
Solaris Resource Manager 1.0
System Administration Guide for
Solaris 2.6 (SPARC Platform
Edition)

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A.

Part No: 805-7480–10
December 1998

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
ShareII Copyright 1989-1998 Softway Pty. Limited. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Sun Enterprise, Sun Enterprise SyMON, Solaris, Solaris Resource Manager, AnswerBook,
NFS, and docs.sun.com are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. ShareII is a
trademark or registered trademark of Softway Pty. Limited in the U.S. and other countries.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

ShareII Copyright 1989-1998 Softway Pty. Limited. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Sun Enterprise, Sun Enterprise SyMON, Solaris, Solaris Resource Manager, AnswerBook,
NFS, et docs.sun.com sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. ShareII est une marque de fabrique ou une marque déposée de Softway Pty. Limited
aux Etats-Unis et dans d’autres pays.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface ix

1. Overview 1

Introduction to Solaris Resource Manager 1

Organizational Goals It Addresses 1

When to Use Solaris Resource Manager 2

Main Features 3

Relationship to Other Solaris Resource Control Features 4

Differences Between Solaris Resource Manager and Similar Products 6

2. Normal Operations 7

Lnodes Overview 7

Hierarchical Structure 7

Hierarchical Limits 8

Processes 8

Resource Control 8

CPU Resource Management 10

Virtual Memory (Per-User and Per-Process Limits) 12

Number of Processes 12

Terminals and Login Connect-Time 12

User Administration 12

Contents iii

Usage Data Overview 13

Examples 13

Server Consolidation Example 13

Adding a Computational Batch Application User 16

Putting on a Web Front-end Process 18

Adding More Users Who Have Special Memory Requirements 19

Sharing a Machine Across Departments 21

A Typical Application Server 23

3. Configuration 29

Kernel Boot Parameters 29

Multi-User Startup Configuration 31

Global Solaris Resource Manager Parameters via srmadm 32

Disabling Solaris Resource Manager 34

Using limdaemon Options 34

PAM Subsystem 35

Account Management 36

Scripts 37

PAM Interaction With Device Groups 38

Session Management 38

4. Boot Procedure 41

Booting Without Solaris Resource Manager 41

Boot Sequence Events 42

System Daemon Processes 43

Enabling Solaris Resource Manager Using srmadm 44

Starting the Solaris Resource Manager Daemon 45

5. Managing Lnodes 47

Delegated Administration 47

Security 49

iv Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

The uselimadm and admin Flags 49

Suggested Sub-administrator Lnode Structure 50

Limits Database 51

Creating the Limits Database 51

Saving and Restoring the Limits Database 51

Creating and Deleting Lnodes 52

Lnode Maintenance Programs 54

Units 55

Conversions 56

The limadm Command 56

The liminfo Command 57

The limreport Command 57

Manipulating Lnodes 57

The limreport and limadm Commands 57

Copying and Removing Lnodes 58

6. The SHR Scheduler 59

Technical Description 59

Shares 59

Allocated Share 60

Usage and Decay 61

Accrued Usage 61

Effective Share 61

Per-Process Share Priority (sharepri) 61

Sample Share Allocation 61

Scheduling Tree Structure 61

Description of Tree 62

Calculation of Allocated Share 63

Relationship of Solaris Resource Manager With the Solaris nice Facility 63

Contents v

Dynamic Reconfiguration 64

Idle Lnode 64

Other Lnode 65

Lost Lnode 65

7. Memory Limits, Process Memory Limits, and Process Count Limits 67

Attributes for Control of Virtual Memory (Total) 67

Attribute for Control of Process Memory (Per-Process) 68

Technical Description of Memory Limits 68

Dynamic Reconfiguration and Virtual Memory Limits 69

Attributes for Control of Process Count 69

Technical Description of Process Count 70

8. Usage Data 71

Accrue Attributes 71

Billing Issues 71

The liminfo Command 72

The limreport Command 72

The limadm Command 73

9. Troubleshooting 75

User Cannot Log In 75

User Not Informed of Reaching Limits 76

Unable to Change User’s Group 76

Corrupted Limits Database 77

Terminal Connect-time Not Updated 77

Users Frequently Exceeding Limits 77

System Runs Slowly 78

Processes on the Root Lnode 78

CPU Resources Not Controlled by Solaris Resource Manager 78

Unexpected Notification Messages 80

vi Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Orphaned Lnodes 80

Group Loops 81

Causes 81

Effects 81

Correction 81

Crash Recovery 82

10. Notification Messages 85

A. Solaris Resource Manager Script Examples 87

Initialization Script 87

Default ’no lnode’ Script 91

Glossary 93

Contents vii

viii Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Preface

This guide is for system administrators who are responsible for configuring and
administrating Solaris Resource ManagerTM 1.0 software on the SolarisTM Operating
Environment.

Before You Read This Book
Before using this book, you should be familiar with the information in these
AnswerBookTM collections, available at docs.sun.com .

� Solaris 2.6 System Administrator Collection Vol 1

� Solaris 2.6 System Administrator AnswerBook Vol 2

How This Book Is Organized
This book is organized into chapters, an appendix, and a glossary.

Chapter 1 provides an introduction to Solaris Resource Manager and describes how
this product can be used to allocate and control major system resources.

Chapter 2 discusses the operation of the Solaris Resource Manager software and
provides usage examples.

Chapter 3 describes how to configure the Solaris Resource Manager software on your
Solaris system.

Preface ix

Chapter 4 describes the effects of the UNIXTM boot procedure on the Solaris Resource
Manager product.

Chapter 5 discusses the per-user structure introduced in Solaris Resource Manager.

Chapter 6 discusses the scheduler, which is used to control the allocation of the CPU
resource.

Chapter 7 describes how to control the amount of virtual memory held by users and
individual processes.

Chapter 8 describes the mechanism for collecting accrued usage values for system
and user resources.

Chapter 9 provides assistance in diagnosing problems in the operation of Solaris
Resource Manager.

Chapter 10 describes possible error messages and their meanings.

Appendix A provides sample scripts.

Glossary is a list of words and phrases found in this book and their definitions.

Related Books
The following resources provide installation, configuration, usage, and release
information for the Solaris Resource Manager product:

� The Solaris Resource Manager 1.0 Release Notes for Solaris 2.6 (SPARC Platform
Edition) document is included in the product box. It provides a brief product
introduction to the Solaris Resource Manager software, identifies patches required
to use the product, and contains information on bugs and known problems.

� The Solaris Resource Manager 1.0 Installation Guide for Solaris 2.6 (SPARC Platform
Edition) describes how to install Solaris Resource Manager on your operating
system. It is included in the product box.

� The Solaris Resource Manager 1.0 Reference Manual for Solaris 2.6 (SPARC Platform
Edition) is the AnswerBook version of the Solaris Resource Manager man pages.
These entries supplement the Solaris 2.6 base manual pages installed on your
system. The administration guide will reference these pages. Online versions of
the man pages, accessible using the man command, are also provided in the Solaris
Resource Manager SUNWsrm package.

x Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpressTM Internet site at http://www.sun.com/sunexpress .

Accessing Sun Documentation Online
The docs.sun.comTM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com .

The Solaris Resource Manager 1.0 Collection, which includes this document, is
available on docs.sun.com ; you can check this location to see if an updated version
of this guide has been produced.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories in text; on-screen computer
output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must log in first.

xi

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

xii Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 1

Overview

The Solaris Resource Manager software ensures resource availability for users,
groups, and applications. It provides the ability to allocate and control major system
resources such as CPU, virtual memory, and number of processes. It also implements
administrative policies that govern which resources different users can access, and
more specifically, what level of consumption of those resources each user is
permitted. The Solaris Resource Manager product is a key enabler for server
consolidation and increased resource utilization.

The Solaris Resource Manager product is based on ShareIITM technology from
Softway Pty. Limited, Australia.

Introduction to Solaris Resource
Manager
Organizational Goals It Addresses
Businesses often require that IT organizations control costs and guarantee service
levels for enterprise applications. Resource management makes a number of
procedures available that lower overall total cost of ownership, give more accurate
control over who uses the system and how they use it, and sometimes serve both
goals.

By using Solaris Resource Manager software to categorize and prioritize usage,
administrators can effectively utilize reserve capacity during off-peak periods, often
eliminating the need for additional processing power.

By segregating workloads within the system, Solaris Resource Manager enables the
system administrator to run and manage dissimilar applications on a single system,

1

rather than dedicating an entire system—complete with peak capacity—to each
application. Traditionally, the most common approach to ensuring predictable service
and response time is to host one function per system. This method works, but the
proliferation of systems in the data center is expensive and difficult to manage.

Data center managers want the ability to consolidate multiple applications on a
single UNIX server, thus fully utilizing all available resources. At the same time, all
users must receive resources commensurate with their service levels and the relative
importance of their work.

When to Use Solaris Resource Manager
Solaris Resource Manager can provide effective resource control in a variety of
situations including server consolidation, Internet Service Provider (ISP) web hosting,
administrating sites with large or varied user populations, and establishing policies
to ensure that critical applications get the response time they require.

Solaris Resource Manager is ideal for environments that are consolidating multiple
applications on a single server. The cost and complexity of managing numerous
machines encourages system managers to consolidate applications on larger, more
scalable systems. With Solaris Resource Manager, it’s easy to achieve these economies
of scale.

As an example, a single SunTM server could provide application, file, and print
services for heterogeneous clients, messaging/mail service, web service, and
mission-critical database applications. Since Sun EnterpriseTM servers scale from 1 to
64 processors, one server could be configured for several departments to share or for
an entire enterprise to use. In other server consolidation efforts, the development,
prototype, and production environments are combined on a single large machine
such as the Sun Enterprise 10000 or Sun Enterprise 6500, rather than being hosted on
three separate servers. Still other consolidation projects combine database and
application servers within a single machine, or multiple data marts. Regardless of the
application type or configuration, Solaris Resource Manager helps ensure that the
system’s resources are allocated among all users, applications, and groups according
to the defined policy. Critical applications are protected because they are guaranteed
the share of the available system resources they need.

Similarly, with Solaris Resource Manager, an ISP can confidently host many (perhaps
thousands) of web servers on a single machine. Solaris Resource Manager allows
administrators to control the resource consumption associated with each web site,
protecting each from the potential excesses of the others. Solaris Resource Manager
also prevents a faulty CGI script from exhausting CPU resources, or a user
application from leaking all available virtual memory. In the past, ISPs have had to
assign dedicated machines to each client, at significant cost and complexity.

Solaris Resource Manager can help manage resources in any system that has a large
number of users. Educational institutions are good examples of sites that serve a
large and diverse user base. (In fact, Solaris Resource Manager has its roots in an

2 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

early CPU resource scheduler developed at the Universities of Sydney and New
South Wales.) Where there is a mix of workloads, Solaris Resource Manager can be
configured to favor certain users. In large brokerage firms, traders intermittently
require fast access to execute a query or perform a calculation. Other system users,
however, have more consistent workloads. If the traders are granted a
proportionately larger amount of processing power, Solaris Resource Manager
ensures that they will have the responsiveness they need.

Main Features
Solaris Resource Manager provides the ability to administer the consumption of
various important resources in the system, such as processor time, virtual memory,
process count, login count, and connect time. The Solaris Resource Manager
administrative model adds flexibility by permitting the delegation of administrative
rights within a hierarchy, relieving the data center staff from the need to be involved
in intra-group administrative transactions. In addition, Solaris Resource Manager
provides mechanisms for collecting resource usage data that can be applied to
capacity planning or chargeback purposes.

One of the fundamental jobs of the operating system is to arbitrate which processes
will get access to the system’s resources. The default Solaris timeshare scheduler tries
to give every process approximately equal access to the system’s resources.
Limitations on access are applied to processes without physical memory resources,
which are not permitted to run, and processes with pending I/O requests, which are
blocked.

This scheme is the basis for most modern operating systems; it works well as long as
"equal access for all" is a suitable policy for the organization. However, more
sophisticated mechanisms are required to implement different policies. For example,
a manufacturing department might own a large system that is usually used very
lightly because of fluctuating seasonal demand. At the same time, the engineering
department almost always needs more computational cycles. Although it is wasteful
to underuse a large machine’s resources, sharing the manufacturing system with
engineering has traditionally been problematic. With simple scheduling policies,
there is no way to express to the operating system that the manufacturing
department’s users are more important than the engineering users on the same
system. If manufacturing has a critical job running that consumes 75 percent of the
system’s resources, the job will make suitable progress if all other jobs request 25
percent of the system or less. However, if an engineering job arrives that demands 50
percent of the system, that critical manufacturing job will likely not get what it needs
to maintain adequate headway, because the system will try to accommodate both
jobs on an equal basis.

Now assume that the administrators determine that manufacturing’s normal
processing requirements can be met with 80 percent of the machine’s capabilities.
Using Solaris Resource Manager, the system administrator can specify that the
manufacturing department’s users can have up to 85 percent of the system’s

Overview 3

processing capability if they request it, and the scheduler will apportion the
remainder to any other user. A more extreme but equally valid configuration might
specify that manufacturing users can have up to 100 percent of the system if
necessary, effectively precluding any other group’s processes from running in the
event that manufacturing really needs the entire system.

Solaris Resource Manager provides a new CPU scheduling class that replaces the
standard timesharing scheduler. Called the SHR scheduler class, this module
implements what is called a fair share scheduler. The term is something of a
misnomer, because it is the system administrator who specifies what "fair" means. In
the example above, "fair" meant that manufacturing could get 100 percent of the
system. The SHR scheduler is responsible for allocating resources according to the
plan laid out in the administrative profile.

Solaris Resource Manager maintains a database of resource consumption and
associated limits.

The SHR scheduler takes into account the administrative specification for resource
guarantees. It is capable of managing resources that are renewable (such as CPU
time) or fixed (such as number of logins).

Other Solaris Resource Manager modules implement restrictions on the consumption
of various resources. For example, connect time and number of user logins are
managed by a Pluggable Authentication Module (PAM). The PAM module consults
the Solaris Resource Manager database each time a user attempts to log in. Once the
system authenticates the user (generally through password matching), the user’s
connect time and the number of current logins are checked against the limits. The
login is rejected if either of the limits is exceeded.

Relationship to Other Solaris Resource Control
Features
The Solaris operating environment includes several other features that provide
control over certain types of resources. Some features, such as realtime scheduling,
nice(1) , quotas, and processor sets, are part of the basic Solaris operating system.

Bandwidth Allocator is an unbundled software package, dynamic system domains
are features of the Sun Enterprise 10000 system platform, and dynamic
reconfiguration is a feature of the Sun Enterprise system platform.

All of these components offer types of resource management, but they differ from
Solaris Resource Manager capabilities in one way or another.

The standard Solaris operating system uses the timeshare (TS) scheduling class for
most conventional work. However, it also offers realtime (RT) scheduling to users
with sufficient privilege. The RT scheduling class implements a very different (and
intentionally very weighted) scheduling policy to ensure that specific workloads or
processes get immediate access to the processor. Solaris Resource Manager can

4 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

coexist on the same system as the RT scheduling class, but it will have no control
over any process running in the RT class. The Solaris Resource Manager fair share
scheduler is able to manage the CPU time resources of only those processes that are
not running in the RT scheduling class. For example, on a four-processor system, a
single-threaded process can consume one entire processor; in fact this is precisely
what happens if the requesting process is CPU-bound. If this system also runs Solaris
Resource Manager, regular user processes will be competing for the three CPUs not
already consumed by the realtime process. (Note that the RT processes might not use
the CPU continually. When it is idle, Solaris Resource Manager will control all four
processors.)

The nice(1) command permits users to manipulate their execution priority.
Without superuser privilege, this command only permits the user to lower his
priority. In some instances this is a useful feature (for example, when a user starts a
low-priority batch job from his interactive login session), but it relies on the
cooperation of the user. Solaris Resource Manager enforces administrative policies,
even without the cooperation of the user.

Solaris file systems have quota mechanisms that enable the administrator to restrict
the disk consumption of individual users. This functionality is independent of Solaris
Resource Manager.

Processor sets were introduced in Solaris 2.6. This feature permits the administrator
to divide multiprocessor systems into logical groups and permits users to launch
processes into those groups. The advantage is that workloads running in one
processor set are protected from CPU activity taking place in any other processor set.
In some ways, this is similar to what Solaris Resource Manager does, but the two
features operate on completely different bases. Processor sets control only CPU
activity. The control is at a relatively coarse-grained hardware level, because
processors may belong to exactly one processor set at a time. Especially in the case of
relatively small systems, the granularity may be quite high: on a 4-processor system,
the minimum resource that can be assigned is 25 percent of the system.

Solaris Resource Manager has much finer-grained control; each user is allocated a
share of the system. The shares can be distributed arbitrarily on a fine granularity,
and the scheduler will allocate resources accordingly. For example, if 50 shares are
granted, and one user has 40 of them, that user will get 40 / 50 = 80 percent of the
resource. Similarly, if 67 total shares are granted, a user with 57 shares will get 85
percent of the resource. In addition, Solaris Resource Manager can control resources
other than CPU.

The Sun Enterprise 10000 has a feature called dynamic system domains, which
permit the administrator to logically divide a single system rack into one or more
independent systems, each running its own copy of Solaris. For example, a system
with 32 CPUs on 8 system boards might be operated as 1 system with 16 CPUs, and
2 other systems with 8 CPUs each. Three copies of Solaris would be running in such
a circumstance. The dynamic system domain feature also permits controlled
movement of resources into and out of each of the Solaris images, thus creating a
relatively coarse-grained facility for managing physical resources. (The minimum

Overview 5

unit of inter-domain allocation is an entire system board.) Solaris Resource Manager
is similar to dynamic system domains in that it provides the administrator with
mechanisms to allocate resources, but it does so in very different ways. Solaris
Resource Manager runs within a single instance of Solaris, and provides fine-grained
administrative control to the resources in the system. Dynamic system domains
divide a single piece of hardware into multiple instances of Solaris; it provides tools
to manage the transfer of resources between instances of Solaris running in the same
Sun Enterprise 10000 frame. Solaris Resource Manager is orthogonal to, and can be
used in conjunction with, dynamic system domains. Solaris Resource Manager can be
run in each instance of Solaris within a Sun Enterprise 10000 system.

The dynamic reconfiguration feature of Sun Enterprise servers enables users to
dynamically add and delete system boards, which contain hardware resources such
as processors, memory and IO devices. The effect of a dynamic reconfiguration
operation on memory has no impact on Solaris Resource Manager memory-limit
checking.

The Bandwidth Allocator is an unbundled package that works with the Solaris
kernel to enforce limits on the consumption of network bandwidth. Bandwidth
Allocator is a form of resource management software that applies to a different class
of resources. Solaris Resource Manager and Bandwidth Allocator have different and
disjoint management domains: Solaris Resource Manager operates on a per-user or
per-application basis, while Bandwidth Allocator manages on a per-port, per-service,
or per-protocol basis.

