NET_CONFIG privilege in order to perform
the SE_SET_HOSTNAME, SI_SET_KERB_REALM, and SI_SET_SRPC_DOMAIN opera-
tions.

SEE ALSO uname(2), gethostid(3C), gethostname(3C), sysconf(3C)

modified 5 Jun 1996 2TSOL-219

tokmapper (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME tokmapper − Manipulate kernel token mapping caches

SYNOPSIS #include <netinet/in.h>
#include <sys/tiuser.h>
#include <sys/tsol/tndb.h>
int tokmapper(int cmd, void ∗buf)

AVAILABILITY SUNWtsolu

DESCRIPTION tokmapper() manipulates kernel token mapping caches. cmd is the operation to be per-
formed. Currently, the only operation supported is MSIX_FLUSH, which flushes kernel
token mappings for the specified MSIX host. For the MSIX_FLUSH operation, buf should
point to a netbuf structure declared in <sys/tiuser.h>. The network address in the net-
buf structure should be a sockaddr_in structure declared in <netinet/in.h>.

To make this call successfully, a process must have the PRIV_SYS_NET_CONFIG
privilege.

RETURN VALUES tokmapper returns

0 on success.

−1 on failure and sets errno to indicate the error.

ERRORS EFAULT buf points to an invalid address.

EINVAL A field in the netbuf or sockaddr_in structure is invalid; or the operation
specified in cmd is not supported.

EPERM The process has insufficient privilege to perform the operation. To make this
call successfully, a process must have the PRIV_SYS_NET_CONFIG privilege.

SEE ALSO tokmapd(1MTSOL),
tokmapctl(1MTSOL)

2TSOL-220 modified 31 March 1997

Trusted Solaris 2.5 TSOL System Calls uadmin (2TSOL)

NAME uadmin − administrative control

SYNOPSIS #include <sys/uadmin.h>

int uadmin(int cmd, int fcn, int mdep);

DESCRIPTION uadmin() provides control for basic administrative functions. This function is tightly
coupled to the system administrative procedures and is not intended for general use. The
argument mdep is provided for machine-dependent use and is not defined here.

As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer cache
is flushed, and the root file system is unmounted. The action to be taken
after the system has been shut down is specified by fcn. The functions
are generic; the hardware capabilities vary on specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the power.

AD_BOOT Reboot the system, using the kernel file.

AD_IBOOT Interactive reboot; user is prompted for bootable pro-
gram name.

The calling process must have the PRIV_SYS_BOOT privilege in order to
perform this command.

A_REBOOT The system stops immediately without any further processing. The
action to be taken next is specified by fcn as above. The calling process
must have the PRIV_SYS_BOOT privilege in order to perform this com-
mand.

A_REMOUNT The root file system is mounted again after having been fixed. This
should be used only during the startup process. The calling process
must have the PRIV_SYS_MOUNT privilege in order to perform this
command.

A_FREEZE Suspend the whole system. The system state is preserved in the state
file. The following three subcommands are available.

AD_COMPRESS
Save the system state to the state file with compression of
data.

AD_CHECK Check if your system supports suspend and resume.
Without performing a system suspend/resume, this com-
mand checks if this feature is currently available on your
system.

AD_FORCE Force AD_COMPRESS even when threads of drivers are
not suspendable.

The calling process must have the PRIV_SYS_BOOT privilege in order to
perform this command.

modified 5 Jun 1996 2TSOL-221

uadmin (2TSOL) TSOL System Calls Trusted Solaris 2.5

RETURN VALUES Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0 upon resume.

A_REMOUNT 0

Upon unsuccessful completion, −1 is returned and errno is set to indicate the error.

ERRORS uadmin() fails if any of the following are true:

EPERM The calling process does not have sufficient privilege.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root file system
to store system information.

ENOTSUP Suspend/resume not supported on this platform.

ENXIO Unable to successfully suspend system.

EBUSY Suspend already in progress.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The calling process must have the PRIV_SYS_BOOT privilege in order to perform the
A_FREEZE, A_REBOOT, and A_SHUTDOWN command. The calling process must have
the PRIV_SYS_MOUNT privilege in order to perform the A_REMOUNT command.

SEE ALSO kernel(1M), uadmin(1MTSOL)

2TSOL-222 modified 5 Jun 1996

Trusted Solaris 2.5 TSOL System Calls ulimit (2TSOL)

NAME ulimit − get and set process limits

SYNOPSIS #include <ulimit.h>

long ulimit(int cmd, /∗ newlimit ∗/ . . .);

DESCRIPTION This function provides for control over process limits. The cmd values available are:

UL_GETFSIZE Get the regular file size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any size can be
read.

UL_SETFSIZE Set the regular file size limit of the process to the value of newlimit ,
taken as a long. Any process may decrease this limit, but only a process
with an effective PRIV_SYS_CONFIG privilege may increase the limit.

UL_GMEMLIM
Get the maximum possible break value (see brk(2)).

UL_GDESLIM Get the current value of the maximum number of open files per process
configured in the system.

The getrlimit() and setrlimit() functions provide a more general interface for controlling
process limits.

RETURN VALUES Upon successful completion, a non-negative value is returned. Otherwise, a value of −1
is returned and errno is set to indicate the error.

ERRORS ulimit() fails if the following is true:

EINVAL The cmd argument is not valid.

EPERM The process does not have PRIV_SYS_CONFIG effective privilege.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

The PRIV_SYS_CONFIG privilege is checked where super-user ID is checked in base
Solaris.

SEE ALSO brk(2), getrlimit(2TSOL), write(2TSOL)

NOTES ulimit() is effective in limiting the growth of regular files. Pipes are limited to
{PIPE_MAX} bytes.

