
Programming in Java™

Advanced Imaging

Release 1.0.1
November 1999

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

JavaSoft

 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, Java 3D, and Java Advanced Imaging are trademarks of Sun Microsys-
tems, Inc. Sun, Sun Microsystems, the Sun logo, Java and HotJava are trademarks or reg-
istered trademarks of Sun Microsystems, Inc. UNIX® is a registered trademark in the
United States and other countries, exclusively licensed through X/Open Company, Ltd.
All other product names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

. . xi

.xiii
xiii
xiii
. .xv
.xv

xvi

. .2
. .2
. . .3
 .3
.4
 .4
 .4
. .4
 .5
 .5
. .5
. .6

9
 . .9
.9
11
.11
.12
13
.13
.15
 . .15
.16
.18
 . .19
Contents

Figures .

Preface .
Disclaimer .
About This Book .
Related Documentation .
Additional Information .
Style Conventions .

1 Introduction to Java Advanced Imaging . 1
1.1 The Evolution of Imaging in Java .
1.2 Why Another Imaging API? .
1.3 JAI Features .

1.3.1 Cross-platform Imaging .
1.3.2 Distributed Imaging .
1.3.3 Object-oriented API .
1.3.4 Flexible and Extensible .
1.3.5 Device Independent .
1.3.6 Powerful .
1.3.7 High Performance. .
1.3.8 Interoperable.

1.4 A Simple JAI Program.

2 Java AWT Imaging. .
2.1 Introduction .

2.1.1 The AWT Push Model .
2.1.2 AWT Push Model Interfaces and Classes

2.2 The Immediate Mode Model .
2.2.1 Rendering Independence .
2.2.2 Rendering-independent Imaging in Java AWT
2.2.3 The Renderable Layer vs. the Rendered Layer
2.2.4 The Render Context .

2.3 Renderable and Rendered Classes .
2.3.1 The Renderable Layer .
2.3.2 The Rendered Layer .

2.4 Java Image Data Representation .
iiiRelease 1.0.1, November 1999

CONTENTS

iv

21
22
. 22

7
. 27
. 28
. . 29
. 30
. 32
. 37
 . 38
 . 38
38

. 39
39
40
40

. 41

. 42

. 42
43
46
47
48
48

. 49
51
51
52

 . 52
55
56
60

5
. 65
67

. 68
 . 71

72
74

. 81
83

83
. 84
84

85
2.5 Introducing the Java Advanced Imaging API
2.5.1 Similarities with the Java 2D API
2.5.2 JAI Data Classes .

3 Programming in Java Advanced Imaging 2
3.1 Introduction .
3.2 An Overview of Graphs .
3.3 Processing Graphs .

3.3.1 Rendered Graphs .
3.3.2 Renderable Graphs .
3.3.3 Reusing Graphs .

3.4 Remote Execution .
3.5 Basic JAI API Classes .

3.5.1 The JAI Class .
3.5.2 The PlanarImage Class .
3.5.3 The CollectionImage Class .
3.5.4 The TiledImage Class .
3.5.5 The OpImage Class .
3.5.6 The RenderableOp Class .
3.5.7 The RenderedOp Class .

3.6 JAI API Operators .
3.6.1 Point Operators .
3.6.2 Area Operators .
3.6.3 Geometric Operators .
3.6.4 Color Quantization Operators .
3.6.5 File Operators .
3.6.6 Frequency Operators .
3.6.7 Statistical Operators .
3.6.8 Edge Extraction Operators .
3.6.9 Miscellaneous Operators .

3.7 Creating Operations .
3.7.1 Operation Name .
3.7.2 Parameter Blocks. .
3.7.3 Rendering Hints. .

4 Image Acquisition and Display. 6
4.1 Introduction .

4.1.1 Image Data .
4.1.2 Basic Storage Types .

4.2 JAI Image Types. .
4.2.1 Planar Image .
4.2.2 Tiled Image .
4.2.3 Snapshot Image .
4.2.4 Remote Image .
4.2.5 Collection Image .
4.2.6 Image Sequence.
4.2.7 Image Stack .
4.2.8 Image MIP Map. .
Programming in Java Advanced Imaging

89
95
. .97
101
03
04
09

110
10
11
12
17
18
19
119
.122
.123
124
27
127
28

131
131
132
32
35

38
.139
140
41

3
143
143
44

151
155
6
7
157
8

59
60
61
62
63
4

4.2.9 Image Pyramid .
4.2.10 Multi-resolution Renderable Images

4.3 Streams .
4.4 Reading Image Files .

4.4.1 Standard File Readers for Most Data Types.1
4.4.2 Reading TIFF Images .1
4.4.3 Reading FlashPix Images .1
4.4.4 Reading JPEG Images .
4.4.5 Reading GIF Images. .1
4.4.6 Reading BMP Images. .1
4.4.7 Reading PNG Images .1
4.4.8 Reading PNM Images. .1
4.4.9 Reading Standard AWT Images.1
4.4.10 Reading URL Images .1

4.5 Reformatting an Image .
4.6 Converting a Rendered Image to Renderable
4.7 Creating a Constant Image.
4.8 Image Display .

4.8.1 Positioning the Image in the Panel1
4.8.2 The ImageCanvas Class .
4.8.3 Image Origin. .1

5 Color Space .
5.1 Introduction .
5.2 Color Management .

5.2.1 Color Models .1
5.2.2 Color Space. .1
5.2.3 ICC Profile and ICC Color Space.1

5.3 Transparency .
5.4 Color Conversion. .
5.5 Non-standard Linear Color Conversion (BandCombine)1

6 Image Manipulation . 14
6.1 Introduction .
6.2 Region of Interest Control .

6.2.1 The ROI Class .1
6.2.2 The ROIShape Class. .

6.3 Relational Operators .
6.3.1 Finding the Maximum Values of Two Images.15
6.3.2 Finding the Minimum Values of Two Images15

6.4 Logical Operators .
6.4.1 ANDing Two Images .15
6.4.2 ANDing an Image with a Constant.1
6.4.3 ORing Two Images. .1
6.4.4 ORing an Image with a Constant1
6.4.5 XORing Two Images .1
6.4.6 XORing an Image with a Constant.1
6.4.7 Taking the Bitwise NOT of an Image 16
vRelease 1.0.1, November 1999

CONTENTS

vi

165
66
67
8

69
69
70
71
1

72
73
74
4
5

6
7
77
178
78
1

184
185
186

91
191
191
92
93
199
200
202
02
03
05
07
16
18
21

23
24
26
228
28
32
34
35

235
6.5 Arithmetic Operators .
6.5.1 Adding Two Source Images . 1
6.5.2 Adding a Constant Value to an Image. 1
6.5.3 Adding a Collection of Images 16
6.5.4 Adding Constants to a Collection of Rendered Images 1
6.5.5 Subtracting Two Source Images 1
6.5.6 Subtracting a Constant from an Image 1
6.5.7 Subtracting an Image from a Constant 1
6.5.8 Dividing One Image by Another Image 17
6.5.9 Dividing an Image by a Constant 1
6.5.10 Dividing an Image into a Constant 1
6.5.11 Dividing Complex Images. 1
6.5.12 Multiplying Two Images. 17
6.5.13 Multiplying an Image by a Constant 17
6.5.14 Multiplying Two Complex Images 17
6.5.15 Finding the Absolute Value of Pixels 17
6.5.16 Taking the Exponent of an Image 1

6.6 Dithering an Image. .
6.6.1 Ordered Dither. 1
6.6.2 Error-diffusion Dither . 18

6.7 Clamping Pixel Values. .
6.8 Band Copying. .
6.9 Constructing a Kernel. .

7 Image Enhancement . 1
7.1 Introduction .
7.2 Adding Borders to Images .

7.2.1 The Border Operation . 1
7.2.2 Extending the Edge of an Image 1

7.3 Cropping an Image .
7.4 Amplitude Rescaling .
7.5 Histogram Equalization .

7.5.1 Piecewise Linear Mapping . 2
7.5.2 Histogram Matching . 2

7.6 Lookup Table Modification . 2
7.6.1 Creating the Lookup Table . 2
7.6.2 Performing the Lookup . 2
7.6.3 Other Lookup Table Operations 2

7.7 Convolution Filtering . 2
7.7.1 Performing the Convolve Operation 2
7.7.2 Box Filter. 2

7.8 Median Filtering . 2
7.9 Frequency Domain Processing .

7.9.1 Fourier Transform . 2
7.9.2 Cosine Transform . 2
7.9.3 Magnitude Enhancement. 2
7.9.4 Magnitude-squared Enhancement 2
7.9.5 Phase Enhancement. .
Programming in Java Advanced Imaging

36
36
37
37
240
41
41
242
42
43
245

9
249
249
55
6
6
7

58
265
66
68
70
2
275
77
77
79
79
0

.281

.283
285
89
91
93
96
99
01
02

03

07
307
307
308
310
7.9.6 Complex Conjugate .2
7.9.7 Periodic Shift .2
7.9.8 Polar to Complex .2
7.9.9 Images Based on a Functional Description 2

7.10 Single-image Pixel Point Processing. .
7.10.1 Pixel Inverting .2
7.10.2 Logarithmic Enhancement .2

7.11 Dual Image Pixel Point Processing .
7.11.1 Overlay Images. .2
7.11.2 Image Compositing. .2

7.12 Thresholding .

8 Geometric Image Manipulation. 24
8.1 Introduction .
8.2 Interpolation. .

8.2.1 Nearest-neighbor Interpolation.2
8.2.2 Bilinear Interpolation .25
8.2.3 Bicubic Interpolation .25
8.2.4 Bicubic2 Interpolation .25
8.2.5 Table Interpolation .2

8.3 Geometric Transformation. .
8.3.1 Translation Transformation .2
8.3.2 Scaling Transformation .2
8.3.3 Rotation Transformation. .2
8.3.4 Affine Transformation .27

8.4 Perspective Transformation .
8.4.1 Performing the Transform .2
8.4.2 Mapping a Quadrilateral. .2
8.4.3 Mapping Triangles .2
8.4.4 Inverse Perspective Transform .2
8.4.5 Creating the Adjoint of the Current Transform28

8.5 Transposing .
8.6 Shearing .
8.7 Warping .

8.7.1 Performing a Warp Operation .2
8.7.2 Polynomial Warp .2
8.7.3 General Polynomial Warp .2
8.7.4 Grid Warp. .2
8.7.5 Quadratic Warp. .2
8.7.6 Cubic Warp. .3
8.7.7 Perspective Warp .3
8.7.8 Affine Warp .3

9 Image Analysis . 3
9.1 Introduction .
9.2 Finding the Mean Value of an Image Region
9.3 Finding the Extrema of an Image .
9.4 Histogram Generation .
viiRelease 1.0.1, November 1999

CONTENTS

viii

11
12
13
15
315
321

23
323
23
24

325
25
26
30
333
333

35
335
37
37
338
338
339

41
341
342

342
343
43
48
350
50
51
351
52
52
52
57

61
361
61

362
63
9.4.1 Specifying the Histogram . 3
9.4.2 Performing the Histogram Operation 3
9.4.3 Reading the Histogram Data . 3
9.4.4 Histogram Operation Example 3

9.5 Edge Detection .
9.6 Statistical Operations .

10 Graphics Rendering . 3
10.1 Introduction .

10.1.1 Simple 2D Graphics . 3
10.1.2 Renderable Graphics . 3

10.2 A Review of Graphics Rendering. .
10.2.1 Overview of the Rendering Process 3
10.2.2 Stroke Attributes . 3
10.2.3 Rendering Graphics Primitives 3

10.3 Graphics2D Example .
10.4 Adding Graphics and Text to an Image .

11 Image Properties . 3
11.1 Introduction .

11.1.1 The PropertySource Interface . 3
11.1.2 The PropertyGenerator Interface. 3

11.2 Synthetic Properties .
11.3 Regions of Interest .
11.4 Complex Data. .

12 Client-Server Imaging. 3
12.1 Introduction .
12.2 Server Name and Port Number. .
12.3 Setting the Timeout Period and Number of Retries
12.4 Remote Imaging Test Example .

12.4.1 Simple Remote Imaging Example. 3
12.4.2 RemoteImaging Example Across Two Nodes 3

12.5 Running Remote Imaging. .
12.5.1 Step 1: Create a Security Policy File. 3
12.5.2 Step 2: Start the RMI Registry 3
12.5.3 Step 3: Start the Remote Image Server
12.5.4 Step 4: Run the Local Application 3

12.6 Internet Imaging Protocol (IIP) . 3
12.6.1 IIP Operation . 3
12.6.2 IIPResolution Operation . 3

13 Writing Image Files. 3
13.1 Introduction .
13.2 Writing to a File . 3
13.3 Writing to an Output Stream .
13.4 Writing BMP Image Files . 3
Programming in Java Advanced Imaging

63
64
64

364
65

366
67
68
69
70
71
71
75
76
76
78
79
80
1
90
91
91
91

93
393
393

394
95

97
.403
04
07
10
11
414
414

17
17
19

429
429
30
31
13.4.1 BMP Version .3
13.4.2 BMP Data Layout. .3
13.4.3 Example Code. .3

13.5 Writing JPEG Image Files .
13.5.1 JFIF Header .3
13.5.2 JPEG DCT Compression Parameters
13.5.3 Quantization Table .3
13.5.4 Horizontal and Vertical Subsampling.3
13.5.5 Compression Quality .3
13.5.6 Restart Interval .3
13.5.7 Writing an Abbreviated JPEG Stream3
13.5.8 Example Code. .3

13.6 Writing PNG Image Files .3
13.6.1 PNG Image Layout. .3
13.6.2 PNG Filtering .3
13.6.3 Bit Depth. .3
13.6.4 Interlaced Data Order .3
13.6.5 PLTE Chunk for Palette Images.3
13.6.6 Ancillary Chunk Specifications38

13.7 Writing PNM Image Files .3
13.8 Writing TIFF Image Files .3

13.8.1 TIFF Compression .3
13.8.2 TIFF Tiled Images .3

14 Extending the API. 3
14.1 Introduction .
14.2 Package Naming Convention .
14.3 Writing New Operators .

14.3.1 Extending the OpImage Class .3
14.3.2 Extending the OperationDescriptor Interface.3

14.4 Iterators .
14.4.1 RectIter .4
14.4.2 RookIter .4
14.4.3 RandomIter .4
14.4.4 Example RectIter .4

14.5 Writing New Image Decoders and Encoders.
14.5.1 Image Codecs .

A Program Examples . 4
A.1 Lookup Operation Example. .4
A.2 Adding an OperationDescriptor Example .4

B Java Advanced Imaging API Summary 429
B.1 Java AWT Imaging .
B.2 Java 2D Imaging .

B.2.1 Java 2D Imaging Interfaces .4
B.2.2 Java 2D Imaging Classes .4
ixRelease 1.0.1, November 1999

CONTENTS

x

435
36
37

43
44
44

53
53

455

459
B.3 Java Advanced Imaging .
B.3.1 JAI Interfaces . 4
B.3.2 JAI Classes . 4
B.3.3 JAI Iterator Interfaces . 4
B.3.4 JAI Iterator Classes . 4
B.3.5 JAI Operator Classes . 4
B.3.6 JAI Widget Interfaces . 4
B.3.7 JAI Widget Classes . 4

Glossary .