Differences Between Solaris Resource Manager
and Similar Products
The Solaris Resource Manager is related to many other software components that
may be present in the system, but it does not replace any of them. As noted,
Bandwidth Allocator manages a different type of resource. And while Solaris
Resource Manager can be viewed as having some system management and
monitoring functions, it is not a system monitor in the sense that Sun Enterprise
SyMONTM 2.0 is. Nor is Solaris Resource Manager really a capacity planning tool: it
helps the administrator manage capacity, and its accounting functions construct
usage records that the administrative staff might use to do trend analysis, but it does
not do capacity planning in the traditional sense of the term. Solaris Resource
Manager is also not a job scheduler; it controls how a process runs on its host
system, rather than when or where it runs. Finally, because Solaris Resource Manager
operates only on a single system, it is also not a mechanism for implementing load
balancing across cluster members. Solaris Resource Manager can be used effectively
to manage workloads individually on each member of a cluster, however. For
example, arrangements might be made to prioritize work from a failed member of a
high-availability cluster over a background workload running on standby member.

6 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 2

Normal Operations

This chapter describes Solaris Resource Manager principles of operation and key
concepts. Examples are provided to reinforce the descriptions and to illustrate some
of the common ways that Solaris Resource Manager is used.

Lnodes Overview
Solaris Resource Manager is built around a fundamental addition to the Solaris
kernel called an lnode (limit node). lnodes correspond to UNIX UIDs, and may
represent individual users, groups of users, applications, and special requirements.
lnodes are indexed by UID and are used to record resource allocations policies and
accrued resource usage data by processes at the user, group of users, and/or
application level.

Hierarchical Structure
The Solaris Resource Manager management model organizes lnodes into a
hierarchical structure called the scheduling tree. The scheduling tree is organized by
UID: each lnode references the UID of the lnode’s parent in the tree. Each sub-tree of
the scheduling tree is called a scheduling group, and the user at the root of a
scheduling group is the group’s header. The root user is the group header of the
entire scheduling tree. A group header can be delegated the ability to manage
resource policies within the group. lnodes are initially created by parsing the UID
file. An lnode administration command (limadm(1MSRM)) will create additional
lnodes after installation of Solaris Resource Manager and assign lnodes to parents.

7

The scheduling tree data is stored in a flat file database, which can be modified as
required.

Though UIDs used by lnodes do not have to correspond to a system account, with
an entry in the system password map, it is strongly recommended that a system
account is created for the UID of every lnode. For non-leaf lnodes (those with
subordinate lnodes below them in the hierarchy), it may be the case that the account
associated with that lnode is purely administrative and no-one ever logs in to it.
However, it is equally possible that it can be the lnode of a real user who does log in
and run processes attached to this non-leaf lnode.

Note that Solaris Resource Manager scheduling groups and group headers have
nothing to do with the system groups defined in the /etc/group database. Each
node of the scheduling tree, including group headers, corresponds to a real system
user with a unique UID.

Hierarchical Limits
If a hierarchical limit is assigned to a group header in an lnode tree (scheduling
group), then it applies to the usage of that user plus the total usage of all members
of the scheduling group. This allows limits to be placed on entire groups, as well as
on individual members. Resources are allocated to the group header, who may
allocate them to users or groups of users that belong to the same group.

Processes
Every process is attached to an lnode. The init process is always attached to the
root lnode. When processes are created by the fork(2) system call, they are
attached to the same lnode as their parent. Processes may be re-attached to any lnode
using a Solaris Resource Manager system call, given sufficient privilege. Privileges
are set by root or by users with the correct administrative permissions enabled.

Resource Control
Solaris Resource Manager provides control of the following system resources: CPU
(rate of processor) usage, virtual memory, number of processes, number of logins,
and terminal connect-time.

8 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Solaris Resource Manager keeps track of each user’s usage of each resource. For all
resources except CPU usage, users may be assigned hard limits on their resource
usages. A hard limit will cause resource consumption attempts to fail if the user
allows the usage to reach the limit. Hard limits are directly enforced by either the
kernel or whatever software is responsible for managing the respective resource. A
limit value of zero indicates no limit. All limit attributes of the root lnode should be
left set to zero.

Solaris Resource Manager progressively decays past usage so that only the most
recent usage is significant. The system administrator sets a half-life parameter which
controls the rate of decay. A long half-life favors even usage, typical of longer batch
jobs, while a short half-life favors interactive users.

Generally all system resources can be divided into one of two classes: fixed (or
non-renewable) resources and renewable resources. Solaris Resource Manager
manages these two types of resources differently.

Fixed Resources Fixed or non-renewable resources are those
which are available in a finite quantity, such as
virtual memory, number of processes, number of
logins, and connect time. Fixed resources may be
consumed (allocated) and relinquished
(deallocated), but no other entity can use the
resource before the owner deallocates it. Solaris
Resource Manager employs a usage and limit
model to control the amount of fixed resources
used. Usage is defined as the current resource
being used, and limit is the maximum level of
usage that is permitted by Solaris Resource
Manager.

Renewable Resources Renewable resources are those which are in
continuous supply, such as CPU time. Renewable
resources may only be consumed, and, once
consumed, cannot be reclaimed. At any one time,
a renewable resource will have limited
availability and if not used at that time will no
longer be available in the future. (An analogy is
sunlight. There is only a certain amount arriving
from the sun at any given instant, but more will
surely be coming for the next few million years.)
For this reason, renewable resources can be
reassigned to other users without explicit
reallocation to ensure no waste. Solaris Resource
Manager employs a usage, limit, and decay
model to control a user’s rate of consumption of
a renewable resource. Usage is defined as the
total resource used, with a limit set on the ratio

Normal Operations 9

of usages in comparison to other fellow users.
Decay refers to the period by which historical
usage is discounted. The next resource quantum,
for example, clock tick, will be allocated to the
active lnode with the lowest decayed total usage
value in relation to its allocated share. The
decayed usage value is a measure of the total
usage over time less some portion of historical
usage determined by a half-life decay model.

The CPU resource is controlled using the Solaris Resource Manager SHR scheduler.
Users are dynamically allocated CPU time in proportion to the number of shares
they possess (analogous to shares in a company), and in inverse proportion to their
recent usage. The important feature of the SHR scheduler is that while it manages
the scheduling of individual threads (technically, in Solaris, the scheduled entity is a
lightweight process (LWP)), it also portions CPU resources between users.

Each user also has a set of flags, which are boolean-like variables used to enable or
disable selective system privileges, for example, login. Flags may be set individually
per user, or may be inherited from a parent lnode.

The usages, limits, and flags of a user can be read by any user, but can be altered
only by users who have administrative powers.

CPU Resource Management
The allocation of the renewable CPU service is controlled using a fair share
scheduler. Each lnode is assigned a number of CPU shares, analogous to shares in a
company. The processes associated with each lnode are allocated CPU resources in
proportion to the total number of outstanding active shares, where active means that
the lnode has running processes attached. Only active lnodes are considered for an
allocation of the resource, as only they have active processes running and need CPU
time. As a process consumes CPU ticks, the CPU usage attribute of its lnode
increases. The scheduler regularly adjusts the priorities of all processes to force the
relative ratios of CPU usages to converge on the relative ratios of CPU shares for all
active lnodes at their respective levels. In this way, users can expect to receive at
least their entitlements of CPU service in the long run, regardless of the behavior of
other users. The scheduler is hierarchical, because it also ensures that groups receive
their group entitlement independently of the behavior of the members. Solaris
Resource Manager is a long-term scheduler; it ensures that all users and applications
receive a fair share over the course of the "scheduler term." This means that when a
light user starts to request the CPU, that user will receive commensurately more
resource than heavy users until their comparative usages are in line with their

10 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

relative "fair" share allocation. The more you use over your entitlement now, the less
you will receive in the future. Additionally, Solaris Resource Manager has a decay
period, set by the system administrator, that forgets about past usage. The decay
model is one of half-life decay, where 50 percent of the resource has been decayed
away within one half life. This ensures that steady, even users are not penalized by
short-term, process-intensive users. The half-life decay period sets the responsiveness
or "term" of the scheduler; the default value is 120 seconds. Shorter values tend to
provide more even response across the system, at the expense of slightly less
accuracy in computing and maintaining system-wide resource allocation. Regardless
of administrative settings, the scheduler tries to prevent marooning (resource
starvation) and ensure reasonable behavior, even in extreme situations.

The primary advantage of the Solaris Resource Manager scheduler over the standard
Solaris scheduler is that it schedules users or applications rather than individual
processes. Every process associated with an lnode is subject to a set of limits. For the
simple case of one user running a single active process, this is the same as subjecting
each process to the limits listed in the corresponding lnode. When more than one
process is attached to an lnode, as when members of a group each run multiple
processes, all of the processes are collectively subject to the listed limits. This means
that users or applications cannot consume CPU at a greater rate than their
entitlements allow, regardless of how many concurrent processes they run.The
method for assigning entitlements as a number of shares is simple and
understandable, and the effect of changing a user’s shares is predictable.

Solaris Resource Manager will never waste CPU availability. No matter how low a
user’s allocation, that user will always be given all the available CPU if there are no
competing users. One of the consequences of this is that users may notice
performance that is less smooth than they are used to. If a user with a very low
effective share is running an interactive process without any competition, it will
appear to run quickly. However, as soon as another user with a greater effective
share demands some CPU time, it will be given to that user in preference to the first
user, so the first user will notice a marked job slow-down. Nevertheless, Solaris
Resource Manager goes to some lengths to ensure that legitimate users are not
marooned and unable to do any work. All processes being scheduled by Solaris
Resource Manager (except those with a maximum nice value) will be allocated CPU
regularly by the scheduler. There is also logic to prevent a new user that has just
logged on from being given an arithmetically "fair," but excessively large proportion
of the CPU to the detriment of existing users.

Normal Operations 11

Virtual Memory (Per-User and
Per-Process Limits)
Virtual memory is managed using a fixed resource model. The virtual memory limit
applies to the sum of the memory sizes of all processes attached to the lnode. In
addition, there is a per-process virtual memory limit that restricts the total size of the
process’s virtual address space size, including all code, data, stack, file mappings,
and shared libraries. Both limits are hierarchical. Limiting virtual memory is useful
for avoiding virtual memory starvation. For example, Solaris Resource Manager will
stop an application that is leaking memory from consuming unwarranted amounts of
virtual memory to the detriment of all users. Instead, such a process only starves
itself or, at worse, others in its resource group.

Number of Processes
The number of processes that users may run simultaneously is controlled using a
fixed resource model with hierarchical limits.

Terminals and Login Connect-Time
The system administrator and group header can set terminal login privileges,
number of logins, and connect-time limits, which are enforced hierarchically by
Solaris Resource Manager. As a user approaches a connect-time limit, warning
messages are sent to the user’s terminal. When the limit is reached, the user is
notified, then forcibly logged out after a short grace period.

User Administration
The system administrator can set administrative privileges for any lnode, including
assigning administrative privileges selectively to users. A user with hierarchical
administrative privilege is called a sub-administrator. A sub-administrator may
create, remove, and modify the lnodes of users within the sub-tree of which they are
the group header.

12 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Sub-administrators cannot normally alter their own limits or flags, and cannot
circumvent their own flags or limits by altering flags or usages within their group.

The central administrator (or super-user) may alter the limits, usages and flags of
any user, including itself. Ordinary users can be granted this privilege by the setting
of a flag.

Usage Data Overview
The Solaris Resource Manager system maintains information (primarily current and
accrued resource usage) that may be used by administrators to conduct
comprehensive system resource accounting. No accounting programs are supplied as
part of Solaris Resource Manager but its utility programs provide a base for the
development of a customized resource accounting system.

For more information regarding setting up accounting procedures, see Chapter 8.

Examples
The examples in this section demonstrate Solaris Resource Manager functions used
to control system resources and allocation, and to display information.

Server Consolidation Example
The first example illustrates these commands:

liminfo Prints password attributes and limits information
for one or more users to a terminal window

limadm Changes limit attributes or deletes limits
database entries for a list of users

srmuser Displays or sets operation modes and
system-wide Solaris Resource Manager tunable
parameters

srmstat Displays lnode activity information

Normal Operations 13

Consider the case of consolidating two servers, each running a database application,
onto a single machine. Simply running both applications on the single machine
results in a working system; without Solaris Resource Manager, the Solaris operating
system allocates resources to the applications on an equal-use basis, and does not
protect one application from competing demands by the other application. However,
Solaris Resource Manager provides mechanisms that keep the applications from
suffering resource starvation. This is accomplished with Solaris Resource Manager by
starting each database attached to lnodes referring to the databases, db1 and db2. In
order to do this, three new administrative placeholder users must be created, for
example, databases, db1, and db2. These are added to the lnode database; since lnodes
correspond to UNIX UIDs, these must also be added to the passwd file (or password
map, if the system is using a name service such as NIS or NIS+). Assuming that the
UIDs are added to the passwd file or password map, the placeholder users db1 and
db2 are assigned to the databases lnode group with the command:

% limadm set sgroup=0 databases
% limadm set sgroup=databases db1 db2

which assumes that /usr/srm/bin is in the user’s path.

db2 db1

CPU

root

= 100%

Databases

Figure 2–1 Server Consolidation

Because there are no other defined groups, the databases group currently has full use
of the machine. Two lnodes associated with the databases are running, and the
processes that run the database applications are attached to the appropriate lnodes
with the srmuser command in the startup script for the database instances, for
example:

% srmuser db1 /usr/bin/database1/init.db1
% srmuser db2 /usr/bin/database2/init.db2

When either database, db1 or db2, is started up, use the srmuser command to ensure
that the database is attached to the correct lnode and charged correctly (srmuser

14 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

does not affect the ownership of the process to do this). To run the above command,
a user must have the UNIX permissions required to run init.db1 and the
administrative permission to attach processes to the lnode db1. As users log on and
use the databases, activities performed by the databases are accrued to the lnodes
db1 and db2.

By using the default allocation of one share to each lnode, the usage in the databases
group will average out over time to ensure that the databases, db1 and db2, receive
equal allocation of the machine. Specifically, there is one share outstanding—to the
databases group—and databases owns it. Each of the lnodes db1 and db2 are also
granted the default allocation of one share. Within the databases group, there are two
shares outstanding, so db1 and db2 get equal allocation out of databases’ resources (in
this simple example, there are no competing allocations, so databases has access to the
entire system).

If it turns out that activity on Database1 requires 60 percent of the machine’s CPU
capacity and Database2 requires 20 percent of the capacity, the administrator can
specify that the system provide at least this much (assuming that the application
demands it) by increasing the number of cpu.shares allocated to db1:

% limadm set cpu.shares=3 db1

There are now four shares outstanding in the databases group; db1 has three, and db2
has one. This change is effected immediately upon execution of the above command.
There will be a period of settling when the lnode db1 (Database1) will actually
receive more than its entitled 60 percent of the machine resource, as Solaris Resource
Manager works to average the usage over the course of time. However, depending
on the decay global parameter, it will not last long.

To monitor this activity at any point, use the commands liminfo and srmstat , in
separate windows:

% liminfo -c db1
limit information shows all the data and
settings for the lnode db1.

See “A Typical Application Server” on page 23.

Alternatively, srmstat provides a regularly updating display:

% srmstat -ac # srmstat shows the server activity and the
flag -ac sets a screen default update period
of 4 seconds to display the results.

Normal Operations 15

You now have a machine running with two database applications, one receiving 75
percent of the resource and the other receiving 25 percent. Remember that the
super-user (root) is the top-level group header user. Processes running as root thus
have access to the entire system, if they so request. Accordingly, additional lnodes
should be created for running backups, daemons, and other scripts so that the root
processes cannot possibly take over the whole machine, as they might if run in the
traditional manner.

Adding a Computational Batch Application User
This example introduces the following command:

srmkill Kills all the active processes attached to an lnode

The Finance department owns the database system, but a user (Joe) from
Engineering has to run a computational job and would like to use Finance’s machine
during off hours when the system is generally idle. The Finance department dictates
that Joe’s job is less important than the databases, and they agree to run his work
only if it will not interfere with the system’s primary job. To enforce this policy, add
a new group (batch) to the lnode database, and add Joe to the new batch group of the
server’s lnode hierarchy.

% limadm set cpu.shares=20 databases
% limadm set cpu.shares=1 batch
% limadm set cpu.shares=1 joe
% limadm set sgroup=batch joe

CPU

root

= 100%

Databases
CPU = 20sh

Batch
CPU = 1sh

db1
CPU = 3sh

db2
CPU = 1sh

Joe
CPU = 1sh

Figure 2–2 Adding a Computation Batch Application

16 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

This command sequence changes the allocation of shares so that the databases group
has 20 shares, while the batch group has just one. This specifies that members of the
batch group (only Joe) will use at most 1/21 of the machine if the databases group is
active. The databases group receives 20/21, or 95.2 percent, more than the 60% + 20%
= 80% previously determined to be sufficient to handle the database work. If the
databases are not requesting their full allocation, Joe will receive more than his 4.8
percent allocation. If the databases are completely inactive, Joe’s allocation might
reach 100 percent. When the number of outstanding shares allocated to databases is
increased from 1 to 20, there is no need to make any changes to the allocation of
shares for db1 and db2. Within the databases group, there are still four shares
outstanding, allocated in the 3:1 ratio. Different levels of the scheduling tree are
totally independent; what matters is the ratio of shares between peer groups.

Even with these assurances, the Finance department further wants to ensure that Joe
is not even able to log on during the prime daytime hours. This can be accomplished
by putting some login controls on the batch group. Since the controls are sensitive to
time of day, this can be implemented by running a script that changes the number of
logins allowed the batch group at the beginning and end of the day. For example, this
could be implemented with crontab entries, such as:

0 6 * * * /usr/srm/bin/limadm set logins=0 batch
0 18 * * */usr/srm/bin/limadm set logins=100 batch

At 6:00 a.m., batch’s login limit is reduced to 0, and at 18:00 (6 p.m), the limit is
raised to permit up to 100 logins.

An even stricter policy can be implemented by adding another line to the crontab
entry:

01 6 * * * /usr/srm/bin/srmkill joe

This uses the srmkill command to kill any processes attached to the lnode Joe at
6:01 a.m. This will be unnecessary if the only resources that the job requires are those
controlled by Solaris Resource Manager. This action could be useful if Joe’s job could
reasonably tie up other resources that would interfere with normal work. An example
would be a job that holds a key database lock or dominates an I/O channel.

Joe can now log in and run his job only at night. Because Joe (and the entire batch
group) has significantly fewer shares than the other applications, his application will
run with less than 5 percent of the machine. Similarly, nice(1) can be used to
reduce the priority of processes attached to this job, so it runs at lower priority than
other jobs running with equal Solaris Resource Manager shares.

