
A Sun Microsystems, Inc. Business
901 San Antonio Road
Palo Alto, CA 94303
U.S.A.

Trusted Solaris Developer’s Guide

Part No: 805-8031-10
Revision A, August 1998

Sun Microsystems Federal, Inc.

Please
Recycle

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and SunOS, OpenWindows, NFS, Sun Ultra, Ultra, JumpStart, Solaris, Solstice,
Solstice AdminSuite, Solstice AdminTools, Solstice Autoclient, Solstice CacheOS, Disksuite, ToolTalk, X11/NeWS, Trusted NeWSprint, IPC, OpenBoot,
SHIELD, XView, SunInstall, AnswerBook, and Trusted Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the
U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc . X/Open® is a
registered trademark and "X" device is a trademark of X/Open Company Limited, Netscape is a trademark of Netscape Communications Corporation,
and PostScript is a trademark of Adobe Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris SunOS, OpenWindows, NFS, Sun Ultra, Ultra, JumpStart, Solstice, Solstice
AdminSuite, Solstice AdminTools, Solstice Autoclient, Solstice CacheOS, Disksuite, ToolTalk, X11/NeWS, Trusted NeWSprint, IPC, OpenBoot, SHIELD,
XView, SunInstall, AnswerBook, et Trusted Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems,
Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée
par Sun Microsystems, Inc. .X/Open® est une marque enregistrées et "X" device est une marque de X/Open Company Limited, Netscape est une marque
de Netscape Communications Corporation, et PostScript est une marque de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

1. Introduction to the API and Security Policy 1

Base Operating System Features . 2

Data Objects . 3

File System Objects . 3

X11 Windows Objects . 3

Process Objects . 3

Application Programming Interfaces . 5

Privileges . 6

User Authorizations . 6

CMW Labels . 7

Process Clearance. 7

Multilevel Directories . 8

Application Auditing . 8

User and Profile Database Access . 8

Interprocess Communications . 8

iv Trusted Solaris Developer’s Guide—August 1998

Trusted X Window System . 9

Application User Interface . 10

Label Builder . 10

System Security Configuration Settings 10

Security Attributes. 11

Security Policy . 13

Discretionary Access Policy . 13

Mandatory Access Policy . 13

When to Use Privileges . 14

Administrative and User Applications 15

Policy Enforcement . 16

2. Getting Started . 25

System Security Configuration and Attribute Information . . . 26

Programming Interfaces . 26

Query System Security Configuration 28

Query File System Security Attributes 31

Get and Set File System Security Attribute Flags 35

Get and Set Process Security Attribute Flags 37

Trusted Solaris 2.5.1 Security Mechanisms 39

Privileges and Authorizations . 40

CMW Labels and Clearances . 42

Multilevel Directories . 45

Application Auditing . 46

User and Profile Databases . 48

Contents v

3. Privileges . 51

Types of Privileges . 53

Privilege Sets . 53

File Privilege Sets . 53

Process Privilege Sets . 54

Types of Privileged Applications . 57

Privilege Names and Descriptions. 57

Privileged Operations . 57

Setting File Privilege Sets . 57

Keeping File Privilege Sets on an Executable File 57

Core Files . 58

Setting IDs. 58

Privilege Guidelines . 58

Use Privilege Bracketing . 58

Avoid Shell Escapes . 59

Avoid Command Line Execution. 59

Eliminate Covert Channels. 59

Data Types, Header Files, and Libraries 59

Single Privileges. 60

Privilege Set Structure . 60

File Privilege Sets . 60

Process Privilege Sets . 60

Operations on File and Process Sets 60

Privilege Macros. 61

vi Trusted Solaris Developer’s Guide—August 1998

Interface Declarations . 61

System Calls . 62

Library Routines . 63

Translating Privileges . 64

Privilege ID to String. 65

String to Privilege ID. 65

Get Description Text for Privilege ID . 66

Setting and Getting File Privilege Sets . 66

Commands for File Sets . 67

Programming Interfaces for File Sets 67

Turn Allowed Privileges Off. 70

Assert Privileges in Privilege Set Structure 70

Contents of Privilege Sets . 71

Bracketing Effective Privileges . 71

Procedure . 72

Clear Effective Set . 73

Continue Application Code . 73

Bracket The Call . 73

Bracketing in Example . 73

Check Permitted Privileges. 74

Remove a Permitted Privilege . 75

Check Saved Privileges . 76

Clear and Set the Inheritable Set . 76

Fork a Process . 77

Contents vii

Parent Process Privilege Sets . 77

System Call and Code . 78

New Process Privilege Sets . 78

Execute a File . 79

Privilege Sets . 79

System Call . 79

New Process Privilege Sets . 79

Set User ID . 80

4. Checking User Authorizations . 81

Types of Authorizations . 82

Data Types, Header Files, and Libraries 82

Single Authorizations . 83

Authorization Set Structure . 83

Authorization Names and Descriptions 83

Programing Interface Declarations . 83

User Authorizations . 83

Authorization IDs . 84

Authorization Sets . 84

Authorization Description Text . 84

Check Authorization ID . 85

Translating Authorizations . 86

Authorization ID to String . 86

String to Authorization ID . 86

Get Description Text for Authorization 87

viii Trusted Solaris Developer’s Guide—August 1998

Authorization Sets . 87

Converting String to Authorization Set 87

Translating Authorization Set to String 88

Free Authorization Set . 88

5. Labels . 89

CMW Label . 90

Sensitivity Label. 91

Information Label . 91

Information Label Floating. 91

CMW Label Display . 93

Acquiring CMW labels . 93

Process CMW Label. 93

Object CMW Label. 94

Privileged Operations . 95

Translating Binary Labels . 95

Setting Process Labels . 95

Downgrading and Upgrading Sensitivity Labels 95

Downgrading and Upgrading Information Labels 96

Stopping Information Label Floating 96

Label Guidelines . 96

Sensitivity Labels . 97

Information Label Floating. 99

Data Types, Header Files, and Libraries 100

CMW label . 100

Contents ix

Setting Flag . 100

Sensitivity Label. 100

Information Label . 100

Binary Levels . 101

Type Compatibility . 101

Range of Sensitivity Labels. 101

Accreditation Range . 101

Label Information . 101

Banner Fields . 102

Programming Interface Declarations. 102

System Calls . 102

Library Routines . 104

6. Label Code Examples . 113

Retrieving Version String . 114

Initialize Binary Labels and Check Types 115

Get Process CMW Label . 117

Float Information Label. 118

Set Process CMW Label. 119

Get File CMW Label . 120

Set File CMW Label . 121

File System Label Range . 123

Test Range Before Changing File CMW Label 123

Test Range before Routing Data to Device 124

Test Label Relationships . 125

x Trusted Solaris Developer’s Guide—August 1998

Find Relationship Between Two Levels 125

Find Relationship Between Two Information Labels 127

Find Relationship Between Two Markings Sets 129

Accessing CMW Label Portions . 130

Conjoining Binary Information Labels . 131

Finding Binary Level Bounds . 132

Check Accreditation Range. 133

Validating Labels . 134

Getting ASCII Color Names . 136

Label Encodings Information . 137

Translating Labels . 138

Binary and ASCII . 138

Binary and Hexadecimal. 147

Printer Banner Information. 149

7. Process Clearance . 151

Privileged Operations . 152

Data Types, Header Files, and Libraries 153

Process Clearances. 153

Binary Levels . 153

Type Compatibility . 153

Programming Interface Declarations. 153

System Calls . 154

Library Routines . 154

Process Clearance Operations . 157

Contents xi

Set Process Clearance . 157

Initialize Clearance Structure . 159

Find Relationships Between Two Levels. 160

Find Greatest Level and Lowest Level 161

Valid Clearance . 163

Translating Process Clearances . 164

8. Multilevel Directories . 169

Directory Structure . 170

Temporary Directory . 171

Symbolic Links . 171

Adorned Names . 172

Privileged Operations . 173

Data Types, Header Files, and Libraries 173

Sensitivity Label. 173

Status . 174

Programming Interface Declarations. 174

System Calls . 174

Library Routines . 177

Query MLD and SLD Name . 178

Using Path Names with Adornments . 181

Open a File . 182

Create a file . 182

9. Application Auditing . 185

Third-Party User Activities. 186

xii Trusted Solaris Developer’s Guide—August 1998

Privileged Operations . 187

Header Files and Libraries . 187

Declaration and Argument Types . 187

Preliminary Setup for Code Examples . 188

Audit File Setup . 188

Viewing the Audit Trail Setup . 191

Executable Code Setup . 191

Creating an Audit Record . 192

Making Invalid and Valid Calls . 192

Creating a Minimum Audit Record. 193

Appending Audit Record Information with Information Label 196

Queueing Audit Records. 198

Specifying a Preselection Mask . 200

Creating Audit Records in Parallel . 202

Using the Save Area. 203

Using the Server Area and Adding a Sensitivity Label. 205

Argument Information . 207

Command Line Arguments . 208

Privilege Sets . 209

Interprocess Communications Identifier. 210

10. Accessing User and Profile Database Entries 211

Data Types, Header Files, and Libraries 212

User Entries . 212

Profile Entries . 213

Contents xiii

Programming Interface Declarations. 214

Get User Entries . 215

Enumerate User Entries . 215

Free Memory Allocated for User Entries 215

Get Profile Entries . 216

Enumerate Profile Entries . 216

Free Memory Allocated for Profile Entries 217

Getting User and Profile Entries . 218

User Database Output . 220

Profile Database Output . 221

Enumerating through the User Database 222

11. Interprocess Communications . 223

Unnamed Pipes . 224

Named Pipes (FIFOs) . 225

Pseudo-Terminal Devices (PTYs) . 225

Signals . 226

Process Tracing . 226

Mapped Memory . 226

System V IPC . 227

Communication Endpoints. 227

Multilevel Ports . 228

Sockets and TLI . 228

TSIX . 229

RPC . 230

xiv Trusted Solaris Developer’s Guide—August 1998

12. System V Interprocess Communication 231

Privileged Operations . 232

Discretionary Access and Ownership Controls 232

Mandatory Access Controls . 232

Information Label Floating. 233

Data Types, Header Files, and Libraries 234

Labels . 234

Programming Interface Declarations. 234

Message Queues. 234

Semaphore Sets . 235

Shared Memory Regions. 236

Using Message Queue Labels. 236

Using Semaphore Set labels . 239

Using Shared Memory Labels . 241

13. Trusted Security Information Exchange Library 243

Security Attributes . 244

Privileged Operations . 245

Information Label Floating. 245

Replying with Same Sensitivity Label. 245

Changing Sensitivity Label. 245

Changing Security Attribute Information 245

Data Types, Header Files, and Libraries 247

Attribute Structure. 247

Attribute Enumerations . 247

Contents xv

Attribute Mask . 248

Programming Interface Declarations. 249

Get Attribute Masks . 249

Allocate and Free Space . 249

Send and Receive Data . 250

Get and Set Security Attributes . 251

Examine Security Attributes. 251

Get the Size of One Security Attribute 252

Copy and Duplicate Security Attributes. 252

Compare Security Attributes . 252

Clear Security Attributes . 252

Get and Set Endpoint Attributes . 253

Turn Extended Security Operations On and Off 253

Getting and Setting Security Attributes 254

Security Attributes on Messages . 254

Security Attributes on Communication Endpoints 256

Receiving and Retrieving Security Attributes 258

Examining Attributes . 260

Getting Attribute Size . 261

Copying and Duplicating Attribute Structures 262

Compare Attribute Structures . 263

Clear Attribute Structure . 263

Creating Attribute Masks . 264

Free Space . 265

xvi Trusted Solaris Developer’s Guide—August 1998

Client-Server Application . 265

TCP/IP Server . 266

TCP/IP Client. 273

Running the Programs . 276

14. Remote Procedure Calls . 277

Mapping . 278

Single-Level Mapping . 278

Multilevel Mapping. 278

Multilevel Ports . 278

Security Attributes . 279

Servers. 279

Clients . 280

Header Files and Libraries . 280

Programming Interfaces . 281

Client-Server Application . 281

Header File . 281

Client Program . 282

Server Program . 284

Remote Procedure . 285

Running the Simple Application . 286

15. Trusted X Window System . 287

Security Attributes . 289

Security Policy . 290

Root Window . 291

Contents xvii

Client Windows . 291

Override-Redirect Windows. 291

Keyboard, Pointer, and Server Control 291

Selection Manager . 292

Default Resources . 292

Moving Data Between Windows . 292

Privileged Operations . 293

Configuring and Destroying Resources 293

Input Devices . 293

Direct Graphics Access . 293

Downgrading labels . 293

Upgrading Labels . 294

Stopping Information Label Floating 294

Setting a Font Path. 294

Data Types, Header Files, and Libraries 294

Object Type . 295

Object Attributes . 295

Property Attributes . 295

Client Attributes . 295

Setting Flag . 296

CMW Label. 296

Information Label . 296

Clearance . 296

Programming Interface Declarations. 297

xviii Trusted Solaris Developer’s Guide—August 1998

Window Attributes . 297

Property Attributes . 297

Client Connection Attributes . 297

Window CMW Label . 298

Window User ID . 298

Window Input Information Label . 299

Property CMW Label. 299

Property User ID . 300

Workstation Owner ID . 300

X Window Server Clearance and Minimum Label 301

Trusted Path Window . 301

Screen Stripe Height . 302

Polyinstantiation Information . 302

X11 Windows Label Clipping Interfaces 303

Example Motif Application . 304

Getting Window Attributes . 305

Translate Label with Font List . 306

Getting a Window CMW Label . 307

Setting a Window CMW Label . 308

Getting the Window User ID . 308

Getting the X Window Server Workstation Owner ID 308

Source Code . 309

Resource File. 309

Compile Command . 309

Contents xix

Code . 310

16. Label Builder . 315

Header Files and Libraries . 316

Programming Interfaces . 316

Creating an Interactive User Interface. 316

Label Builder Behavior . 320

Application-Specific Functionality . 321

Privileged Operations . 321

Create Routine . 322

Extended Operations. 324

ModLabelData Structure. 327

Online Help . 328

A. Programmer’s Reference . 329

Man Pages. 330

Requesting Man Pages . 330

Reading Man Pages . 331

Making Shared Libraries Trusted. 332

Default Trusted Shared Library Locations 332

Shared Libraries Used by Third Party or Site-Created
Applications . 333

Examples. 333

Header File Locations . 334

Abbreviations in Names . 334

Developing, Testing, and Debugging . 335

xx Trusted Solaris Developer’s Guide—August 1998

Privilege Debugging . 336

Assigning File Privileges using a Script 337

Releasing an Application . 338

Creating a CDE Action . 339

Creating a Software Package . 339

B. Trusted Solaris 2.5.1 Interfaces Reference 345

System Security Configuration. 346

File System Security Attributes and Flags 346

Process Security Attribute Flags . 346

Privileges. 347

Privilege Macros. 347

Authorizations . 348

Labels. 348

File Systems . 348

Label Encodings File . 348

Reentrant Routines . 349

Levels . 349

Label Types . 349

Sensitivity Labels . 350

Information Labels. 350

CMW Labels . 351

Label Clipping Interfaces . 352

Clearances . 353

Application Auditing . 353

Contents xxi

Multilevel Directories . 354

Database Access . 354

System V IPC . 355

Message Queues. 355

Semaphore Sets . 355

Shared Memory Regions. 355

TSIX . 356

RPC . 357

Label Builder . 357

X Window System . 358

Trusted Streams . 359

System Calls . 359

Trusted Kernel Functions for Drivers . 361

Library Routines . 362

Index . 369

xxii Trusted Solaris Developer’s Guide—August 1998

xxiii

Figures

Figure 1-1 Accessing a File System Object . 19

Figure 5-1 CMW label Parts . 90

Figure 5-2 Information Label Floating . 92

Figure 8-1 Multilevel Directories . 170

Figure 9-1 Audit Trail, Files, Records, and Tokens 186

Figure 15-1 Simple Motif Application . 304

Figure 15-2 Italicized Label Text . 307

Figure 16-1 CMW Label Building Interface . 317

Figure A-1 Add New Package . 342

xxiv Trusted Solaris Developer’s Guide—August 1998

xxv

Preface

The Trusted Solaris Developer’s Guide describes how to use the programming
interfaces to write new trusted applications for Trusted Solaris 2.5.1™. Readers
should know UNIX programming and understand security policy concepts.

Related Books
The Trusted Solaris 2.5.1 documentation set is supplemental to the Solaris 2.5.1
documentation set. You should obtain a copy of both sets for a complete
understanding of Trusted Solaris 2.5.1.

In this manual, system administration duties are referenced to give context for
how aspects of the environment in which a third-party application runs are set
up. Trusted Solaris 2.5.1 allows various administrative roles, and these
references to system administrator duties are general and do not refer to a
specific administrative role. The Trusted Solaris Administrator’s document set
describes how system administration duties are divided among different roles.

• Trusted Solaris Documentation Roadmap shows all volumes in the
documentation set.

• Trusted Solaris User’s Guide describes basic features of the Trusted Solaris
2.5.1 operating system that are common to all user’s of the system.

• Trusted Solaris Administration Overview explains basic concepts and
terminology commonly used throughout Trusted Solaris 2.5.1.

• Trusted Solaris Administrator’s Procedures describes procedures for managing
users and workstations.

xxvi Trusted Solaris Developer’s Guide—August 1998

• Trusted Solaris Audit Administration describes the auditing system for system
administrators.

• Trusted Solaris Label Administration provides information on specifying label
components in label_encodings(4TSOL) .

• Compartmented Mode Workstation Labeling: Encodings Format describes the
syntax used in label_encodings(4TSOL) for enforcing the various rules
concerning well-formed labels for a system.

• Trusted Solaris 2.5.1 Transition Guide describes the differences between
Trusted Solaris 1.2 and Trusted Solaris 2.5.1.

How This Book is Organized
The first two chapters present an overview of the Trusted Solaris 2.5.1
programming interfaces, how security policy is enforced, how to retrieve
security attribute information for file systems and processes, and how to use
the Trusted Solaris 2.5.1 security mechanisms. An overview of security policy
and interprocess communications is presented in Chapter 11, “Interprocess
Communications.”

Chapter 1, “Introduction to the API and Security Policy” presents an overview
of the Trusted Solaris 2.5.1 application programming interfaces and how
security policy is enforced in the system.

Chapter 2, “Getting Started” contains short example programs showing how to
retrieve security attribute information for file system and process objects, and
how to use the security mechanisms provided in Trusted Solaris 2.5.1.

Chapter 3, “Privileges” describes the data types and programming interfaces
for managing file and process privileges. This chapter also describes how
privileges are used in programs, presents guidelines for using privileges, and
has a section of code examples.

Chapter 4, “Checking User Authorizations” describes the data types and
programming interfaces for checking user authorizations and manipulating
single authorizations and authorization sets. This chapter has a section of code
examples.

Preface xxvii

Chapter 5, “Labels” describes the data types and programming interfaces for
managing labels on process, file system, and device objects. This chapter also
describes how a process acquires a CMW label, when label operations require
privilege, and presents guidelines for handling labels.

Chapter 6, “Label Code Examples” presents code examples for the
programming interfaces described in Chapter 5, “Labels.”

Chapter 7, “Process Clearance” describes the data types and programming
interfaces for managing the process clearance. This chapter also describes how
a process acquires a clearance, which privileges bypass the restrictions placed
on a process by the process clearance, and has a section of code examples.

Chapter 8, “Multilevel Directories” describes the data types and programming
interfaces for getting information on multilevel and single-level directories.
There chapter has a section of code examples.

Chapter 9, “Application Auditing” describes the data types and programming
interfaces for generating audit records from a third-party application. There
chapter also describes privilege and has a section of code examples.

Chapter 10, “Accessing User and Profile Database Entries” describes the data
types and programming interfaces for reading the security information in the
tsoluser database (user and role information) and the tsolprof database
(profile information). This chapter has a section of code examples.

Chapter 11, “Interprocess Communications” presents an overview of how
security policy is applied to process-to-process communications within the
same workstation and across the network.

Chapter 12, “System V Interprocess Communication” describes the data types
and programming interfaces for managing labels on System V IPC™ objects.
This chapter has a section of code examples.

Chapter 13, “Trusted Security Information Exchange Library” describes the
data types and programming interfaces for handling security attribute
information on messages transmitted across the network. This chapter has a
section of code examples.

Chapter 14, “Remote Procedure Calls” describes data types and programming
interfaces for remote procedure calls (RPC). This chapter has a section of code
examples.

xxviii Trusted Solaris Developer’s Guide—August 1998

Chapter 15, “Trusted X Window System” describes the data types and
programming interfaces that allow administrative applications to access and
modify security-related X Window System information. This chapter has a
section of code examples.

Chapter 16, “Label Builder” describes the data types and programming
interfaces for creating a graphical user interface for building labels and
clearances. This chapter has a section of code examples.

Appendix A, “Programmer’s Reference” provides information on accessing
man pages, shared libraries, header files, abbreviations used in data type and
interface names, and preparing an application for release.

Appendix B, “Trusted Solaris 2.5.1 Interfaces Reference” provides listings of
the programming interfaces including parameter and return value
declarations.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun
Microsystems, Inc. If you live in the United States, Canada, Europe, or Japan,
you can purchase documentation sets or individual manuals using this
program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress .

Preface xxix

Typographic Changes and Symbols
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password::

AaBbCc123 Command-line placeholder or
variable name. Replace with a
real name or value

To delete a file, type rm filename.
The errno variable is set.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are in code font and may display the following:

% UNIX™ C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

xxx Trusted Solaris Developer’s Guide—August 1998

1

Introduction to the API and
Security Policy 1

Trusted Solaris 2.5.1 provides an application programming interface (API) for
accessing and handling security-related information from within third-party
applications. This chapter summarizes the API functionality and introduces
you to Trusted Solaris 2.5.1 security policy.

Base Operating System Features page 2

Data Objects page 3

Privileges page 6

User Authorizations page 6

CMW Labels page 7

Process Clearance page 7

Multilevel Directories page 8

Application Auditing page 8

User and Profile Database Access page 8

Interprocess Communications page 8

Trusted X Window System page 9

Application User Interface page 10

Label Builder page 10

System Security Configuration Settings page 10

Security Attributes page 11

Security Policy page 13

Policy Enforcement page 16

2 Trusted Solaris Developer’s Guide—August 1998

1

Base Operating System Features
Trusted Solaris 2.5.1 is based on Solaris™ 2.5.1, and provides enhanced security
while maintaining the following Solaris 2.5.1 features:

• ANSI C language specification.

• Application Programming Interface (API).

• SPARC Architecture Manual Version 8 application binary interfaces (ABIs),
and System V Release 4 ABI.

• Executable file formats.
• a.out.
• Executable and linking format (ELF).
• Interpreted files.

• Device programming interfaces.
• Device Driver Interface (DDI).
• Device Kernel Interface (DKI).

• File systems and file system objects.

• User and system administration commands.

• Common Desktop Environment (CDE) specification.

• The Trusted Solaris 2.5.1 X window system is based on and generally
compatible with the X11R5-based window system in Solaris 2.5.1.

• Motif and OpenLook Interface Toolkit (OLIT).

• Level 1, 2, and 3 internationalization. The C locale and the Japanese locale
are provided with Trusted Solaris 2.5.1.

• Solaris 2.5.1 pluggable authentication module (PAM) functionality.

Note that the password generation algorithm can be replaced by installing a
new shared object called /usr/lib/security/pam_rw.so which
implements the replacement function. The file must be at ADMIN_LOW,
with the permissions rwxr-xr-x root sys . The function must conform to
the syntax and symantics described in the randomword(3TSOL) man page.

Introduction to the API and Security Policy 3

1

Data Objects
Applications use Solaris 2.5.1 and Trusted Solaris 2.5.1 APIs to work on data in
the types of objects described here. Trusted Solaris 2.5.1 implements security
policy by imposing constraints on security-related operations applications
perform on these objects. “Security Policy” on page 13 describes
Trusted Solaris 2.5.1 security policy as it applies to applications.

File System Objects

File system objects reside in a file system where they can be read, written to,
searched, and executed according to file system security policy. File system
objects are the following:

• Directories.
• Regular data files.
• Executable files.
• Symbolic links.
• Mapped memory.
• Device objects – Device special (character and block) files for device drivers

to printers, workstations, tape drives, and floppy drives.

X11 Windows Objects

X Window System objects handle data input and output through a special file
system interface. Although the data in these special files is not accessed the
way the data in file system objects is accessed, these files are protected by file
system security policy, while the X Window Server and the X Window System
objects are protected by X Window System security policy.

Process Objects

A process can access data in another process or in lightweight processes
(independently scheduled threads of execution). All process to process
communications is protected by either process, network, or interprocess
communications (IPC) security policy. If the communication involves a special
file, the file is protected by file system security policy.

4 Trusted Solaris Developer’s Guide—August 1998

1

IPC Objects

Interprocess communication (IPC) objects are the following.

• Unnamed pipes.
• Named pipes (FIFOs).
• Mapped Memory.
• System V IPC objects (message queues, semaphore, and shared memory).
• Pseudo-Terminal Devices (PTYs).
• Signals.
• Process Tracing.

Network Communication Endpoints

Network communication endpoints are sockets and transport layer interface
(TLI) endpoints.

• INET Domain Sockets bind to a port.
• UNIX Domain Socket Rendezvous bind to a file.
• INET Domain TLI bind to a port.
• UNIX Domain TLI bind to a file.
• Remote Procedure Calls (RPC) bind to a port.

STREAMS Objects

STREAMS objects form the basis for networking software and are protected by
network security policy. Security attribute information carried on STREAMS is
accessed through the IPC and networking APIs described in detail in this
guide. “Trusted Streams” on page 355 lists interfaces that let you access the
security attribute information on a Stream directly; however, no conceptual
information or code examples is currently provided for these interfaces.

Introduction to the API and Security Policy 5

1

Application Programming Interfaces
The Trusted Solaris 2.5.1 API provides access to the following security features.
These features are listed here, briefly introduced in this chapter, and covered in
detail in the remaining chapters of this guide.

• Security mechanisms
• Privileges
• User authorizations
• CMW labels
• Process clearances
• Multilevel directories
• Application auditing

• User and Profile database security information

• System security configuration settings

• Security attribute information
• File system security attributes and flags
• Process security attribute flags
• Network security attributes
• X11 Windows security attributes

• Process to object communications
• Secure interprocess communications with CMW labels
• Secure file system communications with CMW labels and file system

security attributes
• Secure network communications with CMW labels, multilevel ports,

multilevel mappings (RPC only), and network security attributes
• Secure transfer of data between X11 Windows with CMW labels and

windows security attributes

• Label builder – APIs that let you create a graphical user interface for your
application that takes end user input and builds a valid label for the system

6 Trusted Solaris Developer’s Guide—August 1998

1

Privileges

Privileges let a process perform tasks that are normally prohibited by the
system security policy. In Solaris 2.5.1, processes with the effective User ID of 0
(superuser) can bypass the system security policy, and processes at any other
user ID have limited powers. In Trusted Solaris 2.5.1, there is no superuser. A
process with any user ID can be assigned specific privileges to give it a defined
set of security-related powers. See priv_desc(4TSOL) for a list of privileges
and the tasks they allow a process to perform.

Most applications do not use privileges because they do not need security-
related powers to run. An application using privileges is called a Trusted
Computing Base (TCB) application and should be carefully coded to not make
information available in inappropriate ways. “Security Policy” on page 13
provides guidelines to help you know when privileges might be needed, and
Chapter 3, “Privileges” provides information and guidelines for coding
privileged programs.

• Get and set the file and process privilege sets.
• Set the effective, permitted, and inheritable process privilege sets.
• Convert privilege IDs between numeric and ASCII.
• Get privilege text for a privilege ID.

User Authorizations

Processes that run on behalf of a user check that user’s authorizations before
performing tasks that require authorization. If the task requires privilege (it
usually does), authorizations should be checked before the process asserts the
privilege. Authorizations are administratively assigned and control user access
to the user tasks described on auth_desc(4TSOL) . Chapter 4, “Checking User
Authorizations” describes programing interfaces that do the following:

• Check a user’s authorizations.
• Manipulate Authorization Sets.
• Convert Authorization IDs between numeric and ASCII.
• Get authorization text for an authorization ID.

Introduction to the API and Security Policy 7

1

CMW Labels

CMW Labels control access to and maintain the classification of data. All
processes and objects have a CMW label with two portions: the sensitivity label
portion for mandatory access control (MAC) decisions, and the information
label portion to identify the true sensitivity of the data. Information labels float
(when floating is on for a system) when information flows between processes
and objects to reflect the maximum level of the new information content.
Chapter 5, “Labels” describes programing interfaces that do the following.

• Get and set file and process labels.
• Get file system label ranges.
• Initialize labels.
• Find the greatest lower bound or least upper bound between two levels.
• Compare levels for dominance and equality.
• Conjoin binary information labels.
• Check and set binary label types.
• Convert labels between binary and ASCII or hexadecimal.
• Check that a sensitivity label is valid and within the system or user

accreditation range.
• Get information from the label_encodings(4TSOL) file. This file s set up

and maintained by the system administrator and contains the label
definitions for the system.

Process Clearance

When a user starts an application from a workspace, the user’s session
clearance is set on the process and called the process clearance. The process
clearance sets the upper bound to which the process can change an object’s
CMW label and to which the process can write data. Chapter 7, “Process
Clearance” describes programing interfaces that do the following:

• Get and set the process clearance.
• Initialize a binary clearance.
• Find the greatest lower bound or least upper bound between two levels.
• Compare levels for dominance and equality.
• Check and set binary label types.
• Convert clearances between binary and ASCII or hexadecimal.
• Check that a clearance is valid.

8 Trusted Solaris Developer’s Guide—August 1998

1

Multilevel Directories

Multilevel directories (MLDs) enable a program that runs at different
sensitivity labels to use a common directory and access files at the sensitivity
label at which the process is currently running. An MLD contains only
single-level directories (SLDs), and each SLD stores files at the sensitivity label
of the SLD. Within one MLD, several files with the same name can be stored in
different SLDs. Each instance of the same file contains data appropriate to the
sensitivity label of the SLD where it is stored. This is called polyinstantiation of
directories and files. Chapter 8, “Multilevel Directories” describes programing
interfaces that do the following:

• Get single-level or multilevel directory names.
• Get attribute information for a single-level or multilevel directory.
• Using single-level or multilevel directory names in system calls.

Application Auditing

Third-party applications can generate audit records to monitor user actions to
detect suspicious or abnormal patterns of system usage. Chapter 9,
“Application Auditing” describes third-party application auditing.

User and Profile Database Access

The user and profile databases contain information on users, roles, and profiles
that can be accessed by an application. Chapter 10, “Accessing User and Profile
Database Entries” describes programing interfaces that do the following:

• Access user and role entries in the tsoluser database
• Access profile entries in the tsolprof database.

Interprocess Communications

Trusted Solaris 2.5.1 supports labeled interprocess communications (IPC) with
access checks, ownership checks, and information label floating for IPC and
network endpoint objects, and supports the transfer of security attribute
information for network endpoint objects.

Labeled endpoint communications can be single-level, multilevel, or
polyinstantiated:

Introduction to the API and Security Policy 9

1

• Single-level port connection – Two unprivileged processes communicate at
the same sensitivity label.

• Multilevel port connections – A privileged server communicates with any
number of unprivileged clients running at different sensitivity labels.

• Polyinstantiated port connection (UNIX address family only) – A single-
level connection using files of the same name residing in different single-
level directories (SLDs) within a multilevel directory (MLD).
Polyinstantiated port connections create multiple independent parallel
binds.

See the following chapters for information: Chapter 11, “Interprocess
Communications,” Chapter 12, “System V Interprocess Communication,”
Chapter 13, “Trusted Security Information Exchange Library,” and Chapter 14,
“Remote Procedure Calls.”

Trusted X Window System

The Trusted X Window System, Version 11, server starts at login and handles
the workstation windowing system using a trusted interprocess
communication (IPC) path. Windows, properties, selections, and Tooltalk™
sessions are created at multiple sensitivity labels (polyinstantiated) as separate
and distinct objects. Applications created with Motif widgets, Xt Intrinsics,
Xlib, and CDE interfaces run within the security policy constraints enforced by
extensions to the X11 protocols.

Appendix B, “Trusted Solaris 2.5.1 Interfaces Reference” describes the
extensions for developers who need to create a X11 trusted IPC path.
Chapter 15, “Trusted X Window System” describes programming interfaces to
access security attribute information and translate binary labels and clearances
to ASCII by a specified width and font list for display in the X Window
System.

10 Trusted Solaris Developer’s Guide—August 1998

1

Application User Interface

The Common Desktop Environment (CDE) 1.1.1 window system is the user
interface for all interaction with the Trusted Solaris 2.5.1 distributed operating
system. User interfaces for new applications should use CDE APIs, Motif
widgets 1.2, Xt Intrinsics, or XLib. Trusted Solaris 2.5.1 supports
OpenWindows™ applications (based on the XView™ and Open Look Interface
Toolkit (OLIT)) so trusted and untrusted applications that use OLIT for their
user interface will run on Trusted Solaris 2.5.1.

Label Builder

Trusted Solaris 2.5.1 provides Motif-based programing interfaces for adding a
general label building user interface to an application. The label building
interface lets a user interactively build valid CMW labels, sensitivity labels,
information labels, or clearances. See Chapter 16, “Label Builder” for
information on the programming interfaces.

System Security Configuration Settings

The system administrator sets system variables in the /etc/security file to
configure the system to handle certain security attributes at a site. Chapter 2,
“Getting Started” describes the programming interface for accessing
Trusted Solaris 2.5.1 system security variables that do the following:

• Allow an application to set or display information labels.

• Turn information label floating on for the system.

• Turn information label floating on for System V IPC objects (will not work if
label floating is not on for the system).

• Enable privilege debugging for testing a privileged application. When
privilege debugging is on, an application succeeds even when it does not
have all the privileges it needs and the missing privileges are printed to the
command line and to a file for your information. See Trusted Solaris
Administrator’s Procedures or “Privilege Debugging” on page 336 for
information on enabling and using privilege debugging.

• Reset the information label to ADMIN_LOW before a call to exec(2TSOL) .

• Hide file names of files that have had their sensitivity labels upgraded by a
privileged processes.

Introduction to the API and Security Policy 11

1

Security Attributes

Security attributes define security information for file systems, processes, data
packets, communication endpoints, and X Window System objects.

File System Security Attributes and Flags

File systems store the Solaris 2.5.1 and Trusted Solaris 2.5.1 security attributes
listed below as a security attribute set accessible by the programming
interfaces described in Chapter 2, “Getting Started.” Chapter 3, “Privileges”
describes how to access file privileges

Process Security Attributes and Flags

User processes receive the Solaris 2.5.1 and Trusted Solaris 2.5.1 security
attributes listed below from the user or role that started them and the
workspace where they were started.

• Chapter 7, “Process Clearance” describes how to access the process
clearance.

• Chapter 5, “Labels” describes how to access labels on processes.

• Chapter 2, “Getting Started” describes how to access process attribute flags.

• Chapter 3, “Privileges” describes how to access process privilege sets.

Solaris 2.5.1 Trusted Solaris 2.5.1
Access Control Lists (ACLs) CMW label
DAC permission bits File system label range
file user ID Forced and allowed privilege sets
file group ID Audit preselection attributes

Attribute flags
Multilevel directory prefix

Process ID Process clearance
Real and effective user ID CMW label
Real and effective group ID Process attribute flags
Supplementary group list Process privilege sets
User audit ID
Audit session ID
umask (defines permission bits for files created by the process)

12 Trusted Solaris Developer’s Guide—August 1998

1

Endpoint Communications Security Attributes

The Trusted Security Information eXchange (TSIX) library provides access to
the Trusted Solaris 2.5.1 security attributes on data packets and communication
endpoints. TSIX is based on Berkeley sockets and supports transport layer
interface (TLI). Chapter 13, “Trusted Security Information Exchange Library”
describes how to access security attributes on data packets and communication
endpoints.

Trusted X Window System Security Attributes

The Trusted X Window System stores the security attributes listed below.
Chapter 15, “Trusted X Window System describes how to access X Window
System security attributes.

The Trusted Path flag means the window is a trusted path window. The trusted
path window is always the top-most window (such as the screen stripe or log
in window), and protects the system against access by untrusted programs.

Effective user ID Sensitivity label
Effective group ID Information label
Process ID Process clearance
Network session ID Effective privilege set
Supplementary group ID Process attribute flags
Audit ID
Audit information

Window Server owner ID Sensitivity label
User ID Information label
Group ID Input information label
Process ID X Window Server clearance
Session ID X Window Server minimum label
Audit ID Trusted Path window
Internet address

Introduction to the API and Security Policy 13

1

Security Policy
The laws, rules, and practical guidelines by which Trusted Solaris 2.5.1
regulates how sensitive information is protected, managed, and distributed is
called security policy. Trusted Solaris 2.5.1 applications differ from Solaris 2.5.1
applications in that they are subject to mandatory access control (MAC) and
cannot run with all the powers of superuser. Solaris 2.5.1 applications by
contrast are subject to discretionary access control (DAC) only and can run
with all the powers of superuser.

Trusted Solaris 2.5.1 provides privileges so processes can override mandatory
read, write, and search restrictions; discretionary read, write, execute, and
search restrictions; and perform special security-related tasks that would
normally be reserved for superuser.

Discretionary Access Policy

Trusted Solaris 2.5.1 supports discretionary read, write, execute, and search
permission using user, group, and other permission bits; and access control
lists (ACLs). Controlling access with DAC and ACLs is part of Solaris 2.5.1 and
not described in great detail in this guide, although retrieving ACLs as a file
system security attribute is described in Chapter 2, “Getting Started” and DAC
policy is summarized in “Discretionary Access” on page 17

Mandatory Access Policy

Trusted Solaris 2.5.1 supports mandatory search, read, and write operations.
MAC is enforced by comparing the sensitivity label and clearance of a process
with the sensitivity label of the object to which the process is seeking access
and determining whether the access is allowed or denied according to the
MAC policy enforced on the object and the outcome of the comparison.

The outcome states the relationship between the process sensitivity label and
object sensitivity label and is described as one dominating the other or
equaling the other. The relationships of dominance and equality are covered in
Chapter 5, “Labels,” and summarized here:

• Dominates – Has a higher or equal position in the classifications hierarchy,
as defined in the label_encodings(4TSOL) file

• Equals – Has the same position in the hierarchy.

14 Trusted Solaris Developer’s Guide—August 1998

1

The outcome also states the relationship between the process clearance and the
object sensitivity label as one of dominance or equality. If the access operation
attempts to change the CMW label of the object, the clearance sets the highest
level to which the sensitivity label portion can be changed. If the access
operation is a write-up (see “Write Access” below), the clearance sets the
highest level to which the process may write.

Trusted Solaris 2.5.1 supports the following mandatory read and write
operations on interactions between unprivileged processes and the objects they
access. See “Policy Enforcement” on page 16 for information on how these
operations apply to objects.

Read Access

The Trusted Solaris 2.5.1 definition of mandatory read access includes read-
equal and read-down:

• Read-Equal – An unprivileged process can read from an object only when
the process sensitivity label is equal to the object sensitivity label.

• Read-Down – An unprivileged process can read from an object of a lower
sensitivity label only when the process sensitivity label dominates the object
sensitivity label and the labels are not equal.

Write Access

The Trusted Solaris 2.5.1 definition of mandatory write access includes write-
equal and write-up:

• Write-Equal – An unprivileged process can write to an object only when the
process sensitivity label is equal to the object sensitivity label.

• Write-Up – An unprivileged process can write to an object of a higher
sensitivity label only when the process sensitivity label is dominated by the
object sensitivity label and the labels are not equal.

When to Use Privileges

To know if your application can run without privilege, you need to know what
tasks use which privileges and when those privileges are needed. The
following guidelines are to help you determine what privileges (if any) an
application might need.

Introduction to the API and Security Policy 15

1

• Applications that perform no special tasks and operate within the
mandatory access, discretionary access, and ownership controls of the
system do not require privilege.

• Application tasks that require read, write, execute, or search access to an
object require privilege when the process does not have discretionary or
mandatory access. If a process does not have the access or the needed
privilege, the external variable errno is set to EACCES or ESRCH.The
privileges to correct the error are listed under the EACCES or ESRCH errors
on the man page.

• Application tasks that modify an object in a way that only the owning
process can modify it require privilege if the modifying process does not
own the object. If a process does not own the object or have the proper
privilege, the external variable errno is set to EPERM. The privileges to
correct the error are listed in the Description section and under the EPERM
error on the man page.

• Some application tasks always require privilege even when discretionary
and mandatory access are allowed. Setting privileges on an executable file
or redirecting console output to another device are two examples of such
tasks. If a process does not have the privilege for such a task, the external
variable errno is set to EPERM. The privileges to correct the error are listed in
the Description section and under the EPERM error on the man page.

See Appendix A, “Programmer’s Reference” for information on how to access
man pages to obtain information on privileges and privilege descriptions.

Administrative and User Applications

Administrative applications run at the administrative sensitivity labels of
ADMIN_HIGH or ADMIN_LOW. At ADMIN_HIGH, the application can read down
to any object to which it has discretionary access, and at ADMIN_LOW, the
application can write up to any object to which it has discretionary access. An
administrator will generally launch an application at ADMIN_HIGH to perform
read-down operations, and launch the same application at ADMIN_LOW to
perform write-up operations. In these cases, no privileges are needed as long
as the application has discretionary access.

See “Initialize Binary Labels and Check Types” on page 115 in Chapter 6,
“Label Code Examples” for definitions of and information on initializing labels
to ADMIN_HIGH and ADMIN_LOW.

16 Trusted Solaris Developer’s Guide—August 1998

1

Users generally launch an application at a given sensitivity label and access
objects at that same sensitivity label. If the user keeps data at another
sensitivity label, he or she will usually change the workspace sensitivity label
and launch the application at the new sensitivity label. In this case, no
privileges are needed as long as the application also has discretionary access.

If a user application is designed to access objects at sensitivity labels different
from the sensitivity label at which the application is running, the application
might need privilege to complete its tasks if mandatory access is denied.

See “Label Guidelines” on page 96 in Chapter 5, “Labels” for guidance on the
use of privileges to bypass mandatory access controls, change a process or
object sensitivity label, or stop information label floating.

Policy Enforcement

In UNIX all input and output is performed through a file interface, which
means that file system security policy applies throughout Trusted Solaris 2.5.1.
For this reason, file system security policy is described in detail here.

File system security policy is stated in terms of the following:

• Mandatory and discretionary access checks between the process and the
path name preceding the final object.

• Mandatory and discretionary access checks between the process and the
final object.

Security policy for interprocess communications (IPC) is stated in terms of
mandatory read and write access checks between the accessing process and the
process being accessed. Some IPC mechanisms and X Window System objects
use files, and file system security policy as described in this section applies to
those operations. Some IPC mechanisms have the read-down and write-up
security policy, while other IPC mechanisms have the more restrictive read-
equal and write-equal policy. The X Window system has the write-equal and
read-down policy. See the following chapters for specific security policy
information on these topics:

• Chapter 11, “Interprocess Communications” covers security policy for
process-to-process communications on the same host and over the network.

• Chapter 15, “Trusted X Window System” covers security policy for accessing
X11 windows property and resource data.

Introduction to the API and Security Policy 17

1

File System Security Policy

This section describes mandatory and discretionary access checks for the
following file system objects:

• Directories – Regular directories and multilevel directories.
• Files – Regular files, executable files, device special files, and symbolic links.

Discretionary Access
The owner of the process must have discretionary search (execute) access to all
directories in the path preceding the final object. Once the final object is
reached, access operations can be performed as follows.

• Read from a file or list the contents of a directory – Discretionary read access
is allowed when a process has discretionary search (execute) access to all
directories in the object’s path and discretionary read access to the object.

• Write to a file, create a file or directory, or delete a file or directory –
Discretionary write access is allowed when the process has discretionary
search (execute) access to all directories in the object’s path and
discretionary write access to the object.

• Execute a file – Discretionary execute access is allowed when the process has
discretionary search (execute) access to all directories in the file’s path and
discretionary execute access to the file.

Mandatory Access
In addition to passing the DAC checks, mandatory search access is required to
all directories in the path preceding the final file. Mandatory search access to a
directory is allowed when the process sensitivity label dominates the
sensitivity label of all directories in the path. Once the final file is reached,
access operations can be performed as follows.

• Read from a file, execute a file, list the contents of a directory, view file
security attributes, or view file security attribute flags – Mandatory read
access is allowed when the process has mandatory search access to all
directories in the path and the process sensitivity label dominates the
sensitivity label of the final object. If the final object is a device special file,
the process sensitivity label must equal the device sensitivity label.

18 Trusted Solaris Developer’s Guide—August 1998

1

• Write to a file, modify file security attributes, modify file security attribute
flags, or delete a file – Mandatory write access is allowed when the process
has discretionary and mandatory search access to all directories in the path
and the file’s sensitivity label dominates the process sensitivity label. If the
final object is a device special file, the process sensitivity label must equal
the device sensitivity label.

• Create a file or directory – Create access is write-equal. When a process
creates a file, directory, or symbolic link the process sensitivity label must
equal the sensitivity label of the file or directory.

File System Access Privileges
When a discretionary or mandatory access check fails on a file system object,
the process can assert privilege to bypass security policy, or raise an error if the
task should not be allowed at the current label or for that user.

Discretionary access is enabled as follows:

• Search access to all directories in the path preceding the final file system
object is enabled when the process asserts the file_dac_search privilege.

• Read access to the final object is enabled when the process asserts the
file_dac_read privilege.

• Write access to the final object is enabled when the process asserts the
file_dac_write privilege.

• Execute access to the final object is enabled when the process asserts the
file_dac_execute privilege.

Mandatory access is enabled as follows:

• Search access to all directories in the path preceding the final file system
object is enabled when the process asserts the file_mac_search privilege.

• Read access (including execute access) to the final object is enabled when
the process asserts the file_mac_read privilege.

• Write access to the final object is enabled when the process asserts the
file_mac_write privilege.

• Create access to the final object is enabled when the process asserts the
file_mac_write privilege.

Introduction to the API and Security Policy 19

1

When Access Checks are Performed

Mandatory and discretionary access checks are performed on the path name at
the time a file system object is opened. No further access checks are performed
when the file descriptor is used in other system calls, except as follows:

• A file is opened for writing and the descriptor is later used with the
fstat(2TSOL) system call for a read. In this case, there are access checks
for the read and privilege may be required if the access is denied.

• A file is opened for reading and the descriptor is later used with the
fchmod(2TSOL) system call for a write. In this case, there are access checks
for the write access and privilege may be required if the access is denied.

File System Policy Examples

The examples in this section illustrate the kinds of things you need to think
about when a process accesses a file system object for read, write, search, and
execute operations.

The process accesses /export/home/heartyann/somefile for reading and
writing, and /export/home/heartyann/filetoexec for execution. These
files are both protected at Confidential. The process sensitivity label is Secret
and the process clearance is Top Secret. Confidential is lower than Secret and
Secret is lower than Top Secret.

Sensitivity Labels
As shown in Figure 1-1, the path /export/home has a sensitivity label of
ADMIN_LOW and the heartyann directory and somefile have a sensitivity
label of Confidential.

Figure 1-1 Accessing a File System Object

/export/home/heartyann/somefile

ConfidentialADMIN_LOW

20 Trusted Solaris Developer’s Guide—August 1998

1

• The process does not own somefile or the directories in somefile ’s path.

• Discretionary access permissions on /export allow the owner and group
read, write, and search access; and allow others read and search access.

• Discretionary access permission on /export/home allow the owner read,
write, and search access; and allow the group and others read and search
access.

• Discretionary access permissions on /export/home/heartyann allow the
owner and group read, write, and search access; and allow others read and
search access.

• Discretionary access permissions on somefile allow the owner read and
write access; and the group and others read access only.

• Discretionary access permissions on filetoexec allow the owner read,
write, and execute access; and allow the group and others read and execute
access.

If the process fails a mandatory or discretionary access check, the program
needs to assert an error or the proper privilege if the program is intended to
run with privilege.

See Chapter 5, “Labels” in “Label Guidelines” on page 96 for information on
handling sensitivity labels and information labels when privileges are used to
bypass access controls.

Open the File
The Secret process opens somefile for reading, performs a read operation,
and closes the file. The fully adorned pathname is used so somefile in the
Confidential /export/home/heartyann single-level directory is accessed.

A fully adorned pathname uses the multilevel directory adornment and
specifies precisely which single-level directory is wanted. If a regular
pathname was used instead, the Secret single-level directory would be
accessed because the process is running at Secret.

See “Adorned Names” on page 172 for a discussion on fully adorned
pathnames. Chapter 8, “Multilevel Directories” presents interfaces for handling
multilevel and single-level directories so fully adorned pathnames are not
hardcoded the way they have been for clarity in these examples.

Introduction to the API and Security Policy 21

1

• Mandatory access checks on the open(2TSOL) system call – The process
needs mandatory search access to /export/home/heartyann , and
mandatory read access to somefile . The process running at Secret passes
both mandatory access checks.

• Discretionary access checks on the open(2TSOL) system call – The process
needs discretionary search access to /export/home/heartyann , and
discretionary read access to somefile . The permission bits for other on the
directory path and somefile allow the required discretionary search and
read access.

• Mandatory access checks on the read(2TSOL) system call – The mandatory
access checks were performed when somefile opened. No other access
checks are performed.

• Discretionary access checks on the read(2TSOL) system call – The
discretionary access checks were performed when somefile was opened.
No other access checks are performed.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

main()
{

int filedes, retval;
ssize_t size;
char readbuf[1024];
char *buffer = “Write to File.”;
char *file = “/export/home/.MLD.heartyann/.SLD.1/filetoexec”;
char *argv[10] = {“filetoexec”};

filedes = open(“/export/home/.MLD.heartyann/.SLD.1/somefile”, O_RDONLY);
size = read(filedes, readbuf, 29);
retval = close(filedes);

22 Trusted Solaris Developer’s Guide—August 1998

1

Write to the File
The Secret process opens somefile for writing in the Confidential
/export/home/heartyann single-level directory, performs a write operation,
and closes the file.

• Mandatory access checks on the open(2TSOL) system call – The process
needs mandatory search access to /export/home/heartyann , and
mandatory write access to somefile . The process running at Secret passes
the mandatory search access check, but does not pass the mandatory write
access check. For mandatory write access, somefile ’s sensitivity label must
dominate the process sensitivity label and it does not (Confidential does not
dominate Secret). The process can assert the file_mac_write privilege to
override this restriction or assert an error.

• Discretionary access checks on the open(2TSOL) system call – The process
needs discretionary search access to /export/home/heartyann , and
discretionary write access to somefile . The permission bits for other on the
directory path and somefile allow the discretionary search access, but do
not pass the discretionary write access check. The process can assert the
file_dac_write privilege to override this restriction or assert an error.

• Mandatory access checks on the write(2TSOL) system call – The
mandatory access checks were performed when somefile opened. No
other access checks are performed.

• Discretionary access checks on the write(2TSOL) system call – The
discretionary access checks were performed when somefile was opened.
No other access checks are performed.

filedes = open(“/export/home/.MLD.heartyann/.SLD.1/somefile”, O_WRONLY);
size = write(filedes, buffer, 14);
retval = close(filedes);

Introduction to the API and Security Policy 23

1

Execute a File
The Secret process executes an executable file in the Confidential
/export/home/heartyann single-level directory.

• Mandatory access checks on the execv(2TSOL) system call – The process
needs mandatory search access to /export/home/heartyann , and
mandatory read access to file . Mandatory read access to a file is needed to
execute the file. The process running at Secret passes both of these
mandatory access checks.

• Discretionary access checks on the execv(2TSOL) system call – The process
needs discretionary search access to /export/home/heartyann , and
discretionary execute access to file . The permission bits on the directory
path and on file allow discretionary search and execute access to file .

retval = execv(file, argv);
}

24 Trusted Solaris Developer’s Guide—August 1998

1

25

Getting Started 2

This chapter contains short code examples to introduce you to some of the
Trusted Solaris 2.5.1 programming interfaces. The first section shows how to
query the system security configuration, and how to query and set security
attribute information for file systems and processes. The second section
presents a short overview of Trusted Solaris 2.5.1 security mechanisms.

• Chapter 11, “Interprocess Communications” covers how security attributes
are handled in process-to-process communications.

• Chapter 15, “Trusted X Window System” covers how to access security
attribute information for the X Window System.

• Chapter 16, “Label Builder” describes the library routines for building
security-related graphical user interfaces.

Query System Security Configuration page 28

Query File System Security Attributes page 31

Get and Set File System Security Attribute Flags page 35

Get and Set Process Security Attribute Flags page 37

Privileges and Authorizations page 40

CMW Labels and Clearances page 42

Multilevel Directories page 45

Application Auditing page 46

User and Profile Databases page 48

26 Trusted Solaris Developer’s Guide—August 1998

2

System Security Configuration and Attribute Information
System security configuration variables provide system-wide information on
the system configuration. Some applications query system variables before
taking actions that might be affected by the status of the system’s security
configuration. For example, a process does not need privileges to stop
information label floating when information label floating is not configured for
the system.

File system security attributes and flags provide security-related information
for specified local and mounted file systems. Applications might need to know
the status of file system security attributes and flags. For example, an
application can query the file system default access control list (ACL) before
performing a directory operation, or can find out if a directory is a multilevel
directory before creating a new file in it.

Process security attribute flags provide information on the calling process.
Applications might need to know the status of a process security attribute flag
to, for example, know whether the process was started from an administrative
role (trusted path flag set) or by a normal user (trusted path flag not set).

Programming Interfaces

The programming interfaces and code examples to check system security
configuration and security attribute information are provided here.
Descriptions of the data handled by these calls are in the appropriate chapter.
For example, Chapter 5, “Labels” covers labels and Chapter 3, “Privileges”
covers privileges.

In cases where there is one set of interfaces to access a file using the pathname
and another to access a file by the file descriptor, the examples that follow
show the pathname only because the syntax is nearly identical.

All examples in this section compile with the -ltsol library.

Getting Started 27

2

System Security Configuration

This system call gets information on the system security configuration. Refer to
the secconf(2TSOL) man page.:

File System Security Attributes

These system calls get information on file system security attributes using a
path name or file descriptor. Refer to the getfsattr(2TSOL) man page.

File System Security Attribute Flags

These system calls get information on file system security attribute flags using
a path name or file descriptor. Refer to the getfattrflag(2TSOL) man page.

Process Security Attribute Flags

These system calls get and set process security attribute flags. Refer to the
getpattr(2TSOL) man page.

long secconf(int name);

int getfsattr(char *path, u_long type,
void *buf_P, int len);

int fgetfsattr(int fd, u_long type, void *buf_P);

int fgetfattrflag(const char *path, secflgs_t *flags);
int setfattrflag(const char *path, secflgs_t which,

secflgs_t flags);
int fsetfattrflag(int fildes, secflgs_t *flags);
int getfattrflag(int fildes, secflgs_t *flags);
int mldgetfattrflag(const char *path, secflgs_t *flags)
int mldsetfattrflag(const char * path, secflgs_t which,

secflgs_t flags))

int getpattr(pattr_type_t type, pattr_flag_t *value);
int setpattr(pattr_type_t type, pattr_flag_t value);

28 Trusted Solaris Developer’s Guide—August 1998

2

Query System Security Configuration

System variables provide information on how the system is configured. The
system variables are initialized at system start up, and when there is no entry
in system(4) , default values are used. An application can query the system
variables with the secconf(2TSOL) system call. The following variables are
defined in /etc/system and have the default values listed:

_TSOL_ENABLE_IL – Allow an application to set or display information labels.
Default is on.

_TSOL_ENABLE_IL_FLOATING – Perform information label floating. Default is
on (float labels). When off, information labels do not float, but can be
programmatically set. _TSOL_ENABLE_IL must be on for this variable to take
effect.

_TSOL_FLOAT_SYSV_MSG_IL – Enable information label floating for System V
IPC message queues. Default is off. The information label for every message in
the queue has an information label set to the information label of the process
that enters the message in the queue or an information label specifically set by
msgsndl(2TSOL) . The information label of the reading process floats
according to the information label of the message read. See Chapter 12,
“System V Interprocess Communication” for more information.
_TSOL_ENABLE_IL and _TSOL_ENABLE_IL_FLOATING must be on for this
variable to take effect.

_TSOL_FLOAT_SYSV_SEM_IL – Enable information label floating for System V
IPC semaphore sets. Default is off. The information label of the reading process
floats according to the information label of the semaphore set. The information
label of the semaphore set floats according to the information label of the
writing process. See Chapter 12, “System V Interprocess Communication” for
more information. _TSOL_ENABLE_IL and _TSOL_ENABLE_IL_FLOATING
must be on for this variable to take effect.

_TSOL_FLOAT_SYSV_SHM_IL – Enable information label floating for System V
IPC shared memory regions. Default is off. The information label of the shared
memory region is continuously floated according to the information labels of
all processes attached to the region with write access. The information label of
the process attached with read access floats according to the information label
of the shared memory region. See Chapter 12, “System V Interprocess
Communication” for more information. _TSOL_ENABLE_IL and
_TSOL_ENABLE_IL_FLOATING must be on for this variable to take effect.

Getting Started 29

2

_TSOL_RESET_IL_ON_EXEC – Reset the information label to ADMIN_LOW
before a call to exec(1) . Default is on. _TSOL_ENABLE_IL must be on for this
variable to take effect.

_TSOL_HIDE_UPGRADED_NAMES – When a directory contains a file or
subdirectory that has had its sensitivity label upgraded by a privileged
process, this variable determines whether or not those upgraded files or
subdirectories can be listed or obtained by system call requests such as
getdents(2TSOL) . Default is off. When off, names of upgraded files and
subdirectories are visible when listing directories. When on, names of
upgraded files or subdirectories are hidden.

_TSOL_PRIVS_DEBUG – Enable privilege debugging. Default is off. See Trusted
Solaris Administrator’s Procedures or “Privilege Debugging” on page 336 for
information on how to enable and use privilege debugging.

_TSOL_STR_LINKB – Set a streams policy switch. Default is on. When on, the
linkb(9FTSOL) system call drops a streams message when a link is made to
another streams message with different security attributes. However, if only
the information labels is different, only the information label on the streams
message linked to is dropped.

This code queries the system variables to show their current values.

#include <tsol/secconf.h>

main()
{

long retval;

retval = secconf(_TSOL_ENABLE_IL);
printf("Enable IL = %d\n", retval);

retval = secconf(_TSOL_ENABLE_IL_FLOATING);
printf("IL Floating = %d\n", retval);

30 Trusted Solaris Developer’s Guide—August 1998

2

The printf statements print the following. A retval of 1 means the variable is
on; 0 means off; and -1 means an error has occurred. errno is set only when the
input variable is invalid.

Enable IL = 1

IL Floating = 1

Semaphore set IL floating = 0

Message queue IL floating = 0

Shared memory IL floating = 0

Hide Names = 0

Priv Debug = 0

Reset IL = 1

Streams policy switch = 1

retval = secconf(_TSOL_FLOAT_SYSV_SEM_IL);
printf("Semaphore set IL Floating = %d\n", retval);

retval = secconf(_TSOL_FLOAT_SYSV_MSG_IL);
printf("Message queue IL Floating = %d\n", retval);

retval = secconf(_TSOL_FLOAT_SYSV_SHM_IL);
printf("Shared memory IL Floating = %d\n", retval);

retval = secconf(_TSOL_HIDE_UPGRADED_NAMES);
printf("Hide Names = %d\n", retval);

retval = secconf(_TSOL_PRIVS_DEBUG);
printf("Priv Debug = %d\n", retval);

retval = secconf(_TSOL_RESET_IL_ON_EXEC);
printf("Reset IL = %d\n", retval);

retval = secconf(_TSOL_STR_LINKB);
printf("Streams policy switch = %d\n", retval);

}

Getting Started 31

2

Query File System Security Attributes

File system security attributes fill in absent security attributes on local and
mounted file system objects that were not assigned a full set of security
attributes by the system administrator or did not acquire them from their
creating process. You can get file system security attributes from the
vfstab(4TSOL) and vfstab_adjunct(4TSOL) files, or from the file or
directory inode.

Get Attributes from Adjunct File

The vfstab_adjunct(4TSOL) file contains remote mount points and their
related security information. This file is set up and maintained by the system
administrator so that file systems mounted to local workstations from remote
workstations have the correct security attributes.

 This example retrieves and displays lines from vfstab_adjunct(4TSOL) .
The getvfsaent(3TSOL) routine first reads the top line of the file and with
each subsequent call reads the next lines one-by-one. The
getvfsaent(3TSOL) routine reads the line for the mount point specified by
the input file.

Note – Be sure to include stdio.h as shown in the example code below.

#include <stdio.h>
#include <tsol/vfstab_adjunct.h>

main()
{

struct vfsaent *entry;
char *vfsfile = "/etc/security/tsol/vfstab_adjunct";
char *file = "/shark/doc";
int retval;
FILE *fp;

fp = fopen(vfsfile, "r");
if (fp == NULL) {

printf("Can't open %s\n", vfsfile);
exit(1);

}

32 Trusted Solaris Developer’s Guide—August 1998

2

The printf statements print the following (there is only one entry in this
vfstab_adjunct file for the /opt/SUNWspro mount point):

Mount Point is /opt/SUNWspro

Security Info is slabel=[C]:allowed all

Mount Point not found

/* Step through file line-by-line. */
retval = getvfsaent(fp, &entry);
if (retval == 0) {

printf("Mount Point is %s \n Security Info is %s\n",
entry->vfsa_fsname, entry->vfsa_attr);
free(entry);

}
else

printf("No entries!\n");

fseek(fp, 0, 0);

/* Retrieve specific mount point. */
retval = getvfsafile(fp, &entry, file);
if (retval == 0) {

printf("Mount Point is %s \nSecurity Info is %s\n",
entry->vfsa_fsname, entry->vfsa_attr);
free(entry);

}
else

printf("Mount point not found.\n");
fclose(fp);

}

Getting Started 33

2

Get Attributes from inode

The following code gets the CMW label (FSA_LABEL) of file and returns it in
buffer.

The printf statement prints the following:

/export CMW label = ADMIN_LOW [ADMIN_LOW]

Manifest Constant Values
Manifest constant values can be any one of the following:

FSA_ACLCNT – File system access Access Control List (ACL) count.

FSA_ACL – File system access ACL.

FSA_DFACLCNT – File system default ACL count.

FSA_DFACL – File system default ACL.

FSA_APRIV – File system allowed privilege set.

FSA_FPRIV – File system forced privilege set.

FSA_LABEL – File system CMW label.

FSA_AFLAGS – File system attribute flags as described in “Get and Set File
System Security Attribute Flags” on page 35.