2TSOL-223

umount (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME umount − Unmount a file system

SYNOPSIS #include <sys/mount.h>

int umount(const char ∗file);

DESCRIPTION umount() requests that a previously mounted file system contained on the block special
device or directory identified by file be unmounted. file is a pointer to a path name. After
the file system is unmounted, the directory upon which the file system was mounted
reverts to its ordinary interpretation.

For all file system types except namefs, umount may be invoked by a calling process with
the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling process must
either be the owner of file or assert the PRIV_FILE_OWNER privilege.

RETURN VALUES Upon successful completion, umount returns a value of 0. Upon failure, umount returns
a value of −1 and sets errno to indicate the error.

ERRORS umount will fail if any of these conditions is true:

EACCES Search permission is denied on a component of file. To override
this restriction, the calling process may assert one or both of these
privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBUSY A file on file is busy.

EFAULT file points to an illegal address.

EINVAL file is not mounted.

ENOENT file does not exist.

ELOOP Too many symbolic links were encountered in translating the path
to which file points.

EMULTIHOP Components of the path to which file points require hopping to
multiple remote machines.

ENAMETOOLONG The length of the file argument exceeds {PATH_MAX}, or the length
of a file component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOLINK file is on a remote machine, but the link to that machine is no
longer active.

ENOTBLK file is not a block special device.

EPERM The calling process does not own file and file is a file system of type
namefs. To override this restriction, the calling process may assert
the PRIV_FILE_OWNER privilege.

file is not a file system of type namefs and the calling process has
not asserted the PRIV_SYS_MOUNT privilege.

2TSOL-224 modified 01 May 1996

Trusted Solaris 2.5 TSOL System Calls umount (2TSOL)

EREMOTE file is remote.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access or ownership checks.

The information label of file and that of the calling process remain unchanged.

For all file system types except namefs, the umount system call may be invoked by a cal-
ling process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling
process must either be the owner of file or assert the PRIV_FILE_OWNER privilege.

SEE ALSO mount(2TSOL)

modified 01 May 1996 2TSOL-225

unlink (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME unlink − Remove directory entry

SYNOPSIS #include <unistd.h>

int unlink(const char ∗path);

MT-LEVEL Async-Signal-Safe

DESCRIPTION unlink() removes the directory entry to which path points and decrements the link count
of the file referenced by the directory entry. When all links to a file have been removed
and no process has the file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last link is removed, space
occupied by the file is not released until all references to the file have been closed. If path
is a symbolic link, the symbolic link is removed. path should not name a directory unless
the process has asserted the PRIV_SYS_CONFIG privilege. Applications should use rmdir
to remove directories.

Upon successful completion, unlink marks for update the st_ctime and st_mtime fields
of the parent directory. Also, if the file’s link count is not zero, the st_ctime field of the file
is marked for update.

The information label of the directory or file is unchanged. The information label of the
calling process is also unchanged.

RETURN VALUES Upon successful completion, unlink returns 0. Upon failure, unlink returns −1 and sets
errno to indicate the error.

ERRORS The named file is unlinked unless any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix. To
override this restriction, the calling process must assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES Write permission is denied on the directory containing the link to
be removed. To override this restriction, the calling process must
assert one or both of these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

The calling process needs both mandatory read and write access to
path and does not have the combination. To override this restric-
tion, the calling process may assert one or both of these privileges:
PRIV_FILE_MAC_READ and PRIV_FILE_MAC_WRITE.

The parent directory has the sticky bit set and the file is not writ-
able by the user; the user does not own the parent directory and
the user does not own the file. To override this restriction, the cal-
ling process must assert one or more of these privileges:
PRIV_FILE_DAC_WRITE, PRIV_FILE_MAC_WRITE, and
PRIV_FILE_OWNER.

2TSOL-226 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls unlink (2TSOL)

EBUSY The entry to be unlinked is the mount point for a mounted file sys-
tem.

EFAULT path points to an illegal address.

EINTR A signal was caught during the unlink function.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is a null path name.

ENOLINK path points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

EPERM If path is a directory, the calling process must assert the
PRIV_SYS_CONFIG privilege.

EROFS The directory entry to be unlinked is part of a read-only file sys-
tem.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

If the named file is a directory, the calling process must assert the PRIV_SYS_CONFIG
privilege.

The information label of the directory or file is not changed by this system call. If remov-
ing a file or directory from its containing directory causes the containing directory to be
empty, the information label of the containing directory is set to ADMIN_LOW. The infor-
mation label of the calling process is unchanged.

SEE ALSO rm(1), close(2), link(2TSOL), open(2TSOL), rmdir(2TSOL)

modified 1 May 1996 2TSOL-227

utimes (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME utimes − Set file times

SYNOPSIS #include <sys/types.h>
#include <sys/time.h>

int utimes(char ∗file, struct timeval ∗tvp);

DESCRIPTION utimes() sets the access and modification times of the file named by file.

If tvp is NULL, the access and modification times are set to the current time. A process
must be the owner of the file or must assert the PRIV_FILE_OWNER privilege to use
utimes in this manner.

If it is not NULL, tvp is assumed to point to an array of two timeval structures. The access
time is set to the value of the first member, and the modification time is set to the value of
the second member. Only the owner of the file or a process asserting the
PRIV_FILE_OWNER privilege may use utimes in this manner.

In either case, the inode-changed time of the file is set to the current time.

utimes also causes the time of the last file status change (st_ctime) to be updated. The
information labels of file and of the process remain unchanged.

RETURN VALUES Upon success, utimes returns 0. Upon failure, utimes returns −1 and sets errno to indi-
cate the error.

ERRORS utimes() fails if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix of
file. To override this restriction, the calling process may assert one
or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES Write permission is denied to the final component of file. To over-
ride this restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EFAULT file or tvp points to an illegal address.