At this point, the Finance department has ensured that its database applications have
sufficient access to their system and will not interfere with each other’s work. They
have also accommodated Joe’s overnight batch processing loads, while assuring
themselves that his work also will not interfere with their mission-critical processing.

Normal Operations 17

Putting on a Web Front-end Process
Assume a decision has been made to put a web front-end on Database1, but limit
this application to only 10 users at a time. Use the process limits function to do this.

First, create a new lnode called ws1. By starting the Webserver application under the
ws1lnode, you can control the number of processes that are available to it, and hence
the number of active http sessions.

CPU

root

= 100%

Databases
CPU = 20sh

Batch
CPU = 1sh

db1
CPU = 3sh

CPU.my.shares=4sh

db2
CPU = 1sh

Joe
CPU = 1sh

ws1
CPU = 6sh

Figure 2–3 Adding a Web Front-end Process

Since Webserver is part of the Database1 application, you may want to give it a share
of the db1 lnode and allow it to compete with Database1 for resources. Allocate 60
percent of compute resources to the Webserver and 40 percent to the Database1
application itself:

limadm set cpu.shares=6 ws1
limadm set sgroup=db1 ws1
limadm set cpu.myshares=4 db1
srmuser ws1 /etc/bin/Webserver1/init.webserver

The last line starts up the Webserver and charges the application to the ws1 lnode.
Note that for Database1, the cpu.myshares have been allocated at 4. This sets the
ratio of shares for which db1 will compete with its child process, Webserver, at a ratio
of 4:6.

18 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Note - cpu.shares shows the ratio for resource allocation at the peer level in a
hierarchy, while cpu.myshares shows the ratio for resource allocation at the
parent:children level when the parent is actively running applications. Solaris
Resource Manager allocates resources based on the ratio of outstanding shares of all
active lnodes at their respective levels, where "respective level" includes the
my.shares of the group parent and all children.

To control the number of processes that Webserver can run, put a process limit on
the ws1 lnode. The example uses 20 since a Webserver query will typically spawn 2
processes, so this in fact limits the number of active Webserver queries to 10:

limadm set process.limit=20 ws1

Another application has now been added to the scheduling tree, as a leaf node under
an active lnode. To distribute the CPU resource between the active parent and child,
use cpu.myshares to allocate some portion of the available resource to the parent
and some to the child. Process limits are employed to limit the number of active
sessions on an lnode.

Adding More Users Who Have Special Memory
Requirements
This example implements the resource control mechanisms CPU sharing, process
limits, and login controls, and it addresses display tools for printing lnodes and
showing active lnodes.

srmadm Administer Solaris Resource Manager

limreport Output information on selected users

limdaemon Direct daemon to send messages when any limits
are reached

Another user, Sally, has also asked to use the machine at night, for her application.
Since her application is CPU-intensive, to ensure that Joe’s application does not
suffer, put a limit on Sally’s usage of virtual memory, in terms of both her total usage
and her "per-process" usage.

% limadm set memory.limit=50M sally
% limadm set memory.plimit=25M sally

Normal Operations 19

CPU

root

= 100%

Databases
CPU = 20sh

Batch
CPU = 1sh

db1
CPU = 3sh

CPU.my.shares=4sh

db2
CPU = 1sh

Joe
CPU = 1sh

 Sally
CPU = 1 sh

 memory.limit=50Mbyte limit
memory.plimit=25Mbyte limit

ws1
CPU = 6sh
process.limit = 20

Figure 2–4 Adding More Users

If and when Sally’s application tries to exceed either her total virtual memory limit
or process memory limit, the limdaemon command will notify Sally and the system
administrator, through the console, that the limit has been exceeded.

Use the limreport(1MSRM) command to generate a report of who is on the system
and their usages to date. A typical use of limreport is to see who is using the
machine at any time and how they fit within the hierarchy of users.

% limreport ’flag.real’ - uid sgroup lname cpu.shares cpu.usage |sort +1n +0n

Note - limreport has several parameters, In this example, a check is made on
"flag.real" (only looking for "real" lnodes/UIDs), then the dash (-) is used to indicate
that the default best guess for the output format should be used, and the list
"uid sgroup lname cpu.shares cpu.usage " indicates limreport should
output these five parameters for each lnode with "flag.real" set to TRUE. Output is
piped to a UNIX primary sort on the second column and secondary sort on the first
column to provide a simple report of who is using the server.

Anyone with the correct path and permissions can check on the status of Solaris
Resource Manager at any time using the command srmadm show. This will output a
formatted report of the current operation state of Solaris Resource Manager and its
main configuration parameters. This is useful to check that Solaris Resource Manager
is active and all the controlling parameters are active. It also shows the values of
global parameters such as the decay rate and location of the Solaris Resource
Manager data store.

20 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

It is possible to run Solaris Resource Manager without limits active and without CPU
scheduling active, which can be valuable at start up, for debugging and for initially
configuring Solaris Resource Manager:

srmadm set share=n:limits=n, -

Sharing a Machine Across Departments
A different development group would like to purchase an upgrade to this machine
(more processors and memory) in exchange for having access to the system when it
is idle. Both groups should benefit. To set this up, eestablish a new group called
development at the same level as databases and batch. Allocate development 33 percent of
the machine as they have added 50 percent more CPU power and memory to the
original system:

CPU

root

= 100%

Databases
CPU = 20sh

Batch
CPU = 1sh

db1
CPU = 3sh

CPU.my.shares=4sh

db2
CPU = 1sh

Joe
CPU = 1sh

 Sally
CPU = 1 sh

 memory.limit=50Mbyte limit
memory.plimit=25Mbyte limit

ws1
CPU = 6sh
process.limit = 20

operations
CPU = 200sh

development
CPU = 100sh

Figure 2–5 Sharing a Machine, Step 1

The Development group has hundreds of users. To avoid being involved in the
distribution of their resource, use the administration flag capability of Solaris
Resource Manager to enable the Development systems administrator to allocate their
resources. You set up limits at the operations and development level as agreed jointly
and then you both work to control your own portions of the machine.

Normal Operations 21

To add the new level into the hierarchy, add the group operations as a new lnode and
change the parent groups of batch and databases to operations:

% limadm set sgroup=operations batch databases

To set the administration flag:

% limadm set flag.admin=set operations development

Since under normal circumstances all servers have daemons and backup processes to
be run, these should be added on a separate high-level lnode.

Note - Do not use root, since root has no limits.

CPU

root

= 100%

Databases
CPU = 20sh

Batch
CPU = 1sh

db1
CPU = 3sh

CPU.my.shares=4sh

db2
CPU = 1sh

Joe
CPU = 1sh

 Sally
CPU = 1 sh

 memory.limit=50Mbyte limit
memory.plimit=25Mbyte limit

ws1
CPU = 6sh
process.limit = 20

operations
CPU = 200sh

flag.admin+daemons
CPU = 500sh

backups
CPU = 800sh

system development
CPU = 100sh

100's of users

Figure 2–6 Sharing a Machine, Step 2

As seen in the examples, you can use Solaris Resource Manager to consolidate several
different types of users and applications on the same machine. By the judicious use of
CPU share controls, virtual memory limits, process limits, and login controls, you can
ensure that these diverse applications receive only the resources that they need and
require. The limits ensure that no application or user is going to adversely impact
any other user’s or group of users’ application. Solaris Resource Manager supports

22 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

some simple reporting tools to show users and systems administrators exactly what
is happening at any given moment, and over the course of time. The report
generation capability can be used to show the breakdown of resource utilization
across applications and groups for capacity planning and billing purposes.

A Typical Application Server
This output would be displayed from a liminfo listing of db1 at the end of the
example in the previous section. Typing:

liminfo -c db1

Produces:

./liminfo db1
Login name: db1 Uid(Real,Eff): 223 (223,223)
Sgroup (uid) : other (98) Gid(Real,Eff): 50 (50,50)

Shares: 3 Myshares: 6
Share: 60.0% E-share: 35.4%
Usage: 76000 Accrued usage: 6.4e+08

Mem usage: 11.06 B Term usage: 0s
Mem limit: 0 B Term accrue: 0s
Proc mem limit: 0 B Term limit: 0s
Mem accrue: 13.67 TB.s

Processes: 8 Current logins: 1
Process limit: 0

Last used: Tue Jul 4 15:04:20 1998
Directory: /usr/people/db1
Name: Database1
Shell: /usr/sh/

Flags: userlimadm+

Figure 2–7 liminfo Listing

Refer to liminfo(1SRM) for more information on the fields described below.

The first two lines of output from the liminfo(1SRM) command relate to aspects of
the lnode UID and its position in the lnode tree.

Login name The login name and initial GID from the
password map that corresponds to the UID of the
attached lnode. Every lnode is associated with a
system UID. It is strongly recommended that a
system account be created for the UID of every
lnode. In this instance a placeholder UID is used
for the Database1 of db1.

Normal Operations 23

Note that the default PAM configuration under
Solaris Resource Manager creates an lnode for
any user who logs in without one. By default,
lnodes created by root or by a user with the
uselimadm flag set are created with the lnode
for the user other as their parent, or if that does
not exist, with the root lnode as their parent.
Lnodes created by a user with the administration
flag set are created with that user as their parent.
The parent of an lnode can be changed with the
general command for changing lnode attributes,
limadm .

Uid The UID of the lnode attached to the current
process. Normally, this will be the same as that of
the real UID of the process (the logged in user),
but in some circumstances (described later) it
may differ.

R,Euid and R,Egid The real and effective UID and GID of the
current process. This is the same information that
is provided by the standard system id(1M)
command. It is not strictly related to Solaris
Resource Manager, but it is displayed for
convenience. These fields are not displayed if
liminfo(1SRM) is displaying information on a
user other than the default (that is, it was
provided with a login name or UID as an
argument).

Sgroup (uid) [sgroup] The name and UID of the parent lnode in the
lnode tree hierarchy. This will be blank for the
root lnode. Many Solaris Resource Manager
features depend on the position of an lnode
within the tree hierarchy, so it is useful for a user
to trace successive parent lnodes back to the root
of the tree.

After the blank line, the next two lines of the liminfo(1SRM) display show fields
relating to CPU scheduling.

Shares [cpu.shares] This is the number of shares of CPU entitlement
allocated to this user. It is only directly
comparable to other users with the same parent
lnode, and to the "Myshares" value of the parent
lnode itself. Administrators might normally set
the shares of all users within a particular

24 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

scheduling group to the same value (giving those
users equal entitlements). This value will
normally be something greater than 1, so that
administrators have some leeway to decrease the
shares of specific users when appropriate.

Myshares [cpu.myshares] This value is only used if this user has child
lnodes (that is, if there are other lnodes that have
an sgroup value of this user) that are active (that
is, have processes attached). Where this is the
case, this value gives the relative share of CPU
for processes attached to this lnode, compared
with those attached to its child lnodes.

Share The calculated percentage of the system CPU
resources to which the current user is entitled. As
other users log on and log off (or lnodes become
active or inactive), this value will change,
because only active users are included in the
calculation. Recent usage by the current user is
not included in this calculation.

E-Share This is the effective share of this user (that is, the
actual percentage of the system CPU resources
which this user would be given in the short term
if the user required it and all other active users
were also demanding their share). It can be
thought of as the current willingness of Solaris
Resource Manager to allocate CPU resources to
that lnode. This value will change over time as
the user uses (or refrains from using) CPU
resources. Lnodes that are active but idle (that is,
with attached processes sleeping), and so have a
low usage, will have a high effective share value.
Correspondingly, the effective share can be very
small for users with attached processes that are
actively using the CPU.

Usage [cpu.usage] The accumulated usage of system resources that
are used to determine scheduling priority.
Typically, this indicates recent CPU usage, though
other parameters may also be taken into account.
The parameter mix used can be viewed with the
srmadm(1MSRM) command. Each increment to
this value decays exponentially over time so that
eventually Solaris Resource Manager will "forget"
about the resource usage. The rate of this decay is

Normal Operations 25

most easily represented by its half-life, which can
be seen with the srmadm(1MSRM) command.

Accrued usage [cpu.accrue] This is the same resource accumulation
measurement as "Usage," but it is never decayed.
It is not used directly by Solaris Resource
Manager but may be used by administration for
accounting purposes. Unlike usage, this value
represents the sum of the accrued usages for all
lnodes within the group, as well as that of the
current lnode.

After the second blank line, the next four lines of the liminfo(1SRM) display show
four fields relating to virtual memory:

Mem usage [memory.usage][memory.myusage]

This is the combined memory usage of all processes attached to this lnode.

If two values are displayed, separated by a frontslash (/) character, then this lnode is
a group header and the first value is the usage for the whole scheduling group, while
the second value is that of just the current user.

Mem limit [memory.limit]

The maximum memory usage allowed for all processes attached to this lnode and its
members (if any). That is, the sum of the memory usage for all processes within the
group plus those attached to the group header will not be allowed to exceed this
value. Note that in this instance, a "0" value indicates that there is no limit.

Proc mem limit [memory.plimit]

The per-process memory limit is the maximum memory usage allowed for any single
process attached to this lnode and its members.

Mem accrue [memory.accrue]

The memory accrue value is measured in byte-seconds and is an indication of overall
memory resources used over a period of time.

After the third blank line, the next four lines of the liminfo(1SRM) display show
fields relating to the user and processes.

Processes [process.usage][process.myusage]

This is the number of processes attached to this lnode. Note that this is processes, not
counting threads within a process.

26 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

If two values are displayed, separated by a frontslash (/) character, then this lnode is
a group header and the first value is the usage for the whole scheduling group, while
the second value is that of just the current user.

Process limit [process.limit]

The maximum total number of processes allowed attached to this lnode and its
members.

Current logins [logins]

Current number of simultaneous Solaris Resource Manager login sessions for this
user. When a user logs in through any of the standard system login mechanisms
(including login(1) , rlogin(1) , etc.) basically anything that uses PAM for
authentication and creates a utmp(4) entry) then this counter is incremented. When
the session ends, the count is decremented.

If a user’s flag.onelogin flag evaluates to set, the user is only permitted to have a
single Solaris Resource Manager login session.

Last used [lastused]

This field shows the last time the lnode was active. This will normally be the last
time the user logged out.

Directory

The user’s home directory (items from the password map rather than from Solaris
Resource Manager are shown for convenience).

Name

The db1 (finger) information, which is usually the user’s name (items from the
password map rather than from Solaris Resource Manager are shown for
convenience).

Shell

The user’s initial login shell (items from the password map rather than from Solaris
Resource Manager are shown for convenience).

Flags

Flags that evaluate to set or group in the lnode is displayed here. Each flag displayed
is followed by suffix characters indicating the value and the way in which the flag
was set (for example, whether it was explicitly from this lnode (+) or inherited (^)).

Normal Operations 27

28 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 3

Configuration

Solaris Resource Manager provides a great deal of flexibility in its configuration to
the central administrator (for example, the root user). This chapter describes the
following configuration areas:

� Kernel boot parameters, used when the kernel is first started (see “Kernel Boot
Parameters” on page 29).

� Global Solaris Resource Manager parameters supplied via the srmadm(1MSRM)
command (see “Global Solaris Resource Manager Parameters via srmadm” on
page 32).

� Parameters given to the limdaemon(1MSRM) program (see “Using limdaemon
Options” on page 34).

� PAM subsystem and account management (see “PAM Subsystem” on page 35).

Kernel Boot Parameters
The kernel has certain Solaris Resource Manager parameters which can be set by the
central administrator when the kernel is booted. Solaris reads the /etc/system file
at boot time and uses it to configure kernel modules (see system(4) for details).
The parameters that can be set in the SHR module (all are 32–bit integers) to
override the Solaris Resource Manager default behavior are:

SRMLnodes The number of lnodes to cache in the kernel. On
Solaris systems, each kernel lnode requires about
3Kb. A value of zero (the default) means that the

29

kernel will determine the value. The heuristic
then used is:

(nproc / SRMProcsPerUid) + SRMLnodesExtra

where nproc is the maximum number of
simultaneous processes allowed in the system. A
minimum value of 6 overrides this calculation.
The maximum specified by SRMMemoryMax
will also override this calculation.

SRMProcsPerUid The expected average number of processes used
by each user. The default is 4.

SRMLnodesExtra A bias used in the heuristic to determine the size
of the in-memory lnode array. The default is 20.

SRMNhash The number of entries in the hash table that is
used to map UID values to lnodes in the kernel.
On Solaris each entry is 4 bytes long. The default
is zero, which means to use the same value as for
the number of lnodes.

SRMMemoryMax The reciprocal of this value is a fraction which
specifies the maximum percentage of real
memory to use for the Solaris Resource Manager
lnode and hash tables combined. The default is
20, which means that a maximum of 5 percent of
real memory will be used for Solaris Resource
Manager data structures.

SRMMemWarnFreq The minimum interval, in seconds, between
"memory exceeded" notification warnings for a
single lnode. The default value is 4.

For example, in the /etc/system file the line

set srmlim:SRMMemWarnFreq=10

will ensure that memory exceeded messages are
sent no more frequently than one every 10
seconds for any single user.

There are also some parameters not in Solaris Resource Manager which affect the
behavior of Solaris Resource Manager. These include:

30 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

initclass This is the name of the scheduling class in which
the init(1M) process is started. Under Solaris
Resource Manager this should be given as the
string "SHR" (including the double-quote
characters). The default Solaris value is "TS." To
use Solaris Resource Manager for CPU resource
control, the following line would be included in
the /etc/system file:

set initclass="SHR"

to override the default.

extraclass This is a name of a scheduling class module to
load, without necessarily using it as the default
scheduling class. To use Solaris Resource
Manager with just non-CPU resource control, the
following line would be included in the
/etc/system file:

set extraclass="SHR"

To boot a system without Solaris Resource Manager loaded at all, an alternate
/etc/system named /etc/system.noshrload is used. See “Booting Without
Solaris Resource Manager” on page 41 for instructions on this process.

Multi-User Startup Configuration
During a normal system boot, when the system changes from single-user to
multi-user mode, a Solaris Resource Manager initialization script is run to set various
Solaris Resource Manager parameters. Details of what this script does are given in
Chapter 4.

If the initialization script itself (/etc/init.d/init.srm) is modified, a copy of
both the original and modified versions should be kept separately. Applying Solaris
Resource Manager updates will not necessarily preserve existing initialization scripts.

Configuration 31

Global Solaris Resource Manager Parameters via
srmadm
The srmadm(1MSRM) command allows an administrator to set, modify or display
the global Solaris Resource Manager parameters. Refer to the man page for complete
details of all parameters.

The srmadm(1MSRM) command can be called any number of times to set various
parameters. It is not necessary to include them all on a single invocation. This also
means that srmadm(1MSRM) can be used to change the operational parameters of a
running Solaris Resource Manager system on the fly, although some caution should
be taken.