Index .
Programming in Java Advanced Imaging

. .14
. .18
 .28
 . .32
 . .35
. . .36
 .68
. .70
 .72
 . .98
126
.141
.180
83

183
.188
 .192
.196
.197
.198
.198
.199
.200
.206
.222
.223
.226
.241
.253
.259
260
 .267
Figures

Figure 2-1 A Renderable Chain .
Figure 2-2 Deriving a Rendering from a Renderable Chain
Figure 3-1 An Example DAG .
Figure 3-2 Rendered Chain Example .
Figure 3-3 Renderable Chain Example .
Figure 3-4 Renderable and Rendered Graphs after the getImage Call
Figure 4-1 Multi-band Image Structure .
Figure 4-2 BufferedImage .
Figure 4-3 JAI Image Type Hierarchy .
Figure 4-4 JAI Stream Classes .
Figure 4-5 Grid Layout of Four Images .
Figure 5-1 Band Combine Example.
Figure 6-1 Ordered Dither Masks .
Figure 6-2 Error Diffusion Dither Filters. .1
Figure 6-3 Error Diffusion Operation .
Figure 6-4 Example Kernel .
Figure 7-1 Image Borders .
Figure 7-2 BorderExtenderZero Example .
Figure 7-3 BorderExtenderConstant Example .
Figure 7-4 BorderExtenderCopy Example.
Figure 7-5 BorderExtenderWrap Example .
Figure 7-6 BorderExtenderReflect Example .
Figure 7-7 Crop Operation .
Figure 7-8 Lookup Table .
Figure 7-9 Convolve Kernel.
Figure 7-10 Convolve Filter Samples .
Figure 7-11 Median Filter Masks.
Figure 7-12 Pixel Inverting .
Figure 8-1 Interpolation Samples.
Figure 8-2 Table Interpolation Padding .
Figure 8-3 Table Interpolation Backwards Mapping .
Figure 8-4 Translate Operation .
xiRelease 1.0.1, November 1999

FIGURES

xii

. 269
270

273
. 282
. 283
297
310

. 317

. 318
. 319
. 320
323
328
329
366
404

. 405

. 408
Figure 8-5 Scale Operation .
Figure 8-6 Rotate Operation .
Figure 8-7 Affine Operation .
Figure 8-8 Transpose Operations .
Figure 8-9 Shearing Operations .
Figure 8-10 Warp Grid .
Figure 9-1 Example Histograms .
Figure 9-2 Sobel Edge Enhancement Masks .
Figure 9-3 Roberts’ Cross Edge Enhancement Masks .
Figure 9-4 Prewitt Edge Enhancement Masks .
Figure 9-5 Frei and Chen Edge Enhancement Masks.
Figure 10-1 Simple Text and Line Added to an Image. .
Figure 10-2 Example Stroke Styles .
Figure 10-3 Filling a Shape with a Gradient. .
Figure 13-1 JPEG Baseline DCT Coding .
Figure 14-1 Iterator Hierarchy .
Figure 14-2 RectIter Traversal Pattern .
Figure 14-3 RookIter Traversal Patterns.
Programming in Java Advanced Imaging

to
ent

ed

n

d

t or
l
ted,
ted

ed
Preface

THIS document introduces the Java™ Advanced Imaging API and how to
program in it. This document is intended for serious programmers who want
use Java Advanced Imaging for real projects. To best understand this docum
and the examples, you need a solid background in the Java programming
language and some experience with imaging. In addition, you will need a
working knowledge of other Java Extension APIs, depending on your intend
application:

• Java 2D for simple graphics, text, and fundamental image manipulatio

• Java Media Framework for components to play and control time-base
media such as audio and video

• Java Sound

• Java 3D

• Java Telephony

• Java Speech

Disclaimer

This version ofProgramming in Java Advanced Imagingis based on release
1.0.1 of the Java Advanced Imaging API. Please do not rely on this documen
the Java Advanced Imaging software for production-quality or mission-critica
applications. If any discrepancies between this book and the javadocs are no
always consider the javadocs to be the most accurate, since they are genera
directly from the JAI files and are always the most up to date.

About This Book

Chapter 1, “Introduction to Java Advanced Imaging,” gives an overview of
the Java Advanced Imaging API, how it evolved from the original Java Advanc
xiiiRelease 1.0.1, November 1999

PREFACE

xiv

age

he

e

c

Windowing Toolkit (AWT), some of its features, and introduces the imaging
operations.

Chapter 2, “Java AWT Imaging,” reviews the imaging portions of the Java
AWT and examines the imaging features of the Java 2D API.

Chapter 3, “Programming in Java Advanced Imaging,” describes how to get
started programming with the Java Advanced Imaging API.

Chapter 4, “Image Acquisition and Display,” describes the Java Advanced
Imaging API image data types and the API constructors and methods for im
acquisition and display.

Chapter 5, “Color Space,” describes the JAI color space, transparency, and t
color conversion operators.

Chapter 6, “Image Manipulation,” describes the basics of manipulating
images to prepare them for processing and display.

Chapter 7, “Image Enhancement,”describes the basics of improving the
visual appearance of images through enhancement techniques.

Chapter 8, “Geometric Image Manipulation,” describes the basics of Java
Advanced Imaging’s geometric image manipulation functions.

Chapter 9, “Image Analysis,” describes the Java Advanced Imaging API imag
analysis operators.

Chapter 10, “Graphics Rendering,” describes the Java Advanced Imaging
presentation of shapes and text.

Chapter 11, “Image Properties,” describes the tools that allow a programmer
to add a simple database of arbitrary data that can be attached to images.

Chapter 12, “Client-Server Imaging,” describes Java Advanced Imaging’s
client-server imaging system.

Chapter 13, “Writing Image Files,” describes Java Advanced Imaging’s code
system for encoding image data files.

Chapter 14, “Extending the API,” describes how the Java Advanced Imaging
API is extended.

Appendix A, “Program Examples,” contains fully-operational Java Advanced
Imaging program examples.
Programming in Java Advanced Imaging

PREFACE

ok.

gest

g

b

Appendix B, “Java Advanced Imaging API Summary,” summarizes the
imaging interfaces, and classes, including thejava.awt, java.awt.Image, and
javax.media.jai classes.

TheGlossarycontains descriptions of significant terms that appear in this bo

Related Documentation

To obtain a good understanding of the Java programming language, we sug
you start with the SunSoft Press series of books:

• Instant Java, by John A. Pew

• Java in a Nutchell: A Desktop Quick Reference, by David Flanagan

• Java by Example, by Jerry R. Jackson and Alan L. McClellan

• Just Java, by Peter van der Linden

• Core Java, by Gary Cornell and Gay S. Horstmann

• Java Distributed Computing, by Jim Farley

For more information on digital imaging, we suggest you refer to the followin
books:

• Fundamentals of Digital Image Processing, by Anil K. Jain

• Digital Image Processing: Principles and Applications, by Gregory A.
Baxes

• Digital Image Processing, by Kenneth R. Castleman

• Digital Image Processing, 2nd. ed., by William K. Pratt

Additional Information

Since Java Advanced Imaging continues to evolve and periodically add new
operators, it is always a good idea to occasionally check the JavaSoft JAI we
site for the latest information.

http://java.sun.com/products/java-media/jai/

The web site contains links to the latest version of JAI, email aliases for
obtaining help from the community of JAI developers, and a tutorial that
includes examples of the use of many JAI operators.
xvRelease 1.0.1, November 1999

PREFACE

xvi

and

e

Style Conventions

The following style conventions are used in this document:

• Lucida type is used to represent computer code and the names of files
directories.

• Bold Lucida type is used for Java 3D API declarations.

• Italic type is used for emphasis and for equations.

Throughout the book, we introduce many API calls with the following format:

API: javax.media.jai.TiledImage

When introducing an API call for the first time, we add a short summary of th
methods, tagged with the API heading.
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 1
rity
of
and

ese
d
ain

s

ava,
bility
prove

 a

DI-

sed

and
Introduction to Java
Advanced Imaging

THE Java™ programming language has continued to grow both in popula
and scope since its initial release. Java in its current form is the culmination
several years work, dating back to 1991 when it was conceived as a modular
extensible programming language.

Java is based on the C and C++ programming languages, but differs from th
languages is some important ways. The main difference between C/C++ an
Java is that in Java all development is done with objects and classes. This m
difference provides distinct advantages for programs written in Java, such a
multiple threads of control and dynamic loading.

Another advantage to Java is its extensibility. Since the original release of J
several extensions have been added to the core code, providing greater flexi
and power to applications. These extensions add objects and classes that im
the Java programmer’s ability to use such features as:

• Java Swing – a component set to create grapical user interfaces with
cross-platform look and feel

• Java Sound – for high-quality 32-channel audio rendering and MI
controlled sound synthesis

• Java 3D – for advanced geometry and 3D spatial sound

• Java Media Framework – for components to play and control time-ba
media such as audio and video

• Java Telephony (JTAPI) – for computer-telephony applications

• Java Speech – for including speech technology into Java applets
applications
1

1.1 The Evolution of Imaging in Java INTRODUCTION TO JAVA ADVANCED IMAGING

2

le

y
and

ral
for

age
trast
core

ge
t of

e
ncy-

hly
way

ns.

d and

arket
1.1 The Evolution of Imaging in Java

Early versions of the Java AWT provided a simple rendering package suitab
for rendering common HTML pages, but without the features necessary for
complex imaging. The early AWT allowed the generation of simple images b
drawing lines and shapes. A very limited number of image files, such as GIF
JPEG, could be read in through the use of aToolkit object. Once read in, the
image could be displayed, but there were essentially no image processing
operators.

The Java 2D API extended the early AWT by adding support for more gene
graphics and rendering operations. Java 2D added special graphics classes
the definition of geometric primitives, text layout and font definition, color
spaces, and image rendering. The new classes supported a limited set of im
processing operators for blurring, geometric transformation, sharpening, con
enhancement, and thresholding. The Java 2D extensions were added to the
Java AWT beginning with the Java Platform 1.2 release.

The Java Advanced Imaging (JAI) API further extends the Java platform
(including the Java 2D API) by allowing sophisticated, high-performance ima
processing to be incorporated into Java applets and applications. JAI is a se
classes providing imaging functionality beyond that of Java 2D and the Java
Foundation classes, though it is compatible with those APIs.

JAI implements a set of core image processing capabilities including image
tiling, regions of interest, and deferred execution. JAI also offers a set of cor
image processing operators including many common point, area, and freque
domain operators.

JAI is intended to meet the needs of all imaging applications. The API is hig
extensible, allowing new image processing operations to be added in such a
as to appear to be a native part of it. Thus, JAI benefits virtually all Java
developers who want to incorporate imaging into their applets and applicatio

1.2 Why Another Imaging API?

Several imaging APIs have been developed – a few have even been markete
been fairly successful. However, none of these APIs have been universally
accepted because they failed to address specific segments of the imaging m
or they lacked the power to meet specific needs. As a consequence, many
companies have had to “roll their own” in an attempt to meet their specific
requirements.
Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING Cross-platform Imaging

nd
ting
it

ng

a re-
a
ple

ts,
d to
ing

, JAI

a

Writing a custom imaging API is a very expensive and time-consuming task a
the customized API often has to be rewritten whenever a new CPU or opera
system comes along, creating a maintenance nightmare. How much simpler
would be to have an imaging API that meets everyone’s needs.

Previous industry and academic experience in the design of image processi
libraries, the usefulness of these libraries across a wide variety of application
domains, and the feedback from the users of these libraries have been
incorporated into the design of JAI.

JAI is intended to support image processing using the Java programming
language as generally as possible so that few, if any, image processing
applications are beyond its reach. At the same time, JAI presents a simple
programming model that can be readily used in applications without a
tremendous mechanical programming overhead or a requirement that the
programmer be expert in all phases of the API’s design.

JAI encapsulates image data formats and remote method invocations within
usable image data object, allowing an image file, a network image object, or
real-time data stream to be processed identically. Thus, JAI represents a sim
programming model while concealing the complexity of the internal
mechanisms.

1.3 JAI Features

JAI is intended to meet the requirements of all of the different imaging marke
and more. JAI offers several advantages for applications developers compare
other imaging solutions. Some of these advantages are described in the follow
paragraphs.

1.3.1 Cross-platform Imaging

Whereas most imaging APIs are designed for one specific operating system
follows the Java run time library model, providing platform independence.
Implementations of JAI applications will run on any computer where there is
Java Virtual Machine. This makes JAI a true cross-platform imaging API,
providing a standard interface to the imaging capabilities of a platform. This
means that you write your application once and it will run anywhere.
3Release 1.0.1, November 1999

1.3.2 Distributed Imaging INTRODUCTION TO JAVA ADVANCED IMAGING

4

n is
on a
out

and

next

ns

to
e

d by
ible

mon

the
, so

s,
I’s
1.3.2 Distributed Imaging

JAI is also well suited for client-server imaging by way of the Java platform’s
networking architecture and remote execution technologies. Remote executio
based on Java RMI (remote method invocation). Java RMI allows Java code
client to invoke method calls on objects that reside on another computer with
having to move those objects to the client.

1.3.3 Object-oriented API

Like Java itself, JAI is totally object-oriented. In JAI, images and image
processing operations are defined as objects. JAI unifies the notions of image
operator by making both subclasses of a common parent.

An operator object is instantiated with one or more image sources and other
parameters. This operator object may then become an image source for the
operator object. The connections between the objects define the flow of
processed data. The resulting editable graphs of image processing operatio
may be defined and instantiated as needed.

1.3.4 Flexible and Extensible

Any imaging API must support certain basic imaging technologies, such as
image acquisition and display, basic manipulation, enhancement, geometric
manipulation, and analysis. JAI provides a core set of the operators required
support the basic imaging technologies. These operators support many of th
functions required of an imaging application. However, some applications
require special image processing operations that are seldom, if ever, require
other applications. For these specialized applications, JAI provides an extens
framework that allows customized solutions to be added to the core API.

JAI also provides a standard set of image compression and decompression
methods. The core set is based on international standards for the most com
compressed file types. As with special image processing functions, some
applications also require certain types of compressed image files. It is beyond
scope of any API to support the hundreds of known compression algorithms
JAI also supports the addition of customized coders and decoders (codecs),
which can be added to the core API.

1.3.5 Device Independent

The processing of images can be specified in device-independent coordinate
with the ultimate translation to pixels being specified as needed at run time. JA
Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING Interoperable

an
e
s.

no
r
d

t

ons

set
d

edia

va

ol

on
“renderable” mode treats all image sources as rendering-independent. You c
set up a graph (or chain) of renderable operations without any concern for th
source image resolution or size; JAI takes care of the details of the operation

To make it possible to develop platform-independent applications, JAI makes
assumptions about output device resolution, color space, or color model. No
does the API assume a particular file format. Image files may be acquired an
manipulated without the programmer having any knowledge of the file forma
being acquired.

1.3.6 Powerful

JAI supports complex image formats, including images of up to three dimensi
and an arbitrary number of bands. Many classes of imaging algorithms are
supported directly, others may be added as needed.

JAI implements a set of core image processing capabilities, including image
tiling, regions of interest, and deferred execution. The API also implements a
of core image processing operators, including many common point, area, an
frequency-domain operations. For a list of the available operators, see
Section 3.6, “JAI API Operators.”

1.3.7 High Performance

A variety of implementations are possible, including highly-optimized
implementations that can take advantage of hardware acceleration and the m
capabilities of the platform, such as MMX on Intel processors and VIS on
UltraSparc.

1.3.8 Interoperable

JAI is integrated with the rest of the Java Media APIs, enabling media-rich
applications to be deployed on the Java platform. JAI works well with other Ja
APIs, such as Java 3D and Java component technologies. This allows
sophisticated imaging to be a part of every Java technology programmer’s to
box.

JAI is a Java Media API. It is classified as a Standard Extension to the Java
platform. JAI provides imaging functionality beyond that of the Java Foundati
Classes, although it is compatible with those classes in most cases.
5Release 1.0.1, November 1999

1.4 A Simple JAI Program INTRODUCTION TO JAVA ADVANCED IMAGING

6

get
te

mand
1.4 A Simple JAI Program

Before proceeding any further, let’s take a look at an example JAI program to
an idea of what it looks like. Listing 1-1 shows a simple example of a comple
JAI program. This example reads an image, passed to the program as a com
line argument, scales the image by 2× with bilinear interpolation, then displays
the result.

Listing 1-1 Simple Example JAI Program

import java.awt.Frame;
import java.awt.image.renderable.ParameterBlock;
import java.io.IOException;
import javax.media.jai.Interpolation;
import javax.media.jai.JAI;
import javax.media.jai.RenderedOp;
import com.sun.media.jai.codec.FileSeekableStream;
import javax.media.jai.widget.ScrollingImagePanel;

/**
 * This program decodes an image file of any JAI supported
 * formats, such as GIF, JPEG, TIFF, BMP, PNM, PNG, into a
 * RenderedImage, scales the image by 2X with bilinear
 * interpolation, and then displays the result of the scale
 * operation.
 */
public class JAISampleProgram {

 /** The main method. */
 public static void main(String[] args) {
 /* Validate input. */
 if (args.length != 1) {

System.out.println(“Usage: java JAISampleProgram “ +
 “input_image_filename”);
 System.exit(-1);
 }

 /*
 * Create an input stream from the specified file name
 * to be used with the file decoding operator.
 */
 FileSeekableStream stream = null;
 try {
 stream = new FileSeekableStream(args[0]);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }
Programming in Java Advanced Imaging

INTRODUCTION TO JAVA ADVANCED IMAGING A Simple JAI Program
 /* Create an operator to decode the image file. */
 RenderedOp image1 = JAI.create(“stream”, stream);
 /*

* Create a standard bilinear interpolation object to be
 * used with the “scale” operator.
 */
 Interpolation interp = Interpolation.getInstance(

Interpolation.INTERP_BILINEAR);

 /**
* Stores the required input source and parameters in a
* ParameterBlock to be sent to the operation registry,

 * and eventually to the “scale” operator.
 */
 ParameterBlock params = new ParameterBlock();
 params.addSource(image1);
 params.add(2.0F); // x scale factor
 params.add(2.0F); // y scale factor
 params.add(0.0F); // x translate
 params.add(0.0F); // y translate
 params.add(interp); // interpolation method

 /* Create an operator to scale image1. */
 RenderedOp image2 = JAI.create(“scale”, params);

 /* Get the width and height of image2. */
 int width = image2.getWidth();
 int height = image2.getHeight();

/* Attach image2 to a scrolling panel to be displayed. */
 ScrollingImagePanel panel = new ScrollingImagePanel(

image2, width, height);

 /* Create a frame to contain the panel. */
 Frame window = new Frame(“JAI Sample Program”);
 window.add(panel);
 window.pack();
 window.show();
 }
}

Listing 1-1 Simple Example JAI Program (Continued)
7Release 1.0.1, November 1999

1.4 A Simple JAI Program INTRODUCTION TO JAVA ADVANCED IMAGING

8
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 2
h
f

el

. An
to

ts
Java AWT Imaging

DIGITAL imaging in Java has been supported since its first release, throug
thejava.awt andjava.awt.image class packages. The image-oriented part o
these class packages is referred to asAWT Imagingthroughout this guide.