EINTR A signal was caught during the utimes function.

EINVAL The number of microseconds specified in one or both of the
timeval structures to which tvp points was greater than or equal to
1,000,000 or less than 0.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating file.

EMULTIHOP Components of file require hopping to multiple remote machines
but the file system does not allow it.

2TSOL-228 modified 1 May 1996

Trusted Solaris 2.5 TSOL System Calls utimes (2TSOL)

ENAMETOOLONG The length of the file argument exceeds {PATH_MAX}, or the length
of a path component of file exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT The named file does not exist or is a null path name.

ENOLINK file points to a remote machine but the link to that machine is no
longer active.

ENOTDIR A component of the path prefix of file is not a directory.

EPERM The effective user ID does not own the file, and tvp is not NULL. To
override this restriction, the calling process may assert the
PRIV_FILE_OWNER privilege.

EROFS The file system containing the file is mounted read-only.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Appropriate privilege is required to override access checks.

The information label of path and that of the calling process remain unchanged.

To change the access and modification times on a file not owned by the calling process,
the calling process may assert the PRIV_FILE_OWNER privilege.

SEE ALSO stat(2TSOL)

modified 1 May 1996 2TSOL-229

vfork (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME vfork − Spawn new process in a virtual-memory-efficient way

SYNOPSIS #include <unistd.h>

pid_t vfork(void);

DESCRIPTION vfork() can be used to create new processes without fully copying the address space of
the old process. vfork is useful when the purpose of fork would have been to create a
new system context for an execve(). vfork differs from fork in that the child borrows the
parent’s memory and thread of control until a call to execve() or an exit either normally
by a call to _exit() [see exit(2)] or abnormally. The parent process is suspended while the
child is using its resources.

vfork returns 0 in the child’s context and (later) the process ID (PID) of the child in the
parent’s context.

vfork can normally be used just like fork. vfork does not work, however, to return while
running in the child’s context from the procedure that called vfork because the eventual
return from vfork would then return to a no-longer-existent stack frame. Be careful also
to call _exit() rather than exit(3C) if you cannot execve() because exit(3C) will flush and
close standard I/O channels, and thereby corrupt the parent processes standard I/O data
structures. Even with fork, it is wrong to call exit(3C) because buffered data would then
be flushed twice.

RETURN VALUES Upon successful completion, vfork returns a value of 0 to the child process and returns
the process ID of the child process to the parent process. Upon failure, vfork returns a
value of −1 to the parent process, no child process is created, and vfork sets the global
variable errno to indicate the error.

ERRORS vfork will fail and no child process will be created if any of these conditions is true:

EAGAIN The system-imposed limit on the total number of processes under execution
would be exceeded. Moreover, the calling process does not have the
PRIV_SYS_MAXPROC privilege to override the limit. This limit is determined
when the system is generated.

The system-imposed limit on the total number of processes under execution
by a single user would be exceeded. Moreover, the calling process does not
have the PRIV_SYS_MAXPROC privilege to override the limit. This limit is
determined when the system is generated.

ENOMEM There is insufficient swap space for the new process.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Before a child process exits or executes a new program, thus no longer sharing memory
with the parent, the information label of the parent process will float up whenever an
information label float event occurred to the child. A process may override this floating
by asserting the PRIV_PROC_NOFLOAT privilege. A PRIV_PROC_NOFLOAT privilege in a
child process will not override parent’s floating.

2TSOL-230 modified 11 Mar 1996

Trusted Solaris 2.5 TSOL System Calls vfork (2TSOL)

A process with the PRIV_SYS_MAXPROC privilege may override the limit on the number
of processes a user may have.

SEE ALSO exec(2TSOL), exit(2), fork(2TSOL), ioctl(2), wait(2), exit(3C)

NOTES vfork is unsafe in multithread applications.

This function will be eliminated in a future release. The memory-sharing semantics of
vfork can be obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle of a
vfork are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed,
and input attempts result in an EOF indication.

On some systems, the implementation of vfork causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if
<unistd.h> is not included in the source calling vfork.

modified 11 Mar 1996 2TSOL-231

write (2TSOL) TSOL System Calls Trusted Solaris 2.5

NAME write, writel, pwrite, pwritel, writev, writevl − write on a file

SYNOPSIS #include <unistd.h>

ssize_t write(int fildes, const void ∗buf, size_t nbyte);

#include <sys/types.h>
#include <unistd.h>

ssize_t pwrite(int fildes, const void ∗buf, size_t nbyte, off_t offset);

#include <sys/types.h>
#include <sys/uio.h>

int writev(int fildes, const struct iovec ∗iov , int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void ∗buf, size_t nbyte, bclabel_t ∗label_p);

ssize_t pwritel(int fildes, void ∗buf, size_t nbyte, off_t offset , bclabel_t ∗label_p);

ssize_t writevl(int fildes, struct iovec ∗iov , int iovcnt, bclabel_t ∗label_p);

MT-LEVEL write() is Async-Signal-Safe.

DESCRIPTION attempts to write nbyte bytes from the buffer to which buf points to the file descriptor
specified by fildes. If nbyte is zero and the file is a regular file, write returns zero and has
no other results.

pwrite() performs the same action as write, except that pwrite writes into a given posi-
tion without changing the file pointer. The first three arguments to pwrite are the same as
those for write with the addition of a fourth argument offset for the desired position
inside the file.

writev() performs the same action as write but gathers the output data from the iovcnt
buffers specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt − 1]. The
iovcnt buffer is valid if greater than 0 and less than or equal to {IOV_MAX}. [See #ifdef
tSOL intro(2TSOL) #else intro(2) #endif for a definition of {IOV_MAX}.]

The iovec structure contains these members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from which
data should be written. writev always writes all data from one area before proceeding to
the next.