Of particular importance to administrators are the srmadm(1MSRM) options which
enable or disable the main features of Solaris Resource Manager. These are:

fileopen[={y|n}]

The default database is /var/srm/srmDB and it can be overrided with the −f
option. Note that closing the Solaris Resource Manager database file in
mid-operation should be regarded as an emergency action.It has several undesirable
consequences: all processes will continue running on the surrogate root lnode which
may give them more privilege than normal; the CPU scheduler is disabled; Solaris
Resource Manager limit enforcement ceases. When enabled, Solaris Resource
Manager currently has no limits database open, and its cache contains only the
surrogate root lnode to which all processes are attached.

share[={y|n}]

When enabled, the Solaris Resource Manager CPU scheduler is used and CPU
scheduling takes place according to Solaris Resource Manager’s dynamic usage and
decay algorithm. This mode cannot be set unless the fileopen mode is enabled. When
disabled, Solaris Resource Manager CPU scheduler’s usage calculations are frozen,
and processes are scheduled ’round-robin’ with fixed equal priorities.

limits[={y|n}]

When enabled, Solaris Resource Manager enforces the virtual memory and process
limits. This mode cannot be set unless the fileopen mode is enabled. When disabled,
Solaris Resource Manager will keep usage attributes up to date, but will not enforce
limits.

adjgroups[={y|n}]

When enabled, the Solaris Resource Manager CPU scheduler’s global group effective
share adjustment is used. The enabled state is recommended in most circumstances.
Every run interval, the normalized usages of all limits entries are recalculated. If the
adjgroups scheduling mode is enabled, then extra processing of normalized usages
is performed as follows. The scheduler makes a pass over the scheduling tree,
comparing each group’s recently received effective share with its entitlement. Groups
that have received less than their group entitlement are biased to receive a greater
effective share in the next run interval. This has the effect of ensuring that groups

32 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

receive their entitlements of CPU service whenever possible, regardless of the actions
of their members.

limshare[={y|n}]

When enabled, the Solaris Resource Manager CPU scheduler applies its priority
ceiling feature to limit all users’ effective shares to prevent extremely low-usage
users from briefly acquiring almost 100 percent of CPU. The enabled state is
recommended.

The rate of CPU service for a user is roughly inversely proportional to the user’s
usage. If users have not been active for a long time, then their usage decays to
near-zero. When such a user logs in (or the lnode becomes active in any way) then,
for the duration of the next run interval, the user’s processes could have such high
priority that they monopolize CPU.

Enabling the limshare scheduling flag causes the scheduler to estimate the effective
share that an lnode will receive before the next run interval. If the result exceeds the
user’s assigned entitlement by a given factor (see maxushare), then the user’s
normalized usage is readjusted to prevent this.

There are two optional parameters to srmadm(1MSRM) which are also useful to an
administrator. These are:

� The −v parameter. This prints a formatted report of all current parameter settings
on standard output. If two or three −v options are supplied, then the report is
more and more verbose. Invoking srmadm(1MSRM) with no arguments is
equivalent to supplying a single −v option.

� The −d parameter. This initializes the Solaris Resource Manager system structure
with default values instead of reading the current kernel settings. The default
values, which mainly give control over scheduling behavior, are built into
srmadm(1MSRM), and provide a good starting point from which to customize
Solaris Resource Manager. The kernel begins with the same values preset.

The following are examples of typical srmadm(1MSRM) commands.

To turn on Solaris Resource Manager, enabling the CPU scheduler and resource limits:

srmadm set -f /var/srm/srmDB fileopen=y:share=y:limits=y

To set the CPU usage decay rate to have a half-life of 5 minutes:

srmadm set usagedecay=300s

To display the current flag settings and charges:

Configuration 33

% srmadm

To show all the default settings:

% srmadm show−dv

Disabling Solaris Resource Manager
The srmadm(1MSRM) command can disable Solaris Resource Manager by clearing the
fileopen flag; all processes are moved onto the surrogate root lnode, other changed
lnodes in the cache are flushed to disk and the lnode file is closed. This automatically
forces the share and limits flags off, disabling the Solaris Resource Manager CPU
scheduler and limit enforcement respectively. The share and limits flags may be
turned off independently if required while leaving the lnode file open. This is
preferable to closing the file, as processes can stay attached to their correct lnodes.

Note that if the Solaris Resource Manager scheduler alone is disabled in
mid-operation, all this does is suspend the usage and decay algorithm. The scheduler
still continues handling processes in the SHR scheduling class, but as each is
assigned an updated priority, the same value is used resulting in simple
“round-robin” scheduling.

Re-enabling Solaris Resource Manager by opening the file and setting the share and/
or limits flags after the file has been closed will not cause existing processes to move
off the root lnode. Closing the Solaris Resource Manager database during normal
operation is not recommended. If this is done, the system should be rebooted in
order to ensure correct attachment of processes to lnodes.

Using limdaemon Options
limdaemon(1MSRM) has several options which can be configured when it is started:

� The −l option will cause limdaemon(1MSRM) to log messages via syslog(3) -

� The −mtag and −p prio options are used in conjunction with −l to tag the
messages and control message routing according to the syslogd(1M)
configuration

� The −s option will cause limdaemon(1MSRM) to include a time-stamp on
messages (except those via syslog(3) which already have a time-stamp)

� The −c option will cause limdaemon(1MSRM) to suppress the updating of
terminal connect-time usages

34 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

� The −d option will cause limdaemon(1MSRM) to decay connect-time usages for
all terminals of logged in users, with the interval between decays being the
argument of the −t option (default 1 minute)

� The −Dn option will cause limdaemon(1MSRM) to decay connect-time usages for
all terminals all users once every n minutes

� The −k option will terminate the currently running limdaemon(1MSRM)

� The −t option can be used to set the time period (in minutes) between updates to
the connect-time usage attribute in the terminal device category. The default is 1
minute

� The −e option can be used to suppress the logging off of users who have reached
their connect-time limit. This option is implied by the use of the −c option

� The −w option sets the number of minutes before expiration of connect-time that
the warning message is given. The default warning interval is 5 minutes

� The −g option can be used to set the grace time (in seconds). The default grace
time is 30 seconds

The administrator should determine the balance needed between the additional
overhead incurred for rapid updating of connect-time usage attributes, and the
greater granularity that will appear with less frequent updating. See the
limdaemon(1MSRM) man page for more information on these and other options.

As an example, the command:

% limdaemon -g300

starts the daemon and sets the grace time to five minutes. Note that it is not necessary
to follow the command with a shell ’&’ character. When limdaemon is started, it
makes itself into a daemon. That is, a child process is forked which detaches itself
from the controlling terminal, placing itself in a process group of its own.

PAM Subsystem
Solaris 2.6 systems support Pluggable Authentication Modules (PAM). Whenever a
user requests an operation that involves changing or setting the user’s identity (such
as logging into the system, invoking an ’r’ command such as rcp or rsh , using ftp ,
or using su), a set of configurable modules are used to provide authentication,
account management, credentials management, and session management. Solaris
Resource Manager provides a module for login accounting, and to modify the
behavior of su .

The program used to request the operation is termed the service.

Configuration 35

The PAM system as a whole is documented in the man pages pam.conf(4) ,
pam(3) , pam_unix(5) , and pam_srm(5SRM) .

The Solaris Resource Manager PAM module provides account management and
session management functions. Behavior of PAM can be controlled by editing the file
/etc/pam.conf . For normal Solaris Resource Manager behavior, the Solaris
Resource Manager PAM module should be configured as requisite for all login-like
services for session management, and as requisite for account management for all
PAM services. Usually, the Solaris Resource Manager module should be placed after
all other required and requisite modules, and before any other sufficient or optional
modules.

On installation, Solaris Resource Manager edits /etc/pam.conf to provide a
suitable behavior. It inserts lines like these for each service (including other) that
already has session or account management configured:

login account requisite pam_srm.so.1 nolnode=/etc/srm/nolnode
login session requisite pam_srm.so.1
other account requisite pam_srm.so.1 nolnode=/etc/srm/nolnode

The first line says that for service login, the module pam_share.so.1 is to be used
to provide account management functionality, that it must allow login if login is to
succeed, and it is to be given the argument nolnode=/etc/srm/nolnode . See
pam.conf(4) for a full explanation of the various control flags
(required, requisite, optional, and sufficient).

The second line says that the login service will use the pam_share.so.1 module
for session management.

The full list of supported arguments for Solaris Resource Manager account and
session management modules is found in pam_srm(5SRM) .

Account Management
When the Solaris Resource Manager account management PAM module gets control,
it:

1. determines if Solaris Resource Manager is installed and enabled, and tells the
PAM system to ignore this module if not,

2. determines if the user has an lnode, and calls an administrator-configurable ’no
lnode’ script if not,

3. determines whether the user has permission to use the requested service and
device,

36 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

4. determines if the user has exceeded the warnings limit, and refuses permission to
log in if so,

5. calls an administrator-configurable ’every login’ script.

If any of these steps fail, the remainder are not performed, and the Solaris Resource
Manager account management PAM module denies use of the service. An
explanatory message is passed to the user via the service where possible.

Scripts
The default ’missing lnode’ script will create an lnode for the user and send mail
notifying the system administrator that it has done so. The default script is
/etc/srm/nolnode , but this can be changed by editing the file /etc/pam.conf
and changing the value of the nolnode option on Solaris Resource Manager account
management module lines. The ’every login’ script is not usually configured. It can
be configured by adding an everylogin=pathname option to any Solaris Resource
Manager account management module in /etc/pam.conf . Scripts are invoked as
the root user. Standard input, output and error are closed. If a script exits non-zero,
access will be denied. All information is passed as environment variables, which are
derived directly from information passed to PAM from the service:

USER The login name supplied to the program. It has
been authenticated by looking it up in the
password map; if not present, the account
management module will already have returned
an error code to PAM.

UID The UID of the user being authenticated. For
services that change UID (such as su) this is the
UID of the user invoking the service; for services
that set UID (such as login) this is the target UID
(i.e., that of USER).

RHOST For access attempts across a network, this
contains the name of the host the attempt comes
from. Its value is otherwise implementation
dependent.

SERVICE The name of the access service, for example, rsh ,
login , ftp , etc.

TTY The name of the TTY that the service is being
invoked on. Some services that do not (strictly
speaking) have a controlling terminal (such as
ftp), will fill this variable with something vaguely
sensible (for example, ftp12345 , where 12345 is

Configuration 37

the process identifier (PID) of ftpd); others leave
it empty or replace it with the service name.

DEBUG If debug was specified in the pam.conf file,
DEBUG is set to true; otherwise it is set to false.
No other environment variables are set, so any
script must set its own PATH variable if required.

The default ’no lnode’ script creates the lnode in the default scheduling group (other
if such a user exists in the password map, otherwise root) and mails the system
administrator a reminder to move the new lnode into the appropriate place in the
scheduling hierarchy. For a sample script, see “Default ’no lnode’ Script” on page 91.

PAM Interaction With Device Groups
The Solaris Resource Manager PAM module looks up the terminal and service names
in the device hierarchy, and returns a ’permission denied’ to its invoker if limits are
exceeded or if a device flag evaluates to ’set ’.

The device categories examined are terminal for the terminal name, and services
for the kind of service requested. For example, an rlogin attempt may try to use a file
in the network device group, so the flags tested for the user are (assuming all flags
are set to group) as shown below. These flags are checked in order:

� terminal.flag.network

� terminal.flag.all

� services.flag.rlogin

� services.flag.netservices

Access will be permitted only if they all evaluate ’set’. In addition, limits will be
checked for the corresponding categories (terminal and services).

Session Management
For login-like services (those that create an entry in the utmp file), the session
management facilities of PAM will be invoked as well as the account management
facilities if both are configured in /etc/pam.conf .

The Solaris Resource Manager product’s session management handles charging for
devices. It looks to see if the user has exceeded the connection time limit, or has the
onelogin flag evaluate to set and is already logged in, and if so, prevents login.

Otherwise, it generates a message to the limdaemon process to inform it of the login
and the configured cost for the terminal being logged in on. It then informs the

38 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

kernel that the current process is a ’login header process’, that the limdaemon
process must be informed of when it dies.

The limdaemon process then tracks connect-time limits, and issues warnings if they
are about to be exceeded.

Configuration 39

40 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 4

Boot Procedure

During the UNIX boot procedure, various facets of Solaris Resource Manager are
enabled at different points. The major steps are shown here:-

� When the kernel first starts, various parameters are loaded from the
/etc/system file. Some of these affect Solaris Resource Manager. These are
documented in detail below.

� As the kernel continues its initialization, after process 0 has been created, but
before process 1 is started, Solaris Resource Manager is initialized. This involves
loading the SHR module and arranging for process 1 (the init(1M) process) to
be scheduled by Solaris Resource Manager. This is done by starting init(1M) in
the SHR scheduling class, instead of the default scheduling class.

� Initially the init(1M) process, and all its children, will be attached to the
surrogate root lnode.

� When the kernel is fully initialized, the system will undergo transition from
single-user to one of the multi-user modes (usually run-level 2 or 3). Early in this
procedure, the /etc/init.d/init.srm script will be run. The actions
performed by this script are described in “Boot Sequence Events” on page 42 and
enable normal Solaris Resource Manager operations.

Booting Without Solaris Resource
Manager
If it is necessary to boot the system without Solaris Resource Manager active, this can
be done easily by changing the initclass variable in the /etc/system file to refer to
timesharing (TS) instead of SHR. A simple way of doing this is to use the −a (ask)
option of the boot(1M) command, so that you will be prompted for a system file.

41

For other prompts, just press the RETURN key to accept the default values, until you
are prompted for the name of the system file. At the prompt for the name of the
system file, enter etc/system.noshrload (no leading slash) as the response. Here
is an example of the procedure:

ok boot -a
Booting from: sd(0,0,0) -a
Enter filename [kernel/unix]:
Enter default directory for modules
[/platform/SUNW,UltraSPARC/kernel /kernel /usr/kernel]:

SunOS Release 5.6 Version ... [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1997, Sun Microsystems, Inc.
Name of system file [etc/system]: etc/system.noshrload
root filesystem type [ufs]:
Enter physical name of root device
[/sbus@1,f8000000/esp@0,800000/sd@3,0:a]:

Note that /etc/system.noshrload is simply a backup copy of
/etc/system made at the time Solaris Resource Manager was installed. If there
have been subsequent edits to /etc/system , then /etc/system.noshrload
should be maintained in parallel so that it differs only by the occurrence of the
Solaris Resource Manager modification:

diff /etc/system /etc/system.noshrload
< # enable srm
< set initclass="SHR"

Boot Sequence Events
The sequence in which events occur after the system boot while switching to
multi-user mode is particularly important in Solaris Resource Manager. The
following steps show a sequence which correctly establishes the Solaris Resource
Manager system:

1. Configure and enable Solaris Resource Manager using the srmadm(1MSRM)
command. At this point, the limits database will be opened and the Solaris
Resource Manager scheduler will be enabled. See “Enabling Solaris Resource
Manager Using srmadm” on page 44 for information on using srmadm(1MSRM)
to enable Solaris Resource Manager.

2. Assign the ’lost’ and ’idle’ lnodes.

42 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

3. Start the Solaris Resource Manager daemon. See “Starting the Solaris Resource
Manager Daemon” on page 45 for information on this procedure.

4. Start other system daemons on an appropriate lnode.

The default script used in steps 1 through 3 of the above process is shown in the
appendix.

System Daemon Processes
Of particular importance is the attachment of daemons (system maintenance
processes which normally run permanently) to an lnode other than the root lnode.
Processes attached to the root lnode are scheduled specially and will always be given
all the CPU resources they demand, so it is not advised to attach to the root lnode
any process which is potentially CPU-intensive. Attaching daemons to their own
lnode allows the central administrator to allocate them a suitable CPU share.

During the boot procedure, each new process inherits its lnode attachment from its
parent process. Since the init(1M) process is attached to the root lnode, so are all
subsequent processes. It is not until the Solaris Resource Manager initialization script
is run and the lnode database is opened that processes can be attached to other
lnodes, and even then this only happens when a process does an explicit setuid(2)
system call (such as login(1) does) or explicitly asks Solaris Resource Manager to
attach to a nominated lnode, such as the srmuser(1SRM) command does. Running
a program with the setuid file mode bit set does not cause a change in lnode
attachment.

The consequence of this is that all system programs started automatically during
system startup will be attached to the root lnode. This is often not desirable, as any
process attached to the root lnode that becomes CPU intensive will severely disrupt
the execution of other processes. Therefore it is recommended that any daemon
processes started as part of the boot procedure be explicitly attached to their own
lnode by using the srmuser(1SRM) command to invoke them. This will not affect
their real or effective UID.

A possible example is shown here:

/usr/srm/bin/srmuser Start in.named attached to the my_daemons lnode.

These lines could be used to replace the existing invocation of the named(1M)
daemon in its start-up script. This requires that a user account and lnode for
"network" should be established beforehand.

Boot Procedure 43

Enabling Solaris Resource Manager
Using srmadm
The srmadm(1MSRM) command allows the administrator to control the operating
state and system-wide configuration of the Solaris Resource Manager system. This
command is typically used during transition to run-level 2 or 3 from within the
Solaris Resource Manager init.d(4) script /etc/init.d/init.srm to ensure
that appropriate values for all parameters are set each time the system is booted, and
to ensure that the Solaris Resource Manager system will be enabled prior to users
having access to the system. The srmadm(1MSRM) command is also used to
administer the global Solaris Resource Manager parameters. Refer to the
srmadm(1MSRM) manual page for a list of the parameters that may be set using
srmadm. The srmadm(1MSRM) commands issued in the Solaris Resource Manager
init.d(4) script will:

� Open the limits database. Up until this point, any processes which are started are
attached automatically to a surrogate root lnode. The surrogate root lnode is used
to ensure that there is always an lnode available to connect processes to, regardless
of the operational state of Solaris Resource Manager. For this reason, it is
important that the limits database be opened before any non-root processes are
started. When the limits database is opened, the values in the usage attributes in
the surrogate root lnode are added into their counterparts in the real root lnode. A
limitation of this technique is that any net decrease in usage will not be counted.
This ensures that usage alterations prior to the limits database being opened are
not discarded.

� Enable limit enforcement.

� Set the parameters which control the behavior of the Solaris Resource Manager
SHR scheduler, for example, the usage decay rate.

� Enable the Solaris Resource Manager scheduler. Prior to this, processes in the SHR
scheduling class are scheduled in a simple round-robin fashion and the CPU
entitlements set within the Solaris Resource Manager system have no effect.

Refer to “Global Solaris Resource Manager Parameters via srmadm” on page 32 for
some of the common invocations of the srmadm(1MSRM) command.