2.1 Introduction

The Java Advanced Imaging (JAI) API supports three imaging models:

• The producer/consumer (push) model – the basic AWT imaging mod

• The immediate mode model – an advanced AWT imaging model

• The pipeline (pull) model – The JAI model

Table 2-1 lists the interfaces and classes for each of the three models.

2.1.1 The AWT Push Model

The AWT push model, supported through thejava.awt class package, is a
simple filter model of image producers and consumers for image processing
Image object is an abstraction that is not manipulated directly; rather it is used
obtain a reference to another object that implements theImageProducer

interface. Objects that implement this interface are in turn attached to objec

Table 2-1 Imaging Model Interfaces and Classes

AWT Push Model
Java 2D Immediate
Mode Model Pull Model

Image
ImageProducer
ImageConsumer
ImageObserver

BufferedImage
Raster
BufferedImageOp
RasterOp

RenderableImage
RenderableImageOp
RenderedOp
RenderableOp
TiledImage
9

2.1.1 The AWT Push Model JAVA AWT IMAGING

10

sink

lor

ed,
he

ory

nt
city

as
that implement theImageConsumer interface. Filter objects implement both the
producer and consumer interfaces and can thus serve as both a source and
of image data. Image data has associated with it aColorModel that describes the
pixel layout within the image and the interpretation of the data.

To process images in the push model, anImage object is obtained from some
source (for example, through theApplet.getImage() method). The
Image.getSource() method can then be used to get theImageProducer for that
Image. A series ofFilteredImageSource objects can then be attached to the
ImageProducer, with each filter being anImageConsumer of the previous image
source. AWT Imaging defines a few simple filters for image cropping and co
channel manipulation.

The ultimate destination for a filtered image is an AWTImage object, created by
a call to, for example,Component.createImage(). Once this consumer image
has been created, it can by drawn upon the screen by calling
Image.getGraphics() to obtain aGraphics object (such as a screen device),
followed byGraphics.drawImage().

AWT Imaging was largely designed to facilitate the display of images in a
browser environment. In this context, an image resides somewhere on the
network. There is no guarantee that the image will be available when requir
so the AWT model does not force image filtering or display to completion. T
model is entirely apushmodel. AnImageConsumer can never ask for data; it
must wait for theImageProducer to “push” the data to it. Similarly, an
ImageConsumer has no guarantee about when the data will be completely
delivered; it must wait for a call to itsImageComplete() method to know that it
has the complete image. An application can also instantiate anImageObserver

object if it wishes to be notified about completion of imaging operations.

AWT Imaging does not incorporate the idea of an image that is backed by a
persistent image store. While methods are provided to convert an input mem
array into anImageProducer, or capture an output memory array from an
ImageProducer, there is no notion of a persistent image object that can be
reused. When data is wanted from anImage, the programmer must retrieve a
handle to the Image’sImageProducer to obtain it.

The AWT imaging model is not amenable to the development of high-
performance image processing code. The push model, the lack of a persiste
image data object, the restricted model of an image filter, and the relative pau
of image data formats are all severe constraints. AWT Imaging also lacks a
number of common concepts that are often used in image processing, such
operations performed on a region of interest in an image.
Programming in Java Advanced Imaging

JAVA AWT IMAGING The Immediate Mode Model

ush

to

the

s to
he
re.

s.

ng
d

r

,

2.1.2 AWT Push Model Interfaces and Classes

The following are the Java interfaces and classes associated with the AWT p
model of imaging.

2.2 The Immediate Mode Model

To alleviate some of the restrictions of the original AWT imaging model and
provide a higher level of abstraction, a new specification called theJava 2DAPI
was developed. This new API extends AWT’s capabilities for both two-
dimensional graphics and imaging. In practice, the Java 2D package is now
merged into the AWT specification and is a part of the Java Core (and thus
available in all Java implementations). However, for purposes of discussion,
distinction between Java 2D and the AWT is preserved in this chapter.

The Java 2D API specifies a set of classes that extend the Java AWT classe
provide extensive support for both two-dimensional graphics and imaging. T
support for 2D graphics is fairly complete, but will not be discussed further he

Table 2-2 Push Model Imaging Interfaces

Interface Description

Image Extends:Object
The superclass of all classes that represent graphical image

Table 2-3 Push Model Imaging Classes

Class Description

ColorModel An abstract class that encapsulates the methods for translati
a pixel value to color components (e.g., red, green, blue) an
an alpha component.

FilteredImageSource An implementation of theImageProducer interface which
takes an existing image and a filter object and uses them to
produce image data for a new filtered version of the original
image.

ImageProducer The interface for objects that can produce the image data fo
Images. Each image contains anImageProducer that is used
to reconstruct the image whenever it is needed, for example
when a new size of theImage is scaled, or when the width or
height of theImage is being requested.

ImageConsumer The interface for objects expressing interest in image data
through theImageProducer interfaces. When a consumer is
added to an image producer, the producer delivers all of the
data about the image using the method calls defined in this
interface.

ImageObserver An asynchronous update interface for receiving notifications
aboutImage information as theImage is constructed.
11Release 1.0.1, November 1999

2.2.1 Rendering Independence JAVA AWT IMAGING

12

er/
data
ats

. The

ge

API

is

ers

e of

ents

er,

le of

may

ipe
For digital imaging, the Java 2D API retains to some extent the AWT produc
consumer model but adds the concept of a memory-backed persistent image
object, an extensible set of 2D image filters, a wide variety of image data form
and color models, and a more sophisticated representation of output devices
Java 2D API also introduces the notion of resolution-independent image
rendering by the introduction of theRenderableandRenderedinterfaces,
allowing images to be pulled through a chain of filter operations, with the ima
resolution selected through a rendering context.

The concepts of rendered and renderable images contained in the Java 2D
are essential to JAI. The next few sections explain these concepts; complete
information about the classes discussed can be found inThe Java 2D API
Specificationand theJava 2D API White Paper.

2.2.1 Rendering Independence

Rendering independence for images is a poorly understood topic because it
poorly named. The more general problem is “resolution independence,” the
ability to describe an image as you want it to appear, but independent of any
specific instance of it. Resolution is but one feature of any such rendering. Oth
are the physical size, output device type, color quality, tonal quality, and
rendering speed. A rendering-independent description is concerned with non
these.

In this document, the termrendering-independentis for the more general concept
instead ofresolution-independent. The latter term is used to specifically refer to
independence from final display resolution.

For a rendering-independent description of an image, two fundamental elem
are needed:

• An unrendered source (sometimes called aresolution-independent
source). For a still image, this is, conceptually, the viewfinder of an
idealized camera trained on a real scene. It has no logical “size.” Rath
one knows what it looks like and can imagine projecting it onto any
surface. Furthermore, the ideal camera has an ideal lens that is capab
infinite zooming. The characteristics of this image are that it is
dimensional, has a native aspect ratio (that of the capture device), and
have properties that could be queried.

• Operators for describing how to change the character of the image,
independent of its final destination. It can be useful to think of this as a p
of operations.
Programming in Java Advanced Imaging

JAVA AWT IMAGING The Renderable Layer vs. the Rendered Layer

ter
be
wer
to

ce
ent

h is
tion

in

s

f
of

JAI.

dent

ain

e

Together, the unrendered source and the operators specify the visual charac
that the image should have when it is rendered. This specification can then
associated with any device, display size, or rendering quality. The primary po
of rendering independence is that the same visual description can be routed
any display context with an optimal result.

2.2.2 Rendering-independent Imaging in Java AWT

The Java AWT API architecture integrates a model of rendering independen
with a parallel, device-dependent (rendered) model. The rendering-independ
portion of the architecture is a superset of, rather than a replacement for, the
traditional model of device-dependent imaging.

The Java AWT API architecture supports context-dependent adaptation, whic
superior to full image production and processing. Context-dependent adapta
is inherently more efficient and thus also suited to network sources. Beyond
efficiency, it is the mechanism by which optimal image quality can be assured
any context.

The Java AWT API architecture is essentially synchronous is nature. This ha
several advantages, such as a simplified programming model and explicit
controls on the type and order of results. However, the synchronous nature o
Java AWT has one distinct disadvantage in that it is not well suited to notions
progressive rendering or network resources. These issues are addressed in

2.2.3 The Renderable Layer vs. the Rendered Layer

The Java AWT API architecture provides for two integrated imaging layers:
renderable and rendered.

2.2.3.1 Renderable Layer

The renderable layer is a rendering-independent layer. All the interfaces and
classes in the Java AWT API haverenderable in their names.

The renderable layer provides image sources that can be optimally reused
multiple times in different contexts, such as screen display or printing. The
renderable layer also provides imaging operators that take rendering-indepen
parameters. These operators can be linked to formchains. The layer is
essentially synchronous in the sense that it “pulls” the image through the ch
whenever a rendering (such as to a display or a file) is requested. That is, a
request is made at the sink end of the chain that is passed up the chain to th
13Release 1.0.1, November 1999

2.2.3 The Renderable Layer vs. the Rendered Layer JAVA AWT IMAGING

14

chain

d
t-
ents

xel
r.

cific

tion.
ble
a

source. Such requests are context-specific (such as device specific), and the
adapts to the context. Only the data required for the context is produced.

2.2.3.2 Rendered Layer

Image sources and operators in the parallelRendered layer(the interfaces and
classes haverendered in their names) are context-specific. ARenderedImage is
an image that has been rendered to fulfill the needs of the context. Rendere
layer operators can also be linked together to form chains. They take contex
dependent parameters. Like the Renderable layer, the Rendered layer implem
a synchronous “pull” model.

2.2.3.3 Using the Layers

Structurally, the Renderable layer is lightweight. It does not directly handle pi
processing. Rather, it makes use of operator objects from the Rendered laye
This is possible because the operator classes from the Rendered layer can
implement an interface (theContextualRenderedImageFactory interface) that
allows them to adapt to different contexts.

Since the Rendered layer operators implement this interface, they house spe
operations in their entirety. That is, all the intelligence required to function in
both the Rendered and Renderable layers is housed in a single class. This
simplifies the task of writing new operators and makes extension of the
architecture manageable.

Figure 2-1 shows a renderable chain. The chain has a sink attached (a
Graphics2D object), but no pixels flow through the chain yet.

Figure 2-1 A Renderable Chain

You may use either the Renderable or Rendered layer to construct an applica
Many programmers will directly employ the Rendered layer, but the Rendera
layer provides advantages that greatly simplify imaging tasks. For example,

Renderable
Source

Renderable
Operator

Graphics2D
Object

ParameterBlock
Programming in Java Advanced Imaging

JAVA AWT IMAGING Renderable and Rendered Classes

ct the

rm
an
. It
of

s of

ork
chain of Renderable operators remains editable. Parameters used to constru
chain can be modified repeatedly. Doing so does not cause pixel value
computation to occur. Instead, the pixels are computed only when they are
needed by a specific rendition obtained from aRenderableImage by passing it
definedrender contexts.

2.2.4 The Render Context

The renderable layer allows for the construction of a chain of operators
(RenderableImageOps) connected to aRenderableImage source. The end of this
chain represents a newRenderableImage source. The implication of this is that
RenderableImageOps must implement the same interface as sources:
RenderableImageOp implementsRenderableImage.

Such a source can be asked to provide various specificRenderedImages
corresponding to a specific context. The required size of theRenderedImage in
the device space (the size in pixels) must be specified. This information is
provided in the form of an affine transformation from the user space of the
Renderable source to the desired device space.

Other information can also be provided to the source (or chain) to help it perfo
optimally for a specific context. A preference for speed over image quality is
example. Such information is provided in the form of an extensible hints table
may also be useful to provide a means to limit the request to a specific area
the image.

The architecture refers to these parameters collectively as arender context. The
parameters are housed in aRenderContext class. Render contexts form a
fundamental link between the Renderable and Rendered layers. A
RenderableImage source is given aRenderContext and, as a result, produces a
specific rendering, orRenderedImage. This is accomplished by the Renderable
chain instantiating a chain of Render layer objects. That is, a chain of
RenderedImages corresponding to the specific context, theRenderedImage

object at the end of the chain being returned to the user.

2.3 Renderable and Rendered Classes

Many users will be able to employ the Renderable layer, with the advantage
its rendering-independent properties for most imaging purposes. Doing so
eliminates the need to deal directly with pixels, greatly simplifying image
manipulation. However, in many cases it is either necessary or desirable to w
with pixels and the Rendered layer is used for this purpose.
15Release 1.0.1, November 1999

2.3.1 The Renderable Layer JAVA AWT IMAGING

16

ing

e
cific

ter

the

s

The architecture of the provided classes is discussed in this section. Extend
the model by writing new operators or algorithms in the Java 2D API is
discussed. Details of how the Rendered layer functions internally within the
Renderable layer are also covered.

2.3.1 The Renderable Layer

The renderable layer is primarily defined by theRenderableImage interface.
Any class implementing this interface is a renderable image source, and is
expected to adapt toRenderContexts. RenderableImages are referenced
through a user-defined coordinate system. One of the primary functions of th
RenderContext is to define the mapping between this user space and the spe
device space for the desired rendering.

A chain in this layer is a chain ofRenderableImages. Specifically, it is a chain
of RenderableImageOps (a class that implementsRenderableImage), ultimately
sourced by aRenderableImage.

There is only oneRenderableImageOp class. It is a lightweight, general purpose
class that takes on the functionality of a specific operation through a parame
provided at instantiation time. That parameter is the name of a class that
implements aContextualRenderedImageFactory (known as a CRIF, for short).
Each instantiation ofRenderableImageOp derives its specific functionality from
the named class. In this way, the Renderable layer is heavily dependent on
Rendered layer.

Table 2-4 The Renderable Layer Interfaces and Classes

Type Name Description

Interface RenderableImage A common interface for rendering-
independent images (a notion that subsume
resolution independence).

ContextualRenderedImage-
Factory

Extends:RenderedImageFactory
Provides an interface for the functionality
that may differ between instances of
RenderableImageOp.
Programming in Java Advanced Imaging

JAVA AWT IMAGING The Renderable Layer

ters
ered)

e

e

The other block involved in the construction ofRenderableImageOp is a
ParameterBlock. TheParameterBlock houses the source(s) for the operation,
plus parameters or other objects that the operator may require. The parame
are rendering-independent versions of the parameters that control the (Rend
operator.

A Renderable chain is constructed by instantiating each successive
RenderableImageOp, passing in the lastRenderableImage as the source in the
ParameterBlock. This chain can then be requested to provide a number of
renderings to specific device spaces through thegetImage method.

This chain, once constructed, remains editable. Both the parameters for the
specific operations in the chain and the very structure of the chain can be
changed. This is accomplished by thesetParameterBlock method, setting new
controlling parameters and/or new sources. These edits only affect future
RenderedImages derived from points in the chain below the edits.
RenderedImages that were previously obtained from the Renderable chain ar
immutable and completely independent from the chain from which they were
derived.

Class ParameterBlock Extends:Object
Implements:Cloneable, Serializable
Encapsulates all the information about
sources and parameters (expressed as bas
types or Objects) required by a
RenderableImageOp and other future
classes that manipulate chains of imaging
operators.

RenderableImageOp Extends:Object
Implements:RenderableImage
Handles the renderable aspects of an
operation with help from its associated
instance of a
ContextualRenderedImageFactory.

RenderableImageProducer Extends:Object
Implements:ImageProducer, Runnable
An adapter class that implements
ImageProducer to allow the asynchronous
production of aRenderableImage.

RenderContext Extends:Object
Implements:Cloneable
Encapsulates the information needed to
produce a specific rendering from a
RenderableImage.

Table 2-4 The Renderable Layer Interfaces and Classes (Continued)

Type Name Description
17Release 1.0.1, November 1999

2.3.2 The Rendered Layer JAVA AWT IMAGING

18

r.
ific
ned

he

clone
e
s

2.3.2 The Rendered Layer

The Rendered layer is designed to work in concert with the Renderable laye
The Rendered layer is comprised of sources and operations for device-spec
representations of images or renderings. The Rendered layer is primarily defi
by theRenderedImage interface. Sources such asBufferedImage implement this
interface.

Operators in this layer are simplyRenderedImages that take other
RenderedImages as sources. Chains, therefore, can be constructed in much t
same manner as those of the Renderable layer. A sequence ofRenderedImages is
instantiated, each taking the lastRenderedImage as a source.

In Figure 2-2, when the user callsGraphics2D.drawImage(), a render context is
constructed and used to call thegetImage() method of the renderable operator.
A rendered operator to actually do the pixel processing is constructed and
attached to the source and sink of the renderable operator and is passed a
of the renderable operator’s parameter block. Pixels actually flow through th
rendered operator to the Graphics2D. The renderable operator chain remain
available to produce more renderings whenever itsgetImage() method is called.