#include <tsol/fsattr.h>
#include <tsol/label.h>

main()
{

char *file = “/export”;
char buffer [3*1024], *string = (char *)0;
int length, retval;

length = sizeof(buffer);
retval = getfsattr(file, FSA_LABEL, buffer, length);
retval = bcltos((bclabel_t *)buffer, &string, 0, VIEW_INTERNAL);
printf(“/export CMW label = %s \n”, buffer);

}

34 Trusted Solaris Developer’s Guide—August 1998

2

FSA_LBLRNG – File system label range.

FSA_MLDPFX – File system MLD prefix string.

FSA_APSACNT – Number of classes in the process audit preselection mask.

FSA_APSA – Classes in the process audit preselection mask. The process needs
the file_audit privilege in its effective set to get this information. See
“Privileges and Authorizations” on page 40 for more information.

Manifest Constant Descriptions
The programming interfaces for accessing CMW labels, file system label
ranges, file privileges, and multilevel directories are described briefly in
“Trusted Solaris 2.5.1 Security Mechanisms” on page 39 and in more detail in
their respective chapters in this guide.

• ACLs – Because ACLs are part of Solaris 2.5.1, they are not described in this
guide.

• Audit preselection attributes – Audit preselection attributes are specified for
a file system from the command line by the system administrator with
setfsattr(1MTSOL) . File system audit preselection attributes specify
auditing on file permission bits. A file system can be configured so its files
and directories are audited when access (read, write, or execute) succeeds or
fails.

Audit preselection attributes are specified for a process from the command
line by the system administrator with auditconfig(1MTSOL) . File system
preselection attributes override the process preselection attributes. For
example, a process that is audited for reads on files is not audited for reads
on files that have file system preselection audit attributes that specify not to
audit reads. See Trusted Solaris Audit Administration for more information.

Getting Started 35

2

Get and Set File System Security Attribute Flags

This example sets the public attribute flag on a regular directory and gets the
MLD flag of a multi-level directory. The process needs the file_owner and
file_audit privileges for this example to work. Use setfpriv(1TSOL) to
set the privileges as follows. The file_setpriv privilege is required with
setfpriv(1TSOL) so this command must be executed from the profile shell
with this privilege.

phoenix% setfpriv -s -a file_owner,file_audit executable

The printf statements print the following where 1 equals True and 0 equals
false.

Public Attribute Flag = 0

MLD Attribute Flag = 1

FAF_MLD – Directory is a multi-level directory. FAF_MLD may be set without
privilege if the directory is empty, the effective user ID of the process matches
the directory owner, and the process has mandatory write access.

FAF_SLD – Directory is a single-level directory. This flag cannot be set
programmatically.

#include <tsol/secflgs.h>
main()
{

secflgs_t value;
char *file = “/opt/SUNWspro”; /* Not MLD */
char *file1 = “/export/home/zelda”; /* MLD */
int retval;

retval = setfattrflag(file, FAF_PUBLIC, FAF_PUBLIC);
retval = getfattrflag(file, &value);
printf("Public Attribute Flag = %d\n", value);

retval = mldgetfattrflag(file1, &value);
printf("MLD Attribute Flag = %d\n", value);

}

36 Trusted Solaris Developer’s Guide—August 1998

2

If an adorned pathname is passed to getfattrflag(1TSOL) , FAF_MLD is
returned if the directory is an MLD. If an unadorned pathname is passed and if
the directory is an MLD, FAF_SLD is returned.

If an adorned pathname is passed to mldgetfattrflag(2TSOL) , FAF_SLD is
returned if the directory is an MLD. If an unadorned pathname is passed and if
the directory is an MLD, FAF_MLD is returned.

Adorned names are described in Chapter 8, “Multilevel Directories.”

FAF_PUBLIC – File or directory is public. Audit records are not generated for
read operations on public files and directories even when the read operations
are part of a preselected audit class. This applies to the following read
operations: access(2TSOL) , fstatvfs(2TSOL) , lstat(2TSOL) ,
open(2TSOL) (read only), pathconf(2TSOL) , readlink(2TSOL) ,
stat(2TSOL) , statvfs(2TSOL) .

Note – If the AUE_MAC or AUE_UPRIV audit pseudo events are in a preselected
audit class, an audit record for those events is always generated regardless of
the public attribute flag setting. See Trusted Solaris Audit Administration for
more information on these pseudo audit events.

The process needs the file_audit and file_owner privileges in its effective
set to get or set the public attribute flag for a file or directory. See “Privileges
and Authorizations” on page 40 for more information. This flag can also be
administratively set as described in Trusted Solaris Administrator’s Procedures.

FAF_ALL – The directory is a public MLD.

Getting Started 37

2

Get and Set Process Security Attribute Flags

Use getpattr(2TSOL) to query the attribute flags of the calling process.

The printf statements print the following where a value of 0 means the flag is
off, and a value of 1 means it is on. The label translation value is 0 when off and
a hexadecimal value representing the label translation flags when on. See
“Manifest Constant Values” on page 38 for a description of the process
attribute flags.

Trusted Path Value = 0

#include <tsol/pattr.h>

main()
{

int retval;
pattr_flag_t value;

retval = getpattr(PAF_TRUSTED_PATH, &value);
printf("Trusted Path Value = %d\n", value);

retval = getpattr(PAF_PRIV_DBG, &value);
printf("Priv Debug value = %d\n", value);

retval = getpattr(PAF_NO_TOKMAP, &value);
printf("Trusted Network Value = %d\n", value);

retval = getpattr(PAF_DISKLESS_BOOT, &value);
printf("Diskless Boot Value = %d\n", value);

retval = getpattr(PAF_SELAGNT, &value);
printf("Bypass Selection Agent Value = %d\n", value);

retval = getpattr(PAF_PRINT_SYSTEM, &value);
printf("Print System Value = %d\n", value);

retval = getpattr(PAF_LABEL_VIEW, &value);
printf("Label View Value = %d\n", value);

retval = getpattr(PAF_LABEL_XLATE, &value);
printf("Label Translate Value = %x\n", value);

}

38 Trusted Solaris Developer’s Guide—August 1998

2

Priv Debug Value = 0

Trusted Network Value = 0

Diskless Boot value = 0

Bypass Selection Agent Value = 0

Print System Value = 0

Label View Value = 1

Label Translate Value = 1

Manifest Constant Values

PAF_TRUSTED_PATH: The trusted path flag is set for all administrative roles.
Any process started from an administrative role has this flag set to 1. All other
processes have this flag set to 0. This flag can be queried and cleared, but not
set.

PAF_PRIV_DEBUG: The privilege debug flag is set to 1 when the process is
started in privilege debugging mode. This flag can be queried by any process,
but set only by a trusted path process. Enabling and using privilege debugging
mode is described in Trusted Solaris Administrator’s Procedures and “Privilege
Debugging” on page 336 in Appendix A, “Programmer’s Reference.”

PAF_NO_TOKMAP:The trusted computing base network flag is set to 1 only on
trusted computing base applications that send packets without security
attributes to workstations that expect packets with security attributes.

PAF_DISKLESS_BOOT: The diskless boot flag supports diskless boot servers.
When this flag is set to 1, the security attribute information in network packet
headers is not sent.

PAF_SELAGNT: The selection agent flag when set to 1 permits a process to
bypass the Selection Manager when moving data from one window to another.
See “Moving Data Between Windows” on page 292 for more information.

PAF_PRINT_SYSTEM: The print system flag when set to 1 identifies a client
process as a member of the printing subsystem.

Getting Started 39

2

PAF_LABEL_VIEW: When a user or role starts a process, this flag is set
according to the label view specification in the label_encodings file or user
label view setting in the /etc/security/tsol/tsoluser file. The label
view applies to how the ADMIN_HIGH and ADMIN_LOW administrative labels
are viewed in the system by users. The setting in the tsoluser file (if one
exists) takes precedence over the setting in the label_encodings file.

A value of zero indicates the external view is in use and a value of 1 indicates
the internal view is in use. Regardless of the value of this flag, an ASCII to
binary label translation can request the ASCII string output for an
administrative label to use the internal or external name. See Chapter 6, “Label
Code Examples” in “Binary to ASCII” on page 139 for details.

• Internal view – Show ADMIN_HIGH and ADMIN_LOW.

• External view – Set ADMIN_LOW to the next lowest label and ADMIN_HIGH to
the next highest label as defined in label_encodings(4TSOL) .

PAF_LABEL_XLATE: The label translation flag when set to 1 indicates the
flags= keyword option is in use in the label_encodings(4TSOL) file.
This optional flag setting specifies which of 15 flags are associated with the
word using this optional flag. Flags are not used by the system, but can be
used by applications specifically written to use them to do such things as
define certain words that appear only in printer banner labels (not in normal
labels), or to define certain words that appear only in labels embedded in
formal message traffic. This flag can be queried and set by a trusted path
process only.

Trusted Solaris 2.5.1 Security Mechanisms
This section provides short examples of the Trusted Solaris 2.5.1 security
mechanisms to give you an idea of how they are used. Every example in this
section has a corresponding chapter, and the interface declarations can be
found in the chapters. All examples compile with the -ltsol library, and in
some cases, other libraries are also needed as noted with the example.

40 Trusted Solaris Developer’s Guide—August 1998

2

Privileges and Authorizations

Privileges let a process perform security-related tasks normally prohibited by
the system security policy. Authorizations let a user perform privileged tasks
not allowed to all users. Every authorization maps to a privileged task. Always
check a user’s authorizations before allowing a privileged task to take place.

Caution – The development, testing, and debugging of privileged applications
should always be on an isolated development machine to prevent bugs and
incomplete code from compromising security policy on the main system.

Privileges distribute security-related powers so a process has enough power to
perform a task and no more. Likewise, authorizations distribute security-
related powers so each user or role has enough power to perform a task and no
more.

The system administrator assigns authorizations to users and roles through an
execution profile. The chkauth(3TSOL) routine accepts a valid user name and
authorization as parameters and returns true if the authorization is assigned to
that user. During development, privileges can be assigned to the executable file
and/or inherited from the user’s or role’s executable profile at run time.

To know if a program performs tasks that require privilege and user
authorization checks, ask these questions:

• Does the task require privilege?
• Information on privileges for system calls is on the Intro(2TSOL) man

page and the man page for the particular system call.
• Information on privileges for library routines is on the man page for the

library routine or the man page for the underlying system call if there is
an underlying system call. Check the See Also section of the library
routine man page for a list of system calls where you can find privilege
information if there is no information on the library routine man page.

• The priv_desc(4TSOL) man page provides a list of Trusted Solaris 2.5.1
privileges and a description of the tasks they enable.

• Refer to Chapter 3, “Privileges” for information to help you decide if the
privileges should be assigned to the file, inherited, or both.

Getting Started 41

2

• Use privilege debugging mode as described in Trusted Solaris
Administrator’s Procedures or “Privilege Debugging” on page 336 in
Appendix A, “Programmer’s Reference” to find out what privileges an
application needs.

• Does the task have an authorization? – The auth_desc(4TSOL) man page
provides a list of Trusted Solaris 2.5.1 authorizations and a description of the
tasks to which they correspond.

 This example checks the process permitted set for the file_downgrade_sl
privilege, and the user authorization TSOL_AUTH_FILE_DOWNGRADE for user
ID zelda before performing a task that involves downgrading the sensitivity
label on a file. If the privilege is in the permitted set and if zelda has the
authorization, the code turns the file_downgrade_sl privilege on in the
effective set (makes the privilege effective) and performs the task. When the
task completes, file_downgrade_sl is turned off (is no longer effective).

The example compiles with the following libraries.

-ltsoldb -lnsl -lcmd -ltsol

Note – The permitted set contains the privileges the process can potentially use
during execution, and the effective set contains the privileges the process is
actually using at a given time. Turning effective privileges on and off is called
privilege bracketing and is discussed in Chapter 3, “Privileges.”

42 Trusted Solaris Developer’s Guide—August 1998

2

CMW Labels and Clearances

When a process writes to a file with a higher sensitivity label or changes the
CMW label of an object, the system checks that the file sensitivity label
dominates the process sensitivity label and the process clearance dominates the
file sensitivity label. If your application writes to files at different sensitivity
labels, you might want to perform these checks in the code to catch errors or to
turn privileges on in the effective set as needed.

This code performs the following tasks:

• Retrieves the binary file CMW label, process CMW label, and process
clearance.

• Retrieves the sensitivity label portion of the file CMW label and process
CMW label.

• Checks for dominance by comparing the process sensitivity label to the file
sensitivity label, and the process clearance to the file sensitivity label.

#include <tsol/priv.h>
#include <tsol/auth.h>

main()
{

char *zelda = “zelda”;
priv_set_t priv_set;

/* Retrieve the permitted privilege set */
getppriv(PRIV_PERMITTED, &priv_set);

if(PRIV_ISASSERT(&priv_set, PRIV_FILE_DOWNGRADE_SL) &&
chkauth(TSOL_AUTH_FILE_DOWNGRADE_SL, zelda)) {

set_effective_priv(PRIV_ON, 1, PRIV_FILE_DOWNGRADE_SL);
/* Downgrade sensitivity label on file*/
set_effective_priv(PRIV_OFF, 1, PRIV_FILE_DOWNGRADE_SL);

}
else {/* Raise Errors */}

}

Getting Started 43

2

If the comparisons return 0 (process sensitivity label and clearance do not
dominate the file sensitivity label), the operation to change the file CMW
label or write up to the file requires privilege. See “Privileges and
Authorizations” on page 40 for information on privileges.

Chapter 5, “Labels” and Chapter 7, “Process Clearance” describe the
programming interfaces for translating a binary label or clearance to ASCII so
they can be handled like a string.

44 Trusted Solaris Developer’s Guide—August 1998

2

#include <tsol/label.h>
main()
{

int retval, retvalclearance, retvalsens;
bclabel_t filecmwlabel, processcmwlabel;
bslabel_t filesenslabel, processsenslabel;
bclear_t processclearance;
char *file = “/export/home/labelfile”;

/* Get CMW label of file */
retval = getcmwlabel(file, &filecmwlabel);

/* Get Process CMW label */
retval = getcmwplabel(&processcmwlabel);

/* Get sensitivity label portion of CMW labels */
getcsl(&filesenslabel, &filecmwlabel);
getcsl(&processsenslabel, &processcmwlabel);

/* Get process clearance */
retval = getclearance(&processclearance);

/* See if process label dominates file label (retvalclearance > 0) */
retvalclearance = bldominates(&processsenslabel, &filesenslabel);

/* See if process clearance dominates file label (retvalsens > 0) */
retvalsens = bldominates(&processclearance, &filesenslabel);

/* Test results */
if(retvalclearance && retvalsens > 0)

{ /* Change file CMW label or write-up to file */}
else if (retvalclearance == 0)

{ /* Turn on error message or make appropriate privilege effective */}
else if (retvalsens == 0)

{ /* Turn on error message or make appropriate privilege effective*/}
}

Getting Started 45

2

Multilevel Directories

Multilevel directories(MLDs) enable an application to run at different
sensitivity labels and access data in the single-level directory (SLD) at the
sensitivity label at which its process was launched. This example shows how to
get the name for the Confidential SLD in the zelda MLD by translating an
ASCII string to binary with stobsl(3TSOL) and passing the binary label to
getsldname(1TSOL) . The /export/home/zelda MLD is at ADMIN_LOW and
the process is running at Confidential. The process needs no privileges because
it has mandatory read access to the MLD and the process sensitivity label
dominates the SLD sensitivity label.

The printf statement prints the name of the SLD at ADMIN_LOW. See
Chapter 8, “Multilevel Directories” for the meaning of the SLD name.

SLD Name = .SLD.2

Note – You can get file attribute information for an MLD or symbolic link that
is an MLD with the mldstat(2TSOL) and mldlstat(2TSOL) system calls
described on the stat(2TSOL) man page and in Chapter 8, “Multilevel
Directories”

#include <tsol/mld.h>

char *file = “/export/home/zelda”;
char buffer[3*1024];
bslabel_t senslabel;
int length, flags, retval, error;

main()
{
/* Get the Confidential SLD name */

retval = stobsl(“CONFIDENTIAL”, &senslabel, NEW_LABEL, &error);
length = sizeof(buffer);
retval = getsldname(file, &senslabel, buffer, length);
printf(“SLD Name = %s\n”, buffer);

}

46 Trusted Solaris Developer’s Guide—August 1998

2

Application Auditing

An application can log its own third-party audit events with the
auditwrite(3TSOL) library routine. This example creates a user audit record
in one call to auditwrite (). The audit event logged is AUE_su with the text
“successful login at console”. Normally, auditwrite () logs application-level
audit events. This example logs a Trusted Solaris 2.5.1 user event to show how
the routine is used. Chapter 9, “Application Auditing” shows third-party audit
events.

The process executing this program needs the proc_audit_tcb privilege in
its effective set because AUE_su is a Trusted Computing Base (TCB) audit
event. The code comments indicate where privilege bracketing as described in
Chapter 3, “Privileges” should take place. The aw_strerror(3TSOL) routine
converts auditwrite error messages (aw_errno) to strings. The parameters
passed to auditwrite () are as follows:

• AW_EVENT specifies the audit event to be written to the audit log. AW_EVENT
is a user event string name as defined in audit_event . There can be only
one event written to a single audit record.

• AW_TEXT is a null-terminated string placed in the audit record to provide
additional information on the audit event.

• AW_WRITE writes the event and its associated text to the audit trail.

Getting Started 47

2

• AW_END tells auditwrite () to stop parsing information.

To run the program and view the audit record, do the following:

1. Assume an administrative role, open a terminal at ADMIN_HIGH, and
execute the following command where lo is the class to which AUE_su
belongs and pid is the process ID of the terminal.

#auditconfig -setpmask pid lo

2. Assume an administrative role, open a second viewing terminal at
ADMIN_HIGH, and use praudit(1MTSOL) to read the not_terminated
(most recent and not yet closed) audit log file by typing the command and
options shown:

Note – This syntax works when there is only one *not_terminated* file. If
there are others, delete the older ones before executing this command.

phoenix%tail -0f *not_terminated* | praudit

#include <bsm/auditwrite.h>
#include <types.h>
#include <unistd.h>

main()
{

char *aw_string;
int retval, errno;

/* Turn proc_audit_tcb on in the effective set */
retval = auditwrite(AW_EVENT, “AUE_su”, AW_TEXT, “Successful login at console”,

AW_WRITE, AW_END);
/* Turn the proc_audit_tcb privilege off */

aw_string = aw_strerror(aw_errno);
printf(“Retval = %d AW_ERROR = %s ERRNO = %d\n”, retval, aw_string, errno);

}

48 Trusted Solaris Developer’s Guide—August 1998

2

3. Compile and run the code from the first terminal window.

These libraries are needed for the example to successfully compile.
-lbsm -lnsl -lintl -lsocket -ltsol

The process needs the proc_audit_tcb privilege for this example to
work. Use setfpriv(1TSOL) to set the privileges as follows. The
file_setpriv privilege is required with setfpriv(1TSOL) so this
command must be executed from the profile shell with this privilege.

phoenix% setfpriv -s -a proc_audit_tcb executable

The printf statement prints the following in the first terminal window:

Retval = 0, AW_ERROR = No error, ERRNO = 0

The viewing window shows the following audit record:

header, 129,2,su,,Wed Jun 26 14:50:19 1996, +699964500 msec
text, Successful login at console
subject,zelda,zelda,staff,zelda,staff,1050,853,24,7 phoenix
slabel,Confidential
return,success,0

The audit record consists of a sequence of tokens. Each line starts with a token
followed by the token value. In the example, the tokens for audit event AUE_su
are header, text, subject, slabel, and return; and the token values are the
information following the tokens until the next token is encountered. Trusted
Solaris Audit Administration describes the tokens in detail.

User and Profile Databases
The information in the tsoluser(4TSOL) (user) and tsolprof(4TSOL)
(execution profile) databases is accessible through library routines. This
example gets user information from the tsoluser database. The information
is put into the databases by the system administrator when setting up users
and execution profiles for the system through the User Manager and Profile
Manager.

Getting Started 49

2

The TSOL_DB_SRC_NISPLUS flag tells Trusted Solaris 2.5.1 to read from the
tsoluser NIS+ database to get the user information. See Chapter 10,
“Accessing User and Profile Database Entries” for details on the information
returned by this and other database access routines.

This example compiles with the following libraries:

-ltsoldb -lnsl -lcmd -ltsol

#include <tsol/user.h>
#include <tsol/tsol.h>

main()
{

userent_t *uentry;
char *uname = “zelda”;
uentry = getuserentbyname(uname, TSOL_DB_SRC_NISPLUS;

}

50 Trusted Solaris Developer’s Guide—August 1998

2

51

Privileges 3

Privileges organize security-related powers into discrete pieces where each
piece (or privilege) maps to a single security-related task. Privileges enable a
program to perform specific tasks normally prohibited by the system security
policy. Prohibited tasks are such things as accessing a file or directory to which
the program does not have the appropriate mandatory or discretionary access.

A program turns on (makes effective) one or more privileges to perform one
security-related task. For example, if the program does not have mandatory
write access to a file, it turns on the file_mac_write privilege. If the
program does not have discretionary write access either, it also turns on the
file_dac_write privilege. However, if the program has both mandatory and
discretionary write access, it needs no privileges. Most programs do not use
privileges because they operate within the bounds of the system security
policy.

This chapter describes the programming interfaces for handling privileges.

Types of Privileges page 53

Privilege Sets page 53

Types of Privileged Applications page 57

Privilege Names and Descriptions page 57

Privileged Operations page 57

Privilege Guidelines page 58

Data Types, Header Files, and Libraries page 59

Privilege Macros page 61

52 Trusted Solaris Developer’s Guide—August 1998

3

Interface Declarations page 61

Translating Privileges page 64

Get Description Text for Privilege ID page 66

Setting and Getting File Privilege Sets page 66

Bracketing Effective Privileges page 71

Check Permitted Privileges page 74

Remove a Permitted Privilege page 75

Check Saved Privileges page 76

Clear and Set the Inheritable Set page 76

Fork a Process page 77

Execute a File page 79

Set User ID page 80

Privileges 53

3

Types of Privileges
Trusted Solaris 2.5.1 allows up to 128 different privileges. The total includes the
following types of Trusted Solaris 2.5.1 privileges and site-defined privileges.
See priv_desc(4TSOL) for a description of the Trusted Solaris 2.5.1
privileges.

• File system privileges override file system restrictions on user and group
IDs, access permissions, labeling, ownership, and file privilege sets.

• System V Interprocess Communication (IPC) privileges override restrictions
on message queues, semaphore sets, or shared memory regions.

• Network privileges override restrictions on reserved port binding,
multilevel port binding, sending broadcast messages, or specifying security
attributes on messages or communication endpoints.

• Process privileges override restrictions on process auditing, labeling, covert
channel delays, ownership, clearance, user IDs, or group IDs.

• System privileges override restrictions on system auditing, workstation
booting, workstation configuration management, console output redirection,
device management, file systems, creating hard links to directories,
increasing message queue size, increasing processes, workstation network
configuration, third-party loadable modules, or label translation.

• X Window System privileges override restrictions on reading to and writing
from windows, input devices, labeling, font paths, moving data between
windows, X server resource management, or direct graphics access (DGA).

Privilege Sets
Privileges are organized into file privilege sets and process privilege sets.

File Privilege Sets

Executable files, interpreted files, and CDE actions have file privilege sets
assigned through the File Manager, with setfpriv(1TSOL) , or by another
privileged program. The file privilege sets are the forced set and the allowed
set.

54 Trusted Solaris Developer’s Guide—August 1998

3

Allowed Set

The allowed set contains the privileges that will be assigned to the executable
file (forced file set) or inherited and used by the executing process. When a
process inherits a privilege from another process, it cannot use that privilege
unless the privilege is in the allowed set of its executable file.

Allowed privileges provide Trojan horse protection because they protect
against an untrusted process entering the system and inheriting privileges
from another process. See “Inheritable Set” on page 55 for more information on
inheriting privileges.

Forced Set

The forced set contains the privileges a program must have when it begins
execution for security-related tasks performed by any user. Commands with
forced privileges can be invoked from any shell, and CDE actions with forced
privileges can be invoked from any workspace. The forced set must always be
equal to or a subset of the allowed set, and so, every privilege in the forced set
is also in the allowed set.

Interpreted Files

Interpreted files are scripts that begin with #! and go through an interpreter to
be executed. The script file can have forced and allowed privilege sets and the
interpreter can have forced and allowed privilege sets. The final forced set is
the combination of the forced set assigned to the script and the forced set
assigned to the interpreter restricted by the allowed set of the interpreter. The
allowed set of the script does not restrict the final forced set.

Process Privilege Sets

Executing processes have process privilege sets computed from algorithms
based on the contents of the file sets and any privileges inherited from the
calling process. The process privilege sets are the inheritable, saved, permitted,
and effective sets.

Privileges 55

3

Inheritable Set

The inheritable set contains the privileges (if any) received from the parent
process. A process passes its inheritable set to a new program during an
exec(1) or a new process during a fork(2TSOL) . The inheritable set of the
new program or process always equals the inheritable set of the calling
process. The new process or program can use only those inherited privileges
that are also in the allowed set of its executable file, but passes all inheritable
privileges to a new program or process. A program can clear its inheritable set
and add any privileges in its permitted set to the inheritable set prior to a
fork () or exec ().

The system administrator can assign an inheritable set to a CDE action or
command in an execution profile. The privileges are inherited when the user or
role to which the execution profile is assigned starts the CDE action or executes
a command from the profile shell.

Note – If a forced privilege is in the process’s permitted set, that process can
set the forced privilege in its own inheritable set and pass the forced privilege
to a new process or program.

Saved Set

The saved set is a copy of the inherited privileges the process is allowed to use.
The saved set equals the inheritable set restricted by the allowed set. Those
privileges in the inheritable set also in the allowed set are put in the saved set.
There are no interfaces for changing the saved set.

A program can query its saved set to determine the origination of a privilege.
If the privilege is in the saved set, it is inherited for the current program
invocation. If the privilege is not in the saved set, it is forced for the current
program invocation.

A process may take a more limited (workstation-wide) action on a security-
related task when started by a normal user (forced privilege), and a wider
(network-wide) action on the same security-related task when started by an
authorized user in an administrative role (inherited privilege).

56 Trusted Solaris Developer’s Guide—August 1998

3

Permitted Set

The permitted set contains the forced and inherited privileges a process can
use. The permitted set is the forced set plus the inheritable set restricted by the
allowed set. Those privileges in the inheritable set also in the allowed set are
combined with the forced set and placed in the permitted set. A privileged
process is a process with a permitted set not equal to zero.

Privileges can be removed from the permitted set, but not added. Once a
permitted privilege is removed, it cannot be added back, it cannot be added to
the inheritable set, and is removed from the inheritable set if it was added to
the inheritable set prior to being removed from the permitted set.

As a security precaution, you can remove the privileges from the permitted set
the program never uses. This way a program can never make use of an allowed
privilege incorrectly assigned to its executable file or accidentally inherited.

Effective Set

Effective privileges are those permitted privileges a process uses for a single
security-related task. By default, the effective set is initially equal to the
permitted set, but a program should turn the effective set off at the beginning
of execution to prepare for privilege bracketing.

Privilege bracketing is the practice of turning the effective privilege set off,
then turning on (making effective) only those privileges needed for a specific
security-related task, and turning them off as soon as they are no longer
needed. See “Bracketing Effective Privileges” on page 71.

Change in User ID

If the setuid(2TSOL) , setreuid(2TSOL) , or seteuid(2TSOL) system call
is called, the effective privilege set is copied to the saved set and the effective
set is cleared. If you need the effective set, copy it back from the saved set or
turn the effective privileges you need back on. If you need the original saved
set (to determine the origination of a privilege), do the tests first or make a
copy of the saved set.

Privileges 57

3

The effective set is cleared based on the principle that a process cannot use
privileges granted to the original caller while the user ID is changed. A
setuid program can still manipulate privileges from the permitted set by
putting them into the effective set.

Types of Privileged Applications
All privileged applications are part of the Trusted Computing Base (TCB).
Some privileged applications have one or more forced privileges and might or
might not inherit privileges. These applications are the Trusted Solaris 2.5.1
equivalent of setuid applications in standard UNIX systems.

Other privileged applications have no forced privileges and always inherit
privileges from the calling process. These applications are always called by a
privileged process.

Privilege Names and Descriptions
The priv_desc(4TSOL) man page lists privilege names, manifest constant
names, and description text for all system privileges.

Privileged Operations
The system calls that get and set file privilege sets require mandatory access
and discretionary access to the file and may require privilege if access is
denied. See the getfpriv(2TSOL) man page for specific details.

Setting File Privilege Sets

The file_setpriv privilege is required to set file privilege sets with the
setfpriv(1TSOL) and fsetfpriv(2TSOL) system calls.

Keeping File Privilege Sets on an Executable File

When a process writes information to an executable file, the file_setpriv
privilege is needed to prevent the file’s forced and allowed privilege sets being
set to none .

58 Trusted Solaris Developer’s Guide—August 1998

3

Core Files

The proc_dumpcore privilege must be effective for a privileged process to
create a core file because the core file from a privileged process is likely to
contain sensitive information. If this privilege is not effective, the process will
not create a core file when it dies. For debugging purposes (only), you could
make this privilege effective at the beginning of execution and leave it effective
until the process dies.

Setting IDs

The calling process needs the proc_setid privilege in its effective set to
change its user ID, group ID, or supplemental group ID.

Privilege Guidelines
Privileged applications should be developed in an isolated, protected
environment separate from an operational Trusted Solaris system. Unfinished
privileged applications are inherently untrustworthy and should not have an
opportunity to compromise the security of a functioning system. The following
additional practices are recommended for all privileged applications.

See Appendix B, “Trusted Solaris 2.5.1 Interfaces Reference” for information on
secure application packaging.

Use Privilege Bracketing

When an application uses privilege, system security policy is being breached.
Privileged tasks should be bracketed and carefully controlled to ensure that
sensitive information is not compromised. See “Bracketing Effective Privileges”
on page 71 for information on how to bracket privileges.

Privileges 59

3

Avoid Shell Escapes

Shell escapes in an application can enable an end user to violate trust. For
example, some mail applications interpret the !command line as a command
and execute it. If a mail application is a trusted process, it runs with privileges.
The end user can use this feature to create a script to take advantage of the
mail application privileges. Applications should have this capability removed
when they run in a trusted environment.

Avoid Command Line Execution

Running applications directly from the command line should be avoided if the
application has been given privileges because the end user can take advantage
of the privileges. For example, many application allow the end user to enter a
command to execute followed by a document name. If the application has been
given the privilege to override mandatory access controls (if the application
needs to write down to an outside application), this could result in the end
user opening a document that he or she does not ordinarily have the privileges
to see.

Eliminate Covert Channels

Covert channels in privileged applications should be sought out and
eliminated. A covert channel is an unintended path through which information
can be transmitted in ways not protected by mandatory access controls. For
example, in a privileged multilabel client/server application, the server has a
queue of service requests. If unprivileged clients can add and remove requests
from the queue and the queue has a finite size, the information on the full or
not-full state of the queue can be exploited as a covert channel.

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsol/priv.h>

The examples in this chapter compile with the following library:

-ltsol

60 Trusted Solaris Developer’s Guide—August 1998

3

Single Privileges

One privilege is represented by the priv_t type definition. You initialize a
variable of type priv_t with a privilege ID that can be either the constant
name or numeric ID. The constant name is preferred because it makes your
code easier to read.

Privilege Set Structure

Privilege sets are represented by the priv_set_t data structure. You initialize
variables of type priv_set_t with the str_to_priv_set(3TSOL) routine
or the PRIV_ASSERT macro depending on whether you want to assert one
privilege at a time using its privilege ID (PRIV_ASSERT) or convert a string of
one or more privileges into a privilege set using a single interface
(str_to_priv_set).

File Privilege Sets

The type of file privilege set to be worked on is represented by the
priv_ftype_t type definition. Values are PRIV_ALLOWED and PRIV_FORCED.

Process Privilege Sets

The type of process privilege set to be worked on is represented by the
priv_ptype_t type definition. Values are PRIV_EFFECTIVE,
PRIV_INHERITABLE , PRIV_PERMITTED, and PRIV_SAVED.

Operations on File and Process Sets

The type of operation performed on a file or process privilege set is
represented by the priv_op_t type definition. Not all operations are valid for
every type of privilege set. Read the privilege set descriptions in “Privilege
Sets” on page 53 for details.

Values are the following:

PRIV_ON – Turn the privileges asserted in the priv_set_t structure on in the
specified file or process privilege set.

priv_t priv_id = PRIV_FILE_DAC_WRITE;

Privileges 61

3

PRIV_OFF – Turn the privileges asserted in the priv_set_t structure off in
the specified file or process privilege set.

PRIV_SET – Set the privileges in the specified file or process privilege set to
the privileges asserted in the priv_set_t structure. If the structure is
initialized to empty, PRIV_SET clears (sets to none) the privilege set.

Privilege Macros
The privilege macros operate on single privileges and privilege sets. They are
described on the priv_macros(5TSOL) man page. The macros do not directly
change the privilege sets associated with files or processes, but manipulate
variables of type priv_set_t .

Interface Declarations
The following interfaces are available for handling file and process privilege
sets. Where there is one set of interfaces to access a file using the pathname and
another to access a file by the file descriptor, the examples use the pathname
interfaces only because the syntax is almost identical.

Privilege Macro Description
PRIV_ASSERT(priv_set, priv_id) Put the privilege (priv_id) into the set (priv_set).

PRIV_ISASSERT(priv_set, priv_id) Return non-zero if the privilege (priv_id) is asserted in
(priv_set).

PRIV_EQUAL(priv_set_a, Priv_set_b) Return non-zero if the sets are identical.
PRIV_EMPTY(priv_set) Initialize the set to empty.

PRIV_FILL(priv_set) Fill the set with all privileges.
PRIV_ISEMPTY(priv_set) Return non-zero if the set is empty, and 0 if not empty.
PRIV_ISFULL(priv_set) Return non-zero if the privilege contains all privileges

defined for the system, and 0 otherwise.
PRIV_CLEAR(priv_set, priv_id) Remove the privilege (priv_id) from set (priv_set).
PRIV_INTERSECT(priv_set_a, priv_set_b) Store the intersection of set_a and set_b in set_b.
PRIV_INVERSE(priv_set) Stores the inverse of priv_set in priv_set.
PRIV_UNION(priv_set_a, priv_set_b) Store the union of set_a and set_b in set_b.
PRIV_XOR(priv_set_a, priv_set_b,) Store the exclusive or of set_a and set_b in set_b.
PRIV_ISSUBSET(priv_set_a, priv_set_b) Returns non-zero when all privileges asserted in priv_set_a

are also asserted in priv_set_b, and 0 otherwise.
PRIV_TEST(priv_id, errno) Test whether priv_id is in the effective set, and sets errno to

1 if True and 0 if False.

62 Trusted Solaris Developer’s Guide—August 1998

3

System Calls

These system calls get and set file and process privilege sets.

File Sets

These system calls get and set the file privilege set using the full path name of
the file. Refer to the getfpriv(2TSOL) man page.

These system calls get and set file privilege set using a file descriptor. Refer to
the getfpriv(2TSOL) man page.

Process Sets

These system calls get and set process privilege sets. Refer to the
getppriv(2TSOL) man page.

int getfpriv(char *path,
priv_ftype_t type,
priv_set_t *priv_set);

int setfpriv(char *path,
priv_op_t op,
priv_ftype_t type,
priv_set_t *priv_set);

int fgetfpriv(int fd,
priv_ftype_t type,
priv_set_t *priv_set);

int fsetfpriv(int fd,
priv_op_t op,
priv_ftype_t type,
priv_set_t *priv_set);

int getppriv(priv_ptype_t type, priv_set_t *priv_set);

int setppriv(priv_op_t op,
priv_ptype_t type,
priv_set_t *priv_set);

Privileges 63

3

Note – You can also use the library routines below to access process privilege
sets. The syntax is a little different, but the semantics are the same.

Library Routines

These library routines get process privilege sets, convert a privilege ID or
privilege set between binary and ASCII, and get the privilege description text
for a specified privilege ID.

Process Privilege Sets

These library routines set the effective, permitted, and inheritable privilege sets
on a process. Refer to the set_effective_priv(3TSOL) man page.

Note – You can also use setppriv(2TSOL) and getppriv(2TSOL) to access
process privilege sets. The syntax is a little different, but the semantics are the
same.

int set_effective_priv(priv_op_t op,
int privno,
priv_t priv_id);

int set_permitted_priv(priv_op_t op,
int privno,
priv_t priv_id);

int set_inheritable_priv(priv_op_t op,
int privno,
priv_t priv_id);

64 Trusted Solaris Developer’s Guide—August 1998

3

Binary and ASCII Translation

These library routines translate a privilege ID or a privilege set between binary
and ASCII. Refer to the priv_to_str(3TSOL) man page.

Privilege Description Text

These library routines get the privilege text for a specified privilege ID. Refer to
the priv_to_str(3TSOL) man page.

Translating Privileges
These library routines convert the specified privilege ID to its corresponding
external name or numeric ID and back. These routines read the privilege names
database file described on the priv_name(4TSOL) man page to translate
between the priv_id and *string.

char* priv_to_str(const priv_t priv_id);

priv_t str_to_priv(const char *priv_name);

char* priv_set_to_str(priv_set_t *priv_set,
const char sep,
char *buf, int *blen);

char* str_to_priv_set(const char *priv_names,
priv_set_t *priv_set,
const char *sep);

char* get_priv_text(const priv_t priv_id);

Privileges 65

3

Privilege ID to String

In this example, priv_id is initialized to the manifest constant name
PRIV_FILE_DAC_WRITE and passed to priv_to_str(3TSOL) routine to
convert it to the external name.

The header files and declarations for the code segments in this section are
provided in the first program.

The printf statement prints the following:

Priv string = file_dac_write

String to Privilege ID

In the next example, the string returned from the priv_to_str(3TSOL)
routine is passed to the str_to_priv(3TSOL) routine to convert the string to
the numeric ID.

The printf statement prints the following:

Priv ID = 6

#include <tsol/priv.h>

main()
{

priv_t priv_id = PRIV_FILE_DAC_WRITE;
char *string;

string = priv_to_str(priv_id);
printf(“Priv string = %s\n”, string);

}

priv_id = str_to_priv(string);
printf(“Priv ID = %d\n”, priv_id);

66 Trusted Solaris Developer’s Guide—August 1998

3

Get Description Text for Privilege ID
The get_priv_text(3TSOL) routine returns the description text for the
specified priv_id. The priv_name(4TSOL) man page lists the description text
for all privileges in the system.

The printf statement prints the following:

Allows a process to write a file or directory whose
permission bits or ACL do not allow the process write
permission.

Setting and Getting File Privilege Sets
Trusted Solaris 2.5.1 provides the user commands and programming interfaces
described here for setting and getting the privilege sets of an executable file. If
no forced and allowed privileges are set, by default the forced and allowed
privilege sets contain none .

Note – If you set file privilege sets prior to execution, the new privilege sets
take effect immediately and are used to compute the process privilege sets for
the current execution. If you set file privilege sets during execution, they do
not take effect until the next execution and have no effect on the process
privilege sets for the current execution.

string = get_priv_text(priv_id);
printf(“%s\n”, string);

Privileges 67

3

Commands for File Sets

To set and get the file privilege sets from the command line, use
setfpriv(1TSOL) and getfpriv(1TSOL) . The file_setpriv privilege is
required with setfpriv(1TSOL) so this command must be executed from the
profile shell with this privilege. See “Assigning File Privileges using a Script”
on page 333 for information on using setfpriv(1TSOL) in a script.

This command line sets the file privilege sets on executable for the examples
in this chapter. When you specify more than one privilege, the names are
separated by commas with no spaces. If you want to use spaces, enclose the
privilege names in double quotes (“privilege1, privilege2”).

This command line produces output to verify the file privilege sets were set:

Programming Interfaces for File Sets

The privilege macros and system calls described in this section get and set file
privilege sets. The program below has the header files and variable
declarations for the entire series of examples for this chapter. It also contains
code to set and get the file privilege sets for execfile , which will be exec’d
later to show what happens to process sets during an exec .

The setfpriv(1TSOL) system call sets the forced and allowed privilege sets
on execfile and requires the file_setpriv privilege. The file_setpriv
privilege is in the forced set for executable to make it available in the
permitted set during execution. By default, the effective set equals the
permitted set, and all effective privileges are on until explicitly turned off in
preparation for privilege bracketing. The use of file_setpriv in this code
does not follow security guidelines until privilege bracketing is put into effect
as described in “Bracketing Effective Privileges” on page 71.

phoenix% setfpriv -s -f file_setpriv -a file_mac_write,proc_setid,file_setpriv executable

phoenix% getfpriv executable
executable FORCED: file_setpriv ALLOWED: file_mac_write,file_setpriv,proc_setid

68 Trusted Solaris Developer’s Guide—August 1998

3

/* cc priv.c -o executable -ltsol */

#include <tsol/priv.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>

/* Global Variables*/
extern int errno;
char buffer [3*1024];

main()
{

char *priv_names = “file_mac_write$proc_setid”;
char *string;
char *privilege;
char *file = “/export/home/zelda/executable”;
char *execfile = “/export/home/zelda/execfile”;
priv_set_t priv_set, priv_get, permitted_privs, saved_privs;
int length = sizeof(buffer);
int retval;
pid_t pid;

/* To use with exec() later */
char *argv[8] = {“execfile”};

/* Initialize privilege set data structures */

PRIV_EMPTY(&priv_get);
PRIV_EMPTY(&priv_set);

/* Turn allowed privileges off. See text for discussion. */

retval = setfpriv(execfile, PRIV_SET, PRIV_ALLOWED, &priv_get);

Privileges 69

3

The printf statements print the file privilege sets for execfile as follows:

execfile Allowed = file_mac_write$proc_setid

execfile Forced = file_mac_write

The output uses a dollar sign (“$”) to separate the allowed privileges. The
separator is specified in the calls to priv_set_to_str(3TSOL) . The
separator is not used when there is only one privilege in the set.

/* Assert the privileges in priv_names in a privilege set */
/* structure and assign to execfile. See text below for discussion */
/* on methods for asserting privileges */

if((string = str_to_priv_set(priv_names, &priv_set, “$”)) != NULL)
printf(“string = %s errno = %d\n”, string, errno);

retval = setfpriv(execfile,PRIV_ON, PRIV_ALLOWED, &priv_set);

/* Check that the allowed privilege set contains the privileges */

retval = getfpriv(execfile, PRIV_ALLOWED, &priv_get);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“execfile Allowed = %s\n”, buffer);

/* Initialize privilege set data structures */

PRIV_EMPTY(&priv_set);
PRIV_EMPTY(&priv_get);

/* Assert file_mac_write in a privilege set structure */

PRIV_ASSERT(&priv_set, PRIV_FILE_MAC_WRITE);

/* Set the forced privilege set on execfile */

retval = setfpriv(execfile, PRIV_ON, PRIV_FORCED, &priv_set);

/* Check that the forced privilege set contains the privilege */

retval = getfpriv(execfile, PRIV_FORCED, &priv_get);
priv_set_to_str(&priv_get, ‘$’, buffer, &length);
printf(“execfile Forced =%s\n”, buffer);

}

70 Trusted Solaris Developer’s Guide—August 1998

3

Turn Allowed Privileges Off

The forced set is a subset of the allowed set. Any privileges in the forced set are
cleared when the allowed set is cleared. The allowed set is none by default, but
it is a good practice to clear it first so you know you are starting from zero.
Always clear and set the allowed set before you set the forced set. After the
following code executes, the allowed and forced sets are both none .

Assert Privileges in Privilege Set Structure
You can use the PRIV_ASSERT macro or the str_to_priv_set(3TSOL)
routine to assert privileges in a privilege set structure. str_to_priv_set ()
works well when you have two or more privileges to assert because you can do
it in one statement; whereas, PRIV_ASSERT must be called for each privilege
asserted in the set. This code uses the str_to_priv_set () routine for the
allowed set and PRIV_ASSERT for the forced set. The str_to_priv () routine
returns NULL on success and the string passed to it in priv_names on failure.

PRIV_EMPTY(&priv_set);
retval = setfpriv(execfile, PRIV_SET, PRIV_ALLOWED, &priv_set);

if((string = str_to_priv_set(priv_names, &priv_set, “$”)) != NULL)
printf(“string = %s errno = %d\n”, string, errno);

PRIV_EMPTY(&priv_set);
PRIV_ASSERT(&priv_set, PRIV_FILE_MAC_WRITE);

Privileges 71

3

Contents of Privilege Sets

The next examples operate on the process sets. It might be helpful to see the of
file and process privilege sets before any operations. The process sets are
calculated from the algorithms in “Process Privilege Sets” on page 54.

executable Allowed = file_mac_write$file_setpriv$proc_setid

executable Forced = file_setpriv

Permitted = file_mac_write$file_setpriv$proc_setid

Effective = file_mac_write$file_setpriv$proc_setid

Saved = file_mac_write$proc_setid

Inheritable = file_mac_write&file_setpriv $proc_setid

Bracketing Effective Privileges
Privilege bracketing involves turning the effective privileges off (they are on
and equal the permitted set by default), then turning on (making effective)
only those permitted privileges needed for a given interface call, and turning
them off when the privileged call completes.

• A privileged process cannot be exploited by making privileges available to
another process.

• A bug in the application code is less likely to cause misuse of a privilege if
the privilege is turned off when not needed.

• The principle of least privilege is enforced because the process uses only the
privileges it needs for the interfaces it is currently calling.

• The evaluation of a trusted application is easier because privilege bracketing
shows the person evaluating the code exactly where privileges are used.

When you analyze which privileges are needed for an interface, look at what
the interface does and the purpose of the privileges described on the man page
for that interface. Some privileges have broader effects than others and should
be treated with greater scrutiny.

• Privileges with broad effects are those that override mandatory access
control or discretionary access control policies.

72 Trusted Solaris Developer’s Guide—August 1998

3

• Privileges with narrower effects are those that allow access to a restricted
operation such as mounting a file system.

For example, it is relatively easy to examine a segment of code to see that it
uses a privilege with the mount(1MTSOL) system call and tell whether the use
of that privilege can be exploited in any way. It is more difficult to tell if the
use of a privilege to override the mandatory or discretionary access policy to
access a restricted file can be exploited.

It is up to you to perform privilege bracketing in your code and to do it
correctly. Always remember that all privileges override some policy that is not
allowed to untrusted processes, and handle your use of privileges with the
needed care.

Procedure

The procedure for bracketing the setfpriv(1TSOL) system call and the
effects it has on the effective set are summarized here. The code is shown in the
next headings.

At the start of execution before bracketing, the permitted and effective sets
contain these privileges:

Permitted = file_mac_write$file_setpriv$proc_setid

Effective = file_mac_write$file_setpriv$proc_setid

• Clear the effective set at the beginning of the application.

Permitted = file_mac_write$file_setpriv$proc_setid

Effective = none

• Bracket the setfpriv () system call.
• Turn the file_setpriv privilege on in the effective set right before you

call the setfpriv () system call.

Permitted = file_mac_write$file_setpriv$proc_setid

Effective = file_setpriv

• Turn off the effective set immediately after the setfpriv () system call.

Permitted = file_mac_write$file_setpriv$proc_setid

Effective = none

Privileges 73

3

Clear Effective Set
The example uses set_effective_priv(3TSOL) to clear the effective set at
the beginning of the application. The PRIV_SET parameter clears the effective
privilege set, and the zero (0) indicates there is no parameter list of privilege IDs.

Continue Application Code

Turning the entire effective privilege set off is followed by application code
until a privilege is needed.

Bracket The Call

The example uses set_effective_priv(3TSOL) to bracket. The first call
turns the file_setpriv privilege on (asserts it) in the effective set; the
second call turns it off. The 1 indicates the privilege parameter list has one
privilege constant (PRIV_FILE_SETPRIV) in it.

Bracketing in Example

This next example shows the body of the example application code with
comments indicating the places where setfpriv(1TSOL) should be
bracketed.

if (set_effective_priv(PRIV_SET, 0) == -1)
perror(“Cannot clear effective privileges”);

/* Turn file_setpriv on in effective set */
if (set_effective_priv(PRIV_ON, 1, PRIV_FILE_SETPRIV) == -1)

perror(“Cannot assert PRIV_FILE_SETPRIV”);

/* Make interface call */
retval = setfpriv(execfile, PRIV_SET, PRIV_ALLOWED, &priv_get);

/* Turn the file_setpriv privilege off */
if (set_effective_priv(PRIV_OFF, 1, PRIV_FILE_SETPRIV) == -1)

perror(“Cannot clear PRIV_FILE_SETPRIV”);

/* Continue application code ...*/

74 Trusted Solaris Developer’s Guide—August 1998

3

Check Permitted Privileges
An application can check the permitted privilege set to be sure the application
has all privileges it needs to function. This way, if an application is missing a
privilege, it can issue an error message to that effect. Continuing without all
the needed privileges typically produces error messages that are more difficult
to interpret.

PRIV_EMPTY(&priv_get);
PRIV_EMPTY(&priv_set);

/* Turn file_setpriv on in the effective set */
retval = setfpriv(execfile, PRIV_SET, PRIV_ALLOWED, &priv_get);

/* Turn the file_setpriv privilege off */

if((string = str_to_priv_set(priv_names, &priv_set, “$”)) != NULL)
printf(“string = %s errno = %d\n”, string, errno);

/* Turn file_setpriv on in the effective set */
retval = setfpriv(execfile,PRIV_ON, PRIV_ALLOWED, &priv_set);

/* Turn the file_setpriv privilege off */

retval = getfpriv(execfile, PRIV_ALLOWED, &priv_get);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“execfile Allowed = %s\n”, buffer);

PRIV_EMPTY(&priv_set);
PRIV_EMPTY(&priv_get);
PRIV_ASSERT(&priv_set, PRIV_FILE_MAC_WRITE);

/* Turn file_setpriv on in the effective set */
retval = setfpriv(execfile, PRIV_ON, PRIV_FORCED, &priv_set);

/* Turn the file_setpriv privilege off */

retval = getfpriv(execfile, PRIV_FORCED, &priv_get);
priv_set_to_str(&priv_get, ‘$’, buffer, &length);
printf(“execfile Forced =%s\n”, buffer);

Privileges 75

3

The following example gets the permitted set and checks for
PRIV_FILE_MAC_WRITE, PRIV_PROC_SETID, and PRIV_FILE_SETPRIV . The
PRIV_ISSUBSET macro provides another way (not shown) to check if one
privilege set contains all the privileges in another privilege set from within
your source code.

Remove a Permitted Privilege
You can remove privileges from the permitted set, but once a privilege is
removed it cannot be added back. Only privileges in the permitted set can be
in the inheritable set so do not remove a permitted privilege that needs to be in
the inheritable set. This example removes the file_mac_write privilege from
the permitted set. The 1 indicates the parameter list has one privilege constant.

Before this call the permitted set contains these privileges:

executable Permitted = file_mac_write$file_setpriv $proc_setid

After this call the permitted set contains these privileges:

executable Permitted = file_setpriv$proc_setid

/* Initialize privilege set data structure */
PRIV_EMPTY(&permitted_privs);

/* Test for privileges in permitted set. */

if (getppriv(PRIV_PERMITTED, &permitted_privs) == -1)
perror(“Cannot get list of permitted privileges\n”);

if (!PRIV_ISASSERT(&permitted_privs, PRIV_FILE_MAC_WRITE))
fprintf(stderr, “Need: file_mac_write.\n”);

if (!PRIV_ISASSERT(&permitted_privs, PRIV_PROC_SETID))
fprintf(stderr, “Need: proc_setid.\n”);

if (!PRIV_ISASSERT(&permitted_privs, PRIV_FILE_SETPRIV))
fprintf(stderr, “Need: file_setpriv.\n”);

if(set_permitted_priv(PRIV_OFF, 1, PRIV_FILE_MAC_WRITE) == -1)
perror (“Cannot remove file_mac_write from permitted set”);

76 Trusted Solaris Developer’s Guide—August 1998

3

Check Saved Privileges
An application can check the saved privilege set to determine the origin of a
privilege to take action based on the findings. This example gets the saved set
and checks for PRIV_PROC_SETIDand PRIV_FILE_SETPRIV and finds that
the file_setpriv privilege is not inherited, but the proc_setid privilege
is inherited.

Clear and Set the Inheritable Set
If the inheritable set does not contain the privileges you want a forked
process or exec’d program to have in its inheritable set, clear the inheritable
set of the parent and initialize it with the privileges you want to pass before
calling fork(2TSOL) or exec(1) .

This example clears the inheritable privilege set. The PRIV_SET parameter
clears the inheritable privilege set, and the zero (0) parameter indicates there is
no parameter list of privilege IDs.

Before this call the inheritable set contains these privileges:

Inheritable = file_mac_write&file_setpriv $proc_setid

After this call the inheritable set contains this privilege:

Inheritable = none

PRIV_EMPTY(&saved_privs);

if (getppriv(PRIV_SAVED, &saved_privs) == -1)
perror(“Cannot get list of saved privileges\n”);

if (!PRIV_ISASSERT(&saved_privs, PRIV_PROC_SETID))
fprintf(stderr, “proc_setid not in saved set. \n”);

if (!PRIV_ISASSERT(&saved_privs, PRIV_FILE_SETPRIV))
fprintf(stderr, “file_setpriv not in saved set.\n”);

if (set_inheritable_priv(PRIV_SET, 0) == -1)
perror(“Cannot clear inheritable privileges”);

Privileges 77

3

The following example sets the proc_setid privilege in the inheritable
privilege set. Any privilege in the permitted set can be placed in the inheritable
set and placing any other privilege in the inheritable set results in an Invalid
Argument error. Because the proc_setid privilege is in the permitted set for
executable , it can be placed in the inheritable set. Because it is also in the
allowed set for execfile , it can be used by the new program when execfile
is exec’d in “Execute a File” on page 79.

After this call the inheritable set contains this privilege:

Inheritable = proc_setid

Fork a Process
When a child process is created by fork, its process sets are identical to the
parent’s process sets. This can be proven by querying the process privilege
sets, forking a process, and querying the child process privilege sets:

Parent Process Privilege Sets

Before the fork , the parent process has the following privileges:

Forked Inheritable = proc_setid

Forked Saved = file_setpriv$proc_setid

Forked Permitted = file_setpriv$proc_setid

Forked Effective = none

if (set_inheritable_priv(PRIV_ON, 1, PRIV_PROC_SETID) == -1)
perror(“Cannot set proc_setid privilege in inheritable set”);

78 Trusted Solaris Developer’s Guide—August 1998

3

System Call and Code

New Process Privilege Sets

After the fork(2TSOL) system call, the printf statements print the
following:

Forked Inheritable = proc_setid

Forked Saved = file_setpriv$proc_setid

Forked Permitted = file_setpriv$proc_setid

Forked Effective = none

pid = fork();
if (pid > 0)

exit(0);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_INHERITABLE, &priv_get);
printf(“retval = %d errno = %d\n”, retval, errno);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Forked Inheritable = %s\n”, buffer);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_SAVED, &priv_get);
printf(“retval = %d errno = %d\n”, retval, errno);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Forked Saved = %s\n", buffer);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_PERMITTED, &priv_get);
printf(“retval = %d errno = %d\n”, retval, errno);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Forked Permitted = %s\n”, buffer);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_EFFECTIVE, &priv_get);
printf(“retval = %d errno = %d\n”, retval, errno);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Forked Effective = %s\n”, buffer);

Privileges 79

3

Execute a File
When a file is exec’d , the process sets are computed based on the algorithms
described in “Process Privilege Sets” on page 54.

Privilege Sets

The execfile for the new program has the following file privilege sets, which
were set by the exec ’ing process’s application code:

execfile Allowed = file_mac_write$proc_setid

execfile Forced = file_mac_write

The exec ’ing process has the following process sets:

Exec’d Inheritable = proc_setid

Exec’d Saved = file_setpriv$proc_setid

Exec’d Permitted = file_setpriv$proc_setid

Exec’d Effective = none

System Call

New Process Privilege Sets

After the exec(1) system call, the process sets are as follows.

execfile Allowed = file_mac_write$proc_setid

execfile Forced = file_mac_write

Exec’d Inheritable = proc_setid

Exec’d Saved = proc_setid

Exec’d Permitted = file_mac_write$proc_setid

Exec’d Effective = file_mac_write$proc_setid

retval = execv(execfile, argv);

80 Trusted Solaris Developer’s Guide—August 1998

3

Set User ID
The exec ’d program’s effective privileges are on by default. Because the new
program has the proc_setid privilege in its effective set, you can call
setuid(2TSOL) to see how the effective and saved sets change when the User
ID changes. See “Change in User ID” on page 56 for the discussion.

The printf statements print the following:

Executable setuid effective = none

Executable setuid saved = file_mac_write$proc_setid

retval = setuid(0);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_EFFECTIVE, &priv_get);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Executable setuid effective = %s\n”, buffer);

PRIV_EMPTY(&priv_get);
retval = getppriv(PRIV_SAVED, &priv_get);
priv_set_to_str(&priv_get, '$', buffer, &length);
printf(“Executable setuid saved = %s\n”, buffer);

81

Checking User Authorizations 4

Applications can check a user’s authorizations before performing certain tasks
on behalf of that user if the tasks require user authorization. The tasks might
be privileged administrative tasks or privileged non-administrative tasks. A
good practice is to identify the authorization to be checked, identify the user or
role performing the task, and check whether that user or role has the
authorization to perform the task before turning privileges on in the
application.

Refer to the auth_desc(4TSOL) man page for a description of the available
authorizations. Use the chkauth(3TSOL) routine described in this chapter to
check the authorization for a given user name or user ID. Use the interfaces
described in Chapter 10, “Accessing User and Profile Database Entries” to
obtain information on the users and roles (including authorizations) in the
system.

Trusted Solaris 2.5.1 provides authorizations to control login, files and file
management, devices, labels, and system administration activities. The
programming interfaces described in this chapter check authorizations, convert
authorization IDs, and free an authorization set.

Types of Authorizations page 82

Data Types, Header Files, and Libraries page 82

Authorization Names and Descriptions page 83

Translating Authorizations page 86

Authorization Sets page 87

82 Trusted Solaris Developer’s Guide—August 1998

4

Types of Authorizations
Trusted Solaris 2.5.1 provides the following types of authorizations:

• Login authorizations control who can enable logins, perform remote logins,
and perform serial port logins.

• File and file management authorizations control who can downgrade and
upgrade sensitivity labels, act as a file’s owner, change a file’s owner, set file
privileges, or set and get certain auditing information. Also controls who
can view file contents on drag and drop and who can change the locations
from which CDE loads CDE actions.

• Devices authorizations control who can allocate a device and specify the
CMW label associated with information imported from or exported to it.

• Window authorizations control who can paste to a downgraded or
upgraded window, or occupy a workspace at a different sensitivity label.

• Label authorizations control who can use all labels in the system.

• Software administration authorizations control which administrator can set
user identity security information, password information, user attributes,
user labels, auditing flags, user profiles, and workstation idle time.

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsol/auth.h>

The examples in this chapter compile with the following libraries:

-ltsol -ltsoldb -lcmd -lnsl

Checking User Authorizations 83

4

Single Authorizations

One authorization is represented by the auth_t type definition. You initialize
a variable of type auth_t with an authorization ID that can be either the
constant name or numeric ID. The constant name is preferred because it makes
the code easier to read.

Authorization Set Structure

Authorization sets are represented by the auth_set_t data structure. This
structure is used for managing sets of authorizations.

Authorization Names and Descriptions
The auth_desc(4TSOL) man page lists authorization names, manifest
constant names, and the description text for all system authorizations.

Programing Interface Declarations
Library routines are available to check a user’s authorizations, convert
authorization IDs and sets between binary and ASCII, and get the
authorization description text. None of the library routines require privilege.
Refer to the auth_to_str(3TSOL) man page.

User Authorizations

This routine checks if the specified authorization ID is assigned to the specified
user name.

auth_t auth_id = TSOL_AUTH_FILE_DOWNGRADE_SL;

int chkauth(auth_t auth_id,
char *user_name);

84 Trusted Solaris Developer’s Guide—August 1998

4

Authorization IDs

These routines convert the specified authorization ID to ASCII and back again.

Authorization Sets

These routines convert the specified authorization set to ASCII and back again,
and free the memory associated with an authorization set.

Authorization Description Text

This routine gets the authorization description text for the specified
authorization ID.

char *auth_to_str(auth_t auth_id);
auth_t str_to_auth(char *auth_name);

char *auth_set_to_str(authset_t *authset,
char separator);

auth_set_t *str_to_auth_set(char *auth_names,
char *separator);

void free_auth_set(auth_set_t *auth_set);

char *get_auth_text(auth_t auth_id);

Checking User Authorizations 85

4

Check Authorization ID
The chkauth(3TSOL) library routine checks the authorization against the
user name to see if the user zelda has the
TSOL_AUTH_FILE_DOWNGRADE_SL authorization. This routine checks the
profile associated with the supplied user name. The user name can also be the
name of a role.

The header files and declarations for the following code segments are provided
in this first program.

The printf statement prints 0 showing that user zelda is not authorized:

Result = 0

#include <tsol/auth.h>

main()
{

int result;
char *zelda = “zelda”;
char *string1, *string2;
char *string = "auth_file_downgrade_sl$auth_file_owner";
auth_set_t *auth_set;
auth_t auth_id;

result = chkauth(TSOL_AUTH_FILE_DOWNGRADE_SL, zelda);
printf(“Result = %d\n”, result);

}

86 Trusted Solaris Developer’s Guide—August 1998

4

Translating Authorizations
These library routines translate the specified authorization ID to its
corresponding external name or numeric ID and back again. These routines
read the authorization names database file described on the
auth_name(4TSOL) man page to translate between auth_id and *string.

Authorization ID to String

In this example, auth_id is initialized to the manifest constat name
TSOL_AUTH_FILE_DOWNGRADE_SL and passed to the auth_to_str(3TSOL)
routine to convert it to its external name.

The printf statement prints the following:

downgrade file sensitivity label

String to Authorization ID

In the next example, the string returned from auth_to_str(3TSOL) is passed
to str_to_auth(3TSOL) to convert the string to its numeric ID.

The printf statement prints the following:

Auth ID = 5

string1 = auth_to_str(TSOL_AUTH_FILE_DOWNGRADE_SL);
printf(“%s\n”, string1);

auth_id = str_to_auth(string1);
printf(“Auth ID = %d\n”, auth_id);

Checking User Authorizations 87

4

Get Description Text for Authorization

The get_auth_text(3TSOL) routine returns the description text for the
specified auth_id. The auth_name(4TSOL) man page lists the description text
for all authorizations in the system.

The printf statement prints the following:

Allows a user to specify the Sensitivity Label to set on a file that does not
dominate the file’s existing Sensitivity Label.

Authorization Sets
You can initialize an authorization set from a string to manage a set of
authorizations, create a string from an authorization set, or clear the memory
associated with an authorization set.