44 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Starting the Solaris Resource Manager
Daemon
The limdaemon(1MSRM) program is the Solaris Resource Manager user-mode
daemon. It is normally invoked at transition to run-level 2 or 3 as the last step in the
Solaris Resource Manager init.d(4) script. It shouldn’t be confused with the
srmgr system process (in the SYS class), initiated by the kernel. The following
ps(1) listing shows both these processes:

ps -efc | egrep ’limdaemon|srmgr’
root 4 0 SYS 60 18:42:14 ? 0:05 srmgr
root 92 1 SHR 19 18:42:32 ? 0:41 limdaemon

The limdaemon program performs the following functions:

� receives notification messages and delivers them to the terminals of destination
users

� receives login or log out notification messages, maintaining an exact record of all
Solaris Resource Manager login sessions currently in progress

� periodically updates the connect-time usages for all users with Solaris Resource
Manager login sessions currently in progress (optional)

� detects users who have reached their connect-time limit and kills the process and
logs them off (optional) after a grace interval

� logs all actions using syslog(3) to syslogd(1M)

When notified of Solaris Resource Manager login sessions, limdaemon monitors the
terminal connect-time of all users and checks it against their connect-time limit.
When their connect-time limit is nearly reached, they are sent a notification message.
Once the expiration time is reached, a further grace time is allowed before all their
processes are terminated and they are logged out.

The limdaemon program decays connect-time usages. Usage decay for the terminal
device category must be performed, if connect-time limits are used. Refer to “Using
limdaemon Options” on page 34 for details on the command-line options that can
be used to control the behavior of limdaemon .

Boot Procedure 45

46 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 5

Managing Lnodes

The Solaris Resource Manager system is built around a fundamental addition to the
kernel: a per-user structure called an lnode. For every unique UID defined in the
password map, there should exist a corresponding lnode. (This is every unique UID
returned by successive getpwent(3C) calls.) An lnode may exist without a
corresponding password map entry, but this is not recommended. lnodes are stored
on disk and automatically moved in and out of memory by the kernel. In-memory
copies of lnodes that have been changed since reading them from disk are written
back as part of the regular system synchronization operations, as well as on demand
when the sync(1M) command is run, and when necessary to free space in the lnode
cache for reading in further lnodes. An lnode is essentially a fixed-size place in
which many kinds of per-user data may be stored and updated.

lnodes are maintained as a tree hierarchy, with the central administrator as the head
of the tree, and other users as group headers of smaller groups of users within the
tree. The central administrator is the super-user, or root user of the system.

Errors relating to lnodes, such as orphans and group loops, are discussed in Chapter
9.

Delegated Administration
The prime responsibility for the administration of lnodes rests with the central
administrator. While Solaris Resource Manager introduces several resource controls
that may be assigned and managed, it also allows certain administrative privileges to
be selectively assigned to non-root users, thereby distributing the burden of user
administration. Administrative privileges may be assigned to appropriate users by
setting the user’s uselimadm or admin flag. Users with a set uselimadm flag have the
same administrative privilege within the limadm(1MSRM) program as the

47

super-user. A group header user with a set admin flag is called a sub-administrator,
and has privileges (as described below) over users within their scheduling group.

The central administrator controls the overall division of the system’s resources by
creating and assigning limits to scheduling groups who have root as their parent.
Sub-administrators typically perform the same types of resource control, but limited
to users within their scheduling group. The division of resources by the
sub-administrator is limited to the resources that have been allocated to the group
(for example., those allocated to the group header lnode). Note that a
sub-administrator may assign an admin flag to any user in their scheduling group,
further sub-dividing their own administrative responsibilities.

Sub-administrators may do the following:

1. Create and delete lnodes for users within their scheduling group.

2. Alter the resource limits of any user within their scheduling group.

Note that even though a sub-administrator may set the limit of a resource to be
greater than that of the limit for the group, resources consumed by group
members are also considered to be consumed for group headers and limits on
individual users will be enforced when an attempt is made to exceed the group
header limit.

3. Alter the flags of any lnode within their scheduling group, provided that the flag
does not have the noadmin condition. Flag assignments by sub-administrators are
further constrained in that a user cannot be given a privilege that is not already
held by the sub-administrator. This restriction is applied to prevent a
sub-administrator from circumventing the security within Solaris Resource
Manager.

4. Adjust any of their own attributes that have the selfadmin condition.

A sub-administrator’s main tools are the limadm(1MSRM) and limreport(1SRM)
commands. The limadm program performs operations on the limits, flags, and other
Solaris Resource Manager attributes of one or more existing users. Combined with
the report generator, limreport , these tools allow a scheduling group to be
autonomously self-managed without disturbing the resource allocations or
management of other, disjoint scheduling groups.

The super-user is exempt from all resource limits, always has full administrative
privileges regardless of the settings of its flags, can add, delete and change user
accounts and is able to change any usage, limit, or flag value of any lnode using the
limadm program.

48 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Security
Solaris Resource Manager has a wide effect on the administration of a Solaris system,
so it is important that it be installed and maintained in a manner that ensures the
system is secure.

There are a number of ways in which the system administrator can ensure that the
security of the Solaris Resource Manager system is maintained. The most important,
as with any Solaris system, is to ensure the privacy of the root password. Anyone
who knows the root user password has unrestricted access to the system’s resources,
the same as the central administrator.

There are a number of special administrative privileges that may be granted to users
within Solaris Resource Manager by the setting of certain system flags within their
lnode. These can help increase the security of a system because they allow delegated
users to carry out the tasks that are required of them without the need to give them
full super-user privileges.

Some of these privileges should not be granted lightly, since they give the recipient
user broad-ranging powers. The passwords of users possessing special privileges
should be protected diligently, just as the password of the root user should be
protected.

There are circumstances in which the central administrator can leave the system open
to security breaches if not careful with the manipulation of the structure of the
scheduling tree. It is important for the central administrator to understand how to
correctly modify the scheduling tree, and to know how to detect potential problems
in the current structure.

The uselimadm and admin Flags
The central administrator may assign administrative privileges within Solaris
Resource Manager via the uselimadm and admin flags in a user’s lnode. The uselimadm
flag to the limadm(1MSRM) command allows a user the same administrative
privilege as the central administrator. The admin flag, when set for a group header,
gives the group header administrative privilege over the members of the group that
they head, but they are not allowed to alter the contents of any lnode outside their
group.

Group headers that have a set admin flag are called sub-administrators. There are
several security precautions taken within Solaris Resource Manager to prevent
misuse of the administrative privilege granted to sub-administrators: Refer to the “A
Typical Application Server” on page 23 and “Lnode Maintenance Programs” on page
54 for a detailed explanation.

A sub-administrator, when deleting lnodes, should ensure that sub-trees are deleted
from the bottom-most lnodes up. If you start at the top of the sub-tree you are
deleting, you will lose control of the children of the lnodes deleted because they will

Managing Lnodes 49

become orphaned when their parents are removed. Once orphaned, the
sub-administrator cannot alter the lnodes as they are outside the scheduling group.

Suggested Sub-administrator Lnode Structure
A problem that sub-administrators may face is that they share group limits with their
group members. For example, if the group header lnode has a process limit set on it,
then that limit controls the number of processes that may be used by the entire
group, including the group header. Unless further limited, any user within the
scheduling group can prevent the sub-administrator from being able to create new
processes, simply by exceeding their own process limit. One way of preventing this
is for the group administrator to set individual limits on each of the group members.
However, in order to be effective, these limits may have to be overly restrictive. Also,
forcing a sub-administrator to manage individual limits is at odds with the Solaris
Resource Manager goal of hierarchical resource control. An alternate way of solving
this problem is for the administrator to change the structure of the lnodes within his
or her group. Rather than placing users directly beneath their own lnode, they
should create a "control" lnode beneath their own as their only child lnode, and then
make users children of the control lnode. This results in the structure shown.

Admin
Actual

Admin
Control

User
B

User
A

User
C

Figure 5–1 Sub-administrator Lnode Structure

Referring to the above figure, the UID of the sub-administrator’s account would
correspond to that of the lnode labelled "Actual," the parent of the tree. This is the
lnode that would have the admin flag set. A dummy account would be created for
the "Control" lnode. No login need be permitted on this account. The lnodes labelled
"A," "B," and "C" correspond to users under the sub-administrator’s control.

In this case, the process limit for the "Actual" lnode could be 100, while that of the
"Control" lnode could be 90, with limits for individual users set to 0. This setup
would ensure that even if the users A, B and C were using a total of 90 processes (all
they are allowed), the sub-administrator can still create 10 processes. It is still

50 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

possible in this case for users to stop each other from creating processes. The only
way to prevent this is to set individual limits on those users. But in this example,
those limits could be set to 40 each, still allowing flexibility while preventing a single
user from completely starving the others. Also note that in this example the
sub-administrator can create extra lnodes for new users as children of the "Control"
lnode without having to worry about re-balancing limits.

Limits Database
The limits database is the database of user information that Solaris Resource Manager
uses to perform all resource control. It contains one lnode per UID, which is accessed
by using the UID as a direct index into the file. If there is an lnode for a numerically
large UID, the limits database will appear to be quite large. However, where the
UIDs of users in the system are not sequential, the limits database will have large
gaps, or holes, and on a file system type that supports it, may be stored as a sparse
file. This means that no disk blocks are actually allocated for storage of the "empty"
sections of the file. ufs file systems support sparse files, but tmpfs file systems do not.
See the discussion below in “Saving and Restoring the Limits Database” on page 51
for the implications of sparse files on saving and restoring the limits database.

Whenever you create a new user, you have to create a new lnode.

Creating the Limits Database
The Solaris Resource Manager start-up file (/etc/init.d/init.srm) will create an
initial limits database when invoked for the first time or at any boot if the file is
found to be missing.

The limits database typically resides in the /var/srm directory.

The limits database should be owned by root, group owned by root, and readable
only by the owner. Write permission is not required since only kernel code with
super-user credentials writes to the file.

Caution - If a user can write to the Solaris Resource Manager limits database,
system security may be compromised.

Saving and Restoring the Limits Database
Because the limits database may be a sparse file care should be taken when copying
the file. The file will most likely consume a lot of disk space if it is written by a

Managing Lnodes 51

utility that does not support sparse files, since the empty regions of the file will read
as sequences of zeros and be written back out as real blocks instead of empty
regions. This could happen if the file were being copied, backed up or restored by a
utility such as tar(1) , cpio(1) or cp(1) though programs such as ufsdump(1M)
and ufsrestore(1M) will preserve holes.

Backup and restoration of the limits database can also be done by using
limreport(1SRM) to generate an ASCII version of the file and using
limadm(1MSRM) to re-create the original file from that saved ASCII version. For
example, the command:

limreport ’flag.real’ - lname preserve > /var/tmp/savelnodes

will create /var/tmp/savelnodes as an ASCII representation of the lnodes for
each user in the password map. Note that this will not save lnodes for which there is
no corresponding password map entry. It is recommended that lnodes should exist
for at most the set of all UIDs in the password map.

The command:

limadm set -f - < /var/tmp/savelnodes

will recreate the lnodes whose data was saved. This command will not delete lnodes
that were not saved, so these techniques can also be used to save and restore
selections of lnodes rather than the whole limits database.

“The limreport and limadm Commands” on page 57 describes the use of the
limreport(1SRM) and limadm(1MSRM) commands in more detail. It is useful for
the administrator to be familiar with the use of these commands for saving and
restoring lnodes, since they may need to be used when a change to the interpretation
of the lnode structure (as defined by the configuration file) is made.

Note that as the contents of the limits database are changing regularly during normal
system operation, it is advisable to perform backup operations while the system is
quiescent, or in single-user mode. Similarly, restoring an entire limits database
should only ever be done when the Solaris Resource Manager is not in use, such as
when the system is in single-user mode.

Creating and Deleting Lnodes
Whenever a new user is created, a corresponding lnode should be created and its
limits and privileges should be set. Until an lnode is created, the user is unable to log
in. When using Solaris Resource Manager, the administrator should maintain the
limits database in parallel with the normal Solaris password database. The command:

52 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

limreport \ !flag.real - uid lname

can be used to print a list of the UIDs and login names of any users who do not have
corresponding lnodes.

In this release, lnodes are not automatically created and deleted by the system
commands used to create and delete accounts. It is up to the administrator to
perform these actions. However, lnodes can be automatically created on-demand
when the user logs in, see “PAM Subsystem” on page 35 for more details.

Similarly, just before a user account is deleted from the password map, the
corresponding lnode should be removed from the limits database by using the
limadm(1MSRM) command.

If the UID of a user is ever changed, the contents of their lnode should be copied to
a new lnode corresponding to the new number and the original lnode should be
deleted. Refer to “Copying and Removing Lnodes” on page 58.

Any child lnodes should be attached either to the newly created lnode, or to some
other suitable parent lnode. The command:

limreport ’sgroup==X’ ’%u\tsgroup=Y\n’ uid | limadm set -u -f -

can be used to find all lnodes with a scheduling group parent whose UID is X, and
make them children of the lnode with a UID of Y.

The following steps illustrate changing the UID of an lnode from X to Y.

1. Save the state of the lnode in which the UID is to be changed:

limreport ’uid==X’ - lname preserve > /var/tmp/savelnode.X

2. Change the UID of the password map entry for the user from the old value (X) to
that of the new UID (Y).

3. Create an lnode for the new UID, restoring the state from that which was
previously saved:

limadm set -f /var/tmp/savelnode.X

4. For all child lnodes of the lnode to be changed (UID X), change their scheduling
group to the new lnode (UID Y):

Managing Lnodes 53

limreport ’sgroup==X’ ’%u\tsgroup=Y\n’ uid | limadm set -u -f -

5. Ensure there are no processes currently attached to the old lnode. See “Creating
and Deleting Lnodes” on page 52.

6. Use the chown(2) command to change the owner of all files owned by the
original UID to that of the new UID. For example:

find / -user X -print | xargs chown Y

7. Delete the old lnode:

limadm delete X

Lnode Maintenance Programs
The limadm command is the main tool available to administrators to maintain a
user’s lnode. This command changes Solaris Resource Manager attribute values for a
given list of user accounts. If an lnode does not exist for any of the users, then a
default-filled blank one is created first. New lnodes are created with the following
properties:

� flag.real is set;

� cpu.shares and cpu.myshares attributes are set to 1;

� The flags uselimadm and admin are set to clear;

� all other flags are set to inherit;

� all limit and usage attributes are set to zero.

The scheduling group of the new lnode is set to that of the invoker of limadm if that
user is a sub-administrator; otherwise (if the invoker is root or has the uselimadm
flag set) it is set to user other if an lnode for that user account exists, or else to the
root lnode.

The limadm invoker needs sufficient administrative privilege to perform the
specified changes. They must either be the super-user, have a set uselimadm flag, or
be a sub-administrator and only be changing the attributes of members of their
scheduling group. Restrictions apply to a sub-administrator’s use of limadm : -

� they cannot change the value of their own attributes, except those that have the
selfadmin condition (for example, the cpu.myshares attribute).

� a user’s sgroup attribute can only be assigned to a group header who is a
member of the invoker’s scheduling group, or the invoker themselves.

54 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

� they cannot change the attributes of users outside their scheduling group.

� they cannot alter the value of any attribute used to store usages . If this restriction
was absent, then sub-administrators could circumvent the group limits in their
own lnode by reducing the usage of one of their children, thereby reducing the
group usage.

� if they have a flag that evaluates contrary to the flag’s default value, they cannot
alter the value of that flag for any member of their group, except to set it to the
same contrary value. This ensures that sub-administrators with explicitly denied
privileges cannot grant those privileges to any users under their influence.This
ensures that sub-administrators with explicitly denied privileges cannot grant
those privileges to any users under their influence.

The limadm command allows an administrator to remove an lnode without deleting
the corresponding user account in the password map. To use limadm , the invoker
must be the super-user, have a set uselimadm flag, or have a set admin flag. If the
invoker only has a set admin flag, then they can only delete the lnodes of users for
whom they are a group header.

Units
Values within Solaris Resource Manager are represented in one of three types of
units:

Scaled The scaled unit is the default, easily readable
format used to display and enter values. Scaled
units help users avoid making entry errors, by
reducing the number of digits that need to be
entered. -

Raw (or unscaled) Raw units are the basic unit in which a value is
represented. For example, the raw units for
virtual memory usage are bytes, and the raw
units for virtual memory accrual are
byte-seconds. These are mainly used when billing
for usage, when exact quantities are required. -

Internal Internal units are used by Solaris Resource
Manager to store memory attributes in
machine-dependent units rather than in bytes.

Managing Lnodes 55

Conversions
Solaris Resource Manager programs carry out conversions to and from the internal
units used to store attribute values, so that the user is always presented with scaled
units or raw units. This means that, with few exceptions, the user never need be
concerned with the internal units used by Solaris Resource Manager.

The terms exa, peta, tera, giga, mega, and kilo are used within Solaris Resource
Manager to represent powers of two, not powers of ten. For example, a megabyte is
1,048,576 bytes, not 1,000,000 bytes. The powers of two for each term are 60 (exa), 50
(peta), 40 (tera), 30 (giga), 20 (mega), and 10 (kilo).

The programs that are the primary interface between users and the Solaris Resource
Manager system are limadm(1MSRM) , liminfo(1SRM) , and limreport(1SRM) .
The conversions and scaling that they carry out are detailed in the following
sub-sections.

The limadm Command
When changing attribute values, limadm allows numbers to be suffixed by scale
characters: [EPTGMK][B][.][wdhms]. Uppercase and lowercase are interchangeable. If
the attribute has the dimension of storage (memory attributes) or of storage accrual,
then a character from the first group (EPTGMK) is allowed. This multiplies by the
number of bytes in one exabyte (E), petabyte (P), terabyte (T), gigabyte (G),
megabyte (M) or kilobyte (K) as appropriate. The optional B character may be
appended for the sake of human readability, but has no effect. If the attribute has the
dimension of time (type date or time), or of storage accrual, then a character from
the second group is allowed. This multiplies by the number of seconds in one week
(w), day (d), hour (h), minute (m), or second (s) as appropriate. An optional period
may separate the storage and time units (for example. mh, M.h and MB.h all stand
for ’megabyte hours’). Where ambiguity exists in the use of the M suffix, limadm
attempts to derive its meaning from the context. If this is not possible, it is assumed
to mean mega, in preference to minutes.

These conversion characters are useful when inputting large numbers to avoid errors
in the order of magnitude of the entry, but the quantity is stored in internal units
regardless of the method of entry.

A special scale character u may also be used, by itself, but only for memory attribute
values. It indicates that the number is in machine-dependent (internal) units instead
of bytes.

56 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

The liminfo Command
The liminfo(1SRM) command uses the same suffixes when reporting as
limadm(1MSRM) uses for input (see above). Normally, liminfo converts values into
appropriate scaled formats to be printed, but the −r option can be used to cause
liminfo to print values in their raw (unscaled) form. For example, memory is
normally scaled to a suitable unit, such as megabytes (for example, ’102 MB’), but
specifying the −r option causes it to be printed in bytes (for example, 106954752
bytes).