Figure 2-2 Deriving a Rendering from a Renderable Chain

Rendered
Operator

Renderable
Source

Renderable
Operator Graphics2D

ParameterBlock

ParameterBlock

RenderContext

drawImage()
Programming in Java Advanced Imaging

JAVA AWT IMAGING Java Image Data Representation

aps
iated

nd

ixel
; one
n an
A rendered image represents a virtual image with a coordinate system that m
directly to pixels. A Rendered image does not have to have image data assoc
with it, only that it be able to produce image data when requested. The
BufferedImage class, which is the Java 2D API’s implementation of
RenderedImage, however, maintains a full page buffer that can be accessed a
written to. Data can be accessed in a variety of ways, each with different
properties.

2.4 Java Image Data Representation

In the Java AWT API, a sample is the most basic unit of image data. Each p
is composed of a set of samples. For an RGB pixel, there are three samples
each for red, green, and blue. All samples of the same kind across all pixels i
image constitute aband. For example, in an RGB image, all the red samples
together make up a band. Therefore, an RGB image contains three bands.

A three-color subtractive image contains three bands; one each for cyan,
magenta, and yellow (CMY). A four-color subtractive image contains four
bands; one each for cyan, magenta, yellow, and black (CMYK).

Table 2-5 The Rendered Layer Interfaces and Classes

Type Name Description

Interface RenderedImage A common interface for objects that contain
or can produce image data in the form of
Rasters.

Class BufferedImage Extends:Image
Implements:WritableRenderedImage
A subclass that describes an Image with an
accessible buffer of image data.

WritableRenderedImage Extends:RenderedImage
A common interface for objects that contain
or can produce image data that can be
modified and/or written over.
19Release 1.0.1, November 1999

2.4 Java Image Data Representation JAVA AWT IMAGING

20

oes
he
a

tain

ns

y the
of

s

The basic unit of image data storage is theDataBuffer. TheDataBuffer is a
kind of raw storage that contains all of the samples for the image data but d
not maintain a notion of how those samples can be put together as pixels. T
information about how the samples are put together as pixels is contained in
SampleModel. TheSampleModel class contains methods for deriving pixel data
from aDataBuffer. Together, aDataBuffer and aSampleModel constitute a
meaningful multi-pixel image storage unit called aRaster.

A Raster has methods that directly return pixel data for the image data it
contains. There are two basic types ofRasters:

• Raster – a read-only object that has only accessors

• WritableRaster – A writable object that has a variety of mutators

There are separate interfaces for dealing with each raster type. The
RenderedImage interface assumes that the data is read-only and does not con
methods for writing aRaster. TheWritableRenderedImage interface assumes
that the image data is writeable and can be modified.

Data from atile is returned in aRaster object. A tile is not a class in the
architecture; it is a concept. A tile is one of a set of regular rectangular regio
that span the image on a regular grid. In theRenderedImage interface, there are
several methods that relate to tiles and a tile grid. These methods are used b
JAI API, rather than the Java 2D API. In the Java 2D API, the implementation
theWritableRenderedImage (BufferedImage) is defined to have a single tile.
This, thegetWritableTile method will return all the image data. Other method
that relate to tiling will return the correct degenerative results.

Table 2-6 Java 2D Image Data Classes

Type Name Description

Class DataBuffer Extends:Object
Wraps one or more data arrays. Each data
array in theDataBuffer is referred to as a
bank.

Raster Extends:Object
Represents a rectanglular array of pixels and
provides methods for retrieving image data.

SampleModel Extends:Object
Extracts samples of pixels in images.

WriteableRaster Extends:Raster
Provides methods for storing image data and
inherits methods for retrieving image data
from it’s parent classRaster.
Programming in Java Advanced Imaging

JAVA AWT IMAGING Introducing the Java Advanced Imaging API

ul

-
s.
class

e
l as
ava

he
y

RenderedImages do not necessarily maintain aRaster internally. Rather, they
can return requested rectangles of image data in the form of a (Writable)Raster
(through thegetData, getRect, andget(Writable)Tile methods). This
distinction allowsRenderedImages to be virtual images, producing data only
when needed.RenderedImages do, however, have an associatedSampleModel,
implying that data returned inRasters from the same image will always be
written to the associatedDataBuffer in the same way.

The Java 2DBufferedImage also adds an associatedColorModel, which is
different from theSampleModel. TheColorModel determines how the bands are
interpreted in a colorimetric sense.

2.5 Introducing the Java Advanced Imaging API

The JAI API builds on the foundation of the Java 2D API to allow more powerf
and general imaging applications. The JAI API adds the following concepts:

• Multi-tiled images

• Deferred execution

• Networked images

• Image property management

• Image operators with multiple sources

• Three-dimensional image data

The combination of tiling and deferred execution allows for considerable run
time optimization while maintaining a simple imaging model for programmer
New operators may be added and the new operators may participate as first-
objects in the deferred execution model.

The JAI API also provides for a considerable degree of compatibility with the
Java AWT and Java 2D imaging models. JAI’s operators can work directly on
Java 2DBufferedImage objects or any other image objects that implement th
RenderedImage interface. JAI supports the same rendering-independent mode
the Java 2D API. using device-independent coordinates. JAI also supports J
2D-style drawing on both Rendered and Renderable images using theGraphics

interface.

The JAI API does not make use of the image producer/consumer interfaces
introduced in Java AWT and carried forward into the Java 2D API. Instead, t
JAI API requires that image sources participate in the “pull” imaging model b
responding to requests for arbitrary areas, thus making it impossible to
21Release 1.0.1, November 1999

2.5.1 Similarities with the Java 2D API JAVA AWT IMAGING

22

PI.
ges,
e

s

f

 the

 the
n of
instantiate anImageProducer directly as a source. It is, however, possible to
instantiate anImageProducer that makes the JAI API image data available to
older AWT applications.

2.5.1 Similarities with the Java 2D API

The JAI API is heavily dependent on the abstractions defined in the Java 2D A
In general, the entire mechanism for handling Renderable and Rendered ima
pixel samples, and data storage is carried over into JAI. Here are some of th
major points of congruity between Java 2D and JAI:

• TheRenderableImage andRenderedImage interfaces defined in the Java
2D API are used as a basis for higher-level abstractions. Further, JAI
allows you to create and manipulate directed acyclic graphs of object
implementing these interfaces.

• The primary data object, theTiledImage, implements the
WritableRenderedImage interface and can contain a regular tile grid o
Raster objects. However, unlike theBufferedImage of the Java 2D API,
TiledImage does not require that aColorModel for photometric
interpretation of its image data be present.

• The JAI operator objects are considerably more sophisticated than in
Java 2D API. TheOpImage, the fundamental operator object, provides
considerable support for extensibility to new operators beyone that in
Java 2D API. JAI has a registry mechanism that automates the selectio
operations onRenderedImages.

• The Java 2D APISampleModel, DataBuffer, andRaster objects are
carried over into JAI without change, except thatdoubles andfloats are
allows to be used as the fundamental data types of aDataBuffer in
addition to thebyte, short, andint data types.

2.5.2 JAI Data Classes

JAI introduces two new data classes, which extend the Java 2DDataBuffer

image data class.

Table 2-7 JAI Data Classes

Type Name Description

Class DataBufferFloat Extends:DataBuffer
Stores data internally in float form.

DataBufferDouble Extends:DataBuffer
Stores data internally in double form.
Programming in Java Advanced Imaging

JAVA AWT IMAGING JAI Data Classes

 of

t be
2.5.2.1 The DataBufferFloat Class

API: javax.media.jai.DataBufferFloat

• DataBufferFloat(int size)

constructs a float-based DataBuffer with a specified size.

• DataBufferFloat(int size, int numBanks)

constructs a float-based DataBuffer with a specified number of banks, all
which are of a specified size.

• DataBufferFloat(float[] dataArray, int size)

constructs a float-basedDataBuffer with the specified data array. Only the
first size elements are available for use by this data buffer. The array mus
large enough to holdsize elements.

• DataBufferFloat(float[] dataArray, int size, int offset)

constructs a float-basedDataBuffer with the specified data array. Only the
elements betweenoffset and (offset + size – 1) are available for use by this
DataBuffer. The array must be large enough to hold (offset + size)
elements.

Parameters: size The number of elements in theDataBuffer.

Parameters: size The number of elements in each bank of the
DataBuffer.

numBanks The number of banks in theDataBuffer.

Parameters: dataArray An array of floats to be used as the first and
only bank of thisDataBuffer.

size The number of elements of the array to be
used.

Parameters: dataArray An array of floats to be used as the first and
only bank of thisDataBuffer.

size The number of elements of the array to be
used.

offset The offset of the first element of the array
that will be used.
23Release 1.0.1, November 1999

2.5.2 JAI Data Classes JAVA AWT IMAGING

24
• DataBufferFloat(float[][] dataArray, int size)

constructs a float-basedDataBuffer with the specified data arrays. Only the
first size elements of each array are available for use by thisDataBuffer. The
number of banks will be equal todataArray.length.

• DataBufferFloat(float[][] dataArray, int size, int[] offsets)

constructs a float-basedDataBuffer with the specified data arrays, size, and
per-bank offsets. The number of banks is equal todataArray.length. Each
array must be at least as large assize + the correspondingoffset. There must
be an entry in theoffsets array for each data array.

2.5.2.2 The DataBufferDouble Class

API: javax.media.jai.DataBufferDouble

• DataBufferDouble(int size)

constructs a double-basedDataBuffer with a specified size.

• DataBufferDouble(int size, int numBanks)

constructs a double-basedDataBuffer with a specified number of banks, all
of which are of a specified size.

Parameters: dataArray An array of floats to be used as banks of
this DataBuffer.

size The number of elements of each array to be
used.

Parameters: dataArray An array of arrays of floats to be used as
the banks of thisDataBuffer.

size The number of elements of each array to be
used.

offset An array of integer offsets, one for each
bank.

Parameters: size The number of elements in theDataBuffer.

Parameters: size The number of elements in each bank of the
DataBuffer.

numBanks The number of banks in theDataBuffer.
Programming in Java Advanced Imaging

JAVA AWT IMAGING JAI Data Classes

be

d

f

• DataBufferDouble(double[] dataArray, int size)

constructs a double-basedDataBuffer with the specified data array. Only the
first size elements are available for use by this databuffer. The array must
large enough to holdsize elements.

• DataBufferDouble(double[] dataArray, int size, int offset)

constructs a double-basedDataBuffer with the specified data array. Only the
elements betweenoffset and (offset + size – 1) are available for use by this
data buffer. The array must be large enough to hold (offset + size) elements.

• DataBufferDouble(double[][] dataArray, int size)

constructs a double-basedDataBuffer with the specified data arrays. Only the
first size elements of each array are available for use by thisDataBuffer. The
number of banks will be equal todataArray.length.

• DataBufferDouble(double[][] dataArray, int size, int[] offsets)

constructs a double-basedDataBuffer with the specified data arrays, size, an
per-bank offsets. The number of banks is equal todataArray.length. Each

Parameters: dataArray An array of doubles to be used as the first
and only bank of thisDataBuffer.

size The number of elements of the array to be
used.

Parameters: dataArray An array of doubles to be used as the first
and only bank of thisDataBuffer.

size The number of elements of the array to be
used.

offset The offset of the first element of the array
that will be used.

Parameters: dataArray An array of doubles to be used as banks o
this DataBuffer.

size The number of elements of each array to be
used.
25Release 1.0.1, November 1999

2.5.2 JAI Data Classes JAVA AWT IMAGING

26
array must be at least as large assize + the correspondingoffset. There must
be an entry in the offsets array for each data array.

Parameters: dataArray An array of arrays of doubles to be used as
the banks of thisDataBuffer.

size The number of elements of each array to be
used.

offset An array of integer offsets, one for each
bank.
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 3

a

 of

ver

”)

,

,

ote
Programming in Jav
Advanced Imaging

THIS chapter describes how to get started programming with the Java
Advanced Imaging (JAI) API.

3.1 Introduction

An imaging operation within JAI is summarized in the following four steps:

1. Obtain the source image or images. Images may be obtained in one
three ways (see Chapter 4, “Image Acquisition and Display”):

a. Load from an image file such as GIF, TIFF, or JPEG

b. Fetch the image from another data source, such as a remote ser

c. Generate the image internally

2. Define the imaging graph. This is a two part process:

a. Define the image operators (see Section 3.6, “JAI API Operators

b. Define the parent/child relationship between sources and sinks

3. Evaluate the graph using one of three execution models:

a. Rendered execution model (Immediate mode – see Section 3.3.1
“Rendered Graphs”)

b. Renderable execution model (Deferred mode – see Section 3.3.2
“Renderable Graphs”)

c. Remote execution model (Remote mode – see Section 3.4, “Rem
Execution”)
27

3.2 An Overview of Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

28

ed
tion.
mes

or

e

nly
h

4. Process the result. There are four possible destinations:

a. Save the image in a file

b. Display the image on the screen

c. Print the image on a printer or other output device

d. Send the image to another API, such as Swing

3.2 An Overview of Graphs

In JAI, any operation is defined as an object. An operator object is instantiat
with zero or more image sources and other parameters that define the opera
Two or more operators may be strung together so that the first operator beco
an image source to the next operator. By linking one operator to another, we
create an imaginggraphor chain.

In its simplest form, the imaging graph is a chain of operator objects with one
more image sources at one end and an imagesinc (or “user”) at the other end.
The graph that is created is commonly known as adirected acyclic graph
(DAG), where each object is anodein the graph and object references form th
edges(see Figure 3-1).

Figure 3-1 An Example DAG

Most APIs simply leave the DAG structure of images and operators implicit.
However, JAI makes the notion of aprocessing graphexplicit and allows such
graphs to be considered as entities in their own right. Rather than thinking o
of performing a series of operations in sequence, you can consider the grap

im0
“constant”

im1
“constant”

im1
“add”

Display
Widget

Nodes Edges
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Processing Graphs

lize

ere
lly,

not

PI.
ou

of
The

A
ng-

a
h-
ut
ays

g
hout
tails

s,”
and
structure produced by the operations. The graph form makes it easier to visua
the operations.

A directed acyclic graph is a graph containing no cycles. This means that if th
is a route from node A to node B then there should be no way back. Norma
when creating a graph by instantiating new nodes one at a time, cycles are
easily avoided. However, when reconfiguring a graph, you must be careful
to introduce cycles into the graph.

3.3 Processing Graphs

JAI extends rendering independence, which was introduced in the Java 2D A
With rendering independence, you have the ability to describe an image as y
want it to appear, independent of any specific instance of it.

In most imaging APIs, the application must know the exact resolution and size
the source image before it can begin any imaging operations on the image.
application must also know the resolution of the output device (computer
monitor or color printer) and the color and tonal quality of the original image.
rendering-independent description is concerned with none of these. Renderi
independent sources and operations permit operations to be specified in
resolution-independent coordinates.

Think of rendering independence a bit like how a PostScript file is handled in
computer. To display a PostScript file on a monitor or to print the file to a hig
resolution phototypesetter, you don’t need to know the resolution of the outp
device. The PostScript file is essentially rendering independent in that it displ
properly no matter what the resolution of the output device is.

JAI has a “renderable” mode in which it treats all image sources as renderin
independent. You can set up a graph (or chain) of renderable operations wit
any concern for the source image resolution or size; JAI takes care of the de
of the operations.

JAI introduces two different types of graphs: rendered and renderable.

Note: The following two sections, “Rendered Graphs” and “Renderable Graph
are for advanced JAI users. Most programmers will use JAI’s Rendered mode
don’t really need to know about the Renderable mode.
29Release 1.0.1, November 1999

3.3.1 Rendered Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

30

ble
to

e
t it is
n is

ts.

ple,
3.3.1 Rendered Graphs

Rendered graphs are the simplest form of rendering in JAI. Although Rendera
graphs have the advantage of rendering-independence, eliminating the need
deal directly with pixels, Rendered graphs are useful when it is necessary to
work directly with the pixels.

A Rendered graph processes images in immediate mode. For any node in th
graph, the image source is considered to have been evaluated at the momen
instantiated and added to the graph. Or, put another way, as a new operatio
added to the chain, it appears to compute its results immediately.

A Rendered graph is composed of Rendered object nodes. These nodes are
usually instances of theRenderedOp class, but could belong to any subclass of
PlanarImage, JAI’s version ofRenderedImage.

Image sources are objects that implement theRenderedImage interface. These
sources are specified as parameters in the construction of new image objec

Let’s take a look at an example of a rendered graph in Listing 3-1. This exam
which is a code fragment rather than an entire class definition, creates two
constant images and then adds them together.

Listing 3-1 Rendered Chain Example

import javax.jai.*;
import javax.jai.widget.*;
import java.awt.Frame;

public class AddExample extends Frame {

 // ScrollingImagePanel is a utility widget that
 // contains a Graphics2D (i.e., is an image sink).
 ScrollingImagePanel imagePanel1;

 // For simplicity, we just do all the work in the
 // class constructor.
 public AddExample(ParameterBlock param1,
 ParameterBlock param2) {

 // Create a constant image
 RenderedOp im0 = JAI.create(“constant”, param1);

 // Create another constant image.
 RenderedOp im1 = JAI.create(“constant”, param2);
 // Add the two images together.
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Rendered Graphs

e

es

Two
The first three lines of the example code specify which classes to import. Th
classes prefixed withjavax.jai are the Java Advanced Imaging classes. The
java.awt prefix specifies the core Java API classes.

import javax.jai.*;
import javax.jai.widget.*;
import java.awt.Frame;

The next line declares the name of the program and that it runs in aFrame, a
window with a title and border.

public class AddExample extends Frame {

The next line of code creates aScrollingImagePanel, which is the ultimate
destination of our image:

ScrollingImagePanel imagePanel1;

Next, aParameterBlock for each source image is defined. The parameters
specify the image height, width, origin, tile size, and so on.

public AddExample(ParameterBlock param1,
 ParameterBlock param2) {

The next two lines define two operations that create the two “constant” imag
that will be added together to create the destination image (see Section 4.7,
“Creating a Constant Image”).