Converting String to Authorization Set

You can create a set of authorizations by supplying a character string that uses
a separator character to separate the authorization names. This examples uses a
dollar sign (“$”) to separate two authorizations. The separator is not used if
only one authorization is initialized into the set. Any character can be specified
as the separator. The str_to_auth_set(3TSOL) routine always returns a
valid authorization set. For each invalid authorization in the set, there is a -1 in
the set.

The printf statement prints the following:

Success

string1 = get_auth_text(TSOL_AUTH_FILE_DOWNGRADE_SL);
printf(“%s\n”, string1);

if((auth_set = str_to_auth_set(string, "$")) != NULL)
printf("Success\n");

else
printf("Fail\n");

88 Trusted Solaris Developer’s Guide—August 1998

4

Translating Authorization Set to String

You can translate an authorization set into a character string by supplying the
set and the separator. This example asks the str_to_auth_set(3TSOL)
routine to use the dollar sign character (‘$’) for the separator. Any character
can be specified as the separator.

The printf statement prints the following:

Auth string = auth_file_downgrade_sl$auth_file_owner

Free Authorization Set

The free_auth_set(3TSOL) routine frees the memory allocated to an
authorization set you have created.

if((string2 = auth_set_to_str(auth_set, '$')) != NULL)
printf("Auth string = %s\n", string2);

else
printf("Fail\n");

free_auth_set(auth_set);

89

Trusted Solaris 2.5.1 uses three types of labels: CMW label, sensitivity label,
and information label. However, a CMW label is really only a construct to
combine a sensitivity label and an information label so they can be treated as a
unit. All processes and all objects have a CMW label.

The sensitivity label portion of the CMW label is a mandatory access control
(MAC) mechanism to control access to and maintain the classification of data
in processes and objects. It also indicates the level at which the information
should be protected. Whenever a process accesses an object, mandatory access
and discretionary access checks are performed as described in Chapter 1,
“Introduction to the API and Security Policy.”

The information label portion of the CMW label tracks the actual sensitivity of
data contained within processes and objects. Information labels do not enforce
access controls, but track the flow of information from objects, through
processes, and on to other processes or objects. The information label portion
of a CMW label indicates the highest sensitivity of information that has been
written into an object or read by a process, and provides a guideline for
handling the data.

This chapter describes the programming interfaces for performing general
label operations such as initializing labels, retrieving portions of a CMW label,
and comparing labels. It also describes the programming interfaces for
accessing CMW labels on processes and file system objects. Chapter 6, “Label
Code Examples” provides code examples for the programming interfaces
described in this chapter.

Labels 5

90 Trusted Solaris Developer’s Guide—August 1998

5

Clearances have the same construction as sensitivity labels, but perform a
different function. Because of the similarity, some of the interfaces in this
chapter accept clearances as parameters and some families of interfaces include
an interface to handle clearances. Because clearances have a different function,
however, all interfaces for managing clearances are described in Chapter 7,
“Process Clearance” with code examples that use clearances.

CMW Label
A CMW label is a construct for labeling all processes and objects. It combines a
sensitivity label with an information label so the labels can be
programmatically translated and manipulated as a combined unit, or accessed
individually. Figure 5-1 illustrates the sensitivity label and information label
parts, and how each label portion combine into a CMW label.

Figure 5-1 CMW label Parts

Information Label Floating page 91

Acquiring CMW labels page 93

CMW Label Display page 93

Privileged Operations page 95

Label Guidelines page 96

Information Label Floating page 99

Data Types, Header Files, and Libraries page 100

Programming Interface Declarations page 102

Classification

Type=SL

Compartments

Type=IL

Classification

Compartments

Markings

CMW label

Sensitivity label
portion

Information label
portion

Labels 91

5

Sensitivity Label

A sensitivity label has an ID field, one hierarchical classification, and a set of
one or more non-hierarchical compartments. The classification represents a
single level within a hierarchy, while the compartments represent distinct areas
of information in a system. Compartments limit access to only those who need
to know the information in a particular area. For example, persons with a
Secret classification have access to the secret information specified by the
compartment list and no other secret information. The sensitivity label
classification and compartments together represent the sensitivity level of a
process or object.

Comparing sensitivity labels means that the sensitivity label portion of the
process CMW label is compared to the sensitivity label portion of the target
CMW label and access is either granted or denied to the process based on
whether the sensitivity level of the process dominates the sensitivity level of
the target. The relationships of equality and dominance are described in “Test
Label Relationships” on page 125.

Information Label

Information labels have an ID field, one hierarchical classification, and a set of
compartments just like sensitivity labels. Information labels also have
markings to represent code words, dissemination and control markings, and
handling warnings.

The information labels of two CMW labels can be compared for equality and
dominance as described in “Test Label Relationships” on page 125.

Information Label Floating

Information label floating is configured at installation time or by the system
administrator by setting variables in the /etc/system file after installation.
Information labels float only when information label floating is turned on for
the system. See “System Security Configuration and Attribute Information” on
page 26 for information on how to query system configuration variables.

Whenever information flows from one process or object to another process or
object, the information label portion of the target CMW label floats up to reflect
the maximum security level of its new information content. Information labels
never float down. This process called information label floating.

92 Trusted Solaris Developer’s Guide—August 1998

5

Trusted Solaris 2.5.1 calculates new values for information labels with an
operation called the conjoin. Information labels can be programmatically
upgraded or downgraded with the appropriate privilege as described in
“Privileged Operations” on page 95. An information label can never float or be
programmatically set to a higher level than its associated sensitivity label.

A conjoin (the conjunction of two information labels) is the arithmetic
maximum of the classification portion of both information labels and the union
of the compartments and markings of both information labels. When a process
accesses data in an object, the information label portions of the process CMW
label and object CMW label float according to the following rules illustrated in
Figure 5-2 on page 92:

• When a process reads information from an object, the information label
portion of the process CMW label is raised to the conjoin of the information
label of the object and the old information label of the process. The process
information label floats by the object information label.

• When a process writes information into an object, the information label
portion of the object CMW label is raised to the conjoin of its old
information label and the information label of the process. The object
information label floats by the process information label.

Figure 5-2 Information Label Floating

Process
Information Label

Object
Information Label

Process
Information Label

Object
Information LabelOperation

Top Secret
Top Secret
Confidential
Confidential
Secret A
Secret B

Secret
Secret
Confidential A
Confidential A
Top Secret B
Top Secret B

Read
Write
Read
Write
Read
Write

Top Secret
Top Secret
Confidential A
Confidential
Top Secret A B
Secret B

Secret
Top Secret
Confidential A
Confidential A
Top Secret B
Top Secret B

Before Operation After Operation

Unclassified < Confidential < Secret < Top Secret

Labels 93

5

CMW Label Display
CMW labels appear throughout the Trusted Solaris 2.5.1 user interface in the
following form. The sensitivity label always dominates the information label.
See “Test Label Relationships” on page 125 for the definition of dominates.

INFORMATION LABEL [SENSITIVITY LABEL]

A CMW label on a window with an information label of TOP SECRET and a
sensitivity label of TOP SECRET AB would display as follows. Note that where
the long name is used for the information label and the short name is used for
the sensitivity label. Long and short names are defined in the
label_encodings(4TSOL) file and can be retrieved during a binary to ASCII
translation as described in “Translating Labels” on page 138.

TOP SECRET [TS A B]

Note – If your application displays label names, you should follow this
convention.

Acquiring CMW labels
Labels are acquired from workspaces and other processes. A user can start a
process only at the current sensitivity label of the workspace in which he or she
is working.

Process CMW Label

When a process is started from the workspace, the process CMW label inherits
the sensitivity and information label values of the workspace CMW label. The
information label portion of the process CMW label floats according to the
information label of data and libraries read by the process if information label
floating is on for the system.

When a new process is created using fork(2TSOL) , the new process inherits
the CMW label values of its calling process. The information label of the called
process floats according to the information label of data and libraries read by
the child process.

94 Trusted Solaris Developer’s Guide—August 1998

5

When a new program is started with exec(1) , the exec’ing process must
have both discretionary and mandatory access to the new program’s file. The
information label of the new program floats according to the information label
of the exec’d file and any data and libraries read by that process. However, if
the reset_il_on_exec flag is on, the information label of the new program
is set to ADMIN_LOW. See “Initialize Binary Labels and Check Types” on
page 115 in Chapter 6, “Label Code Examples” for a definition of ADMIN_LOW.

The setcmwplabel(2TSOL) system call programmatically sets the process
CMW label. You would use this call after forking or exec’ing a new process
that should operate at another CMW label from the calling process. Privileges
may be required. See “Privileged Operations” on page 95.

Object CMW Label

When an object is created by a process, the object inherits the CMW label
values of its calling process. If an object is created but left empty, or if an
existing object is emptied, the information label of the object is set to
ADMIN_LOW. Users will either see the ADMIN_LOW label or the next lowest label
in the system depending on how the label view is set. The label view is a
process security attribute flag described on “Get and Set Process Security
Attribute Flags” on page 37.

When a process writes to an object, the information label of the object floats
according to the information label of the process.

When a privileged process writes down to an object, the system changes the
sensitivity label of the object to be the same as the sensitivity label of the
process. This protects the information written from the process at the higher
sensitivity label from being accessed by other processes running at lower
sensitivity labels.

The setcmwlabel(2TSOL) system call programmatically sets the CMW label
on a file system object.

The File Manager lets an authorized user change the sensitivity and
information labels on an existing file’s CMW label.

Labels 95

5

Privileged Operations
The system calls that get and set process and file system object CMW labels
require mandatory and discretionary access to the process or file system object
and may require privilege if access is denied by the system security policy. See
“System Calls” on page 102 for a list of system calls.

Translating Binary Labels

The calling process needs the sys_trans_label privilege in its effective set
to translate a label between binary and ASCII if the label being translated is not
dominated by the process’s sensitivity label. This privilege is also required to
check if a label is valid when the process sensitivity label does not dominate
the label being checked.

Setting Process Labels

The calling process needs the proc_setsl or proc_setil privilege in its
effective set to set its own sensitivity label or information label to another label
not equal to the current sensitivity label or information label.

Downgrading and Upgrading Sensitivity Labels

The calling process needs the file_owner privilege in its effective set to
downgrade the sensitivity label on a file not owned by the calling process.

Downgrading Sensitivity Labels

A process can set the sensitivity label on a file system object to a new
sensitivity label that does not dominate the object’s existing sensitivity label
with the file_downgrade_sl privilege in its effective set.

Upgrading Sensitivity Labels

A process can set the sensitivity label on a file system object to a new
sensitivity label that dominates the object’s existing sensitivity label with the
file_upgrade_il privilege in its effective set:

96 Trusted Solaris Developer’s Guide—August 1998

5

Downgrading and Upgrading Information Labels

The calling process needs the file_owner privilege in its effective set to
downgrade the information label on a file it does not own.

Downgrading Information Labels

A process can set the information label on a file system object to a new
information label that does not dominate the object’s existing information label
with the file_downgrade_il privilege in its effective set.

Upgrading Information Labels

A process can set the information label on a file system object to a new
information label that dominates the existing object’s information label with
the file_upgrade_il privileges in its effective set.

Stopping Information Label Floating

A process can stop the information label floating on a file system object to
which it is writing with the file_nofloat privilege in its effective set. A
process can stop its own information label from floating when it reads from
another object with the proc_nofloat privilege in its effective set.

Label Guidelines
This section provides guidelines for you to follow when your program must
use privileges to bypass access controls, change the sensitivity label, or stop
information label floating.

Labels 97

5

Sensitivity Labels

Most applications do not use privileges to bypass access controls because they
operate in one of the following ways:

• An application is launched by one user or many users at one sensitivity
label and accesses data in objects at that same sensitivity label.

• An application is launched by one user or many users at one sensitivity
label and accesses data in objects at other sensitivity labels, but the
mandatory access operations are allowed by the system security policy as
described in “Security Policy” on page 13.

• An application is launched by one user or many users at different sensitivity
labels and accesses data in objects at that same sensitivity label by way of
multilevel directories. Multilevel directories are described in Chapter 8,
“Multilevel Directories.”

If an application accesses data at sensitivity labels other than the sensitivity
label of its process and access is denied, the process needs privilege to gain
access. Privileges let the application bypass mandatory or discretionary access
controls (file_mac_read , file_dac_read , file_mac_write ,
file_dac_write , file_mac_search or file_dac_search), change the
process sensitivity label so mandatory access is granted (proc_setil), or
upgrade or downgrade the sensitivity label of the data (file_upgrade_sl,
file_downgrade_sl). No matter how access is obtained, the application
design must abide by the guidelines presented here to not compromise the
classification of data accessed.

Bypassing Mandatory Access Controls

If you use privileges to bypass mandatory access restrictions, be careful your
application does not write data out at a lower sensitivity label than the label at
which it read the data. Also, your application design should not allow the
accidental downgrading of data due to program errors.

98 Trusted Solaris Developer’s Guide—August 1998

5

Upgrading or Downgrading Sensitivity Labels

Follow these guidelines when your application changes its own sensitivity
label or the sensitivity label of another object.

• Upgrade a sensitivity label whenever possible.

A program that upgrades a sensitivity label is safer than a program that
downgrades a sensitivity label because application errors that cause
information leaks upgrade the data, rather than downgrade it. Upgrading
data results in the over classification of the data, but is not a security breach.
You can use privileges to downgrade a sensitivity label, but use these
privileges very carefully.

• Never change a process sensitivity label more than once. Changes to the
process sensitivity label increase the possibility of accidentally transmitting
data between different levels. Any change to the process sensitivity label is
an upgrade or downgrade of the information in the process address space.

• Close all file descriptors when changing a file or process sensitivity label so
sensitive data is not available to other processes.

Creating a Process at another Sensitivity Label

Instead of changing the process sensitivity label, fork () a new process and
change the sensitivity label of the forked process so tasks can be performed at
another level separate from the data in the forking process. The forked process
should either return information to the forking process or send the information
to another process.

Information returned by a forked process at a changed sensitivity label should
provide no more information than absolutely necessary. For example, provide
the success or failure of a computation, and not the actual data. Returning or
passing specific information keeps the data used to make the computation
secure and prevents data at one level from mixing with data at another level.

Labels 99

5

Information Label Floating

Information labels float during read and write operations as described in
“Information Label Floating” on page 91. An unprivileged application cannot
cause information labels to float incorrectly; however a privileged application
can cause information labels to float higher than necessary.

For example, an application might read from a configuration file at the
beginning of execution, read and write a number of files during execution, and
rewrite the configuration file at the end of execution. As the application reads
files, its information label floats by those files. When it rewrites its
configuration file, the configuration file’s information label floats to the highest
information label of any of the files read during execution even though the
configuration file contains no data from any of the files with the high
information labels. Subsequent executions spread the configuration file’s
higher information label to all files written by the application. There are several
ways to handle situations like this in the application code:

• Change the application design to not require an update of the configuration
file at the end to reduce the information label floating.

• Use interfaces and the appropriate privileges (see “Downgrading and
Upgrading Information Labels” on page 96) to upgrade or downgrade the
process or object information labels to the correct level.

• Use the privileges described in “Stopping Information Label Floating” on
page 96 to stop the information label floating.

100 Trusted Solaris Developer’s Guide—August 1998

5

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsol/label.h>

The examples in this chapter compile with the following library:

-ltsol

CMW label

The data structure bclabel_t represents a binary CMW label. Interfaces
accept and return a binary CMW label in a structure of type bclabel_t .

Setting Flag

The setting_flag type definition to define CMW label flag values as
follows:

SETCL_SL – Set the sensitivity label portion of the CMW label.
SETCL_IL – Set the information label portion of the CMW label.
SETCL_ALL – Set the entire CMW label.

Sensitivity Label

The bslabel_t type definition represents the sensitivity label portion of a
binary CMW label. Interfaces accept as parameters and return binary
sensitivity labels in a variable of type bslabel_t . The bslabel_t type
definition is compatible with the blevel_t structure.

Information Label

The bilabel_t type definition represents the information label portion of a
binary CMW label. Interfaces accept as parameters and return binary
information labels in a structure of type bilabel_t .

Labels 101

5

Binary Levels

The blevel_t structure represents a binary level, which is a classification and
set of compartments in a sensitivity label, information label, or clearance.
Interfaces accept and return binary levels in a structure of type blevel_t .

Type Compatibility

Any variable of type bclear_t or bslabel_t can be passed to a function that
accepts a parameter of type blevel_t .

Range of Sensitivity Labels

The brange_t data structure represents a range of sensitivity labels. The
structure holds a minimum label and a maximum label. The structure fields are
referred to as variable.lower_bound and variable.upper_bound .

Accreditation Range

The set_id data structure currently accepts the following integer values: 1 =
SYSTEM_ACCREDITATION_RANGE; 2 = USER_ACCREDITATION_RANGE.

Label Information

 The label_info structure contains length specifications of items in the
label_encodings file. The structure is returned by labelinfo(3TSOL) .

Field Description
ilabel_len Maximum information label length.

slabel_len Maximum sensitivity label length.

clabel_len Maximum CMW label length.

clear_len Maximum clearance label length.

vers_len Version string length.

header_len Maximum length of the printer banner.

protect_as_len Maximum length of a printer banner page header string returned
by bcltobanner(3TSOL) .

caveats_len Maximum length of the printer banner page string returned by
bcltobanner(3TSOL) .

channels_len Maximum length of a printer banner page channels string.

102 Trusted Solaris Developer’s Guide—August 1998

5

Banner Fields

The banner_fields structure contains the translated ASCII coded labels and
strings for display on printer banner and trailer pages and at the top and
bottom of document body page. The structure is returned by
bcltobanner(3TSOL) . The first five fields consist of pointers to character
strings, and the second five consist of short integer lengths of memory
preallocated to the corresponding string pointer.

Programming Interface Declarations
The following programming interfaces are available for general label
operations and accessing labels on processes and file system objects.

System Calls

These system calls get and set a file or process CMW label, or get the file
system label range.

Caution – Every process that sets a label on another process or file system
object must set a valid label as defined in the label_encodings file, and
must pass the correct binary form of the label. The ASCII to binary translation
functions correct the label as much as possible to ensure a correct binary label
results from the translation. However, you might still use the
bslvalid(3TSOL) routine to check that the label is valid. A correctly

Field Description
header String appears on top and bottom of the banner and trailer pages.

protect_as String appears in protect as banner page section.

ilabel Information label and appears on top and bottom of body pages.

caveats String appears in the caveats banner page section.

channels String appears in the handling channels section.

header_len Preallocated string memory length for header.

protect_as_len Preallocated string memory length for protect as section.

ilabel_len Preallocated string memory length for information label.

caveats_len Preallocated string memory length for caveats section.

channels_len Preallocated string memory length for channels section.

Labels 103

5

constructed binary label can be invalid for a given system or user and should
be checked that it falls within the system or user accreditation range with the
blinset(3TSOL) routine.

File CMW Label

These system calls get and set the file CMW label by the path name or file
descriptor. Refer to the setcmwlabel(2TSOL) and getcmwlabel(2TSOL)
man pages.

Process CMW Label

These system calls get and set the process CMW label. Refer to the
setcmwplabel(2TSOL) and getcmwplabel(2TSOL) man pages.

int setcmwlabel(const char *path,
const bclabel_t *label,
const setting_flag_t flag);

int getcmwlabel(const char *path,
const bclabel_t *label);

int fsetcmwlabel(const int fd,
const bclabel_t *label,
const setting_flag_t flag);

int fgetcmwlabel(const int fd,
bclabel_t *label);

int lsetcmwlabel(const int fd,
const bclabel_t *label,
const setting_flag_t flag);

int lgetcmwlabel(const int fd,
bclabel_t *label);

int setcmwplabel(const bclabel_t *label,
const setting_flag_t flag);

int getcmwplabel(const bclabel_t *label);

104 Trusted Solaris Developer’s Guide—August 1998

5

File System Label Range

These system calls get the file system label range. Refer to the
getcmwfsrange(2TSOL) man page.

Library Routines

These library routines access, initialize, compare, translate, and verify labels.
Library routines also obtain information on label_encodings(4TSOL) .

CMW Label Initialization

These routines initialize a CMW label to ADMIN_HIGH, ADMIN_LOW, or
undefined (similar to NULL). Refer to the blmanifest(3TSOL) man page.

CMW Label Portions

These routines access the sensitivity label portion of a CMW label. Refer to the
blportion(3TSOL) man page.

int getcmwfsrange(char *path, brange_t *range);
int fgetcmwfsrange(int fd, brange_t *range);

void bclhigh(bclabel_t *label);
void bcllow(bclabel_t *label);
void bclundef(bclabel_t *label);

void getcsl(bslabel_t *destination_label,
const bclabel_t *source_label);

void setcsl(bclabel_t *destination_label,
const bslabel_t *source_label);

bslabel_t *bcltosl(bclabel_t *label);

Labels 105

5

These routines access the information label portion of a CMW Label. Refer to
the blportion(3TSOL) man page.

Sensitivity and Information Label Initialization

These routines initialize a sensitivity label to ADMIN_HIGH, ADMIN_LOW, or
undefined. Refer to the blmanifest(3TSOL) man page.

These routines initialize an information label to ADMIN_HIGH, ADMIN_LOW, or
undefined. Refer to the blmanifest(3TSOL) man page.

Level Comparison

These routines compare two levels to see if level1 equals, dominates, or strictly
dominates level2. A level is a classification and set of compartments in a
sensitivity label, information label, or clearance. Use the biltolev(3TSOL)
routine to translate an information label (classification, compartments, and
markings) to a level (classification and compartments only) or use the routines
in the next two sections to compare two information labels or two markings
sets.

void getcil(bilabel_t *destination_label,
const bclabel_t *source_label);

void setcil(bclabel_t *destination_label,
const bilabel_t *source_label);

bilabel_t *bcltoil(bclabel_t *label);
blevel_t *biltolev(bilabel_t *label);

void bslhigh(bslabel_t *label);
void bsllow(bslabel_t *label);
void bslundef(bslabel_t *label);

void bilhigh(bilabel_t *label);
void billow(bilabel_t *label);
void bilundef(bilabel_t *label);

106 Trusted Solaris Developer’s Guide—August 1998

5

A returned non-zero is true and 0 is false. Refer to the blcompare(3TSOL)
man page.

Information Label Comparison

These routines compare information label1 to information label2 to see if label1
equals or dominates label2. These routines compare the information label
classification and compartments only. Returned non-zero is true and 0 is false.
Refer to the blminmax(3TSOL) man page.

Markings Comparison

These routines compare the markings set of information label1 to the markings
set of information label2 to see if the label1 markings set equals or dominates
label2. Returned non-zero is True and 0 is False. Refer to the
blcompare(3TSOL) man page.

int blequal(const blevel_t *level1,
const blevel_t *level2);

int bldominates(const blevel_t *level1,
const blevel_t *level2);

int blstrictdom(const blevel_t *level1,
const blevel_t *level2);

int blinrange(const blevel_t *level,
const brange_t *range);

int bilequal(const bilabel_t *label1,
const bilabel_t *label2);

int bildominates(const bilabel_t *label1,
const bilabel_t *label2);

int bimequal(const bilabel_t *label1,
const bilabel_t *label2);

int bimdominates(const bilabel_t *label1,
const bilabel_t *label2);

Labels 107

5

Information Label Conjoin

This routine conjoins adding_label with receiving_label. Refer to the
bilconjoin(3TSOL) man page.

Label Types

These routines check or set label type. A label can be a defined or undefined
CMW label, sensitivity label, or information label. Refer to the
bltype(3TSOL) man page.

Level Bounds

These routines compare two levels to find the sensitivity level that represents
the greatest lower bound (blminimum(3TSOL)) or least upper bound
(blmaximum(3TSOL)) of the range bounded by the two levels. A level is a
classification and set of compartments in a sensitivity label, information label,
or clearance. Use the biltolev(3TSOL) routine to translate an information
label to a level. Refer to the blcompare(3TSOL) man page.

void bilconjoin(bilabel *receiving_label,
const bilabel_t *adding_label);

int bltype(const void *label
const unsigned char type);

void setbltype(void *label
const unsigned char type);

void blmaximum(blevel_t *maximum_label
const blevel_t *bounding_label);

void blminimum(blevel_t *minimum_label
const blevel_t *bounding_label);

108 Trusted Solaris Developer’s Guide—August 1998

5

Label Encodings File

The label_encodings file is an ASCII file maintained by the system
administrator that contains site-specific label definitions and constraints. This
file is kept in /etc/security/tsol/label_encodings . See Trusted Solaris
Label Administration and Compartmented Mode Workstation Labeling: Encodings
Format for information on the label_encodings file.

These routines return information specified in the label_encodings file on
maximum string lengths, version of label_encodings file in use, and ASCII
color name for the specified binary level.

• Maximum string lengths. Refer to the labelinfo(3TSOL) man page.

• Version in use. Refer to the labelvers(3TSOL) man page.

• ASCII color name for a binary level. Refer to the bltocolor(3TSOL) man
page.

Valid Sensitivity or Information Label

These routines check whether the specified sensitivity label or information
label is valid for the system (is defined in the label_encodings file for the
system). Refer to the blvalid(3TSOL) man page.

int labelinfo(struct label_info *info);

int labelvers(char **version,
const int length);

char bltocolor(const blevel_t *label);
char bltocolor_t(const blevel_t *label,

const int size,
char * color_name);

int bslvalid(const bslabel_t *senslabel);
int bilvalid(const bilabel_t *inflabel);

Labels 109

5

Accreditation range

This routine checks whether the sensitivity label falls within the system
accreditation range as set in the label_encodings file for the system. Refer
to the blinset(3TSOL) man page.

Binary and ASCII Translation

These routines translate a binary CMW label, sensitivity label, or information
label from binary to ASCII and back again. When translating from a string to
binary, the string can be ASCII or hexadecimal when flag is NEW_LABEL or
NO_CORRECTION. Refer to the bltos(3TSOL) and stobl(3TSOL) man pages.

Note – See Chapter 15, “Trusted X Window System” for Interfaces that
translate binary labels to ASCII, clip the final label according to a specified
width, and use a font list for display in motif-based graphical user interfaces
(GUIs).

• CMW Label and ASCII

int blinset(const blevel_t *senslabel,
const set_id *id);

int bcltos(const bclabel_t *label,
char **string,
const int length,
const int flags);

int stobcl(const char *string,
bclabel_t *label,
const int flags,
int *error);

/* Translate and Clip string to length */
char *sbcltos(const bclabel_t *label,

const int length);

/* Translate for inclusion on printer banner and header pages */
char *bcltobanner(const bclabel_t *label,

struct banner_fields *fields,
const int flags);

110 Trusted Solaris Developer’s Guide—August 1998

5

• Binary Sensitivity Label and ASCII

• Binary Information Label and ASCII

Binary and Hexadecimal Translation

These routines translate a binary CMW label, sensitivity label, or information
label from binary to hexadecimal and back again. Refer to the btohex(3TSOL)
and hextob(3TSOL) man pages.

• Allocate and Free Memory for reentrant functions.

int bsltos(const bslabel_t *label,
char **string,
const int length,
const int flags);

int stobsl(const char *string,
bslabel_t *label,
const int flags,
int *error);

/* Translate and clip string to length */
char *sbsltos(const bslabel_t *label,

const int length);

int biltos(const bilabel_t *label,
char **string,
const int length,
const int flags);

int stobil(const char *string,
bilabel_t *label,
const int flags,
int *error);

/* Translate and clip string to length */
char *sbiltos(const bilabel_t *label,

const int length);

char h_alloc(const unsigned char id);
void h_free(char *hex);

Labels 111

5

• Translate CMW label between binary and Hexadecimal.

• Translate sensitivity label between binary and Hexadecimal.

• Translate information label between binary and Hexadecimal

char *bcltoh(const bclabel_t *label);
char *bcltoh_r(const bclabel_t *label,

char *hex);
int htobcl(const char *hex,

bclabel_t *label);

char *bsltoh(const bslabel_t *label);
char *bsltoh_r(const bslabel_t *label,

char *hex);
int htobsl(const char *hex,

bslabel_t *label);

char *biltoh(const bilabel_t *label,
char *biltoh_r(const bilabel_t *label,

char *hex);
int htobil(const char *hex,

bilabel_t *label);

112 Trusted Solaris Developer’s Guide—August 1998

5

113

Label Code Examples 6

This chapter presents example code showing how to use the programming
interfaces discussed in Chapter 5, “Labels.”

Retrieving Version String page 114

Initialize Binary Labels and Check Types page 115

Get Process CMW Label page 117

Float Information Label page 118

Set Process CMW Label page 119

Get File CMW Label page 120

Set File CMW Label page 121

File System Label Range page 123

Test Range Before Changing File CMW Label page 123

Find Relationship Between Two Levels page 125

Find Relationship Between Two Information Labels page 127

Find Relationship Between Two Markings Sets page 129

Accessing CMW Label Portions page 130

Conjoining Binary Information Labels page 131

Finding Binary Level Bounds page 132

Check Accreditation Range page 133

Validating Labels page 134

Getting ASCII Color Names page 136

Label Encodings Information page 137

114 Trusted Solaris Developer’s Guide—August 1998

6

Retrieving Version String
The components of sensitivity labels, information labels, and clearances; and
the handling caveats that appear on printer output are specified in a site-
specific label_encodings(4TSOL) file. Some of the programming interfaces
described in this chapter access these specifications in the label_encodings
file, and therefore, their outputs vary depending on the label_encodings file
in use for a particular site.

This example gets the version string of the label_encodings file accessed in
some of the code examples in this chapter, and prints the version string to the
command line.

The printf statement prints the following:

Version string = TRUSTED SOLARIS MULTI_LABEL DEMO VERSION -
5.1 96/09/27

Binary to ASCII page 139

ASCII to Binary and Hexadecimal page 144

Regular Binary and Hexadecimal page 147

Reentrant Binary and Hexadecimal page 148

Printer Banner Information page 149

#include <tsol/label.h>

main()
{

int retval, length = 0;
char *version = (char *)0;

retval = labelvers(&version, length);
if(retval > 0)

printf(“Version string = %s\n”, version);
}

Label Code Examples 115

6

Initialize Binary Labels and Check Types
These interfaces initialize a label to ADMIN_HIGH, ADMIN_LOW, and undefined.
ADMIN_HIGH represents the highest possible classification number including
all compartments and all markings. ADMIN_HIGH strictly dominates every
other label in the system. Normal users cannot read or write files at
ADMIN_HIGH.

ADMIN_LOW represents a classification of zero with no compartments and no
markings. All users can read or execute files with a sensitivity label of
ADMIN_LOW. No normal user can write files at ADMIN_LOW. Every other label in
the system strictly dominates ADMIN_LOW. ADMIN_LOW is assigned to publicly
accessible system files and commands.

Undefined is similar to NULL and represents an invalid label. A sensitivity label
or information label is undefined when the ID field is initialized to SUN_SL_UN
or SUN_IL_UN. An undefined label is invalid. CMW labels do not have an
undefined state, only the sensitivity and information label portions have an
undefined state.

A CMW label, sensitivity label, or information label is defined when the ID
field in the label structure is initialized to SUN_CMW_ID, SUN_SL_ID, or
SUN_IL_ID . A defined CMW label has sensitivity and information label
portions that might or might not be defined.

116 Trusted Solaris Developer’s Guide—August 1998

6

This example initializes labels to undefined, ADMIN_HIGH, and ADMIN_LOW,
and then and checks and prints the label types.

The printf statements print the following. Non-zero is True and 0 is False.

Is sensitivity label defined? 1

Is information label undefined? 0

Is CMW label defined? 0

#include <tsol/label.h>

main()
{

int retval;
bilabel_t pinflabel;
bslabel_t psenslabel;
bclabel_t pCMWlabel;

/* initialize labels*/
bclundef(&pCMWlabel);
bslhigh(&psenslabel);
billow(&pinflabel);

/* Check label types */
retval = bltype(&psenslabel, SUN_SL_ID);
printf(“Is sensitivity label defined? %d\n”, retval);
retval = bltype(&pinflabel, SUN_IL_UN);
printf(“Is information label undefined? %d\n”, retval);

/* Set CMW label type to defined */
setbltype(&pCMWlabel, SUN_CMW_ID);
retval = bltype(&pCMWlabel, SUN_CMW_ID);
printf(“Is CMW label defined? %d\n”, retval);

}

Label Code Examples 117

6

Get Process CMW Label
You can get the process CMW label and perform operations on it as a unit, or
extract one or both portions and perform independent operations on the
portions. This example gets the process CMW label, extracts the sensitivity
label and information label portions, translates the process CMW label to an
ASCII string, and prints the process CMW label.

The printf statement prints the following where UNCLASSIFIED is the
information label and [C] is the sensitivity label. This CMW label means the
process is running at a sensitivity level of Confidential ([C]) with an
information label of UNCLASSIFIED. The CMW label is inherited from the
workspace in which the program is run. If the program reads data, the process
information label floats according to the information label of the data read.

Process CMW label = UNCLASSIFIED [C]

The ASCII output depends on the flag parameter to bcltos(3TSOL) and
specifications in label_encodings(4TSOL) . See “Binary to ASCII” on
page 139 for information on flag parameter values.

#include <tsol/label.h>

main()
{

int retval, length = 0;
bclabel_t pCMWlabel;
bslabel_t psenslabel;
bilabel_t pinflabel;
char *string;

/* Get process CMW label */
retval = getcmwplabel(&pCMWlabel);

/* Get sensitivity and information label portions */
getcsl(&psenslabel, &pCMWlabel);
getcil(&pinflabel, &pCMWlabel);

/* Translate the process CMW label to ASCII and print */
retval = bcltos(&pCMWlabel, &string, length, LONG_CLASSIFICATION);
printf(“Process CMW label = %s\n”, string);

}

118 Trusted Solaris Developer’s Guide—August 1998

6

Float Information Label
The UNCLASSIFIED [C] process reads data from a file with a CMW label of
CONFIDENTIAL [C] . The process information label is checked after the read
to see how it floated. The process has mandatory and discretionary access, so
no access privileges are needed. The information label floating happens during
the system call to read(2TSOL) . Information label floating does not occur
during the system call to open(2TSOL) .

Note – Information label floating must be on for this example to work.

The printf(1) statement prints the following where CONFIDENTIAL is the
new information label and [C] is the sensitivity label. The conjoin of
Unclassified and Confidential is Confidential.

Process CMW label = CONFIDENTIAL [C]

#include <tsol/label.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

main()
{

int retval, length = 0, fd;
ssize_t ssize;
size_t size;
bclabel_t pCMWlabel;
char *string = (char *)0, buffer[3*1024];

fd = open(“/export/home/zelda/afile”, O_RDONLY);
ssize = read(fd, buffer, size);

/* Get process CMW label */
retval = getcmwplabel(&pCMWlabel);

/* Translate the process CMW label to ASCII and print */
retval = bcltos(&pCMWlabel, &string, length,

LONG_CLASSIFICATION);

printf(“Process CMW label = %s\n”, string);
}

Label Code Examples 119

6

Set Process CMW Label
This example gets the calling process’s CMW label, and sets the sensitivity and
information label portions to TOP SECRET (upgrades the labels). The altered
CMW label is set on the privileged process. The calling process needs the
proc_setsl privilege in its effective set to change its sensitivity label, and the
proc_setil privilege in its effective set to change its information label. The
code comments indicate where privilege bracketing as described in Chapter 3,
“Privileges” should occur.

The printf statement prints the following where TOP SECRET is the
information label and [TS] is the sensitivity label.

Process CMW label = TOP SECRET [TS]

#include <tsol/label.h>

main()
{

int retval, error, length = 0;
bclabel_t pCMWlabel;
bslabel_t psenslabel;
bilabel_t pinflabel;
char *string = “TOP SECRET”, *string1 = “TOP SECRET”, *string2 = (char *)0;

/* Create new sensitivity and information label values and set CMW label to the values */
retval = stobsl(string, &psenslabel, NEW_LABEL, &error);
retval = stobil(string1, &pinflabel, NEW_LABEL, &error);
setcsl(&pCMWlabel, &psenslabel);
setcil(&pCMWlabel, &pinflabel);

/* Set process CMW label with new CMW label */
/* Turn proc_setsl and proc_setil on in the effective set */

retval = setcmwplabel(&pCMWlabel, SETCL_ALL);
/* Turn proc_setsl and proc_setil off */

/* Translate the process CMW label to a string and print */
/* Turn the sys_trans_label privilege on in the effective set */

retval = bcltos(&pCMWlabel, &string2, length, LONG_CLASSIFICATION);
/* Turn sys_trans_label off */

printf(“Process CMW label = %s\n”, string2);
}

120 Trusted Solaris Developer’s Guide—August 1998

6

The ASCII output depends on the flag parameter to bcltos(3TSOL) and
specifications in label_encodings(4TSOL) . See “Binary to ASCII” on
page 139 for information on flag parameter values.

The SETCL_ALL value passed setcmwplabel(2TSOL) sets both portions of
the CMW label. The function checks that the value for the sensitivity label
dominates the value for the information label.

Get File CMW Label
You can get a file CMW label and perform operations on it as a unit, or extract
one or both portions and perform independent operations on the portions.

This example gets the file CMW label and extracts the information label and
sensitivity label portions. The fgetcmwlabel(2TSOL) and
lgetcmwlabel(2TSOL) routines are used the same way, but operate on a file
descriptor or symbolic link.

File CMW label = CONFIDENTIAL [C]

#include <tsol/label.h>

main()
{

int retval, length = 0;
bclabel_t fileCMWlabel;
bilabel_t finflabel;
bslabel_t fsenslabel;
char *string = (char *)0;

/* Get file CMW label */
retval = getcmwlabel(“/export/home/zelda/afile”, &fileCMWlabel);

/* Get sensitivity and information label portions */
getcsl(&fsenslabel, &fileCMWlabel);
getcil(&finflabel, &fileCMWlabel);

/* Translate fileCMWlabel to ASCII and print */
retval = bcltos(&fileCMWlabel, &string, length, LONG_CLASSIFICATION);
printf(“File CMW label = %s\n”, string);

}

Label Code Examples 121

6

Set File CMW Label
In this example, the process is running at Confidential with a Top Secret
clearance. The process upgrades the sensitivity and information label portions
of a file’s CMW label to Top Secret and needs the file_upgrade_sl and
file_upgrade_il privileges because a label upgrade is a task that always
requires privilege. The code comments indicate where privilege bracketing as
described in Chapter 3, “Privileges” should take place.

A process cannot upgrade an object’s sensitivity label to a higher level than its
own clearance. “Find Greatest Level and Lowest Level” on page 161” describes
how to check the process clearance against a sensitivity label.

If the system administrator has configured the system in the /etc/system file
or at installation time to not show file names when a file’s CMW label has been
upgraded, the upgraded file in this example will not be visible to a user who
logs in at Confidential and lists the directory. See “Query System Security
Configuration” on page 28 for information on querying the system variables.

Note – In the ASCII to binary translation, a new label is created with the
NEW_LABEL flag parameter. See “ASCII to Binary and Hexadecimal” on
page 144 for information on the ASCII to binary label translation and the flag
parameter.

The SETCL_ALL value passed to the setcmwlabel(2TSOL) system call
indicates both portions are to be set. The sensitivity label portion must
dominate the information label portion, the new sensitivity label must be in the
containing file system’s label range, and the required privileges must be
effective.

122 Trusted Solaris Developer’s Guide—August 1998

6

Use getlabel(1TSOL) to check the change in the file label. Before the
program above runs, the CMW label for afile is as follows:

%phoenix getlabel afile

afile: CONFIDENTIAL [C]

After the program runs, the CMW label is as follows. Be aware that if you use
the getlabel(1TSOL) command at Confidential, you will need the
sys_trans_label privilege to read the label on a top secret file.

%phoenix getlabel afile

afile: TOP SECRET [TS]

#include <tsol/label.h>

main()
{

int retval, error;
bclabel_t fileCMWlabel;
bslabel_t fsenslabel;
bilabel_t finflabel;
char *string = “TOP SECRET”, *string1 = “TOP SECRET”;

/* Create new sensitivity and information label values */
/* Turn sys_trans_label on in the effective set */

retval = stobsl(string, &fsenslabel, NEW_LABEL, &error);
retval = stobil(string1, &finflabel, NEW_LABEL, &error);

/* Turn sys_trans_label off */

/* Set sensitivity and information label portions of CMW label to new values */
setcsl(&fileCMWlabel, &fsenslabel);
setcil(&fileCMWlabel, &finflabel);

/* Set file CMW label */
/* Turn file_upgrade_sl and , file_upgrade_il on in the effective set */

retval = setcmwlabel(“/export/home/zelda/afile”, &fileCMWlabel, SETCL_ALL);
/* Turn file_upgrade_sl and file_upgrade_il off */
}

Label Code Examples 123

6

File System Label Range
The file system label range specifies the upper and lower bounds to the
sensitivity of data contained in the file system. The getcmwfsrange () and
fgetcmwfsrange () system calls return a structure that contains the upper and
lower bound of the file system sensitivity label range.

• Variable file system –
• When the upper and lower bounds are not equal, the file system has a

label range and is a multilabel file system. A multilabel file system
supports all security attributes distinctly for every file system object.

• When the upper and lower bounds are equal, the file system is a single-
label file system. This type of file system supports all security attributes
distinctly for every file system object.

• Fixed file system – When the upper and lower bounds are equal, the file
system is a single-label file system. The file system’s system sensitivity label
comes from the mount specified in vfstab_adjunct(4TSOL) . A single-
label file system supports security attributes for the file system, but not for
every file system object.

How to query the file system security attributes in the inode or in the
vfstab_adjunct(4TSOL) is described in “Query File System Security
Attributes” on page 31 in Chapter 2, “Getting Started.”

The following sections describe two situations where a program might get the
file system label range and test a sensitivity label against it before taking
further action.

Test Range Before Changing File CMW Label

Before upgrading a file CMW label (as was done in the previous example), it is
a good idea to test the file system label range to be sure the file’s new
sensitivity label is within the sensitivity label range of the file.

This example converts ASCII strings to a new binary sensitivity label and
information label, gets the file system label range, and checks if the new
sensitivity label is within the file system’s label range.

124 Trusted Solaris Developer’s Guide—August 1998

6

Test Range before Routing Data to Device

Always check the label range on a device special file before using the Solaris
2.5.1 interfaces to allocate a device and route input to the device. The input
routed to the device should be within the label range of the device-special file.

#include <tsol/label.h>

main()
{

int retval, error;
bclabel_t fileCMWlabel;
bslabel_t fsenslabel;
bilabel_t finflabel;
brange_t range;
char *string = “TOP SECRET”, *string1 = “TOP SECRET”;

/* Create new sensitivity and information label values */
retval = stobsl(string, &fsenslabel, NEW_LABEL, &error);
retval = stobil(string1, &finflabel, NEW_LABEL, &error);

/* Get file system label range */
retval = getcmwfsrange(“/export/home/zelda/afile”, range);

/* Test new sensitivity label against label range */
retval = blinrange(&fsenslabel, range);
if(retval > 0)

{/* Proceed with file CMW label upgrade. */}
}

Label Code Examples 125

6

Test Label Relationships
If your application accesses data at different sensitivity labels, you can perform
checks in your code to be sure the process label has the correct relationship to
the data label before you allow an access operation to take place. You check the
sensitivity label to find out if access will be allowed by the system or if
privilege is required to override access restrictions. You check the information
labels or markings sets to establish how information label floating will affect
the final process (in the case of a read) or object (in the case of a write)
information label.

These examples show how to test two sensitivity labels, two information
labels, or two markings sets for equality, dominance, and strict dominance.
Trusted Solaris 2.5.1 checks the process clearance when the process changes the
sensitivity label on any object or writes to an object of a higher sensitivity label.
“Find Relationships Between Two Levels” on page 160 describes how to test
for the relationship between a clearance and a sensitivity label.

Find Relationship Between Two Levels

A level is a classification and set of compartments for a sensitivity label,
information label, or clearance; and is represented by the data type blevel_t .
Two levels can be equal, one can dominate the other, or one can strictly
dominate the other.

Note – To compare two information labels, use the biltolev () routine to
translate an information label to a level or use the routines for comparing two
information labels or two information label markings sets described in “Find
Relationship Between Two Information Labels” on page 127 and “Find
Relationship Between Two Markings Sets” on page 129.

• Equals – One level is equal to another when its classification is
arithmetically equal to the other’s classification (by means of its place in the
classifications hierarchy), and its compartments contain all the other’s
compartments and no additional compartments.

• Dominates – One level dominates another when its classification is
arithmetically greater than or equal to the other’s classification (by means of
its place in the classifications hierarchy), and its compartments contain all
the other’s compartments.

126 Trusted Solaris Developer’s Guide—August 1998

6

• Strictly dominates – Level one is said to strictly dominate level two when
level one dominates level two, but is not equal to level two.

This example tests the process sensitivity label against a file’s sensitivity label.
The code for getting the process and file CMW label and extracting the
sensitivity label portion is not shown. See “Get Process CMW Label” on
page 117 and “Get File CMW Label” on page 120 for example code to perform
these operations.

In this example, the process sensitivity label is Confidential and the file
sensitivity label is Confidential. The labels are equal, the process label
dominates the file label, but does not strictly dominate the file label.

#include <tsol/label.h>

main()
{

int equal, dominate, strictdom, retval;
bslabel_t plabel, filelabel;
bclabel_t fileCMWlabel, pCMWlabel;

/* Get file and process CMW labels */
retval = getcmwlabel("/export/home/zelda/afile", &fileCMWlabel);
retval = getcmwplabel(&pCMWlabel);

/* Get sensitivity labels */
getcsl(&filelabel, &fileCMWlabel);
getcsl(&plabel, &pCMWlabel);

/* Once have both labels, test for equality */
equal = blequal(&plabel, &filelabel);
printf("Process label equals file label? %d\n", equal);

/* Test for dominance */
dominate = bldominates(&plabel, &filelabel);
printf("Process label dominates file label? %d\n", dominate);

/* Test for strict dominance */
strictdom = blstrictdom(&plabel, &filelabel);
printf("Process label strictly dominates file label? %d\n", strictdom);

}

Label Code Examples 127

6

The printf statement prints the following where any value greater than zero
is true and zero is false.

Process label equals file label? 1

Process label dominates file label? 1

Process label strictly dominates file label? 0

Find Relationship Between Two Information Labels

A information label has a classification and set of compartments. It also has a
markings set. These routines compare the classification and compartments of
one information label to another. “Find Relationship Between Two Markings
Sets” on page 129 describes how to compare two markings sets.

Two information labels (their classification and compartment sets) can be equal
or one can dominate the other. Because information labels are not used in
mandatory access control decisions, the relationship of strict dominance is not
used. By comparing two information labels, you can predict the final value to
which the process or object information will float at run time.

• Equal – One information label is equal to another when its classification is
arithmetically equal to the other’s classification (by means of its place in the
classifications hierarchy), and its compartments contain all the other’s
compartments and no additional compartments.

• Dominates – One information label dominates another when its
classification is arithmetically greater than or equal to the other’s (by means
of its place in the classifications hierarchy), and its compartments contain all
the other’s compartments.

In this example, the process information label is ADMIN_LOW and the file
information label is Confidential. If the process reads data from the file, the
process information label becomes Confidential according to the conjoin
algorithm described in “Information Label Floating” on page 91. If the process
writes data to the file, the file information label stays Confidential.

128 Trusted Solaris Developer’s Guide—August 1998

6

The printf statement prints the following where any value greater than zero
is true and zero is false.

Process label equals file label? 0

Process label dominates file label? 0

#include <tsol/label.h>

main()
{

int equal, dominate, strictdom, retval;
bclabel_t fileCMWlabel, pCMWlabel;
bilabel_t plabel, filelabel;

/* Get file and process CMW labels */
retval = getcmwlabel("/export/home/zelda/afile", &fileCMWlabel);
retval = getcmwplabel(&pCMWlabel);

/* Get information labels */
getcil(&filelabel, &fileCMWlabel);
getcil(&plabel, &pCMWlabel);

/* Once have both labels, test for equality */
equal = bilequal(&plabel, &filelabel);
printf(“Process label equals file label? %d\n”, equal);

/* Test for dominance */
dominate = bildominates(&plabel, &filelabel);
printf(“Process label dominates file label? %d\n”, dominate);

}

Label Code Examples 129

6

Find Relationship Between Two Markings Sets

These routines compare the markings set of two information labels. “Find
Relationship Between Two Information Labels” on page 127 describes how to
compare the classification and compartment sets of two information labels.
Two markings sets can be equal or one can dominate the other.

• Equal – One markings set is equal to another when it contains all the
markings of the other set and not other markings.

• Dominates – One markings set dominates another when it contains all the
other’s markings plus additional markings.

In this example, the file information label markings set is Need To Know and
Eyes Only, and the process information label markings set is Eyes Only.

#include <tsol/label.h>

main()
{

int equal, dominate, strictdom, retval;
bclabel_t fileCMWlabel, pCMWlabel;
bilabel_t plabel, filelabel;

/* Get file and process CMW labels */
retval = getcmwlabel("/export/home/zelda/afile", &fileCMWlabel);
retval = getcmwplabel(&pCMWlabel);

/* Get information labels */
getcil(&filelabel, &fileCMWlabel);
getcil(&plabel, &pCMWlabel);

/* Once have both labels, test for equality */
equal = bimequal(&plabel, &filelabel);
printf(“Process markings equal file label? %d\n”, equal);

/* Test for dominance */
dominate = bimdominates(&plabel, &filelabel);
printf(“Process markings dominate file label? %d\n”, dominate);

dominate = bimdominates(&filelabel, &plabel);
printf(“File markings dominate process label? %d\n”, dominate);

}

130 Trusted Solaris Developer’s Guide—August 1998

6

The printf statement prints the following where a value greater than zero is
True and zero is False. Because the file markings set dominates the process
markings set, the file markings set stays the same and the process markings set
floats to Need To Know and Eyes Only when the process reads from the file.

Process markings equal file markings? 0

Process markings dominate file label? 0

File markings dominate process markings? 1

Accessing CMW Label Portions
The “Get Process CMW Label” on page 117 and “Get File CMW Label” on
page 120 sections use the getcil(3TSOL) , getcsl(3TSOL) ,
setcsl(3TSOL) , and setcil(3TSOL) routines to get and set the sensitivity
and information label portions of a process and file CMW label. These
examples use routines to return pointers to the sensitivity label and
information label portions of a CMW label.

#include <tsol/label.h>

main()
{

bilabel_t *inflabel;
bslabel_t *senslabel;
bclabel_t *pCMWlabel;
blevel_t *level;
int retval;

retval = getcmwplabel(pCMWlabel);

/* Get a pointer to the sensitivity label portion of cmwlabel */
senslabel = bcltosl(pCMWlabel);

/* Get a pointer to the information label portion of cmwlabel */
inflabel = bcltoil(pCMWlabel);

/* Get a pointer to an information label as a level */
level = biltolev(inflabel);

}

Label Code Examples 131

6

Conjoining Binary Information Labels
This interface conjoins two information labels by replacing the contents of
receiving_label with the conjunction of receiving_label and adding_label. In this
example, receiving_label is Top Secret and adding_label is Secret A B.

The printf statement prints the following where receiving label is the conjoin
of receiving_label and adding_label:

Receiving label = Top Secret A B

#include <tsol/label.h>

main()
{

bclabel_t fileCMWlabel, pCMWlabel;
bilabel_t receiving_label, adding_label;
char *string = (char *)0;
int retval;

/* Get file and process CMW labels */
retval = getcmwlabel("/export/home/zelda/afile", &fileCMWlabel);
retval = getcmwplabel(&pCMWlabel);

/* Get information labels */
getcil(&receiving_label, &fileCMWlabel);
getcil(&adding_label, &pCMWlabel);

/* Conjoin labels, convert receiving_label to ASCII, and print */
bilconjoin(&receiving_label, &adding_label);
biltos(&receiving_label, &string, 0, NEW_LABEL);
printf(“Receiving label = %s\n”, string);

}

132 Trusted Solaris Developer’s Guide—August 1998

6

Finding Binary Level Bounds
The next two examples find the greatest and lowest values between two
variables of type blevel_t . These interfaces let you compare two levels to
find the level that represents the greatest lower bound (blminimum(3TSOL)
routine) or least upper bound (blmaximum(3TSOL) routine) bounded by the
two levels. A level can be a sensitivity label, clearance, or information label
converted to a level with the biltolev () routine.

In the example, senslabel is ADMIN_LOWand plabel is Confidential. The code
finds the greatest lower bound and least upper bound of the range created by
these two levels. The first example finds the greater of the classifications and
the greater of all the compartments of the two variables passed to the
blmaximum () routine and puts that value into the first parameter. This
operation is called finding the least upper bound because it finds the lowest
level that dominates both the original parameter values passed to the routine.

The printf statements print the following where Confidential is the lowest
level that dominates Confidential and ADMIN_LOW.

Maximum = CONFIDENTIAL

#include <tsol/label.h>

main()
{

int retval, length = 0;
char *string = (char *)0, *string1 = (char *)0;
bslabel_t senslabel, plabel;
bclabel_t pCMWlabel;

/* Initialize a label to ADMIN_LOW */
bsllow(&senslabel);

/* Get process sensitivity label */
retval = getcmwplabel(&pCMWlabel);
getcsl(&plabel, &pCMWlabel);

blmaximum(&senslabel, &plabel);
retval = bsltos(&senslabel, &string, length, LONG_WORDS);
printf(“Maximum = %s\n”, string);

Label Code Examples 133

6

This part of the example finds the lower of the classifications and the lower of
only those compartments contained in both parameters passed to the
blminimum () routine, and puts that value into the first parameter. This
operation is called finding greatest lower bound because it finds the greatest
level dominated by both of the original parameter values passed to the routine.

The printf statements print the following where ADMIN_LOW is the highest
level dominated by ADMIN_LOW and Confidential.

Minimum = ADMIN_LOW

Check Accreditation Range
Use the blinset () routine to check whether a sensitivity label is within the
system or user accreditation range. The system accreditation range is all the
labels valid for the system including ADMIN_HIGH and ADMIN_LOW. The
classification and compartments of all sensitivity labels processed by a system
must dominate the minimum sensitivity label of the system accreditation range
and be dominated by the maximum sensitivity label of the system
accreditation range. The system administrator defines the system accreditation
range in the label_encodings(4TSOL) file.

The user accreditation range is all the sensitivity labels valid for a user and
never includes ADMIN_HIGH or ADMIN_LOW. The classification and
compartments of all sensitivity labels assigned to a user must dominate the
minimum sensitivity label of the system accreditation range and be dominated
by the maximum sensitivity label of the system accreditation range. The system
administrator assigns the sensitivity label range (user accreditation range) to
users and roles through the administrative user interface.

bsllow(&senslabel);

blminimum(&senslabel, &plabel);
retval = bsltos(&senslabel, &string1, length, LONG_WORDS);
printf(“Minimum = %s\n”, string1);

}

134 Trusted Solaris Developer’s Guide—August 1998

6

In this example the sensitivity label is checked against the system accreditation
range (id.type = 1) and user accreditation range (id.type = 2).

The printf statement prints the following where 1 indicates the sensitivity
label is within range, and 0 indicates one of the following: the sensitivity label
is not a valid label, not in the specified range, or the calling process’s
sensitivity label does not dominate the sensitivity label and the calling process
does not have the sys_trans_label privilege in its effective set.

System Range? = 1 User Range? = 1

Validating Labels
A valid label is a label defined in the label_encodings file. You can use the
bslvalid(3TSOL) and bilvalid(3TSOL) routines to check if a sensitivity
label or information label is valid. The sensitivity label of the calling process

#include <tsol/label.h>

main()
{

char *string = “CONFIDENTIAL”, *string1 = “UNCLASSIFIED”;
int sysval, userval, error, retval;
bslabel_t senslabel;
set_id id;

retval = stobsl(string, &senslabel, NEW_LABEL, &error);
id.type = 1;
sysval = blinset(&senslabel, &id);
id.type = 2;
userval = blinset(&senslabel, &id);

printf(“System Range? = %d User Range? %d\n”, sysval, userval);
}

Label Code Examples 135

6

must dominate the sensitivity label being checked or the calling process needs
the sys_trans_label privilege in its effective set for this operation to
succeed.

The printf statement prints the following where 1 indicates the label is valid;
-1 indicates the label_encodings file is inaccessible; and 0 indicates the label
is not valid, or the process sensitivity label does not dominate the clearance
and the process does not have the sys_trans_label privilege in its effective
set:

Valid Sensitivity Label? = 1

Valid Information Label? = 1

#include <tsol/label.h>

main()
{

int retval, error;
bslabel_t senslabel;
bilabel_t inflabel;
char *string = “CONFIDENTIAL”, *string1 = “UNCLASSIFIED”;

retval = stobsl(string, &senslabel, NEW_LABEL, &error);
retval = bslvalid(&senslabel);
printf(“Valid Sensitivity Label? = %d\n”, retval);

retval = stobil(string1, &inflabel, NEW_LABEL, &error);
retval = bilvalid(&inflabel);
printf(“Valid Information Label? = %d\n”, retval);

}

136 Trusted Solaris Developer’s Guide—August 1998

6

Getting ASCII Color Names
This example uses the bltocolor(3TSOL) call to get the ASCII color name
associated with a sensitivity label of a particular level. The ASCII color names
are specified in the label_encodings(4TSOL) file.

This example inquires about the ASCII color name associated with
Confidential sensitivity labels. The process is running at Confidential so no
privileges are needed for the inquiry. The calling process needs the
sys_trans_label privilege in its effective set to inquire about labels that
dominate the current process’s sensitivity label.

The printf statement prints the following:

Confidential label color = BLUE

#include <tsol/label.h>

main()
{

int retval, error;
bslabel_t senslabel;
char *string = “CONFIDENTIAL”;
char *string1;

retval = stobsl(string, &senslabel, NEW_LABEL, &error);

string1 = bltocolor(&senslabel);
printf(“Confidential label color = %s\n”, string1);

}

Label Code Examples 137

6

Label Encodings Information
The labelinfo(3TSOL) routine returns maximum length values as short
integers for various character data fields from the label library. An application
laying out a field that contains label information might use these lengths. The
length values change depending on the actual contents of the
label_encodings(4TSOL) file.

The printf statements print the following lengths:

Max information label length = 212

Max sensitivity label length = 45

Max CMW label length = 259

Max clearance length = 76

Max Version String length 56

Max Banner and trailer page string length = 13

Max Protect as section string length = 256

Max Caveats section string length = 62

#include <tsol/label.h>
main()
{

int retval;
struct label_info info;

retval = labelinfo(&info);
printf(“Max information label length = %d\n”, info.ilabel_len);
printf(“Max sensitivity label length = %d\n”, info.slabel_len);
printf(“Max CMW label length = %d\n”, info.clabel_len);
printf(“Max clearance length = %d\n”, info.clear_len);
printf(“Max version string length = %d\n”, info.vers_len);
printf(“Max banner and trailer string length = %d\n”, info.header_len);
printf(“Max protect as section string length = %d\n”, info.protect_as_len);
printf(“Max caveats section string length = %d\n”, info.caveats_len);
printf(“Max handling channels string length = %d\n”, info.channels_len);

}

138 Trusted Solaris Developer’s Guide—August 1998

6

Max Handling channels section string length = 81

Translating Labels
All labels can be represented in binary, ASCII, or hexadecimal. Within the
kernel all labels are stored in binary form, and binary is the form used for
labels passed to and received from programming interfaces.

• Binary Labels – Classifications are stored as an integer and compartments
are stored as bit vectors using 0’s and 1’s.

• ASCII Labels – Human-readable labels that display classifications, and
compartments using the names defined in the label_encodings(4TSOL)
file.

• Hexadecimal Labels – The ASCII representation of the hexadecimal number
that represents the same bit pattern as the corresponding binary label. The
label has ASCII characters but does not reveal the classification or
compartment names. A process can store a label in ASCII when it will be
read by processes at arbitrary labels.

Note – If label names are stored in files at a sensitivity label lower than the
sensitivity level of the label names, or in files where users without the proper
permissions or authorization could access them, store the label names in either
binary or hexadecimal format to make them unreadable. See Chapter 4,
“Checking User Authorizations” for information on user authorizations.

Binary and ASCII

Labels can be translated from binary to ASCII and back again. The calling
process needs the sys_trans_label privilege in its effective set to translate
any label not dominated by the process’s sensitivity label.

• ASCII characters can be input in any combination of upper and lowercase
letters, but they are always output all uppercase.

• ASCII label input and output formats consist of classifications and words
defined in the label_encodings file. Classification names and words may
contain embedded blanks or punctuation if they are defined that way in the
label_encodings file.

Label Code Examples 139

6

Binary to ASCII

These examples translate binary labels to ASCII. The translation uses the
keyword settings in label_encodings(4TSOL) and the flag parameter
value. Not all flag values make sense for every label, although nothing stops
you from using any flag with any type of label. The descriptions state the label
type a flag is to be used with, and settings that apply to sensitivity and
information labels also apply to CMW labels.

• ALL_ENTRIES– Translate all entries associated with the classification or
words present in the binary information label.

• ACCESS_RELATED– Translate only access-related keywords for a binary
information label. Access-related keywords are optional settings that when
defined in an information label, increase the hierarchical level of the
information label. Access-related keywords appear in the warning statement
on printed banner pages.

• LONG_WORDS– Translate a binary sensitivity or information label using the
long names for words.

• SHORT_WORDS – Translate a binary sensitivity or information label using the
short names for words.

• LONG_CLASSIFICATION – Translate a binary sensitivity or information
label using long names for the classification.

• SHORT_CLASSIFICATION – Translate a binary sensitivity or information
label using short names for the classification.

• NO_CLASSIFICATION – Do not include the classification in the translation
of a binary sensitivity label or information label

• VIEW_INTERNAL – Use internal names for the highest and lowest sensitivity
and information labels in the system: ADMIN_HIGH and ADMIN_LOW.

• VIEW_EXTERNAL – Demote an ADMIN_HIGH sensitivity or information label
to the next highest label, and promote an ADMIN_LOW label to the next
lowest label as defined in label_encodings(4TSOL) .

Note – The label view process attribute described in “Get and Set Process
Security Attribute Flags” on page 37 contains the status of the label view.

140 Trusted Solaris Developer’s Guide—August 1998

6

CMW Labels
The ASCII output form for CMW labels is as follows:

INFORMATION LABEL [SENSITIVITY LABEL]

This example initializes a CMW label to ADMIN_HIGH [ADMIN_HIGH] and
prints out the internal and external views. The process runs at ADMIN_HIGH
and does not need privileges to translate the ADMIN_HIGH [ADMIN_HIGH]
label.

The printf statements print the following:

View Internal = ADMIN_HIGH [ADMIN_HIGH]

View External = TOP SECRET CC SB BRAVO1 BRAVO3 SA ALPHA1
PROJECT X/PROJECT Y LIMDIS ORCON ORG X/ORG Y D/E ALL EYES
NOFORN [TS A B SA SB CC]

Sensitivity and Information Labels
The ASCII forms of sensitivity labels and information labels output by
interfaces are separated by spaces and formatted as follows where the curly
brackets indicate optional items and the ellipses indicate repeated words. In a
sensitivity label, words represent compartments, and in an information label
words represent compartments and markings.