The limreport Command
The limreport(1SRM) command always reports values in their raw (unscaled)
form. If scaled values are required, the conversion must be stated explicitly in the
expression used to display the value. For example, to display total virtual memory
usage for all users in kilobytes, rounded up to the nearest kilobyte:

limreport ’flag.real’ ’%-8.8s %d KB\n’ lname ’(memory.usage+1k-1)/1k’

As this example demonstrates, it is permitted to use the scaling suffixes on numbers
in expressions, which simplifies the conversion of raw units to scaled values.

Note that the internal units for some attributes are not the same as their ’raw’ form.
Normally, this does not need to concern the user since all the Solaris Resource
Manager programs carry out conversion to scaled units or raw units, but it means
that, for example, select-expressions in limreport that specify an exact match on a
number of bytes will always fail to match if a number is specified that is not an
integral multiple of the relevant internal unit.

Manipulating Lnodes
The limreport and limadm Commands
The limreport(1SRM) and limadm(1MSRM) commands provide the administrator
with an extremely simple way of saving and restoring the contents of lnodes for any
number of users. The limreport command is used to select and extract the lnodes
that are to be saved, and limadm is used to restore them. The most common uses for
this combination of commands are for copying lnodes and for altering the lnode
structure.

The limreport command provides a flexible method for selecting and displaying
users’ attributes. It provides two levels of selection: selection of lnodes, and selection

Managing Lnodes 57

of attributes to be displayed for each lnode selected. The lnode selection is achieved
by specification of a select-expression, which may be a single condition or a set of
conditions joined by logical operators in a C-style syntax. The attribute selection is
achieved by listing the attributes’ symbolic names. The way in which the attributes
are displayed may be specified by a format control string, similar to the C function
limreport , with extensions to handle special Solaris Resource Manager types. If a
format control string of ’-’ is specified, limreport uses default formats for each
attribute displayed. Refer to limreport(1SRM) for further details.

The limadm command provides a facility to indivisibly change the contents of
attributes within lnodes, given that the invoker has sufficient privilege. Change
commands may be specified directly on the command line or the name of a file
containing the change commands may be specified (by using the −f option).

limreport is able to generate attribute value assignments using the lim syntax
(refer to the preserve identifier in the lim syntax), the output of which may be input
to limreport using the −f option. This allows the administrator to use the two
programs together to selectively save and restore the contents of the limits database.

Copying and Removing Lnodes
The command:

limreport ’uid==X’ - Y preserve | limadm set -u -f -

will copy an lnode from UID X to UID Y. The expression ’uid==X’ provides the
method for selecting the source lnode. The preserve identifier causes limreport to
output all attribute values that are not read-only in a syntax that is suitable to pass to
limadm . Placing the UID Y prior to the preserve identifier causes this to be the first
item in the data passed to lim , thus providing the selection of the target lnode.

If the source lnode is no longer required, it may be removed using limadm .

Note - Caution should be used when using a match by UID as the limreport
selection expression. If multiple login names share a UID, they will all be matched.
In the example above, this would not matter, the same lnode data will be preserved
and loaded multiple times. In the Solaris system, UID 0 has login names of both
root and smtp .

58 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 6

The SHR Scheduler

The Solaris Resource Manager SHR scheduler is used to control the allocation of the
CPU resource. The concept of shares allows administrators to easily control relative
entitlements to CPU resources for users, groups, and applications. The concept of
shares is analogous to that of shares in a company; what matters is not how many
you have, but how many compared with other shareholders.

Technical Description
There are four attributes per lnode associated with the Solaris Resource Manager
scheduler: cpu.shares, cpu.myshares, cpu.usage, and cpu.accrue. The output of
liminfo(1SRM) displays these attributes, and other useful values.

Solaris Resource Manager scheduling is implemented by way of the SHR scheduling
class. This includes support for the dispadmin(1M) , priocntl(1) , nice(1) , and
renice(1) commands. At the system call level, SHR is compatible with the TS
scheduling class.

Shares
A user’s cpu.shares attribute is used to apportion CPU entitlement with respect to the
user’s parent and active peers. A user’s cpu.myshares attribute is meaningful only if
the user has child users who are active; it is used to determine the proportion of
CPU entitlement with respect to them.

For example, if users A and B are the only children of parent P, and A, B and P each
have one share each within group P (that is, A and B have cpu.shares set to 1, while P

59

has cpu.myshares set to 1), then they each have a CPU entitlement of one-third of the
total entitlement of the group.

The actual CPU entitlement of a user thus depends on the parent’s relative
entitlement. This, in turn, depends on the relative values of cpu.shares of the parent to
the parent’s peers and to the cpu.myshares of the grandparent, and so on up
scheduling tree.

For system management reasons, processes attached to the root lnode are not subject
to the shares attributes. Any process attached to the root lnode is always given
almost all the CPU resources it requests.

It is important that no CPU-intensive processes be attached to the root lnode, since
that would severely impact on the execution of other processes. To avoid this, the
following precautions should be taken: -

� The central administrator account should have its own UID, one that is different
than the super-user account. This account should be used when logging in to
perform non-administrative activities. If a UID of super-user is needed to carry
out administrative functions, the central administrator can use the su(1)
command to change UIDs while still remaining attached to its own lnode.

� The srmuser(1SRM) command can be used in the init.d(4) scripts to attach
any daemon processes to a non-root lnode. Any processes started in the boot
script have, by default, an effective UID of root, and are attached to the root lnode.
The user command allows daemons to retain an effective UID of root, while
attached to their own lnode. This will avoid problems if any of the daemons
become CPU-intensive.

Not all group headers in the scheduling tree need to represent actual users who run
processes, and in these cases it is not necessary to allocate them a share of CPU. Such
lnodes can be indicated by setting their cpu.myshares attribute to zero. The CPU
accrue attribute in such a group header still includes all charges levied on all
members of its group.

Allocated Share
The cpu.shares and cpu.myshares attributes determine each active lnode’s current
allocated share of CPU, as a percentage. The shares of inactive users make no
difference to allocated share. If only one user is active, then that user will have 100
percent of the available CPU resource. If there are only two active users with equal
shares in the same group, each will have allocated shares of 50 percent. Refer to
“Calculation of Allocated Share” on page 63 for more information on how the
allocated share is calculated.

60 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Usage and Decay
The cpu.usage attribute increases whenever a process attached to the lnode is charged
for a CPU tick. The usage attribute value exponentially decays at a rate determined
by the usage decay global Solaris Resource Manager parameter. The usage decay rate
(described by a half-life in seconds) is set by the srmadm(1MSRM) command.

Although all processes have an lnode, regardless of their current scheduling class,
those outside the SHR scheduling class are never charged.

Accrued Usage
The accrued usage attribute increases by the same amount as the usage attribute, but
is not decayed. It therefore represents the total accumulated usage for all processes
that have been attached to the lnode and its members since the attribute was last
reset.

Effective Share
An lnode’s allocated share, together with its cpu.usage attribute, determines its
current effective share. The Solaris Resource Manager scheduler adjusts the priorities
of all processes attached to an lnode so that their rate of work is proportional to the
lnode’s effective share, and inversely proportional to the number of runnable
processes attached to it.

Per-Process Share Priority (sharepri)
Each process attached to an lnode has internal Solaris Resource Manager-specific
data maintained for it by the operating system kernel. The most important of these
values for scheduling purposes is the sharepri value. At any time, the processes
with the lowest sharepri values will be the most eligible to be scheduled for running
on a CPU.

Sample Share Allocation
Scheduling Tree Structure
The following points relate to the structure of the scheduling tree, which is an area
requiring special consideration by the central administrator:

The SHR Scheduler 61

� The scheduling tree is the structure used by Solaris Resource Manager to
implement a hierarchy of resource and privilege control. If a sub-administrator
gains control over a sub-tree of the scheduling tree that they would normally not
have access to, they can gain access to additional resource usage and privileges
without the approval of the central administrator. One way for this to happen is if
an administrator removes an lnode, leaving an orphaned sub-tree behind. A
sub-administrator may recreate the missing lnode in their own group, thus giving
them control over the previously orphaned section of the tree.

� The central administrator can use the limreport(1SRM) command to identify
orphaned sections of the scheduling tree, via the built-in orphan identifier. Any
orphans found should then immediately be reattached. However, the limreport
command may also be used by sub-administrators to find orphaned sub-trees so
that they can add them to their group, as discussed above. This provides the
potential for a breach of security.

� When a new lnode is created, it is mostly zero-filled, which causes most flags to
have the default value of inherit. This is the desired effect for most flags, since
they are used to indicate device privileges. The flags which are explicitly cleared at
lnode creation time are the uselimadm and admin flags. This is to prevent new
users from automatically gaining any administrative privilege.

Description of Tree
The tree shown below defines a structure consisting of several group headers and
several ordinary users. The top of the tree is the root user. A group header lnode is
shown with two integers, which represent the values of its shares and myshares
attributes respectively. A leaf lnode is shown with a single integer, which represents
the value of its shares attribute only.

R 1,1name share[,myshares] = 1node

= process

M 1,2A 3,1

C2 D 2,0 N 2 X 2,0

Z 2G 2F 2E 2

Y1B 2

W 1,0

Figure 6–1 Scheduling Tree Structure

62 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Calculation of Allocated Share
Lnodes A, C and N currently have processes attached to them. At the topmost level,
the CPU would only need to be shared between A and M since there are no
processes for W or any member of scheduling group W. The ratio of shares between
A and M is 3:1, so the allocated share at the topmost level would be 75 percent to
group A, and 25 percent to group M.

The 75 percent allocated to group A would then be shared between its active users
(A and C), in the ratio of their shares within group A (that is, 1:2). Note that the
myshares attribute is used when determining A’s shares with respect to its children.
A would therefore get one third of the group’s allocated share, and C would get the
remaining two thirds. The whole of the allocation for group M would go to lnode N
since it is the only lnode with processes.

The overall distribution of allocated share of available CPU would therefore be 0.25
for A, 0.5 for C and 0.25 for N.

Further suppose that the A, C, and N processes are all continually demanding CPU
and that the system has at most two CPUs. In this case, Solaris Resource Manager
will schedule them so that the individual processes receive these percentages of total
available CPU: -

� for the two A processes: 12.5 percent each;

� for the C process: 50 percent;

� for the three N processes: 8.3 percent each

The rate of progress of the individual processes is controlled so that the target for
each lnode is met. On a system with more than two CPUs and only these six
runnable processes, the C process will be unable to consume the 50 percent
entitlement and the residue is shared in proportion between A and N.

Relationship of Solaris Resource
Manager With the Solaris nice Facility
The nice facility in Solaris allows a user to reduce the priority of a process so that
normal processes will not be slowed by non-urgent ones. With Solaris Resource
Manager, the incentive for users to use this facility is a reduced charge rate for CPU
time used at a lower priority.

Solaris Resource Manager implements this effect by allowing the central
administrator to bias the sharepri decay rate for processes which are niced. The
pridecay global Solaris Resource Manager parameter in the srmadm(1MSRM)
command is used to set the decay rates for the priorities of processes with normal
and maximum nice values. The rates for all intervening nice values are interpolated

The SHR Scheduler 63

between them and similarly extrapolated to the minimum nice . For example, the
priority (for example, sharepri) for normal processes may be decayed with a
half-life of two seconds, while the priority of processes with a maximum nice value
may be decayed with a half-life of sixty seconds.

The effect is that nice d processes get a smaller share of CPU than other processes
on the same lnode. Under Solaris Resource Manager nice has little influence on
execution rates for processes on different lnodes unless the queue of runnable
processes exceeds the number of CPUs.

Solaris Resource Manager treats processes with a maximum nice value (for
example, those started with a nice −19 command) specially. Such processes will
only be granted CPU ticks if no other process requests them and they would
otherwise be idle.

For information on the relationship of Solaris Resource Manager to other resource
control features, see “Relationship to Other Solaris Resource Control Features” on
page 4.

Dynamic Reconfiguration
The dynamic reconfiguration (DR) feature of Sun Enterprise servers enables users to
dynamically add and delete system boards, which contain hardware resources such
as processors, memory, and IO devices. Solaris Resource Manager keeps track of the
available processor resources for scheduling purposes and appropriately handles the
changes, fairly redistibuting currently available processor resources among eligible
users/processes.

Since Solaris Resource Manager controls only the virtual memory sizes of processes,
not the physical memory used by processes and users, the effect of a DR operation
on memory has no impact on Solaris Resource Manager’s memory-limit checking.

Idle Lnode
The idle lnode (srmidle) is the lnode assigned by the central administrator to
charge for all the kernel’s idle CPU costs. At installation, the idle user (username
srmidle) was created with a value of 41. The idle lnode should have zero shares, to
ensure that the processes attached to it are run only when no other processes are
active. The idle lnode is assigned using the srmadm(1MSRM) command.

At boot time, the default idle lnode is the root lnode. At transition to multi-user
mode, the init.d(4) script will set the idle lnode to that of the account srmidle if
such an account exists. This behavior can be customized by specifying a different
lnode to use in the /etc/init.d/init.srm script.

64 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

If the idle lnode is not root, then it must be a direct child of root.

Other Lnode
The other lnode (srmother) is the lnode assigned by the systems administrator as
the default parent lnode for new users created after the initial install (where root is
the default parent lnode). The other lnode, which is auto-created by the system at
installation time, has a default value of 1 share, to ensure that lnodes attached to it
will have access to the CPU.

The other lnode should have no resource limits, a CPU share of 1 or more, and no
special privileges.

Lost Lnode
Under Solaris Resource Manager, the setuid(2SRM) system call has a side effect of
attaching the calling process to a new lnode. If the change of attachment fails,
typically because the new lnode does not exist, then the process is attached instead
to the lost lnode (srmlost), which was created when you installed Solaris Resource
Manager. If this attachment also fails or no lost lnode has been nominated, then the
setuid(2SRM) function is unaffected and the process continues on its current lnode.

The init.srm script sets the lost lnode during the transition to multiuser mode.
This behavior can be overridden by specifying an lnode to use in the
/etc/init.d/init.srm file. To avoid security breaches, the lost lnode should
have a CPU share of 1, and no special privileges. (If you alter the values, consider
the requirements for this user when making the change.)

The SHR Scheduler 65

66 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 7

Memory Limits, Process Memory
Limits, and Process Count Limits

Solaris Resource Manager allows an administrator to control:

� The amount of virtual memory held by users or an application (this is a measure
at the lnode level of all processes’ virtual memory usage).

� The amount of virtual memory held by a group of users or an application (this is a
measure at the group header lnode level of all processes’ virtual memory usage
where those processes are attached to the group header and/or to its children).

� The amount of virtual memory held by an individual process.

� The number of processes that a user/lnode can run concurrently.

Attributes for Control of Virtual
Memory (Total)
There are a number of system attributes used for recording virtual memory usage,
and for assigning limits to it.

The system attributes used to administer memory usage are:

memory.myusage The memory.myusage attribute of an lnode is
equal to the sum of the virtual memory usage of
all processes currently attached to the lnode.

67

memory.usage The memory.usage attribute of an lnode is
equal to the sum of its memory.myusage
attribute and the memory.usage attributes of its
child lnodes.

memory.limit The memory.limit attribute is applied to the
memory.usage attribute. It limits the combined
memory usage of all processes attached to the
lnode and all member lnodes.

Attribute for Control of Process Memory
(Per-Process)
The following system attribute is used to record process usage and assign limits to it.

memory.plimit The memory.plimit attribute of an lnode is a
per-process limit that is applied separately to the
memory usage of each process attached to it or to
any of its members.

Technical Description of Memory Limits
Whenever a process attempts to increase its memory size, it is subject to the memory
limits (total and per-process) of the lnode to which it is attached. There are five ways
in which a process can attempt to increase its memory size:

1. Calling an allocation routine, such as malloc(3C) , which results in an invocation
of the sbrk(2) system call. If a memory limit is exceeded, the call will return an
error with errno set to ENOMEM.

2. Expanding the stack and causing a stack fault which would normally cause an
extra page of memory to be given to the process. If a memory limit is exceeded,
the process will be sent a SIGSEGV signal.

3. Use of mmap(2) .

4. Using fork(2) . The child address space is duplicated while it is still owned by
the parent process. During duplication, the new address space will not exceed the

68 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

memory.plimit since the parent must already be within this limit; however, the
allocation is subject to the memory.limit .

5. Using exec(2) . During an exec, memory usage first decreases as the old address
space is discarded. However, if the address space of the new program is larger,
and causes a limit to be exceeded, the exec can fail.

Dynamic Reconfiguration and Virtual
Memory Limits
The dynamic reconfiguration (DR) feature available on the Enterprise 10000 systems
has limited impact on the virtual memory limits imposed on lnodes. Specifically, DR
makes it possible to add or remove physical memory from the system while the
system is up and running. (The system’s pool of virtual memory includes all of the
physical memory, plus the swap space configured into the system.) Additionally, the
swap(1M) command can be used on any Solaris system to add (−a) or delete (−d)
swap space from the system. Thus, the total amount of virtual memory can grow or
shrink during operation.

This has an indirect impact on the virtual memory limits imposed by Solaris
Resource Manager. Because virtual memory is managed in absolute units (rather than
shares), the effective limits do not change when the system’s resources change during
operation. (Note that this behavior is different from the dynamic reconfiguration of
processors, as discussed in “Dynamic Reconfiguration” on page 64.)

Attributes for Control of Process Count
The system attributes used to administer process usage (the number of processes)
are:

process.myusage The process.myusage attribute of an lnode is
equal to the number of processes attached to the
lnode.

process.usage The process.usage attribute of an lnode is
equal to the sum of its process.myusage attribute
and the process.usage attributes of its child
lnodes.

Memory Limits, Process Memory Limits, and Process Count Limits 69

process.limit The process.limit attribute is a limit which
applies to the process.usage attribute of an lnode
to limit the number of processes which can be
attached to the lnode and all member lnodes
concurrently.

Technical Description of Process Count
The fork(2) , fork1(2) and vfork(2) system calls are used to create new
processes. If this would cause the process limit to be exceeded, the system call fails,
returning an EAGAIN error. Most programs interpret EAGAIN as meaning a
temporary shortage of system resources and try the fork again, perhaps after a short
sleep. If the fork failure is due to a Solaris Resource Manager limit, this can lead to
looping for an indefinite amount of time because EAGAIN will be returned on each
retry until the limit is fixed for the affected lnode.

70 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 8

Usage Data

Solaris Resource Manager provides the administrator with a precise mechanism for
collection of accrued usage values for system, application and user resources. This
information, plus the functions and utilities provided with Solaris Resource Manager,
can be used as a base for the development of a resource billing system.