RenderedOp im0 = JAI.create(“constant”, param1);
RenderedOp im1 = JAI.create(“constant”, param2);

Next, our example adds the two images together (see Section 6.5.1, “Adding
Source Images”).

RenderedOp im2 = JAI.create(“add”, im0, im1);

 RenderedOp im2 = JAI.create(“add”, im0, im1);

 // Display the original in a scrolling window
imagePanel1 = new ScrollingImagePanel(im2, 100, 100);

 // Add the display widget to our frame.
 add(imagePanel1);
 }
}

Listing 3-1 Rendered Chain Example (Continued)
31Release 1.0.1, November 1999

3.3.2 Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

32

et
ed

he

uest
e
he

orm
e

Finally, we display the destination image in a scrolling window and add the
display widget to our frame.

imagePanel1 = new ScrollingImagePanel(im2, 100, 100);
add(imagePanel1);

Once pixels start flowing, the graph will look like Figure 3-2. The display widg
drives the process. We mention this because the source images are not load
and no pixels are produced until the display widget actually requests them.

Figure 3-2 Rendered Chain Example

3.3.2 Renderable Graphs

A renderable graphis a graph that is not evaluated at the time it is specified. T
evaluation is deferred until there is a specific request for a rendering. This is
known asdeferred execution; evaluation is deferred until there is a specific
request for rendering.

In a renderable graph, if a source image should change before there is a req
for rendering, the changes will be reflected in the output. This process can b
thought of as a “pull” model, in which the requestor pulls the image through t
chain, which is the opposite of the AWT imaging push model.

A renderable graph is made up of nodes implementing theRenderableImage

interface, which are usually instances of theRenderableOp class. As the
renderable graph is constructed, the sources of each node are specified to f
the graph topology. The source of a renderable graph is a Renderable imag
object.

im0
ConstantOpImage

im1
ConstantOpImage

im1
AddOpImage

Display
Widget
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Renderable Graphs

e to
class
Let’s take a look at an example of a renderable graph in Listing 3-2. This
example reads a TIFF file, inverts its pixel values, then adds a constant valu
the pixels. Once again, this example is a code fragment rather than an entire
definition.

Listing 3-2 Renderable Chain Example

// Get rendered source object from a TIFF source.
// The ParameterBlock ‘pb0’ contains the name
// of the source (file, URL, etc.). The objects ‘hints0’,
// ‘hints1’, and ‘hints2’ contain rendering hints and are
// assumed to be created outside of this code fragment.
RenderedOp sourceImg =
 JAI.create(“TIFF”, pb0);

// Derive the RenderableImage from the source RenderedImage.
ParameterBlock pb = new ParameterBlock();
pb.addSource(sourceImg);
pb.add(null).add(null).add(null).add(null).add(null);

// Create the Renderable operation.
RenderableImage ren = JAI.createRenderable("renderable", pb);

// Set up the parameter block for the first op.
ParameterBlock pb1 = new ParameterBlock();
pb1.addSource(ren);

// Make first Op in Renderable chain an invert.
RenderableOp Op1 = JAI.createRenderable(“invert”, pb1);

// Set up the parameter block for the second Op.
// The constant to be added is “2”.
ParameterBlock pb2 = new ParameterBlock();
pb2.addSource(Op1); // Op1 as the source
pb2.add(2.0f); // 2.0f as the constant

// Make a second Op a constant add operation.
RenderableOp Op2 =
 JAI.createRenderable(“addconst”, pb2);

// Set up a rendering context.
AffineTransform screenResolution = ...;
RenderContext rc = new RenderContext(screenResolution);

// Get a rendering.
RenderedImage rndImg1 = Op2.createRendering(rc);

// Display the rendering onscreen using screenResolution.
imagePanel1 = new ScrollingImagePanel(rndImg1, 100, 100);
33Release 1.0.1, November 1999

3.3.2 Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

34

s a
d

l be

is.
In this example, the image source is a TIFF image. A TIFFRenderedOp is
created as a source for the subsequent operations:

RenderedOp sourceImg =
 JAI.create(“TIFF”, pb0);

The rendered source image is then converted to a renderable image:

ParameterBlock pb = new ParameterBlock();
pb.addSource(sourceImg);
pb.add(null).add(null).add(null).add(null).add(null);
RenderableImage ren = JAI.createRenderable("renderable", pb);

Next, aParameterBlock is set up for the first operation. The parameter block
contains sources for the operation and parameters or other objects that the
operator may require.

ParameterBlock pb1 = new ParameterBlock();
pb1.addSource(sourceImage);

An “invert” RenderableOp is then created with the TIFF image as the source.
Theinvert operation inverts the pixel values of the source image and create
RenderableImage as the result of applying the operation to a tuple (source an
parameters).

RenderableOp Op1 = JAI.createRenderable(“invert”, pb1);

The next part of the code example sets up aParameterBlock for the next
operation. TheParameterBlock defines the previous operation (Op1) as the
source of the next operation and sets a constant with a value of 2.0, which wil
used in the next “add constant” operation.

ParameterBlock pb2 = new ParameterBlock();
pb2.addSource(Op1); // Op1 as the source
pb2.add(2.0f); // 2.0f as the constant

The second operation (Op2) is an add constant (addconst), which adds the
constant value (2.0) to the pixel values of a source image on a per-band bas
Thepb2 parameter is theParameterBlock set up in the previous step.

RenderableOp Op2 =
 JAI.createRenderable(“addconst”, pb2);

After Op2 is created, the renderable chain thus far is shown in Figure 3-3.
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Renderable Graphs

al
in in

en
Figure 3-3 Renderable Chain Example

Next, aRenderContext is created using anAffineTransform that will produce
a screen-size rendering.

AffineTransform screenResolution = ...;
RenderContext rc = new RenderContext(screenResolution);

This rendering is created by calling theRenderableImage.createRendering
method onOp2. ThecreateRendering method does not actually compute any
pixels, bit it does instantiate aRenderedOp chain that will produce a rendering at
the appropriate pixel dimensions.

RenderedImage rndImg1 = Op2.createRendering(rc);

The Renderable graph can be thought of as atemplatethat, when rendered,
causes the instantiation of a parallel Rendered graph to accomplish the actu
processing. Now let’s take a look at what happens back up the rendering cha
our example:

• When theOp2.createRendering method is called, it recursively calls the
Op1.createRendering method with theRenderContext rc as the
argument.

• TheOp1 operation then calls thesourceImg.getImagemethod, again with
rc as the argument.sourceImg creates a newRenderedImage to hold its
source pixels at the required resolution and inserts it into the chain. It th
returns a handle to this object toOp1.

Source Image
RenderableOp

Op1
RenderableOp

Op2
RenderableOp

Source Image
RenderedOp
35Release 1.0.1, November 1999

3.3.2 Renderable Graphs PROGRAMMING IN JAVA ADVANCED IMAGING

36
• Op1 then uses theOperationRegistry to find a
ContextualRenderedImageFactory (CRIF) that can perform the “invert”
operation. The resultingRenderedOp object returned by the CRIF is
inserted into the chain with the handle returned bysourceImg as its source.

• The handle to the “invert”RenderedImage is returned toOp2, which
repeats the process, creating an “addconst”RenderedOp, inserting it into
the chain and returning a handle torndImg1.

• Finally, rndImg1 is used in the call to theScrollingImagePanel to
display the result on the screen.

After the creation of theScrollingImagePanel, the Renderable and Rendered
chains look like Figure 3-4.

Figure 3-4 Renderable and Rendered Graphs after the getImage Call

Source Image
RenderableOp

Op1
RenderableOp

Op2
RenderableOp

Renderable Chain Rendered Chain

(NoName) source
RenderedOp

(NoName) invert
RenderedOp

(NoName) addconst
RenderedOp

rndImg1
RenderedOp

imagePanel1
(display widget)
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Reusing Graphs

e of

use
ble

ces,

node,

by

o a

or a
ing
At this point in the chain, no pixels have been processed and noOpImages,
which actually calculate the results, have been created. Only when the
ScrollingImagePanel needs to put pixels on the screen are theOpImages

created and pixels pulled through the Rendered chain, as done in the final lin
code.

imagePanel1 = new ScrollingImagePanel(rndImg1, 100, 100);

3.3.3 Reusing Graphs

Many times, it is more desirable to make changes to an existing graph and re
it than to create another nearly identical graph. Both Rendered and Rendera
graphs are editable, with certain limitations.

3.3.3.1 Editing Rendered Graphs

Initially, a node in a Rendered graph is mutable; it may be assigned new sour
which are considered to be evaluated as soon as they are assigned, and its
parameter values may be altered. However, once rendering takes place at a
it becomes frozen and its sources and parameters cannot be changed.

A chain of Rendered nodes may be cloned without freezing any of its nodes
means of theRenderedOp.createInstance method. Using thecreateInstance
method, a Rendered graph may be configured and reused at will, as well as
serialized and transmitted over a network.

TheRenderedOp class provides several methods for reconfiguring a Rendered
node. ThesetParameter methods can be used to set the node’s parameters t
byte, char, short, int, long, float, double, or anObject. The
setOperationName method can be used to change the operation name. The
setParameterBlock method can be used to change the nodes’s
ParameterBlock.

3.3.3.2 Editing Renderable Graphs

Since Renderable graphs are not evaluated until there is a specific request f
rendering, the nodes may be edited at any time. The main concern with edit
Renderable graphs is the introduction of cycles, which must be avoided.

TheRenderableOp class provides several methods for reconfiguring a
Renderable node. ThesetParameter methods can be used to set the node’s
parameters to abyte, char, short, int, long, float, double, or anObject. The
setParameterBlock method can be used to change the nodes’s
ParameterBlock. ThesetProperty method can be used to change a node’s
37Release 1.0.1, November 1999

3.4 Remote Execution PROGRAMMING IN JAVA ADVANCED IMAGING

38

AI

MI

ts
e

g

.

ods
The
local property. ThesetSource method can be used to set one of the node’s
sources to anObject.

3.4 Remote Execution

Up to this point, we have been talking about standalone image processing. J
also provides for client-server image processing through what is called the
Remote Executionmodel.

Remote execution is based on Java RMI (remote method invocation). Java R
allows Java code on a client to invoke method calls on objects that reside on
another computer without having to move those objects to the client. The
advantages of remote execution become obvious if you think of several clien
wanting to access the same objects on a server. To learn more about remot
method invocation, refer to one of the books on Java described in “Related
Documentation” on page xv.

To do remote method invocation in JAI, aRemoteImage is set up on the server
and aRenderedImage chain is set up on the client. For more information, see
Chapter 12, “Client-Server Imaging.”

3.5 Basic JAI API Classes

JAI consists of several classes grouped into five packages:

• javax.media.jai – contains the “core” JAI interfaces and classes

• javax.media.jai.iterator – contains special iterator interfaces and
classes, which are useful for writing extension operations

• javax.media.jai.operator – contains classes that describe all of the
image operators

• javax.media.jai.widget – contains interfaces and classes for creatin
simple image canvases and scrolling windows for image display

Now, let’s take a look at the most common classes in the JAI class hierarchy

3.5.1 The JAI Class

TheJAI class cannot be instantiated; it is simply a placeholder for static meth
that provide a simple syntax for creating Renderable and Rendered graphs.
majority of the methods in this class are used to create aRenderedImage, taking
an operation name, aParameterBlock, andRenderingHints as arguments.
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING The CollectionImage Class

es

on

hs.
ires
user

mes.

e
eo or

or.
There is one method to create aRenderableImage, taking an operation name, a
ParameterBlock, andRenderingHints as arguments.

There are several variations of thecreate method, all of which take sources and
parameters directly and construct aParameterBlock automatically.

3.5.2 The PlanarImage Class

ThePlanarImage class is the main class for describing two-dimensional imag
in JAI. PlanarImage implements theRenderedImage interface from the Java 2D
API. TiledImage andOpImage, described later, are subclasses ofPlanarImage.

TheRenderedImage interface describes a tiled, read-only image with a pixel
layout described by aSampleModel and aDataBuffer. Each tile is a rectangle of
identical dimensions, laid out on a regular grid pattern. All tiles share a comm
SampleModel.

In addition to the capabilities offered byRenderedImage, PlanarImage
maintains source and sink connections between the nodes of rendered grap
Since graph nodes are connected bidirectionally, the garbage collector requ
assistance to detect when a portion of a graph is no longer referenced from
code and may be discarded.PlanarImage takes care of this by using theWeak
References APIof Java 2.

Any RenderedImages from outside the API are “wrapped” to produce an
instance ofPlanarImage. This allows the API to make use of the extra
functionality ofPlanarImage for all images.

3.5.3 The CollectionImage Class

CollectionImage is the abstract superclass for four classes representing
collections ofPlanarImages:

• ImageStack – represents a set of two-dimensional images lying in a
common three-dimensional space, such as CT scans or seismic volu
The images need not lie parallel to one another.

• ImageSequence – represents a sequence of images with associated tim
stamps and camera positions. This class can be used to represent vid
time-lapse photography.

• ImagePyramid – represents a series of images of progressively lesser
resolution, each derived from the last by means of an imaging operat
39Release 1.0.1, November 1999

3.5.4 The TiledImage Class PROGRAMMING IN JAVA ADVANCED IMAGING

40

o a
of

.

r
l

el

ll
• ImageMIPMap – represents a stack of images with a fixed operational
relationship between adjacent slices.

3.5.4 The TiledImage Class

TheTiledImage class represents images containing multiple tiles arranged int
grid. The tiles form a regular grid, which may occupy any rectangular region
the plane.

TiledImage implements theWritableRenderedImage interface from the Java
2D API, as well as extendingPlanarImage. A TiledImage allows its tiles to be
checked out for writing, after which their pixel data may be accessed directly
TiledImage also has acreateGraphics method that allows its contents to be
altered using Java 2D API drawing calls.

A TiledImage contains a tile grid that is initially empty. As each tile is
requested, it is initialized with data from aPlanarImage source. Once a tile has
been initialized, its contents can be altered. The source image may also be
changed for all or part of theTiledImage using itsset methods. In particular, an
arbitrary region of interest (ROI) may be filled with data copied from a
PlanarImage source.

TheTiledImage class includes a method that allows you to paint aGraphics2D

onto theTiledImage. This is useful for adding text, lines, and other simple
graphics objects to an image for annotating the image. For more on the
TiledImage class, see Section 4.2.2, “Tiled Image.”

3.5.5 The OpImage Class

The OpImage class is the parent class for all imaging operations, such as:

• AreaOpImage – for image operators that require only a fixed rectangula
source region around a source pixel to compute each destination pixe

• PointOpImage – for image operators that require only a single source pix
to compute each destination pixel

• SourcelessOpImage – for image operators that have no image sources

• StatisticsOpImage – for image operators that compute statistics on a
given region of an image, and with a given sampling rate

• UntiledOpimage – for single-source operations in which the values of a
pixels in the source image contribute to the value of each pixel in the
destination image
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING The RenderableOp Class

ng

g

are
y

in
• WarpOpImage – for image operators that perform an image warp

• ScaleOpImage – for extension operators that perform image scaling
requiring rectilinear backwards mapping and padding by the resampli
filter dimensions

TheOpImage is able to determine what source areas are sufficient for the
computation of a given area of the destination by means of a user-supplied
mapDestRect method. For most operations, this method as well as a suitable
implementation ofgetTile is supplied by a standard subclass ofOpImage, such
asPointOpImage or AreaOpImage.

An OpImage is effectively aPlanarImage that is defined computationally. In
PlanarImage, thegetTile method ofRenderedImage is left abstract, and
OpImage subclasses override it to perform their operation. Since it may be
awkward to produce a tile of output at a time, due to the fact that source tile
boundaries may need to be crossed, theOpImage class defines agetTile method
to cobble (copy) source data as needed and to call a user-suppliedcomputeRect

method. This method then receives contiguous sourceRasters that are
guaranteed to contain sufficient data to produce the desired results. By callin
computeRect on subareas of the desired tile,OpImage is able to minimize the
amount of data that must be cobbled.

A second version of thecomputeRect method that is called with uncobbled
sources is available to extenders. This interface is useful for operations that
implemented usingiterators (see Section 14.4, “Iterators”), which abstract awa
the notion of tile boundaries.

3.5.6 The RenderableOp Class

TheRenderableOp class provides a lightweight representation of an operation
the Renderable space (see Section 3.3.2, “Renderable Graphs”).RenderableOps
are typically created using thecreateRenderable method of theJAI class, and
may be edited at will.RenderableOp implements theRenderableImage
interface, and so may be queried for its rendering-independent dimensions.