On devices capable of seeking, the actual writing of data starts at the position in the file
indicated by the file pointer. On return from write, the file pointer is incremented by the
number of bytes actually written. On a regular file, if the incremented file pointer is
greater than the length of the file, the length of the file is set to the new file pointer.

2TSOL-232 modified 03 June 1996

Trusted Solaris 2.5 TSOL System Calls write (2TSOL)

On devices incapable of seeking, writing always takes place starting at the current posi-
tion. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of the
file prior to each write. The system guarantees that no intervening file-modification
operation will occur between changing the file offset and the write operation.

For regular files, if the O_SYNC flag of the file status flags is set, write does not return
until both the file data and the file status have been physically updated. This function is
for special applications that require extra reliability at the cost of performance. For block
special files, if O_SYNC is set, write does not return until the data has been physically
updated.

A write to a regular file is blocked if mandatory file/record locking is set [see
chmod(2TSOL)] and a record lock owned by another process exists on the segment of the
file to be written:

· If O_NDELAY or O_NONBLOCK is set, write returns −1 and sets errno to EAGAIN.

· If O_NDELAY and O_NONBLOCK are clear, write sleeps until all blocking locks are
removed or until the write is terminated by a signal.

If a write requests that more bytes be written than there is room for—for example, if the
write would exceed the process file-size limit [see getrlimit(2TSOL) and ulimit(2TSOL)],
the system file-size limit, or the free space on the device—only as many bytes as there is
room for will be written. For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512-bytes returns 20. The next write of a nonzero
number of bytes gives a failure return (except as noted for pipes and FIFO hereafter).

Write requests to a pipe or FIFO are handled the same as those to a regular file with these
exceptions:

· If there is no file offset associated with a pipe, each write request appends to the end
of the pipe.

· Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved with
data from other processes doing writes on the same pipe. Writes of greater than
{PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with writes by
other processes, whether or not the O_NONBLOCK or O_NDELAY flag is set.

· If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block; but on normal completion it returns nbyte.

· If O_NONBLOCK and O_NDELAY are set, write does not block the process. If a write
request for {PIPE_BUF} or fewer bytes succeeds completely, write returns nbyte. Other-
wise, if O_NONBLOCK is set, write returns −1 and sets errno to EAGAIN; or if
O_NDELAY is set, write returns 0. A write request for greater than {PIPE_BUF} bytes
transfers what it can and returns the number of bytes written; or the request transfers
no data and, if O_NONBLOCK is set, returns −1 with errno set to EAGAIN; or if
O_NDELAY is set, the request returns 0. Finally, if a request is greater than {PIPE_BUF}
bytes and all data previously written to the pipe has been read, write transfers at least
{PIPE_BUF} bytes.

modified 03 June 1996 2TSOL-233

write (2TSOL) TSOL System Calls Trusted Solaris 2.5

When attempting to write to a file descriptor (other than a pipe, FIFO, or stream) that sup-
ports nonblocking writes and cannot accept the data immediately,

· If O_NONBLOCK and O_NDELAY are clear, write blocks until the data can be
accepted.

· If O_NONBLOCK or O_NDELAY is set, write does not block the process. If some data
can be written without blocking the process, write writes what it can and returns the
number of bytes written. Otherwise, if O_NONBLOCK is set, write returns −1 and sets
errno to EAGAIN; or if O_NDELAY is set, write returns 0.

For STREAMS files [see intro(2TSOL) and streamio(7I)], the operation of write is deter-
mined by the values of the minimum and maximum nbyte range (packet size) accepted by
the stream. These values are contained in the topmost stream module and cannot be set
or tested from user level. If nbyte falls within the packet-size range, nbyte bytes are writ-
ten. If nbyte does not fall within the range and the minimum-packet-size value is zero,
write breaks the buffer into maximum-packet-size segments prior to sending the data
downstream. (The last segment may be smaller than the maximum packet size.) If nbyte
does not fall within the range and the minimum value is nonzero, write fails and sets
errno to ERANGE. Writing a zero-length buffer (nbyte is zero) to a STREAMS device sends
a zero-length message with zero returned. However, writing a zero-length buffer to a
pipe or FIFO sends no message and zero is returned. The user program may issue the
I_SWROPT ioctl(2) to enable zero-length messages to be sent across the pipe or FIFO. [See
streamio(7I).]

During writing to a stream, data messages are created with a priority band of zero. Dur-
ing writing to a stream that is not a pipe or FIFO,

· If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept data (the
stream write queue is full because of internal flow control conditions), write blocks
until data can be accepted.

· If O_NDELAY or O_NONBLOCK is set and the stream cannot accept data, write
returns -1 and sets errno to EAGAIN.

· If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the stream cannot accept additional data, write ter-
minates and returns the number of bytes written.

writel(), pwritel(), and writevl() perform the same actions as write, pwrite, and writev,
respectively, and additionally provide the CMW label label_p to associate with the data
that is written. The label associated with the data that is written to fd depends on these
conditions:

· If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p is
ignored.

· If the descriptor refers to a regular file, then the information label portion is conjoined
with the current information label of the file, and this resulting information label
becomes the new information label of the file.

· If the descriptor refers to a FIFO, the information label portion is associated with the
data that is being written instead of with the information label of the calling process.

2TSOL-234 modified 03 June 1996

Trusted Solaris 2.5 TSOL System Calls write (2TSOL)

If the information label of the calling process is equal to the information label portion of
label_p, then neither the PRIV_FILE_UPGRADE_IL nor PRIV_FILE_DOWNGRADE_IL
privilege is required. If the information label portion of label_p dominates but is not equal
to the information label of the calling process (an upgrade), then the calling process must
assert PRIV_FILE_UPGRADE_IL in its set of effective privileges. If the information label
portion of label_p does not dominate the information label of the calling process (a down-
grade), then the calling process must assert PRIV_FILE_DOWNGRADE_IL in its set of
effective privileges.