CLASSIFICATION {WORD}...

#include <tsol/label.h>

main()
{

int retval, length = 0;
char *string1 = (char *)0, *string2 = (char *)0;
bclabel_t cmwlabel;

bclhigh(&cmwlabel);
retval = bcltos(&cmwlabel, &string1, length, VIEW_INTERNAL);
printf(“View Internal = %s\n", string1);

retval = bcltos(&cmwlabel, &string2, length, VIEW_EXTERNAL);
printf(“View External = %s\n", string2);

}

Label Code Examples 141

6

The following code example translates a binary sensitivity label to ASCII using
different flags. The process runs at TS A B and needs the sys_trans_label
privilege for the translation after the call to bslhigh(3TSOL) . The code
comments indicate where privilege bracketing as described in Chapter 3,
“Privileges” should take place.

#include <tsol/label.h>
main()
{

int retval, length = 0;
char *string1 = (char *)0, *string2 = (char *)0,

*string3 = (char *)0, *string4 = (char *)0,
*string5 = (char *)0, *string6 = (char *)0,
*string7 = (char *)0;

bclabel_t cmwlabel;
bslabel_t senslabel;

retval = getcmwplabel(&cmwlabel);
getcsl(&senslabel, &cmwlabel);

retval = bsltos(&senslabel, &string1, length, LONG_WORDS);
printf("Retval1 = %d Long Words = %s\n", retval, string1);

retval = bsltos(&senslabel, &string2, length, SHORT_WORDS);
printf("Retval2 = %d Short Words = %s\n", retval, string2);

retval = bsltos(&senslabel, &string3, length, LONG_CLASSIFICATION);
printf("Retval3 = %d Long Classifications = %s\n", retval, string3);

retval = bsltos(&senslabel, &string4, length, SHORT_CLASSIFICATION);
printf("Retval4 = %d Short Classifications = %s\n", retval, string4);

retval = bsltos(&senslabel, &string5, length, NO_CLASSIFICATION);
printf("Retval5 = %d No Classification = %s\n", retval, string5);

bslhigh(&senslabel);
/* Turn sys_trans_label on in the effective set */

retval = bsltos(&senslabel, &string6, length, VIEW_INTERNAL);
/* sys_trans_label off.

printf("Retval6 = %d View Internal = %s\n", retval, string6);

retval = bsltos(&senslabel, &string7, length, VIEW_EXTERNAL);
printf("Retval7 = %d View External = %s\n", retval, string7);

}

142 Trusted Solaris Developer’s Guide—August 1998

6

The printf statements print the following.

Long Words = TS A B

Short Words = TS A B

Long Classifications = TOP SECRET A B

Short Classifications = TS A B

No Classification = A B

View Internal = ADMIN_HIGH

View External = TS A B SA SB CC

This example translates a binary information label of SECRET B A to ASCII
with different flags. The code comments indicate where privilege bracketing as
described in Chapter 3, “Privileges” should take place.

#include <tsol/label.h>

main()
{

int retval, length = 0;
char *string1 = (char *)0, *string2 = (char *)0, *string3 = (char *)0,

*string4 = (char *)0, *string5 = (char *)0, *string6 = (char *)0,
*string7 = (char *)0, *string8 = (char *)0, *string9 = (char *)0;

bclabel_t cmwlabel;
bilabel_t inflabel;

retval = getcmwplabel(&cmwlabel);
getcil(&inflabel, &cmwlabel);

retval = biltos(&inflabel, &string1, length, ALL_ENTRIES);
printf("Retval1 = %d All Entries = %s\n", retval, string1);

retval = biltos(&inflabel, &string2, length, ACCESS_RELATED);
printf("Retval2 = %d Access Related = %s\n", retval, string2);

retval = biltos(&inflabel, &string3, length, LONG_WORDS);
printf("Retval3 = %d Long Words = %s\n", retval, string3);

retval = biltos(&inflabel, &string4, length, SHORT_WORDS);
printf("Retval4 = %d Short Words = %s\n", retval, string4);

Label Code Examples 143

6

The printf statements print the following.

Retval1 = 11 All Entries = SECRET B A

Retval2 = 15 Access Related = SECRET WNINTEL

Retval3 = 11 Long Words = SECRET B A

Retval 4 = 11 Short Words = SECRET B A

Retval5 = 11 Long Classification = SECRET B A

Retval6 = 6 Short Classification = S B A

Retval7 = 5 No Classification = B A

Retval8 = 11 View Internal = ADMIN_HIGH

Retval9 = 106 View External = TOP SECRET CC SB BRAVO1
BRAVO3 SA ALPHA1 PROJECT X/PROJECT Y LIMDIS ORCON ORG X/ORG
Y D/E ALL EYES NOFORN

retval = biltos(&inflabel, &string5, length, LONG_CLASSIFICATION);
printf("Retval5 = %d Long Classification = %s\n", retval, string5);

retval = biltos(&inflabel, &string6, length, SHORT_CLASSIFICATION);
printf("Retval6 = %d Short Classification = %s\n", retval, string6);

retval = biltos(&inflabel, &string7, length, NO_CLASSIFICATION);
printf("Retval7 = %d No Classification = %s\n", retval, string7);

bilhigh(&inflabel);
/* Turn the sys_trans_label privilege on in the effective set */

retval = biltos(&inflabel, &string8, length, VIEW_INTERNAL);
/* Turn sys_trans_label off */

printf("Retval8 = %d View Internal = %s\n", retval, string8);

retval = biltos(&inflabel, &string9, length, VIEW_EXTERNAL);
printf("Retval9 = %d View External = %s\n", retval, string9);

}

144 Trusted Solaris Developer’s Guide—August 1998

6

ASCII to Binary and Hexadecimal

This example translates ASCII strings to a binary CMW label, sensitivity label,
or information label using the following flag values:

• NEW_LABEL – Create a new label and correct the string as much as possible
so the binary label is a complete and valid label for the system as defined in
label_encodings(4TSOL) . If the correction cannot be made, an error is
returned. The string can be an ASCII or hexadecimal string.

• NO_CORRECTION – Create a new label, but do not correct the construction of
the string. If the string is not a complete and valid label for the system, an
error is returned. The string can be an ASCII hexadecimal string.

• ONLY_INFORMATION_LABEL – Create only the information label portion of
the CMW label and correct the ASCII string. Valid with stobcl(3TSOL)
only.

CMW Labels
ASCII CMW labels are accepted if they are in either of the following forms.

• information_label [sensitivity_label] – In this formation, the
information label and sensitivity label can be separated by a blank, tab,
comma, or slash (/). This example form is separated by s blank.

• [sensitivity_label] – In this formation, the sensitivity label portion
is specified only and the information label portion is set to ADMIN_LOW by
the system.

Sensitivity and Information Labels
ASCII sensitivity and information labels are accepted in the following forms.
Input items can be separated by blanks, tabs, commas, or slashes (/). Short and
long forms of classification names and words are interchangeable.

{+} {classification} {{+|-}{word}...

• The vertical bar (|) indicates a choice between two items. Leading and
trailing white space is ignored.

• The plus and minus signs can be used to modify an existing label to turn on
or off the compartments and markings associated with the words.

Label Code Examples 145

6

• Curly braces indicate optional items and ellipses indicate repeated words. In
a sensitivity label, the words represent compartments, and in an information
label, the words represent compartments and markings (if any).

Code Examples
This example translates ASCII strings to a binary CMW label, sensitivity label,
and information label and back again using the NEW_LABEL flag. An example
of translating a sensitivity label to a specified length (clipping) is also given. If
the process runs at SECRET B A [TS] or higher, the sys_trans_label
privilege is not needed for the label translations.

The printf statement prints the following. In the clipped label, the arrow <-
indicates the sensitivity label name has clipped letters.

CMW label = SECRET B A [TS A B]

Sen label = TS A B

#include <tsol/label.h>

main()
{

int retval, error, length = 0;
char *cmwstring =”SECRET A B [TOP SECRET A B]”;
char *sensstring = "TOP SECRET A B", *infstring = "SECRET A B";
char *string1 = (char *)0, *string2 = (char *)0,

*string3 = (char *)0,*string4 = (char *)0;
bclabel_t cmwlabel;
bslabel_t senslabel;
bilabel_t inflabel;

retval = stobcl(cmwstring, &cmwlabel, NEW_LABEL, &error);
retval = bcltos(&cmwlabel, &string1, length, ALL_ENTRIES);
retval = stobsl(sensstring, &senslabel, NEW_LABEL, &error);
retval = bsltos(&senslabel, &string2, length, ALL_ENTRIES);
string3 = sbsltos(&senslabel, 4);
retval = stobil(infstring, &inflabel, NEW_LABEL, &error);
retval = biltos(&inflabel, &string4, length, ALL_ENTRIES);

printf(“CMW label = %s\nSens label = %s\nClipped label = %s\nInf
label= %s\n”, string1, string2, string3, string4);

}

146 Trusted Solaris Developer’s Guide—August 1998

6

Clipped label = TS<-

Info label = SECRET B A

This example translates a string to a binary CMW label using the
INFORMATION_LABEL_ONLY flag to change only the information label portion
of the process CMW label. The sensitivity label portion remains as it was. In
this example the process CMW label is TOP SECRET A B [TS A B]

The printf statement prints the following:

CMW label = SECRET B A [S A B]

CMW label = CONFIDENTIAL [S A B]

#include <tsol/label.h>

main()
{

int retval, error, length = 0;
bclabel_t cmwlabel;
char *cstring = "SECRET A B[SECRET A B]";
char *istring = “CONFIDENTIAL”;
char *string1 = (char *)0, *string2 = (char *)0;

/* Create a binary CMW label */
retval = stobcl(cstring, &cmwlabel, NEW_LABEL, &error);

/* Translate the binary label to an ASCII string and print */
retval = bcltos(&cmwlabel, &string1, length, ALL_ENTRIES);
printf(“CMW label = %s\n”, string1);

/* Change only the information label portion of the CMW label */
retval = stobcl(istring, &cmwlabel, ONLY_INFORMATION_LABEL, &error);

/* Translate the binary label to an ASCII string and print */
retval = bcltos(&cmwlabel, &string2, length, ALL_ENTRIES);
printf(“CMW label = %s\n”, string2);

}

Label Code Examples 147

6

Binary and Hexadecimal

There are two types of binary to hexadecimal routines: regular and reentrant.
Both types of routines return a pointer to a string that contains the result of the
translation or NULL if the label being translated is not a binary label.

• Binary labels – Classifications are stored as integer values and
compartments and markings are stored as bit vectors of 0’s and 1’s.

• Hexadecimal labels – The ASCII representation of the hexadecimal number
that represents the same bit pattern as the corresponding binary label.

Regular Binary and Hexadecimal

This example converts a binary CMW label to hexadecimal and back again.
Converting a sensitivity label or information label is similar.

The first printf statements print the binary CMW label in the following
hexadecimal format:

0xClearance hexadecimal value

The second printf statement prints the following where non-zero indicates a
successful translation:

Return Value = 1

#include <tsol/label.h>
#include <stdio.h>

main()
{

int retval;
bclabel_t hcmwlabel, hexcmw;
char *string;

getcmwplabel(&hcmwlabel);
if((string = bcltoh(&hcmwlabel)) != NULL)

printf(“Hex string = %s\n”, string);

retval = htobcl(string, &hexcmw);
printf(“Return Value = %d\n”, retval);

}

148 Trusted Solaris Developer’s Guide—August 1998

6

Reentrant Binary and Hexadecimal

The reentrant (MT-SAFE) routine bcleartoh_r(3TSOL) requires the
allocation and freeing of memory for a variable of the specified type. This
example allocates memory, translates the binary CMW label to hexadecimal,
and frees the memory at the end. Converting a sensitivity label or information
label to hexadecimal and back is a similar process.

The printf(1) statement prints the binary clearance in the following
hexadecimal format:

Hex string =0x00
000
0000000000000000000000000000[0x00040c0000000000000000000000
000000000000000000000003ffffffffffff0000]

Return Value = 1

#include <tsol/label.h>
#include <stdio.h>

main()
{

int retval;
bclabel_t hcmwlabel, hexcmw;
char *string, *hex;

getcmwplabel(&hcmwlabel);
hex = h_alloc(SUN_CMW_ID);

if((string = bcltoh_r(&hcmwlabel, hex)) != NULL)
printf(“Hex string = %s\n”, string);

retval = htobcl(string, &hexcmw);
printf(“Return Value = %d\n”, retval);
h_free(hex);

}

Label Code Examples 149

6

Printer Banner Information
The bcltobanner(3TSOL) routine translates a binary CMW label into ASCII
coded labels and strings to appear on the printer banner page, trailer page, and
document pages of print jobs. The labels and strings are computed from
information in the label_encodings(4TSOL) file. This routine is used
internally by the Trusted Solaris 2.5.1 print system, and for most applications,
this translation is unnecessary. However, it can be used in a print server
application or in an application that needs the external character string
representation used by the print system.

In this example, the CMW label is ADMIN_LOW [TS] . The first five fields of
banner_fields are character pointers. If you preallocate memory for the character
pointers, the second five fields contain short integer values indicating the
length of the memory allocated. If you initialize the first five character pointers
to (char *)0 as in the example, the short integer fields do not need
initialization.

The text in the printf(1) statement indicates where on the banner, trailer,
and document pages the various strings appear. The caveats string is empty
because no caveats are provided in the printer banner section of the

#include <tsol/label.h>
main()
{

int retval;
bclabel_t cmwlabel;

static struct banner_fields banner = { (char *)0, (char *)0, (char *)0,
(char *)0, (char *)0};

getcmwplabel(&cmwlabel);

retval = bcltobanner(&cmwlabel, &banner, SHORT_WORDS);

printf(“Top and bottom banner/trailer header = %s\n”, banner.header);
printf(“Protect as section of banner page = %s\n”, banner.protect_as);
printf(“Inf. label/top and bottom body pages = %s\n”, banner.ilabel);
printf(“Caveats section of printer banner page = %s\n”, banner.caveats);
printf(“Handling channels section of banner page = %s\n”, banner.channels);

}

150 Trusted Solaris Developer’s Guide—August 1998

6

label_encodings(4TSOL) file. See Trusted Solaris Label Administration and
Compartmented Mode Workstation Labeling: Encodings Format for information on
how the strings are computed.

Top and bottom banner/trailer header = TOP SECRET

Protect as section of banner page = TOP SECRET A B

Inf. label/top and bottom body pages = UNCLASSIFIED

Caveats section of printer banner page =

Handling channels section of banner page = HANDLE VIA (CH
B)/(CH A) CHANNELS JOINTLY

151

Process Clearance 7

When an application starts from the workspace, the user’s session clearance is
set on the process and called the process clearance. If the application forks a
process, the new process’s clearance is set to the calling process’s clearance. If
the application exec’s a program the new program’s clearance is set to the
calling process’s clearance.

The session clearance is selected at login. It sets the least upper bound at which
the user can work during that login session and is dominated by the user
clearance. The user clearance is assigned by the system administrator in the
user’s execution profile and determines the highest sensitivity label at which
the user can work during any login session.

When users start applications from the workspace, the process CMW label is
set from the values in the workspace CMW label. Because the process gets the
user’s session clearance and the workspace CMW label, the process clearance
is always greater than or equal to the sensitivity label portion of the process
CMW label. There is no privilege to change this rule.

A clearance has a classification and set of one or more compartments like the
sensitivity label portion of a CMW label. A clearance is not a sensitivity label,
but used in addition to the process’s sensitivity label in the following ways.

• When a process changes a sensitivity label on any object, the process
clearance determines the highest level to which the sensitivity label can be
changed. A process cannot make the object’s sensitivity label higher than its
own clearance. There is no privilege to change this rule.

152 Trusted Solaris Developer’s Guide—August 1998

7

• When a process writes to an object at a higher sensitivity label (write-up),
the process clearance determines the highest level to which the process may
write up. A process cannot write above its own clearance. There is no
privilege to change this rule.

This chapter describes the programming interfaces for getting and managing
the process clearance. The interfaces for reading user clearance information in
the tsoluser database are described in Chapter 10, “Accessing User and
Profile Database Entries.”

Privileged Operations
The process needs proc_setclr privilege in its effective set to change its
process clearance so it is not equal to the user’s session clearance or the parent
process’s clearance. This privilege is also needed for a process to check
whether a clearance is a valid clearance in the label_encodings(4TSOL) file
when the process sensitivity label does not dominate the label being checked.

The process needs the sys_trans_label privilege in its effective set to
translate a binary clearance to ASCII when the process sensitivity label does
not dominate the clearance to be translated. This privilege is also needed to
check if a clearance is valid when the process sensitivity label does not
dominate the clearance.

Privileged Operations page 152

Data Types, Header Files, and Libraries page 153

System Calls page 154

Library Routines page 154

Binary and ASCII Translation page 156

Binary and Hexadecimal Translation page 157

Set Process Clearance page 157

Initialize Clearance Structure page 159

Find Relationships Between Two Levels page 160

Find Greatest Level and Lowest Level page 161

Valid Clearance page 163

Translating Process Clearances page 164

Process Clearance 153

7

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsol/label.h>

The examples in this chapter compile with the following library:

-ltsol

Process Clearances

Interfaces accept as parameters and return binary process clearances in a
variable of type bclear_t .

Binary Levels

A level is a classification and a set of compartments in a sensitivity label or
clearance. Interfaces accept as parameters and return binary levels in a
structure of type blevel_t .

Type Compatibility

Any variable of type bclear_t or bslabel_t can be passed to a function that
accepts a parameter of type blevel_t .

Programming Interface Declarations
The following programming interfaces are available for managing process
clearances.

154 Trusted Solaris Developer’s Guide—August 1998

7

System Calls

These system calls get and set the clearance of the calling process. Refer to the
getclearance(2TSOL) and setclearance(2TSOL) man pages.

Warning – Every process that sets a clearance is responsible for setting a valid
clearance as specified in the label_encodings(4TSOL) file, and must pass
the correct binary form of the clearance. The ASCII to binary translation
functions correct the clearance as much as possible to ensure a correct binary
clearance results from the translation. However, you might use the
blvalid(3TSOL) routine to check that the clearance is valid.

Library Routines

Library routines are available to initialize, compare, translate and verify the
process clearance.

Initialization

These routines initialize a clearance to ADMIN_HIGH, ADMIN_LOW, or undefined
(similar to NULL). Refer to the blmanifest(3TSOL) man page.

Comparisons

These routines compare two levels to see if level1 equals, dominates, or strictly
dominates level2. A level is a classification and set of compartments in a
sensitivity label, information label, or clearance. Use the biltolev(3TSOL)
routine to translate an information label (classification, compartments, and

int getclearance(bclear_t *clearance);
int setclearance(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);
void bclearlow(bclear_t *clearance);
void bclearundef(bclear_t *clearance);

Process Clearance 155

7

markings) to a level (classification and compartments only) or use the routines
in the next two sections to compare two information labels or two markings
sets.

A returned non-zero is true and 0 is false. Refer to the blcompare(3TSOL)
man page.

Clearance Type

The bltype(3TSOL) routine checks the clearance type, and the
setbltype(3TSOL) routine sets the clearance type. A clearance can be
defined or undefined. Refer to the bltype(3TSOL) man page.

Level Bounds

These routines compare two levels to find the sensitivity level that represents
the greatest lower bound (blminimum(3TSOL)) or least upper bound
(blmaximum(3TSOL)) of the range bounded by the two levels. A level is a

int blequal(const blevel_t *level1,
const blevel_t *level2);

int bldominates(const blevel_t *level1,
const blevel_t *level2);

int blstrictdom(const blevel_t *level1,
const blevel_t *level2);

int blinrange(const blevel_t *level,
const brange_t *range);

int bltype(const void *clearance,
const unsigned char type);

void setbltype(void *clearance,
const unsigned char type);

156 Trusted Solaris Developer’s Guide—August 1998

7

classification and set of compartments in a sensitivity label, information label,
or clearance. Use the biltolev(3TSOL) routine to translate an information
label to a level. Refer to the blminmax(3TSOL) man page.

Valid Clearance

This routine tests whether the specified clearance is valid for the system. Refer
to the blvalid(3TSOL) man page.

Binary and ASCII Translation

These routines translate a clearance from binary to ASCII and back again. Refer
to the stobl(3TSOL) man page.

Note – See Chapter 15, “Trusted X Window System” for Interfaces that
translate binary labels to ASCII and clip the final label according to the
specified width and font list for display in motif-based graphical user
interfaces (GUIs).

void blmaximum(blevel_t *maximum_label,
const blevel_t *bounding_label);

void blminimum(blevel_t *minimum_label,
const blevel_t *bounding_label);

int bclearvalid(const bclear_t *clearance);

int bcleartos(const bclear_t *clearance,
char **string,
const int len,
const int flags);

int stobclear(const char *string,
bclear_t *clearance,
const int flags, int *error);

char* sbcleartos(const bclear_t *clearance,
const int len);

Process Clearance 157

7

Binary and Hexadecimal Translation

These routines translate a clearance from binary to hexadecimal and back
again. Refer to the btohex(3TSOL) man page.

Process Clearance Operations
A program must get its process clearance before it can perform an operation on
the clearance. This short program gets the process clearance of the calling
process.

The printf statement prints the following:

Retval = 0

Set Process Clearance

The process needs the proc_setclr privilege to set the process clearance to
another value if the new value is not equal to the sensitivity label portion of
the process’s own CMW label. A new process clearance is set with the

char *h_alloc(const unsigned char id);
void h_free(char *hex);

char *bcleartoh_r(const bclear_t *clearance,
char *hex);

char *bcleartoh(const bclear_t *clearance);
int htobclear(const char *s,

bclear_t *clearance);

#include <tsol/label.h>

main()
{

int retval;
bclear_t pclear;

retval = getclearance(&pclear);
printf(“Retval = %d\n”, retval);

}

158 Trusted Solaris Developer’s Guide—August 1998

7

setclearance(2TSOL) system call. This example initializes a clearance
structure to ADMIN_HIGH and passes it to the setclearance(2TSOL) system
call.

The printf(1) statement prints the following:

Retval = 0

#include <tsol/label.h>

main()
{

int retval;
bclear_t hiclear, undef, loclear;

bclearhigh(&hiclear);

/* Turn proc_setclr on in the effective set */
retval = setclearance(&hiclear);

/* Turn off the proc_setclr privilege */

printf(“Retval = %d\n”, retval);
}

Process Clearance 159

7

Initialize Clearance Structure

A clearance can be initialized to ADMIN_LOW or ADMIN_HIGH and have its type
checked. This example initializes undef to undefined (similar to NULL) and
loclear to ADMIN_LOW. It then checks the type on loclear, sets the type to
undefined, and checks it again. A clearance is undefined when its ID field is
initialized to SUN_CLR_UN. An undefined clearance is invalid. A clearance is
defined when the ID field in the label structure is initialized to SUN_CLR_ID.

The printf(1) statement prints the following where non-zero is True and 0 is
False.

Is clearance defined? 1

Is clearance defined? 0

#include <tsol/label.h>

main()
{

int retval;
bclear_t loclear, undef;

bclearlow(&loclear);
bclearundef(&undef);

retval = bltype(&loclear, SUN_CLR_ID);
printf(“Is clearance defined? %d\n”, retval);

setbltype(&loclear, SUN_CLR_UN);
retval = bltype(&loclear, SUN_CLR_ID);
printf(“Is clearance defined? %d\n”, retval);

}

160 Trusted Solaris Developer’s Guide—August 1998

7

Find Relationships Between Two Levels

A level is a classification and set of compartments for a sensitivity label,
information label, or clearance; and is represented by the blevel_t data type.
An information label is converted to a level with the biltolev(3TSOL)
routine. Two levels can be equal, one can dominate the other, or one can strictly
dominate the other.

• Equal – One level is equal to another when its classification is arithmetically
equal to the other’s classification (by means of its place in the classifications
hierarchy), and its compartments contain all the other’s compartments and
no additional compartments.

• Dominates – One level dominates another when its classification is
arithmetically greater than or equal to the other’s (by means of its place in
the classifications hierarchy), and its compartments contain all the other’s
compartments.

• Strictly dominates – Level one is said to strictly dominate level two when
level one dominates level two, but is not equal to level two.

This example checks the process clearance against the sensitivity label portion
of a file CMW label to find their relationship (equal, dominate, or strictly
dominate). The process clearance is TOP SECRET A B , the sensitivity label
portion of the file CMW label is Confidential, and the process runs at
Confidential.

Process Clearance 161

7

The printf(1) statements print the following. Non-zero is True and 0 is
False:

Clearance equals sensitivity label? 0

Clearance dominates sensitivity label? 1

Clearance strictly dominates sensitivity label? 1

Find Greatest Level and Lowest Level

The next example finds the greatest and lowest values between two variables
of type blevel_t . These interfaces let you compare two levels to find the level
that represents the greatest lower bound (with the blminimum(3TSOL)
routine) or least upper bound (with the blmaximum(3TSOL) routine) bounded
by the two levels. A level can be a sensitivity label, clearance, or information
label converted to a level with the biltolev(3TSOL) routine.

#include <tsol/label.h>

main()
{

int retval;
bclear_t pclear;
bclabel_t cmwlabel;
bslabel_t senslabel;

retval = getclearance(&pclear);
retval = getcmwlabel(“/export/home/zelda/afile”, &cmwlabel);
getcsl(&senslabel, &cmwlabel);

retval = blequal(&pclear, &senslabel);
printf(“Clearance equals sensitivity label? %d\n”, retval);

retval = bldominates(&pclear, &senslabel);
printf(“Clearance dominates sensitivity label? %d\n”, retval);

retval = blstrictdom(&pclear, &senslabel);
printf(“Clearance strictly dominates sensitivity label? %d\n”, retval);

}

162 Trusted Solaris Developer’s Guide—August 1998

7

The example code finds the greatest lower bound and least upper bound of the
range created by a process clearance of TS A B and a sensitivity label of
ADMIN_LOW. The process runs at Confidential.

The first part of the example finds the greater of the classifications and the
greater of all the compartments of the two levels and puts that value into the
first parameter. This operation is called finding the least upper bound because
it finds the lowest level that dominates both original parameter values passed.

The process sensitivity level does not dominate the process clearance so the
process needs the sys_trans_label privilege for the translation. The code
comments indicate where privilege bracketing as described in Chapter 3,
“Privileges” should take place.

The printf(1) statements print the following where TS ABLE BAKER is the
lowest level that dominates TS A B and ADMIN_LOW.

Maximum = TS A B

#include <tsol/label.h>

main()
{

int retval, length = 0;
char *string = (char *)0, *string1 = (char *)0;
bclear_t clear;
bslabel_t senslabel;

bsllow(&senslabel);
reval = getclearance(&clear);
blmaximum(&senslabel, &clear);

/* Turn the sys_trans_label privilege on in the effective set */
retval = bsltos(&senslabel, &string, length, LONG_WORDS);

/* Turn sys_trans_label off */

printf(“Maximum = %s\n”, string);

Process Clearance 163

7

The second part of the example finds the lower of the classifications and only
those compartments contained in both parameters, and puts that value in the
first parameter. This operation finds the greatest lower bound because it finds
the greatest level dominated by both original parameter values passed.

The printf(1) statements print the following where ADMIN_LOW is the
highest level that is dominated by TS A B and ADMIN_LOW.

Minimum = ADMIN_LOW

Valid Clearance

A valid clearance is a clearance defined in the label_encodings(4TSOL)
file. Call the bclearvalid(3TSOL) routine to check if a clearance is valid.
The process running at TS A B equals the clearance and needs no privilege for
this operation.

The printf(1) statement prints the following where 1 means the clearance is
valid; -1 means the label_encodings file is inaccessible; and 0 means the
label is not valid or the process sensitivity label does not dominate the
clearance and the sys_trans_label privilege is not effective:

bsllow(&senslabel);
blminimum(&senslabel, &clear);
retval = bsltos(&senslabel, &string, length, LONG_WORDS);
printf(“Minimum = %s\n”, string);

}

#include <tsol/label.h>
main()
{

int retval, error;
bclear_t bclear;
char *string = “TS ABLE BAKER”;

retval = stobclear(string, &bclear, NEW_LABEL, &error);
retval = bclearvalid(&bclear);
printf(“Return value = %d\n”, retval);

}

164 Trusted Solaris Developer’s Guide—August 1998

7

Return value = 1

Translating Process Clearances

Clearances (like labels) can be represented in binary, ASCII, or hexadecimal.
Within the kernel all clearances are stored in binary form, and binary is the
form used for clearances passed to and received from programming interfaces.

• Binary Clearances – Classifications are stored as an integer and
compartments are stored as bit vectors using 0’s and 1’s.

• ASCII Clearance – Human-readable clearances that display classifications,
and compartments using the names defined in the
label_encodings(4TSOL) file.

• Hexadecimal Clearances – The ASCII representation of the hexadecimal
number that represents the same bit pattern as the corresponding binary
clearance. The clearance has ASCII characters but does not reveal the
classification or compartment names. A process can store a clearance in
ASCII when it will be read by processes at arbitrary clearances.

Binary and ASCII

This example translate a binary clearance to ASCII using long words. The
process running at TS A B equals the clearance and needs no privilege.

Note – The ASCII input and output formats, rules, and flags are presented in
the section “Binary and ASCII” beginning on page 138.

#include <tsol/label.h>
main()
{

int retval, length = 0;
bclear_t pclear;
char *string = (char *)0;

retval = getclearance(&pclear);
retval = bcleartos(&pclear, &string, length, LONG_WORDS);
printf(“Process clearance = %s\n”, string);

}

Process Clearance 165

7

The printf(1) statement prints the following:

Process clearance = TS ABLE BAKER

This example clips the process label to five characters. The clipping occurs
when the number of characters in pclear is greater than the specified length.

The printf statement prints the following. The left arrow is a clipped
indicator to show the name has been clipped. The number of characters to
which the name is clipped includes two characters for the clipped indicator.

Clipped process clearance = TS<-

This example translates an ASCII string to a binary clearance.

#include <tsol/label.h>

main()
{

int retval;
bclear_t pclear;
char *string = (char *)0;

retval = getclearance(&pclear);
string = sbcleartos(&pclear, 5);
printf(“Clipped process clearance = %s\n”, string);

}

#include <tsol/label.h>

main()
{

int retval, error;
bclear_t bclear;
char *labelstring = “TS ABLE BAKER”;

retval = stobclear(labelstring, &bclear, NEW_LABEL, &error);
if (retval == 0)

printf(“Error = %d\n”, error);
else

printf(“Retval = %d\n”, retval);
}

166 Trusted Solaris Developer’s Guide—August 1998

7

The printf(1) statement prints the following:

Retval = 1

Binary and Hexadecimal

There are two types of binary to hexadecimal routines: regular and reentrant.
Both types of routines return a pointer to a string that contains the result of the
translation or NULL if the clearance passed in is not type bclear_t .

Regular
This example translates the binary process clearance to hexadecimal and back.

The first printf(1) statement prints the binary clearance in the following
hexadecimal format:

0xClearance hexadecimal value

The second printf statement prints the following where non-zero indicates a
successful translation:

Return Value = 1

#include <tsol/label.h>

main()
{

int retval;
bclear_t hclear;
char *string ;

retval = getclearance(&hclear);

if((string = bcleartoh(&hclear)) != 0)
printf(“Hex string = %s\n”, string);

retval = htobclear(string, &hclear);
printf(“Return Value = %d\n”, retval);

}

Process Clearance 167

7

Reentrant
The reentrant (MT-SAFE) routine bcleartoh_r(3TSOL) requires the
allocation and freeing of memory for the value returned. The
h_alloc(3TSOL) routine is used to allocate this memory, sizing it
appropriately for the type of label (in this case hexadecimal) to be converted.

type where type is a hexadecimal value that indicates that a defined clearance
(SUN_CLR_ID) is translated to hexadecimal.

This example allocates memory for the translation type, translates the binary
process clearance to hexadecimal, and frees the memory at the end.

The printf(1) statement prints the binary clearance in the following
hexadecimal format:

Hex string = 0x0006cc0000000000000000000000000000000000000
000000003ffffffffffff0000

#include <tsol/label.h>

main()
{

bclear_t hclear;
char *string, *hex;

getclearance(&hclear);
hex = h_alloc(SUN_CLR_ID);
if((string = bcleartoh_r(&hclear, hex)) != 0);

printf(“Hex string = %s\n”, string);

h_free(hex);
}

168 Trusted Solaris Developer’s Guide—August 1998

7

169

Multilevel Directories 8

Trusted Solaris 2.5.1 supports regular UNIX directories and multilevel
directories (MLDs). MLDs enable a program that runs at different sensitivity
labels to use a common directory and access files at the sensitivity label at
which the program is currently running. An MLD contains only single-level
directories (SLDs), and each SLD stores files at the sensitivity label of the SLD.
Within one MLD, several files with the same name can be stored in different
SLDs. Each instance of the same file contains data appropriate to the sensitivity
label of the SLD where it is stored. This is called polyinstantiation of directories
and files.

Directory Structure page 170

Temporary Directory page 171

Symbolic Links page 171

Adorned Names page 172

Data Types, Header Files, and Libraries page 173

System Calls page 174

Library Routines page 177

Query MLD and SLD Name page 178

Using Path Names with Adornments page 181

170 Trusted Solaris Developer’s Guide—August 1998

8

Directory Structure
The tmp directory and all home directories are automatically MLDs at
ADMIN_LOW when set up for users in the User Manager by the system
administrator. Additionally, mkdir(1TSOL) has an option for creating an
MLD. Figure 8-1 shows the directory structure of Zelda’s home directory
where the MLD is ADMIN_LOW with three SLDs at Top Secret, Secret, and
Confidential.

• An MLD cannot contain another MLD.

• An SLD cannot contain an MLD or an SLD.

• An SLD can contain regular UNIX directories and all types of files.

SLDs are created as needed during pathname lookup, and by the
getsldname(2TSOL) and fgetsldname(2TSOL) system calls. The SLD
sensitivity label is always a valid sensitivity label for the system.

Figure 8-1 Multilevel Directories

An application running at Secret dominates the ADMIN_LOW directory path
/home/export/.MLD.zelda , dominates the SLDs at Secret and Confidential,
but does not dominate the SLD at Top Secret. Without privilege and with
discretionary access, a process running at Secret has the following access:

• Read, Write, and Create access to the Secret SLD.

• The ability to read down to the Confidential SLD using the fully adorned
name /export/home/.MLD.zelda/.SLD.1 . See “Adorned Names” on
page 172 and “Using Path Names with Adornments” on page 181.

Top Secret

Secret

Confidential

ADMIN_LOW

/export/home/MLD.zelda/.SLD.3

/.SLD.2

/.SLD.1

.login
ts_proj

.login
sec_proj1
sec_proj2

.login
conf_proj

Multilevel Directories 171

8

• The ability to write up to the Top Secret SLD using the fully adorned name
/export/home/.MLD.zelda/.SLD.3 if the process clearance dominates
the Top Secret SLD. See “Adorned Names” on page 172 and “Using Path
Names with Adornments” on page 181.”

A process running at Confidential would have access to the following files
assuming the directory structure in Figure 8-1.

.login

conf_proj

A process running at Secret would have access to the following files assuming
the directory structure in Figure 8-1.

.login

secret_proj1

secret_proj2

A process running at Top Secret would have access to the following files
assuming the directory structure in Figure 8-1.

.login

ts_proj

Temporary Directory

Many applications create files in the /tmp directory. If /tmp is a regular UNIX
directory at some sensitivity label, unprivileged processes running at other
sensitivity labels cannot create files in /tmp . Trusted Solaris 2.5.1 makes /tmp
an MLD so applications can create files in the SLD that corresponds to the
sensitivity label of the process.

Symbolic Links

Symbolic links can be used in combination with MLDs. For example, a
symbolic link whose target path name is in an MLD points to a different target
file at each sensitivity label. Symbolic links in an SLD can point to a target path
name in a regular directory to have a path name in an MLD refer to the same
file when referenced at different sensitivity labels.

172 Trusted Solaris Developer’s Guide—August 1998

8

Adorned Names
When a process refers to an MLD in a pathname, the system transparently
extends the reference to include the SLD that corresponds to the process
sensitivity label. This operation is called pathname translation. If a process
running at Confidential references /export/home/zelda , it accesses the SLD
in /export/home/zelda at Confidential. Because pathname translation is
transparent, the process does not explicitly reference the SLD.

All MLDs have an adornment. The adornment is .MLD. unless it was changed
by the system administrator. The adornment lets a process refer directly to the
MLD rather than transparently to the SLD that has the same sensitivity label as
the process. A process would use the ls(1) command to reference the
adorned name to do the following.

• List the SLDs within an MLD. Without the adornment, the contents of the
SLD with the same he sensitivity label as the process are listed instead.

• Refer explicitly to an SLD by using the adorned MLD name.

%ls /.MLD.tmp

%ls /.MLD.tmp/.SLD.3

Multilevel Directories 173

8

Privileged Operations
Mandatory and discretionary access is required to get information on an MLD
or SLD, and to access objects within an SLD with the fully adorned path name.

When considering the mandatory and discretionary access rules presented in
Chapter 1, “Introduction to the API and Security Policy,” the SLD is a
component in the path name leading to the final file system object. The calling
process needs mandatory and discretionary search access to the SLD and the
appropriate access to the final object. Privileges may be required if access is
denied.

To get the SLD name for a specified sensitivity label within an MLD, the calling
process needs the following privileges in the following situations:

• The calling process needs the file_upgrade_sl privilege in its effective
set if the process sensitivity label is strictly dominated by the SLD sensitivity
label.

• The calling process needs the file_downgrade_sl privilege in its effective
set if the SLD sensitivity label dominates the process’s sensitivity label.

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsol/mld.h>

The examples in this chapter compile with the following library:

-ltsol

Sensitivity Label

The bslabel_t type definition represents the sensitivity label portion of a binary
CMW label. The getsldname(2TSOL) system call accepts a variable of type
bslabel_t .

174 Trusted Solaris Developer’s Guide—August 1998

8

Status

The stat structure contains information on a specified MLD, SLD, or symbolic
link. The structure is returned by the mldstat(2TSOL) and
mldlstat(2TSOL) system calls.

Programming Interface Declarations
The following programming interfaces are available for getting information on
MLDs and SLDs.

System Calls

System calls are available to get the SLD name, get MLD adornment, and get
SLD or MLD file attribute information.

Type Field Description Default
mode_t st_mode File type and permissions. 0

nlink_t st_nlink Number of hard links. 1

uid_t st_uid User ID of owner. 0

gid_t st_gid Group Id of owner. 0

time_t st_atime Last access time in seconds. Current time

time_t st_mtime Last modify time in seconds. Current time

time_t st_ctime Last inode change time in seconds.Current time

Multilevel Directories 175

8

Get SLD Name

The getsldname(2TSOL) system call gets the SLD name for path_name at the
specified slabel. Refer to the getsldname(2TSOL) man page. The
fgetsldname(2TSOL) system call uses a file descriptor.

Get MLD Adornment

The getmldadorn(2TSOL) system call gets the fully adorned path name for
path_name. The fgetmldadorn(2TSOL) system call uses a file descriptor.
Refer to the getmldadorn(2TSOL) man page.

Get Attribute Information for SLD or MLD

The mldstat(2TSOL) system call returns file attribute information on the
MLD specified by path_name. The mldlstat(2TSOL) system call returns
information on the MLD symbolic link. Refer to the mldstat(2TSOL) man
page.

int getsldname(const char *path_name,
const bslabel_t *slabel,
char *name_buf,
const int len);

int fgetsldname(const int fd,
const bslabel_t *slabel_p,
char *name_buf,
const int len);

int getmldadorn(const char *path_name,
char *adorn_buf[MLD_ADORN_MAX]);

int fgetmldadorn(const int fd,
char adorn_buf[MLD_ADORN_MAX]);

int mldstat(const char *path_name,
struct stat *stat_buf);

int mldlstat(const char *path_name,
struct stat *stat_buf);

176 Trusted Solaris Developer’s Guide—August 1998

8

Get MLD Attribute Flags

These system calls are described in “Get and Set File System Security Attribute
Flags” on page 35 in Chapter 2, “Getting Started.” Also, refer to the
getfattrflag(2TSOL) man page.

int mldgetfattrflag(const char *path, secflgs_t *flags)
int mldsetfattrflag(const char * path,

secflgs_t which,
secflgs_t flags))

Multilevel Directories 177

8

Library Routines

Library routines are available to get the pathname of the current working
directory and display a pathname with adornments.

Get Current Working Directory

This routine gets the fully adorned path name for the current working
directory. Refer to the mldgetcwd(3TSOL) man page.

Get Adorned Name

This routine gets the adorned name for the MLD specified in path_name. Refer
to the adornfc(3TSOL) man page.

Find the Real Path Name

These routines take the path name supplied in path_name, expand all symbolic
links, resolve dot references to the current directory and dot-dot references to
the parent directory, remove extra slash characters, add the correct MLD and
SLD adornments, and store the final result in resolved_path. The result is for the
SLD at which the process is running, or at the specified SLD. Refer to the
mldrealpath(3TSOL) man page.

char* mldgetcwd(char *buf, size_t size);

int adornfc(const char *path_name,
char *adorned_name);

char* mldrealpath(const char *path_name,
char *resolved_path);

char* mldrealpathl(const char *path_name,
char *resolved_path,
const bslabel_t *senslabel);

178 Trusted Solaris Developer’s Guide—August 1998

8

Query MLD and SLD Name
The following code queries the MLD adornment with the
getmldadorn(2TSOL) system call and queries the SLD name for the Top
Secret SLD with the getsldname(2TSOL) system call. In this example, the
Top Secret SLD does not already exist, so the call to getsldname(2TSOL) will
create it.

The process is running at Confidential with a clearance of Top Secret. The
process needs the sys_trans_label privilege to translate the Top Secret
label, the file_upgrade_sl privilege to create the Top Secret SLD, and the
file_mac_search and file_mac_read privileges to access the Top Secret
SLD information.

The printf(1) statements print the following:

MLD adornment = .MLD.

#include <tsol/label.h>

main()
{

int retval, error, length;
bslabel_t label;
char *buffer[1025], *buf[1025], *string = "TOP SECRET";
char *file = “/export/home/zelda”;

retval = getmldadorn(file, buffer);
printf("MLD adornment = %s\n", buffer);

/* Turn sys_trans_label on in the effective set */
retval = stobsl(string, &label, NEW_LABEL, &error);

/* Turn sys_trans_label off */

length = sizeof(buf);

/* Turn file_upgrade_sl, file_mac_search, and file_mac_read on */
retval = getsldname(file, &label, buf, length);

/* Turn file_upgrade_sl, file_mac_search, and file_mac_read off*/

printf("SLD name = %s\n", buf);
}

Multilevel Directories 179

8

SLD name = .SLD.3

This example queries the current working directory (MLD plus current SLD)
with the mldgetcwd(3TSOL) routine, gets the adorned name for the MLD
with the adornfc(1TSOL) routine, and finds the real path with the
mldrealpath(1TSOL) routine by removing the extra slash in the path name
stored in resolvefile. The process is running at Confidential.

The printf statements print the following:

Note – If the SLD name is included in the file parameter to the
adornfc(1TSOL) routine, the adorned name is returned with the SLD
appended in the form /export/home/zelda/.MLD..SLD.1 .

Current working directory = /export/home/.MLD.zelda/.SLD.2

Adorned name = /export/home/.MLD.zelda

#include <tsol/label.h>
#include <sys/types.h>

main()
{

int retval;
char *buffer[1025];
char *file = “/export/home/zelda”;
char *string2, *name[1025], *string3, *resolved[1025];
size_t size;

/* Character string with errors to be resolved */
char *resolvefile = “./”;

size = sizeof(buffer);
string2 = (char *)mldgetcwd(buffer, size);
printf(“Current working directory = %s\n", buffer);

retval = adornfc(file, name);
printf("Adorned name = %s\n", name);

string3 = (char *)mldrealpath(resolvefile, resolved);
printf("Real path = %s\n", resolved);

}

180 Trusted Solaris Developer’s Guide—August 1998

8

Real path = /export/home/.MLD.zelda/.SLD.2

This example gets attribute information for the /export/home/zelda MLD.
In the printf(1) statements, the stat(2TSOL) system call macros test
whether the MLD is a directory or regular file, and the time returned in
seconds is converted to a human-readable time with the ctime(3C) routine
(see the ctime(3C) man page).

The printf statements print the following:

Is file system object a directory? = 1

Is file system object a regular file? = 0

Number of links = 6

Owner’s user ID = 29378

Owner’s group Id = 10

Last access time = Wed May 28 10:58:25 1997

#include <tsol/label.h>
#include <sys/stat.h>

main()
{

int retval;
struct stat statbuf;
char *file = “/export/home/zelda”;

retval = mldstat(file, &statbuf);

printf("Is file system object a directory? = %d\n", S_ISDIR(statbuf.st_mode));

printf("Is file system object a regular file? = %d\n", S_ISREG(statbuf.st_mode));

printf("Number of links = %d\n", statbuf.st_nlink);
printf("Owner’s user ID = %d\n", statbuf.st_uid);
printf("Owner’s group Id = %d\n", statbuf.st_gid);
printf("Last access time = %s\n", ctime(&statbuf.st_atime));
printf("Last modify time = %s\n", ctime(&statbuf.st_mtime));
printf("Last status change = %s\n", ctime(&statbuf.st_ctime));

}

Multilevel Directories 181

8

Last modify time = Wed May 28 09:39:18 1997

Last status change = Wed May 28 09:39:18 1997

Using Path Names with Adornments
UNIX system calls that accept a path name such as open(2TSOL) and
creat(2TSOL) go to the SLD at the same sensitivity label as the process
unless the fully adorned path name is passed instead of a regular path name.
The fully adorned path name includes the MLD adornment and the SLD
directory name as shown in the code example. Note that a process cannot
create files or directories in either an MLD or SLD with the mkdir(1TSOL)
system call.

The mandatory access and discretionary access controls described in “Security
Policy” on page 13 apply.

182 Trusted Solaris Developer’s Guide—August 1998

8

Open a File

In this example, the process is running at Confidential with a clearance of Top
Secret. The Confidential process needs the file_mac_search privilege in its
effective set to access the SLD at Top Secret. Because the file is opened for
writing and a write-up is allowed by the security policy, no other privileges are
needed assuming the operation passes all discretionary access checks.

The printf statements print the following.

File descriptor for regular path = 3

File descriptor for adorned path = 4

Create a file

In this example, the process is running at Confidential with a clearance of Top
Secret. The Confidential process needs the file_mac_search privilege in its
effective set to access the SLD at Top Secret. If afile does not already exist in

#include <tsol/label.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main()
{

int filedes;

/* Open a file in the SLD at which the process is running */
filedes = open(“/export/home/zelda/afile”, O_WRONLY);
printf(“File descriptor for regular path = %d\n”, filedes);

/* Open a file in the Top Secret SLD */
/* Turn file_mac_search on in the effective set */

filedes = open(“/export/home/.MLD.zelda/.SLD.3/afile”, O_WRONLY);
/* Turn file_mac_search off */

printf(“File descriptor for adorned path = %d\n”, filedes);
}

Multilevel Directories 183

8

the Top Secret SLD, the process needs the file_mac_write privilege because
the process sensitivity label does not equal the SLD sensitivity label. If afile
already exists, the file_mac_write privilege is not needed.

The printf statements print the following.

File descriptor for regular path = 3

File descriptor for adorned path = 4

#include <tsol/label.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main()
{

int filedes;

/* Create a file in the SLD at which the process is running */
filedes = creat(“/export/home/zelda/afile”, 660);

printf(“File descriptor for regular path = %d\n”, filedes);

/* Create a file in the Top Secret SLD */
/* Turn file_mac_search on in the effective set */

filedes = creat(“/export/home/.MLD.zelda/.SLD.3/afile”, 660);
/* Turn file_mac_search off */

printf(“File descriptor for adorned path = %d\n”, filedes);
}

184 Trusted Solaris Developer’s Guide—August 1998

8

185

Application Auditing 9

Trusted Solaris 2.5.1 auditing lets administrators monitor user actions to detect
suspicious or abnormal patterns of system usage. Auditing concepts,
terminology, and administration procedures are fully covered in Trusted Solaris
Audit Administration. This chapter describes how to use the
auditwrite(3TSOL) routine in a third-party application to create and log
third-party user events.

Third-Party User Activities page 186

Privileged Operations page 187

Header Files and Libraries page 187

Declaration and Argument Types page 187

Preliminary Setup for Code Examples page 188

Creating an Audit Record page 192

Making Invalid and Valid Calls page 192

Creating a Minimum Audit Record page 193

Appending Audit Record Information with Information Label page 196

Queueing Audit Records page 198

Specifying a Preselection Mask page 200

Creating Audit Records in Parallel page 202

Using the Save Area page 203

Using the Server Area and Adding a Sensitivity Label page 205

186 Trusted Solaris Developer’s Guide—August 1998

9

Third-Party User Activities
Third-party applications audit user activities by creating third-party audit
events and audit classes specific to the application and generating audit
records with those events using the auditwrite(3TSOL) routine.

• Third-party audit event – An event created and added to the
/etc/security/audit_event file. The audit_event(4TSOL) man page
describes how this file stores event definitions in the numbers 32768 to
65535 and specifies audit event to audit class mappings.

• Third-party audit class – A logical grouping of audit events defined in the
/etc/security/audit_class file (audit_class(4TSOL)), and used for
preselection and postselection (see audit_control(4TSOL) man page).

The application programmer defines the third-party audit events and classes
used in third-party applications, and the system administrator at the site using
the application sets up the above-referenced files to recognize the new events
and classes.

Within the application, audit events are generated and logged to the audit trail
in records. Audit records contain tokens that provide the audit event and other
relevant information such as the process ID of the process that generated the
event, the machine on which the event occurred, and the date and time. The
audit trail is the place where audit records generated by the kernel, system
applications, and third-party applications are stored in files. Figure 9-1
presents these elements and their relationships.

Figure 9-1 Audit Trail, Files, Records, and Tokens

Token

Token

Token

Record

Record

Record

Record

File

File

File

File

Trail

Application Auditing 187

9

It is up to you to decide exactly what information is logged to the audit record
by deciding which tokens are passed to the auditwrite(3TSOL) routine.
Audit records should be generated in third-party applications in the highest
possible interface layer where the most precise information is available, and
there is more opportunity to limit the generation of less useful audit records.

Privileged Operations
The process needs the proc_audit_appl privilege in its effective set to call
the auditwrite(3TSOL) routine and log third-party audit records to the
audit trail. It is also required for any operations that get auditing information
such as the audit state.

Header Files and Libraries
To use the programming interface described in this chapter, you need the
following header file:

#include <bsm/auditwrite.h>

The examples in this chapter compile with the following libraries:

-DTSOL -lbsm -lsocket -lnsl -lintl -ltsol

Declaration and Argument Types
The auditwrite(3TSOL) routine generates and logs third-party audit events.

This library routine takes a variable number of arguments of the following
three kinds. Refer to the auditwrite(3TSOL) man page for a complete listing
of argument commands and their meaning. The code examples in this chapter
use many of the possible argument commands.

int auditwrite(..., AW_END);

188 Trusted Solaris Developer’s Guide—August 1998

9

• Control commands – control the behavior of the auditwrite(3TSOL)
routine by, for example, directing the auditwrite(3TSOL) routine to add
information to a partially built audit record (AW_APPEND) or send a
complete audit record to the audit trail (AW_WRITE). The parameter list must
have exactly one control command.

• Token commands – are typically specified when the control command is
either AW_WRITE or AW_APPEND. Token commands describe the attributes
that make up an audit record such as the event that occurred (AW_EVENT), a
text message (AW_TEXT), or the path name leading to a file system object
where the event occurred (AW_PATH). An attribute command is always
followed by one or more value parameters that supply values of the type
indicated by the attribute parameter. The control command and attribute
commands can appear in any order in the parameter list.

• Terminator command – AW_END is always positioned at the end of the
parameter list to tell the auditwrite(3TSOL) routine to stop parsing.

Preliminary Setup for Code Examples
A certain amount of administrative setup needs to occur to create third-party
events and classes, and view audit records logged to the audit trail. The
following is a summary of the administrative setup required for the code
examples in this chapter to work. Trusted Solaris Audit Administration explains
these and other administrative procedures in detail.

First, check that auditing is enabled and turned on. It is enabled and on by
default, but you can check with the auditconfig(1MTSOL) command and
the getcond option. Run this command from the profile shell with the
sys_audit or proc_audit_appl privilege. The setcond option turns
auditing on and off.

phoenix% auditconfig -getcond

Audit File Setup

This section shows you how to set up the audit_class , audit_event , and
audit_control files. The best way to edit these files is as follows:

1. Assume the Security administrator role.

2. Launch the Application Manager.

Application Auditing 189

9

3. Double click the system administration icon.

4. Double click the Audit Classes, Audit Events, or Audit Control action.

5. Edit each file as described below.

190 Trusted Solaris Developer’s Guide—August 1998

9

Audit Classes and Audit Events

Create the third-party audit class ec and two audit events,
AUE_second_signature and AUE_second_signature_verify . See the
audit_class(4TSOL) and audit_event(4TSOL) man pages for more
information on these files.

• Third-party audit classes are added to the /etc/security/audit_class
file in the form mask:name:description as follows:

0x00008000:ec:example class

• Third-party audit events are added to the /etc/security/audit_event
file and assigned one of the numbers reserved for third-party events from
32768 to 65535. This file also contains the audit event to audit class
mapping. The following lines add two events and map them to the example
(ec) class:

32768:AUE_second_signature:second signature requested:ec

32769:AUE_second_signature_verify:second signature
added:ec

Audit Control (Process Preselection Mask)

The process preselection mask specifies the audit classes to be audited by the
process. To set up the preselection mask to audit for third-party events, edit the
/etc/security/audit_control flag parameter as follows to audit events
in the example (ec) class for success and failure.

flags:ec

Settings in audit_control(4TSOL) are global to all users in the system. To
make a setting specific to a user, edit the /etc/security/audit_user file
(the Audit Users action) as follows:

zelda:ec

See the audit_control(4TSOL) and audit_user(4TSOL) man pages for
more information on these files and settings. Log out and log back in for the
newly defined process preselection mask to take effect. You could also use
auditconfig(1MTSOL) with the -setpmask option to set the process
preselection mask on any existing processes, but it is probably easier to set one
of these files and log out and log back in once.

Application Auditing 191

9

Viewing the Audit Trail Setup

All audit records including audit records generated by the
auditwrite(3TSOL) routine are logged to the audit trail in a series of binary
files at ADMIN_HIGH. The location of the audit files is set in the
/etc/security/audit_control file, and by default is /var/audit . The
praudit(1MTSOL) command reads the audit trail files and interprets the
binary data as human-readable audit records.

Assume a role with the tail(1) command and the praudit(1MTSOL)
command with the proc_audit_appl and proc_audit_tcb privileges.
Open a terminal at ADMIN_HIGH, change directory to where the audit records
are stored, and execute the tail and praudit commands as shown to view
the current audit file.

Note – This syntax works when there is only one *not_terminated* file. If
there are others, delete the older ones before executing this command.

The audit daemon logs audit records to the audit partition until they reach
their maximum capacity and then starts a new file. The file currently written to
is the not_terminated audit file. View the /etc/security/audit_data
file to determine which file is current.

Executable Code Setup

Put the proc_audit_appl privilege in the forced and allowed privilege sets
of the executable file containing the example source code by executing
setfpriv(1TSOL) from the profile shell with the file_setpriv privilege.
“Assigning File Privileges using a Script” on page 333 explains how to do this
with a script.

phoenix% cd /var/audit
phoenix% tail -0f *not_terminated* | praudit

phoenix% setfpriv -s -f proc_audit_appl -a proc_audit_appl executable.file

192 Trusted Solaris Developer’s Guide—August 1998

9

Creating an Audit Record
An audit record is created by passing one control command and one or more
token commands to the auditwrite(3TSOL) routine in one call (AW_WRITE)
or several calls (AW_APPEND for each call with AW_WRITE in the last call). An
audit record must have an AW_EVENT token and should have an AW_RETURN
token to indicate which event occurred and whether the event succeeded or
failed. See “Return Token” on page 195 for more information.

Making Invalid and Valid Calls

These examples show the different audit records logged to the audit trail when
a call to the auditwrite(3TSOL) routine is invalid and valid. The structure
of audit records and tokens is described in “Token Structure” on page 195.

Invalid Call

If you use more than one control command, or omit the control command, or
do not include the AW_END terminator command, your code compiles and runs
and a record is logged to the audit trail to record the invalid call to the
auditwrite(3TSOL) routine. Note that the event is logged to the trail only if
the process preselection mask audits the AUE_auditwrite event for failure.

This example shows an invalid auditwrite(3TSOL) routine call that omits
the AW_END terminator command and the resulting audit record. The header
files for the examples in the rest of this chapter are shown in this first program.

#include <bsm/auditwrite.h>
#include <tsol/label.h>
#include <sys/param.h>
#include <bsm/libbsm.h>
#include <tsol/priv.h>

main()
{
/* Invalid call missing AW_END. Do not do it this way. */

auditwrite(AW_EVENT, “AUE_second_signature”, AW_WRITE);
}

Application Auditing 193

9

An invalid call is logged to syslog , and if the invalid record has enough
information, it is also logged to the audit trail. In the example, the invalid call
is logged to syslog only with the following information:

header, 194,2,auditwrite(3) fail,,Fri Sep 06 10:11:33 1996,
+ 179952500 msec

text, auditwrite(3) aborted: aw_errno = 6 = Command
invalid, errno = 0 = no such device or address

subject,zelda,zelda,staff,zelda,staff,1774,348,0 0 phoenix

slabel,C

return,failure,-1

Valid Call

This call to the auditwrite(3TSOL) routine includes the AW_END command
and logs the AUE_second_signature event to the audit trail.

The viewing terminal shows this record:

header, 4022,2,second signature requested,,Fri Sep 06
10:16:49 1996 + 969954500 msec

subject,zelda,zelda,staff,zelda,staff,1774,348,0 0 phoenix

slabel,C

return,success,0

Creating a Minimum Audit Record

An audit record consists of a sequence of tokens. Each token of the record
starts with a token type followed by the token values. You can put whatever
tokens and values you want into an audit record by passing the appropriate
token commands to the auditwrite(3TSOL) routine.

/* Valid call that includes AW_END */
auditwrite(AW_EVENT, “AUE_second_signature”, AW_WRITE, AW_END);

194 Trusted Solaris Developer’s Guide—August 1998

9

At a minimum, every audit record has the header, subject, slabel, and return
tokens. The auditwrite(3TSOL) routine call from the previous example
generates the minimum audit record by specifying the AW_EVENT token
command only.

Note – Remember the proc_audit_appl privilege is needed in the effective
set whenever you call auditwrite(3TSOL) . The code comments indicate
where privilege bracketing as described in Chapter 3, “Privileges” should take
place. The remaining examples will not show the comments, because it is
assumed you understand to do this.

The output lines below have one token each. The first word on each line is the
token ID followed by the token components. The description text defined in
/etc/security/audit_event (second signature requested) is added to the
header token.

By default the subject, slabel (sensitivity label), and return tokens are placed in
the audit record even though the AW_SUBJECT, AW_SLABEL, and AW_RETURN
token commands were not passed to this auditwrite(3TSOL) routine call.

• By default, the subject and slabel token values contain the security attribute
information and sensitivity label of the process.

• By default, the return token has a return value of 0 (success).

If you pass AW_SUBJECT, AW_SLABEL, or AW_RETURN to the
auditwrite(3TSOL) routine, you must explicitly define the token values.
Auditing preselection and post-selection rely on the return token value to
select audit records by success or failure. Always include the return token and
the appropriate success or failure value in an audit record as described in
“Return Token” on page 195.

header, 4022,2,second signature requested,,Fri Sep 06
10:16:49 1996 + 969954500 msec

subject,zelda,zelda,staff,zelda,staff,1774,348,0 0 phoenix

/* Turn proc_audit_appl on in the effective set */
auditwrite(AW_EVENT, “AUE_second_signature”, AW_WRITE, AW_END);
/* Turn the proc_audit_appl privilege off */

Application Auditing 195

9

slabel,C

return,success,0

Token Structure

Trusted Solaris Audit Administration presents the structure for every token and
byte sizes for each component. To help you get an idea of how to read the
records and determine record size if space is a concern, the subject token
structure is presented here.

Return Token

The Return token is AW_RETURN and takes a number (success or fail) and a
return value. By default the return token indicates success and shows a return
value of 0. You will want to set the return token value just before passing the
token to the auditwrite(3TSOL) routine.

The return value affects whether or not the audit record is logged to the audit
trail. If the process preselection mask audits the class to which the event
belongs for failures only, a successful event is not logged. If the process
preselection mask audits the class to which the event belongs for success only,
a failed event is not logged. If the process preselection mask audits the class to
which the event belongs for success and failure, successful and failed events
are both logged. Also, the auditreduce(1MTSOL) post-selection program
selects audit records by the success or failure value in the record’s return token.

This example creates part of an audit record showing that a second signature
was requested by the system. The signature_request () function attempts to
obtain the signature and returns information on the success or failure of the

Token
ID

Audit
ID

User
ID

Group
ID

Real user
ID

Real group
ID

Process
ID

Session
ID

Device
ID

Machine
ID

subject zelda root other root other 1774 348 0 0 phoenix
1 byte 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

196 Trusted Solaris Developer’s Guide—August 1998

9

attempt and sets the signature_request and retval parameters. The succ_or_fail
parameter is set according to the value in signature_request and it and retval are
passed as values for the AW_RETURN token.

The signature was not obtained and the viewing terminal shows this record:

header,128,2,second signature requested,,Wed Sep 11
10:17:37 1996, + 239969000 msec

text, Second signature needed

return,failure,-2

subject,zelda,zelda,staff,zelda,staff,1905,536,0 0 phoenix

slabel,C

Appending Audit Record Information with Information Label
This example creates an audit record using several calls to the
auditwrite(3TSOL) routine by appending information (AW_APPEND) to the
internal record buffer and writing to the audit trail (AW_WRITE) when the

char succ_or_fail;
u_int retval;

auditwrite(AW_TEXT, “Second signature needed,”
AW_APPEND, AW_END);

if (signature_request() == -1) {
succ_or_fail = -1;
retval = -2;

} else {
succ_or_fail = 0;
retval = 1;

}

auditwrite(AW_EVENT, “AUE_second_signature”,
AW_RETURN succ_or_fail, retval,
AW_WRITE, AW_END);

Application Auditing 197

9

record is fully constructed. Complete and partial audit records not written to
the audit trail can be discarded with the AW_DISCARD token (not shown in the
example).