When aRenderableOp is to be rendered, it makes use of the
OperationRegistry (described in Chapter 14) to locate an appropriate
ContextualRenderedImageFactory object to perform the conversion from the
Renderable space into aRenderedImage.
41Release 1.0.1, November 1999

3.5.7 The RenderedOp Class PROGRAMMING IN JAVA ADVANCED IMAGING

42

ys of

of

y the

n

the

eters
a

ators
n
ll
3.5.7 The RenderedOp Class

TheRenderedOp is a lightweight object similar toRenderableOp that stores an
operation name,ParameterBlock, andRenderingHints, and can be joined into
a Rendered graph (see Section 3.3.1, “Rendered Graphs”). There are two wa
producing a rendering of aRenderedOp:

• Implicit – Any call to aRenderedImage method on aRenderedOp causes
a rendering to be created. This rendering will usually consist of a chain
OpImages with a similar geometry to theRenderedOp chain. It may have
more or fewer nodes, however, since the rendering process may both
collapse nodes together by recognizing patterns, and expand nodes b
use of theRenderedImageFactory interface. TheOperationRegistry
(described in Chapter 14) is used to guide theRenderedImageFactory

selection process.

• Explicit – A call tocreateInstance effectively clones theRenderedOp
and its sourceRenderedOps, resulting in an entirely new Rendered chai
with the same non-RenderedOp sources (such asTiledImages) as the
original chain. The bottom node of the cloned chain is then returned to
caller. This node will then usually be implicitly rendered by calling
RenderedImage methods on it.

RenderedOps that have not been rendered may have their sources and param
altered. Sources are considered evaluated as soon as they are connected to
RenderedOp.

3.6 JAI API Operators

The JAI API specifies a core set of image processing operators. These oper
provide a common ground for applications programmers, since they can the
make assumptions about what operators are guaranteed to be present on a
platforms.

The general categories of image processing operators supported include:

• Point Operators

• Area Operators

• Geometric Operators

• Color Quantization Operators

• File Operators

• Frequency Operators
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Point Operators

nded

ixel.
• Statistical Operators

• Edge Extraction Operators

• Miscellaneous Operators

The JAI API also supports abstractions for many common types of image
collections, such as time-sequential data and image pyramids. These are inte
to simplify operations on image collections and allow the development of
operators that work directly on these abstractions.

3.6.1 Point Operators

Point operators allow you to modify the way in which the image data fills the
available range of gray levels. This affects the image’s appearance when
displayed. Point operations transform an input image into an output image in
such a way that each output pixel depends only on the corresponding input p
Point operations do not modify the spatial relationships within an image.

Table 3-1 lists the JAI point operators.

Table 3-1 Point Operators

Operator Description Reference

Absolute Takes one rendered or renderable source image, and
computes the mathematical absolute value of each pixel.

page 177

Add Takes two rendered or renderable source images, and
adds every pair of pixels, one from each source image of
the corresponding position and band.

page 166

AddCollection Takes a collection of rendered source images, and adds
every pair of pixels, one from each source image of the
corresponding position and band.

page 168

AddConst Takes a collection of rendered images and an array of
double constants, and for each rendered image in the
collection adds a constant to every pixel of its
corresponding band.

page 167

AddConstToCollection Takes a collection of rendered images and an array of
double constants, and for each rendered image in the
collection adds a constant to every pixel of its
corresponding band.

page 169

And Takes two rendered or renderable source images and
performs a bit-wise logical AND on every pair of pixels,
one from each source image, of the corresponding
position and band.

page 158
43Release 1.0.1, November 1999

3.6.1 Point Operators PROGRAMMING IN JAVA ADVANCED IMAGING

44
AndConst Takes one rendered or renderable source image and an
array of integer constants, and performs a bit-wise logical
AND between every pixel in the same band of the source
and the constant from the corresponding array entry.

page 159

BandCombine Takes one rendered or renderable source image and
computes a set of arbitrary linear combinations of the
bands using a specified matrix.

page 141

BandSelect Takes one rendered or renderable source image, chooses
N bands from the image, and copies the pixel data of
these bands to the destination image in the order
specified.

page 185

Clamp Takes one rendered or renderable source image and sets
all the pixels whose value is below a low value to that low
value and all the pixels whose value is above a high value
to that high value. The pixels whose value is between the
low value and the high value are left unchanged.

page 184

ColorConvert Takes one rendered or renderable source image and
performs a pixel-by-pixel color conversion of the data.

page 140

Composite Takes two rendered or renderable source images and
combines the two images based on their alpha values at
each pixel.

page 243

Constant Takes one rendered or renderable source image and
creates a multi-banded, tiled rendered image, where all
the pixels from the same band have a constant value.

page 123

Divide Takes two rendered or renderable source images, and for
every pair of pixels, one from each source image of the
corresponding position and band, divides the pixel from
the first source by the pixel from the second source.

page 171

DivideByConst Takes one rendered source image and divides the pixel
values of the image by a constant.

page 172

DivideComplex Takes two rendered or renderable source images
representing complex data and divides them.

page 174

DivideIntoConst Takes one rendered or renderable source image and an
array of double constants, and divides every pixel of the
same band of the source into the constant from the
corresponding array entry.

page 173

Exp Takes one rendered or renderable source image and
computes the exponential of the pixel values.

page 177

Invert Takes one rendered or renderable source image and
inverts the pixel values.

page 241

Table 3-1 Point Operators (Continued)

Operator Description Reference
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Point Operators
Log Takes one rendered or renderable source image and
computes the natural logarithm of the pixel values. The
operation is done on a per-pixel, per-band basis. For
integral data types, the result will be rounded and
clamped as needed.

page 241

Lookup Takes one rendered or renderable source image and a
lookup table, and performs general table lookup by
passing the source image through the table.

page 205

MatchCDF Takes one rendered or renderable source image and
performs a piecewise linear mapping of the pixel values
such that the Cumulative Distribution Function (CDF) of
the destination image matches as closely as possible a
specified Cumulative Distribution Function.

page 203

Max Takes two rendered or renderable source images, and for
every pair of pixels, one from each source image of the
corresponding position and band, finds the maximum
pixel value.

page 156

Min Takes two rendered or renderable source images and for
every pair of pixels, one from each source image of the
corresponding position and band, finds the minimum pix-
el value.

page 157

Multiply Takes two rendered or renderable source images, and
multiplies every pair of pixels, one from each source
image of the corresponding position and band.

page 174

MultiplyComplex Takes two rendered source images representing complex
data and multiplies the two images.

page 176

MultiplyConst Takes one rendered or renderable source image and an
array of double constants, and multiplies every pixel of
the same band of the source by the constant from the
corresponding array entry.

page 175

Not Takes one rendered or renderable source image and
performs a bit-wise logical NOT on every pixel from
every band of the source image.

page 164

Or Takes two rendered or renderable source images and per-
forms bit-wise logical OR on every pair of pixels, one
from each source image of the corresponding position
and band.

page 160

OrConst Takes one rendered or renderable source image and an
array of integer constants, and performs a bit-wise logical
OR between every pixel in the same band of the source
and the constant from the corresponding array entry.

page 161

Overlay Takes two rendered or renderable source images and
overlays the second source image on top of the first
source image.

page 242

Table 3-1 Point Operators (Continued)

Operator Description Reference
45Release 1.0.1, November 1999

3.6.2 Area Operators PROGRAMMING IN JAVA ADVANCED IMAGING

46

,

lso
3.6.2 Area Operators

The area operators perform geometric transformations, which result in the
repositioning of pixels within an image. Using a mathematical transformation
pixels are located from theirx andy spatial coordinates in the input image to new
coordinates in the output image.

There are two basic types of area operations: linear and nonlinear. Linear
operations include translation, rotation, and scaling. Non-linear operations, a
known aswarping transformations, introduce curvatures and bends to the
processed image.

Pattern Takes a rendered source image and defines a tiled image
consisting of a repeated pattern.

page 80

Piecewise Takes one rendered or renderable source image and
performs a piecewise linear mapping of the pixel values.

page 202

Rescale Takes one rendered or renderable source image and maps
the pixel values of an image from one range to another
range by multiplying each pixel value by one of a set of
constants and then adding another constant to the result
of the multiplication.

page 200

Subtract Takes two rendered or renderable source images, and for
every pair of pixels, one from each source image of the
corresponding position and band, subtracts the pixel from
the second source from the pixel from the first source.

page 169

SubtractConst Takes one rendered or renderable source image and an
array of double constants, and subtracts a constant from
every pixel of its corresponding band of the source.

page 170

SubtractFromConst Takes one rendered or renderable source image and an
array of double constants, and subtracts every pixel of the
same band of the source from the constant from the
corresponding array entry.

page 171

Threshold Takes one rendered or renderable source image, and
maps all the pixels of this image whose value falls within
a specified range to a specified constant.

page 245

Xor Takes two rendered or renderable source images, and
performs a bit-wise logical XOR on every pair of pixels,
one from each source image of the corresponding posi-
tion and band.

page 162

XorConst Takes one rendered or renderable source image and an
array of integer constants, and performs a bit-wise logical
XOR between every pixel in the same band of the source
and the constant from the corresponding array entry.

page 163

Table 3-1 Point Operators (Continued)

Operator Description Reference
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Geometric Operators

an

91
Table 3-2 lists the JAI area operators.

3.6.3 Geometric Operators

Geometric operators allow you to modify the orientation, size, and shape of
image. Table 3-3 lists the JAI geometric operators.

Table 3-2 Area Operators

Operator Description Reference

Border Takes one rendered source image and adds a border around it. page 1

BoxFilter Takes one rendered source image and determines the intensity
of a pixel in the image by averaging the source pixels within a
rectangular area around the pixel.

page 224

Convolve Takes one rendered source image and performs a spatial
operation that computes each output sample by multiplying
elements of a kernel with the samples surrounding a particular
source sample.

page 221

Crop Takes one rendered or renderable source image and crops the
image to a specified rectangular area.

page 199

MedianFilter Takes a rendered source image and passes it through a non-
linear filter that is useful for removing isolated lines or pixels
while preserving the overall appearance of the image.

page 226

Table 3-3 Geometric Operators

Operator Description Reference

Affine Takes one rendered or renderable source image and performs
(possibly filtered) affine mapping on it.

page 272

Rotate Takes one rendered or renderable source image and rotates the
image about a given point by a given angle, specified in
radians.

page 270

Scale Takes one rendered or renderable source image and translates
and resizes the image.

page 268

Shear Takes one rendered source image and shears the image either
horizontally or vertically.

page 283

Translate Takes one rendered or renderable source image and copies the
image to a new location in the plane.

page 266

Transpose Takes one rendered or renderable source image and flips or
rotates the image as specified.

page 281

Warp Takes one rendered source image and performs (possibly
filtered) general warping on the image.

page 285
47Release 1.0.1, November 1999

3.6.4 Color Quantization Operators PROGRAMMING IN JAVA ADVANCED IMAGING

48

er
h.

file

8

3.6.4 Color Quantization Operators

Color quantization, also known asdithering, is often used to reduce the
appearance of amplitude contouring on monochrome frame buffers with few
than eight bits of depth or color frame buffers with fewer than 24 bits of dept
Table 3-4 lists the JAI color quantization operators.

3.6.5 File Operators

The file operators are used to read or write image files. Table 3-5 lists the JAI
operators.

Table 3-4 Color Quantization Operators

Operator Description Reference

ErrorDiffusion Takes one rendered source image and performs color
quantization by finding the nearest color to each pixel in a
supplied color map and “diffusing” the color quantization error
below and to the right of the pixel.

page 181

OrderedDither Takes one rendered source image and performs color
quantization by finding the nearest color to each pixel in a
supplied color cube and “shifting” the resulting index value by
a pseudo-random amount determined by the values of a
supplied dither mask.

page 178

Table 3-5 File Operators

Operator Description Reference

AWTImage Converts a standard java.awt.Image into a rendered image. page 11

BMP Reads a standard BMP input stream. page 111

Encode Takes one rendered source image and writes the image to a
given OutputStream in a specified format using the supplied
encoding parameters.

page 362

FileLoad Reads an image from a file. page 104

FileStore Takes one rendered source image and writes the image to a
given file in a specified format using the supplied encoding
parameters.

page 361

Format Takes one rendered or renderable source image and reformats
it. This operation is capable of casting the pixel values of an
image to a given data type, replacing the SampleModel and
ColorModel of an image, and restructuring the image’s tile grid
layout.

page 119

FPX Reads an image from a FlashPix stream. page 109

GIF Reads an image from a GIF stream. page 110
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Frequency Operators

in

ich

y

3.6.6 Frequency Operators

Frequency operators are used to decompose an image from its spatial-doma
form into a frequency-domain form of fundamental frequency components.
Operators also are available to perform an inverse frequency transform, in wh
the image is converted from the frequency form back into the spatial form.

JAI supports several frequency transform types. The most common frequenc
transform type is theFourier transform. JAI uses the discrete form known as the
discrete Fourier transform. Theinverse discrete Fourier transformcan be used to
convert the image back to a spatial image. JAI also supports thediscrete cosine
transformand its opposite, theinverse discrete cosine transform.

IIP Provides client-side support of the Internet Imaging Protocol
(IIP) in both the rendered and renderable modes. It creates a
RenderedImage or a RenderableImage based on the data
received from the IIP server, and optionally applies a sequence
of operations to the created image.

page 352

IIPResolution Provides client-side support of the Internet Imaging Protocol
(IIP) in the rendered mode. It is resolution-specific. It requests
from the IIP server an image at a particular resolution level,
and creates a RenderedImage based on the data received from
the server.

page 357

JPEG Reads an image from a JPEG (JFIF) stream. page 110

PNG Reads a standard PNG version 1.1 input stream. page 112

PNM Reads a standard PNM file, including PBM, PGM, and PPM
images of both ASCII and raw formats. It stores the image data
into an appropriate SampleModel.

page 117

Stream Produces an image by decoding data from a SeekableStream.
The allowable formats are those registered with the
com.sun.media.jai.codec.ImageCodec class.

page 103

TIFF Reads TIFF 6.0 data from a SeekableStream. page 104

URL Creates an output image whose source is specified by a
Uniform Resource Locator (URL).

page 119

Table 3-5 File Operators (Continued)

Operator Description Reference
49Release 1.0.1, November 1999

3.6.6 Frequency Operators PROGRAMMING IN JAVA ADVANCED IMAGING

50
Table 3-6 lists the JAI frequency operators.

Table 3-6 Frequency Operators

Operator Description Reference

Conjugate Takes one rendered or renderable source image containing
complex data and negates the imaginary components of the
pixel values.

page 236

DCT Takes one rendered or renderable source image and computes
the even discrete cosine transform (DCT) of the image. Each
band of the destination image is derived by performing a two-
dimensional DCT on the corresponding band of the source
image.

page 232

DFT Takes one rendered or renderable source image and computes
the discrete Fourier transform of the image.

page 228

IDCT Takes one rendered or renderable source image and computes
the inverse even discrete cosine transform (DCT) of the image.
Each band of the destination image is derived by performing a
two-dimensional inverse DCT on the corresponding band of
the source image.

page 233

IDFT Takes one rendered or renderable source image and computes
the inverse discrete Fourier transform of the image. A positive
exponential is used as the basis function for the transform.

page 231

ImageFunction Generates an image on the basis of a functional description
provided by an object that is an instance of a class that
implements the ImageFunction interface.

page 237

Magnitude Takes one rendered or renderable source image containing
complex data and computes the magnitude of each pixel.

page 234

MagnitudeSquared Takes one rendered or renderable source image containing
complex data and computes the squared magnitude of each
pixel.

page 235

PeriodicShift Takes a rendered or renderable source image and generates a
destination image that is the infinite periodic extension of the
source image, with horizontal and vertical periods equal to the
image width and height, respectively, shifted by a specified
amount along each axis and clipped to the bounds of the source
image.

page 236

Phase Takes one rendered or renderable source image containing
complex data and computes the phase angle of each pixel.

page 235

PolarToComplex Takes two rendered or renderable source images and creates an
image with complex-valued pixels from the two images the
respective pixel values of which represent the magnitude
(modulus) and phase of the corresponding complex pixel in the
destination image.

page 237
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Edge Extraction Operators

ment
3.6.7 Statistical Operators

Statistical operators provide the means to analyze the content of an image.
Table 3-7 lists the JAI statistical operators.

3.6.8 Edge Extraction Operators

The edge extraction operators allow image edge enhancement. Edge
enhancement reduces an image to show only its edge details. Edge enhance
is implemented through spatial filters that detect a specificpixel brightness slope
within a group of pixels in an image. A steep brightness slope indicates the
presence of an edge.

Table 3-8 lists the JAI edge extraction operators.