Accrue Attributes
An lnode’s accrue attributes are used to store information about the accrual of
resource usage. For example, an lnode’s cpu.accrue attribute contains the accrued
CPU usage for all lnodes within the group as well as that of the current lnode. When
any of an lnode’s accrue attributes are updated, the change is also applied to the
lnode’s parent (as with changes to the usage attribute) and so on up to the root
lnode, so that the accrued usage at each level in the scheduling tree is the sum of the
accrued usage for the lnode and the accrued usage of its children, if any.

Billing Issues
The administrator must decide which lnodes are to be billed for resource usage. For
example, administrators may only be concerned with billing entire departments, so
they may only wish to bill the group headers of the topmost groups, whose accrued
usage will include all the accrued usage of the lnodes at lower levels within their
departments.

71

For administrators to be able to implement a billing system, they must determine a
costing function for each resource to be billed. This may be a simple linear
relationship (where unit cost is the same, regardless of the amount used), or it may
be a non-linear relationship, such as a step function, or a curve where unit cost
varies as the amount of usage varies.

In deciding upon a costing function for each resource, the administrator should keep
in mind that the costing function will not only control the assignment of cost to
accrued resource usage, but can also have an impact on the way in which a user uses
the resource. For example, if the costing function for virtual memory usage causes
the unit cost to increase as the amount of usage increases, there is a strong incentive
for the users to keep virtual memory usage low. Therefore, it is possible for the
administrator to control user behavior through the use of an appropriate costing
strategy.

There is only one accrue attribute per resource. It contains the accrued usage for the
resource based on the usage attribute for the resource. This means that there is no
accrued usage corresponding to the myusage attribute. For group headers, there is
no accrued usage for the user as an individual, since the accrue attribute holds the
group’s accrued usage. For lnodes with no children, leaf lnodes, this does not matter,
since the myusage attribute and the usage attribute are identical. If a bill is required
for the individual accrued usage for a group header, it must be calculated from the
group total less the sum of the individual totals of each child in the group.

The liminfo Command
The default output of the liminfo(1SRM) command is designed for users who
wish to find out their current usages, limits, privileges, etc. The liminfo is also of
use to administrators who want to enquire on the attributes of other users. There are
a number of different report formats that can be requested, including options that
make the output of liminfo suitable for processing by a pipeline of filters. Refer to
liminfo(1SRM) for details of the command line options and their meanings, and
for a description of the fields that can be displayed.

The limreport Command
The limreport(1SRM) command allows an administrator to query any attributes,
including the accrue attributes, of any user. The command provides a flexible
method for the selection of information to be displayed from the chosen lnodes.

For example, the command:

% limreport ’cpu.accrue!=0’ ’%u %u %10d\n’ uid lname cpu.accrue

72 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

selects all lnodes with any accrued usage in the usr domain, and lists the UID and
accrued usage attribute from each of the selected lnodes. To sort these values by
cpu.accrue and list only the top ten users would be a simple matter of piping the
result to a sort command:

% limreport ’cpu.accrue!=0’ ’%u %u %10d\n’ uid lname cpu.accrue | sort -2n | head

The limadm Command
The limadm(1MSRM) command can be used within a billing system to zero the
accrue attributes after they have been billed. For example, the command:

limreport 1 ’%u\tcpu.accrue=0,mem.accrue=0\n’ uid | limadm set -u -f

uses the limreport(1SRM) command to generate a list of commands piped to
limadm . Every lnode is selected, and for each lnode, the accrue attribute is zeroed.

The administrator should take care in deciding when to clear the accrue attribute of
an lnode. The timing will depend on the billing strategy. For example, if bills are to
be produced at a group level, and then individual bills are to be produced for the
group members, the accrue attributes of the group members should not be cleared
until after both bills have been produced. However, if individual bills are not to be
produced, the group members’ accrue attributes should be cleared at the same time
as the group header’s, even though they may not have been individually used.

Usage Data 73

74 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 9

Troubleshooting

This section is included to provide assistance to administrators in diagnosing
problems in the operation of Solaris Resource Manager.

User Cannot Log In
� There is no lnode corresponding to the UID of the user. This means that an

administrator has not set up an lnode for that user’s account. The problem is
identified by the message to the effect that: No limits information is available.
Refer to “Orphaned Lnodes” on page 80.

� The user has the nologin or noattach flag set.

� The user has the onelogin flag set and is already logged in at another terminal
or window.

� The user has reached the connect-time usage limit. The user needs to wait for the
usage to decay before logging in again, or the administrator can change either the
user’s terminal.usage attribute or the terminal.limit attribute to allow the user
additional terminal connect-time.

� The user’s lnode may exist but has been orphaned by removal of its parent lnode.
See “Orphaned Lnodes” on page 80.

None of the Solaris Resource Manager limitations listed above apply to the root user.

75

User Not Informed of Reaching Limits
During normal operation of Solaris Resource Manager, the logged-in user receives
notification messages whenever a limit is reached. Users may be unaware of the
cause of the problems they are having, and the system will appear to behave
mysteriously. However, the system administrator will be notified.

The delivery of notification messages is carried out by the Solaris Resource Manager
daemon program, limdaemon . There are a number of possibilities that the
administrator can investigate if notification messages are not being delivered: - -

� The console window is hidden. Where a user has logged in using a particular
window and then opened additional windows that cover the login window, the
user may miss a message delivered to their login window.

� The limdaemon(1MSRM) program is not running.

� limdaemon is unable to dynamically allocate additional memory to maintain its
internal structures. If this happens, limdaemon displays a diagnostic message on
the system console the first time that it fails to get sufficient memory. It continues
to attempt to get memory, but fails silently after the first attempt.

� The utmp file is corrupt or missing. limdaemon relies on this file to determine the
terminals where a user is logged in, so that notification messages can be sent to
those terminals. If the utmp file is corrupt or missing, an error message is reported
on the console, and the notification message delivery is suppressed.

� limdaemon is unable to deliver a message due to a system limitation. For
example, if limdaemon needs to open a window on a terminal to deliver the
message and is unable to then the message is dropped.-

Unable to Change User’s Group
The sgroup attribute determines the lnode’s parent in the scheduling tree. This
hierarchy is used to regulate resource usage and to schedule the CPU. For this reason
there are several security precautions placed on the modification of the sgroup
attribute to avoid inadvertent errors when changing it, and to avoid circumvention
of Solaris Resource Manager.

To modify the sgroup attribute, a user needs one of the following privileges:

� be the super-user;

� have a set uselimadm flag;

76 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

� have a set admin flag and be a group header for the lnode being changed.

Orphaned lnodes cannot be made parents of other lnodes. See “Orphaned Lnodes”
on page 80.

Corrupted Limits Database
If a corruption occurs to the limits database, it is a major concern to the
administrator. There is no single symptom which can reliably be used to determine
that the limits database has been corrupted, but there are a number of indicators
which should be recognized as potentially reflecting a corrupt limits database.

If corruption is proven, the administrator should revert to an uncorrupted version of
the limits database and matching configuration. If the corruption is limited to a small
section of the limits database, the administrator may be able to save the contents of
all other lnodes and reload them into a fresh limits database using the
limreport(1SRM) and limadm(1MSRM) commands.

For more information about detecting and correcting a corrupt limits database, see
“Corruption of the Limits Database” on page 82.

Terminal Connect-time Not Updated
The most likely cause of this problem is that the limdaemon(1MSRM) program is
not running. limdaemon periodically updates the usage and accrue attributes in the
terminal device category for all currently logged in users. Typically, it would be
started from the Solaris Resource Manager init.d(4) script.

Users Frequently Exceeding Limits
There are several likely causes for this: -

� User’s administrative limit is set too low for the user’s requirements.

� The usage attribute is not being decayed. The administrator is responsible for
ensuring that decays are performed on the device categories for all renewable
resources (including the terminal device category). Typically, this would be done
by regular execution of the limdaemon(1MSRM) command. If a decay is not

Troubleshooting 77

performed for a renewable resource, the usage attribute for that resource continues
to increase until its limit is reached.

� The period between executions of limdecay is too long. The frequency of
execution of limdaemon(1MSRM) should be set to accommodate the granularity
of the shortest decay interval.

� The decay attribute for a renewable resource is too small, or the interval attribute
is too large. If the decay for a renewable resource over a given time interval is set
below the typical consumption rate of that resource, the usage attribute will
gradually increase until its limit is reached.

System Runs Slowly
Processes on the Root Lnode
For reasons of system management, processes attached to the root lnode are given
almost all the CPU resources they demand. Therefore, if a CPU-bound process is
attached to the root lnode, it will tie up a CPU, causing processes on other lnodes to
slow or stop.

The following precautions can be taken to prevent this from occurring:

� The administrator should always login to an lnode of their own for normal use,
rather than attaching to the root lnode. If they need to attach to the root lnode for
some reason, they should be careful not to use any CPU-intensive applications,
such as compilers. To use a UID of super-user without attaching to the root lnode,
the administrator can use the su(1) command.

� The init.d(4) scripts should be changed to use the srmuser(1SRM) program
to attach all daemons to lnodes of their own, so that they are not attached (by
inheritance) to the root lnode.

A program that runs as setuid-root does not automatically attach to the root
lnode. Normally, the process remains attached to the lnode of the parent that created
it, and only the effective UID is changed.

CPU Resources Not Controlled by Solaris
Resource Manager
Solaris Resource Manager only controls CPU use by processes in the SHR scheduling
class. If excessive demands are made at higher priority by other scheduling classes,

78 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

especially real-time (RT) and system (SYS), then SHR can only schedule with the
residual CPU resource.

The use of the RT class conflicts with the Solaris Resource Manager software’s ability
to control the system. Real-time processes get complete access to the system,
specifically so that they can deliver real-time response (generally on the order of a
few hundred microseconds). Processes running in the SHR class by definition have
lower priority than anything running in real-time, and Solaris Resource Manager has
no control over RT processes. Real-time processes can easily consume all available
resources, leaving Solaris Resource Manager nothing left to allocate to remaining
processes.

One notable system service that runs entirely in the SYS class is the NFS server.
Solaris Resource Manager cannot control the NFS daemons, since they run in SYS.
The Solaris Resource Manager product’s ability to allocate processor resources may
be reduced on systems offering extensive NFS service.

While processes are executing kernel code (inside a system call), the usual time-slice
preemption rules do not apply. Most system calls will only do a reasonable amount
of work before they reach a preemption point. However if the system is under high
load of the more intensive system calls this can result in reduced overall
responsiveness and is outside the scope of a scheduling class to control.

If the system is short of available real memory then the resulting I/O bottleneck as
the page fault rate increases and process swapping increases leading to increased
kernel consumption of CPU. Large amounts of time waiting on I/O may indicate lost
CPU capacity. Again, this is outside the scope of a scheduling class to control.

The SHR scheduling class is a time-sharing (TS) scheduler. It uses the same global
priority range as the TS and the IA schedulers. It is not appropriate to mix use of
SHR with TS and IA except for the transition in moving all processes into or out of
the SHR class. System operation with a mix of processes in SHR and TS classes will
result in reduced quality of scheduling behavior in both classes. For this reason,
Solaris Resource Manager prevents non-root processes from moving themselves or
others to the TS or IA classes. The RT class uses an alternate priority range and may
be used with the SHR class in the same way as with the TS and IA classes.

If processes run by root contain code that uses the priocntl(2) system call directly
instead of using the setpriority(3C) library routine to adjust process priorities
then they may move the target processes into another scheduling class (typically TS).
The setpriority(3C) library routine code accounts for the fact that the
priocntl(2) interface to SHR is binary compatible with that for TS and so avoids
the problem. The −c option of ps(1) or the −d option of priocntl(1) can be used
to display the scheduling class of processes.

The same difficulty arises with root privilege processes which explicitly use
priocntl(2) to manage the scheduling class membership of processes.

Troubleshooting 79

Unexpected Notification Messages
Notification messages will be received by any user affected by a limit being reached.
Therefore, if a group limit is reached, the group header, and all users below them in
the scheduling hierarchy, will receive a notification message.

If a user is attached to another lnode, a limit may be reached. The user will not
receive a notification message, but all the other affected users will. The cause of the
problem may not be apparent to the group that is affected.

Orphaned Lnodes
The definition of an orphaned lnode is one that has a nonexistent parent lnode. This
is of concern to Solaris Resource Manager administrators because Solaris Resource
Manager prevents processes from attaching to any lnode that is orphaned or has an
orphaned ancestor in the scheduling tree.

The kernel checks changes to the sgroup attribute in order to prevent the creation of
orphans by invalid alterations to the scheduling group parent.

The major effect of an lnode being orphaned is that it can no longer have processes
attached to it. Since no process can connect to it, the lnode cannot be used for
logging in. Any attempts to log in using the corresponding account will fail.

The easiest way for an administrator to detect orphaned lnodes is to use the
limreport(1SRM) command with the built-in orphan identifier. The command

% limreport orphan - uid sgroup lname

will list the UID, scheduling group parent, and login name of users who have
orphaned lnodes. The sgroup attribute can be used to determine which of the
lnodes is at the top of an orphaned section of the tree.

The first step an administrator should take when an orphaned lnode is discovered is
to find the top of the orphaned section of the scheduling tree, since this is the lnode
which needs to be re-attached. If the top of the orphaned section is not correctly
identified, only part of the orphaned section will be re-attached to the tree.

Once the top of the orphaned section is determined, an administrator with sufficient
privilege can use limadm(1MSRM) to set the sgroup attribute of the topmost
orphaned lnode to a valid lnode within the scheduling tree. This will cause the
orphaned lnode to be re-attached to the tree as a member of the group that the valid
lnode heads. limadm verifies that the new scheduling group parent to be applied is

80 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

able to be activated, thus ensuring that the lnode being changed will no longer be
orphaned.

Alternatively, the administrator may create a new user whose UID is equal to the
UID in the sgroup attribute of the orphaned lnode. This will cause the automatic
reattachment of the orphaned section of the tree.

Group Loops
When an lnode is made active, all of its parents up to the root lnode are also
activated. If, in doing this, one of the lnodes is seen to have a parent which has
already been encountered, the kernel has discovered a group loop.

If the limits database is corrupted, it is possible for a group loop to occur, where one
of the ancestors of an lnode is also one of its children. The kernel automatically
connects the loop into the scheduling tree by breaking it arbitrarily and connecting it
as a group beneath the root lnode. This means that the lnode at the point where the
loop is connected to the scheduling tree becomes a group header of a topmost group.
It is possible that members of this group might inherit privileges or higher limits
than they would otherwise have.

Causes
Group loops are prevented by limadm(1MSRM) when setting scheduling group
parents. The only cause of a group loop is corruption to the limits database. This is a
serious problem, and may cause all sorts of other difficulties in Solaris Resource
Manager since the limits database is so basic to its operation.

Effects
When a group loop is discovered by the kernel, it silently attaches one of the lnodes
in the loop directly beneath the root lnode. It cannot determine which is the
uppermost lnode since the loop has no beginning or ending.

Correction
The problem is self-correcting in respect to the structure of the scheduling tree since
the kernel attaches the lnode to the root lnode. Since the attachment is from an
arbitrary point in the loop, the administrator needs to determine where the lnode

Troubleshooting 81

should be attached and should also check the point of attachment for every other
member in the loop.

The result of automatic group loop repair can be seen by listing the lnodes which are
children of the root lnode. The command

% limreport ’sgroup==0’ - uid lname

will list all lnodes that have the root lnode as their parent. If any lnodes are listed
which should not be children of the root lnode, they are possibly the top of a group
loop that has been attached beneath the root lnode.

The major concern of the administrator when a group loop is detected is that, since
the cause of the group loop was corruption to the limits database, many more
serious problems could arise. If the administrator suspects corruption in the limits
database, it is best to carry out some validation checks against the file to determine if
it has been corrupted and then take remedial action. Refer to “Crash Recovery” on
page 82 for details on detecting and correcting a corrupt limits database.

Crash Recovery
There are many concerns for an administrator when a Solaris system has a failure,
but there are some additional considerations when a Solaris Resource Manager
system is being used. They are:

� the limits database may have been corrupted by a disk error or for some other
reason.

� the operation of limdaemon(1MSRM) during a system failure, particularly in
relation to connect-time usage charging.

The following sections discuss these in detail, and offer suggestions for handling the
situation, where appropriate.

Corruption of the Limits Database
Solaris Resource Manager maintenance of the limits database is very robust and
corruption is very unlikely. However, if corruption does occur, it is a major concern
to the administrator, since this database is basic to the operation of Solaris Resource
Manager. Any potential corruption should be investigated and, if detected, corrected.

82 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Symptoms
There is no single symptom which can reliably be used to determine that the limits
database has been corrupted, but there are a number of indicators which should be
recognized as potentially reflecting a corrupt limits database:

� the detection of a group loop by the Solaris Resource Manager kernel is a positive
indication that the limits database has been corrupted. Group loops are strictly
prevented by Solaris Resource Manager, and the only way they can occur is for an
sgroup attribute to be corrupted in some way. Refer to “Group Loops” on page
81 for more details.

� a user having the message ’No limits information available’ displayed when they
attempt to log in, and their login being rejected. This may be caused if the
corruption to the limits database causes their flag.real attribute to be cleared,
which effectively deletes their lnode. It will affect not only the lnode which is
deleted, but also any lnodes which are orphaned (Refer to the Orphaned Lnodes
section for details). Note that the ’No limits information available’ message will
also appear if no lnode has been created for the account, or if it has been
intentionally deleted, so it is not a clear indicator that the limits database has been
corrupted.

� unrealistic values suddenly appearing in usage or limits attributes. This may cause
some users to suddenly hit limits.

� users suddenly complaining of a loss of privilege or unexpected privileges, caused
by corruption of privilege flags.

If an administrator suspects that there is any corruption in the limits database, the
most likely way to detect it is to use limreport(1SRM) to request a list of lnodes
where attributes that should have values within a known range are outside that
range. This command could also be used to list lnodes whose flag.real is clear.
This will indicate accounts in the password map for which no lnode exists.

Treatment
If corruption is detected, the administrator should revert to an uncorrupted version
of the limits database. If the corruption is limited to a small section of the limits
database, the administrator may be able to save the contents of all other lnodes and
reload them into a fresh limits database using the limreport(1SRM) and
limadm(1MSRM) commands. This would be preferable if no recent copy of the limits
database was available since the new limits database would now contain the most
recent usage and accrue attributes. The procedure for saving and restoring the limits
database is documented in the Managing lnodes section. For simple cases of missing
lnodes it can be sufficient to just recreate them by using the limadm command.

Troubleshooting 83

Connect-Time Loss by limdaemon

If limdaemon(1MSRM) terminates for any reason, all users currently logged in cease
to be charged for any connect-time usage. Furthermore, when limdaemon(1MSRM)
is restarted, any users logged in will continue to use that terminal free of charge.
This is because the daemon relies on login notifications from login(1) to establish
a Solaris Resource Manager login session record within the internal structures it uses
to calculate connect-time usages. Therefore, whenever it starts, there are no Solaris
Resource Manager login sessions established until the first notification is received.