The viewing terminal shows this record. For security reasons, the information
label is written in hexadecimal. You can convert hexadecimal to its ASCII
equivalent with the hextoalabel(1MTSOL) command.

header,204,2,second signature requested,,Mon Sep 09
10:26:28 1996, + 5799540000 msec

clearance,TS A B

ilabel,0xef7d731c00000000000000040000000400000007ef7f942800
00ffff1d8000000
000000000000000000000000000

subject,zelda,zelda,staff,zelda,staff,6098,5879,0 0 phoenix

slabel,C

return,success,0

int err;
bclear_t clearance;
bilabel_t inflabel;

getclearance(&clearance);
stobil(“c a”, &inflabel, NEW_LABEL, &err);
auditwrite(AW_EVENT, “AUE_second_signature”, AW_APPEND, AW_END);
auditwrite(AW_CLEARANCE, &clearance, AW_APPEND, AW_END);
auditwrite(AW_ILABEL, &inflabel, AW_APPEND, AW_END);
auditwrite(AW_WRITE, AW_END);

198 Trusted Solaris Developer’s Guide—August 1998

9

Queueing Audit Records
To minimize system call overhead, audit records can be queued (AW_QUEUE)
and written in one call to the auditwrite(3TSOL) routine. In this example,
audit queueing is turned on in the first call to the auditwrite(3TSOL)
routine and set to flush entire records when the queue contains 200 bytes of
audit records. You can force the queue to flush with the AW_FLUSH token, and
the queue automatically flushes whenever it is turned off with the
AW_NOQUEUE token.

In this example, the queue flushes manually after the second record is added in
spite of the fact that the queue does not yet have 200 data bytes. The queue
flushes again at the end when queueing is turned off.

The byte limit does not cause partial records to be written to the audit trail. If
the queue holds 200 bytes, all records from all calls to the
auditwrite(3TSOL) routine are flushed in their entirety when the limit is
reached including any data bytes over 200 that make a complete audit record.

/* Set up queue to flush every 140 bytes */
auditwrite(AW_QUEUE, 200, AW_END);

/* Write records to the queue */
auditwrite(AW_EVENT, “AUE_second_signature”,

AW_TEXT, "First record in queue",
AW_WRITE, AW_END);

auditwrite(AW_EVENT, “AUE_second_signature_verify”,
AW_TEXT, "Second record in queue",
AW_WRITE, AW_END);

/* Flush the queue manually */
auditwrite(AW_FLUSH, AW_END);

/* Add another record */
auditwrite(AW_EVENT, “AUE_second_signature”,

AW_TEXT, "Third record in queue",
AW_WRITE, AW_END);

/* End queueing and flush */
auditwrite(AW_NOQUEUE, AW_END);

Application Auditing 199

9

The viewing terminal shows the following audit records:

header,204,3,second signature requested,,Mon Sep 09
10:26:28 1996, + 79950000 msec

text,First record in queue

subject,zelda,zelda,staff,zelda,staff,6098,5879,0 0 phoenix

slabel,C

return,success,0

header,204,4,second signature added,,Mon Sep 09 10:26:28
1996, + 79950000 msec

text,Second record in queue

subject,zelda,zelda,staff,zelda,staff,6098,5879,0 0 phoenix

slabel,C

return,success,0

header,204,5,second signature requested,,Mon Sep 09
10:26:28 1996, + 119947000 msec

text,Third record in queue

subject,zelda,zelda,staff,zelda,staff,6098,5879,0 0 phoenix

slabel,C

return,success,0

200 Trusted Solaris Developer’s Guide—August 1998

9

Specifying a Preselection Mask
Audit records are selected according to a process preselection mask set for the
execution environment as explained in “Audit Control (Process Preselection
Mask)” on page 190. In addition, the auditwrite(3TSOL) routine has an
AW_PRESELECT token that takes an audit mask structure for its value. This
token causes subsequent calls to auditwrite(3TSOL) to audit classes based
on the settings in the audit mask value until the AW_NOPRESELECT token is
passed to auditwrite(3TSOL) telling it to use the environment preselection
mask.

This example creates a process preselection mask to audit the example class
(ec) for failures and passes it to the auditwrite(3TSOL) routine with
AW_PRESELECT token to put it into effect. Now, only failed events belonging to

Application Auditing 201

9

the example class are logged to the audit trail. When preselection is turned off,
the environment process preselection mask is restored, which for the purposes
of these examples, audits events in the example class for success and failure.

char succ_or_fail;
u_int retval;
au_mask_t mask;

/* Create mask to audit failed events only in the ec class */
getauditflagsbin(“-ec”, &mask);

/* Use new audit preselection mask */
auditwrite(AW_PRESELECT, &mask, AW_END);

/* Code to generate audit records */
auditwrite(AW_TEXT, “Second signature needed,” AW_APPEND, AW_END);
if (signature_request() == -1) {

succ_or_fail = -1;
retval = -2;

} else {
succ_or_fail = 0;
retval = 1;

}
auditwrite(AW_EVENT, “AUE_second_signature”, AW_RETURN succ_or_fail, retval,

AW_WRITE, AW_END);

/* Restore environment preselection mask */
/* Events in the ec class are again audited for success and failure */

auditwrite(AW_NOPRESELECT, AW_END);

202 Trusted Solaris Developer’s Guide—August 1998

9

Creating Audit Records in Parallel
Audit records are created with the default record descriptor unless record
descriptors (AW_GETRD) are used (similar to file descriptors). This example uses
record descriptors ad1 and ad2 to create two records in parallel, writes ad2 to
the audit trail, and discards (AW_DISCARDRD) ad1. AW_DEFAULTRD (shown in
the next example) switches record creation to the default record descriptor.

The viewing terminal shows the following record:

header,141,2,second signature requested,,Wed Sep 11
11:16:29 1996, + 2399710000 msec

path,/export/home/zelda/document_4_sig_ver

subject,zelda,zelda,staff,zelda,staff,1983,536,0 0 phoenix

slabel,C

return,success,0

int ad1, ad2;
/* Get and use a record descriptor */

auditwrite(AW_GETRD, &ad1, AW_END);
auditwrite(AW_USERD, ad1, AW_END);

/* Append record information to the memory location at ad1 */
auditwrite(AW_EVENT, “AUE_second_signature”, AW_TEXT, "ad1 one", AW_APPEND, AW_END);

/* Get second record descriptor */
auditwrite(AW_GETRD, &ad2, AW_END);

/* Append record information to ad1 */
auditwrite(AW_PATH, "/export/home/zelda/document_4_sig_req", AW_APPEND, AW_END);

/* Use ad2 */
auditwrite(AW_USERD, ad2, AW_END);

/* Append and write record at ad2 */
auditwrite(AW_PATH, "/export/home/zelda/document_4_sig_ver", AW_APPEND, AW_END);
auditwrite(AW_EVENT, “AUE_second_signature_verify”, AW_WRITE, AW_END);

/* Discard ad1 */
auditwrite(AW_DISCARDRD, ad1, AW_END);

Application Auditing 203

9

Using the Save Area
You can turn on a save area (AW_SAVERD) and store tokens there to be
prepended to records before they are written to the audit trail. Getting and
using a save area is similar to getting and using a record descriptor. The save
areas is turned off with AW_NOSAVE.

int ad1, ad2, ad3;
/* Turn on and use save area ad1 */

auditwrite(AW_SAVERD, &ad1, AW_END);
auditwrite(AW_USERD, ad1, AW_END);

/* Put text at ad1 to be prepended to other records */
auditwrite(AW_TEXT, "Prepended Text", AW_APPEND, AW_END);

/* Use the default record descriptor and write an event there */
auditwrite(AW_DEFAULTRD, AW_END);
auditwrite(AW_EVENT, “AUE_second_signature”, AW_TEXT, "Default record",

AW_WRITE, AW_END);

/* Get and use record descriptor ad2 */
auditwrite(AW_GETRD, &ad2, AW_END);
auditwrite(AW_USERD, ad2, AW_END);

/* Write an event to ad2 */
auditwrite(AW_EVENT, “AUE_second_signature”, AW_TEXT, "ad2 record", AW_WRITE, AW_END);

/* Discard the save area */
auditwrite(AW_NOSAVE, AW_END);

/* Get and use record descriptor ad3 */
auditwrite(AW_GETRD, &ad3, AW_END);
auditwrite(AW_USERD, ad3, AW_END);

/* Write an event to ad3 */
auditwrite(AW_EVENT, “AUE_second_signature_verify”, AW_TEXT, "ad3 with no prepend",

AW_WRITE, AW_END);

204 Trusted Solaris Developer’s Guide—August 1998

9

The viewing terminal shows these records:

header,132,2,second signature requested,,Wed Sep 11
11:16:29 1996, + 2399710000 msec

text,Prepended Text

text,Default record

subject,zelda,zelda,staff,zelda,staff,1983,536,0 0 phoenix

slabel,C

return,success,0

header,128,2,second signature requested,,Wed Sep 11
11:16:29 1996, + 2399710000 msec

text,Prepended Text

text,ad2 record

subject,zelda,zelda,staff,zelda,staff,1983,536,0 0 phoenix

slabel,C

header,125,2,second signature added,,Wed Sep 11 11:16:29
1996, + 2399710000 msec

text,ad3 with no prepend

subject,zelda,zelda,staff,zelda,staff,1983,536,0 0 phoenix

slabel,C

Application Auditing 205

9

Using the Server Area and Adding a Sensitivity Label
The AW_SERVER token turns on the trusted server option, which indicates the
calling process is a server. When the trusted server is enabled, the
auditwrite(3TSOL) routine automatically generates header and return
tokens, but not the subject and slabel tokens automatically generated when the
trusted server is not enabled (see “Creating a Minimum Audit Record” on
page 193). When the trusted server is enabled, you must explicitly pass the
AW_SUBJECT and AW_SLABEL tokens to include this information in the record.

This example turns on the trusted server option, writes a record, writes another
record including the sensitivity label, then turns off the trusted server option
and writes a final record so you can see the difference. The sys_trans_label
privilege is needed to translate the Secret sensitivity label because the process
running at Confidential does not dominate Secret.

bslabel_t senslabel;

/* Create a sensitivity label of Secret */‘
stobsl(“Secret”, &senslabel, NEW_LABEL, &error);

/* Turn on the trusted server option */
auditwrite(AW_SERVER, AW_END);

/* Write a record to the audit trail */
auditwrite(AW_EVENT, “AUE_second_signature”,

AW_TEXT, "Some text",
AW_WRITE, AW_END);

/* Write a record to the audit trail with the sensitivity label */
auditwrite(AW_EVENT, “AUE_second_signature”,

AW_TEXT, "Sensitivity label added",
AW_SLABEL, &senslabel,
AW_WRITE, AW_END);

/* Turn off the trusted server option */
auditwrite(AW_NOSERVER, AW_END);

/* Write a final record to the audit trail */
auditwrite(AW_EVENT, “AUE_second_signature”,

AW_TEXT, "Some more text",
AW_WRITE, AW_END);

206 Trusted Solaris Developer’s Guide—August 1998

9

The viewing terminal shows these records:

header,38,2,second signature requested,,Wed Sep 11 12:46:41
1996 + 309940000 msec

text,Some text

return,success,0

header,38,2,second signature requested,,Wed Sep 11 12:46:41
1996 + 309940000 msec

text,Sensitivity label added

slabel,S

return,success,0

header,112,2,second signature requested,,Wed Sep 11
12:46:41 1996 + 799939500 msec

text,Some more text

return,success,0

subject,zelda,zelda,staff,zelda,staff,420,286,0 0 phoenix

slabel,C

return,success,0

Application Auditing 207

9

Argument Information
The AW_ARG token lets you write argument information to an audit record.
This example writes the return value for the signature_request () function,
which is really the first and only parameter to the return () call inside the
function. The argument number follows the AW_ARG token, which is followed
by descriptive text and the argument value.

The viewing terminal shows this record where the return value is written as
0xffffffff:

header,137,3,second signature requested,,Fri Mar 21
08:51:19 1997, + 329950500 msec

argument,1,0xffffffff,Signature request return value

subject,zelda,zelda,staff,zelda,staff,420,286,0 0 phoenix

slabel,C

return,success,0

retval = signature_request();
auditwrite(AW_EVENT,

“AUE_second_signature”,
AW_ARG, 1,
“Signature request return value”,
retval);

208 Trusted Solaris Developer’s Guide—August 1998

9

Command Line Arguments
The AW_EXEC_ARGS token lets you place the command line arguments stored
in argv in the audit record.

The viewing terminal shows this record when the program is executed as
follows: program Hello World! :

header,120,3,second signature requested,,Fri Mar 21
09:31:01 1997, +989946000 msec

exec_args,3,

program,Hello World!

subject,zelda,zelda,staff,zelda,staff,420,286,0 0 phoenix

slabel,C

return,success,0

main(argc, argv)
int argc;
char **argv;
{
/* Application code */
/* ... */

auditwrite(AW_EVENT,
“AUE_second_signature”,
AW_EXEC_ARGS, argv
AW_WRITE, AW_END);

}

Application Auditing 209

9

Privilege Sets
The AW_PRIVILEGE token places a privilege set into the audit record. This
example logs the allowed privilege set for the specified executable file to the
audit record.

The viewing terminal shows this record:

header,116,3,second signature requested,,Fri Mar 21
10:12:21 1997, + 809950000 msec

privilege,allowed,proc_audit_appl

subject,zelda,zelda,staff,zelda,staff,420,286,0 0 phoenix

slabel,C

return,success,0

priv_set_t allowed_set;

PRIV_EMPTY(&allowed_set);

retval = getfpriv(“/export/home/zelda/program”,
PRIV_ALLOWED,
allowed_set);

auditwrite(AW_EVENT,
“AUE_second_signature”,
AW_PRIVILEGE, AU_PRIV_ALLOWED, &allowed_set,
AW_WRITE, AW_END);

210 Trusted Solaris Developer’s Guide—August 1998

9

Interprocess Communications Identifier
The AW_IPC token places the specified interprocess communications (IPC)
identifier into the audit record. This example creates a semaphore set and puts
the semaphore identifier into the audit record.

The viewing terminal shows this record where 4 is the semaphore ID:

header,104,3,second signature requested,,Fri Mar 21
12:45:21 1997, + 339949000 msec

IPC,sem,65539

subject,zelda,zelda,staff,zelda,staff,420,286,0 0 phoenix

slabel,C

return,success,0

int semid;

semid = semget(IPC_PRIVATE, 3, IPC_CREAT);

auditwrite(AW_EVENT,
“AUE_second_signature”,
AW_IPC, AT_IPC_SEM, semid,
AW_WRITE, AW_END);

211

Accessing User and Profile
Database Entries 10

This chapter describes the programming interfaces that read entries in the
tsoluser(4TSOL) (user) and tsolprof(4TSOL) (profile) databases. Entries
are stored in these databases when the system administrator sets up users and
profiles using the User Manager and Profile Manager graphical user interfaces.

• The user database contains login, profile, role, workstation, label, clearance,
and process security attribute information for all users in the system.

• The profile database contains information on the CDE actions, commands,
and authorizations assigned to a user or role in that user’s or role’s profile.

Data Types, Header Files, and Libraries page 212

User Entries page 212

Profile Entries page 213

Linked List of Actions page 214

Linked List of Commands page 214

Programming Interface Declarations page 214

Getting User and Profile Entries page 218

Enumerating through the User Database page 222

212 Trusted Solaris Developer’s Guide—August 1998

10

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header files:

#include <tsol/user.h>

#include <tsol/prof.h>

The examples in this chapter compile with the following libraries:

-ltsoldb -lnsl -lcmd -ltsol

User Entries

The userent_t structure contains information about an entry in the
tsoluser(4TSOL) database. The user database entry routines return data in a
variable of this type.

Field Description
char *name; User name for this entry
char *lock; Whether account is locked
char *gen; Method of password generation
char *profiles; User profiles used
char *roles; Assumable roles
char *idletime; Minutes workstation may be idle
char *idlecmd; Command when idle time reached
char *labelview; Internal or external label view
char *labeltrans; Not used at this time.
char *labelmin; User’s minimum label
char *labelmax; User’s maximum label (clearance)
char *usertype; Normal user, normal role, or administrative role
char *res1; Reserved for future use
char *res2; Reserved for future use
char *res3; Reserved for future use

Accessing User and Profile Database Entries 213

10

Profile Entries

There are two types of interfaces for accessing the tsolprof(4TSOL)
database entries. One set (get*str ()) returns an entry in a profstr_t
structure of pointers to strings; the other set (get*ent ()) returns information
in a profent_t structure where command and action information uses a
linked list. Linked lists are easier to manipulate if you want to step through the
list of commands or actions. However, if you do not need to examine the data
closely (you are only interested in the description of the profile, for example),
use the faster get*str () routines.

Returns All Strings

The profstr_t structure contains information about an entry in the
tsolprof database.

Returns Commands and Actions in Linked Lists

The profent_t structure contains information about an entry in the
tsolprof(4TSOL) database. The action and command information is
returned in a linked list.

Field Description
char *name; Profile name for this entry
char *desc; Profile description
char *auths; Authorization IDs separated by commas
char *actions; CDE action descriptions separated by semicolons
char *cmds; Command descriptions separated by semicolons

Field Description
char *name; Profile name for this entry
char *desc; Profile description
char *auths; Authorization IDs separated by commas
profact_t *actions; Linked list of CDE actions in profile
profcmd_t *cmds; Linked list of commands in profile

214 Trusted Solaris Developer’s Guide—August 1998

10

Linked List of Actions

The profact_t structure contains a linked list of actions.

Linked List of Commands

The profcmd_t structure contains a linked list of commands.

Programming Interface Declarations
Library routines are available to access user clearance and profile information
in the tsoluser(4TSOL) and tsolprof(4TSOL) databases. The src
parameter value in many of the interfaces tells where to get the database
information:

• TSOL_DB_SRC_SWITCH – Use the /etc/nsswitch.conf file to determine
the source for the database information. This flag most commonly used.

• TSOL_DB_SRC_NISPLUS – Read from the tsoluser or tsolprof NIS+
databases.

Field Description
char *actname Action name
char *argclass Argument class
char *argtype Argument type
char *argmode Argument mode
char *argcount Argument count
char *privs Privileges
char *euid Effective user ID
char *egid Effective group ID
char *min Minimum label in assigned label range
char *max Maximum label in assigned label range

Field Description
char *dir Directory where the commands reside
char *file Command file names
char *privs Privileges
char *euid Effective user ID
char *egid Effective group ID
char *min Minimum label in assigned label range
char *max Maximum label in assigned label range

Accessing User and Profile Database Entries 215

10

• TSOL_DB_SRC_FILES – Read from the /etc/security/tsol/tsoluser
or /etc/security/tsol/tsolprof files.

Get User Entries

These routines get a user’s entry in the tsoluser database by either the user
name or user ID. Refer to the getuserent(3TSOL) man page.

Enumerate User Entries

These routines go to the beginning of and iterate through the tsoluser
database. Refer to the getuserent(3TSOL) man page.

Free Memory Allocated for User Entries

This routine frees the memory allocated for the reentrant routines
getuserentbyname(3TSOL) , getuserentbyuid(3TSOL) , and
getuserent(3TSOL) . Refer to the getuserent(3TSOL) man page.

userent_t *getuserentbyname(char *user, int src);
userent_t *getuserentbyuid(uid_t uid, int src);

/* Call this routine before the first call to getuserent() */
void setuserent(int stayopen, int src);

/* Returns the first entry in the user database, and */
/* subsequent entries for every call thereafter. */

userent_t *getuserent(int src);

/* End processing
void enduserent(int src);

void free_userent(userent_t *userent);

216 Trusted Solaris Developer’s Guide—August 1998

10

Get Profile Entries

These routines get an entry in the tsolprof(4TSOL) database by the profile
name. The getprofentbyname(3TSOL) routine returns information on
actions and commands in a linked list, which provides more detailed
information on actions and commands than is returned by the
getprofstrbyname(3TSOL) routine. Refer to the getprofent(3TSOL) and
getprofstr(3TSOL) man pages.

Enumerate Profile Entries

These routines go to the beginning of and iterate through the tsolprof
database. See the getprofent(3TSOL) and getprofstr(3TSOL) man
pages.

profstr_t *getprofstrbyname(char *name, int src);
profent_t *getprofentbyname(char *name, int src);

/* Call before the first call to getprofent() */
void setprofstr(int stayopen, int src);
void setprofent(int stayopen, int src);

/* Returns the first entry in the user database, and */
/* subsequent entries for every call thereafter. */

profstr_t *getprofstr(int src);
profent_t *getprofent(int src);

/* End processing
void endprofstr(int src);
void endprofent(int src);

Accessing User and Profile Database Entries 217

10

Free Memory Allocated for Profile Entries

These routines free the memory allocated for the reentrant routines
getprofentbyname(3TSOL) , getprofent(3TSOL) ,
getprofstrbyname(3TSOL) , and getprofstr(3TSOL) . Refer to the
getprofent(3TSOL) and getprofstr(3TSOL) man pages.

void free_profstr(profstr_t *profent);
void free_profent(profent_t *profent);

218 Trusted Solaris Developer’s Guide—August 1998

10

Getting User and Profile Entries
This code example gets user and profile entries for a specified user. The
getuserentbyuid(3TSOL) routine is not shown because it is nearly identical
to the getuserentbyname(3TSOL) routine. The header files and declarations
for the following code segments are provided in the first program.

#include <tsol/user.h>
#include <tsol/prof.h>

main()
{

userent_t *uentry;
profent_t *pentry;
profstr_t *sentry;
char *uname = “zelda”;
char *pname = “All Authorizations”;

uentry = getuserentbyname(uname, TSOL_DB_SRC_SWITCH);
sentry = getprofstrbyname(pname, TSOL_DB_SRC_SWITCH);
pentry = getprofentbyname(pname, TSOL_DB_SRC_SWITCH);

/* Print user database entries */

printf("User name = %s\n”, uentry->name);
printf(User lock = %s\n”, uentry->lock);
printf(User password generation = %s\n”, uentry->gen);
printf(User profiles = %s\n”, uentry->profiles);
printf(User roles = %s\n”, uentry->roles);
printf(User idletime = %s\n”, uentry->idletime);
printf(User idlecmd = %s\n”, uentry->idlecmd);
printf(Label view = %s\n”, uentry->labelview);
printf(User label translation = %s\n”, uentry->labeltrans);
printf(User minimum label = %s\n”, uentry->labelmin);
printf(User maximum label = %s\n”, uentry->labelmax);
printf(User type = %s\n", uentry->usertype);

Accessing User and Profile Database Entries 219

10

 /* Print profile database entries */

printf("Profile name = %s\n". sentry->name);
printf("Description = %s\n", sentry->desc);
printf("Authorizations = %s\n", sentry->auths);
printf("Actions = %s\n", sentry->actions);
printf("Commands = %s \n", sentry->cmds);

printf("Profile Name = %s\n", pentry->name);
printf("Description = %s\n", pentry->desc);
printf("Authorizations = %s\n", pentry->auths);
printf("Directory = %s\n", pentry->cmds->dir);
printf("File = %s\n", pentry->cmds->dir);
printf("Privs = %s\n", pentry->cmds->privs);
printf("EUID = %s\n", pentry->cmds->euid);
printf("GID = %s\n", pentry->cmds->egid);
printf("Min = %s\n", pentry->cmds->min);
printf("Max = %s\n", pentry->cmds->max);
printf("Actname = %s\n", pentry->actions->actname);
printf("Arg class = %s\n", pentry->actions->argclass);

free_userent(uentry);
free_profstr(sentry);
free_profent(pentry);

}

220 Trusted Solaris Developer’s Guide—August 1998

10

User Database Output

The user database printf(1) statement prints the following. Minimum and
maximum labels are always returned in hexadecimal. Use the hexadecimal to
binary and binary to ASCII translation routines in Chapter 6, “Label Code
Examples” if you need this information in another form.

User name = zelda

User lock = open

User password generation = manual

User profiles = All Authorizations,All

User roles = admin,oper,root,secadmin

User idle time = 120

User idle command = lock user

Label view = internal,showil,showsl

User label translation = 0X0000

User Minimum label in hexadecimal =
0x00040c0003fffff
fffffff0000

User Maximum label (clearance) in hexadecimal =
0x0006cc0003fffff
fffffff0000

User type = utnorm

Accessing User and Profile Database Entries 221

10

Profile Database Output

The printf statements in the example code print the
getprofstrbyname(3TSOL) output first followed by the
getprofentbyname(3TSOL) output.

Get Profile String by Name

The printf(1) statements for getprofstrbyname(3TSOL) print the
following.

Profile name = All Authorizations

Description = Grant all authorizations

Authorizations = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36
,37,38,39,40,41,42,43,44,45

Actions = none;*;*;*;*;;;;;

Commands = none;;;;;;

Get Profile Entry by name

The printf(1) statements for getprofentbyname(3TSOL) print the
following.

Profile name = All Authorizations

Description = Grant all authorizations

Authorizations = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36
,37,38,39,40,41,42,43,44,45

Command Information
Directory = none

File = none

Privs =

222 Trusted Solaris Developer’s Guide—August 1998

10

EUID =

GID =

Min =

Max =

Action Information
Actname = none

Arg class = *

Enumerating through the User Database
This example shows how to start at the beginning of the tsoluser(4TSOL)
database and enumerate through the entries one-by-one. At the end, resources
allocated for the enumeration and memory allocated for uentry are freed. The
code for enumerating through the tsolprof(4TSOL) database is not shown
because it is nearly identical.

#include <tsol/user.h>
#include <tsol/prof.h>

main()
{

userent_t *uentry;

/* Set enumerated processing to user database beginning */
setuserent(0, TSOL_DB_SRC_SWITCH);

while((uentry = getuserent(TSOL_DB_SRC_SWITCH)) != NULL) {
/* Process user database entries one-by-one */
}

/* End enumerated processing and deallocate resources */
enduserent(TSOL_DB_SRC_SWITCH);

/* Free memory allocated for uentry */
free_userent(uentry);

}

223

Interprocess Communications 11

Trusted Solaris 2.5.1 enforces mandatory access controls, discretionary access
controls, and information label floating (if information label floating is on for
the system) between communicating processes on the same host and across the
network. This chapter summarizes the interprocess communication (IPC)
mechanisms available on Trusted Solaris 2.5.1 and how access controls,
information label floating, and privileges apply.

Interprocess communications might involve several types of privileges
depending on the type of interprocess communication in use. The following
guidelines can help you know which type of privilege to use. This chapter and
the chapters that follow describe specific privileges in detail. Refer to the
priv_desc(4TSOL) man page for a complete list of privileges with
descriptions.

• Access and ownership controls between processes are overridden by process
privileges such as proc_mac_read and proc_owner .

• Access controls between a process and a file are overridden by file privileges
such as file_mac_read and file_dac_write .

• Access, ownership, and information label controls between a process and a
System V IPC object are overridden by IPC privileges such as
ipc_mac_read , ipc_owner , and ipc_nofloat).

• Access, ownership, and information label controls between two
communication endpoints are overridden by network privileges such as
net_nofloat and net_upgrade_il .

224 Trusted Solaris Developer’s Guide—August 1998

11

Unnamed Pipes
Unnamed pipes form a one-way flow of data between two or more related
processes. Because all processes communicating over a pipe share a common
ancestor, they all have the same user ID, group ID, and sensitivity label
inherited from the ancestor process unless privileges have been used to change
those attributes. No mandatory or discretionary access checks are done when a
pipe is opened, and no access checks are done for read and writes to a pipe.

If a process with an open pipe uses privilege to change its user ID, group ID, or
sensitivity label, subsequent communication over the pipe effectively bypasses
discretionary and mandatory access controls and the privileged process must
apply its own controls to the communication.

The sensitivity label and information label of the process writing the data is
associated with each byte of data in the pipe. The reading process’s
information label floats for each byte of data read. See the appropriate man
page for specific information on security policy and applicable privileges.

Unnamed Pipes page 224

Pseudo-Terminal Devices (PTYs) page 225

Named Pipes (FIFOs) page 225

Signals page 226

Process Tracing page 226

Mapped Memory page 226

System V IPC page 227

Communication Endpoints page 227

Multilevel Ports page 228

Sockets and TLI page 228

TSIX page 229

RPC page 230

Interprocess Communications 225

11

Named Pipes (FIFOs)
Named pipes (FIFOs) are similar to unnamed pipes except they are associated
with a file system entry that allows unrelated processes to find and open a
named pipe for communication. Discretionary and mandatory access controls
are enforced when the named pipe is opened and FIFO special file created
based on the named pipe's permission bits and sensitivity label.

The sensitivity label and information label of the process writing the data is
associated with each byte of data send down the pipe. The reading process’s
information label floats for each byte of data read. The mandatory access policy
for writing to and reading from a named pipe is read-equal and write-equal.
See the appropriate man page for specific information on security policy and
applicable privileges.

Pseudo-Terminal Devices (PTYs)
Pseudo-terminal devices (PTYs) are automatically allocated special device files
that operate in controller/slave pairs. A process opening one member of a pair
communicates with a process opening the other member of the pair. The PTY
pair emulates a terminal interface. PTYs are used for cmdtool (1) windows and
to support remote login services. Discretionary and mandatory access controls
are enforced when the PTY is opened.

• If neither the slave nor the controller device is already open, the device
special files for both devices are modified to set their user ID and sensitivity
label to the opening process's effective user ID and sensitivity label with
permission bits initialized to 600.

• If either the slave or the controller device is already open, discretionary and
mandatory access controls use the user ID, permission bits, and sensitivity
label already set on the device special file.

Data written to the controller device is read from the slave device after
undergoing terminal input processing such as erase/kill. Data written to the
slave device is read from the controller device after undergoing terminal
output processing such as NL to CR-LF translation. The mandatory access
policy to read from and write to a PTY is read-down and write-up. See the
appropriate man page for specific information on security policy and
applicable privileges.

226 Trusted Solaris Developer’s Guide—August 1998

11

Signals
Signals inform processes of asynchronous events. Discretionary access policy
requires the sender's real or effective user ID to equal the receiver's real or
effective user ID. The mandatory access policy is read-down and write-up.
Because so little information is transmitted with a signal, the information label
of the process receiving the signal does not float. See the appropriate man page
for specific information on security policy and applicable privileges.

Process Tracing
Process tracing is a debugging tool where one process manipulates the
contents of another process by doing such things as reading from and writing
to its address space and registers, altering its flow of control, and setting
breakpoints. The discretionary access policy requires the effective user IDs of
the processes be equal. The mandatory access policy for manipulating the
contents of another process is read-equal and write-equal. See the appropriate
man page for specific information on security policy and applicable privileges.

Mapped Memory
Mapped memory allows a process to map part or all of a file's contents into its
address space. Once the file has been mapped, direct addressing of the file's
contents is done through machine instruction accesses to the mapped memory
region. A process can map multiple files, and the same file can be mapped into
multiple processes.

Discretionary and mandatory access checks are performed when the file is
opened. If a file is opened for read only, it may be mapped for reading only
even when the file's attributes permit write access. The information label of a
mapped memory region is continuously floated by the information labels of all
processes attached to the region with write access. The process information
label is continuously floated by the information labels of mapped memory
regions to which it is attached.See the appropriate man page for specific
information on security policy and applicable privileges.

Interprocess Communications 227

11

System V IPC
Trusted Solaris 2.5.1 supports System V IPC and provides additional interfaces
for managing the CMW label, sensitivity label, information label, and Access
Control List (ACL) on System V IPC objects.

The sensitivity label and information label of the process creating the System V
IPC object is associated with each byte of data written to the object. The
mandatory access policy is read-equal and write-equal. Privileged processes
can access System V IPC objects at sensitivity labels other than the process
sensitivity label and stop information label floating. Chapter 12, “System V
Interprocess Communication” describes the interfaces, security policy, and
privileges for System V IPC objects.

Communication Endpoints
Trusted Solaris 2.5.1 supports interprocess communication over
communication endpoints using the following socket-based mechanisms:

• Multilevel Ports

• Berkeley sockets

• Transport Layer Interface (TLI)

• Trusted Information Exchange (TSIX) library

• Remote Procedure Calls (RPC)

This section summarizes the socket communication mechanisms and related
security policy. See the appropriate man page for specific information on
security policy and applicable privileges.

228 Trusted Solaris Developer’s Guide—August 1998

11

Multilevel Ports

Trusted Solaris 2.5.1 supports single-level and multilevel ports. A multilevel
port can receive data at any sensitivity label, and a single-level port can receive
data at a designated sensitivity label only.

• Single-level port – A communication channel is established between two
unprivileged applications. The sensitivity label of the communication
endpoints must be equal.

• Multilevel port – A communication channel is established between an
application with net_mac_read in its effective set and any number of
unprivileged applications running at different sensitivity labels. The
application with net_mac_read in the effective set of its process can
receive all data from the applications regardless of the receiving
application’s sensitivity label or process clearance. A multilevel
communication channel cannot be established where there is already a
single-level connection.

See “Client-Server Application” on page 260 in Chapter 13, “Trusted Security
Information Exchange Library” for a short example application that establishes
a multilevel port connection using Berkeley sockets and the TSIX library.

Note – If a connection is multilevel, be sure the application does not make a
connection at one sensitivity label and send or receive data at another
sensitivity label causing data to reach an unauthorized destination.

Sockets and TLI

Trusted Solaris 2.5.1 supports network communication using Berkeley sockets
and Transport Layer Interface (TLI) over single-level and multilevel ports. The
UNIX address family of system calls establishes process-to-process connections
on the same host using a special file specified with a fully resolved pathname.
The internet address family of system calls establishes process-to-process
connections across the network using IP addresses and port numbers.

The PAF_DISKLESS_BOOT process attribute flag supports diskless boot
servers. When this flag is on, the security attribute information in network
packet headers is not sent. Getting and setting process attribute flags is covered
in Chapter 2, “Getting Started.

Interprocess Communications 229

11

UNIX Address Family

In the UNIX address family of interfaces, only one server bind can be
established to a single file. The server process needs the net_mac_read
privilege in its effective set if a multilevel port connection is desired. If a
single-level port connection is made instead, the server process needs
mandatory read-equal access to the socket, and the client process needs
mandatory write-equal access. Both processes need mandatory and
discretionary access to the file. If access to the file is denied, the process denied
access needs the appropriate file privilege in its effective set to gain access.

A server process can establish multiple single-level binds with files of the same
name residing in different SLDs within the same MLD. This approach differs
from a multilevel port connection in that it sets up parallel single-level port
connections (polyinstantiated ports) and does not require privilege unless
mandatory or discretionary access is denied to the specified single-level
directory. See Chapter 8, “Multilevel Directories.”

Internet Address Family

In the internet address family, the process can establish a single-label or
multilabel connection to privileged or unprivileged port numbers. To connect
to privileged port numbers, the net_priv_addr privilege is required in
addition to the net_mac_read privilege if a multilevel port connection is
desired.

TSIX

The Trusted Security Information Exchange (TSIX) library provides interfaces
for receiving security attributes on incoming messages, and changing security
attributes on outgoing messages. A message initially has the security attribute
information of its sending process. The TSIX library lets you change security
attributes directly on the message, on the communication endpoint over which
the message is sent, or both. See Chapter 13, “Trusted Security Information
Exchange Library” for the programming interfaces and related privileges.

230 Trusted Solaris Developer’s Guide—August 1998

11

RPC

Trusted Solaris 2.5.1 remote procedure call (RPC) mechanism is built on
Berkeley internet sockets and the Trusted Security Information Exchange
(TSIX) library, and supports Transport Layer Interface (TLI). RPC allows a
server process to invoke a procedure on behalf of a client process and handle
security attribute information on the message. See Chapter 14, “Remote
Procedure Calls” for a description of the RPC programming interfaces and
related privileges.

231

System V Interprocess
Communication 12

Trusted Solaris 2.5.1 supports the System V interprocess communication (IPC)
mechanism and provides security features for labeled communications
between System V IPC objects and both privileged and unprivileged processes.

• Message queues allow processes to place messages into a queue where any
process can retrieve the message.

• Semaphore sets synchronize processes and are often used to control
concurrent access to shared memory regions.

• Shared memory regions allow multiple processes to attach to the same
region of memory to access changes to the memory.

Privileged Operations page 232

Data Types, Header Files, and Libraries page 234

Programming Interface Declarations page 234

Using Message Queue Labels page 236

Using Semaphore Set labels page 239

Using Shared Memory Labels page 241

232 Trusted Solaris Developer’s Guide—August 1998

12

Privileged Operations
System V IPC objects are subject to discretionary and mandatory access
controls, discretionary ownership controls, and information label floating.

A System V IPC object is created from a key and accessed by an object
descriptor returned when the IPC object is created. The object descriptor, like a
file descriptor, is used for future operations on the object. The sensitivity label
of the System V IPC object is the same as the sensitivity label of its creating
process unless the creating process has the privilege to create the System V IPC
object at a different label. A process can access a System V IPC object at its
same sensitivity label unless the process has the privilege to access a System V
IPC object at another label. Because keys are qualified by the sensitivity label at
which they are created, there can be many objects that use the same key, but no
more than one instance of a key (object ID) at a given sensitivity label.

Discretionary Access and Ownership Controls

Discretionary access to a System V IPC object is granted or denied according to
the read and write modes associated with the object for owner, group, and
other in much the same way as file access. System V IPC objects also have the
creator user and creator group sets that control attribute change requests. The
process that creates a System V IPC object is the owner and can set the
discretionary permission bits to any value. To override discretionary access
and ownership restrictions, the process needs the ipc_dac_read ,
ipc_dac_write , or ipc_owner privilege in its effective set, depending on the
interface used or operation requested.

Mandatory Access Controls

Unprivileged processes can only refer to System V IPC objects and return an
IPC descriptor at the process’s correct sensitivity label. This makes the
mandatory access controls read-equal and write-equal and eliminates naming
and access conflicts when an unmodified base Solaris application using System
V IPC runs at multiple sensitivity labels. To override mandatory access
restrictions, the process needs the ipc_mac_read or ipc_mac_write
privilege in its effective set, depending on the interface used.

Note – You cannot change the sensitivity label once it has been created.

System V Interprocess Communication 233

12

Information Label Floating

If the system is configured so that information labels are enabled, information
label floating is enabled, and information label floating for a particular System
V IPC object is enabled, the System V IPC object information label floats as
follows. See “Query System Security Configuration” on page 28 in Chapter 2,
“Getting Started” for information on querying the system configuration
variables.

• Message queue – The information label in the message queue object is not
used because every message in the queue has an information label set to the
information label of the process that enters the message in the queue or an
information label specifically set by msgsnd(2TSOL) . The information label
of the reading process floats according to the information label of the
message read. The float fails if the reading process’s sensitivity label does
not dominate the resulting information label, the msgrcv(2TSOL) or
msgrcvl(2TSOL) routine fails, and as a result, the message is lost.

• Semaphore sets – When a semaphore set is initially created, it is empty and
its information label is set to ADMIN_LOW. The information label of the
reading process floats according to the information label of the semaphore
set. The information label of the semaphore set floats according to the
information label of the writing process.

• Shared memory region – When a shared memory region is initially created,
it is empty and its information label is set to ADMIN_LOW. The information
label of the shared memory region is continuously floated according to the
information labels of all processes attached to the region with write access.
The information label of the process attached with read access floats
according to the information label of the shared memory region.

Use the ipc_nofloat privilege to enable a process to send a System V IPC
message or write to a System V IPC semaphore set without changing the
process information label. Use ipc_no_float to prevent changes to a process’s
information label from modifying the information label of a shared memory
region to which the process is attached for writing.

Use the ipc_upgrade_il privilege to change the information label on a
semaphore set or message queue to one that dominates the process information
label. Use ipc_downgrade_il to change the information label on a
semaphore set or message queue to one that does not dominate the process
information label.

234 Trusted Solaris Developer’s Guide—August 1998

12

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file:

#include <sys/ipcl.h>

The examples in this chapter compile with the following library:

-ltsol

Labels

Data structures for labels (bclabel_t , bslabel_t , and bilabel_t) are
described in Chapter 5, “Labels.”

Programming Interface Declarations
These programming interfaces let you manage labels on System V IPC objects.
The original unlabeled interfaces are still valid and available. These
Trusted Solaris 2.5.1 extensions provide access to the label information.

Message Queues

The getmsgqcmwlabel(2TSOL) routine gets the message queue CMW label
(the information label portion is undefined). Refer to the
getmsgqcmwlabel(2TSOL) man page.

The msggetl(2TSOL) routine creates a message descriptor at the specified
sensitivity label, the msgsndl(2TSOL) routine sends a message at the
specified information label, and the msgrcvl(2TSOL) routine receives a
message and returns the information label of the message received. See the
msgop(2TSOL) , msgget(2TSOL) , and msgctl(2TSOL) man pages.

System V Interprocess Communication 235

12

Semaphore Sets

The getsemcmwlabel(2TSOL) routine gets the semaphore set CMW label.
Refer to the getsemcmwlabel(2TSOL) man page.

The semgetl(2TSOL) routine creates a semaphore set at the specified
sensitivity label. Refer to the semgetl(2TSOL) man pages

The semopl(2TSOL) routine performs semaphore operations on the specified
semaphore set and lets you specify an information label for that operation.
Refer to the semopl(2TSOL) man page.

int getmsgqcmwlabel(int msqid,
bclabel_t *cmwlabel);

int msggetl(key_t key,
int msgflg,
bslabel_t *senslabel);

int msgsndl(int msqid,
const void *msgp,
size_t msgsz,
int msgflg,
bilabel_t *inflabel);

int msgrcvl(int msqid,
void *msgp,
size_t msgsz,
long msgtyp,
int msgflg,
bilabel_t *inflabel);

236 Trusted Solaris Developer’s Guide—August 1998

12

Shared Memory Regions

The getshmcmwlabel(2TSOL) routine gets the shared memory region CMW
label. Refer to the getshmcmwlabel(2TSOL) man page.

The shmgetl(2TSOL) routine creates a shared memory region at the specified
sensitivity label. Refer to the shmgetl(2TSOL) man pages.

Using Message Queue Labels
This example creates a message queue at Top Secret, sends the message to the
Top Secret queue, gives the message an information label of Top Secret, and
forks a process to retrieve the message from the queue.

int getsemcmwlabel(int semid,
bclabel_t *cmwlabel);

int semgetl(key_t key,
int nsems,
int semflg,
bslabel_t *senslabel);

int semopl(int semid,
struct sembuf *sops,
size_t nsops,
bilable_t *inflabel);

int getshmcmwlabel(int shmid,
bclabel_t *cmwlabel);

int shmgetl(key_t key,
size_t size,
int shmflg,
bslabel_t *senslabel);

System V Interprocess Communication 237

12

The parent and child processes initially run at Confidential with an
information label of Unclassified. Privileges are needed for some of the
operations in this example. The code comments indicate where privilege
bracketing as described in Chapter 3, “Privileges” should take place.

#include <sys/ipc.h>
#include <sys/types.h>
#include <tsol/label.h>
#include <sys/msg.h>

struct sndmsgbuf{
long mtype;
char mtext[80];

} sendmsg;

main()
{

struct msgbuf *rcvmsg;
int id, retval, error, pid;
bclabel_t cmwlabel;
bslabel_t senslabel;
bilabel_t inflabel;
char *string,*string2, *string3 = “TOP SECRET”;

/* Set up message for message queue */
sendmsg.mtype = 1;
strcpy(sendmsg.mtext, “Hello World!\n”);

/* Create Top Secret sensitivity and information labels */
/* Turn sys_trans_label on in the effective set */

retval = stobsl(“TOP SECRET”, &senslabel, NEW_LABEL, &error);
retval = stobil(string3, &inflabel, NEW_LABEL, &error);

/* Turn sys_trans_label off */

/* Create message queue at Top Secret */
/* Turn ipc_mac_write on in the effective set */

id = msggetl(IPC_PRIVATE, IPC_CREAT|0666, &senslabel);
/* Turn off ipc_mac_write */

/* Send message with Top Secret information label*/
/* Turn ipc_upgrade_il on in the effective set */

msgsndl(id, (void*)&sendmsg, 80, 0, &inflabel);
/* Turn off ipc_upgradegrade_il privilege */

238 Trusted Solaris Developer’s Guide—August 1998

12

The information label of the reading process floats to the information label of
the message. In this case, the unprivileged forked process at Confidential
cannot have its information label floated to Top Secret because Confidential
does not dominate Top Secret. The forked process needs to use privilege in one
of the following two ways to avoid losing the message:

• Use the ipc_mac_read and proc_nofloat privileges, respectively, to
enable the read-up operation and stop the information label floating.

• Use the proc_setsl privilege to change the reading process’s sensitivity
label to Top Secret (see code) so mandatory access is allowed.

The printf statements print the following:

Received message = Hello World!

Process information label = TOP SECRET

pid = fork();
if(pid > 0)

exit(0);

/* Set the forked process’s sensitivity label to Top Secret */
retval = stobsl(string3, &senslabel, NEW_LABEL, &error);
getcmwplabel(&cmwlabel);
setcsl(&cmwlabel, &senslabel);

/* Turn proc_setsl on in the effective set */
setcmwplabel(&cmwlabel, SETCL_SL);

/* Turn proc_setsl off */

rcvmsg = (struct msgbuf *)malloc(sizeof(long) + 80);
retval = msgrcvl(id, rcvmsg, 80, 0, 0, &inflabel);

/* Get the process CMW label and extract its information label */
getcmwplabel(&cmwlabel);
getcil(&inflabel, &cmwlabel);
biltos(&inflabel, &string2, 0, LONG_WORDS);

/* Print message and process information label */
printf(“Received message = %s\n”, rcvmsg->mtext);
printf(“Process information label = %s\n”, string2);

}

System V Interprocess Communication 239

12

Using Semaphore Set labels
This example creates an identifier for a semaphore set at Confidential and gets
the CMW label on the same semaphore set. The program then changes the
information label of the semaphore set when it request a lock. The program is
running at Top Secret.

The printf statement prints the following:

CMW label = UNCLASSIFIED[C]

#include <sys/tsol/ipc.h>
#include <sys/types.h>
#include <tsol/label.h>
#include <sys/sem.h>

main()
{

int id, retval, error;
bclabel_t cmwlabel;
bslabel_t senslabel;
bilabel_t inflabel;
char *string = (char *)0, *string2 = (char *)0;
struct sembuf sops = {2, 1, IPC_NOWAIT};

retval = stobsl(“CONFIDENTIAL”, &senslabel, NEW_LABEL, &error);
retval = stobil(“CONFIDENTIAL”, &inflabel, NEW_LABEL, &error);

/* Create semaphore set at Confidential */
/* Turn ipc_mac_write on in the effective set */

id = semgetl(IPC_PRIVATE, 5, IPC_CREAT, &senslabel);
/* Turn off ipc_mac_write */

/* Get CMW label of semaphore set */
/* Turn ipc_mac_read on in the effective set */

retval = getsemcmwlabel(id, &cmwlabel);
/* Turn off ipc_mac_read */

/* Print CMW label */
bcltos(&cmwlabel, &string, 0, LONG_WORDS);
printf(“CMW label = %s\n”, string);

240 Trusted Solaris Developer’s Guide—August 1998

12

When the program requests the semaphore lock, it changes the information
label on the semaphore set from Unclassified to Confidential.

The printf statement prints the following:

Information label = CONFIDENTIAL

Note – To see the change to the information label, be sure information label
floating for System V IPC semaphores is set to on in the /etc/system file
(tsol_float_sem_il = 1).

/* Request lock and change information label to Confidential */
/* Turn ipc_upgrade_il on in the effective set */

retval = semopl(id, &sops, 1, &inflabel);
/* Turn off ipc_upgrade_il */

/* Get CMW label of semaphore set */
/* Turn ipc_mac_read on in the effective set */

retval = getsemcmwlabel(id, &cmwlabel);
/* Turn off ipc_mac_read */

getcil(&inflabel, &cmwlabel);

/* Print information label */
biltos(&inflabel, &string2, 0, LONG_WORDS);
printf(“Information label = %s\n”, string2);

}

System V Interprocess Communication 241

12

Using Shared Memory Labels
This example creates an identifier for a shared memory region at Confidential
and gets the CMW label on the same shared memory region. The program is
running at Top Secret.

The printf(1) statement prints the following:

CMW label = UNCLASSIFIED[C]

#include <sys/tsol/ipc.h>
#include <sys/types.h>
#include <tsol/label.h>
#include <sys/shm.h>

main()
{

int id, retval, error, pid;
bclabel_t cmwlabel;
bslabel_t senslabel;
char *string = (char *)0;

retval = stobsl(“CONFIDENTIAL”, &senslabel, NEW_LABEL, &error);

/* Create shared memory region at Confidential */
/* Turn ipc_mac_write on in the effective set */

id = shmgetl(IPC_PRIVATE, 256, IPC_CREAT|0666, &senslabel);
/* Turn off ipc_mac_write */

/* Get CMW label of shared memory region */
/* Turn ipc_mac_read on in the effective set */

retval = getshmcmwlabel(id, &cmwlabel);
/* Turn off ipc_mac_read */

/* Print CMW label */
bcltos(&cmwlabel, &string, 0, LONG_WORDS);
printf(“CMW label = %s\n”, string);

}

242 Trusted Solaris Developer’s Guide—August 1998

12

243

Trusted Security Information
Exchange Library 13

The Trusted Security Information Exchange (TSIX) library provides interfaces
for managing the security attribute information on a network message from
within client and server applications. The TSIX library is based on Berkeley
sockets and supports the transport layer interface (TLI).

The security attributes are stored in the data packet header separate from the
message so they can be read separately. For example, an application can use
the TSIX library to retrieve the security attributes and then test the sensitivity
label attribute to determine whether or not the process needs privilege to read
the data in the packet.

Security Attributes page 244

Data Types, Header Files, and Libraries page 247

Programming Interface Declarations page 249

Getting and Setting Security Attributes page 254

Security Attributes on Messages page 254

Security Attributes on Communication Endpoints page 256

Receiving and Retrieving Security Attributes page 258

Examining Attributes page 260

Getting Attribute Size page 261

Copying and Duplicating Attribute Structures page 262

Free Space page 265

Client-Server Application page 265

244 Trusted Solaris Developer’s Guide—August 1998

13

Security Attributes
By default, messages originating on a Trusted Solaris 2.5.1 system acquire the
following security attributes from the sending process. The TSIX library lets
you change the user ID, group ID, sensitivity label, information label, process
clearance, or privilege attributes before the message is sent.

The TSIX library also lets you retrieve the security attributes on an incoming
message. Because a distributed network can have any combination of host
types running different Trusted networking protocols, not all protocols support
all security attributes. Messages coming from or going to a host type other than
Trusted Solaris 2.5.1 will have very few of the above security attributes.

For example, the audit ID, audit information, and supplementary group ID
attributes can only be sent from and received by a host running the TSIX or
MSIX protocol, and when a packet originates on a Solaris 2.5.1 host, none of
the Solaris 2.5.1 security attributes are present when the packet arrives on a
Trusted Solaris 2.5.1 host.

Note – The TSIX library can be used in any application written for
Trusted Solaris 2.5.1. The TSIX protocol is not required to use the TSIX library.

Default security attributes are assigned to messages arriving on Trusted Solaris
2.5.1 hosts from other host types according to settings in the network database
files. Security attributes retrieved by TSIX library calls from incoming messages
come out of the network database files if they did not arrive with the message.
See the Trusted Solaris Administrator’s document set for information on host
types, their supported security attributes, and network database file defaults.

The sensitivity label of data sent over the network must be within the
origination, destination, and next hop destination workstation accreditation
ranges. There is no privilege to override this restriction.

Solaris 2.5.1 Trusted Solaris 2.5.1
Effective user ID Sensitivity label
Effective group ID Information label
Process ID Process clearance
Network session ID Effective privilege set
Supplementary group ID Process attribute flags
Audit ID
Audit information (process preselection mask,
audit terminal ID, and audit session ID)

Trusted Security Information Exchange Library 245

13

Privileged Operations
No privileges are required to read security attributes retrieved from an
incoming message. The following sections describe privileges used on
outgoing messages.

Information Label Floating

The information label of the message is combined with and floats the
information label of the reading process unless the process reading the data
has the net_nofloat privilege in its effective set.

Replying with Same Sensitivity Label

A server process can receive a message over a multilevel port at any sensitivity
label dominated by the server process’s clearance. However, the server reply is
normally at the sensitivity label of the server process unless the server process
has the net_reply_equal privilege in its effective set in which case the reply
is sent at the sensitivity label of the last message received. See Chapter 11,
“Interprocess Communications” for a discussion on single-level and multilevel
ports.

Note – Make sure the net_reply_equal privilege is turned off if the
receiving process needs to reply at a sensitivity label or information label
different from that of the requesting process. See “TCP/IP Server” on page 266
for an example situation where net_reply_equal must be turned off.

Changing Sensitivity Label

To respond to a single-level client, the server process needs the proc_set_sl
privilege in its effective set to change the sensitivity label of its child to be the
same as the sensitivity label of the requesting client.

Changing Security Attribute Information

To change the user ID, group ID, sensitivity label, information label, process
clearance, or privilege security attribute on an outgoing message or on the
communication endpoint for outgoing messages, a process needs the
appropriate network privilege in its effective set.

246 Trusted Solaris Developer’s Guide—August 1998

13

Sensitivity Labels

The sending process can set the sensitivity label for a message or
communication endpoint to a new sensitivity label that does not dominate the
object’s existing sensitivity label if it has the net_downgrade_sl privilege in
its effective set. The sending process can set the sensitivity label for a message
or communication endpoint to a new sensitivity label that dominates the
existing object’s sensitivity label it has the net_upgrade_sl privilege in its
effective set.

Information Labels

The sending process can set the information label for a communication
endpoint to a new information label that does not dominate the existing
object’s information label if it has the net_downgrade_il privilege in its
effective set.

The sending process can set the information label for a communication
endpoint to a new information label that dominates the existing object’s
information label if it has the net_upgrade_il privilege in its effective set.

The system ensures that the sensitivity label always dominates the information
label. There is no privilege to override this restriction.

Process Clearance

The sending process needs the net_setclr privilege in its effective set to
change the clearance sent with the message.

The system ensures that the clearance always dominates the sensitivity label.
There is no privilege to override this restriction.

User and Group IDs

The sending process needs the net_setid privilege in its effective set to
change the user or group ID.

Trusted Security Information Exchange Library 247

13

Privileges

The sending process needs the net_setpriv privilege in its effective set to
specify privileges to be sent with the message. The specified privileges must be
in the permitted set of the sending process.

Data Types, Header Files, and Libraries
To use the programming interfaces described in this chapter, you need the
following header file.

#include <tsix/t6attrs.h>

The examples in this chapter compile with the following libraries:

-lsocket -lt6 -ltsol

Attribute Structure

The t6attr_t data structure can hold the full set security attributes.

Attribute Enumerations

The t6attr_id_t structure contains enumerated constants that represent the
full set of security attribute values. Variables of type t6attr_t are initialized
with these constants. Most of the constants have a fixed size in bytes as shown
below; however, T6_GROUPS, has a variable size that reflects the actual size of
its value.

• The t6set_attr(3NTSOL) routine takes a parameter of any type that must
be cast to the appropriate type shown below.

248 Trusted Solaris Developer’s Guide—August 1998

13

• The t6get_attr(3NTSOL) routine returns a variable of any type that must
be cast to the appropriate type shown below.

Attribute Mask

The t6mask_t data structure represents the set of security attributes of current
interest. A variable of type t6mask_t is initialized by assigning the following
enumerated values.

Enumerated Constant Description Data Type Size in Bytes
T6_SL Sensitivity label bslabel_t 36

T6_SESSION_ID Network session ID sid_t 4

T6_CLEARANCE Clearance bclear_t 36

T6_IL Information label bilabel_t 68

T6_PRIVILEGES Effective privileges priv_set_t 16

T6_AUDIT_ID Audit ID au_id_t 4

T6_PID Process ID pid_t 4

T6_AUDIT_INFO Additional audit info auditinfo_t 24

T6_UID Effective User ID uid_t 4

T6_GID Effective Group ID gid_t 4

T6_GROUPS Supplementary Group IDs gid_t Variable

T6_PROC_ATTR Process Attribute Flags pattr_t 4

T6M_SL Sensitivity label
T6M_SESSION_ID Network session ID
T6M_CLEARANCE Clearance
T6M_IL Information label
T6M_PRIVILEGES Effective privilege set
T6M_AUDIT_ID Audit ID
T6M_PID Process ID
T6M_AUDIT_INFO Terminal ID and preselection masks
T6M_UID Effective User ID
T6M_GID Effective Group ID
T6M_GROUPS Supplementary Group IDs
T6M_NO_ATTRS No attributes
T6M_ALL_ATTRS All attributes

Trusted Security Information Exchange Library 249

13

Programming Interface Declarations
These network library routines handle security attributes on messages sent to
and received from a Trusted Solaris 2.5.1 host.

Get Attribute Masks

These routines create an attribute mask of system supported security
attributes, attributes of the space allocated in the attribute structure, and
attributes present in an attribute structure. You can use these routines instead
of assigning t6mask_t enumerated values to a mask variable.

Allocate and Free Space

The t6alloc_blk(3NTSOL) routine creates a security attribute structure with
enough space allocated for the security attributes specified in new_attrs. The
t6free_blk(3NTSOL) routine frees the space allocated for the security
attribute structure t6ctl. Refer to the t6alloc_blk(3NTSOL) man page.

t6mask_t t6supported_attrs(void);
t6mask_t t6allocated_attrs(t6attr_t t6ctl);
t6mask_t t6present_attrs(t6attr_t t6ctl);

t6attr_t t6alloc_blk(t6mask_t *new_attrs);
void t6free_blk(t6attr_t t6ctl);

250 Trusted Solaris Developer’s Guide—August 1998

13

Send and Receive Data

The t6sendto(3NTSOL) routine sends security attributes with a message. The
t6recvfrom(3NTSOL) routine receives a message and its security attributes.
When t6new_attr(3NTSOL) is on, t6recvfrom(3NTSOL) receives security
attributes only when the attributes in new_attrs have changed. Refer to the
t6sendto(3NTSOL) , t6recvfrom(3NTSOL) , and t6new_attr(3NTSOL)
man pages.

Note – These routines are specific to sockets. For Transport Layer Interface
(TLI), use t6last_attr(3NTSOL) in place of t6recvfrom(3NTSOL) and
t6new_attr(3NTSOL) ; and t6set_endpt_default(3NTSOL) in place of
t6sendto(3NTSOL) .

int t6sendto(int sock,
const char *msg,
int len,
int flags,
const struct sockaddr *to,
int tolen,
const t6attr_t *attr_ptr);

int t6recvfrom(int sock,
char *buf,
int len,
int flags,
struct sockaddr *from,
int *fromlen,
t6attr_t *attr_ptr,
t6mask_t *new_attrs);

int t6new_attr(int sock, t6cmd_t cmd);

Trusted Security Information Exchange Library 251

13

Get and Set Security Attributes

The t6get_attr(3NTSOL) routine gets the attribute in attr_type from the
security attribute structure t6ctl. The return value should be cast to the correct
type as described in “Attribute Enumerations” on page 247.

The t6set_attr(3NTSOL) routine sets the attribute in attr_type with the
value specified in attr in the security attribute structure t6ctl.

Refer to the t6get_attr(3NTSOL) man page.

Examine Security Attributes

The t6peek_attr(3NTSOL) routine examines the security attributes in
attr_ptr on the next byte of data to be received, and the
t6last_attr(3NTSOL) routine examines the security attributes on the last
byte of data received. Refer to the t6peek_attr(3NTSOL) man page.

void * t6get_attr(t6attr_id_t attr_type,
const t6attr_t t6ctl);

int t6set_attr(t6attr_id_t attr_type,
const void *attr,
t6attr_t *t6ctl);

int t6peek_attr(int sock,
t6attr_t attr_ptr,
t6mask_t *new_attrs);

int t6last_attr(int sock,
t6attr_t attr_ptr,
t6mask_t *new_attrs);

252 Trusted Solaris Developer’s Guide—August 1998

13

Get the Size of One Security Attribute

The t6size_attr(3NTSOL) routine gets the size in bytes of the value for the
security attribute specified in attr_type in the security attribute structure t6ctl.
Refer to the t6size_attr(3NTSOL) man page.

Copy and Duplicate Security Attributes

These routines make a copy of attr_src. Refer to the t6copy_blk(3NTSOL)
and t6dup_blk(3NTSOL) man pages.

Compare Security Attributes

This routine compares one security attribute structure to another. Refer to the
t6cmp_blk(3NTSOL) man page.

Clear Security Attributes

This routine clears the attributes specified in mask from t6ctl. Refer to the
t6clear_blk(3NTSOL) man page.

size_t t6size_attr(t6attr_id_t attr_type,
const t6attr_t t6ctl);

void t6copy_blk(const t6attr_t attr_src,
t6attr_t attr_dest);

t6attr_t t6dup_blk(const t6attr_t attr_src);

int t6cmp_blk(t6attr_t t6ctl1,
t6attr_t t6ctl2);

void t6clear_blk(t6mask_t mask, t6attr_t t6ctl);

Trusted Security Information Exchange Library 253

13

Get and Set Endpoint Attributes

The t6set_endpt_default(3NTSOL) routine sets the security attribute
values in attr indicated by mask on the communication endpoint. The
t6set_endpt_mask(3NTSOL) routine sets the endpoint mask only.

The t6get_endpt_default(3NTSOL) routine gets the security attribute
values in attr indicated by mask from the communication endpoint. The
t6get_endpt_mask(3NTSOL) routine gets the endpoint mask only.

Refer to the t6get_endpt_mask(3NTSOL) man page.

Turn Extended Security Operations On and Off

This routine turns the extended security operations on and off for
compatibility with other vendors. The operations are on by default. When off,
messages can be sent and received as long as the communications are with the
mandatory and discretionary access controls of the system. Refer to the
t6ext_attr(3NTSOL) man page.

int t6get_endpt_default(int sock,
t6mask_t *mask,
t6attr_t attr);

int t6set_endpt_mask(int sock,
t6mask_t mask);

int t6set_endpt_default(int sock,
t6mask_t mask,
const t6attr_t attr_ptr);

int t6get_endpt_mask(int sock,
t6mask_t *mask);

int t6ext_attr(int fd, t6cmd_t cmd);

254 Trusted Solaris Developer’s Guide—August 1998

13

Getting and Setting Security Attributes
These examples show how to set up a security attribute structure and masks to
specify security attributes on outgoing data. The first example sets new
security attributes on the message, and the second example sets new security
attributes on the communication endpoint.

Security Attributes on Messages

This example sets up new sensitivity label and clearance attribute values to
send with msg. This is done by doing the following:

• Defining a mask, sendmask, with only the sensitivity label and clearance
defined.

• Allocating the security attribute structure sendattrs with sendmask so the
attribute structure has room only for these two attributes.

• Setting the attribute values of Top Secret for the sensitivity label and
clearance in sendattrs.

• Setting up communications over a communication endpoint.

• Sending msg with the security attributes over the communication endpoint.