Table 3-7 Statistical Operators

Operator Description Reference

Extrema Takes one rendered source image, scans a specific region of the
image, and finds the maximum and minimum pixel values for
each band within that region of the image. The image data pass
through this operation unchanged.

page 308

Histogram Takes one rendered source image, scans a specific region of the
image, and generates a histogram based on the pixel values
within that region of the image. The histogram data is stored in
the user supplied javax.media.jai.Histogram object, and may
be retrieved by calling the getProperty method on this
operation with"histogram" as the property name. The return
value will be of type javax.media.jai.Histogram. The image
data pass through this operation unchanged.

page 310

Mean Takes a rendered source image, scans a specific region, and
computes the mean pixel value for each band within that region
of the image. The image data pass through this operation
unchanged.

page 307

Table 3-8 Edge Extraction Operators

Operator Description Reference

GradientMagnitude Takes one rendered source image and computes the magnitude
of the image gradient vector in two orthogonal directions.

page 315
51Release 1.0.1, November 1999

3.6.9 Miscellaneous Operators PROGRAMMING IN JAVA ADVANCED IMAGING

52

g

ble

i-

n

i-

n

3.6.9 Miscellaneous Operators

The miscellaneous operators do not fall conveniently into any of the previous
categories. Table 3-9 lists the JAI miscellaneous operators.

3.7 Creating Operations

Most image operation objects are created with some variation on the followin
methods:

For a renderable graph:

There are four variations on methods for creating operations in the Rendera
mode, as listed in Table 3-10.

For example:

RenderableOp im = JAI.createRenderable(“operationName”,
 paramBlock);

TheJAI.createRenderable method creates a renderable node operation that
takes two parameters:

Table 3-9 Miscellaneous Operators

Operator Description Reference

Renderable Takes one rendered source image and produces a
RenderableImage consisting of a “pyramid” of
RenderedImages at progressively lower resolutions.

page 122

Table 3-10 JAI Class Renderable Mode Methods

Method Parameters Description

createRenderable opName
parameterBlock

Creates aRenderableOp that represents the named
operation, using the sources and parameters spec
fied in theParameterBlock.

createRenderableNS opName
parameterBlock

The same as the previous method, only this versio
is non-static.

createRenderable-
Collection

opName
parameterBlock

Creates aCollection that represents the named
operation, using the sources and parameters spec
fied in theParameterBlock.

createRenderable-
CollectionNS

opName
parameterBlock

The same as the previous method, only this versio
is non-static.
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Creating Operations

eter

the
ke

ters

i-

-

n

i-

-

n

• An operation name (see Section 3.7.1, “Operation Name”)

• A source and a set of parameters for the operation contained in a param
block (see Section 3.7.2, “Parameter Blocks”)

For a rendered graph:

There are a great many more variations on methods for creating operations in
Rendered mode, as listed in Table 3-11. The first five methods in the table ta
sources and parameters specified in aParameterBlock. The remaining methods
are convenience methods that take various numbers of sources and parame
directly.

Table 3-11 JAI Class Rendered Mode Methods

Method Parameters Description

create opName
parameterBlock
hints

Creates aRenderedOp that represents the named
operation, using the sources and parameters spec
fied in theParameterBlock, and applying the
specified hints to the destination. This method is ap
propriate only when the final results return a single
RenderedImage.

createNS opName
parameterBlock
hints

The same as the previous method, only this versio
is non-static.

createCollection opName
parameterBlock
hints

Creates aCollection that represents the named
operation, using the sources and parameters spec
fied in theParameterBlock, and applying the
specified hints to the destination. This method is ap
propriate only when the final results return aCol-
lection.

createCollectionNS opName
parameterBlock
hints

The same as the previous method, only this versio
is non-static.

create opName
parameterBlock

Creates aRenderedOp with null rendering hints.

create opName
param

Creates aRenderedOp that takes one parameter.

create opName
param1
param2

Creates aRenderedOp that takes two parameters.
There are two variations on this method, depending
on the parameter data type (Object or int).

create opName
param1
param2
param3

Creates aRenderedOp that takes three parameters.
There are two variations on this method, depending
on the parameter data type (Object or int).
53Release 1.0.1, November 1999

3.7 Creating Operations PROGRAMMING IN JAVA ADVANCED IMAGING

54

b-

b-

is
b-

b-

b-

-
r

create opName
param1
param2
param3
param4

Creates aRenderedOp that takes four parameters.
There are two variations on this method, depending
on the parameter data type (Object or int).

create opName
renderedImage

Creates aRenderedOp that takes one source image.

create opName
Collection

Creates aRenderedOp that takes one source collec-
tion.

create opName
renderedImage
param

Creates aRenderedOp that takes one source and
one parameter. There are two variations on this
method, depending on the parameter data type (O
ject or int).

create opName
renderedImage
param1
param2

Creates aRenderedOp that takes one source and
two parameters. There are two variations on this
method, depending on the parameter data type (O
ject or float).

create opName
renderedImage
param1
param2
param3

Creates aRenderedOp that takes one source and
three parameters. There are three variations on th
method, depending on the parameter data type (O
ject, int, or float).

create opName
renderedImage
param1
param2
param3
param4

Creates aRenderedOp that takes one source and
four parameters. There are four variations on this
method, depending on the parameter data type (O
ject, int, or float).

create opName
renderedImage
param1
param2
param3
param4
param5

Creates aRenderedOp that takes one source and
five parameters. There are three variations on this
method, depending on the parameter data type (O
ject, int, or float).

create opName
renderedImage
param1
param2
param3
param4
param5
param6

Creates aRenderedOp that takes one source and six
parameters. There are two variations on this meth
od, depending on the parameter data type (Object o
int).

create opName
renderedImage1
renderedImage2

Creates aRenderedOp that takes two sources.

Table 3-11 JAI Class Rendered Mode Methods (Continued)

Method Parameters Description
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Operation Name

n
f

eys
oth

If

ues

me is
Two versions of thecreate method are non-static and are identified as
createNS. These methods may be used with a specific instance of theJAI class
and should only be used when the final result returned is a single
RenderedImage. However, the source (or sources) supplied may be a collectio
of images or a collection of collections. The following is an example of one o
these methods:

The rendering hints associated with this instance ofJAI are overlaid with the
hints passed to this method. That is, the set of keys will be the union of the k
from the instance’s hints and the hints parameter. If the same key exists in b
places, the value from the hints parameter will be used.

Many of the JAI operations have default values for some of the parameters.
you wish to use any of the default values in an operation, you do not have to
specify that particular parameter in theParameterBlock. The default value is
automatically used in the operation. Parameters that do not have default val
are required; failure to supply a required parameter results in a
NullPointerException.

3.7.1 Operation Name

The operation name describes the operator to be created. The operation na
a string, such as“add” for the operation to add two images. See Section 3.6,
“JAI API Operators,” for a list of the operator names.

The operation name is always enclosed in quotation marks. For example:

“Mean”
“BoxFilter”
“UnsharpMask”

create opName
renderedImage1
renderedImage2
param1
param2

Creates aRenderedOp that takes two sources and
four parameters.

createCollection opName
parameterBlock

Creates aCollection with null rendering hints.

RenderedOp im = JAI.createNS(“operationName”, source, param1,
 param2)

Table 3-11 JAI Class Rendered Mode Methods (Continued)

Method Parameters Description
55Release 1.0.1, November 1999

3.7.2 Parameter Blocks PROGRAMMING IN JAVA ADVANCED IMAGING

56

s

ters

ge or

ters
er

of

r

ers as
ion
rce
The operation name parsing is case-insensitive. All of the following variation
are legal:

“OrConst”
“orConst”
“ORconst”
“ORCONST”
“orconst”

3.7.2 Parameter Blocks

The parameter block contains the source of the operation and a set parame
used by the operation. The contents of the parameter block depend on the
operation being created and may be as simple as the name of the source ima
may contain all of the operator parameters (such as thex andy displacement and
interpolation type for thetranslate operation).

Parameter blocks encapsulate all the information about sources and parame
(Objects) required by the operation. The parameters specified by a paramet
block are objects.

These controlling parameters and sources can be edited through the
setParameterBlock method to affect specific operations or even the structure
the rendering chain itself. The modifications affect futureRenderedImages

derived from points in the chain below where the change took place.

There are two separate classes for specifying parameter blocks:

• java.awt.image.renderable.ParameterBlock – the main class for
specifying and changing parameter blocks.

• javax.media.jai.ParameterBlockJAI – extendsParameterBlock by
allowing the use of default parameter values and the use of paramete
names.

The parameter block must contain the same number of sources and paramet
required by the operation (unless ParameterBlockJAI is used and the operat
supplies default values). Note that, if the operation calls for one or more sou
images, they must be specified in the parameter block. For example, theAdd

operation requires two source images and no parameters. TheaddConst operator
requires one source and a parameter specifying the constant value.

If the sources and parameters do not match the operation requirements, an
exception is thrown. However, when theParameterBlockJAI class is used, if the
required parameter values are not specified, default parameter values are
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Parameter Blocks

ter

r

ort,

ll fail.
automatically inserted when available. For some operations, default parame
values are not available and must be supplied.

3.7.2.1 Adding Sources to a Parameter Block

Sources are added to a parameter block with theaddSource() method. The
following example creates a newParameterBlock namedpb and then the
addSource() method is used to add the source image (im0) to the
ParameterBlock.

To add two sources to a parameter block, use twoaddSource() methods.

3.7.2.2 Adding or Setting Parameters

As described before, there are two separate classes for specifying paramete
blocks:ParameterBlock andParameterBlockJAI. Both classes work very much
alike, except for two differences:ParameterBlockJAI automatically provides
default parameter values and allows setting parameters by name;
ParameterBlock does not.

ParameterBlock

The operation parameters are added to aParameterBlock with the
ParameterBlock.add() method. The following example adds two values (150

and200) to theParameterBlock namedpb, which was created in the previous
example.

Theadd() method can be used with all of the supported data types: byte, sh
integer, long, float, and double. When using theParameterBlock object, all
parameters that an operation requires must be added, else the operation wi

ParameterBlock pb = new ParameterBlock();
pb.addSource(im0);

ParameterBlock pb = new ParameterBlock();
pb.addSource(im0);
pb.addSource(im1);

pb.add(150);
pb.add(200);
57Release 1.0.1, November 1999

3.7.2 Parameter Blocks PROGRAMMING IN JAVA ADVANCED IMAGING

58

bject

set)

t is

the
API: java.awt.image.renderable.ParameterBlock

• ParameterBlock addSource(Object source)

adds an image to the end of the list of sources. The image is stored as an o
to allow new node types in the future.

• ParameterBlock add(byte b)

adds a Byte to the list of parameters.

• ParameterBlock add(short s)

adds a Short to the list of parameters.

• ParameterBlock add(int i)

adds an Integer to the list of parameters.

• ParameterBlock add(long l)

adds a Long to the list of parameters.

• ParameterBlock add(float f)

adds a Float to the list of parameters.

• ParameterBlock add(double d)

adds a Double to the list of parameters.

ParameterBlockJAI

Since theParameterBlockJAI object already contains default values for the
parameters at the time of construction, the parameters must be changed (or
with theParameterBlockJAI.set(value, index) methods rather than the
add() method. Theadd() methods should not be used since the parameter lis
already long enough to hold all of the parameters required by the
OperationDescriptor.

Listing 3-3 shows the creation of aParameterBlockJAI intended to be passed to
a rotate operation. The rotate operation takes four parameters:xOrigin,
yOrigin, angle, andinterpolation. The default values forxOrigin and
yOrigin are 0.0F (for both). In this example, these two values are not set, as
default values are sufficient for the operation. The other two parameters (angle
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Parameter Blocks
andinterpolation) have default values ofnull and must therefore be set. The
source image must also be specified.

API: javax.media.jai.ParameterBlockJAI

• ParameterBlock set(byte b, String paramName)

sets a named parameter to a byte value.

• ParameterBlock set(char c, String paramName)

sets a named parameter to a char value.

• ParameterBlock set(int i, String paramName)

sets a named parameter to an int value.

• ParameterBlock set(short s, String paramName)

sets a named parameter to a short value.

• ParameterBlock set(long l, String paramName)

sets a named parameter to a long value.

• ParameterBlock set(float f, String paramName)

sets a named parameter to a float value.

• ParameterBlock set(double d, String paramName)

sets a named parameter to a double value.

• ParameterBlock set(java.lang.Object obj, String paramName)

sets a named parameter to an Object value.

Listing 3-3 Example ParameterBlockJAI

// Specify the interpolation method to be used
interp = Interpolation.create(Interpolation.INTERP_NEAREST);

// Create the ParameterBlockJAI and add the interpolation to it
ParameterBlockJAI pb = new ParameterBlockJAI();
pb.addSource(im); // The source image
pb.set(1.2F, “angle”); // The rotation angle in radians
pb.set(interp, “interpolation”); // The interpolation method
59Release 1.0.1, November 1999

3.7.3 Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

60

ice
ing

y

ts
3.7.3 Rendering Hints

The rendering hints contain a set of hints that describe how objects are to be
rendered. The rendering hints are always optional in any operation.

Rendering hints specify different rendering algorithms for such things as
antialiasing, alpha interpolation, and dithering. Many of the hints allow a cho
between rendering quality or speed. Other hints turn off or on certain render
options, such as antialiasing and fractional metrics.

There are two separate classes for specifying rendering hints:

• java.awt.RenderingHints – contains rendering hints that can be used b
theGraphics2D class, and classes that implementBufferedImageOp and
Raster.

• javax.media.jai.JAI – provides methods to define the RenderingHin
keys specific to JAI.

3.7.3.1 Java AWT Rendering Hints

Table 3-12 lists the rendering hints inherited fromjava.awt.RenderingHints.

Table 3-12 Java AWT Rendering Hints

Key Value Description

Alpha_Interpolation Alpha_Interpolation_
Default

Rendering is done with the platform
default alpha interpolation.

Alpha_Interpolation_
Quality

Appropriate rendering algorithms
are chosen with a preference for out-
put quality.

Alpha_Interpolation_Speed Appropriate rendering algorithms
are chosen with a preference for out-
put speed.

Antialiasing Antialias_Default Rendering is done with the platform
default antialiasing mode.

Antialias_Off Rendering is done without antialias-
ing.

Antialias_On Rendering is done with antialiasing
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Rendering Hints

s

To set the rendering hints, create aRenderingHints object and pass it to the
JAI.create method you want to affect. Setting a rendering hint does not
guarantee that a particular rendering algorithm, will be used; not all platform
support modification of the rendering code.

Color_Rendering Color_Render_Default Rendering is done with the platform
default color rendering.

Color_Render_Quality Appropriate rendering algorithms
are chosen with a preference for out-
put quality.

Color_Render_Speed Appropriate rendering algorithms
are chosen with a preference for out-
put speed.

Dithering Dither_Default Use the platform default for dither-
ing.

Dither_Disable Do not do dither when rendering.

Dither_Enable Dither with rendering when needed.

FractionalMetrics FractionalMetrics_Default Use the platform default for fraction-
al metrics.

FractionalMetrics_Off Disable fractional metrics.

FractionalMetrics_On Enable fractional metrics.

Interpolation Interpolation_Bicubic Perform bicubic interpolation.

Interpolation_Bilinear Perform bilinear interpolation.

Interpolation_Nearest_
Neighbor

Perform nearest-neighbor interpola-
tion.

Rendering Render_Default The platform default rendering algo-
rithms will be chosen.

Render_Quality Appropriate rendering algorithms
are chosen with a preference for out-
put quality.

Render_Speed Appropriate rendering algorithms
are chosen with a preference for out-
put speed.

Text_Antialiasing Text_Antialias_Default Text rendering is done using the plat-
form default text antialiasing mode.

Text_Antialias_Off Text rendering is done without anti-
aliasing.

Text_Antialias_On Text rendering is done with antialias-
ing.

Table 3-12 Java AWT Rendering Hints (Continued)

Key Value Description
61Release 1.0.1, November 1999

3.7.3 Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

62

d

er

ts
ated
In the following example, the rendering preference is set to quality.

Now that aRenderingHints object,qualityHints, has been created, the hints
can be used in an operation using aJAI.create method.

3.7.3.2 JAI Rendering Hints

Each instance of aJAI object contains a set of rendering hints that will be use
for all image or collection creations. These hints are merged with any hints
supplied to theJAI.create method; directly supplied hints take precedence ov
the common hints. When a newJAI instance is constructed, its hints are
initialized to a copy of the hints associated with the default instance. The hin
associated with any instance, including the default instance, may be manipul
using thegetRenderingHint, setRenderingHints, andclearRenderingHints
methods. As a convenience,getRenderingHint, setRenderingHint, and
removeRenderingHint methods are provided that allow individual hints to be
manipulated. Table 3-13 lists the JAI rendering hints.

qualityHints = new
 RenderingHints(RenderingHints.KEY_RENDERING,
 RenderingHints.VALUE_RENDER_QUALITY);

Table 3-13 JAI Rendering hints

Key Value Description

HINT_BORDER_EXTENDER BorderExtenderZero Extends an image’s border by filling
all pixels outside the image bounds
with zeros.

BorderExtenderCon-
stant

Extends an image’s border by filling
all pixels outside the image bounds
with constant values.

BorderExtenderCopy Extends an image’s border by filling
all pixels outside the image bounds
with copies of the edge pixels.

BorderExtenderWrap Extends an image’s border by filling
all pixels outside the image bounds
with copies of the whole image.

BorderExtenderReflect Extends an image’s border by filling
all pixels outside the image bounds
with copies of the whole image.
Programming in Java Advanced Imaging

PROGRAMMING IN JAVA ADVANCED IMAGING Rendering Hints
HINT_IMAGE_LAYOUT Width The image’s width.