In all other respects, the writel, pwritel, and writevl interfaces are analogous to the
write, pwrite, and writev interfaces.

For the write, writel, pwrite, pwritel, writev, and writevl interfaces, if the descriptor
refers to a regular file and the PRIV_FILE_NOFLOAT privilege is contained in the set of
effective privileges of the calling process, then the information label of the file is not
floated. Otherwise, the information label associated with the data that is being written is
conjoined with the current information label of the file, and this resulting information
label becomes the new information label of the file.

If the descriptor refers to a FIFO, the information label associated with the data that is
being written is associated with the new quantum of data. If the calling process asserts
the PRIV_FILE_NO_FLOAT privilege, the information label of the new quantum of data is
set to ADMIN_LOW.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write. The
calling process may assert the PRIV_FILE_SETID privilege to suppress this action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by the
write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress this
action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this res-
triction.

When the calling process writes to a regular file, the process information label floats the
information label of the file unless the PRIV_FILE_NOFLOAT privilege is asserted. For
conduits (FIFOs, pipes, pseudo terminals, and STREAMS), the information label of the cal-
ling process is associated with each byte of data in the conduit.

The information label of the calling process is unchanged.

RETURN VALUES On success, write returns the number of bytes actually written. Otherwise, write
returns -1 and sets errno to indicate the error.

ERRORS write, writel, pwrite, pwritel, writev, and writevl fail and the file pointer remains
unchanged if any of these conditions is true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is set, and

modified 03 June 1996 2TSOL-235

write (2TSOL) TSOL System Calls Trusted Solaris 2.5

there is a blocking record lock.

Total amount of system memory available when reading using raw I/O is
temporarily insufficient.

An attempt is made to write to a stream that cannot accept data with the
O_NDELAY or O_NONBLOCK flag set.

A write of {PIPE_BUF} bytes or less is requested to a pipe or FIFO, and less than
nbytes of free space is available.

EBADF fildes is not a valid file descriptor open for writing.

EDEADLK The write was ready to go to sleep and cause a deadlock situation to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the file has been
exhausted.

EFAULT buf points to an illegal address.

EFBIG An attempt to write a file exceeds the file-size limit of the process or the max-
imum file size. [See getrlimit(2TSOL) and ulimit(2TSOL).]

EINTR A signal was caught during the write operation and no data was transferred.

EINVAL An attempt is made to write to a stream linked below a multiplexor.

EIO The process in the background is attempting to write to its controlling termi-
nal whose TOSTOP flag is set; the process is neither ignoring nor blocking
SIGTTOU signals, and the process group of the process is orphaned.

ENOLCK Enforced record locking was enabled and {LOCK_MAX} regions are already
locked in the system.

The system record-lock table was full, so the write could not go to sleep until
the blocking record lock was removed.

ENOLINK fildes is on a remote machine but the link to that machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the device.

ENOSR An attempt is made to write to a stream with insufficient STREAMS memory
resources available in the system.

ENXIO A hangup occurred on the stream being written to.

EPIPE and SIGPIPE signal

An attempt is made to write either to a pipe that is not open for reading by
any process or to a file descriptor created by socket(3N), using type
SOCK_STREAM that is no longer connected to a peer endpoint. An attempted
write of this kind also causes you to receive a SIGPIPE signal from the kernel.
If you have not made special provision to catch or ignore this signal, your
process dies.

EPIPE An attempt is made to write to a FIFO that is not open for reading by any pro-
cess.

An attempt is made to write to a pipe that has only one end open.

2TSOL-236 modified 03 June 1996

Trusted Solaris 2.5 TSOL System Calls write (2TSOL)

ERANGE An attempt is made to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value is nonzero.

In addition, writev may return this error:

EINVAL iovcnt was less than or equal to 0, or greater than {IOV_MAX}.

One of the iov_len values in the iov array was negative.

The sum of the iov_len values in the iov array overflowed an int.

In addition, pwrite fails and the file pointer remains unchanged if this is true:

ESPIPE fildes is associated with a pipe or FIFO.

A write to a STREAMS file can fail if an error message has been received at the stream
head. In this case, errno is set to the value included in the error message.

Upon successful completion write and writev mark for update the st_ctime and
st_mtime fields of the file.

In addition, writel, pwritel, and writevl may set errno to

EFAULT label_p points outside the allocated address space of the process. The seek
pointer remains unchanged if this error occurs.

EPERM The calling process attempted to upgrade the information label associated
with the file-system object and did not have PRIV_FILE_UPGRADE_IL in its set
of effective privileges.

The calling process attempted to downgrade the information label associated
with the file-system object and did not have PRIV_FILE_DOWNGRADE_IL in
its set of effective privileges.

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write. The
calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by the
write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress this
action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this res-
triction.

Mandatory and discretionary access checks have already been performed when the object
was opened.

When the calling process writes to a regular file, the process information label floats the
information label of the file unless the PRIV_FILE_NOFLOAT privilege is asserted. For
conduits, the information label of the calling process is associated with each byte of data

modified 03 June 1996 2TSOL-237

write (2TSOL) TSOL System Calls Trusted Solaris 2.5

in the conduit unless the PRIV_FILE_NOFLOAT privilege is asserted.