Because the process sending msg is at Confidential, it needs the net_setclr
and net_upgrade_sl privileges in its effective set to change the clearance
and sensitivity label. The new sensitivity label and clearance override the
sensitivity label and clearance msg received from its sending process. The code
comments indicate where privilege bracketing as described in Chapter 3,
“Privileges” should take place.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

int retval, sock, error;
t6attr_t sendattrs
t6mask_t sendmask;
char *msg = “Hello World!”;
bslabel_t senslabel;
bclear_t clearance;

Trusted Security Information Exchange Library 255

13

The printf statements print the following:

Retval1 = 0

Retval2 = 0

Retval3 = 4 bytes

/* Initialize a mask with the sensitivity label and */
/* process clearance security attribute fields */

sendmask = T6M_SL | T6M_CLEARANCE;

/* Allocate space for two security attribute structures */
/* using the masks so only the space needed is allocated */

sendattrs = t6alloc_blk(sendmask);

/* Initialize senslabel and clearance to Top Secret */
stobsl(“TOP SECRET”, &senslabel, NEW_LABEL, &error);
stobclear(“TOP SECRET”, &clearance, NEW_LABEL, &error);

/* Set attribute values for the security attribute fields */
/* to be sent with the message */

retval = t6set_attr(T6_SL, &senslabel, sendattrs);
printf("Retval1 = %d\n", retval);
retval = t6set_attr(T6_CLEARANCE, &clearance, sendattrs);
printf("Retval2 = %d\n", retval);

/* Set up socket communications */
/* ... */

/* Send changed security attributes with the message */
/* Turn net_setclr and net_upgrade_sl on in the effective set */

retval = t6sendto(sock, msg, sizeof(msg), 0, 0, 0, &sendattrs);
/* Turn off the net_setclr and net_upgrade_sl privileges */

printf("Retval3 = %d\n bytes", retval);
}

256 Trusted Solaris Developer’s Guide—August 1998

13

Security Attributes on Communication Endpoints

The first part of this example sets only the sensitivity label security attribute
specified in sendattrs on the communication endpoint by using a different mask
(endptmask) with sendattrs. This way, when privileged process sends a message
over the communication endpoint using a form of transmission other than the
t6sendto(3NTSOL) routine, or using the t6sendto(3NTSOL) routine with
an attribute set that does not specify the sensitivity label, the sensitivity label is
picked up from the communication endpoint. Because the process setting
security attributes on the communication endpoint is running at Secret, it
needs the net_upgrade_sl privilege in its effective set. The code comments
indicate where privilege bracketing as described in Chapter 3, “Privileges”
should take place.

The next statements change the mask on the communication endpoint to
sendmask, retrieve the endpoint mask and put it in getmask, allocate getattrs to
hold a clearance, and get the binary clearance from the communication
endpoint defaults and store it in getattrs.

Trusted Security Information Exchange Library 257

13

Security attributes on the communication endpoint override the attributes
acquired from the sending process. The security attributes on the message
override the attributes from the communication endpoint.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{ t6mask_t sendmask, endptmask, getmask;

int fd, sock, retval;
t6attr_t sendattrs, getattrs;

sendmask = T6M_SL | T6M_CLEARANCE; sendattrs = t6alloc_blk(sendmask);

/* Initialize a mask with the sensitivity label field */
endptmask = T6M_SL;

/* Set the attribute in sendattrs indicated by the mask */
/* Turn net_upgrade_sl on in the effective set */

retval = t6set_endpt_default(sock, endptmask, sendattrs);
/* Turn off the net_upgrade_sl privilege */

/* Change the endpoint mask to a different mask */
retval = t6set_endpt_mask(sock, sendmask);

/* Get the current endpoint mask */
retval = t6get_endpt_mask(sock, &getmask);

/* Get the default clearance on the endpoint */
getmask = T6M_CLEARANCE;
getattrs = t6alloc_blk(getmask);
retval = t6get_endpt_default(fd, &getmask, getattrs);

}

258 Trusted Solaris Developer’s Guide—August 1998

13

Receiving and Retrieving Security Attributes
This example receives a message with security attributes and retrieves the
security attribute information.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

char buf[512];
int retval, len = sizeof(buf), sock;
t6mask_t recvmask;
t6attr_t recvattrs;
bslabel_t *senslabel;
bclear_t *clearance;

/* Initialize a mask with all security attribute fields */
recvmask = T6M_ALL_ATTRS;
recvattrs = t6alloc_blk(recvmask);

/* Code to set up socket communications */
/* ... */

/* Receive security attributes on the message */
retval = t6recvfrom(sock, buf, len, 0, 0, 0, recvattrs, 0);

/* Retrieve security attribute Values */
senslabel = (bslabel_t *)t6get_attr(T6_SL, recvattrs);
clearance = (bclear_t *)t6get_attr(T6_CLEARANCE, recvattrs);

}

Trusted Security Information Exchange Library 259

13

The next example creates newmask with no attributes specified, calls the
t6new_attr(3NTSOL) routine with a value of T6_ON, and calls the
t6recvfrom(3NTSOL) routine with newmask. This combination tells the
t6recvfrom(3NTSOL) routine to get the security attribute information with
the message only when one or more security attributes are different from the
set of security attributes on the last message received. The
t6recvfrom(3NTSOL) call returns the full set of security attributes requested;
not just the changed security attributes. When security attributes change, the
newmask value becomes non-zero so you check this value to find out when to
look for new security attributes.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

char buf[512];
int retval, len = sizeof(buf), sock;
t6mask_t newmask;
t6attr_t recvattrs;

/* Code to set up socket communications */
/* ... */

/* Create mask to look for change in the sensitivity label */
newmask = T6M_NO_ATTRS;

/* Turn on new attributes and test for sensitivity label */
retval = t6new_attr(sock, T6_ON) > 0;
retval = t6recvfrom(sock, buf, len, 0, 0, 0, recvattrs, &newmask);

if(newmask > 0)
{/* Process security attribute information */}

}

260 Trusted Solaris Developer’s Guide—August 1998

13

Examining Attributes
You can retrieve the security attributes for either the next byte of data to be
read or the last byte of data read. This example uses the sensitivity label mask
to peek at the sensitivity label of the next byte of data and look up the
sensitivity label on the last byte of data.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

char buf[512]
int retval, sock;
int len = sizeof(buf);
t6mask_t recvmask;
t6attr_t recvattrs;

recvmask = T6M_SL;
recvattrs = t6alloc_blk(recvmask);

/* Code to set up socket communications */
/* ... */

/* Peek at sensitivity label on next byte of data */
 retval = t6peek_attr(sock, recvattrs, &recvmask);

/* Look up sensitivity label on last byte of data */
 retval = t6last_attr(sock, recvattrs, &recvmask);

}

Trusted Security Information Exchange Library 261

13

Getting Attribute Size
The t6size_attr(3NTSOL) return value contains the size in bytes of the
specified attribute if the call was successful and -1 otherwise. This example
gets the size of the clearance attribute in sendattrs.

The printf(1) statement prints the following fixed size for clearances:

Clearance size = 36

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

size_t size;
t6attr_t sendattrs;

size = t6size_attr(T6_CLEARANCE, sendattrs);
printf(“Clearance size = %d\n”, size);

}

262 Trusted Solaris Developer’s Guide—August 1998

13

Copying and Duplicating Attribute Structures
The TSIX library provides routines for copying and duplicating an attribute
structure. They both do the same thing using different parameter lists. Use the
one that meets your application requirements. This example shows the two
ways to copy the security attributes in sendattrs to recvattrs.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

size_t size;
t6attr_t sendattrs, recvattrs;
t6mask_t sendmask, recvmask;

recvmask = T6M_SL;
recvattrs = t6alloc_blk(recvmask);
sendmask = T6M_IL;
sendattrs = t6alloc_blk(sendmask);

/* Copy the attributes in sendattrs to recvattrs */
t6copy_blk(sendattrs, recvattrs);

/* Duplicate the attributes in sendattrs to recvattrs */
recvattrs = t6dup_blk(sendattrs);

}

Trusted Security Information Exchange Library 263

13

Compare Attribute Structures
This example compares the sendattrs with recvattrs for equality.

The printf statement prints the following where 0 means the structures are
equal and any non-zero value means they are not.

Does sendattrs = recvattrs? 5

Clear Attribute Structure
This example clears the session ID attribute value from recvattrs. Space is still
allocated in the attribute structure, but the attribute values are NULL.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

int retval;
t6attr_t sendattrs, recvattrs;
t6mask_t sendmask, recvmask;

recvmask = T6M_SL;
recvattrs = t6alloc_blk(recvmask);
sendmask = T6M_IL;
sendattrs = t6alloc_blk(sendmask);

retval = t6cmp_blk(sendattrs, recvattrs);
printf(“Does sendattrs = recvattrs? %d\n”, retval);

}

264 Trusted Solaris Developer’s Guide—August 1998

13

Creating Attribute Masks
This example shows three ways to create an attribute mask in addition to
instantiating a mask structure and or’ing the desired enumerated fields.

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

t6attr_t recvattrs;
t6mask_t recvmask, clrmask;

recvmask = T6M_ALL_ATTRS; recvattrs = t6alloc_blk(recvmask);
clrmask = T6M_SESSION_ID;
t6clear_blk(clrmask, recvattrs);

}

#include <tsix/t6attrs.h>
#include <tsol/label.h>

main()
{

t6mask_t suppmask, allocmask, presentmask,
t6mask_t getmask, recvmask;
t6attr_t attrs, getattrs, recvattrs;

recvmask = T6M_ALL_ATTRS; recvattrs = t6alloc_blk(recvmask);
getmask = T6M_CLEARANCE; getattrs = t6alloc_blk(getmask);

/* Get mask of system-supported attributes */
suppmask = t6supported_attrs();

/* Get mask of attributes for which space is */
/* allocated in rcvattrs (T6M_ALL_ATTRS)*/

allocmask = t6allocated_attrs(rcvattrs);

/* Get mask of attributes present in getattrs */
presentmask = t6present_attrs(getattrs);

}

Trusted Security Information Exchange Library 265

13

Free Space
At the end of a program, free all space allocated for variables of type
t6attr_t .

Client-Server Application
This section presents a short client-server application using Berkeley sockets
and the TSIX library to transfer data and security attribute information across
the network. The communication path is connection-oriented using the internet
domain (TCP/IP). The server is a concurrent process that supplies information
about upcoming meetings at different sensitivity levels. To get the service, the
client connects to the server and requests the information for a specified
sensitivity level.

t6free_blk(sendattrs);
t6free_blk(recvattrs);
t6free_blk(getattrs)
t6free_blk(attrs);

266 Trusted Solaris Developer’s Guide—August 1998

13

TCP/IP Server

The server process uses the net_mac_read privilege to bind to a multilevel
port to serve single-level clients at different sensitivity levels. Chapter 11,
“Interprocess Communications” describes multilevel and single-level ports.

The msg_array structure contains meeting information at Confidential, Secret,
Top Secret, and NULL. The information label string indicates the information
label to use when the server sends out the message. To specify the information
label attribute on the outgoing message, the server process uses the
t6sendto(3NTSOL) routine. Because the server process information label
might be different from the information label on the outgoing message, the
server process needs the net_upgrade_il and net_downgrade_il
privileges in its effective set. To respond to a single-level client, the server
process needs the proc_set_sl privilege in its effective set to change the
sensitivity label of its child to be the same as the client.

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include <tsol/label.h>
#include <tsix/t6attrs.h>

struct msg {
char *sl;
bslabel_t *bsl;
char *msg;
char *il;
bilabel_t *bil;

} msg_array[] = {
“CONFIDENTIAL”, 0, “Staff Meeting at 1:00 pm, Rm 200", “CONFIDENTIAL”, 0,
“SECRET”, 0, “Manager Meeting at 10:00 am, Rm 303", “SECRET”, 0,
“TOP SECRET”, 0, “Exective Meeting at 3:00 pm, Rm 902", “TOP SECRET”, 0,
0, 0, 0, 0, 0

};

Trusted Security Information Exchange Library 267

13

This first part of the main program sets the process clearance to ADMIN_HIGH
so the child process can set its sensitivity label to the sensitivity label of the
requesting client. The proc_setclr privilege is needed for this task.

The code comments indicate where privilege bracketing as described in
Chapter 3, “Privileges” should take place. With privilege bracketing, the
net_reply_equal privilege should be off so the server can reply to the client
at the sensitivity and information labels specified by the msg_array data and
not the sensitivity and information labels of the requesting client. The code
comments show at what point the net_repy_equal privilege must be off for
the example to work.

This next main program segment creates binary sensitivity and information
labels from the data in msg_array. The binary labels are used later with the TSIX
library routines.

main(int argc, char **argv)
{

int fd, newfd, chpid, index, error;
struct sockaddr_in serv_addr;
bclear_t clearance;

if (argc != 2) {
printf("Usage: %s host\n", argv[0]);
exit(1);

}
printf("PID = %ld\n", getpid());

/* Set the process clearance to ADMIN_HIGH
/* Turn the proc_setclr privilege on in the effective set */

bclearhigh(&clearance);
if (setclearance(&clearance) != 0) {

perror("setclearance");
exit(1);

}
/* Turn the proc_setclr privilege off */

268 Trusted Solaris Developer’s Guide—August 1998

13

This next main program segment sets up endpoint communications by creating
a socket, binding it to a name, and listening on the socket for client requests.
The code comments indicate where privilege bracketing as described in
Chapter 3, “Privileges” should take place.

/* Obtain binary labels for run time efficiency */

index = 0;
while (msg_array[index].sl != NULL) {

if ((msg_array[index].bsl =
(bslabel_t *) malloc(sizeof (bslabel_t))) == NULL) {
printf("No memory");
exit (1);

}
if (stobsl(msg_array[index].sl, msg_array[index].bsl,

NEW_LABEL, &error) != 1) {
printf("converting SL %s failed\n",
msg_array[index].sl);
exit(1);

}
if ((msg_array[index].bil =

(bilabel_t *) malloc(sizeof (bilabel_t))) == NULL) {
printf("No memory");
exit (1);

}
if (stobil(msg_array[index].il, msg_array[index].bil,

NEW_LABEL, &error) != 1) {
printf("converting IL %s failed\n",
msg_array[index].il);
exit(1);

}
index++;

}

Trusted Security Information Exchange Library 269

13

The while loop accepts client connections on the socket and forks a process to
handle each client request. The forked process prepares structures to receive
the incoming message and its sensitivity label, to set the sensitivity label
portion of the process CMW label to the incoming sensitivity label, and set the
information label on the outgoing server response. It also allocates handle_in
with enough space to receive the sensitivity label on the incoming message,
allocates handle_out with enough space to send a sensitivity label with the
outgoing message, and receives the message and security attribute information
with the t6recvfrom(3NTSOL) routine.

if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
exit(1);

}
memset(&serv_addr, 0, sizeof (serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(10000);

/* Turn net_mac_read on in the effective set */
if (bind(fd, (struct sockaddr *) &serv_addr,

sizeof (serv_addr)) < 0) {
perror("bind");
exit(1);

}
/* Turn the net_mac_read privilege off */

listen(fd, 5);

270 Trusted Solaris Developer’s Guide—August 1998

13

while (1) {
if ((newfd = accept(fd, NULL, 0)) < 0) {

perror("accept");
exit(1);

}
printf("Request Received\n");
if ((chpid = fork()) < 0) {

perror("fork");
exit(1);

} else if (chpid == 0) { /* child process */
t6attr_t handle_in;
t6attr_t handle_out;
t6mask_t mask_in = T6M_SL;
t6mask_t mask_out = T6M_IL;
bslabel_t *bsl;
bclabel_t bcmwlabel;
char buf[256];
int index, buflen = 256;
t6mask_t new_mask = T6M_NO_ATTRS;
char *string = (char *) 0;
char any;
close(fd);
printf("child PID = %ld\n", getpid());

/* Process client request */
if ((handle_in = t6alloc_blk(mask_in)) == NULL) {

printf("t6attr_alloc: no memory");
exit(1);

}
if ((handle_out = t6alloc_blk(mask_out)) == NULL) {

printf("t6attr_alloc: no memory");
exit(1);

}
if (t6recvfrom(newfd, buf, buflen, 0, 0, 0,

handle_in, &new_mask) < 0) {
perror("t6recvfrom");
exit(1);

}

Trusted Security Information Exchange Library 271

13

This next main program segment extracts the sensitivity label received, and
sets the sensitivity label of the process to that of the client. The code comments
indicate where privilege bracketing as described in Chapter 3, “Privileges”
should take place.

This last main program segment puts the correct information label on the
outgoing server response by locating it and the corresponding meeting
information in msg_array according to the sensitivity label of the incoming
client request. The information label is stored in handle_out, and the
t6sendto(3NTSOL) routine is called with the correct meeting information
and information label. Lastly, the t6free_blk(3NTSOL) routine is called to
clean up the memory allocated for handle_in and handle_out during execution.

/* Get sensitivity label */
if ((bsl = (bslabel_t *) t6get_attr(T6_SL,

handle_in)) == NULL) {
printf("t6get_attr: no SL available");
exit(1);

}
if (bsltos(bsl, &string, 0, LONG_WORDS) < 0) {

perror("bsltos");
exit(1);

}
printf("Requestor's SL = %s\n", string);

/* Set the sensitivity label of the child process to */
/* that of the client */

if (getcmwplabel(&bcmwlabel) != 0) {
perror("getcmwplabel");
exit(1);

}
setcsl(&bcmwlabel, bsl);

/* Turn proc_set_sl on in the effective set */
if (setcmwplabel(&bcmwlabel, SETCL_SL) < 0) {

perror("setcmwplabel");
exit (1);

}
/* Turn the proc_set_sl privilege off */

272 Trusted Solaris Developer’s Guide—August 1998

13

index = 0;
while (msg_array[index].sl != NULL) {

if (blequal(msg_array[index].bsl, bsl)) {
printf("Server’s IL = %s\n", msg_array[index].il);
if (t6set_attr(T6_IL,

(const void *) msg_array[index].bil,
handle_out) < 0) {
printf("t6set_attr: IL not allocated");
exit(1);

}
print_t6attr_t(handle_out);

#if 0
printf("press any key to continue\n"); scanf("%c", &any);
#endif
/* Turn net_replay_equal on in the effective set */

if (t6sendto(newfd, msg_array[index].msg, strlen(
msg_array[index].msg), 0, 0, 0,
handle_out)< 0) {

#if 0
if (sendto(newfd, msg_array[index].msg,

strlen(msg_array[index].msg), 0, 0, 0)< 0) {
#endif

perror("t6sendto");
exit(1);

}
/* Turn net_reply_equal off */

break;
}
index++;

} /* end while */
if (msg_array[index].sl == NULL) {

printf("No Matching Msg Found\n");
}
t6free_blk(handle_in);
t6free_blk(handle_out);
close(newfd);
printf("child: exiting\n");
exit(0);

} else
close(newfd);

} /* end while */
} /* end main */

Trusted Security Information Exchange Library 273

13

TCP/IP Client

To request the service, the client program connects to the server, sends a
request, and waits for the meeting message. If the connection is closed before a
message is received, the client exits because there is no meeting at its
sensitivity label. If a message is received, the client uses
t6recvfrom(3NTSOL) to obtain the message and information label. Code to
process the information is not shown in the example.

This first part of the program sets up data structures for the client request and
server response.

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <tsol/label.h>
#include <tsix/t6attrs.h>

char *clnt_req = "Request Meeting Info";

main(int argc, char **argv)
{

int sock, retval;
char buf[256];
int buflen = 256;
int num;
struct sockaddr_in serv_addr;
struct hostent *hostent;
bilabel_t *bil;
t6mask_t new_mask, il_mask = T6M_IL;
t6attr_t handle;
char *string = (char *)0;

274 Trusted Solaris Developer’s Guide—August 1998

13

This next main program segment processes the command-line argc and argv
inputs to get the host name and port number of the server and establishes a
connection.

if (argc != 2) {
printf("Usage: %s host\n", argv[0]);
exit (1);

}
if ((hostent = gethostbyname(argv[1])) == NULL) {

perror("gethostbyname");
exit(1);

}

memset((void *) &serv_addr, 0, sizeof (serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(10000);
memcpy((void *) &serv_addr.sin_addr,

(void *) hostent->h_addr_list[0], hostent->h_length);

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
exit(1);

}
if (connect(sock, (struct sockaddr *)&serv_addr,

sizeof (serv_addr)) < 0) {
perror("connect");
exit(1);

}
printf("Connected\n");
if ((handle = t6alloc_blk(il_mask)) == NULL) {

printf("t6attr_alloc: no memory");
exit(1);

}

Trusted Security Information Exchange Library 275

13

This next main program segment sends the request to the server. The request is
sent at the sensitivity label at which the client process is executing. When the
server processes the request, it sends back meeting information for the
sensitivity label at which the request is made only. The t6recvfrom(3NTSOL)
routine receives the meeting information, and the t6get_attr(3NTSOL)
routine retrieves the information label the server process put on the response.

/* Send a request to server */
write(sock, clnt_req, strlen(clnt_req));

if ((num = t6recvfrom(sock, buf, buflen, 0, 0, 0, handle,
&new_mask)) < 0) {
perror("t6recvfrom");
exit (1);

} else if (num == 0) {
printf("Connection closed, nothing matches.\n");
exit(0);

} else
printf("Received Reply\n");

/* Get the information label associated with the msg */
if ((bil = (bilabel_t *) t6get_attr(T6_IL,

handle)) == NULL) {
printf("t6get_attr: no IL available");
exit(0);

}

retval = biltos(bil, &string, 0, LONG_WORDS);
printf("Retval = %d, Information label = %s\n", retval, string);
printf("Message = %s\n", buf);

}

276 Trusted Solaris Developer’s Guide—August 1998

13

Running the Programs
The server process starts and waits for a client request.

phoenix% serverProgram phoenix

PID = 655

When the client process is started at Confidential, the printf statements in
the client print the following. The sensitivity label of the server does not matter
because it is a multilevel connection.

phoenix% clientProgram phoenix

Received Reply

Information label = CONFIDENTIAL

Message = Staff Meeting at 1:00 pm, Rm 200

The server process prints the following after fulfilling the client request:

Request Received

child PID = 657

Requestor’s SL = C

Server’s IL = Confidential

Attributes List (alloc_mask = 0x00000040, attr_mask =
0x00000040):

Information Label = CONFIDENTIAL

child: exiting

277

Remote Procedure Calls 14

The Trusted Solaris 2.5.1 remote procedure call (RPC) mechanism is built on
Berkeley internet sockets and the Trusted Security Information Exchange
(TSIX) library, and supports Transport Layer Interface (TLI). Trusted Solaris
2.5.1 modifications to RPC enable a server process to receive security attribute
information on incoming client requests, and change security attribute
information on an outgoing response to a client. Chapter 13, “Trusted Security
Information Exchange Library” describes the privileges required to change
security attribute information on messages.

In addition, mappings have been extended to include sensitivity labels to
separate and protect mappings according to their sensitivity label.

Mapping page 278

Single-Level Mapping page 278

Multilevel Mapping page 278

Multilevel Ports page 278

Security Attributes page 279

Header Files and Libraries page 280

Programming Interfaces page 281

Client-Server Application page 281

Client Program page 282

Server Program page 284

Remote Procedure page 285

Running the Simple Application page 286

278 Trusted Solaris Developer’s Guide—August 1998

14

Mapping
Mapping is a relationship maintained by the RPC binder service between an
ordered triple (program number, version number, and network ID) and a
service address on a machine serviced by the RPC binder. The current set of
mappings represents the available registered RPC services on a host.
Trusted Solaris 2.5.1 supports single-level mapping and multilevel mapping.

• Program number – A number assigned to identify the remote procedure.

• Version number – The version number of the remote procedure.

• Network ID – The network transport to which the network address refers.

Single-Level Mapping

A single-level mapping is a mapping the RPC binder service advertises only to
clients that have the same sensitivity label as the server that created the
mapping.

Multilevel Mapping

A multilevel mapping (MLM) is a mapping the RPC binder service advertises
to all clients regardless of their sensitivity label. A multilevel mapping is
created when a server has the net_mac_read privilege in its effective set
when it makes the RPC library call to register the service with the RPC binder
service.

Multilevel Ports
A multilevel port is created when a server has the net_mac_read privilege in
its effective set when it makes the RPC library call to create the port. See
“Multilevel Ports” on page 278 in Chapter 11, “Interprocess Communications”
for a discussion of multilevel ports.

Remote Procedure Calls 279

14

Security Attributes
The server handle for RPC library calls is a pointer to an SVCXPRT data
structure, and the client handle for RPC library calls is a pointer to a CLIENT
data structure. In Trusted Solaris 2.5.1, both structures have additional fields
that point to security attribute information.

The security attributes pointed to by the server and client handles are based on
the TSIX library. See Chapter 13, “Trusted Security Information Exchange
Library” for information on the library routines and privileges required to
change security attributes.

Note – The caller must free all memory blocks allocated for security attribute
pointers.

Servers

 The following security attribute fields of the SVCXPRT structure can be
accessed directly by the server process:

t6attr_t xp_tsol_incoming_attrsp

t6attr_t xp_tsol_outgoing_attrsp

t6mask_t xp_tsol_incoming_new_attrs

A server can receive one or more security attributes of incoming client requests
by using t6alloc_blk(3NTSOL) to allocate an opaque structure with space
for the security attributes and setting xp_tsol_incoming_attrsp field in
the SVCXPRT structure to point to the security attribute structure.

A privileged server can set security attributes on a request to the server by
using t6alloc_blk(3NTSOL) to allocate an opaque structure with space for
the security attributes and setting xp_tsol_outgoing_attrsp field in the
SVCXPRT to point to the security attribute structure. The RPC library routines
pick up the attributes and send them as the attributes for the response.

A server can examine the security attributes on the next and last bytes of data
by using the xp_tsol_incoming_new_attrs field in the SVCXPRT structure
to point to specific incoming attributes to be examined.

280 Trusted Solaris Developer’s Guide—August 1998

14

Clients

The following security attribute fields of the CLIENT structure can be accessed
directly by the client process:

t6attr_t cl_tsol_incoming_attrsp

t6attr_t cl_tsol_outgoing_attrsp

A client can receive one or more security attributes of incoming server
responses by using t6alloc_blk(3NTSOL) to allocate an opaque structure
with space for the attributes and setting cl_tsol_incoming_attrsp field in
the CLIENT structure to point to the security attribute structure.

A privileged client can set security attributes on a request to the server by
using t6alloc_blk(3NTSOL) to allocate an opaque structure with space for
the security attributes and setting xp_tsol_outgoing_attrsp field in the
CLIENT structure to point to the security attribute structure. The RPC library
routines pick up the attributes and send them as the attributes for the response.

Header Files and Libraries
The following header file is necessary to use the RPC programming interfaces.

#include <rpc/rpc.h>

The examples in this chapter compile with the following libraries:

-DTSOL -lt6 -lnsl -lsocket -ltsol

Remote Procedure Calls 281

14

Programming Interfaces
Trusted Solaris 2.5.1 has not introduced any new RPC interfaces over those
already in base Solaris 2.5.1. This section lists the RPC man pages that have
information specific to Trusted Solaris 2.5.1 added.

• rpc(3NTSOL)

• rpc_clnt_calls(3NTSOL)

• rpc_svc_calls(3NTSOL)

• rpc_clnt_create(3NTSOL)

• rpc_svc_create(3NTSOL)

• rpc_svc_reg(3NTSOL)

• rpcbind(3NTSOL)

• rpcbind(1MTSOL)

• rpcinfo(1MTSOL)

Client-Server Application
This is a simple client-server application to show how security attributes are
sent and received with RPC library routines. Command line arguments supply
the server name and a user ID, and the server process retrieves the user ID sent
by the client, multiplies the input by 2, and sends the result to the client. To run
the programs, compile them with the libraries listed in “Header Files and
Libraries” on page 280.

Header File

The following header file rpc_test.h is required for the example application
to compile.

#include <rpc/rpc.h>
#include <rpc/types.h>
#define RPC_TEST_PROG ((u_long)1234567890)
#define RPC_TEST_VERS ((u_long)1)
#define RPC_TEST_DOUBLE1 ((u_long)1)
#define RPC_TEST_EXIT1 ((u_long)2)

282 Trusted Solaris Developer’s Guide—August 1998

14

Client Program

This part of the client program accepts command line inputs and creates a
client handle.

This part of the client program sets the client handle to point to the space
allocated for the user ID to be input from the command line, sets the user ID
value, sends the value to the server process, and waits for the server response.
The client prints out the server response before it exits.

#include <stdio.h>
#include <stdlib.h>
#include <rpc/rpc.h>
#include <netdb.h>
#include <tsix/t6attrs.h>
#include "rpc_test.h"

extern int
main(int argc, char *argv[])
{

struct timeval time_out;
CLIENT *handlep;
enum clnt_stat stat;
int input, output;
uid_t uid;
if (argc < 2 || argc > 3) {

fprintf(stderr,
"Usage: simple_rpc_clnt_test HOSTNAME [UID]\n");

exit(1);
}

handlep = clnt_create(argv[1], RPC_TEST_PROG,
RPC_TEST_VERS, "udp");
if (handlep == (CLIENT *) NULL) {

fprintf(stderr, "Couldn't create client%s.\n",
clnt_spcreateerror(""));

exit(1);
}

Remote Procedure Calls 283

14

The client program needs the net_setid privilege in its effective set to send a
changed outgoing user ID. The code comments indicate where privilege
bracketing should occur.

if (argc == 3) {
handlep->cl_tsol_outgoing_attrsp = t6alloc_blk(T6M_UID);
if (handlep->cl_tsol_outgoing_attrsp == NULL) {

fprintf(stderr, "Can't create attr buffer\n");
exit(1);

}

printf ("Sending UID %s\n", argv[2]);
uid = atoi(argv[2]);
if (t6set_attr(T6_UID, &uid,

handlep->cl_tsol_outgoing_attrsp) != 0) {
fprintf(stderr, "Error returned by t6set_attr.\n");
exit(1);

}
}
time_out.tv_sec = 30;
time_out.tv_usec = 0;
input = 3;

/* Turn net_uid on in the effective set */
stat = clnt_call(handlep, RPC_TEST_DOUBLE1, xdr_int,

(caddr_t) &input, xdr_int, (caddr_t) &output, time_out);
if (stat != RPC_SUCCESS) {

fprintf(stderr, "Call failed. %s.\n",
clnt_sperror(handlep, ""));

exit(1);
}

/* Turn off the net_uid privilege */

printf("Response received: %d\n", output);
(void) clnt_destroy(handlep);

return (0);
}

284 Trusted Solaris Developer’s Guide—August 1998

14

Server Program

The server program sets the server handle to point to the space allocated space
for all security attributes.

#include <stdio.h>
#include <stdlib.h>
#include <rpc/rpc.h>
#include <tsix/t6attrs.h>
#include "rpc_test.h"
static void proc_1(struct svc_req *rqstp, SVCXPRT *transp);
extern int
main(int argc, char *argv[])
{

SVCXPRT *handlep;
struct netconfig *netconfigp;
netconfigp = getnetconfigent("udp");
if (netconfigp == NULL) {

fprintf(stderr, "Cannot find netconfig entry for udp.\n");
exit(1);

}

handlep = svc_tp_create(proc_1, RPC_TEST_PROG,
RPC_TEST_VERS, netconfigp);

if (handlep == NULL) {
fprintf(stderr, "Cannot create service.\n");
exit(1);

}
freenetconfigent(netconfigp);
handlep->xp_tsol_incoming_attrsp = t6alloc_blk(T6M_ALL_ATTRS);
if (handlep->xp_tsol_incoming_attrsp == NULL) {

fprintf(stderr, "Can't create attr buffer\n");
exit(1);

}
svc_run();
return (0);

}

Remote Procedure Calls 285

14

Remote Procedure

The remote procedure receives the user ID from command line arguments, and
multiplies the input by 2, sends the result to the client and prints the response
before exiting.

static void
proc_1(struct svc_req *rqstp, SVCXPRT *handlep)
{

int input;
int result;
uid_t *uidp;

switch(rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(handlep, xdr_void, NULL);
break;

case RPC_TEST_DOUBLE1:
if (!svc_getargs(handlep, xdr_int, (caddr_t) &input)) {

fprintf(stderr, "Error from svc_getargs\n");
svcerr_systemerr(handlep);

}
uidp = (uid_t *) t6get_attr(T6_UID,

handlep->xp_tsol_incoming_attrsp);
if (uidp == NULL)

fprintf(stderr, "Error from t6get_attr.\n");
else printf("Client's UID is %d\n", *uidp);
result = 2 * input;
if (!svc_sendreply(handlep, xdr_int, (caddr_t) &result)) {

fprintf(stderr, "Error from sendreply\n");
svcerr_systemerr(handlep);

}
svc_freeargs(handlep, xdr_int, (caddr_t) &input);
break;

default:
fprintf(stderr, "Call to unexpected procedure number %d\n",

rqstp->rq_proc);
svcerr_noproc(handlep);
break;
}

}

286 Trusted Solaris Developer’s Guide—August 1998

14

Running the Simple Application

The client process takes the server host name and a user ID as input
parameters and prints that it is sending the specified user ID:

%owl phoenix

%phoenix owl 2570

Sending UID 2570

The server retrieves the user ID and prints it out as follows:

Client’s UID is 2570

The client process prints the server response and then exits:

Response received: 6

%phoenix

287

Trusted X Window System 15

Trusted Solaris 2.5.1 uses the Trusted Common Desktop Environment (CDE)
which is an enhanced version of CDE 1.0.2. Trusted CDE uses the X Window
System, Version 11, with the Trusted Solaris 2.5.1 X Window System server. The
Trusted X Window System server has protocol extensions to support
mandatory access controls, discretionary access controls, information label
floating, and the use of privileges. Clients connect to the Trusted X Window
System server over UNIX domain and TCP/IP domain network connections.

Data transfer sessions are instantiated at different sensitivity labels and user
IDs (polyinstantiated). This is so data in an unprivileged client at one
sensitivity label or user ID is not transferred to another client at another
sensitivity label or user ID in violation of the Trusted X Window System
discretionary access controls and mandatory access policies of write-equal and
read-down.

Trusted Solaris 2.5.1 X Window System programming interfaces let you get and
set security-related attribute information and translate binary labels to ASCII
using a font list and width to apply a style such as Helvetica 14 point bold to
the ASCII string output. These interfaces are usually called by administrative
applications written with Motif widgets, Xt Intrinsics, Xlib, and CDE interfaces.

• Getting security-related information – These interfaces operate at the Xlib
level, which make X protocol requests. You use Xlib interfaces to obtain data
for the input parameter values.

288 Trusted Solaris Developer’s Guide—August 1998

15

• Translating labels from binary to ASCII – These interfaces operate at the
Motif level. The input parameters are the binary label, a font list to specify
the appearance of the output string, and the desired width. A compound
string using of the specified style and width is returned.

This chapter uses a short Motif application to describe Trusted X Window
System security policy and Trusted Solaris 2.5.1 interfaces.

Security Attributes page 289

Security Policy page 290

Selection Manager page 292

Moving Data Between Windows page 292

Privileged Operations page 293

Configuring and Destroying Resources page 293

Input Devices page 293

Direct Graphics Access page 293

Downgrading labels page 293

Upgrading Labels page 294

Stopping Information Label Floating page 294

Setting a Font Path page 294

Data Types, Header Files, and Libraries page 294

Programming Interface Declarations page 297

Example Motif Application page 304

Getting Window Attributes page 305

Translate Label with Font List page 306

Getting a Window CMW Label page 307

Setting a Window CMW Label page 308

Getting the Window User ID page 308

Getting the X Window Server Workstation Owner ID page 308

Source Code page 309

Trusted X Window System 289

15

Security Attributes
The Trusted X Window System interfaces manage security-related attribute
information for various X Window objects. If your application GUI is created
with Motif only, you need to use XToolkit routines within the Motif application
to retrieve the Xlib object IDs underlying the Motif widgets to handle security
attribute information for an Xlib object.

The X Window objects for which security attribute information can be retrieved
by the Trusted X Window System interfaces are window, property, X Window
Server, and the connection between the client and the X Window Server. Xlib
provides calls to retrieve window, property, display, and client connection IDs.

• Windows – Present output to the end user and accept input from clients.

• Properties – A property is an arbitrary collection of data accessed by the
property name. Property names and property types can be referenced by an
atom, which is a 32-bit unique identifier and a character name string.

The security attributes for windows, properties, and client connections consist
of ownership IDs and CMW label information. In addition, window security
attributes have an input information label security attribute. See “Data Types,
Header Files, and Libraries” on page 294 for information on the structures for
capturing some of these attributes, and “Programming Interface Declarations”
on page 297 for information on the interfaces that get and set security attribute
information.

Solaris 2.5.1 Trusted Solaris 2.5.1
Window Server owner ID Sensitivity label
User ID Information label
Group ID Input information label
Client ID X Window Server clearance
Internet address X Window Server minimum label

Trusted Path window

290 Trusted Solaris Developer’s Guide—August 1998

15

Security Policy
Window, property, and pixmap objects have a user ID, client ID, and a CMW
label. Graphic contexts, fonts, and cursors have a client ID only. The connection
between the client and the X Window Server has a user ID, X Window Server
ID, and a CMW label.

The user ID is the ID of the client that created the object. The client ID is
related to the connection number to which the client that creates the object is
connected.

The discretionary access policy requires a client to own an object to perform
any operations on the object. A client owns an object when the client’s user ID
equals the object’s ID. For a connection request, the user ID of the client must
be in the Access Control List (ACL) of the owner of the X Window Server
workstation or the client must assert the Trusted Path attribute as described in
“Get and Set Process Security Attribute Flags” on page 37.

The mandatory access policy is write-equal, read-equal for naming windows,
and read-down for properties. The sensitivity label portion of the CMW label is
set to the sensitivity label of the creating client. The information label portion
of the CMW label is initially ADMIN_LOW and floats to accommodate the
information label of data written to the window by a client.

• Modify, create, or delete – The sensitivity label of the client must equal the
object’s sensitivity label.

• Name, read, or retrieve – The client’s sensitivity label must dominate the
object’s sensitivity label.

• Connection request – The sensitivity label of the client must be dominated
by the session clearance of the owner of the X Window Server workstation
or the client must assert the Trusted Path attribute as described in “Get and
Set Process Security Attribute Flags” on page 37

Windows can have properties that contain information to be shared among
clients. Window properties are created at the sensitivity label at which the
application is running so access to the property data is segregated by its
sensitivity label. clients can create properties, store data in a property on a
window, and retrieve the data from a property subject to mandatory and
discretionary access restrictions. See
/usr/openwin/server/tsol/property.atoms to specify properties that
are not polyinstantiated.

Trusted X Window System 291

15

Every window has an input information label that defaults to ADMIN_LOW. The
Trusted Path menu lets a user set the input information label on a window. The
input information label is assigned to data input from key presses and releases
and button presses and releases and floats the information label of the events.

Root Window

The root window is at the top of the window hierarchy. The root window is a
public object that does not belong to any client, but has data that must be
protected. The root window attributes are protected at ADMIN_LOW.

Client Windows

A client usually has at least one top-level client window that descends from the
root window, and additional windows nested within the top-level window. All
windows that descend from the client’s top-level window have the same
sensitivity label. The information label floats to the conjunction of all
information labels associated with each window rooted from the top-level
window. Subwindows that descend from a client’s top-level window have the
same input information label as the client’s top-level window.

Override-Redirect Windows

Override-redirect windows such as menus and certain dialog boxes cannot
take the input focus away from another client to prevent the input focus from
accepting input into a file at the wrong sensitivity label. Override-redirect
windows are owned by the creating client and cannot be used by other clients
to access data at another sensitivity label.

Keyboard, Pointer, and Server Control

A client needs mandatory and discretionary access to gain keyboard, pointer,
or server control. To reset the focus, a client must own the focus or have the
win_devices privilege.

To warp a pointer, the client needs pointer control and mandatory and
discretionary access to the destination window. X and Y coordinate
information can be obtained for events that involve explicit user action.

292 Trusted Solaris Developer’s Guide—August 1998

15

Selection Manager

The Selection Manager arbitrates user-level inter-window data moves such as
cut-and-paste or drag-and-drop where information is transferred between
untrusted windows. When a transfer is attempted, Selection Manager captures
the transfer, verifies the controlling user’s authorization, and requests
confirmation and labeling information from the user. The Selection Manager
displays whenever the end user attempts a data move without your writing
application code.

The administrator can set autoconfirm for some transfer types in which case
the Selection Manager does not appear. If the transfer meets mandatory and
discretionary access policies, the data transfer completes. The File Manager
and Window Manager also act as selection agents for their private drop sites.
See /usr/openwin/server/tsol/selection.atoms to specify selection
targets that are polyinstantiated. See /usr/dt/config/sel_config to
determine which selection targets are automatically confirmed.

Default Resources

Resources not created by clients are default resources labeled ADMIN_LOW.
Only clients running at ADMIN_LOW or with the appropriate privileges can
modify default resources.

• Root window attributes – All clients have read and create access, but only
privileged clients have write or modify access. There is no information label
floating. See “Privileged Operations” on page 293.

• Default cursor – Clients are free to reference the default cursor in protocol
requests.

• Predefined atoms – The /usr/openwin/server/tsol/public.atoms
file contains a read-only list of predefined atoms.

Moving Data Between Windows

A client needs the win_selection privilege to move data between one
window and another without going through the Selection Manager.

• The Selection Manager is described on page 292.

• Getting and setting process attribute flags is covered in Chapter 2, “Getting
Started.

Trusted X Window System 293

15

Privileged Operations
Library routines that access a window, property or atom name without user
involvement require mandatory and discretionary access. Library routines that
access framebuffer graphic contexts, fonts, and cursors require discretionary
access and may also require additional privilege for special tasks as described
below.

The client may need one or more of the following privileges in its effective set
if access to the object is denied: win_dac_read , win_dac_write ,
win_mac_read , or win_mac_write . See
/usr/openwin/server/tsol/config.privs to enable or disable these
policies..

Configuring and Destroying Resources

A client needs the win_config privilege in its effective set to configure or
destroy windows or properties permanently retained by the X Window Server.
The screen saver timeout is an example of such a resource.

Input Devices

A client needs the win_devices privilege in its effective set to get and set
keyboard and pointer controls or modify pointer button and key mappings.

Direct Graphics Access

A client needs the win_dga privilege in its effective set to use the direct
graphics access (DGA) X protocol extension.

Downgrading labels

A client needs the win_downgrade_il or win_downgrade_sl privilege in its
effective set to change the information label or sensitivity label on a window,
pixmap, or property to a new label that does not dominate the existing
information label.

294 Trusted Solaris Developer’s Guide—August 1998

15

Upgrading Labels

A client process needs the win_upgrade_il or win_upgrade_sl privilege in
its effective set to change the information label or sensitivity label on a
window, pixmap, or property to a new label that dominates the existing label.

Stopping Information Label Floating

A client needs the win_nofloat privilege in its effective set to write to a
window, pixmap, or property without floating the object’s information label.

Setting a Font Path

A client needs the win_fontpath privilege in its effective set to modify the
font path.

Data Types, Header Files, and Libraries
To use the Trusted X11 programming interfaces described in this chapter, you
need the following header files:

#include <tsol/Xtsol.h>

The Trusted X11 examples compile with the following library:

-lXtsol -ltsol

To use the X11 Windows label clipping programming interfaces described in
this chapter, you need the following header file:

#include <tsol/label_clipping.h>

The label clipping examples compile with the following library:

-lDtTsol -ltsol

Trusted X Window System 295

15

Object Type

The ResourceType type definition indicates the type of resource to be
handled. The value can IsWindow.

Object Attributes

The XTsolResAttributes structure contains the resource attributes.

Property Attributes

The XTsolPropAttributes structure contains the property attributes.

Client Attributes

The XTsolClientAttributes structure contains the client attributes.

CARD32 ouid User ID of workstation server owner
CARD32 uid User ID of window
bslabel_t sl Sensitivity label
bilabel_t il Information label
bilabel_t iil Input information label

CARD32 uid User ID of property
bslabel_t sl Sensitivity label
bilabel_t il Information label

uid_t uid ID of user that started the client.
gid_t gid Group ID
pid_t pid Process ID
u_long sessionid Session ID
au_id_t auditid Audit ID
u_long iaddr Internet address of workstation where the client is

running.

296 Trusted Solaris Developer’s Guide—August 1998

15

Setting Flag

The setting_flag type definition defines CMW label flag values as follows:

SETCL_SL – Set the sensitivity label portion of the CMW label.
SETCL_IL – Set the information label portion of the CMW label.
SETCL_ALL – Set the entire CMW label.

CMW Label

A data structure to represent a binary CMW label. Interfaces accept and return
a binary CMW label in a structure of type bclabel_t .

Information Label

A type definition to represent the information label portion of a binary CMW
label. Interfaces accept as parameters and return binary information labels in a
structure of type bilabel_t .

Clearance

A type definition to represent a clearance. Interfaces accept as parameters and
return binary clearances in a structure of type bclear_t .

Trusted X Window System 297

15

Programming Interface Declarations
This section provides declarations for the Trusted X11 interfaces and the X11
Windows label clipping interfaces.

Window Attributes

This routine returns the resource attributes for a window ID in *resattrp. Refer
to the XTSOLgetResAttributes(3X11TSOL) man page.

Property Attributes

This routine returns the property attributes for a property hanging on a
window ID in *propattrp. Refer to the
XTSOLgetPropAttributes(3X11TSOL) man page.

Client Connection Attributes

This routine returns the client attributes in *clientattrp. Refer to the
XTSOLgetClientAttributes(3X11TSOL) man page.

Status XTSOLgetResAttributes(Display *display,
XID object,
ResourceType resourceFlag,
XTsolResAttributes *resattrp);

Status XTSOLgetPropAttributes(Display *display,
Window win,
Atom property,
XTsolPropAttributes *propattrp);

Status XTSOLgetClientAttributes(Display *display,
XID win,
XTsolClientAttributes *clientattrp);

298 Trusted Solaris Developer’s Guide—August 1998

15

Window CMW Label

These routines get and set the CMW label of a window. Refer to the
XTSOLgetResLabel(3X11TSOL) and XTSOLsetResLabel(3X11TSOL)
man pages.

Window User ID

These interfaces get and set the user ID of a window. Refer to the
XTSOLgetResUID(3X11TSOL) and XTSOLsetResUID(3X11TSOL) man
pages.

Status XTSOLgetResLabel(Display *display,
XID object,
ResourceType resourceFlag,
bclabel_t *cmwlabel);

void XTSOLsetResLabel(Display *display,
XID object,
ResourceType resourceFlag,
bclabel_t *cmwLabel,
enum setting_flag labelFlag);

Status XTSOLgetResUID(Display *display,
XID object,
ResourceType resourceFlag,
uid_t *uidp);

void XTSOLsetResUID(Display *display,
XID object,
ResourceType resourceFlag,
uid_t *uidp);

Trusted X Window System 299

15

Window Input Information Label

When the input information label of a window changes, the input information
label of all windows that descend from the client’s top-level window also
change. If another client with the same sensitivity label and user ID as the
window owner expresses interest in keyboard events from an input window,
the keyboard events are sent to both clients and the input information label is
the input information label where the events originated.

These routines get and set the input information label associated with a
window. Refer to the XTSOLgetWindowIIL(3X11TSOL) and
XTSOLsetWindowIIL(3X11TSOL) man page.

Property CMW Label
• These routines get and set the CMW label of a property hanging on a

window. Refer to the XTSOLgetPropLabel(3X11TSOL) and
XTSOLsetPropLabel(3X11TSOL) man page.

Status XTSOLgetWindowIIL(Display *display,
Window win,
bilabel_t *label);

void XTSOLsetWindowIIL(Diplay *display,
Window win,
bilabel_t *label);

Status XTSOLgetPropLabel(Display *display,
Window win,
Atom property,
bclabel_t *cmwlabel);

void XTSOLsetPropLabel(Display *display,
Window win,
Atom property,
bclabel_t *cmwLabel,
enum setting_flag labelFlag);

300 Trusted Solaris Developer’s Guide—August 1998

15

Property User ID

These interfaces get and set the user ID of a property hanging on a window.
Refer to the XTSOLgetPropUID(3X11TSOL) and
XTSOLsetPropUID(3X11TSOL) man pages.

Workstation Owner ID

These routines get and set the user ID for the owner of the workstation server.
Refer to the XTSOLgetWorkstationOwner(3X11TSOL) and
XTSOLsetWorkstationOwner(3X11TSOL) man pages.

Note – XTSOLsetWorkstationOwner(3X11TSOL) is reserved for the
Window Manager.

Status XTSOLgetPropUID(Display *display,
Window winID,
Atom property,
uid_t *uidp);

void XTSOLsetPropUID(Display *display,
Window win,
Atom property,
uid_t *uidp);

Status XTSOLgetWorkstationOwner(Display *display,
uid_t *uidp);

void XTSOLsetWorkstationOwner(Display *display,
uid_t *uidp);

Trusted X Window System 301

15

X Window Server Clearance and Minimum Label

These routines set the session high clearance and the session low minimum
label for the X Window Server. Refer to the XTSOLsetSessionHI(3X11TSOL)
and XTSOLsetSessionLO(3X11TSOL) man pages.

• The session high clearance is set from the workstation owner’s clearance at
login, and must be dominated by the owner’s clearance and the upper
bound of the machine monitor’s label range. Once changed, connection
requests from clients running at a sensitivity label higher than the window
server clearance are rejected unless they have privilege.

• The session low minimum label is set from the workstation owner’s
minimum label at login and must be greater than the user’s administratively
set minimum label and the lower bound of the machine monitor’s label
range. Once changed, connection requests from clients running at a
sensitivity label lower than the window server sensitivity label are rejected
unless they have privilege.

Note – These interfaces are reserved for the Window Manager.

Trusted Path Window

These routines makes the specified window the trusted path window and test
whether the specified window is the trusted path window. Refer to the
XTSOLMakeTPWindow(3X11TSOL) man page.

void XTSOLsetSessionHI(Display *display,
bclear_t *clearance);

void XTSOLsetSessionLO(Display *display,
bslabel_t *sl);

void XTSOLMakeTPWindow(Display *dpy,
Window win);

Bool XTSOLIsWindowTrusted(Display *display,
Window win);

302 Trusted Solaris Developer’s Guide—August 1998

15

Screen Stripe Height

These interfaces get and set the screen stripe height – an additive and
subtractive operation. Be careful you do not end up with no screen stripe or a
very large screen stripe. Refer to the XTSOLsetSSHeight(3X11TSOL) and
XTSOLgetSSHeight(3X11TSOL) man pages.

Note – These interfaces are reserved for the Window Manager.

Polyinstantiation Information

This routine lets a client get property information from a property at a different
sensitivity label from the client. In the first call, specify the desired sensitivity
label and user ID, and set enabled to True. Then call
XTSOLgetPropAttributes(3X11TSOL) ,
XTSOLgetPropLabel(3X11TSOL) , or XTSOLgetPropUID(3X11TSOL) , and
finish up by calling this routine again with enabled set to False. Refer to the
XTSOLsetPolyInstInfo(3X11TSOL) man page.

Status XTSOLgetSSHeight(Display *display,
int screen_num,
int *newHeight);

void XTSOLsetSSHeight(Display *display,
int screen_num,
int newHeight);

void XTSOLsetPolyInstInfo(Display *dpy,
bslabel_t *senslabel,
uid_t *userID, int enabled);

Trusted X Window System 303

15

X11 Windows Label Clipping Interfaces

These routines translate a binary CMW label, sensitivity label, information
label, or clearance to a compound string using a font list. The returned string is
clipped to the specified pixel width, or if width equals the display width
(display), the label is word wrapped using a width of half the display width.
See “Binary and ASCII” on page 138 in Chapter 6, “Label Code Examples” for
a description of the flags parameter. Refer to the labelclipping(3TSOL)
man page.

/* CMW label */
XmString Xbcltos(Display *display,

const bclabel_t *cmwlabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

/* Sensitivity label */
XmString Xbsltos(Display *display,

const bslabel_t *senslabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

/* Information Label */
XmString Xbiltos(Display *display,

const bilabel_t *inflabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

/* Clearance */
XmString Xbcleartos(Display *display,

const bclear_t *clearance,
const Dimension width,
const XmFontList fontlist,
const int flags);

304 Trusted Solaris Developer’s Guide—August 1998

15

Example Motif Application
The example Motif application in Figure 15-1 launches xclock or xterm
applications. It is simple because its purpose is to show how Trusted Solaris
2.5.1 X Windows programming interfaces are called from within a Motif
application. The application’s process sensitivity label is Confidential and the
information label is Unclassified.

The next headings provide example code segments that use the Trusted Solaris
2.5.1 interface calls to handle security attributes and translate a binary label to
ASCII with a font list. The code segments focus on handling window security
attributes because those are the most common operations in application
programs. Often a client will retrieve security attributes (using the appropriate
privileges) for an object created by another application and check the attributes
to determine if an operation on the object is permitted by the system’s
discretionary ownership policies and the mandatory write-equal and read-
down policies. If access is denied, the application raises an error or uses
privilege as appropriate. See “Privileged Operations” on page 293 for
information on when privileges are needed.

The source code for the simple Motif application including the code segments
below is provided in “Source Code” on page 309. Xlib calls to retrieve object
IDs to pass to the Trusted Solaris 2.5.1 programming interfaces should be made
after the appropriate object has been created so there is an ID to retrieve. In this
source code, the Xlib calls are after XtRealizeWidget () is called.

Figure 15-1 Simple Motif Application

Trusted X Window System 305

15

Getting Window Attributes
The XTSOLgetResAttributes(3X11TSOL) routine returns security-related
attributes for a window. You supply the display and window IDs, a flag to
indicate the object you want security attributes on is a window, and an
XtsolResAttributes structure to receive the returned attributes. The client
is getting the security attributes for a window it created so no privileges are
required.

The printf(1) statement prints the following:

Workstation owner ID = 29378

User ID = 29378

SL = CONFIDENTIAL

IL = UNCLASSIFIED

IIL = UNCLASSIFIED

/* Retrieve underlying window and display IDs with Xlib calls */
window = XtWindow(topLevel);
display = XtDisplay(topLevel);

/* Retrieve window security attributes */
retval = XTSOLgetResAttributes(display, window, IsWindow, &winattrs);

/* Translate labels to strings */
retval = bsltos(&winattrs.sl, &string1, 0, LONG_WORDS);
retval = biltos(&winattrs.il, &string2, 0, LONG_WORDS);
retval = biltos(&winattrs.iil, &string3, 0, LONG_WORDS);

/* Print security attribute information */
printf(“Workstation owner ID = %d, User ID = %d, SL = %s, IL = %s, IIL = %s\n”,

winattrs.ouid, winattrs.uid,string1, string2, string3);

306 Trusted Solaris Developer’s Guide—August 1998

15

Translate Label with Font List
This example gets the process sensitivity label and translates it to ASCII using
a font list and pixel width. A label widget is created with the string for its
label. The process sensitivity label equals the window sensitivity label so no
privileges are required.

When the final string is longer than the width, it is clipped and the clipped
indicator is used. The clipped indicator for a clipped sensitivity label is
described in “Sensitivity and Information Labels” on page 144 and on the
sbsltos(3TSOL) man page. Note that the X Window System label translation
interfaces clip to the number of pixels specified, and the label clipping
interfaces clip to the number of characters.

If your site uses a label_encodings file in a language other than English, the
translation might not work on accent characters in the ISO standard above 128,
and will not work on the Asian character set.

retval = getcmwplabel(&cmwlabel);
getcsl(&senslabel, &cmwlabel);

/* Create the font list and translate the label using it */
italic = XLoadQueryFont(XtDisplay(topLevel),

“-adobe-times-medium-i-*-*-14-*-*-*-*-*-iso8859-1”);
fontlist = XmFontListCreate(italic, “italic”);
xmstr = Xbsltos(XtDisplay(topLevel), &senslabel, width, fontlist, LONG_WORDS);

/* Create a label widget using the font list and label text*/
i=0;
XtSetArg(args[i], XmNfontList, fontlist); i++;
XtSetArg(args[i], XmNlabelString, xmstr); i++;
label = XtCreateManagedWidget(“label”, xmLabelWidgetClass, form, args, i);

Trusted X Window System 307

15

The source code for the italicized sensitivity label string and the non-italicized
“Launch and application” label is on page 309. Launch the application with
any command line argument to see the italicized sensitivity label string in the
label widget as shown in Figure 15-2.

Figure 15-2 Italicized Label Text

Getting a Window CMW Label
This example gets the CMW label on a window. The process sensitivity label
equals the window sensitivity label so no privileges are required.

The printf(1) statement prints the following:

CMW label = UNCLASSIFIED[C]

/* Retrieve window CMW label */
retval = XTSOLgetResLabel(display, window, IsWindow, &cmwlabel);

/* Translate labels to string and print */
retval = bcltos(&cmwlabel, &string, 0, LONG_WORDS);
printf(“CWM label = %s\n”, string);

308 Trusted Solaris Developer’s Guide—August 1998

15

Setting a Window CMW Label
This example sets the CMW label on a window. The new sensitivity label
dominates the window’s and process’s sensitivity label. The client needs the
sys_trans_label privilege in its effective set to translate a label it does not
dominate, and the win_upgrade_sl privilege to change the window
sensitivity label.

Getting the Window User ID
This example gets the window user ID. The process owns the window resource
and is running at the same sensitivity label so no privileges are required.

Getting the X Window Server Workstation Owner ID
This example gets the ID of the user logged in to X Window Server. The
process sensitivity label equals the window sensitivity label so no privileges
are required.

/* Translate ASCII string to binary sensitivity label and */
/* Turn sys_trans_label on in the effective set */

retval = stobsl(&string4, &senslabel, NEW_LABEL, &error);
/* Turn sys_trans_label off */

/* Set the sensitivity label in the cmwlabel structure */
setcsl(&cmwlabel, &senslabel);

/* Set sensitivity label portion of CMW label with new value */
/* and turn win_upgrade_sl on in the effective set */

retval = XTSOLsetResLabel(display, window, IsWindow, &cmwlabel, SETCL_SL);
/* Turn the win_upgrade_sl privilege off */

/* Get the user ID of the window */
retval = XTSOLgetResUID(display, window, IsWindow, &uid);

/* Get the user ID of the window */
retval = XTSOLgetWorkstationOwner(display, &uid);

Trusted X Window System 309

15

Source Code
This is the source code for the simple Motif applications shown in Figure 15-1
on page 304 and Figure 15-2 on page 307. Launch it with any command line
argument to see the ASCII label string in italic font in the label widget.

Resource File

Here is the Resource file for the simple Motif application. One way to use it is
to create the file and set the XENVIRONMENT variable with the pathname.

phoenix% setenv XENVIRONMENT /export/home/zelda/resfile

Compile Command

phoenix% cc -I/usr/openwin/include -I/usr/dt/include ex.c -o

Example -L/usr/openwin/lib -L/usr/dt/lib -lXm -lXt -lX11 -lXtsol -

ltsol -lDtTsol

Example.*geometry: 400X100
Example.*orientation: XmHORIZONTAL
Example.*label.labelString: Launch an application
Example.*xclock.labelString: Run xclock
Example.*xterm.labelString: Run xterm
Example.*xmag.labelString: Run xmag
Example.*goodbye.labelString: Quit
Example.*XmPushButton*background: blue
Example.*XmLabel*foreground: white
Example.*XmLabel*foreground: white

310 Trusted Solaris Developer’s Guide—August 1998

15

Code

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <tsol/Xtsol.h>
#include <Dt/label_clipping.h>

XTsolResAttributes winattrs;
int retval, error;
uid_t uid;
Window window;
Display *display;
char *string = (char *)0, *string1 = (char *)0, *string2 = (char *)0,

*string3 = (char *)0, *string4 = “SECRET”;
XmFontList fontlist;
XmString xmstr;
XFontStruct *italic;
Arg args[9];
Dimension width = 144;
Widget stringLabel;
bslabel_t senslabel;
bclabel_t cmwlabel;

/* Callbacks */

void Xclock(Widget w, caddr_t client_data, caddr_t call_data)
{ system("xclock &"); }

void Xterm(Widget w, caddr_t client_data, caddr_t call_data)
{ system("xterm &"); }

void Quit(Widget w, caddr_t client_data, caddr_t call_data)
{

fprintf(stderr, "exiting . . .\n");
exit(0);

}

Trusted X Window System 311

15

main(int argc, char **argv)
{

Widget rowcolumn, label, xclock, xterm, quit, form, topLevel;
int i = 0;
Arg args[9];

/* Create Widgets */
topLevel = XtInitialize(argv[0], "XMCmds1", NULL, 0, &argc, argv);
form = XtCreateManagedWidget("form", xmFormWidgetClass, topLevel, NULL, 0);

/* Launch application with any command argument to use the */
/* ASCII label string and font list for the label widget */

if (argc == 2) {
/* Create the font list and translate the label using it */

retval = getcmwplabel(&cmwlabel);
getcsl(&senslabel, &cmwlabel);
italic = XLoadQueryFont(XtDisplay(topLevel),

“-adobe-times-medium-i-*-*-14-*-*-*-*-*-iso8859-1”);
fontlist = XmFontListCreate(italic, “italic”);
xmstr = (XmString)Xbsltos(XtDisplay(topLevel), &senslabel,

width, fontlist, LONG_WORDS);

/* Create a label widget using the font list and label text*/
i=0;
XtSetArg(args[i], XmNfontList, fontlist); i++;
XtSetArg(args[i], XmNlabelString, xmstr); i++;
label = XtCreateManagedWidget(“label”, xmLabelWidgetClass, form, args, i);

}

/* Launch application with no command arguments to use the text */
/* in the resource file for the label widget */

else {
label = XtCreateManagedWidget("label", xmLabelWidgetClass, form, NULL, 0); }

312 Trusted Solaris Developer’s Guide—August 1998

15

/* Continue widget creation */
i=0;
XtSetArg(args[i], XmNtopAttachment, XmATTACH_WIDGET); i++;
XtSetArg(args[i], XmNtopWidget, label);i++;
XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNrightAttachment, XmATTACH_POSITION);i++;
XtSetArg(args[i], XmNrightPosition, 33); i++;
XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM); i++;
xclock = XtCreateManagedWidget("xclock", xmPushButtonWidgetClass, form, args, i);

i=0;
XtSetArg(args[i], XmNtopAttachment, XmATTACH_WIDGET); i++;
XtSetArg(args[i], XmNtopWidget, label); i++;
XtSetArg(args[i], XmNleftAttachment, XmATTACH_POSITION);i++;
XtSetArg(args[i], XmNleftPosition, 33); i++;
XtSetArg(args[i], XmNrightAttachment, XmATTACH_POSITION);i++;
XtSetArg(args[i], XmNrightPosition, 67); i++;
XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM);i++;
xterm = XtCreateManagedWidget("xterm", xmPushButtonWidgetClass, form, args, i);

i=0;
XtSetArg(args[i], XmNtopAttachment, XmATTACH_WIDGET); i++;
XtSetArg(args[i], XmNtopWidget, label); i++;
XtSetArg(args[i], XmNleftAttachment, XmATTACH_POSITION); i++;
XtSetArg(args[i], XmNleftPosition, 67); i++;
XtSetArg(args[i], XmNrightAttachment, XmATTACH_POSITION); i++;
XtSetArg(args[i], XmNrightPosition, 100); i++;
XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM); i++;
quit = XtCreateManagedWidget("goodbye", xmPushButtonWidgetClass, form, args, i);

/* Add callbacks to pushbuttons */
XtAddCallback(xclock, XmNactivateCallback, Xclock, 0);
XtAddCallback(xterm, XmNactivateCallback, Xterm, 0);
XtAddCallback(quit, XmNactivateCallback, Quit, 0);

XtRealizeWidget(topLevel);

/* Access security-related information */
/* Retrieve underlying window and display IDs using Xlib calls */

window = XtWindow(topLevel);
display = XtDisplay(topLevel);

Trusted X Window System 313

15

/* Retrieve window security attributes */
retval = XTSOLgetResAttributes(display, window, IsWindow, &winattrs);

/* Translate retrieved labels to strings */
retval = bsltos(&winattrs.sl, &string1, 0, LONG_WORDS);
retval = biltos(&winattrs.il, &string2, 0, LONG_WORDS);
retval = biltos(&winattrs.iil, &string3, 0, LONG_WORDS);

/* Print security attribute information */
printf(“Server ID = %d, User ID = %d, SL = %s, IL = %s, IIL = %s\n”,

winattrs.ouid, winattrs.uid,string1, string2, string3);

/* Retrieve window CMW label */
retval = XTSOLgetResLabel(display, window, IsWindow, &cmwlabel);

/* Translate label to string and print */
retval = bcltos(&cmwlabel, &string, 0, LONG_WORDS);
printf(“CWM label = %s\n”, string);

/* Translate ASCII string to binary sensitivity label and */
/* Turn sys_trans_label on in the effective set */

retval = stobsl(string4, &senslabel, NEW_LABEL, &error);
/* Turn sys_trans_label off */

/* Get the user ID of the window */
retval = XTSOLgetResUID(display, window, IsWindow, &uid);

/* Set the sensitivity label in the cmwlabel structure */
setcsl(&cmwlabel, &senslabel);

/* Set sensitivity label portion of CMW label with new value */
/* Turn win_upgrade_sl on in the effective set */

retval = XTSOLsetResLabel(display, window, IsWindow, &cmwlabel, SETCL_SL);
/* Turn the win_upgrade_sl privilege off */

/* Get the user ID of the window */
retval = XTSOLgetWorkstationOwner(display, &uid);

XtMainLoop();
}

314 Trusted Solaris Developer’s Guide—August 1998

15

315

Label Builder 16

Trusted Solaris 2.5.1 provides a set of Motif-based programming interfaces for
creating an interactive user interface that builds valid sensitivity labels,
information labels, CMW labels, or clearances from user input. This set of
interfaces is called Label builder, and will be most often called from within
administrative applications.