Typically this will not be a problem if the termination of limdaemon is due to a
system crash, since the crash will cause other processes to terminate also. Login
sessions would then not be able to recommence until the system is restarted.

If limdaemon(1MSRM) terminates for some other reason, the administrator has two
choices:

1. Restart the daemon immediately, and ignore the lost charging of terminal
connect-time for users who are already logged in. This could mean that a user has
free use of a terminal indefinitely unless sought out and logged off.

2. Bring the system back to single-user mode then return to multi-user mode, thus
ensuring that all current login sessions are terminated and users can only log in
again after the daemon has been restarted.

84 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

CHAPTER 10

Notification Messages

The Solaris Resource Manager system error messages are:

memory limit reached

The virtual memory usage (memory.usage) of an lnode has reached the virtual
memory limit (memory.limit)

process limit reached

The number of processes (process.usage) of an lnode reached the process count
limit (process.limit).

per-process memory limit reached

The virtual memory usage of a process reached the virtual memory limit
(memory.plimit).

lnode attach failed in setuid

If the Solaris Resource Manager system is installed and enabled, then the setuid
system call, in addition to its standard function, attaches the calling process to the
lnode associated with its new real UID. If attachment fails, it is usually because there
is no lnode associated with the new UID.

currently barred from logging in

The flag.nologin is set for the user at the time the user tries to log in.

85

already logged in - only one login allowed

The flag.onelogin is set for the user, and the user has already logged in from
another terminal.

no permission to use this terminal

The terminal.flag.all , terminal.flag.console , terminal.hardwired , or
terminal.flag.network is set for the user when the user tries to log in from a
particular terminal.

terminal connect time limit reached

The terminal connect time (terminal.usage) reached the limit (terminal.limit).

86 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

APPENDIX A

Solaris Resource Manager Script
Examples

Initialization Script
The following start-up script is supplied with the system as
/etc/init.d/init.srm and is executed with an argument of start as the system
is changing to run-level 2 or 3 (multi-user mode). It is also executed with an
argument of stop at system shutdown.

#!/bin/sh
#
Copyright (c) 1998 by Sun Microsystems, Inc.
All rights reserved.
#
Copyright 1995-1997 Softway Pty. Ltd.
#
Start/stop Solaris Resource Manager v1.0
#
#ident "@(#)init.srm 1.17 98/10/27 SMI"

###
Default values.

DATADIR=/var/srm
ShareDb=$DATADIR/srmDB
LimdaemonOptions=
ChargeOptionsOn="limits=y:share=y:adjgroups=y:limshare=y"
ChargeOptionsOff="limits=n:share=n:adjgroups=n:limshare=n"

LostLnode=srmlost
IdleLnode=srmidle

87

###

ECHO=echo # For a verbose startup and shutdown
ECHO=: # For a quiet startup and shutdown

SRMDIR=/usr/srm
SRMBIN=$SRMDIR/bin
SRMSBIN=$SRMDIR/sbin
ETCSRM=/etc/srm

PATH=/sbin:/usr/sbin:/bin:$PATH:$SRMSBIN:$SRMBIN
export PATH
case "$1" in
’start’)

if [! -x $SRMBIN/srmadm]; then
echo "Solaris Resource Manager *not* installed." \

"Missing srmadm command."
exit

fi

Only bother if sched/SHR is loaded.
if [‘$SRMBIN/srmadm‘ != yes]
then

#
Usually this is because /etc/system doesn’t have the usual
set initclass="SHR"
or at least a set extraclass="SHR"
#
echo "Solaris Resource Manager *not* loaded."
exit

else
echo "Enabling Solaris Resource Manager v1.0."
if [‘$SRMBIN/srmadm show fileopen‘ = yes]; then

echo "SRM database file already open - stopping first."
limdaemon -k
sleep 2
srmadm set $ChargeOptionsOff
sync
srmadm set fileopen=n
$ECHO "SRM inactive"

fi
$ECHO "Starting SRM..."

fi

Check the limconf file.
if [! -s $ETCSRM/limconf]; then

echo "SRM - file $ETCSRM/limconf is missing " >&2
echo "SRM not started."
exit 1

fi

if [! -f "$ShareDb"]; then
echo "SRM database ’$ShareDb’ not present - " \

"creating empty database"
if [! -d "$DATADIR"]; then

mkdir "$DATADIR"
chmod 400 "$DATADIR"
chown root "$DATADIR"
chgrp root "$DATADIR"

88 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

fi
touch "$ShareDb" ||
{

echo "Failed to create ’$ShareDb’" >&2
echo "SRM not started"
exit 1

}
chmod 400 "$ShareDb"
chown root "$ShareDb"
chgrp root "$ShareDb"

fi

CreateLnodes=0
if [! -s "$ShareDb"]; then

$ECHO "SRM Warning: Using empty database" >&2
CreateLnodes=1

fi

$ECHO "SRM starting ... \c"

Open Lnode file.
srmadm set -f "$ShareDb" fileopen=y
if [$? != 0]; then

echo
echo "srmadm set -f $ShareDb failed" >&2
echo "SRM not started"
exit 1

fi

Set SRM global options.
srmadm set $ChargeOptionsOn
if [$? != 0]; then

echo
echo "srmadm set $ChargeOptionsOn failed" >&2
echo "SRM not completely enabled"
exit 1

fi

Create if needed the other lnode.
liminfo other 2>/dev/null | grep "^Login name: *other " >/dev/null 2>&1
if [$? -ne 0]; then

If user "other" exists but has no lnode, create one.
limadm set cpu.shares=1 other 2>/dev/null
limadm set sgroup=root other 2>/dev/null

fi

Create if needed, and set the lost lnode.
if [x"$LostLnode" != x]; then

liminfo "$LostLnode" 2>/dev/null | \
grep "^Login name: *$LostLnode " >/dev/null 2>&1

if [$? -ne 0]; then
limadm set cpu.shares=1 "$LostLnode"
limadm set sgroup=root "$LostLnode"

fi
srmadm set lost="$LostLnode" ||
$ECHO "SRM - Warning: No user ’$LostLnode’ for lost lnode"

fi

Create if needed, and set the idle lnode.
if [x"$IdleLnode" != x]; then

Solaris Resource Manager Script Examples 89

liminfo "$IdleLnode" 2>/dev/null | \
grep "^Login name: *$IdleLnode " >/dev/null 2>&1

if [$? -ne 0]; then
limadm set cpu.shares=0 "$IdleLnode"
limadm set sgroup=root "$IdleLnode"

fi
srmadm set idle="$IdleLnode" ||
$ECHO "SRM - Warning: No user ’$IdleLnode’ for idle lnode"

fi

If creating SRM database, set up existing users.
if ["$CreateLnodes" -eq 1]; then

echo "SRM - creating user lnodes; may take a while"
We now want to catch any other users which were not found
on the filesystems. First we need to decide what the maximum
uid value we will create an l-node entry for in the database.
We choose less than the uid for ’nobody’ so that we can try
and minimise the apparent size of the database (which is a sparse
file). If the user ’nobody’ does not exist then we just have
to take our chances with using all possible uid values.
Unfortunately all this means that there are certain circumstances
where not all users will be taken into account.

MaxUID=‘awk -F: "\\$1==\"nobody\" { print \\$3 - 100 }" /etc/passwd‘
if [$? -eq 0 -a x"$MaxUID" != x] ; then

Cond="uid >= 0 && uid < $MaxUID && !flag.real"
else

Cond="uid >= 0 && !flag.real"
fi
UIDS=‘limreport "$Cond" ’%d\n’ uid | wc -l‘
if [$UIDS -gt 0]; then

$ECHO "$UIDS other lnodes to be created " \
"due to passwd entries"
limreport "$Cond" ’limadm set -u sgroup=0:cpu.shares=1 %d\necho " uid %7d\r\c"\n’ uid uid | sh

echo
fi

fi

limdaemon $LimdaemonOptions

echo "Solaris Resource Manager v1.0 Enabled."
;;

’stop’)
SRM shutdown should be done as late as possible before
filesystems are unmounted.
if [-x $SRMBIN/srmadm] && $SRMBIN/srmadm show fileopen > /dev/null
then

limdaemon -k
sleep 2
srmadm set $ChargeOptionsOff
srmadm set fileopen=n
sync
$ECHO "Solaris Resource Manager Disabled"

fi
;;

*)
echo "Usage: $0 {start|stop}"

90 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

;;
esac

Default ’no lnode’ Script

This script creates the lnode in the default scheduling group (other if such a user
exists in the password map, otherwise root) and mails the system administrator a
reminder to move the new lnode into the appropriate place in the scheduling
hierarchy.

#!/bin/sh
#
#ident "@(#)nolnode.sh 1.6 98/10/28 SMI"
#
Copyright (c) 1998 by Sun Microsystems, Inc.
All rights reserved.
#
Copyright 1995-1997 Softway Pty. Ltd.
#
A script that called by the PAM module to create a lnode
#

PATH=/usr/srm/bin:/sbin:/bin export PATH
LOCALE=C export LOCALE
if ["$DEBUG" = "true"]
then

exec >> /tmp/nolnodelog 2>&1
echo
date
echo "Attempting to create lnode for $USER"

else
exec > /dev/null 2>&1

fi

err=‘limadm set -u cpu.shares=1 "$UID" 2>&1‘
if [$? -eq 0]
then

cat <<-EOF | /usr/lib/sendmail root
Subject: New lnode created for "$USER"

Remember to change scheduling group and shares for
"$USER".

‘limreport lname==’"’"$USER"’"’ ’Currently in group "%s" with %d shares\\n’ sgroupname cpu.shares‘
EOF
else

cat <<-EOF | /usr/lib/sendmail root
Subject: Could not create lnode for "$USER"

after "$SERVICE" attempt on tty "$TTY", uid "$UID",
rhost \""$RHOST"\",
limadm said \""$err"\"

EOF
exit 1 # deny access

fi
permit access
exit 0

Solaris Resource Manager Script Examples 91

92 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform Edition) ♦
December 1998

Glossary

There are a number of new concepts introduced in Solaris Resource Manager, and
there are a number of areas which overlap conceptually with other parts of Solaris.

In order to simplify the discussion within this document and to avoid confusion the
following terms are defined.

accrue For both fixed and renewable resources there may be an accrue
usage attribute which is the integral of the corresponding usage
attribute over time.

active An lnode is active if there are any processes attached to it, or
attached to any of its descendants. An lnode cannot be removed
while it is active.

admin user A user whose Inotde’s admin flag evalutes to set. Such a user may
create, delete and modify Inodes within their scheduling group.

administrator Anyone whose role includes maintaining the system. Solaris
Resource Manager provides functionality to allow administrative
authority to be delegated without needing to give super-user
privileges away. See also admin user, super-user, uselimadm user
and “Delegated Administration” on page 47.

allocated share The fraction of available CPU resources that would be given to a
user in the long term with a given configuration of lnode tree
hierarchy, shares, and active lnodes.

ancestor One lnode is the ancestor of another if successive references to the
sgroup attribute, starting from the first lnode, eventually reference
the other. That is, the latter lnode is a descendant, or a member, of
the first.

Glossary-93

attached When a user logs in, their PAM module process attaches to the
lnode which corresponds to their UID. Any processes which are
subsequently spawned are attached to the same lnode by default.
The lnode that a process is attached to is the one which is used to
determine the process’ limits, CPU entitlement, provileges, etc.

attribute The data fields of an lnode are called attributes. All lnodes have the
same internal structure, therefore all users have the same set of
attributes. Attributes may be system, user, (only used by user-mode
programs) or domain. The different types of attributes differ in the
field-numbers allotted to them. System addributes are those which
are used directly by the kernel, such as the numeric variables to
control resources such as processes, memory size, and flags that
control system privileges at the kernel level. User attributes can be
added at any time by the administrator and existing user attributes
can be modified any time provided they do not disrupt programs
that use the attribute. Domain attributes are not declared in the
configuration source file, because the declaration of a domain
defines them implicitly.

central
administrator

The central administrator is the root user (or the super-user) of the
system. The root lnode is always the top of the scheduling tree. The
central administrator has overall responsibility for the
administration of all users and resources, but may delegate some
administrative responsibility to other ordinary users by granting
administrative privileges. Typically the central administrator would
determine the allocation of resources to the groups that are children
of the root lnode, and grant administrative privileges to the group
headers of each of those groups, thus relieving much of their own
administrative burden.

child All lnodes which are directly beneath another in the scheduling tree
are the children of that lnode. One lnode is a child of another if the
first lnode’s sgroup attribute is set to the UID of the second lnode.
Correspondingly, the latter lnode is referred to as the parent or
group header of the former.

decay A decay is the periodic reduction of the usage of a renewable
resource. For all resources except CPU usage, the decay is a fixed
amount which is deemed to be subtracted from the usage attribute
on a regular basis. For CPU usage, an exponential (multiplicative)
decay is used.

effective share See Chapter 6.

Glossary-94 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform
Edition) ♦ December 1998

entitlement This term refers to the amount of CPU time which is allocated to a
particular user.

field number The array slot(s) used by attributes specified in the configuration
file.

fixed resource A resource whose total supply is finite.

flag There is a special type of attribute called a flag which is similar to a
boolean variable, except that it may have one of four falues: set ,
clear , group , or inherit .Flags are used within Solaris Resource
Manager to control privileges.

group loop See “Group Loops” on page 81.

group Within Solaris Resource Manager, this term normally refers to a
scheduling group. See scheduling group.

group header The lnode at the head of a group is referred to as a group header
lnode. Solaris Resource Manager allows selected administrative
privileges to be granted to group headers so that, for example, the
head of a department may assume full responsibility for the creation
and removal of groups and users, and allocation of resources,
within the department. Group headers are not considered members
of the group that they head.

idle lnode A special lnode to which unused CPU time is accrued. This may be
useful for accounting purposes. The default username is srmidle,
which has a UID of 41.

inherit One of the possible values that may be given to a flag attribute.
When a flag with an immediate value of inherit is being
evaluated, the same flag in the parent lnode is evaluated to
determine the actual value. This process is recursive. If the flag is
set to inherit on the root lnode, then the final value is determined
from the default value. The result of evaluating a flag is always set
or clear .

kernel The core of the operating system, which supports system calls, file
systems and process scheduling. Solaris Resource Manager consists
of two kernel modules and a number of kernel hooks, as well as
user-level (non-kernel) programs and library routines.

limit A limit is a numeric attribute associated with a usage attribute. A
user’s usage of a resource is prevented from exceeding the limits for

Glossary-95

that resource. There are two kinds of limits: hard and soft .A hard
limit will cause resource consumption or allocation attempts to fail if
they would cause the usage to exceed the limit.A soft limit typically
does not directly constrain usage, but represents instead a point at
which the user is informed of their usage and is encouraged to
reduce it. A limit of zero is a special case, meaning no limit applies.

lnode database The on-disk copy of all the lnodes used by Solaris Resource
Manager, indexed by UID.

lnode An lnode is a fixed-length structure used by Solaris Resource
Manager to hold all per-user data required over and above the data
stored in the password map. It is a structure stored on disk in the
lnode file and is read and written by the kernel as required. There is
at most a single lnode for each unique UID. Different accounts
which have the same UID use the same lnode.

lost lnode A special lnode used when the setuid(2SRM) system call cannot
attach a process to the lnode corresponding to the target UID of the
system call, usually because that lnode does not exist.

notification Any message which is sent to the Solaris Resource Manager
daemon, limdaemon(1MSRM) , is a notification message. Some
notification messages have special meaning to limdaemon .

orphan An lnode whose parent lnode does not exist. That is, the UID
specified in the sgroup attribute of the lnode does not itself
correspond to an lnode.

other lnode If an account exists for a user named other, and an lnode exists for
that account, then that lnode will be used as the default for the
parent of lnodes newly created by root or uselimadm users using the
limadm(1MSRM) command.

parent The group header of an lnode in the scheduling tree is the lnode’s
parent.

peer The peers of an lnode are other lnodes within its scheduling group,
excluding the parent of the group.

renewable resource A resource where more units of that resource become available over
time. For example, CPU usage or connect-time.

root lnode The lnode for UID 0. This lnode is the head of the entire tree of
lnodes, making all other lnodes its members.

Glossary-96 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform
Edition) ♦ December 1998

scheduling group Solaris Resource Manager allows all users to be organized into a
system-wide hierarchy of scheduling groups typically reflecting the
structure of the organizations using the system. The term
scheduling group is used in preference to simply using group to
avoid confusion with the existing UNIX group concept, even though
scheduling groups are used for much more than just scheduling.
Solaris Resource Manager groups need bear no relation to the
groups defined in the UNIX /etc/group file.

A scheduling group at any level in the lnode hierarchy can be
treated as a single user. That is, resource limits assigned to a
scheduling group apply to the net usage of all groups and users
within that group.

scheduling tree The tree of lnodes, headed by the root lnode, with particular
reference to the parent-child relationship between lnodes, the
allocation of CPU shares and how the Solaris Resource Manager
scheduler determines process run rates

shares Shares are a way of defining the proportion of CPU entitlement that
an lnode has with respect to its parent and peer lnodes. This
concept of CPU shares is analogous to shares in a company; what
matters is not how many you have, but how many compared with
other shareholders.

Solaris Resource
Manager login
session

This is any login-like connection to the system of which Solaris
Resource Manager is aware - this requires cooperation between
Solaris Resource Manager and the various ’gateway’ programs
which are responsible for authenticating users and granting them
access.

sub-administrator A sub-administrator is a group header who has administrative
privilege over the members of the scheduling group that he or she
heads. A group header is granted sub-administrator status by
setting their admin flag. This allows them to create and delete users’
lnodes within their group, to control resource and privilege
allocation within their group and to further delegate administrative
responsibility to group headers within their group.

super-user A person is referred to as a super-user if they know the root
password. Processes have super-user privilege if they are running
with an effective UID of 0. .

topmost group Any group with root as its group header.

Glossary-97

units This term refers to the basic quantity of a given resource. Values
within Solaris Resource Manager are represented as one of three
types of units: scaled, raw, or internal.

usage A user’s usage of a resource is a numeric attribute which increases
whenever the user consumes or is allocated some of the resource.
For fixed resources, the usage is decreased whenever any of the
resource is freed. For renewable resources, the usage is decreased
whenever a decay is performed.

uselimadm user A user whose lnode has the flag uselimadm attribute set. This
gives a user the same privileges in regard to Solaris Resource
Manager administration as the super-user.

user attribute See attribute.

user-mode The way in which code is executed by normal programs and
processes on a UNIX system. The alternative, kernel-mode, is used
by system calls, device drivers and SYS class scheduler. Solaris
Resource Manager has some components which run in user-mode
and some which run in kernel-mode.

Glossary-98 Solaris Resource Manager 1.0 System Administration Guide for Solaris 2.6 (SPARC Platform
Edition) ♦ December 1998