SEE ALSO Intro(2TSOL), chmod(2TSOL), creat(2TSOL), dup(2), fcntl(2TSOL), getrlimit(2TSOL),
ioctl(2), lseek(2TSOL), open(2TSOL), pipe(2), ulimit(2TSOL), socket(3N), streamio(7I)

2TSOL-238 modified 03 June 1996

Index

Special Characters
CMW Label of file fgetcmwlabel(), 2TSOL-86
CMW Label of file getcmwlabel(), 2TSOL-86
CMW Label of file lgetcmwlabel(), 2TSOL-86
of filesystem — getfsattr()

Attributes, 2TSOL-98
of file system — getcmwfsrange()

range, 2TSOL-84
ISecurity Attributes

of file system — fgetfsattr(),
2TSOL-98

A
access — determine accessibility of a

file, 2TSOL-40
Access Control List, 2TSOL-15
access permission mode of file

change — chmod, 2TSOL-54
accreditation range, 2TSOL-15
ACL, 2TSOL-15, 2TSOL-42
ACL Mask, 2TSOL-15
adjtime — correct the time to allow

synchronization of the system
clock, 2TSOL-44

audit — write an audit record, 2TSOL-45
auditon() function, 2TSOL-46
auditsvc() function, 2TSOL-50

B
bind LWPs to a processor —

processor_bind, 2TSOL-161

C
change

CMW Label of file — setcmwlabel(),
2TSOL-186

chdir — change working directory, 2TSOL-52
chmod — change access permission mode of file,

2TSOL-54
chown — change owner and group of a file,

2TSOL-57
chroot — change root directory, 2TSOL-60
classification, 2TSOL-16
clearance, 2TSOL-16
CMW label, 2TSOL-16
compartment, 2TSOL-16
creat — create a new file or rewrite an existing

one, 2TSOL-63
create a new process — fork, 2TSOL-75

fork1, 2TSOL-75

D
DAC, 2TSOL-16
device objects, 2TSOL-16
directories

Index−1

directories, continued
change working directory — chdir, 2TSOL-52
create a new one — mknod, 2TSOL-128
get configurable pathname variables — path-

conf, 2TSOL-78
make a new one — mkdir, 2TSOL-125
read directory entries and put in a file system

independent format — getdents,
2TSOL-89

remove — rmdir, 2TSOL-172
discretionary access control, 2TSOL-17
disjoint, 2TSOL-17
dominance, 2TSOL-17
dominate, 2TSOL-17

E
effective group ID

set — setregid(), 2TSOL-192
effective user ID

set — setreuid(), 2TSOL-193
exec — execute a file, 2TSOL-67
execl — execute a file, 2TSOL-67
execle — execute a file, 2TSOL-67
execlp — execute a file, 2TSOL-67
execv — execute a file, 2TSOL-67
execve — execute a file, 2TSOL-67
execvp — execute a file, 2TSOL-67

F
facl — get or set a file’s Access Control List

(ACL), 2TSOL-42
fchdir — change working directory, 2TSOL-52
fchmod — change access permission mode of file,

2TSOL-54
fchown — change owner and group of a file,

2TSOL-57
fcntl — file control, 2TSOL-72
fgetcmwfsrange() — obtain file system sensi-

tivity label range, 2TSOL-84
fgetcmwlabel() — obtain file CMW Label,

2TSOL-86
fgetfsattr() — obtain file system ISecurity

Attributes, 2TSOL-98

ffgetmldadorn() — obtain file system
MLD adornment, 2TSOL-101

fgetsldname() — obtain file system SLD
name, 2TSOL-115

file CMW Label
fgetcmwlabel(), 2TSOL-86
getcmwlabel(), 2TSOL-86
lgetcmwlabel(), 2TSOL-86

file access, 2TSOL-17
file access permissions, 2TSOL-19
file pointer, read/write

move — lseek, 2TSOL-121, 2TSOL-123
file privilege sets, 2TSOL-20
file status

get — stat, lstat, fstat, mldstat,
mldlstat, 2TSOL-206

file system
Sensitivity Label range — getcmwfs-

range(), 2TSOL-84
ISecurity Attributes —

fgetfsattr(), 2TSOL-98
determine accessibility of a file —

access, 2TSOL-40
fsetcmwlabel(), 2TSOL-186
get information — statvfs,

fstatvfs, 2TSOL-210
lsetcmwlabel(), 2TSOL-186
make a symbolic link to a file —

symlink, 2TSOL-216
MLD adornment — fgetmldadorn(),

2TSOL-101
MLD adornment — getmldadorn(),

2TSOL-101
read the value of a symbolic link —

readlink, 2TSOL-168
remove link — unlink, 2TSOL-226
sensitivity label range —

fgetcmwfsrange(), 2TSOL-84
setcmwlabel(), 2TSOL-186
SLD name — fgetsldname(), 2TSOL-115
SLD name — getsldname(), 2TSOL-115
unmount — umount, 2TSOL-224

file system objects, 2TSOL-20
files

Index−2

files, continued
change access permission mode of

file — chmod, 2TSOL-54
change owner and group of a file —

chown, 2TSOL-57
change the name of a file — rename,

2TSOL-169
control — fcntl, 2TSOL-72
create a new file or rewrite an

existing one — creat,
2TSOL-63

execute — exec, 2TSOL-67
get configurable pathname variables

— pathconf, 2TSOL-78
link to a file — link, 2TSOL-119
move read/write file pointer —

lseek, 2TSOL-121, 2TSOL-123
open file for reading or writing —

open, 2TSOL-144
set access and modification times

of file — utimes, 2TSOL-228
set security flags of file — set-

fattrflag, 2TSOL-91
filesystem

Security Attributes — getfsattr(),
2TSOL-98

floating, of information labels,
2TSOL-21

fork — create a new process, 2TSOL-75
spawn new process in a virtual

memory efficient way — vfork,
2TSOL-230

fork1 — create a new process, 2TSOL-75
fpathconf — get configurable pathname

variables, 2TSOL-78
fsetcmwlabel(), 2TSOL-186
fsetfattrflag — set security flags of

file, 2TSOL-91
fstat — get status on open file known

by file descriptor, 2TSOL-206
fstatvfs — get file system information,

2TSOL-210

G
get or set a file’s Access Control List

(ACL)
— acl, 2TSOL-42
— facl, 2TSOL-42

getaudit get process audit information, 2TSOL-81
getauid — get user audit identity, 2TSOL-82
getclearance() — obtain process clearancel,