Label builder graphical user interfaces are used in Trusted Solaris 2.5.1. The
Trusted Solaris User’s Guide describes these interfaces from the end user’s point
of view. This discussion describes the functionality provided by the Label
builder library routines.

Header Files and Libraries page 316

Programming Interfaces page 316

Creating an Interactive User Interface page 316

Label Builder Behavior page 320

Application-Specific Functionality page 321

Privileged Operations page 321

Create Routine page 322

Extended Operations page 324

ModLabelData Structure page 327

Online Help page 328

316 Trusted Solaris Developer’s Guide—August 1998

16

Header Files and Libraries
To use the programming interfaces described in this section, you need the
following header file.

#include <Dt/ModLabel.h>

The examples in this chapter compile with the following libraries:

-lDtTsol -ltsol

Programming Interfaces
The following programming interfaces are available for building label GUIs.
The data types and parameter lists are covered in “Creating an Interactive User
Interface” on 316.

Creating an Interactive User Interface
Figure 16-1 on page 317 shows the graphical user interface (GUI) created from
the code after the figure. The main program creates a parent form (form) with
one pushbutton (display). The pushbutton callback displays the Label builder
dialog box created in the call to tsol_lbuild_create(3TSOL) .

ModLabelData *tsol_lbuild_create(Widget widget,
void (*event_handler)() ok_callback,
lbuild_attributes extended_operation
...,
NULL);

void tsol_lbuild_destroy(ModLabelData *lbdata);

void *tsol_lbuild_get(ModLabelData *lbdata,
lbuild_attributes extended_operation);

void tsol_lbuild_set(ModLabelData *lbdata,
lbuild_attributes extended_operation,
...,
NULL);

Label Builder 317

16

The Label builder dialog box on the right appears when the Show pushbutton
on the left is selected. The callouts point out where the parameters passed to
tsol_lbuild_create(3TSOL) appear on the Label builder dialog box.

Figure 16-1 CMW Label Building Interface

Label field.
The LBUILD_MODE value sets the title
for and the LBUILD_VALUE_CMW value
sets the contents of this label field.

Text output field.
LBUILD_USERFIELD

Label Settings.
The LBUILD_MODE value sets which of
these buttons is active.

LBUILD_MODE_CMW – Both buttons are
active to build the sensitivity label (SL)
and information label (IL) portions of the
label.

LBUILD_MODE_SL, LBUILD_MODE_CLR
– The IL button is grayed when building
a sensitivity label or clearance.

LBUILD_MODE_IL– The SL button is
grayed when building an information
label.

OK Pushbutton.
The callback_function maps
to the OK pushbutton.

Dialog box title.
LBUILD_TITLE

318 Trusted Solaris Developer’s Guide—August 1998

16

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <Dt/ModLabel.h>

ModLabelData *data;

/* Callback passed to tsol_lbuild_create() */
void callback_function()
{

char *title, *userval, *string = (char *)0, *string1 = (char *)0;
int mode, view;
Boolean show;
bclabel_t cmwlabel, workcmwlabel;
Position x,y;

/* Your application-specific implementation goes here */
printf(“OK pushbutton called\n”);

/* Query settings */
mode = (int)tsol_lbuild_get(data, LBUILD_MODE);
title = (String)tsol_lbuild_get(data, LBUILD_TITLE);
cmwlabel = *(bclabel_t*) tsol_lbuild_get(data, LBUILD_VALUE_CMW);
workcmwlabel = *(bclabel_t*) tsol_lbuild_get(data, LBUILD_WORK_CMW);
view = (int)tsol_lbuild_get(data, LBUILD_VIEW);
x = (Position) tsol_lbuild_get(data, LBUILD_X);
y = (Position) tsol_lbuild_get(data, LBUILD_Y, NULL);
userval = (char *)tsol_lbuild_get(data, LBUILD_USERFIELD);
show = (Boolean)tsol_lbuild_get(data, LBUILD_SHOW);

bcltos(&cmwlabel, &string, 0, LONG_WORDS);
bcltos(&workcmwlabel, &string1, 0, LONG_WORDS);
printf(“Mode = %d, Title = %s, CMWlabel = %s, WorkCMW = %s, View = %d,

X = %d, Y = %d, Userval = %s, Show = %d\n”, mode, title, string,
string1, view, x, y, userval, show);

}

/* Callback to display dialog box upon pushbutton press */
void Show(Widget display, caddr_t client_data, caddr_t call_data)
{ tsol_lbuild_set(data, LBUILD_SHOW, TRUE, NULL);}

Label Builder 319

16

The printf(1) statements print the following:

OK pushbutton called
Mode = 12, Title = Building CMW label, CMWlabel =
UNCLASSIFIED[C], WorkCMW = UNCLASSIFIED[S], View = 1, X =
200, Y = 200, Userval = /export/home/zelda, Show = 1

main(int argc, char **argv)
{

Widget form, topLevel, display;
Arg args[9];
int i = 0, error, retval;
char *cmwstring = “UNCLASSIFIED[C]”;
bclabel_t cmwlabel;

topLevel = XtInitialize(argv[0], “XMcmds1”, NULL, 0, &argc, argv);
form = XtCreateManagedWidget(“form”, xmFormWidgetClass, topLevel, NULL, 0);

retval = stobcl(cmwsting, &cmwlabel, NEW_LABEL, &error);

data= tsol_lbuild_create(widget, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW, /* Build a CMW label */
LBUILD_TITLE, "Building CMW Label", /* Use this title string */
LBUILD_VALUE_CMW, cmwlabel, /* Set the initial CMW label value */
LBUILD_VIEW, LBUILD_VIEW_EXTERNAL, /* Use external admin label names */
LBUILD_X, 200, /* Put dialog box 200 pixels from */
LBUILD_Y, 200, /* top-left of screen in X-Y directions */
LBUILD_USERFIELD, “/export/home/zelda”, /* Place this user prompt at the top *
LBUILD_SHOW, FALSE, /* Hide dialog box at startup */
NULL);

XtSetArg(args[i], XmNtopAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM); i++;
display = XtCreateManagedWidget("Show", xmPushButtonWidgetClass, form, args, i);
XtAddCallback(display, XmNactivateCallback, Show,0);
XtRealizeWidget(topLevel);

XtMainLoop();
tsol_lbuild_destroy(data);

}

320 Trusted Solaris Developer’s Guide—August 1998

16

Label Builder Behavior

The Label builder dialog box prompts the end user for information and
generates a valid CMW label from the input. The input can be entered from the
keyboard or by choosing options. Either way, Label builder ensures that a valid
label or clearance as defined in the label_encodings(4TSOL) file for the
system is built.

Label builder provides default behavior for the OK, Reset, Cancel, and Update
pushbuttons. The callback passed to tsol_lbuild_create(3TSOL) is
mapped to the OK pushbutton to provide application-specific behavior.

Keyboard Entry

The Update pushbutton takes the text the end user types into the Update
With field and checks that the string is a valid label or clearance as defined in
the label_encodings(4TSOL) file.

• If the input is not valid, Label builder raises an error to the end user.

• If the input is valid, Label builder updates the text in the Label field above
and stores the value in the appropriate working label field of the
ModLabelData variable returned by tsol_lbuild_create(3TSOL) . See
“ModLabelData Structure” on 327.

When the end user selects the OK pushbutton, the user-built value is handled
according to the OK pushbutton callback implementation.

Selecting Options

The Label Settings radio button options let you build a sensitivity label or
clearance from classifications and compartments, or an information label from
classifications, compartments, and markings. Depending on the mode, one of
these buttons might be grayed out. This approach is independent of the
keyboard entry and Update pushbutton method described above.

The classifications, compartments, and markings information are from the
label_encodings(4TSOL) file for the system. The combinations and
constraints specified in the label_encodings file are enforced by graying out
invalid combinations. The Label field updates the Label field above and stores

Label Builder 321

16

the value in the appropriate working label field of the ModLabelData variable
returned by tsol_lbuild_create(3TSOL) (see “ModLabelData Structure”
on 327) when the end user chooses options.

• SL radio button – The end user can build a sensitivity label, clearance, or
sensitivity label portion of a CMW label from the classifications (CLASS) and
compartments (COMPS) radio buttons listed.

• IL radio button – The end user can build an information label from the
classifications, compartments, and markings (MARKS) radio buttons listed.

• Downgrade SL Using IL pushbutton – The sensitivity label portion of a
CMW label is given the same value as the information label portion.

When the end user selects the OK pushbutton, the user-built value is handled
according to the OK pushbutton callback implementation.

Reset Pushbutton

The Rest pushbutton sets the text in the Label field to what its value was when
the application started.

Cancel Pushbutton

The Cancel pushbutton exits the application.

Application-Specific Functionality

It is up to you to add application-specific callbacks, error handling, and other
functionality to go with the valid label or clearance generated by the Label
builder user interface.

Privileged Operations

Label builder shows the user only those classifications (and related
compartments and markings) dominated by the workspace sensitivity label
unless the executable has the sys_trans_label privilege in its effective set.

Your application-specific implementation for the OK pushbutton callback
might require privileges.

322 Trusted Solaris Developer’s Guide—August 1998

16

If the end user does not have the authorization to upgrade or downgrade
labels, or if the user-built label is out of the user’s accreditation range, the OK
and Reset buttons are grayed to prevent the end user from completing the task.
There are no privileges to override these restrictions.

Create Routine

The tsol_lbuild_create(3TSOL) routine accepts any widget, Boolean
value, callback, and a NULL terminated series of operation and value pairs. A
variable of type ModLabelData is returned.

• Widget – Label builder can build the dialog box from any widget.

• Callback function – The callback function activates when the OK
pushbutton is pressed. This callback provides application-specific behavior.

• Operation and value pairs – The operation (left) side of the pair specifies an
extended operation from the list on page 324 and the value (right) side
specifies the value. In some cases, the value is an enumerated constant, and
in other cases, you provide a value. The pairs can be specified in any order,
but every operation you specify requires a valid value.

• The return value is a data structure that contains information on the dialog
box just created. The information comes from the
tsol_lbuild_create(3TSOL) input parameters and user activities
during execution. Label builder provides default values for some fields
where no values have been specified.

Label Builder 323

16

Use the tsol_lbuild_get(3TSOL) and tsol_lbuild_set(3TSOL)
routines to programmatically access and change the information in this
variable. The data structure is described in “ModLabelData Structure” on
327.

data= tsol_lbuild_create(form, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Building CMW Label",
LBUILD_VALUE_CMW, cmwlabel,
LBUILD_VIEW, LBUILD_VIEW_EXTERNAL
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD “/export/home/zelda”
LBUILD_SHOW, FALSE,
NULL);

324 Trusted Solaris Developer’s Guide—August 1998

16

Extended Operations

This section describes the extended operations and valid values you can pass
to tsol_lbuild_create(3TSOL) , tsol_lbuild_get(3TSOL) , and
tsol_lbuild_set(3TSOL) . The values passed to
tsol_lbuild_create(3TSOL) are stored in its return value of type
ModLabelData where they can be accessed by calls to
tsol_lbuild_get(3TSOL) and tsol_lbuild_set(3TSOL) . The
ModLabelData structure is described in “ModLabelData Structure” on 327.

All extended operations are valid to pass to tsol_lbuild_get(3TSOL) .
However the *WORK* operations are not valid to pass to
tsol_lbuild_set(3TSOL) or tsol_lbuild_create(3TSOL) because
these values are set by Label builder according to end user input. These
exceptions are noted in the descriptions.

LBUILD_MODE – You can tell tsol_lbuild_create(3TSOL) to create a user
interface to build information labels, sensitivity labels, CMW labels, or
clearances. Value is LBUILD_MODE_CMW by default.

• LBUILD_MODE_IL – Build an information label.
• LBUILD_MODE_SL – Build a sensitivity label.
• LBUILD_MODE_CMW – Build a CMW label.
• LBUILD_MODE_CLR – Build a clearance.

Note – Knowing how labels are configured for the system on which your
application will run can help you know which mode to use. For example, you
would not have a user build an information label on a system that does not use
information labels. “Query System Security Configuration” on 28 in Chapter 2,
“Getting Started” explains how to check the system security configuration.

LBUILD_VALUE_SL – The starting sensitivity label displayed in the Label field
above the Update With field when the mode is LBUILD_MODE_SL. This value
is ADMIN_LOW by default.

LBUILD_VALUE_IL – The starting information label displayed in the Label
field above the Update With field when the mode is LBUILD_MODE_IL. This
value is ADMIN_LOW by default.

LBUILD_VALUE_CMW – The starting CMW label displayed in the Label field
above the Update With field when the mode is LBUILD_MODE_CMW. This value
is ADMIN_LOW[ADMIN_LOW] by default.

Label Builder 325

16

LBUILD_VALUE_CLR – The starting clearance displayed in the Label field
above the Update With field when the mode is LBUILD_MODE_CL. This value
is ADMIN_LOW by default.

LBUILD_USERFIELD – A character string prompt that displays at the top of the
Label builder dialog box. Value is NULL by default.

LBUILD_SHOW – Show or hide the Label builder dialog box. Value is FALSE by
default.

• TRUE – Show the Label builder dialog box.

• FALSE – Hide the Label builder dialog box.

LBUILD_TITLE – A character string title that appears at the top of the Label
builder dialog box. Value is NULL by default.

LBUILD_WORK_SL – The sensitivity label the end user is building. Value is
updated to the end user’s input when the end user selects the Update
pushbutton or interactively chooses an option. Value is ADMIN_LOW by default.
Not a valid extended operation for tsol_lbuild_set(3TSOL) or
tsol_lbuild_create(3TSOL) .

LBUILD_WORK_IL – The information label the end user is building. Value is
updated to the end user’s input value when the end user selects the Update
pushbutton or interactively chooses an option. Value is ADMIN_LOW by default.
Not a valid extended operation for tsol_lbuild_set(3TSOL) or
tsol_lbuild_create(3TSOL) .

LBUILD_WORK_CMW – The CMW label the end user is building. Value is
updated to the end user’s input value when the end user selects the Update
pushbutton or interactively chooses an option. Value is
ADMIN_LOW[ADMIN_LOW]by default. Not a valid extended operation for
tsol_lbuild_set(3TSOL) or tsol_lbuild_create(3TSOL)

LBUILD_WORK_CLR – The clearance the end user is building. Value is updated
to the end user’s input value when the end user selects the Update pushbutton
or interactively chooses an option. Value is ADMIN_LOW by default. Not a valid
extended operation for tsol_lbuild_set(3TSOL) or
tsol_lbuild_create(3TSOL)

LBUILD_X – The X offset in pixels from the top-left corner of the Label builder
dialog box in relation to the top-left corner of the screen. By default the Label
builder dialog box is positioned in the middle of the screen.

326 Trusted Solaris Developer’s Guide—August 1998

16

LBUILD_Y – The Y offset in pixels from the top-left corner of the Label builder
dialog box in relation to the top-left corner of the screen. By default the Label
builder dialog box is positioned in the middle of the screen.

LBUILD_UPPER_BOUND – The highest classification (and related compartments
and markings) available to the user as radio buttons for interactively building
a label or clearance. A value you supply should be within the user’s
accreditation range. If no value is supplied, this value is the user's workspace
sensitivity label, or if the executable has the sys_trans_label privilege, this
value is the user's clearance.

LBUILD_LOWER_BOUND – The lowest classification (and related compartments
and markings) available to the user as radio buttons for interactively building
a label or clearance. This value is the user's minimum label.

LBUILD_CHECK_AR – Check that the user-built label is within the user’s
accreditation range. A value of 1 means check and a value of 0 means do not
check. If the label is out of range, an error message is raised to the end user.
The default is check.

LBUILD_VIEW – Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

• LBUILD_VIEW_INTERNAL – Use the internal names for the highest and
lowest labels in the system: ADMIN_HIGH and ADMIN_LOW.

• LBUILD_VIEW_EXTERNAL – Promote an ADMIN_LOW label to the next
lowest label and demote an ADMIN_HIGH label to the next highest label.

Label Builder 327

16

ModLabelData Structure

The ModLabelData structure contains information on the state of the Label
builder interface created in the call to tsol_lbuild_create(3TSOL) .
Table 16-1 describes the ModLabelData fields. All fields except the widgets
and callback are accessible by specifying the listed extended operation and a
valid value in a call to tsol_lbuild_set(3TSOL) and/or
tsol_lbuild_get(3TSOL) . See “Extended Operations” on 324 for
descriptions of the extended operations.

Table 16-1 ModLabelData Structure

Data Type Field Extended Operation/Description Comments
int mode LBUILD_MODE
int check_ar LBUILD_CHECK_AR
int view LBUILD_VIEW
Bool show LBUILD_SHOW
char *userfield LBUILD_USERFIELD
char *lbuild_title LBUILD_TITLE
Position x LBUILD_X
Position y LBUILD_Y
bslabel_t sl LBUILD_VALUE_SL
bilabel_t il LBUILD_VALUE_IL
bclabel_t cmw LBUILD_VALUE_CMW
bclear_t clr LBUILD_VALUE_CLR
bslabel_t sl_work LBUILD_WORK_SL Not valid for tsol_lbuild_set ()

or tsol_lbuild_create ().
bilabel_t il_work LBUILD_WORK_IL Not valid for tsol_lbuild_set ()

or tsol_lbuild_create ().
bclabel_t cmw_work LBUILD_WORK_CMW Not valid for tsol_lbuild_set ()

or tsol_lbuild_create ().
bclear_t clr_work LBUILD_WORK_CLR Not valid for tsol_lbuild_set ()

or tsol_lbuild_create ().
brange_t range LBUILD_UPPER_BOUND,

LBUILD_LOWER_BOUND
Widget lbuild_dialog Label builder dialog box
Widget ok OK pushbutton
Widget cancel Cancel pushbutton
Widget reset Reset pushbutton
Widget help Help pushbutton
void (*event_handler)() Callback passed to

tsol_lbuild_create ()

328 Trusted Solaris Developer’s Guide—August 1998

16

Online Help
The Help pushbutton and other widgets used in the user interface can be
accessed directly from your application code through the lbl_shell field in
the ModLabelData structure. To add online help to your application, follow the
procedures and guidelines in the document listed below. This document is
produced by SunSoft, a Sun Microsystems, Inc. business.

Common Desktop Environment: Help System Author’s and Programmer’s Guide,
Part No. 802-1578-10.

329

Programmer’s Reference A

This appendix provides reference materials for the following topics.

Man Pages page 330

Requesting Man Pages page 330

Reading Man Pages page 331

Making Shared Libraries Trusted page 332

Header File Locations page 334

Abbreviations in Names page 334

Developing, Testing, and Debugging page 335

Privilege Debugging page 336

Assigning File Privileges using a Script page 337

Creating a CDE Action page 339

Creating a Software Package page 339

330 Trusted Solaris Developer’s Guide—August 1998

A

Man Pages
The Trusted Solaris 2.5.1 release installs Solaris 2.5.1 man pages and man pages
specific to Trusted Solaris 2.5.1. Where appropriate, the Solaris 2.5.1 man pages
are modified to contain security-related information relevant to Trusted Solaris
2.5.1. When you request a man page, the modified man page appears if one
exists unless you specifically request the unmodified Solaris 2.5.1 man page.

Requesting Man Pages

All modified Solaris 2.5.1 man pages and man pages specific to Trusted Solaris
2.5.1 man pages have a tsol extension and are in ~/man/man*tsol and
accessed by the man command.

• Use -s with the man command to get a Solaris 2.5.1 man page.

• Use -stsol to get a Trusted Solaris 2.5.1 man page in a specific section.

The top man command gets the Solaris 2.5.1 man page for fork(2) ; the
bottom two get the Trusted Solaris 2.5.1 man page.

man -s2 fork

man fork

man -s2tsol fork

The top man command gets getfsattr(2TSOL) ; the second one gets
getfsattr(1MTSOL) .

man -s2tsol getfsattr
man getfsattr

This man command lists all sections that contain man pages with the same
name:

man -l <man_page_name>

The top man command gets the intro man page for a Trusted Solaris 2.5.1
man page section; the bottom man command gets the intro man page for a
Solaris 2.5.1 section.

man -s<section>tsol intro

man -s<section> intro

Programmer’s Reference 331

A

Reading Man Pages

The intro man pages provide global security policy information for
Trusted Solaris 2.5.1 man pages in a section. Security information specific to the
interfaces on a particular man page is in the Description section, in the Errors
section under EPERM, EACCES, or ESRCH, and in the Summary of Trusted
Solaris Changes section at the end.

If a man page for a library routine has no security information on it and the
routine has an underlying system call, check the man page for the underlying
system call. The underlying system call enforces security policy for all library
routines built on top of it.

• When the library routine and system call have similar names such as
fopen(3S) and open(2TSOL) , the policy information is on the system call
man page only.

• Whether the names are similar or not, the library routine man pages for
routines based on system calls have a cross-reference in their See Also
section to the system call man page with the policy information.

If no Trusted Solaris 2.5.1 man page exists for a Solaris 2.5.1 interface, the
interface has not been modified for Trusted Solaris 2.5.1, or has been modified,
but there is no security-related behavior to be aware of when using the
interface in Trusted Solaris 2.5.1.

332 Trusted Solaris Developer’s Guide—August 1998

A

Making Shared Libraries Trusted
To be used by any application that requires privilege(s), shared libraries must
be trusted. In Trusted Solaris, the dynamic linking of privileged applications to
shared libraries is restricted—to ensure that privileged applications can never
use untrusted libraries. A privileged application that tries to link to an
untrusted library fails with an error such as: “error: cannot load **** libraries.”

The rest of this section describes what a programmer needs to know to
understand how a privileged application can be set up to dynamically link to a
trusted library, including:

• Default directory locations for trusted libraries and

• How the pathnames of non-standard trusted library directories may be
specified

Default Trusted Shared Library Locations

The default trusted shared libraries are stored in the directories listed in
Table A-1. .

The directories listed in Table A-1 are protected from unauthorized
modification by mandatory and discretionary access controls.

Privileged programs search only the subset of LD_LIBRARY_PATH directories
that correspond to the defaults listed in Table A-1 with the addition of any
directories listed by the security administrator in the rtld file, which is
described in “Shared Libraries Used by Third Party or Site-Created
Applications” on page 333.” Therefore, when it is necessary to specify a non-
standard location for a trusted library, the programmer must ensure that the
LD_LIBRARY_PATH environment variable for the program includes the path
of the application’s trusted directory specified in the rtld file.

Table A-1 Default Directories for Trusted Shared Libraries

Trusted C function
libraries

Trusted extensions
to X Server

/usr/lib /usr/openwin/lib

/etc/lib /usr/dt/lib

Programmer’s Reference 333

A

Shared Libraries Used by Third Party or Site-Created Applications

When a third party or site-created application is given privilege(s) by a site’s
security administrator, any shared libraries on which the trusted application
relies should be moved into one of the default trusted shared library
directories shown in Table A-1, if at all possible. The security administrator can
list the directory pathname for a privileged application’s library in a rtld file
in /etc/security/tsol but should do so only if libraries cannot be moved
into one of the existing trusted directories. Any library listed in rtld must be
in the LD_LIBRARY_PATH variable when the program executes.

Note – Any application that is given privilege becomes trusted. The security
administrator who makes the privileges available must make sure that a
trusted program that uses privileges is actually worthy of trust. Because any
application’s libraries listed in rtld become trusted, the specified directories
need the same level of protection as the default library directories. The security
administrator should ensure that the MAC and DAC permissions on the
trusted library directories listed in rtld and their contents are the same as on
the default trusted directories libraries’ directories and their contents.

See the ld(1TSOL) man page for information on the link editor for object files
and on the rtld file.

Examples

A security administrator porting privileged Java programs written off site
would need to update /etc/security/tsol/rtld with the path of the Java
libraries (/usr/java/lib for example). The security administrator would also
need to ensure that the pathname specified in the rtld is also added to the
application’s LD_LIBRARY_PATH variable setting.

For another example, if a programmer writes a privileged Java application at a
site, the site’s security administrator can move the libraries used by the Java
application into one of the trusted directories, so the libraries can be
dynamically linked at runtime.

334 Trusted Solaris Developer’s Guide—August 1998

A

Header File Locations
Most Trusted Solaris 2.5.1 header files are located in /usr/include/tsol and
include headers in /usr/include/sys/tsol . However, a few header files
are modified from Solaris 2.5.1, and are therefore, located in other directories as
follows:

Abbreviations in Names
Many of the Trusted Solaris interfaces and data structure names use the short
abbreviations shown below in their names. Knowing the abbreviations will
help you recognize the purpose of an interface or structure from its name.

Header File Name Category of Interfaces
/usr/dt/include/label_clipping.h X11 Window label translation
/usr/dt/include/Dt/ModLabel.h Label Builder
/usr/openwin/include/tsol/Xtsol.h X Window System
/usr/dt/include/Dt/label_clipping.h Label clipping with font list
/usr/include/rpc/rpc.h Remote procedure calls (RPC)
/usr/include/sys/ipc/ipc/h Interprocess communications (IPC)
/usr/include/sys/msg.h System V message queues
/usr/include/sys/sem.h System V semaphore sets
/usr/include/sys/shm.h System V shared memory regions
/usr/include/sys/tsol/stream.h Trusted streams
/usr/include/bsm/auditwrite.h Auditing

attr attribute
auth authorization
b binary
c or cl CMW Label
clear clearance
cmw CMW label
ent entry
f file
fs file system
h hexadecimal
i or il information Label
iil input information label
im information Label markings
l level, label, or symbolic link
lbuild label builder
mld multilevel directory

Programmer’s Reference 335

A

Developing, Testing, and Debugging
Development, testing, and debugging should take place on an isolated
development system to prevent software bugs and incomplete code from
compromising security policy on the main system.

• Remove extra debugging code especially code that provides undocumented
features and back doors that bypass security checks.

• Make application data manipulation easy to follow so it can be inspected for
security problems by the system administrator before installation.

• Test return codes for all programming interfaces. An unsuccessful call can
have unpredictable results. When an unexpected error condition occurs, the
application should always terminate.

• Test all functionality by running the application at all sensitivity labels and
from all roles at which you expect it to run.
• If the program is run by a normal user (not by a role), launch it from the

command line as a normal user at the labels in the user accreditation
range at which it is intended to run.

• If the program is run by a role, launch it from the command line from the
administrative role at one the administrative label at which it is intended
to run (ADMIN_HIGH or ADMIN_LOW), or from the user role at the labels in
the user accreditation range at which it is intended to run.

p process
priv privilege
prof profile
prop properties
r reentrant
res resource
s string
sec security
sl sensitivity Label
sld single-level directory
t6 or TSIX Trusted Security Information Exchange
tp Trusted Path
tsol Trusted Solaris
xtsol Trusted X11 Server

336 Trusted Solaris Developer’s Guide—August 1998

A

• Test all functionality under privilege debugging mode so you know if the
application has all the privileges it needs, or if it is attempting to perform
privileged tasks that it should not be attempting.

• Know and follow privilege bracketing.

• Know the security implications of using privileges, and make sure the
application does not compromise system security by its use of privilege.

• If you are applying the SUNWSpro debugger/dbx/dbxtool to test a
privileged application, you must start the debugger first and then attach it
to a running process. You cannot start the debugger with the command
name as an argument.

Privilege Debugging

Privilege debugging mode is described in Trusted Solaris Administrator’s
Procedures. This is a summary of the steps for enabling privilege debugging
and using runpd(1MTSOL) under privilege debugging mode to test an
application.

1. Privilege debugging mode allows an application to succeed when it does
not have the privileges it needs and tells you which privileges are missing.

2. In the /etc/system file, set the tsol_privs_debug variable to 1. This file is
ADMIN_LOW and the owner is root.

3. In the /etc/syslog.conf file, uncomment the kern.debug; local0.debug
line. This file is ADMIN_LOW and the owner is sys.

4. Touch the /var/log/privdebug.log file. This file is ADMIN_HIGH and the
owner is root.

5. Reboot your system.

6. Assume an administrative role with runpd(1MTSOL) in the profile.

Programmer’s Reference 337

A

7. Use the runpd(1MTSOL) command to invoke the executable and find out
which privileges, if any, are missing. The following command line invokes
the executable file in Zelda’s confidential home directory. Information on
missing privileges displays at the command line and is logged to the
/var/log/privdebug.log file.

runpd terminated with a status of 1

process runpd pid 822 lacking privilege file_mac_search to
perform special method upon resource VNODE (Jan 29 12:45)

process runpd pid 822 lacking privilege file_mac_read to
perform read method upon resource VNODE (Jan 29 12:45)

8. Interpret privilege numbers in the /var/log/privdebug.log file. The
privilege number appears after the word privilege. Process 822 lacks
privilege numbers 11 and 10 which correspond to file_mac_search and
file_mac_read .

Jan 29 12:45:39 phoenix unix DEBUG: runpd pid 822 lacking
privilege 11 to 5 79

Jan 29 12:45:39 phoenix unix DEBUG: runpd pid 822 lacking
privilege 10 to 2 79

Assigning File Privileges using a Script

How to write privileged scripts to be deployed and used by others in your
organization is described in Trusted Solaris Administrator’s Procedures. This
section briefly explains how to create a script that uses setfpriv(1TSOL) to
assign forced and allowed privileges to an executable file for testing and
debugging an application during application development.

First of all, the user or role you are working in needs a profile with the
setfpriv(1TSOL) command and file_setpriv privilege assigned to it.
The Object Privilege Management profile in the default system has these. To
run the script from any shell and have the commands invoked by the script run
under the profile shell and inherit your profile privileges, invoke
pfsh(1MTSOL) at the top of the script as shown in the example below.

phoenix# runpd /export/home/.MLD.Zelda/.SLD.2/executable

338 Trusted Solaris Developer’s Guide—August 1998

A

The example assigns forced and allowed privileges to executable . The -s -
f options set forced privileges on executable , and the -a option sets allowed
privileges on executable . This script will quit with the error: executable:
not owner unless the file_setpriv privilege is inherited by the
commands.

When you use a script to put forced and allowed privileges on an executable
file, keep the following points in mind:

• If you remove a privilege from the allowed set specified in the script, you
must also remove it from the forced set. If you remove it from the allowed
set only, you will see the error: executable: Invalid argument when
you run the script.

• If your program inherits privileges, launch it from the command line in the
profile shell with the privileges to be inherited.
• The allowed set of the executable file must have the privileges to be

inherited.
• If your program is going to only inherit privileges, the forced set of the

executable file should be empty.
• If your program takes a different action when a privilege is forced from

when it is inherited, launch the program with the privilege in the forced
and allowed set, and launch the program again with the privilege in the
allowed set from a profile shell that has the privilege to be inherited.

Note – Always test the program at all labels at which it is intended to run.

Releasing an Application
You submit a fully tested and debugged application to the system
administrator for application integration. The application can be submitted as a
CDE action or software package. If the application uses privilege, the system
administrator evaluates (or has someone else evaluate) the application source
code and security information you supply with the CDE action or software
package to verify the use of privilege does not compromise system security.

#/bin/pfsh
setfpriv -s -f ipc_mac_write,ipc_upgrade_il,proc_setsl,sys_trans_label
-a ipc_mac_write,ipc_upgrade_il,proc_setsl,sys_trans_label executable

Programmer’s Reference 339

A

Notify the system administrator of new auditing events, audit classes, or X
Window System properties your application uses because he or she will need
to put them into the correct files. See Chapter 9, “Application Auditing” and
Chapter 15, “Trusted X Window System” for more information.

Creating a CDE Action

A CDE action is launched from the work space by a user or role and inherits
the privileges assigned to it in that user’s or role’s profile. A CDE action is a set
of instructions that work like application macros or programming interfaces to
automate desktop tasks such as running applications and opening data files. In
Trusted Solaris 2.5.1, applications are started from the work space as CDE
actions. How to create a CDE action is fully described in the Common Desktop
Environment: Advanced User’s and System Administrator’s Guide, Part Number:
802-1575-10. SunSoft, a Sun Microsystems, Inc. business, produces the guide.

Note – When you create a CDE action, always create an f.action rather than
an f.exec . An f.exec executes the program as root with all privileges.

The system administrator puts the CDE action into the appropriate profiles and
assigns inheritable privileges (if any) to the CDE action. The executable files
associated with the CDE action need allowed privileges if the program inherits
privileges and might or might not need forced privileges. You should list the
inheritable, forced, and allowed, privileges the program uses (if any), indicate
the labels at which the application is intended to run, and supply any effective
user or group IDs required. The system administrator assigns forced and
allowed privileges to the executable file, and assigns inheritable privileges,
label ranges, and effective user and group IDs to the CDE action in the profile.

Creating a Software Package

The System V Release 4 application binary interface (ABI) specifies a software
distribution model called software packaging that you use to package software
for integration by the system administrator. All software distributed using the
ABI model is guaranteed to install on all ABI-compliant systems.

340 Trusted Solaris Developer’s Guide—August 1998

A

When you create the software package, you supply security attribute
information in the optional tsolinfo(4TSOL) file (described below), which is
used in the package installation procedure. This file is optional because default
security attributes are assigned during package installation in the event no
security attribute information is provided with the package.

Package Files

A package consists of package objects (the files to be installed) and control files
(files that control how, when, where, and if the package is installed).
Information about packages already installed on the system is stored in the
software installation database in /var/sadm/install/contents.

Solaris 2.5.1 provides the following commands for creating and installing ABI-
compliant software packages.

To create a package, you set up the following files:

• Required information files.
• pkginfo(4)

• prototype(4)

• Optional information files as needed

• Optional mandatory access control (MAC) security attributes file,
tsolinfo(4TSOL) .

• Optional packaging scripts as needed.

pkgmk(1) uses pkginfo(4) and prototype(4) to construct a software
package. The optional scripts customize the installation and remove packages.

MAC Security Attributes

The tsolinfo(4TSOL) file contains entries associated with package objects
that require special security attributes. If a package object does not have any
tsolinfo entries associated with it, it is assigned a default set of security

pkginfo(1) Display software package information.
pkgparam(1) Display package parameter values.
pkgask(1M) Create a request script.
installf(1M) Add an entry to the software installation database.
removef(1M) Remove an entry from the software installation database.

Programmer’s Reference 341

A

attributes derived from the file system where the package is finally installed.
This file can contain one or more entries per package object in the following
format, where all fields in the format are required for each entry.

attribute_name object_name attribute_value

Here is a list of possible attribute names, what they mean, and how to specify
them.

The following example tsolinfo(4TSOL) file entries specify security
attributes for the sendmail(1MTSOL) package objects.

Description
• The var/spool/mail , var/mail , and var/tmp package objects are

multilevel directories. The MLD attribute has no attribute values.

• The /usr/lib/sendmail object has All system privileges in its allowed
privilege set.

• The /usr/lib/sendmail object has a comma-separated list of privileges in
its forced set.

• The etc/security/tsol file has a CMW label where the information label
portion is given first and is ADMIN_HIGH, and the sensitivity label portion
is given second in square brackets and is ADMIN_HIGH.

Attribute Name Description Attribute Value
forced_privs Package object forced privileges Comma-separated list of privileges.
allowed_privs Package object allowed privileges Comma-separated list of privileges.
public Package object is public. No attribute value.
mld Package object is a multilevel directory No attribute value

Attribute Name Package Object Name Attribute value
mld var/spool.mail

mld var/mail

mld var/tmp

allowed_privs usr/lib/sendmail all

forced_privs usr/lib/sendmail file_mac_write, file_nofloat

label etc/security/tsol admin_high[admin_high]

342 Trusted Solaris Developer’s Guide—August 1998

A

Edit Existing Package

To find and edit an existing package, search the software installation database
with the grep(1) command. The information returned includes the package
name.

machine_name% cat /var/sadm/install/contents | grep /usr/lib/object

Once you have the package name, you can find the package definition for that
package and edit the tsolinfo(4TSOL) file. If no tsolinfo file exists, create
one. If you create a tsolinfo file, add it to the prototype file so the
pkgmk(1) command can find the tsolinfo file.

Add New Package

To add a new package, refer to the Application Packaging Developer’s Guide for
Solaris 2.5.1 for detailed information on creating packages. This section
summarizes the concepts and steps.

The following Solaris 2.5.1 commands are for creating new software packages.

Figure A-1 shows the files that you are responsible for creating, the role of the
pkgmk(1) command, and the resulting directory structure or package.

Figure A-1 Add New Package

pkginfo(1) Display software package information.
pkgparam(1) Display package parameter values.
pkgmk(1) Create a software package.
pkgproto(1) Generate a prototype file for input to pkgmk(1).
pkgtrans(1) Transfer and/or translate a package.

pkgmap(1)
pkginfo(1) install/ reloc/

Optional package information files

Optional packaging scripts

Package objects pkginfo(4) file

prototype(4) file

tsolinfo(4) file

pkgmk(1)

<package location>/

Optional package information files
Optional packaging scripts
tsolinfo(4TSOL) file

package
objects

Programmer’s Reference 343

A

▼ Create Required files

1. Create a pkginfo(4) file using the man page.

2. Create a prototype(4) file using the man page.
Use the pkgproto(1) command to generate a prototype(4) file
template.

▼ Create Optional Files and Scripts

1. Create the tsolinfo(4TSOL) file using the man page.
Make sure tsolinfo is listed in the prototype file so that the pkgmk(1)
command can find the tsolinfo file.

2. Create optional package information files as needed.

3. Create optional packaging scripts as needed.

▼ Create the Package

1. Run the pkgmk(1) command.

2. Save the package to storage media

3. Give the storage media to the system administrator for installation.

344 Trusted Solaris Developer’s Guide—August 1998

A

Prototype File

You can create a prototype file with any editor. There must be one entry for
every package component. The following is a sample prototype file that
contains an entry for the tsolinfo file. The tsolinfo file is preceded by the
letter i to indicate an information file. The letter f indicates a standard
executable or data file. Refer to the prototype(4) man page for more
information.

Package “prototype” file for the bbp device driver.

Bidirectional Parallel Port Driver for SBus Printer Card.

#

i pkginfo

i request

i copyright

i postinstall

i tsolinfo

f none bbp.kmod 0444 root sys

f none bbp_make_node 0555 root sys

f none bbp_remove_node 0555 root sys

345

Trusted Solaris 2.5.1 Interfaces
Reference B

This appendix has programming interface listings and chapter cross-references.
Declaration listings are grouped by security topic; name and section number
listings are grouped by system calls, kernel functions, and library routines

System Security Configuration page 346

File System Security Attributes and Flags page 346

Process Security Attribute Flags page 346

Privileges page 347

Labels page 348

Clearances page 353

Multilevel Directories page 354

Database Access page 354

System V IPC page 355

TSIX page 356

RPC page 357

Label Builder page 357

X Window System page 358

Trusted Streams page 359

System Calls page 359

Trusted Kernel Functions for Drivers page 361

Library Routines page 362

346 Trusted Solaris Developer’s Guide—August 1998

B

System Security Configuration
See Chapter 2, “Getting Started.”

File System Security Attributes and Flags
See Chapter 2, “Getting Started.”

Process Security Attribute Flags
See Chapter 2, “Getting Started.”

long secconf(int name);

int fgetfsattr(int fd, u_long type, void *buf_P);
int fgetfattrflag(const char *path, secflgs_t *flags);
int fsetfattrflag(int fildes, secflgs_t *flags);

int getfattrflag(int fildes, secflgs_t *flags);
int getfsattr(char *path, u_long type, void *buf_P, int len);
int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags)
int mldsetfattrflag(const char * path, secflgs_t which, secflgs_t flags))

int getpattr(pattr_type_t type, pattr_flag_t *value);
int setpattr(pattr_type_t type, pattr_flag_t value);

Trusted Solaris 2.5.1 Interfaces Reference 347

B

Privileges
See Chapter 3, “Privileges.”

Privilege Macros
See Chapter 3, “Privileges.”

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t *priv_set);
int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t *priv_set);
int getfpriv(char *path, priv_ftype_t type, priv_set_t *priv_set);
int getppriv(priv_ptype_t type, priv_set_t *priv_set);

int setfpriv(char *path,
priv_op_t op,
priv_ftype_t type,
priv_set_t *priv_set);

int setppriv(priv_op_t op, priv_ptype_t type, priv_set_t *priv_set);
int setppriv(priv_op_t op, priv_ptype_t type, priv_set_t *priv_set);

char* get_priv_text(const priv_t priv_id);
char* priv_to_str(const priv_t priv_id);
char* priv_set_to_str(priv_set_t *priv_set, const char sep, char *buf, int *blen);
priv_t str_to_priv(const char *priv_name);
char* str_to_priv_set(const char *priv_names, priv_set_t *priv_set, const char *sep);

PRIV_ASSERT(priv_set, priv_id)
PRIV_CLEAR(priv_set, priv_id)
PRIV_EMPTY(priv_set)
PRIV_EQUAL(priv_set_a, Priv_set_b)
PRIV_FILL(priv_set)
PRIV_INTERSECT(priv_set_a, priv_set_b)
PRIV_INVERSE(priv_set)
PRIV_ISASSERT(priv_set, priv_id)
PRIV_ISEMPTY(priv_set)
PRIV_ISFULL(priv_set)
PRIV_ISSUBSET(priv_set_a, priv_set_b)
PRIV_TEST(priv_id, errno)
PRIV_UNION(priv_set_a, priv_set_b)
PRIV_XOR(priv_set_a, priv_set_b,)

348 Trusted Solaris Developer’s Guide—August 1998

B

Authorizations
See Chapter 4, “Checking User Authorizations.”

Labels
See Chapter 5, “Labels.”

File Systems

Label Encodings File

int chkauth(auth_t auth_id, char *user_name);
char *auth_to_str(auth_t auth_id);
auth_t str_to_auth(char *auth_name);
char *auth_set_to_str(authset_t *authset, char separator);
auth_set_t *str_to_auth_set(char *auth_names, *separator);
void free_auth_set(auth_set_t *auth_set);
char *get_auth_text(auth_t auth_id);

int getcmwfsrange(char *path, brange_t *range);
int fgetcmwfsrange(int fd, brange_t *range);

char bltocolor(const blevel_t *label);
char bltocolor_t(const blevel_t *label, const int size, char *color_name);
int labelinfo(struct label_info *info);
int labelvers(char **version, const int length);

Trusted Solaris 2.5.1 Interfaces Reference 349

B

Reentrant Routines

Levels

Label Types

char halloc(const unsigned char id);
void hfree(char *hex);
char *bcltoh_r(const bclabel_t *label, char *hex);
har *bsltoh_r(const bslabel_t *label, char *hex);
char *biltoh_r(const bilabel_t *label, char *hex);

int blequal(const blevel_t *level1, const blevel_t *level2);
int bldominates(const blevel_t *level1, const blevel_t *level2);
int blstrictdom(const blevel_t *level1, const blevel_t *level2);
int blinrange(const blevel_t *level, const brange_t *range);
void blmaximum(blevel_t *maximum_label, const blevel_t *bounding_label);
void blminimum(blevel_t *minimum_label, const blevel_t *bounding_label);

int bltype(const void *label, const unsigned char type);
void setbltype(void *label, const unsigned char type);

350 Trusted Solaris Developer’s Guide—August 1998

B

Sensitivity Labels

Information Labels

void bslhigh(bslabel_t *label);
void bsllow(bslabel_t *label);
void bslundef(bslabel_t *label);
int bslvalid(const bslabel_t *senslabel);
int blinset(const blevel_t *senslabel, const set_id *id);
int bsltos(const bslabel_t *label, char **string, const int length, const int flags);
int stobsl(const char *string, bslabel_t *label, const int flags, int *error);
char *sbsltos(const bslabel_t *label, const int length);
char *bsltoh(const bslabel_t *label);
int htobcl(const char *hex, bclabel_t *label);

void bilhigh(bilabel_t *label);
void billow(bilabel_t *label);
void bilundef(bilabel_t *label);
int bilvalid(const bilabel_t *inflabel);
int biltos(const bilabel_t *label,

char **string,
const int length,
const int flags);

int stobil(const char *string, bilabel_t *label, const int flags, int *error);
char *sbiltos(const bilabel_t *label, const int length);
char *biltoh(const bilabel_t *label,
int htobil(const char *hex, bilabel_t *label);
int bilequal(const bilabel_t *label1, const bilabel_t *label2);
int bildominates(const bilabel_t *label1, const bilabel_t *label2);
int bimequal(const bilabel_t *label1, const bilabel_t *label2);
int bimdominates(const bilabel_t *label1,

bilabel *receiving_label,
const bilabel_t *adding_label);

void bilconjoin(bilabel *receiving_label, const bilabel_t *adding_label);

Trusted Solaris 2.5.1 Interfaces Reference 351

B

CMW Labels

int getcmwlabel(const char *path, const bclabel_t *label);
int setcmwlabel(const char *path, const bclabel_t *label, const setting_flag_t flag);
int fgetcmwlabel(const int fd, bclabel_t *label);
int fsetcmwlabel(const int fd, const bclabel_t *label, const setting_flag_t flag);
int lgetcmwlabel(const int fd, bclabel_t *label);
int lsetcmwlabel(const int fd, const bclabel_t *label, const setting_flag_t flag);
int getcmwplabel(const bclabel_t *label);
int setcmwplabel(const bclabel_t *label, const setting_flag_t flag);
void bclhigh(bclabel_t *label);
void bcllow(bclabel_t *label);
void bclundef(bclabel_t *label);
void getcsl(bslabel_t *destination_label, const bclabel_t *source_label);
void setcsl(bclabel_t *destination_label, const bslabel_t *source_label);
void getcil(bilabel_t *destination_label, const bclabel_t *source_label);
void setcil(bclabel_t *destination_label, const bilabel_t *source_label);
int bcltos(const bclabel_t *label,

char **string,
const int length,
const int flags);

int stobcl(const char *string, bclabel_t *label, const int flags, int *error);
char *sbcltos(const bclabel_t *label, const int length);
char *bcltobanner(const bclabel_t *label, struct banner_fields *fields, const int flags);
bilabel_t *bcltoil(bclabel_t *label);
blevel_t *biltolev(bilabel_t *label);
bslabel_t *bcltosl(bclabel_t *label);
char *bcltoh(const bclabel_t *label);
int htobcl(const char *hex, bclabel_t *label);

352 Trusted Solaris Developer’s Guide—August 1998

B

Label Clipping Interfaces
See Chapter 15, “Trusted X Window System.”

XmString Xbcltos(Display *display,
const bclabel_t *cmwlabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

XmString Xbsltos(Display *display,
const bslabel_t *senslabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

XmString Xbiltos(Display *display,
const bilabel_t *inflabel,
const Dimension width,
const XmFontList fontlist,
const int flags);

XmString Xbcleartos(Display *display,
const bclear_t *clearance,
const Dimension width,
const XmFontList fontlist,
const int flags);

Trusted Solaris 2.5.1 Interfaces Reference 353

B

Clearances
See Chapter 7, “Process Clearance.”

Application Auditing
See Chapter 9, “Application Auditing.”

int getclearance(bclear_t *clearance);
int setclearance(bclear_t *clearance);
void bclearhigh(bclear_t *clearance);
void bclearlow(bclear_t *clearance);
void bclearundef(bclear_t *clearance);
int blequal(const blevel_t *level1, const blevel_t *level2);
int bldominates(const blevel_t *level1, const blevel_t *level2);
int blstrictdom(const blevel_t *level1, const blevel_t *level2);
int blinrange(const blevel_t *level, const brange_t *range);
void blmaximum(blevel_t *maximum_label, const blevel_t *bounding_label);
void blminimum(blevel_t *minimum_label, const blevel_t *bounding_label);
int bltype(const void *clearance, const unsigned char type);
void setbltype(void *clearance, const unsigned char type);
int bclearvalid(const bclear_t *clearance);
int bcleartos(const bclear_t *clearance,

char **string,
const int len,
const int flags);

int stobclear(const char *string, bclear_t *clearance,const int flags, int *error);
char* sbcleartos(const bclear_t *clearance, const int len);
char *bcleartoh(const bclear_t *clearance);
int htobclear(const char *s, bclear_t *clearance);
char *h_alloc(const unsigned char id);
void h_free(char *hex);
char *bcleartoh_r(const bclear_t *clearance, char *hex);

int auditwrite(..., AW_END);

354 Trusted Solaris Developer’s Guide—August 1998

B

Multilevel Directories
See Chapter 8, “Multilevel Directories” and Chapter 2, “Getting Started”

Database Access
See Chapter 10, “Accessing User and Profile Database Entries.”

int getsldname(const char *path_name, const bslabel_t *slabel,
char *name_buf, const int len);

int fgetsldname(const int fd, const bslabel_t *slabel_p,
char *name_buf, const int len);

int getmldadorn(const char *path_name, char *adorn_buf);
int fgetmldadorn(const int fd, char adorn_buf);
int mldstat(const char *path_name,struct stat *stat_buf);
int mldlstat(const char *path_name, struct stat *stat_buf);
char* mldgetcwd(char *buf, size_t size);
int adornfc(const char *path_namechar *adorned_name);
char* mldrealpath(const char *path_name, char *resolved_path);
char* mldrealpathl(const char *path_name, char *resolved_path, const bslabel_t *senslabel);

/* These system calls are described in Chapter 2, “Getting Started.”
int mldgetfattrflag(const char *path, secflgs_t *flags)
int mldsetfattrflag(const char * path, secflgs_t which, secflgs_t flags))

userent_t *getuserentbyname(char *user, int src);
userent_t *getuserentbyuid(uid_t uid, int src);
void setuserent(int stayopen, int src);
userent_t *getuserent(int src);
void enduserent(int src);
void free_userent(userent_t *userent);
profstr_t *getprofstrbyname(char *name, int src);
profent_t *getprofentbyname(char *name, int src);
void setprofstr(int stayopen, int src);
void setprofent(int stayopen, int src);
profstr_t *getprofstr(int src);
profent_t *getprofent(int src);
void endprofstr(int src);
void endprofent(int src);
void free_profstr(profstr_t *profent);
void free_profent(profent_t *profent);

Trusted Solaris 2.5.1 Interfaces Reference 355

B

System V IPC
See Chapter 12, “System V Interprocess Communication.”

Message Queues

Semaphore Sets

Shared Memory Regions

int getmsgqcmwlabel(int msqid, bclabel_t *cmwlabel);
int msggetl(key_t key, int msgflg, bslabel_t *senslabel);
int msgsndl(int msqid, const void *msgp, size_t msgsz, int msgflg, bilabel_t

*inflabel);
int msgrcvl(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg,

bilabel_t *inflabel);

int getsemcmwlabel(int semid, bclabel_t *cmwlabel);
int semgetl(key_t key, int nsems, int semflg, bslabel_t *senslabel);
int semopl(int semid, struct sembuf *sops, size_t nsops,

bilable_t *inflabel);

int getshmcmwlabel(int shmid, bclabel_t *cmwlabel);
int shmgetl(key_t key, size_t size, int shmflg,bslabel_t *senslabel);

356 Trusted Solaris Developer’s Guide—August 1998

B

TSIX
See Chapter 13, “Trusted Security Information Exchange Library”

t6mask_t t6supported_attrs(void);
t6mask_t t6allocated_attrs(t6attr_t t6ctl);
t6mask_t t6present_attrs(t6attr_t t6ctl);
t6attr_t t6alloc_blk(t6mask_t *new_attrs);
void t6free_blk(t6attr_t t6ctl);
int t6sendto(int sock,

const char *msg,
int len,
int flags,
const struct sockaddr *to,
int tolen,
const t6attr_t *attr_ptr);

int t6recvfrom(int sock,
char *buf,
int len,
int flags,
struct sockaddr *from,
int *fromlen,
t6attr_t *attr_ptr,
t6mask_t *new_attrs);

int t6new_attr(int sock, t6cmd_t cmd);
void * t6get_attr(t6attr_id_t attr_type, const t6attr_t t6ctl);
int t6set_attr(t6attr_id_t attr_type, const void *attr, t6attr_t *t6ctl);
int t6peek_attr(int sock, t6attr_t attr_ptr, t6mask_t *new_attrs);
int t6last_attr(int sock, t6attr_t attr_ptr, t6mask_t *new_attrs);
size_t t6size_attr(t6attr_id_t attr_type, const t6attr_t t6ctl);
void t6copy_blk(const t6attr_t attr_src, t6attr_t attr_dest);
t6attr_t t6dup_blk(const t6attr_t attr_src);
int t6cmp_blk(t6attr_t t6ctl1, t6attr_t t6ctl2);
void t6clear_blk(t6mask_t mask, t6attr_t t6ctl);
int t6get_endpt_default(int sock, t6mask_t *mask, t6attr_t attr);
int t6set_endpt_mask(int sock, t6mask_t mask);
int t6set_endpt_default(int sock, t6mask_t mask,const t6attr_t attr_ptr);
int t6get_endpt_mask(int sock, t6mask_t *mask);
int t6ext_attr(int fd, t6cmd_t cmd);

Trusted Solaris 2.5.1 Interfaces Reference 357

B

RPC
There are no Trusted Solaris interfaces for remote procedure calls (RPC). RPC
interfaces are modified to work in the Trusted Solaris system. See Chapter 14,
“Remote Procedure Calls” for conceptual information and a simple example
application.

Label Builder
See Chapter 16, “Label Builder.”

ModLabelData *tsol_lbuild_create(Widget widget,
void (*event_handler)() OK_callback,
...,
NULL);

void tsol_lbuild_destroy(ModLabelData *lbdata);

XtPointer tsol_lbuild_get(ModLabelData *lbdata,
...,
NULL);

void tsol_lbuild_set(ModLabelData *lbdata,
extended_operation,
NULL);

358 Trusted Solaris Developer’s Guide—August 1998

B

X Window System
See Chapter 15, “Trusted X Window System.”

Status XTSOLgetResAttributes(Display *display, XID object,
ResourceType resourceFlag, XTsolResAttributes *resattrp);

Status XTSOLgetPropAttributes(Display *display, Window win, Atom property,
XTsolPropAttributes *propattrp);

Status XTSOLgetClientAttributes(Display *display, XID win,
XTsolClientAttributes *clientattrp);

Status XTSOLgetResLabel(Display *display, XID object,
ResourceType resourceFlag, bclabel_t *cmwlabel);

void XTSOLsetResLabel(Display *display, XID object, ResourceType resourceFlag,
bclabel_t *cmwLabel, enum setting_flag labelFlag);

Status XTSOLgetResUID(Display *display, XID object, ResourceType resourceFlag,
uid_t *uidp);

void XTSOLsetResUID(Display *display, XID object,
ResourceType resourceFlag, uid_t *uidp);

Status XTSOLgetWindowIIL(Display *display, Window win, bilabel_t *label);
void XTSOLsetWindowIIL(Diplay *display, Window win, bilabel_t *label);
Status XTSOLgetPropLabel(Display *display, Window win,

Atom property, bclabel_t *cmwlabel);
void XTSOLsetPropLabel(Display *display, Window win, Atom property,

bclabel_t *cmwLabel, enum setting_flag labelFlag);
Status XTSOLgetPropUID(Display *display, Window winID, Atom property, uid_t *uidp);
void XTSOLsetPropUID(Display *display, Window win,

Atom property, uid_t *uidp);
Status XTSOLgetWorkstationOwner(Display *display, uid_t *uidp);
void XTSOLsetWorkstationOwner(Display *display, uid_t *uidp);
void XTSOLsetSessionHI(Display *display, bclear_t *clearance);
void XTSOLsetSessionLO(Display *display, bslabel_t *sl)
void XTSOLMakeTPWindow(Display *dpy, Window win);
Bool XTSOLIsWindowTrusted(Display *display, Window win);
Status XTSOLgetSSHeight(Display *display, int screen_num, int *newHeight);
void XTSOLsetSSHeight(Display *display, int screen_num, int newHeight);
void XTSOLsetPolyInstInfo(Display *dpy, bslabel_t *senslabel, uid_t *userID,

int enabled);

Trusted Solaris 2.5.1 Interfaces Reference 359

B

Trusted Streams
These interfaces are kernel interfaces for creating trusted streams. See the man
pages for information on them. They may be documented in this guide at a
later date.

System Calls
The system calls listing is organized alphabetically. It provides the chapter
name and number where the interface is covered in this guide. You can also
use the information to find the interface declaration in one of the previous
topical lists.

int putpmsgattr(int filedes,
const struct strbug *ctlptr,
const struct strbuf *dataptr,
struct tpri *tprip,
tsol_tnattrs_t *attrs);

int getpmsgattr(int filedes,
struct strbuf *ctlptr,
struct strbuf *dataptr,
struct tpri *tprip,
tsol_tnattrs_t *attrs),

int tsol_linkb(mblk_t *mp1, mblk_t *mp2),
int tsol_putctl(queue_t *g, int type, str_attr_t *attrs),
int tsol_putctl1(queue_t *g, int type, int p, str_attr_t *attrs),
int tsol_putnextctl(queue_t *g, int type, str_attr_t *attrs),
int tsol_putnextctl1(queue_t *g, int type, int p, str_attr_t *attrs),
int tsol_get_strattr(mblk_t *mp);
void tsol_set_strattr(mblk_t *mp, tsol_strattr_t *strattr);
void tsol_rele_strattr(mblk_t *mp);

Table B-1 System Calls

Programming Interface Topic

fgetcmwfsrange(2TSOL) Chapter 5, “Labels”

fgetcmwlabel(2TSOL) Chapter 5, “Labels”

fgetfattrflag(2TSOL) Chapter 2, “Getting Started”

fgetfpriv(2TSOL) Chapter 3, “Privileges”

360 Trusted Solaris Developer’s Guide—August 1998

B

fgetfsattr(2TSOL) Chapter 2, “Getting Started”

fgetmldadorn(2TSOL) Chapter 8, “Multilevel Directories”

fgetsldname(2TSOL) Chapter 8, “Multilevel Directories”

fsetcmwlabel(2TSOL) Chapter 5, “Labels”

fsetfattrflag(2TSOL) Chapter 2, “Getting Started”

fsetfpriv(2TSOL) Chapter 3, “Privileges”

getclearance(2TSOL) Chapter 7, “Process Clearance”

getcmwfsrange(2TSOL) Chapter 5, “Labels”

getcmwlabel(2TSOL) Chapter 5, “Labels”

getcmwplabel(2TSOL) Chapter 5, “Labels”

getfattrflag(2TSOL) Chapter 2, “Getting Started”

getfpriv(2TSOL) Chapter 3, “Privileges”

getfsattr(2TSOL) Chapter 2, “Getting Started”

getmldadorn(2TSOL) Chapter 8, “Multilevel Directories”

getmsgqcmwlabel(2TSOL) Chapter 12, “System V Interprocess Communication”

getpattr(2TSOL) Chapter 2, “Getting Started”

getpmsgattr(2TSOL) “Trusted Streams” on page 359

getppriv(2TSOL) Chapter 3, “Privileges”

getsemcmwlabel(2TSOL) Chapter 12, “System V Interprocess Communication”

getshmcmwlabel(2TSOL) Chapter 12, “System V Interprocess Communication”

getsldname(2TSOL) Chapter 8, “Multilevel Directories”

lgetcmwlabel(2TSOL) Chapter 5, “Labels”

lsetcmwlabel(2TSOL) Chapter 5, “Labels”

mldgetfattrflag(2TSOL) Chapter 2, “Getting Started”

mldsetfattrflag(2TSOL) Chapter 2, “Getting Started”

mldstat(2TSOL) Chapter 8, “Multilevel Directories”

mldlstat(2TSOL) Chapter 8, “Multilevel Directories

Table B-1 System Calls

Programming Interface Topic

Trusted Solaris 2.5.1 Interfaces Reference 361

B

Trusted Kernel Functions for Drivers
The trusted kernel functions listing is organized alphabetically. See the man
pages or “Trusted Streams” on page 359 for information on them. They may be
documented in this guide at a later date.