2TSOL-83
getcmwfsrange() — obtain file system Sensitivity

Label range, 2TSOL-84
getcmwlabel() — obtain file CMW Label,

2TSOL-86
getcmwplabel() — obtain process CMW Label,

2TSOL-88
getdents — read directory entries and put in a file

system independent format, 2TSOL-89
getfsattr() — obtain filesystem Security Attri-

butes, 2TSOL-98
getgroups — get supplementary group access list

IDs, 2TSOL-100
getpgid — get process group IDs, 2TSOL-107
getpgrp — get process group IDs, 2TSOL-107
getpid — get process IDs, 2TSOL-107
getppid — get parent process IDs, 2TSOL-107
getrlimit — control maximum system resource

consumption, 2TSOL-110
getsid — get session ID, 2TSOL-113
getsldname() — obtain file system SLD name,

2TSOL-115
group ID

set real and effective — setregid(),
2TSOL-192

group IDs
set — setgid, 2TSOL-194
supplementary group access list IDs — get-

groups, setgroups, 2TSOL-100

H
halt system

— uadmin, 2TSOL-221

Index−3

I
I/O

audit — audit, 2TSOL-45
information label, 2TSOL-20
information label floating, 2TSOL-21
inheritable privilegs, 2TSOL-21

K
kill — send a signal to a process or a group of

processes, 2TSOL-117

L
label, 2TSOL-21
label range, 2TSOL-21
label translation flags, 2TSOL-21
label view flags, 2TSOL-21
lchown — change owner and group of a file,

2TSOL-57
lgetcmwlabel() — obtain file CMW Label,

2TSOL-86
link — link to a file, 2TSOL-119

remove — unlink, 2TSOL-226
link(2TSOL), 2TSOL-6
link, symbolic

make one to a file — symlink, 2TSOL-216
lseek — move extended read/write file pointer,

2TSOL-121
lseek — move read/write file pointer, 2TSOL-123
lsetcmwlabel(), 2TSOL-186
lstat — get status on symbolic link file,

2TSOL-206
LWP

scheduler control — priocntl, 2TSOL-150

M
MAC, 2TSOL-22
make a directory, or a special or ordinary file —

mknod, 2TSOL-128
man(1), 2TSOL-6
mandatory access control, 2TSOL-22
marking, 2TSOL-22
memory, shared

memory, shared, continued
control operations — shmctl, 2TSOL-196
get segment identifier — sjmget, 2TSOL-199
operations — shmop, 2TSOL-201

message control operations
— msgctl, 2TSOL-133

message operations
— msgop, 2TSOL-137
— msgrcv, 2TSOL-137
— msgsnd, 2TSOL-137

message queue
get — msgget, 2TSOL-135

mkdir — make a directory, 2TSOL-125
mknod — make a directory, or a special or ordinary

file, 2TSOL-128
MLD, 2TSOL-22
MLD adornment

of file system — fgetmldadorn(),
2TSOL-101

of file system — getmldadorn(), 2TSOL-101
mldlstat — get status on symbolic link file,

2TSOL-206
mldstat — get file status, 2TSOL-206
modified system calls, 2TSOL-6
mount — mount a file system, 2TSOL-131
mount a file system — mount, 2TSOL-131
msgctl — message control operations, 2TSOL-133
msgget — get message queue, 2TSOL-135
multilevel directory, 2TSOL-25

N
network endpoint objects, 2TSOL-25
nice — change priority of a time-sharing process,

2TSOL-143

O
object, 2TSOL-25
open — open file for reading or writing, 2TSOL-144
open for reading or writing — open, 2TSOL-144
owner of file

change — chown, 2TSOL-57

Index−4

P
p_online — change processor online or offline

status, 2TSOL-149
pathconf — get configurable pathname variables,

2TSOL-78
pathname

get configurable variables — pathconf,
2TSOL-78

permission bits, 2TSOL-26
pread — read from file, 2TSOL-163
preadl — read from file labeled, 2TSOL-163
priocntl — process scheduler control, 2TSOL-150
priocntlset — generalized process scheduler

control, 2TSOL-159
privilege, 2TSOL-26, 2TSOL-27
privilege debugging flag, 2TSOL-26
process attribute flags, 2TSOL-27
process audit information

get process audit information — getaudit,
2TSOL-81

set process audit information — setaudit,
2TSOL-81

process clearance, 2TSOL-27
process objects, 2TSOL-27
process privilege sets, 2TSOL-27
process scheduler

control — priocntl, 2TSOL-150
generalized control — priocntlset,

2TSOL-159
process security attribute, 2TSOL-28
process, time-sharing

change priority — nice, 2TSOL-143
processes

change priority of a time-sharing process —
nice, 2TSOL-143

create a new one — fork, 2TSOL-75
execute a file — exec, 2TSOL-67
generalized scheduler control —

priocntlset, 2TSOL-159
get and set limits — ulimit, 2TSOL-223
get identification — getpid, getpgrp,

getppid, getpgid, 2TSOL-107
get or set session ID — getsid, setsid,

2TSOL-113
processes, continued

read directory entries and put in a file system
independent format — getdents,
2TSOL-89

read from file — read, 2TSOL-163
read the value of a symbolic link —

readlink, 2TSOL-168
send a signal to a process or a group of

processes — kill, 2TSOL-117
spawn new process in a virtual memory

efficient way — vfork, 2TSOL-230
supplementary group access list IDs — get-

groups, setgroups, 2TSOL-100
processes and protection

— setregid(), 2TSOL-192
— setreuid(), 2TSOL-193

processor_bind — bind LWPs to a processor,
2TSOL-161

pwrite — write on a file, 2TSOL-232
pwritel — write on file labeled, 2TSOL-232

R
read from file — read, 2TSOL-163

pread, 2TSOL-163
readv, 2TSOL-163

read from file labeled — read
preadl, 2TSOL-163
readl, 2TSOL-163
readvl, 2TSOL-163

read/write file pointer
move — lseek, 2TSOL-121, 2TSOL-123

readl — read from file labeled, 2TSOL-163
readlink — read the value of a symbolic link,

2TSOL-168
read — read from file, 2TSOL-163
readvl — read from file labeled, 2TSOL-163
real group ID

set — setregid(), 2TSOL-192
real user ID

set — setreuid(), 2TSOL-193
reboot system

— uadmin, 2TSOL-221
remount root file system

Index−5

remount root file system, continued
— uadmin, 2TSOL-221

rename — change the name of a file, 2TSOL-169
rmdir — remove a directory, 2TSOL-172
root directory

change — chroot, 2TSOL-60

S
secconf() — get security configuration informa-

tion, 2TSOL-174
secconf(2TSOL), 2TSOL-6
security attribute, 2TSOL-28, 2TSOL-29
security flags of file

set — setfattrflag, 2TSOL-91
security policy, 2TSOL-29, 2TSOL-6
semaphores

control operations — semctl, 2TSOL-176
get a set — semget, 2TSOL-179
operations — semop, 2TSOL-181

semctl — semaphore control operations,
2TSOL-176

semget — get set of semaphores, 2TSOL-179
semop — semaphore operations, 2TSOL-181
sensitivity label, 2TSOL-31
sensitivity label range

of file system — fgetcmwfsrange(),
2TSOL-84

session ID
get or set — getsid, setsid, 2TSOL-113

setaudit set process audit information, 2TSOL-81
setauid — set user audit identity, 2TSOL-82
setclearance() — set process clearance,

2TSOL-185
setcmwlabel(), 2TSOL-186
setcmwplabel() — set process CMW label,

2TSOL-191
setegid — set effective group ID, 2TSOL-194
seteuid — set effective user ID, 2TSOL-194
setfattrflag — set security flags of file,

2TSOL-91
setgid — set group ID, 2TSOL-194
setgroups — set supplementary group access list

IDs, 2TSOL-100

setregid() — set real and effective group ID,
2TSOL-192

setreuid() — set real and effective user IDs,
2TSOL-193

setrlimit — control maximum system resource
consumption, 2TSOL-110

setsid — set session ID, 2TSOL-113
setuid — set user ID, 2TSOL-194
shared memory

control operations — shmctl, 2TSOL-196
get segment identifier — sjmget, 2TSOL-199
operations — shmop, 2TSOL-201

shmctl — shared memory control operations,
2TSOL-196

shmget — get shared memory segment identifier,
2TSOL-199

shmop — shared memory operations, 2TSOL-201
shutdown

— uadmin, 2TSOL-221
sigsend — send a signal to a process or a group of

processes, 2TSOL-204
sigsendset — provides an alternate interface to

sigsend for sending signals to sets of
processes, 2TSOL-204

single-level directory, 2TSOL-34
SLD, 2TSOL-29
SLD name

of file system — fgetsldname(), 2TSOL-115
of file system — getsldname(), 2TSOL-115

Solstice AdminSuite, 2TSOL-6
special files

create a new one — mknod, 2TSOL-128
stat — get file status, 2TSOL-206
statvfs — get file system information, 2TSOL-210
stime — set system time and date, 2TSOL-213
STREAMS objects, 2TSOL-34
strictly dominate, 2TSOL-34
swap space

manage — swapctl, 2TSOL-214
swapctl — manage swap space, 2TSOL-214
symbolic link

make one to a file — symlink, 2TSOL-216

Index−6

symbolic link, continued
read the value — readlink, 2TSOL-168

symlink — make a symbolic link to a file,
2TSOL-216

system accreditation range, 2TSOL-35
system administration

administrative control — uadmin, 2TSOL-221
system clock

synchronization — adjtime, 2TSOL-44
system information

get and set strings — sysinfo, 2TSOL-217
system resources

control maximum system resource consump-
tion — getrlimit, setrlimit,
2TSOL-110

system V IPC objects, 2TSOL-34

T
time

correct the time to allow synchronization of the
system clock — adjtime, 2TSOL-44

set system time and date — stime, 2TSOL-213
tokmapper() — manipulates kernel token map-

ping caches, 2TSOL-220
trusted path flag, 2TSOL-35
TSOL man page suffix, 2TSOL-6

U
umount — unmount a file system, 2TSOL-224
unlink — remove directory entry, 2TSOL-226
unmount a file system — umount, 2TSOL-224
user audit identity

get user audit identity — getauid, 2TSOL-82
set user audit identity — setauid, 2TSOL-82

user ID
set real and effective — setreuid(),

2TSOL-193
user IDs

set — setuid, 2TSOL-194
utimes — set access and modification times of file,

2TSOL-228

V
vfork — spawn new process in a virtual memory

efficient way, 2TSOL-230

W
write on a file

— write, 2TSOL-232
— write, 2TSOL-232
— write, 2TSOL-232

write on file labeled — write
pwritel, 2TSOL-232
writel, 2TSOL-232
writevl, 2TSOL-232

writel — write on file labeled, 2TSOL-232
write — write on a file, 2TSOL-232
writevl — write on file labeled, 2TSOL-232

X
X window objects, 2TSOL-35

Index−7