• tsol_get_strattr(9FTSOL)
• tsol_linkb(9FTSOL)
• tsol_putctl(9FTSOL)
• tsol_putctl1(9FTSOL)
• tsol_putnextctl(9FTSOL)
• tsol_putnextctl1(9FTSOL)
• tsol_set_strattr(9FTSOL)

msggetl(2TSOL) Chapter 12, “System V Interprocess Communication”

msgrcvl(2TSOL) Chapter 12, “System V Interprocess Communication”

msgsndl(2TSOL) Chapter 12, “System V Interprocess Communication”

putpmsgattr(2TSOL) “Trusted Streams” on page 359

secconf(2TSOL) Chapter 2, “Getting Started”

semgetl(2TSOL) Chapter 12, “System V Interprocess Communication”

semopl(2TSOL) Chapter 12, “System V Interprocess Communication

setclearance(2TSOL) Chapter 7, “Process Clearance”

setcmwlabel(2TSOL) Chapter 5, “Labels”

setcmwplabel(2TSOL) Chapter 5, “Labels”

setfattrflag(2TSOL) Chapter 2, “Getting Started”

setfpriv(2TSOL) Chapter 3, “Privileges”

setpattr(2TSOL) Chapter 2, “Getting Started”

setppriv(2TSOL) Chapter 3, “Privileges”

shmgetl(2TSOL) Chapter 12, “System V Interprocess Communication”

Table B-1 System Calls

Programming Interface Topic

362 Trusted Solaris Developer’s Guide—August 1998

B

Library Routines
The library routines listing is organized alphabetically. It provides the chapter
name and number where the interface is covered in this guide. You can also
use the information to find the interface declaration in one of the previous
topical lists.

Table B-2 Library Routines

Library Routine Topic

adornfc(3TSOL) Chapter 8, “Multilevel Directories”

auditwrite(3TSOL) Chapter 9, “Application Auditing”

auth_set_to_str(3TSOL) Chapter 4, “Checking User Authorizations”

auth_to_str(3TSOL) Chapter 4, “Checking User Authorizations”

bclearhigh(3TSOL) Chapter 7, “Process Clearance”

bclearlow(3TSOL) Chapter 7, “Process Clearance”

bcleartoh(3TSOL) Chapter 7, “Process Clearance”

bcleartoh_r(3TSOL) Chapter 7, “Process Clearance”

bcleartos(3TSOL) Chapter 7, “Process Clearance”

bclearundef(3TSOL) Chapter 7, “Process Clearance”

bclearvalid(3TSOL) Chapter 7, “Process Clearance”

bclhigh(3TSOL) Chapter 5, “Labels”

bcllow(3TSOL) Chapter 5, “Labels”

bcltobanner(3TSOL) Chapter 5, “Labels”

bcltoh(3TSOL) Chapter 5, “Labels”

bcltoh_r(3TSOL) Chapter 5, “Labels”

bcltoil(3TSOL) Chapter 5, “Labels”

bcltos(3TSOL) Chapter 5, “Labels”

bcltosl(3TSOL) Chapter 5, “Labels”

bclundef(3TSOL) Chapter 5, “Labels”

bilconjoin(3TSOL) Chapter 5, “Labels”

bildominates(3TSOL) Chapter 5, “Labels”

Trusted Solaris 2.5.1 Interfaces Reference 363

B

bilequal(3TSOL) Chapter 5, “Labels”

bilhigh(3TSOL) Chapter 5, “Labels”

billow(3TSOL) Chapter 5, “Labels”

biltoh(3TSOL) Chapter 5, “Labels”

biltoh_r(3TSOL) Chapter 5, “Labels”

biltolev(3TSOL) Chapter 5, “Labels”

biltos(3TSOL) Chapter 5, “Labels”

bilundef(3TSOL) Chapter 5, “Labels”

bilvalid(3TSOL) Chapter 5, “Labels”

bimdominates(3TSOL) Chapter 5, “Labels”

bimequal(3TSOL) Chapter 5, “Labels”

bldominates(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

blequal(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

blinrange(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

blinset(3TSOL) Chapter 5, “Labels”

blmaximum(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

blminimum(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

blmanifest(3TSOL) Chapter 5, “Labels”

blportion(3TSOL) Chapter 5, “Labels”

blstrictdom(3TSOL) Chapter 5, “Labels”

bltocolor(3TSOL) Chapter 5, “Labels”

bltype(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

bslhigh(3TSOL) Chapter 5, “Labels”

bsllow(3TSOL) Chapter 5, “Labels”

bsltoh(3TSOL) Chapter 5, “Labels”

bsltoh_r(3TSOL) Chapter 5, “Labels”

bsltos(3TSOL) Chapter 5, “Labels”

Table B-2 Library Routines

Library Routine Topic

364 Trusted Solaris Developer’s Guide—August 1998

B

bslundef(3TSOL) Chapter 5, “Labels”

bslvalid(3TSOL) Chapter 5, “Labels”

chkauth(3TSOL) Chapter 4, “Checking User Authorizations”

cmw_accred_dialog(3TSOL) Chapter 16, “Label Builder”

cmw_lbuild_create(3TSOL) Chapter 16, “Label Builder

cmw_lbuild_destroy(3TSOL) Chapter 16, “Label Builder

cmw_lbuild_get(3TSOL) Chapter 16, “Label Builder

cmw_lbuild_set(3TSOL) Chapter 16, “Label Builder

endprofent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

endprofstr(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

enduserent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

free_auth_set(3TSOL) Chapter 4, “Checking User Authorizations”

free_profent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

free_profstr(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

free_userent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

get_auth_text(3TSOL) Chapter 4, “Checking User Authorizations”

get_priv_text(3TSOL) Chapter 3, “Privileges”

getcil(3TSOL) Chapter 5, “Labels”

getcsl(3TSOL) Chapter 5, “Labels”

getprofent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getprofentbyname(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getprofstr(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getprofstrbyname(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getuserent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getuserentbyname(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

getuserentbyuid(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

h_alloc(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

Table B-2 Library Routines

Library Routine Topic

Trusted Solaris 2.5.1 Interfaces Reference 365

B

h_free(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

htobcl(3TSOL) Chapter 5, “Labels”

htobclear(3TSOL) Chapter 7, “Process Clearance”

htobil(3TSOL) Chapter 5, “Labels”

htobsl(3TSOL) Chapter 5, “Labels”

labelinfo(3TSOL) Chapter 5, “Labels”

labelvers(3TSOL) Chapter 5, “Labels”

mldgetcwd(3TSOL) Chapter 8, “Multilevel Directories”

mldrealpath(3TSOL) Chapter 8, “Multilevel Directories”

priv_set_to_str(3TSOL) Chapter 3, “Privileges”

priv_to_str(3TSOL) Chapter 3, “Privileges”

sbcleartos(3TSOL) Chapter 5, “Labels”

sbcltos(3TSOL) Chapter 5, “Labels”

sbiltos(3TSOL) Chapter 5, “Labels”

sbsltos(3TSOL) Chapter 5, “Labels”

set_effective_priv(3TSOL) Chapter 3, “Privileges”

set_inheritable_priv(3TSOL) Chapter 3, “Privileges”

set_permitted_priv(3TSOL) Chapter 3, “Privileges”

setbltype(3TSOL) Chapter 5, “Labels,” Chapter 7, “Process Clearance”

setcil(3TSOL) Chapter 5, “Labels”

setcsl(3TSOL) Chapter 5, “Labels”

setprofent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

setprofstr(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

setuserent(3TSOL) Chapter 10, “Accessing User and Profile Database Entries”

stobcl(3TSOL) Chapter 5, “Labels”

stobclear(3TSOL) Chapter 7, “Process Clearance”

stobil(3TSOL) Chapter 5, “Labels”

Table B-2 Library Routines

Library Routine Topic

366 Trusted Solaris Developer’s Guide—August 1998

B

stobsl(3TSOL) Chapter 5, “Labels”

str_to_auth(3TSOL) Chapter 4, “Checking User Authorizations”

str_to_auth_set(3TSOL) Chapter 4, “Checking User Authorizations”

str_to_priv(3TSOL) Chapter 3, “Privileges”

str_to_priv_set(3TSOL) Chapter 3, “Privileges”

t6alloc_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6allocated_attrs(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6clear_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6cmp_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6copy_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6dup_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6ext_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6free_blk(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6get_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6get_endpt_default(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6get_endpt_mask(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6last_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6new_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6peek_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6present_attrs(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6recvfrom(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6sendto(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6set_endpt_default(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6set_endpt_mask(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6size_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

t6supported_attrs(3ntsol) Chapter 13, “Trusted Security Information Exchange Library

t6set_attr(3NTSOL) Chapter 13, “Trusted Security Information Exchange Library

Table B-2 Library Routines

Library Routine Topic

Trusted Solaris 2.5.1 Interfaces Reference 367

B

Xbcleartos(3TSOL) Chapter 15, “Trusted X Window System.”

Xbcltos(3TSOL) Chapter 15, “Trusted X Window System.”

Xbiltos(3TSOL) Chapter 15, “Trusted X Window System.”

Xbsltos(3TSOL) Chapter 15, “Trusted X Window System.”

XTSOLIsWindowTrusted(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLMakeTPWindow(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetClientAttributes(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetPropAttributes(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetPropLabel(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetPropUID(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetResAttributes(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetResLabel(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetResUID(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetSSHeight(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetWindowIIL(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLgetWorkstationOwner(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetPolyInstInfo(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetPropLabel(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetPropUID(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetResLabel(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetResUID(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetSSHeight(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetSessionHI(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetSessionLO(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetWindowIIL(3X11TSOL) Chapter 15, “Trusted X Window System

XTSOLsetWorkstationOwner(3X11TSOL) Chapter 15, “Trusted X Window System

Table B-2 Library Routines

Library Routine Topic

368 Trusted Solaris Developer’s Guide—August 1998

B

369

Index

A
abbreviations in names, 334
access

checks
executing a file, 23
IPC files, 223
mapped memory, 226
MLDs, 170
network, 223, 227
opening a file, 20
pipes, 224, 225
process tracing, 226
processes, 223
PTYs, 225
signals, 226
SLDs, 170
sockets, 229
System V IPC, 223, 227
TLI, 229
writing to a file, 22
X Window System, 290

discretionary operations, 17
file labels, 95
file privileges, 57
file systems

code examples, 19
privileges, 18
security policy, 17

guidelines for SLs, 97
mandatory operations, 17
multilevel port connections, 228
protection, 89

access control lists, See ACLs
ACCESS_RELATED flag, 139
accreditation ranges

checking, 133, 134
networks, 244
structurs, 101

ACLs
(access control lists)
information on, 33

actions
assigning inheritable privileges, 339
creating, 339
linked list data type, 214

actions field, 213
actname field, 214
adjunct file, See vfstab_adjunct file
ADMIN_HIGH label

defined, 115
initialize to, 115
running applications, 15

ADMIN_LOW label
defined, 115
initialize to, 115
running applications, 15

370 Trusted Solaris Developer’s Guide—August 1998

adorned pathnames
described, 172
translating, 172

adornfc(3TSOL)
code example, 179
declaration, 177

algorithms
IL floating, 92
process privileges, 54

ALL_ENTRIES flag, 139
allowed privileges

See alsoprivilege sets
defined, 54
on file systems, 33
set to none during write, 57
turning off, 70

APIs
(application programming interfaces)
See also library routines
See also system calls
declarations, 345 to 367
list of types, 5 to 12
security policy on man pages, 331

application auditing
See also auditing
See also code examples
API declarations, 353
appending record information, 196
argument information, 207
audit trail, 191
command line arguments, 208
control commands, 188
creating audit records, 192
creating parallel audit records, 202
described, 186
event definition numbers, 186
information label, 196
invalid call, 192
IPC identifier, 210
preselection mask, 200
privilege sets, 209
privileged tasks, 46, 187
process preselection mask, 190
queueing record information, 198
return token, 195

return values, 195
save area, 203
sensitivity label, 205
server area, 205
subject token, 195
terminator command, 188
token commands, 188
valid call, 193

application programming interfaces, See
APIs

applications
See also application auditing
administrative, 15
integration, 338
MLDs, 171
testing and debugging, 335
user, 16

argclass field, 214
argcount field, 214
argmode field, 214
argtype field, 214
ASCII

See also translation
color names, 136

atoms, predefined, 292
attribute flags

See also security attribute flags
attributes

See also security attribute flags
See also security attributes

audit classes
process preselection mask, 190
third-party, 186

audit events
third-party, 186
viewing, 191

audit records
creating in an application, 192
minimum, 193

audit tokens
return token, 195
subject token structure, 195

audit_class file

Index 371

application auditing, 186
creating class, 190

audit_control file
application auditing, 186
process preselection mask, 190

audit_event file
application auditing, 186
creating event, 190

auditid field, 295
auditing

See also application auditing
preselection mask

classes on file systems, 34
public files and directories, 36

auditwrite(3TSOL)
code examples, 46, 192 to 206
declaration, 187
invalid call, 192
valid call, 193

auth_set_t type, 83
auth_set_to_str(3TSOL)

code example, 88
declaration, 84

auth_t type, 83
auth_to_str(3TSOL)

code example, 86
declaration, 84

authorizations
See also auth_desc(4TSOL) man page
See also code examples
See also privileges
See also security policy
See also translation
and privileges, 41
API declarations, 83 to 84, 348
categories

device allocation, 82
files, 82
labels, 82
login, 82
software administration, 82
X Window System, 82

data types
authorization ID, 83

structure, 83
Label builder, 321
and privileges, 40
when to check, 41, 81

auths field, 213
AW_APPEND control command, 196
AW_ARG token command, 207
AW_CLEARANCE token command, 196
AW_DEFAULTRD token command, 203
AW_DISCARDRD token command, 202
AW_END terminator command, 192
AW_EVENT token command, 193
AW_EXEC_ARGS token command, 208
AW_FLUSH token command, 198
AW_GETRD token command, 202
AW_ILABEL token command, 196
AW_IPC token command, 210
AW_NOPRESELECT token

command, 200
AW_NOQUEUE token command, 198
AW_NOSAVE token command, 203
AW_NOSERVER token command, 205
AW_PATH token command, 202
AW_PRESELECT token command, 200
AW_PRIVILEGE token command, 209
AW_QUEUE token command, 198
AW_RETURN token command, 194, 195
AW_SAVERD token command, 203
AW_SERVER token command, 205
AW_SLABEL token command, 194, 205
AW_SUBJECT token command, 194
AW_TEXT token command, 195
AW_USERD token command, 202
AW_WRITE control command, 196

B
banner_fields structure, 102
bclabel_t type, 100
bclear_t type, 153
bclearhigh(3TSOL)

372 Trusted Solaris Developer’s Guide—August 1998

code example, 157
declaration, 154

bclearlow(3TSOL)
code example, 159
declaration, 154

bcleartoh(3TSOL)
code example, 166
declaration, 157

bcleartoh_r(3TSOL)
code example, 148, 167
declaration, 157

bcleartos(3TSOL)
code example, 164
declaration, 156

bclearundef(3TSOL)
code example, 159
declaration, 154

bclearvalid(3TSOL)
code example, 163
declaration, 156

bclhigh(3TSOL)
code example, 140
declaration, 104

bcllow (3TSOL)
declaration, 104

bcltobanner(3TSOL)
code example, 149
declarationBinary, 109

bcltoh(3TSOL), declaration, 111
bcltoh_r(3TSOL), declaration, 111
bcltoil(3TSOL)

code example, 130
declaration, 105

bcltos(3TSOL)
code example, 117, 140
declaration, 109

bcltosl(3TSOL)
code example, 130
declaration, 104

bclundef(3TSOL)
code example, 116
declaration, 104

bilabel_t type, 100

bilconjoin(3TSOL)
code example, 131
declaration, 107

bildominates(3TSOL)
code example, 127
declaration, 106

bilequal(3TSOL)
code example, 127
declaration, 106

bilhigh(3TSOL)
code example, 142
declaration, 105

billow(3TSOL)
code example, 116
declaration, 105

biltoh(3TSOL), declaration, 111
biltoh_r(3TSOL), declaration, 111
biltolev(3TSOL)

code example, 130
declaration, 105
when to use, 125

biltos(3TSOL)
code example, 142
declaration, 110

bilundef(3TSOL), declaration, 105
bilvalid(3TSOL), declaration, 108
bimdominates(3TSOL)

code example, 129
declaration, 106

bimequal(3TSOL)
code example, 129
declaration, 106

binary
to hexadecimal, 144, 147

bldominates(3TSOL)
code example, 43, 126, 160
declaration, 105, 154

blequal(3TSOL)
code example, 126, 160
declaration, 105, 154

blevel_t type, 153
blinrange(3TSOL)

code example, 123

Index 373

declaration, 105, 154
blinset(3TSOL)

code example, 133
declaration, 109

blmaximum(3TSOL)
code example, 132, 162
declaration, 107, 155

blminimum(3TSOL)
code example, 133, 163
declaration, 107, 155

blstrictdom(3TSOL)
code example, 126, 160
declaration, 105, 154

bltocolor(3TSOL)
code example, 136
declaration, 108

bltocolor_t(3TSOL), declaration, 108
bltype(3TSOL)

code example, 116, 159
declaration, 107, 155

bracketing, See privilege bracketing
brange_t type, 101
bslabel_t type, 100, 173
bslevel_t type, 101
bslhigh(3TSOL)

code example, 116
declaration, 105

bsllow(3TSOL), declaration, 105
bsltoh(3TSOL), declaration, 111
bsltoh_r(3TSOL), declaration, 111
bsltos(3TSOL)

code example, 132, 140
declaration, 110

bslundef(3TSOL), declaration, 105
bslvalid(3TSOL)

code example, 134
declaration, 108

builders, GUI
See also Label builder
API declarations, 357
interfaces described, 315

C
caveats field, 102
caveats_len field, 101, 102
CDE actions, See actions
channels field, 102
channels_len field, 101, 102
chkauth(3TSOL)

code example, 41, 85
declaration, 83

cl_tsol_incoming_attrsp field, 280
cl_tsol_outgoing_attrsp field, 280
clabel_len field, 101
classifications

clearance component, 151
dominate, 125, 127, 160
equal, 125, 127, 160
IL component, 91
SL component, 91
strictly dominate, 126, 160

clear_len field, 101
clearances

See also process clearances
checking clearances, 42
session, 151
user, 151

process clearances
See also code examples
See also labels
See also translation

CLIENT structure, 280
cmds field, 213
CMW labels

(compartmented mode workstation
labels)

See also code examples
See also ILs
See also labels
See also SLs
See also translation
API declarations, 351
components, 90
defined, 89
file systems, 33

374 Trusted Solaris Developer’s Guide—August 1998

objects, 94
processes, 93
user interface appearance, 93

code examples
accreditation range, checking, 133
adding information label, 196
auditing

adding a sensitivity label, 205
appending information, 196
creating audit records, 46
creating mimimum record, 193
creating parallel records, 202
handling return values, 195
invalid call, 192
preliminary setup, 188 to 191
queueing information, 198
using preselection mask, 200
using save area, 203
using server area, 205
valid call, 193
writing arguments, 207
writing command line

arguments, 208
writing IPC identifier, 210
writing privilege sets, 209

authorizations
and privileges, 41
checking, 41, 85
freeing authorization sets, 88
getting description text, 87
translating ID to string, 86
translating set to string, 87, 88
translating string to ID, 86

checking SLs, 42
clearances

checking before file access, 43
checking if valid, 163
checking type, 159
ckecking prior to access, 42
finding lower bound, 163
finding upper bound, 162
getting, 157
initializing to ADMIN_

LOW, 159
initializing to undefined, 159

setting, 157
testing relationships, 160
translating, 164, 165
translating and clipping, 165
translating to hex, 148, 166, 167

CMW labels
getting on file system, 120
getting on window, 307
getting pointers to portions, 130
getting process label, 43, 117
getting SL and IL, 117
setting on file system, 121
setting on window, 308
setting process label, 119
translating to ASCII, 140
translating to binary, 145
translating to hex, 147

databases
enumerating, 222
getting profile entries, 218
getting user entries, 48, 218

file systems
accessing, 19
executing, 23
getting attribute flags, 35
getting attributes, 31
getting attributes (inode), 33
getting CMW label, 120
getting label range, 123
opening a file, 20
setting CMW label, 121
writing to a file, 22

ILs
conjoining, 131
creating, 119
floating, 118
testing markings, 129
testing relationships, 127
translating binary to ASCII, 142
translating to binary, 145

Label builder, 318
label_encodings file

getting ASCII color names, 136
getting information on, 137
retrieving version string, 114
translating printer banner, 149

Index 375

labels, 113 to 150
checking accreditation

ranges, 133
checking if valid, 134
initializing, 116
translating with font list, 306

MLDs
creating a file, 182
getting adorned name, 179
getting MLD name, 178
getting real path, 179
getting security attribute

flags, 35
getting security attributes, 180
getting SLD name, 45
getting working directory, 179
opening a file, 182

printer banner, translating, 149
privilege sets

bracketing effective set, 73
checking allowed set, 69
checking permitted set, 74
checking saved set, 76
clearing allowed set, 67
clearing effective set, 73
clearing inheritable set, 76
exec’ing a process, 79
forking a process, 77
removing permitted privs, 75
setting forced set on file, 69
setting inheritable set, 76
translating set to string, 69

privileges
after checking authorizations, 41
and authorizations, 41
asserting privileges in sets, 69
getting description text, 66
setting user ID, 80
translating ID to string, 65
translating string to ID, 65
when to use, 42

processes, getting attribute flags, 37
RPC

example application, 281 to 285
header file, 281
running the application, 286

security configuration variables, 29
SLDs

creating a file, 182
getting name, 45
getting security attributes, 180
getting SLD name, 178
getting working directory, 179
opening a file, 182

SLs
checking before file access, 43
creating, 119
finding lower bound, 133
finding upper bound, 132
getting file system range, 123
testing relationships, 126
translating to ASCII, 140
translating to binary, 145

System V IPC
using message queue labels, 236
using semaphore set labels, 239
using shared memory labels, 241

TSIX
allocating space, 254
clearing attributes, 263
client application, 273 to 276
comparing attributes, 263
copying attribute structures, 262
creating attribute masks, 264
duplicating structures, 262
examining the last attribute, 260
example application, 265 to 276
freeing allocated space, 265
getting attribute size, 261
getting attributes, 258
getting endpoint defaults, 257
getting endpoint mask, 257
peeking at attributes, 260
receiving attributes, 258
receiving new attributess, 259
replying to request, 267
sending attributes, 254
server application, 266 to 272
setting attributes, 254
setting endpoint defaults, 257
setting enpoint mask, 257
using multilevel ports, 265

376 Trusted Solaris Developer’s Guide—August 1998

vfstab_adjunct(4TSOL), 31
X Window System

getting window attributes, 305
getting window CMW label, 307
getting window userID, 308
getting workstation owner, 308
Motif application, 304
setting window CMW label, 308
translating with font list, 306

command arguments
control, 188
terminator, 188
token, 188

commands
linked list data type, 214

communication endpoints
See also IPC
See also TLI
access checks, 223, 227
connections described, 228
objects, 4
security attributes (TSIX), 245

compartmented mode workstation labels,
See CMW labels

compartments
clearance component, 151
dominate, 125, 127, 160
equal, 125, 127, 160
IL component, 91
SL component, 91
strictly dominate, 126, 160

compile
auditing libraries, 187
authorization libraries, 82
clearance libraries, 153
Label builder libraries, 316
label libraries, 100
MLD libraries, 173
privilege libraries, 59
profile database access libraries, 212
RPC libraries, 280
SLD libraries, 173
System V IPC libraries, 234
TSIX libraries, 247
user database access libraries, 212

X Window System libraries, 294
configurations, See system security

configuration
conjoining ILs, 92, 131
connection requests

security attributes, 289
security policy, 290

control commands, 188
core files, 58
covert channels, 59

D
DAC

(discretionary access control)
See also security policy
accessing System V IPC objects, 232
privilege bracketing, 71
security policy, 13

data objects, See objects
data packets, See packets
data types

auditing, 187
authorization APIs, 82
clearance APIs, 153
label APIs, 100
Label buider APIs, 322, 324, 327
MLD APIs, 173
privilege APIs, 59
profile database access APIs, 212
RPC APIs, 279
SLD APIs, 173
System V IPC APIs, 234
TSIX APIs, 247
user database access APIs, 212
X Window System APIs, 294

databases
See also code examples
API declarations, 214, 215 to 217, 354
profile

data types, 213, 214
described, 211

src parameter, 214
user

Index 377

data types, 212
described, 211

debugging
applications, 335
See also privilege debugging

desc field, 213
development environment privs, 40
devices

authorizations, defined, 82
input device privileges, 293
label ranges, 124

DGA
(Direct Graphics Access)
See also X Window System
privileges, 293

dir field, 214
Direct Graphics Access, See DGA
discretionary access control, See DAC
diskless boot flag, 38
distributed computing, See IPC
dominate

ILs, 127
levels, 125, 160
markings, 129

downgrading labels
guidelines, 98
privileges needed, 95, 96
X Window System, 293

E
effective privileges

See also privilege sets
bracketing, 71, 72, 73
change UID, GUID, or SGUID, 56
code example, 73
defined, 56
privilege to change IDs, 58

egid field, 214
endpoints, See communication endpoints
endprofent(3TSOL), declaration, 216
endprofstr(3TSOL), declaration, 216
enduserent(3TSOL)

code example, 222
declaration, 215

equal
ILs, 127
levels, 125, 160
markings, 129

errors, 15
euid field, 214
examples

See also code examples
exec system call

CMW label values, 94
inheritable privileges, 76
privileges in new program, 79
reset_il_on_exec, 94

execution profiles
accessing, 216
checking, 40

extended operations, 324

F
FAF_ALL flag, 36
FAF_MLD flag, 35
FAF_PUBLIC flag, 36
FAF_SLD flag, 35
features, operating system, 2
fgetcmwfsrange system call,

declaration, 104
fgetcmwlabel system call,

declaration, 103
fgetfattrflag(2TSOL), declaration, 27
fgetfpriv system call, declaration, 62
fgetfsattr system call, declaration, 27
fgetmldadorn system call,

declaration, 175
fgetsldname system call

creating SLDs, 170
declaration, 175

file field, 214
file systems

See also code examples
See also label ranges

378 Trusted Solaris Developer’s Guide—August 1998

See also MLDs
See also security attribute flags
See also security attributes
See also SLDs
access privileges, 18
accessing MLDs, 170
ACL information, 33
hide upgraded names, 29
IPC bind to file, 4
objects, 3
polyinstantiated, 169
privileges, defined, 53
security policy, 16, 17
accessing SLDs, 171

file_audit privilege, 34, 36
file_audit privilege, 36
file_dac_execute privilege, 18
file_dac_read privilege, 18
file_dac_search privilege, 18, 80
file_dac_write privilege, 18, 223
file_downgrade_il privilege, 96
file_downgrade_sl privilege, 41, 95
file_mac_read privilege, 18, 223
file_mac_search privilege, 18
file_mac_write privilege, 18
file_nofloat privilege, 96
file_owner privilege, 36, 95, 96
file_setfpriv privilege, 191
file_setpriv privilege, 57
file_upgrade_il privilege, 95, 96
files

allowed privileges, 54
authorizations, defined, 82
forced privileges, 54
interpreted, 54
label privileges, 95
privilege sets, 53
privileges for creating core files, 58
when writing to executables, 57

flags, See security attribute flags
floating, See ILs
fonts

font list translation, 306

font path privileges, 294
forced privileges

See also privilege sets
when turning off allowed, 70
clearing, 70
defined, 54
on file systems, 33
set to none during write, 57

fork system call
CMW label values, 93
guidelines for changing SLs, 98
inheritable privileges, 76
privileges in child, 77

free_auth_set(3TSOL)
code example, 88
declaration, 84

free_profent(3TSOL)
code example, 218
declaration, 217

free_profstr(3TSOL)
code example, 218
declaration, 217

free_userent(3TSOL)
code example, 218
declaration, 215

FSA_ACL value, 33
FSA_ACLCNT value, 33
FSA_AFLAGS value, 33
FSA_APRIV value, 33
FSA_APSA value, 34
FSA_APSACNT value, 34
FSA_DFACL value, 33
FSA_DFACLCNT value, 33
FSA_FPRIV value, 33
FSA_LABEL value, 33
FSA_LBLRNG value, 34
FSA_MLDPFX value, 34
fsetcmwlabel system call, declaration, 103
fsetfattrflag system call, declaration, 27
fsetfpriv system call, declaration, 62
functions, See APIs

Index 379

G
gen field, 212
get_auth_text(3TSOL)

code example, 87
declaration, 84

get_priv_text(3TSOL)
code example, 66
declaration, 64

getcil(3TSOL)
code example, 117
declaration, 105

getclearance system call
code example, 157
declaration, 154

getcmwfsrange system call
declaration, 104

getcmwfsrange(2TSOL)
code example, 123

getcmwlabel system call
code example, 43, 120
declaration, 103

getcmwplabel system call
code example, 43, 117
declaration, 103

getcsl(3TSOL)
code example, 43, 117
declaration, 104

getfattrflag system call
code example, 35
declaration, 27

getfpriv system call
code example, 69
declaration, 62
privileges needed, 57

getfpriv(1TSOL), 67
getfsattr system call

code example, 33
declaration, 27

getlabel (1TSOL), 122
getmldadorn system call

code example, 178
declaration, 175

getmsgqcmwlabel system call,
declaration, 234

getpattr system call
code example, 37
declaration, 27

getppriv system call
code example, 41, 74, 76
declaration, 62

getprofent(3TSOL), declaration, 216
getprofentbyname(3TSOL)

code example, 218
declaration, 216

getprofstr(3TSOL), declaration, 216
getprofstrbyname(3TSOL)

code example, 218
declaration, 216

getsemcmwlabel system call
code example, 239
declaration, 235

getshmcmwlabel system call
code example, 241
declaration, 236

getsldname system call
code example, 45, 178
creating SLDs, 170
declaration, 175

getuserent(3TSOL)
code example, 222
declaration, 215

getuserentbyname(3TSOL)
code example, 48, 218
declaration, 215

getuserentbyuid(3TSOL), declaration, 215
getvfsaent(3TSOL), code example, 31
getvfsafile(3TSOL), code example, 31
gid field, 295
GIDs

(group IDs)
privilege to change, 58

graphical user interfaces, See GUIs
group IDs, See GIDs
GUIs

(graphical user interfaces)

380 Trusted Solaris Developer’s Guide—August 1998

See also builders, GUI
CDE, 10
Motif, 10
Xlib, 10
Xlib objects, 289

H
h_alloc(3TSOL)

code example, 148, 167
declaration, 110, 157

h_free(3TSOL)
code example, 148, 167
declaration, 110, 157

header field, 102
header files

auditing APIs, 187
authorization APIs, 82
clearance APIs, 153
label APIs, 100
Label builder APIs, 316
locations, list of, 334
MLD APIs, 173
privilege APIs, 59
profile database access APIs, 212
RPC APIs, 280
SLD APIs, 173
System V IPC APIs, 234
TSIX APIs, 247
user database access APIs, 212
X Window System APIs, 294

header_len field, 102
header_len field, 101
hexadecimal

to binary, 144, 147
hextoalabel command, 197
hide upgraded names, 29
htobcl(3TSOL)

code example, 147
declaration, 111

htobclear(3TSOL)
code example, 166
declaration, 157

htobil(3TSOL), declaration, 111

htobsl(3TSOL), declaration, 111

I
iaddr field, 295
idlecmd field, 212
idletime field, 212
iil field, 295
IILs

(input information labels)
described, 291
security policy, 291

INET Domain sockets
(Internet Domain sockets)

il field, 295
ilabel field, 102
ilabel_len field, 101, 102
ILs

(information labels)
See also CMW labels
See also code examples
See also labels
See also SLs
See also translation
API declarations, 350
in CMW label, 90
components, 91
conjoin, defined, 92
dominate, 127
enabling, 28
enabling floating, 28
enabling message floating, 28
enabling semaphore set floating, 28
enabling shared memory floating, 28
equal, 127
floating

algorithms, 92
guidelines, 99
object CMW label, 94
process CMW label, 93
stopping, 96
System V IPC objects, 233
TSIX, 245
X Window, 294

Index 381

privileges
changing process IL, 95
downgrading ILs, 96
upgrading ILs, 96

purpose, 89
resetting on exec, 29
TSIX, 246

include files, See header files
INET Domain sockets, See IPC
information labels, See ILs
inheritable privileges

See alsoprivilege sets
code example, 76
defined, 55

input information labels, See IILs
integrating an application, 338
interfaces, See APIs
Internet Domain sockets, See INET

Domain sockets
interprocess communication, See IPC
IPC

(interprocess communication)
See also communication endpoints
See also RPC
See also System V IPC
See also TLI
See also TSIX library
See also X Window System
communication endpoint objects, 4
file binding, 4
mechanisms described, 223
multilevel port connections, 228
network accreditation range, 244
objects, 4
polyinstantiated ports, 229
port binding, 4
privileges, defined, 53
security attributes

changing, 245
contrast with Solaris, 12
described, 244

security policy, 16, 223
single-level port connections, 228

ipc_dac_read privilege, 232

ipc_dac_write privilege, 232
ipc_downgrade_il privilege, 233
ipc_mac_rad privilege, 232
ipc_mac_read privilege, 223, 232
ipc_mac_write privilege, 232
ipc_nofloat privilege, 223, 233
ipc_owner privilege, 223, 232
ipc_upgrade_il privilege, 233

L
Label builder

See also code examples
Cancel pushbutton, 321
declarations, 316
described, 315
Downgrade SL Using IL

pushbutton, 321
extended operations, 324
functionality, 320
IL radio button, 321
Reset pushbutton, 321
SL radio button, 321

label clipping
API declarations, 303, 352
translating with font list, 306

label data types
accreditation ranges, 101
banner fields, 102
CMW label structure, 100
information labels, 100
label information, 101
levels, 101
sensitivity labels, 100
setting flags, 100
SL ranges, 101

label ranges
accreditation, 101, 133
assigning, 93
checking, 124
described, 123
file systems

API declarations, 348
data structure, 101

382 Trusted Solaris Developer’s Guide—August 1998

label_encodings file
API declarations, 348
color names, 136
information on, 137
Label builder, 320
label translation flag, 39
Non-English, 306
retrieving version string, 114
valid clearances, 154
valid labels, 102
view flag, 39

label_info structure, 101
labelinfo(3TSOL)

code example, 137
declaration, 108

labelmax field, 212
labelmin field, 212
labels

See also clearances
See also CMW labels
See also ILs
See also SLs
See also translation
acquiring, 93
administrative, 115
API declarations

CMW labels, 351
entire, 102 to 111, 348 to 352
file systems, 348
ILs, 350
label clipping with font list, 352
label types, 349
label_encodings(4TSOL), 348
levels, 349
reentrant routines, 349
SLs, 350

authorizations, 82
defined, 89
dominate levels, 125
equal levels, 125
guidelines, 96
Label builder, 315
privileged tasks, 95
reentrant routines, 110, 111
relationships, 125

strictly dominate levels, 126
translation flag, 39
undefined, 115
valid, 102
view, 139
view flag, 39

labeltrans field, 212
labelvers(3TSOL)

code example, 114
declaration, 108

labelview field, 212
LBUILD_CHECK_AR operation, 326
LBUILD_LOWER_BOUND

operation, 326
LBUILD_MODE operation, 324
LBUILD_MODE_CLR value, 324
LBUILD_MODE_CMW value, 324
LBUILD_MODE_IL value, 324
LBUILD_MODE_SL value, 324
LBUILD_SHOW operation, 325
LBUILD_TITLE operation, 325
LBUILD_UPPER_BOUND operation, 326
LBUILD_USERFIELD operation, 325
LBUILD_VALUE_CLR operation, 325
LBUILD_VALUE_CMW operation, 324
LBUILD_VALUE_IL operation, 324
LBUILD_VALUE_SL operation, 324
LBUILD_VIEW operation, 326
LBUILD_VIEW_EXTERNAL value, 326
LBUILD_VIEW_INTERNAL value, 326
LBUILD_WORK_CMW operation, 325
LBUILD_WORK_IL operation, 325
LBUILD_WORK_SL operation, 325
LBUILD_WORKJ_CLR operation, 325
LBUILD_X operation, 325
LBUILD_Y operation, 326
LD_LIBRARY_PATH, 332
levels

defined, 125, 160
relationship, 125
relationships, 160
See also labels

Index 383

translating IL, 130
upper and lower bounds, 132, 162

lgetcmwlabel system call, declaration, 103
libraries, compile

auditing APIs, 187
authorization APIs, 82
clearance APIs, 153
label APIs, 100
Label builder APIs, 316
MLD APIs, 173
privilege APIs, 59
profile database access APIs, 212
RPC APIs, 280
SLD APIs, 173
System V IPC APIs, 234
trusted shared libraries, 332
TSIX APIs, 247
user database access APIs, 212
X Window System APIs, 294

library routines
API declarations, 362
security policy on man pages, 331

lock field, 212
login authorizations, defined, 82
LONG_CLASSIFICATION flag, 139
LONG_WORDS flag, 139
lsetcmwlabel system call, declaration, 103

M
MAC

(mandatory access control)
See also security policy
accessing System V IPC objects, 232
clearance limits, 13
guidelines for bypassing, 97
privilege bracketing, 71
security policy, 13
SL limits, 13, 89

macros, See privilege macros
mandatory access control, See MAC
manual pages

modified, 330
requesting, 330

security policy on, 331
mapped memory, access checks, 226
mappings

multilevel, 278
single-level, 278

markings
dominate, 129
equal, 129

masks
See also process preselection mask
See also TSIX library

max field, 214
message queues

See also code examples
See also System V IPC
API declarations, 234, 355
IL floating, 233

min field, 214
mldgetcwd(3TSOL)

code example, 179
declaration, 177

mldgetfattrflag system call
code example, 35
declaration, 27

mldrealpath(3TSOL)
code example, 179
declaration, 177

mldrealpathl(3TSOL), declaration, 177
MLDs

(multilevel directories)
See also code examples
See also SLDs
accessing, 170
adorned names, 172
API declarations, 174 to 177, 354
creating, 170
described, 169
information structure, 174
prefix on file systems, 34
privileged tasks, 173
querying MLD flag, 35
security attribute flags, 35
security policy, 170
structure, 170

384 Trusted Solaris Developer’s Guide—August 1998

symbolic links, 171
used by applications, 171

mldsetfattrflag system call
code example, 35
declaration, 27

mldstat system call
code example, 180
declaration, 175

ModLabelData structure, 327
Motif application

described, 304
Label builder widgets, 327
online help, 328
source code, 309 to 313

Motif, described, 10
msggetl system call

code example, 236
declaration, 234

msgrcvl system call
code example, 238
declaration, 234

msgsndl system call
code example, 236
declaration, 234

MT_SAFE, 148, 167
multilabel file systems, 123
multilevel directories, See MLDs
multilevel mappings, 278
multilevel ports

contrast to polyinstantiated, 229
described, 228
example application, 265
replying at equal SL, 245
RPC, 278

N
name field, 212, 213
names, abbreviations, 334
net_downgrade_il privilege, 246
net_downgrade_sl privilege, 246
net_mac_read privilege, 228
net_nofloat privilege, 223, 245

net_reply_equal privilege, 245, 267
net_setclr privilege, 246
net_setid privilege, 246
net_setpriv privilege, 247
net_upgrade_il privilege, 223, 246
networks

See also IPC
security attributes, 12

NEW_LABEL flag, 144
NO_CLASSIFICATION flag, 139
NO_CORRECTION flag, 144

O
objects, 3 to 4
ONLY_INFORMATION_LABEL flag, 144
Open Look Interface Toolkit (OLIT), 10
OpenWindows, 10
operating system features, 2
ouid field, 295

P
packages, See software packages
packets

location of security attributes, 243
security attributes, 244

PAF_DISKLESS_BOOT value, 38
PAF_LABEL_VIEW value, 39
PAF_LABEL_XLATE value, 39
PAF_NO_TOKMAP value, 38
PAF_PRINT_SYSTEM value, 38
PAF_PRIV_DEBUG value, 38
PAF_SELAGENT value, 38
PAF_SELAGNT flag, 292
PAF_TRUSTED_PATH value, 38
pathnames

adorned names, 172
translation, 172

permitted privileges
See also privilege sets
checking, 74

Index 385

code example, 75
defined, 56

pfsh(1TSOL)
determining privilege origination, 55
inheriting privileges, 55

pid field, 295
pipes, access checks, 224, 225
policy, See security policy
polyinstantiation

described, 287
files and directories, 169
network connections, 229

ports
See also multilevel ports
single-level, 228

praudit command
audit trail, 191

print server applications, 149
printer banner page, label translation, 149
printing flag, 38
PRIV_ALLOWED value, 60
PRIV_ASSERT macro

and str_to_priv(3TSOL), 70
described, 61

PRIV_CLEAR macro, 61
PRIV_EFFECTIVE value, 60
PRIV_EMPTY macro, 61
PRIV_EQUAL macro, 61
PRIV_FILL macro, 61
PRIV_FORCED value, 60
priv_ftype_t type, 60
PRIV_INHERITABLE value, 60
PRIV_INTERSECT macro, 61
PRIV_ISASSERT macro

code example, 74, 76
described, 61

PRIV_ISEMPTY macro, 61
PRIV_ISFULL macro, 61
PRIV_ISSUBSET macro

described, 61
purpose, 75

PRIV_OFF value, 60

PRIV_ON value, 60
priv_op_t type, 60
PRIV_PERMITTED value, 60
priv_ptype_t type, 60
PRIV_SAVED value, 60
PRIV_SET value, 60
priv_set_t structure, 60
priv_set_to_str(3TSOL)

code example, 69
declaration, 64

priv_t type, 60
PRIV_TEST macro, 61
priv_to_str(3TSOL)

code example, 65
declaration, 64

PRIV_UNION macro, 61
PRIV_XOR macro, 61
privilege APIs

declarations, 62 to 64, 347
macros, 61

privilege bracketing
benefits, 71
code example, 73
procedure, 72

privilege data types
file sets, 60
operations on sets, 60
privilege ID, 60
process sets, 60
structure, 60

privilege debugging
enabling, 29, 336
flag, 38

privilege macros
API declarations, 347
asserting privilege example, 69
described, 61
initializing set example, 67

privilege sets
See also allowed privileges
See also code examples
See also effective privileges
See also forced privileges

386 Trusted Solaris Developer’s Guide—August 1998

See also inheritable privileges
See also permitted privileges
See also privileges
See also saved privileges
after exec(2TSOL), 79
after fork(2TSOL), 77
algorithms, 54
API declarations, 347
file, 53
on network messages, 247
privileged tasks, 57
privileges needed, 57
process, 54
turning off allowed sey, 70

privileged process defined, 56
privileged tasks

auditing, 187
clearance, 152
IPC, 223
Label builder, 321
labels, 95
MLDs, 173
multilevel port connections, 228
privilege sets, 57
RPC, 278
SLDs, 173
System V IPC, 232
TSIX, 245
X Window System, 293

privileges
See also authorizations
See also code examples
See also priv_desc(4TSOL) man page
See also privilege sets
See also security policy
See also translation
administrative applications, 15
API declarations, 347
applications, privileged, 57
and authorizations, 40
categories

file system, 53
IPC, 53
process, 53
system, 53

System V IPC, 53
X Window System, 53

defined, 51
delimiters, 69
description text API, 64
development environment, 40
errors, 15
guidelines, 58
on interpreted files, 54
scripts, 337
separators, 69
contrast to superuser, 6
TCB, 6, 57
UIDs, changed, 56
upgraded names

hide, 29
user applications, 16
when to use, 13, 40
when writing to executable, 57

privs field, 214
proc_audit_appl privilege, 187
proc_audit_tcb privilege, 46
proc_mac_owner privilege, 223
proc_mac_read privilege, 223
proc_nofloat privilege, 96
proc_set_sl privilege, 245
proc_setclr privilege, 152, 267
proc_setid privilege, 58
proc_setil privilege, 95
proc_setsl privilege, 95
process clearances

acquiring, 151
API declarations, 154 to 157, 353
checking before file access, 43
components, 151
data types

clearance structure, 153
levels, 153

described, 151
dominate levels, 160
equal levels, 160
levels defined, 160
MAC checks, 42
mandatory access operations, 13

Index 387

privileged tasks, 152
reentrant routines, 167
strictly dominate levels, 160
TSIX, 246
valid, 154

process preselection mask
application auditing, 190
changing, 200
return token, 195

process tracing, access checks, 226
processes

See also code examples
See also security attribute flags
See also security attributes
changing SLs, guidelines, 98
CMW label, inheriting values, 93
effective privilege set, 56
inheritable privilege set, 55
label privileges, 95
objects, 3
permitted privilege set, 56
privilege sets, 54
privileged tasks, 223
privileged, defined, 56
privileges, defined, 53
saved privilege set, 55

profact_t structure, 214
profcmd_t structure, 214
profent_t structure, 213
profile database, See databases
profile shell, See pfsh(1TSOL)
profiles field, 212
profstr_t structure, 213
programming interfaces, See APIs
properties

described, 289, 290
privileges, 293

protect_as field, 102
protect_as_len field, 101, 102
pseudo-terminal devices, See PTYs
PTYs

(pseudo-terminal devices)
access checks, 225

R
read access

IL conjoin, 92
security policy, 14

read down, 14
read equal, 14
reentrant routines

binary to hex declarations, 111
binary to hex translation, 148, 167

relationships
between ILs, 127
between levels, 125, 160
between markings, 129

releasing an application, 338
remote procedure call, See RPC
remote procedure calls, See RPC
reset_il_on_exec flag, 94
resource file, 309
ResourceType structure, 295
roles field, 212
RPC

(remote procedure call)
See also code examples
API man pages, 281
client program, 282 to 283
described, 277
example application, 281 to 286
mappings, 278
multilevel ports, 278
privileged tasks, 278
remote procedure, 285
running the application, 286
security attributes, 279
server program, 284

runpd command
using, 336

S
saved privileges

See alsoprivilege sets
change UID, GUID, or SGUID, 56
checking, 76

388 Trusted Solaris Developer’s Guide—August 1998

defined, 55
purpose, 55

sbcleartos(3TSOL)
code example, 165
declaration, 156

sbcltos(3TSOL), declaration, 109
sbiltos(3TSOL), declaration, 110
sbsltos(3TSOL)

code example, 145
declaration, 110

scripts
privileged, 337

secconf system call
code example, 29
declaration, 27

security attribute flags
See also code examples, file systems
See also code examples, processes
API declarations, 346
file systems

API declarations, 27
contrast with Solaris, 11
manifest constants, 33, 35

processes
API declarations, 27
contrast with Solaris, 11
getting and setting, 37
manifest constants, 38
when to use, 26

security attributes
See also code examples, file systems
access checks, 223
access to privileges, 57
accessing labels, 95
API declarations, 346
file systems

API declarations, 27
contrast with Solaris, 11
described, 31
manifest constants, 33
vfstab_adjunct(4TSOL), 31
when to use, 26

MLDs, 180
privileges, 223

processes, 11
RPC, 279
on software packages, 340
TSIX

changing, 245
changing procedure, 254
contrast with Solaris, 12
location on packet, 243
sending and receiving, 244

X Window System
contrast with Solaris, 12
described, 289

security policy
See also authorizations
See also clearances
See also DAC
See also MAC
See also privileges
See also SLs
accessing MLDs, 170
accessing SLDs, 170
administrative applications, 15
auditing, 187
CDE actions, 339
clearances, 152
command line execution, 59
communication endpoints, 227
covert channels, 59
discretionary access operations, 13
file system examples, 19
file systems, 16
file systems access, 17
file systems privileges, 18
IPC, 16, 223
label guidelines, 96
labels, 95
on man pages, 331
mandatory access operations, 13
mapped memory, 226
MLD access, 181
multilevel ports, 228
pipes, 224, 225
privilege bracketing, 58
privilege guidelines, 58
privilege sets, 57

Index 389

privileges
when to use, 42

privileges, when to use, 13
process tracing, 226
PTYs, 225
read access, 14
reading man pages, 15
signals, 226
SLD access, 181
sockets, 229
System V IPC, 227, 232
TLI, 229
translating labels, 95, 152
user applications, 16
write access, 14
X Window System, 290

selection agent flag, 38
Selection Manager

bypassing with flag, 292
security policy, 292

semaphore sets
See also code examples
See also System V IPC
API declarations, 235, 355
IL floating, 233

semgetl system call
code example, 239
declaration, 235

semopl system call, declaration, 235
sensitivity labels, See SLs
sessionid field, 295
set_effective_priv(3TSOL)

code example, 41, 73
declaration, 63

set_id structure, 101
set_inheritable_priv(3TSOL)

code example, 76
declaration, 63

set_permitted_priv(3TSOL)
code example, 75
declaration, 63

setbltype(3TSOL)
code example, 116, 159
declaration, 107, 155

setcil(3TSOL)
code example, 121
declaration, 105

SETCL_ALL flag, 100
SETCL_IL flag, 100
SETCL_SL flag, 100
setclearance system call

code example, 157
declaration, 154

setcmwlabel system call
code example, 121
declaration, 103

setcmwplabel system call
code example, 119
declaration, 103
when to use, 94

setcsl(3TSOL)
code example, 121
declaration, 104

seteuid system call
and privileges, 56

setfattrflag system call
code example, 35
declaration, 27

setfpriv system call
code example, 67, 69
declaration, 62

setfpriv(2TSOL)
scripts, 337

setpattr system call declaration, 27
setppriv system call

declaration, 62
privilege bracketing, 73

setprofent(3TSOL), declaration, 216
setprofstr(3TSOL), declaration, 216
setreuid system call

and privileges, 56
setting_flag field, 100
setuid system call

and privileges, 56
setuserent(3TSOL)

code example, 222
declaration, 215

390 Trusted Solaris Developer’s Guide—August 1998

SGIDs
(supplementary group IDs)
privilege to change, 58

shared libraries, trusted, 332
shared memory regions

See also code examples
See also System V IPC
API declarations, 236, 355
IL floating, 233

shell escapes and privileges, 59
shmgetl system call

code example, 241
declaration, 236

SHORT_CLASSIFICATION flag, 139
SHORT_WORDS flag, 139
signals, access checks, 226
single-label file systems, 123
single-level directories, See SLDs
single-level mappings, 278
single-level ports

changing client SL, 245
described, 228

sl field, 295
slabel_len field, 101
SLDs

(single-level directories)
See also code examples
accessing, 170
adorned names, 172
API declarations, 174 to 177
creating, 170
described, 169
information structure, 174
privileged tasks, 173
sensitivity labels, 173
structure, 170
See also MLDs

SLs
(sensitivity labels)
See also CMW labels
See also code examples
See also ILs
See also labels

See also translation
accreditation ranges, 133
adorned pathnames, 172
API declarations, 350
changing on client, 245
checking before file access, 43
in CMW label, 90
components, 91
guidelines, 96

downgrading SLs, 98
upgrading SLs, 98

MAC checks, 42
mandatory access, 13
on file systems, 34
privileges

changing process SL, 95
downgrading SLs, 95
upgrading SLs, 95

purpose, 89
replying at equal SL, 245
System V IPC, 234
TSIX, 246
user processes, 93

sockets
access checks, 223, 227, 229
See also communication endpoints

software administration authorizations,
defined, 82

software packages
adding new, 342
creating, 339
editing existing, 342
MAC attributes on, 340
prototype file, 344

src parameter values, 214
st_atime field, 174
st_ctime field, 174
st_gid field, 174
st_mode field, 174
st_mtime field, 174
st_nlink field, 174
st_uid field, 174
stat structure, 174
stobcl(3TSOL)

Index 391

code example, 145
declaration, 109

stobclear(3TSOL)
code example, 165
declaration, 156

stobil(3TSOL)
code example, 145
declaration, 110

stobsl(3TSOL)
code example, 45, 145
declaration, 110

str_to_auth(3TSOL)
code example, 86
declaration, 84

str_to_auth_set(3TSOL)
code example, 87
declaration, 84

str_to_priv(3TSOL)
and PRIV_ASSERT macro, 70
code example, 65
declaration, 64

str_to_priv_set(3TSOL)
code example, 69
declaration, 64

STREAMS, See trusted streams
strictly dominate levels, 126, 160
SUN_CLR_ID value, 159
SUN_CLR_UN value, 159
SUN_CMW_ID value, 115
SUN_IL_ID value, 115
SUN_IL_UN value, 115
SUN_SL_ID value, 115
SUN_SL_UN value, 115
superuser, See privileges
supplementary group IDs, See SGIDs
SVCXPRT structure, 279
symbolic links

information structure, 174
MLDs, 171

sys_trans_label privilege, 45, 95, 152
sys_trans_label privilege, 321
system calls

API declarations, 359 to 361
security policy in man pages, 331

System Five Interprocess Communication,
See System V IPC

system security configuration
See also code examples
API declarations, 346
variables described, 28
when to check, 26

System V IPC
(System Five Interprocess

Communication)
See also message queues
See also semaphore seets
See also shared memory regions
access checks, 223, 227
API declarations, 234 to 236, 355
described, 231
discretionary access, 232
IL floating, 233
mandatory access, 232
message queue floating, 28
privileged tasks, 232
privileges, defined, 53
semaphore set floating, 28
sensitivity label structure, 234
shared memory floating, 28

system, privileges defined, 53
SYSTEM_ACCREDITATION_RANGE

value, 101

T
T6_AUDIT_ID value, 248
T6_AUDIT_INFO value, 248
T6_CLEARANCE value, 248
T6_GID value, 248
T6_GROUPS value, 248
T6_IL value, 248
T6_PID value, 248
T6_PRIVILEGES value, 248
T6_PROC_ATTR value, 248
T6_SESSION_IC value, 248
T6_SL value, 248

392 Trusted Solaris Developer’s Guide—August 1998

T6_UID value, 248
t6alloc_blk(3NTSOL)

code example, 254
declaration, 249

t6allocated_attrs(3NTSOL)
code example, 264
declaration, 249

t6attr_id_t structure, 247
t6attr_t structure, 247
t6clear_blk(3NTSOL)

code example, 263
declaration, 252

t6cmp_blk(3NTSOL)
code example, 263
declaration, 252

t6copy_blk(3NTSOL)
code example, 262
declaration, 252

t6dup_blk(3NTSOL)
code example, 262
declaration, 252

t6ext_attr(3NTSOL), declaration, 253
t6free_blk(3NTSOL)

code example, 265
declaration, 249

t6get_attr(3NTSOL)
code example, 258
declaration, 251

t6get_endpt_default(3NTSOL)
code example, 257
declaration, 253

t6get_endpt_mask(3NTSOL)
code example, 257
declaration, 253

t6last_attr(3NTSOL)
code example, 260
declaration, 251

T6M_ALL_ATTRS value, 249
T6M_AUDIT_ID value, 249
T6M_AUDIT_INFO value, 249
T6M_CLEARANCE value, 249
T6M_GID value, 249
T6M_GROUPS value, 249

T6M_IL value, 249
T6M_NO_ATTRS value, 249
T6M_PID value, 249
T6M_PRIVILEGES value, 249
T6M_SESSION_ID value, 249
T6M_SL value, 249
T6M_UID value, 249
t6mask_t structure, 248
t6new_attr(3NTSOL)

code example, 259
declaration, 250

t6peek_attr(3NTSOL)
code example, 260
declaration, 251

t6present_attrs(3NTSOL)
code example, 264
declaration, 249

t6recvfrom(3NTSOL)
code example, 258
declaration, 250

t6sendto(3NTSOL)
code example, 254
declaration, 250

t6set_attr(3NTSOL)
code example, 254
declaration, 251

t6set_endpt_default(3NTSOL)
code example, 257
declaration, 253

t6set_endpt_mask(3NTSOL)
code example, 257
declaration, 253

t6size_attr(3NTSOL)
code example, 261
declaration, 252

t6supported_attrs(3NTSOL)
code example, 264
declaration, 249

TCB
(trusted computing base)
network flag, 38
privileged applications, 57

terminator commands, 188

Index 393

testing and debugging applications, 335
TLI

(Transport Layer Interface)
access checks, 229
objects, 4
See also communication endpoints
See also TSIX library

token commands, 188
translation

adorned pathnames, 172
authorizations

ID to string, 86
string to ID, 86

clearances
ASCII to binary, 165
binary and hexadecimal, 166
binary to ASCII, 164
binary to ASCII, clipped, 165
binary to hex, 167
forms, 164
reentrant routines, 167

CMW labels
ASCII to binary, 145
binary to ASCII, 140
binary to hex, 147
input form, 144
output form, 140

font list, 306
ILs

binary to ASCII, 142
input form, 144
output form, 140
to level, 130

labels
ASCII to binary correction, 144
binary and ASCII rules, 138
binary and hexadecimal, 144, 147
binary to ASCII guidelines, 139
flag values, 139, 144
font list, 306
forms, 138
reentrant routines, 110
view, 139

privileges
ID to string, 65

string to ID, 65
privileges needed, 95, 152
privileges, binary and ASCII, 64
reentrant binary to hex, 148
SLs

binary to ASCII, 140
input form, 144
output form, 140

Transport Layer Interface, See TLI
Trojan horse protection, 54
trusted computing base, See TCB
trusted path

attribute flag, 38
Trusted Security Information eXchange

library
See TSIX library

Trusted Security Information eXchange
library, See TSIX

trusted shared libraries, 332
trusted streams

API declarations, 359, 361
objects, 4
policy switch, 29

Trusted X Window System, See X Window
System

TSIX library
(Trusted Security Information

eXchange library)
See also code examples
See also IPC
API declarations, 249 to 253, 356
attribute enumerations, 247
attribute masks, 248
attribute structure, 247
changing client SL, 245
changing security attributes, 245, 254
client application, 273 to 276
described, 243
example application, 265 to 276
information label floating, 245
network accreditation range, 244
privileged tasks, 245
replying at equal SL, 245
security attributes, 244

394 Trusted Solaris Developer’s Guide—August 1998

server application, 266 to 272
TSOL_AUTH_FILE_DOWNGRADE

authorization, 41
TSOL_DB_SRC_FILES flag, 215
TSOL_DB_SRC_NISPLUS flag, 214
TSOL_DB_SRC_SWITCH flag, 214
TSOL_ENABLE_IL variable, 28, 29
TSOL_ENABLE_IL_FLOATING

variable, 28
TSOL_FLOAT_SYSV_MSG_IL

variable, 28
TSOL_FLOAT_SYSV_SEM_IL

variable, 28
TSOL_FLOAT_SYSV_SHM_IL

variable, 28
TSOL_HIDE_UPGRADED_NAMES

variable, 29
tsol_lbuild_create(3TSOL)

declaration, 316
description, 322

tsol_lbuild_destroy(3TSOL)
declaration, 316

tsol_lbuild_get(3TSOL)
code example, 318
declaration, 316

tsol_lbuild_set(3TSOL)
code example, 318
declaration, 316

TSOL_RESET_IL_ON_EXEC variable, 29
TSOL_STR_LINB variable, 29
tsolprof(4TSOL)

See also databases
tsolprof file

accessing, 211
tsoluser(4TSOL)

See also databases
tsoluser file

accessing, 211

U
uid field, 295
UIDs

(user IDs)
changed, 56
getting on window, 308
getting on workstation, 308
privilege to change, 58

undefined labels, described, 115
UNIX Domain sockets, See IPC
upgraded names

hide, 29
upgrading labels

guidelines, 98
privileges needed, 95, 96
X Window System, 294

user database, See databases
user IDs, See UIDs
USER_ACCREDITATION_RANGE

value, 101
userent_t structure, 212
usertype field, 212

V
valid clearances

checking, 163
ensuring, 154

valid labels
accreditation ranges, 133
checking, 134
ensuring, 102

vers_len field, 101
version string retrieval, 114
vfstab_adjunct file

code example, 31
retrieving entries, 31

VIEW_EXTERNAL flag, 139
VIEW_INTERNAL flag, 139

W
win_config privilege, 293
win_dac_read privilege, 293
win_dac_write privilege, 293
win_devices privilege, 293

Index 395

win_dga privilege, 293
win_downgrade_il privilege, 293
win_downgrade_sl privilege, 293
win_fontpath privilege, 294
win_mac_read privilege, 293
win_mac_write privilege, 293
win_nofloat privilege, 294
win_upgrade_il privilege, 294
win_upgrade_sl privilege, 294
windows

See also X Window System
client, security policy, 291
defaults, 292
described, 289
override-redirect, security policy, 291
privileges, 293
root, security policy, 291
security policy, 290

write access
IL conjoin, 92
security policy, 14

write equal, 14
write up, 14

X
X Window System

See also code examples
API declarations, 297 to 303, 358
authorizations, defined, 82
client attributes structure, 295
client window, 291
defaults, 292
input devices, 291
label clipping API declarations, 352
Motif source code, 309 to 313
object attribute structure, 295
object type definition, 295
objects, 3, 289
override-redirect, 291
predefined atoms, 292
privileged tasks, 293
privileges, defined, 53
properties, 290

property attribute structure, 295
protocol extensions, 287
resource file, 309
root window, 291
security attributes

contrast with Solaris, 12
described, 289

security policy, 290
Selection Manager, 292
server control, 291

xbcleartos(3TSOL), declaration, 303
xbcltos(3TSOL), declaration, 303
xbiltos(3TSOL), declaration, 303
xbsltos(3TSOL)

code example, 306
declaration, 303

Xlib
API declarations, 297 to 303
described, 10
objects, 289

xp_tsol_incoming_attrsp field, 279
xp_tsol_incoming_new_attrs field, 279
xp_tsol_outgoing_attrsp field, 279
XTsolClientAttributes structure, 295
XTSOLgetClientAttributes(3X11TSOL),

declaration, 297
XTSOLgetPropAttributes(3X11TSOL),

declaration, 297
XTSOLgetPropLabel(3X11TSOL),

declaration, 299
XTSOLgetPropUID(3X11TSOL),

declaration, 300
XTSOLgetResAttributes(3X11TSOL)

code example, 305
declaration, 297

XTSOLgetResLabel(3X11TSOL)
code example, 307
declaration, 298

XTSOLgetResUID(3X11TSOL)
code example, 308
declaration, 298

XTSOLgetSSHeight(3X11TSOL),
declaration, 302

396 Trusted Solaris Developer’s Guide—August 1998

XTSOLgetWindowIIL(3X11TSOL),
declaration, 299

XTSOLgetWorkstationOwner(3X11TSOL)
code example, 308
declaration, 300

XTSOLIsWindowTrusted(3X11TSOL),
declaration, 301

XTSOLmakeTPWindow(3X11TSOL),
declaration, 301

XTsolPropAttributes structure, 295
XTsolResAttributes structure, 295
XTSOLsetPropLabel(3X11TSOL),

declaration, 299
XTSOLsetPropUID(3X11TSOL),

declaration, 300
XTSOLsetResLabel(3X11TSOL)

code example, 308
declaration, 298

XTSOLsetSessionHI(3X11TSOL),
declaration, 301

XTSOLsetSessionLO(3X11TSOL),
declaration, 301

XTSOLsetSSHeight(3X11TSOL),
declaration, 302

XTSOLsetWindowIIL(3X11TSOL),
declaration, 299

XTSOLsetWorkstationOwner(3X11TSOL),
 declaration, 300