Height The image’s height

MinX The image’s minimumx coordinate.

MinY The image’s minimumy coordinate

TileGridXOffset Thex coordinate of tile (0, 0).

TileGridYOffset They coordinate of tile (0, 0).

TileWidth The width of a tile.

TileHeight The height of a tile.

SampleModel The image’sSampleModel.

ColorModel The image’sColorModel.

HINT_INTERPOLATION InterpolationNearest Perform nearest-neighbor interpola-
tion.

InterpolationBilinear Perform bilinear interpolation.

InterpolationBicubic Perform bicubic interpolation.

InterpolationBicubic2 Perform bicubic interpolation.

HINT_OPERATION_BOUND OpImage.OP_COMPUTE_
BOUND

An operation is likely to spend its
time mainly performing computa-
tion.

OpImage.OP_IO_BOUND An operation is likely to spend its
time mainly performing local I/O.

OpImage.OP_NETWORK_
BOUND

An operation is likely to spend its
time mainly performing network I/O.

HINT_OPERATION_REGISTRY Key for OperationRegistry ob-
ject values.

HINT_PNG_EMIT_SQUARE_
PIXELS

True Scale non-square pixels read from a
PNG format image file to square pix-
els.

False Do not scale non-square pixels.

HINT_TILE_CACHE capacity The capacity of the cache in tiles.

elementCount The number of elements in the cache.

revolver Offset to check for tile cache victims.

multiplier Number of checks to make for tile
cache victims.

Table 3-13 JAI Rendering hints (Continued)

Key Value Description
63Release 1.0.1, November 1999

3.7.3 Rendering Hints PROGRAMMING IN JAVA ADVANCED IMAGING

64

for
the
Listing 3-4 shows an example of image layout rendering hints being specified
a Scale operation. The image layout rendering hint specifies that the origin of
destination opimage is set to 200× 200.

Listing 3-4 Example of JAI Rendering Hints

// Create the parameter block for the scale operation.
ParameterBlock pb = new ParameterBlock();
 pb.addSource(im0); // The source image
 pb.add(4.0F); // The x scale factor
 pb.add(4.0F); // The y scale factor
 pb.add(interp); // The interpolation method

// Specify the rendering hints.
 layout = new ImageLayout();
 layout.setMinX(200);
 layout.setMinY(200);
 RenderingHints rh =
 new RenderingHints(JAI.KEY_IMAGE_LAYOUT, layout);

// Create the scale operation.
PlanarImage im2 = (PlanarImage)JAI.create("scale", pb, layout)
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 4
lay.

g,
es,
,
a

r
age

h-
he

e

Image Acquisition and
Display

THIS chapter describes the Java Advanced Imaging (JAI) API image data
types and the API constructors and methods for image acquisition and disp

4.1 Introduction

All imaging applications must perform the basic tasks of acquiring, displayin
and creating (recording) images. Images may be acquired from many sourc
including a disk file, the network, a CD, and so on. Images may be acquired
processed, and immediately displayed, or written to a disk file for display at
later time.

As described in Chapter 3, JAI offers the programmer the flexibility to rende
and display an image immediately or to defer the display of the rendered im
until there is a specific request for it.

Image acquisition and display are relatively easy in JAI, in spite of all the hig
level information presented in the next several sections. Take for example, t
sample code in Listing 4-1. This is a complete code example for a simple
application calledFileTest, which takes a single argument; the path and nam
of the file to read.FileTest reads the named file and displays it in a
ScrollingImagePanel. The operator that reads the image file,FileLoad, is
described in Section 4.4.1.2, “The FileLoad Operation.” The
ScrollingImagePanel is described in Section 4.8, “Image Display.”
65

4.1 Introduction IMAGE ACQUISITION AND DISPLAY

66
Listing 4-1 Example Program to Read and Display an Image File

// Specify the classes to import.
import java.awt.image.renderable.ParameterBlock;
import java.io.File;
import javax.media.jai.JAI;
import javax.media.jai.PlanarImage;
import javax.media.jai.RenderedOp;
import javax.media.jai.widget.ScrollingImagePanel;

public class FileTest extends WindowContainer {

// Specify a default image in case the user fails to specify
// one at run time.
public static final String DEFAULT_FILE =
 "./images/earth.jpg";

 public static void main(String args[]) {
 String fileName = null;

// Check for a filename in the argument.
 if(args.length == 0) {
 fileName = DEFAULT_FILE;
 } else if(args.length == 1) {
 fileName = args[0];
 } else {
 System.out.println("\nUsage: java " +

(new FileTest()).getClass().getName() +
 " [file]\n");
 System.exit(0);
 }

 new FileTest(fileName);
 }

 public FileTest() {}
 public FileTest(String fileName) {

 // Read the image from the designated path.
System.out.println("Creating operation to load image from '" +

 fileName+"'");
 RenderedOp img = JAI.create("fileload", fileName);

 // Set display name and layout.
 setTitle(getClass().getName()+": "+fileName);
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Data

r
ve to
in

ts of

K)
4.1.1 Image Data

Image data is, conceptually, a three-dimensional array of pixels, as shown in
Figure 4-1. Each of the three arrays in the example is called aband. The number
of rows specifies the image height of a band, and the number of columns
specifies the image width of a band.

Monochrome images, such as a grayscale image, have only one band. Colo
images have three or more bands, although a band does not necessarily ha
represent color. For example, satellite images of the earth may be acquired
several different spectral bands, such as red, green, blue, and infrared.

In a color image, each band stores the red, green, and blue (RGB) componen
an additive image, or the cyan, magenta, and yellow (CMY) components of a
three-color subtractive image, or the cyan, magenta, yellow, and black (CMY
components of a four-color subtractive image. Each pixel of an image is
composed of a set ofsamples. For an RGB pixel, there are three samples; one
each for red, green, and blue.

An image is sampled into a rectangular array of pixels. Each pixel has an (x,y)
coordinate that corresponds to its location within the image. Thex coordinate is
the pixel’s horizontal location; they coordinate is the pixel’s vertical location.
Within JAI, the pixel at location (0,0) is in the upper left corner of the image,
with thex coordinates increasing in value to the right andy coordinates
increasing in value downward. Sometimes thex coordinate is referred to as the
pixel number and they coordinate as the line number.

 // Display the image.
 System.out.println("Displaying image");
 add(new ScrollingImagePanel(img, img.getWidth(),
 img.getHeight()));
 pack();
 show();
 }
}

Listing 4-1 Example Program to Read and Display an Image File (Continued)
67Release 1.0.1, November 1999

4.1.2 Basic Storage Types IMAGE ACQUISITION AND DISPLAY

68

ke
put

l

-

Figure 4-1 Multi-band Image Structure

4.1.2 Basic Storage Types

In the JAI API, the basic unit of data storage is theDataBuffer object. The
DataBuffer object is a kind of raw storage that holds all the samples that ma
up the image, but does not contain any information on how those samples are
together as pixels. How the samples are put together is contained in a
SampleModel object. TheSampleModel class contains methods for deriving pixe
data from aDataBuffer.

JAI supports several image data types, so theDataBuffer class has the following
subclasses, each representing a different data type:

• DataBufferByte – stores data internally as bytes (8-bit values)

• DataBufferShort – stores data internally as shorts (16-bit values)

• DataBufferUShort – stores data internally as unsigned shorts (16-bit
values)

• DataBufferInt – stores data internally as integers (32-bit values)

• DataBufferFloat – stores data internally as single-precision floating-
point values.

• DataBufferDouble – stores data internally as double-precision floating
point values.

(0,0,0)

(0,0,1)

(0,0,2)

(x,y,0)

(x,y,1)

(x,y,2)

y

x

Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Basic Storage Types

e
nt of

ch
f data

t

ent.

s
first
Table 4-1 lists theDataBuffer type elements.

JAI also supports a large number of image data formats, so theSampleModel

class provides the following types of sample models:

• ComponentSampleModel – used to extract pixels from images that store
sample data in separate data array elements in one bank of aDataBuffer

object.

• ComponentSampleModelJAI – used to extract pixels from images that stor
sample data such that each sample of a pixel occupies one data eleme
theDataBuffer.

• BandedSampleModel – used to extract pixels from images that store ea
sample in a separate data element with bands stored in a sequence o
elements.

• PixelInterleavedSampleModel – used to extract pixels from images tha
store each sample in a separate data element with pixels stored in a
sequence of data elements.

• MultiPixelPackedSampleModel – used to extract pixels from single-
banded images that store multiple one-sample pixels in one data elem

• SinglePixelPackedSampleModel – used to extract samples from image
that store sample data for a single pixel in one data array element in the
bank of aDataBuffer object.

• FloatComponentSampleModel – storesn samples that make up a pixel in
n separate data array elements, all of which are in the same bank in a
DataBuffer object. This class supports different kinds of interleaving.

The combination of aDataBuffer object, aSampleModel object, and an origin
constitute a meaningful multi-pixel image storage unit called aRaster. The

Table 4-1 Data Buffer Type Elements

Name Description

TYPE_INT Tag for int data.

TYPE_BYTE Tag for unsigned byte data.

TYPE_SHORT Tag for signed short data.

TYPE_USHORT Tag for unsigned short data.

TYPE_DOUBLE Tag for double data.

TYPE_FLOAT Tag for float data.

TYPE_UNDEFINED Tag for undefined data.
69Release 1.0.1, November 1999

4.1.2 Basic Storage Types IMAGE ACQUISITION AND DISPLAY

70

”

re,

an

e

nt
Raster class has methods that directly return pixel data for the image data it
contains.

There are two basicRaster types:

• Raster – represents a rectangular array of pixels. This is a “read-only
class that only has get methods.

• WritableRaster – extendsRaster to provide pixel writing capabilities.

There are separate interfaces for dealing with each raster type:

• TheRenderedImage interface assumes the data is read-only and, therefo
does not contain methods for writing aRaster.

• TheWriteableRenderedImage interfaces assumes that the image data c
be modified.

A ColorModel class provides a color interpretation of pixel data provided by th
image’s sample model. The abstractColorModel class defines methods for
turning an image’s pixel data into a color value in its associatedColorSpace. See
Section 5.2.1, “Color Models.”

Figure 4-2 BufferedImage

As shown in Figure 4-2, the combination of aRaster and aColorModel define a
BufferedImage. TheBufferedImage class provides general image manageme
for immediate mode imaging.

BufferedImage

Raster

SampleModel

DataBuffer

ColorModel

ColorSpace
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY JAI Image Types

ds.

ng
d

s

s

ng
,

ng
,

5-

6-
TheBufferedImage class supports the following predefined image types:

4.2 JAI Image Types

The JAI API provides a set of classes for describing image data of various kin
These classes are organized into a class hierarchy, as shown in Figure 4-3.

Table 4-2 Supported Image Types

Name Description

TYPE_3BYTE_BGR Represents an image with 8-bit RGB color components, correspondi
to a Windows-style BGR color model, with the colors blue, green, an
red stored in three bytes.

TYPE_4BYTE_ABGR Represents an image with 8-bit RGBA color components with the color
blue, green, and red stored in three bytes and one byte of alpha.

TYPE_4BYTE_ABGR_PRE Represents an image with 8-bit RGBA color components with the color
blue, green, and red stored in three bytes and one byte of alpha.

TYPE_BYTE_BINARY Represents an opaque byte-packed binary image.

TYPE_BYTE_GRAY Represents a unsigned byte grayscale image, non-indexed.

TYPE_BYTE_INDEXED Represents an indexed byte image.

TYPE_CUSTOM Image type is not recognized so it must be a customized image.

TYPE_INT_ARGB Represents an image with 8-bit RGBA color components packed into
integer pixels.

TYPE_INT_ARGB_PRE Represents an image with 8-bit RGB color components, correspondi
to a Windows- or Solaris- style BGR color model, with the colors blue
green, and red packed into integer pixels.

TYPE_INT_BGR Represents an image with 8-bit RGB color components, correspondi
to a Windows- or Solaris- style BGR color model, with the colors blue
green, and red packed into integer pixels.

TYPE_INT_RGB Represents an image with 8-bit RGB color components packed into
integer pixels.

TYPE_USHORT_555_RGB Represents an image with 5-5-5 RGB color components (5-bits red,
bits green, 5-bits blue) with no alpha.

TYPE_USHORT_565_RGB Represents an image with 5-6-5 RGB color components (5-bits red,
bits green, 5-bits blue) with no alpha.

TYPE_USHORT_GRAY Represents an unsigned short grayscale image, non-indexed).
71Release 1.0.1, November 1999

4.2.1 Planar Image IMAGE ACQUISITION AND DISPLAY

72

.

s

f the
Figure 4-3 JAI Image Type Hierarchy

4.2.1 Planar Image

ThePlanarImage class is the main class for defining two-dimensional images
ThePlanarImage implements thejava.awt.image.RenderedImage interface,
which describes a tiled, read-only image with a pixel layout described by a
SampleModel and aDataBuffer. TheTiledImage andOpImage subclasses
manipulate the instance variables they inherit fromPlanarImage, such as the
image size, origin, tile dimensions, and tile grid offsets, as well as the Vector
containing the sources and sinks of the image.

All non-JAI RenderedImages that are to be used in JAI must be converted into
PlanarImages by means of theRenderedImageAdapter class and the
WriteableRenderedImageAdapter class. ThewrapRenderedImage() method
provides a convenient interface to both add a wrapper and take a snapshot i
image is writable. The standardPlanarImage constructor used byOpImages
performs this wrapping automatically. Images that already extendPlanarImage

will be returned unchanged bywrapRenderedImage().

ImageJAI

Collection

PlanarImage

ImagePyramid

Image

ImageStack

ImageMIPMap

TiledImage

Snapshot

Remote
Image

Image

Sequence
Image

java.awt.Image

Implements
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Planar Image

d the
ot a

.

Going in the other direction, existing code that makes use of theRenderedImage

interface will be able to usePlanarImages directly, without any changes or
recompilation. Therefore within JAI, images are returned from methods as
PlanarImages, even though incomingRenderedImages are accepted as
arguments directly.

API: javax.media.jai.PlanarImage

• PlanarImage()

creates aPlanarImage.

• static PlanarImage wrapRenderedImage(RenderedImage im)

wraps an arbitraryRenderedImage to produce aPlanarImage. PlanarImage
adds various properties to an image, such as source and sink vectors an
ability to produce snapshots, that are necessary for JAI. If the image is n
PlanarImage, it is wrapped in aRenderedImageAdapter. If the image
implementsWritableRenderedImage, a snapshot is taken.

• PlanarImage createSnapshot()

creates a snapshot, that is, a virtual copy of the image’s current contents

• Raster getData(Rectangle region)

returns a specified region of this image in aRaster.

• int getWidth()

returns the width of the image.

• int getHeight()

returns the height of the image.

• int getMinXCoord()

returns the X coordinate of the leftmost column of the image.

• int getMaxXCoord()

returns the X coordinate of the rightmost column of the image.

Parameters: a RenderedImage to be used as a
synchronous source.

Parameter: region The rectangular region of this image to be
returned.
73Release 1.0.1, November 1999

4.2.2 Tiled Image IMAGE ACQUISITION AND DISPLAY

74

. In

ge
se of

o

• int getMinYCoord()

returns the X coordinate of the uppermost row of the image.

• int getMaxYCoord()

returns the X coordinate of the bottom row of the image.

• Rectangle getBounds()

returns a Rectangle indicating the image bounds.

• int getTileWidth()

returns the width of a tile.

• int getTileHeight()

returns the height of a tile.

• int tilesAcross()

returns the number of tiles along the tile grid in the horizontal direction.
Equivalent togetMaxTileX() - getMinTileX() + 1.

• int tilesDown()

returns the number of tiles along the tile grid in the vertical direction.
Equivalent togetMaxTileY() - getMinTileY() + 1.

There are lots more methods.

4.2.2 Tiled Image

The JAI API expands on the tile data concept introduced in the Java 2D API
Java 2D, a tile is one of a set of rectangular regions that span an image on a
regular grid. The JAI API expands on the tile image with theTiledImage class,
which is the main class for writable images in JAI.

A tile represents all of the storage for its spatial region of the image. If an ima
contains three bands, every tile represents all three bands of storage. The u
tiled images improves application performance by allowing the application to
process an image region within a single tile without bringing the entire image
into memory.

TiledImage provides a straightforward implementation of the
WritableRenderedImage interface, taking advantage of that interface’s ability t
describe images with multiple tiles. The tiles of aWritableRenderedImage must
share aSampleModel, which determines their width, height, and pixel format.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

es.

no
ll

at

,

ts
d if it
e
e

The tiles form a regular grid that may occupy any rectangular region of the
plane. Tile pixels that exceed the image’s stated bounds have undefined valu

The contents of aTiledImage are defined by a singlePlanarImage source,
provided either at construction time or by means of theset() method. The
set() method provides a way to selectively overwrite a portion of a
TiledImage, possibly using a soft-edged mask.

TiledImage also supports direct manipulation of pixels by means of the
getWritableTile method. This method returns aWritableRaster that can be
modified directly. Such changes become visible to readers according to the
regular thread synchronization rules of the Java virtual machine; JAI makes
additional guarantees. When a writer is finished modifying a tile, it should ca
thereleaseWritableTile method. A shortcut is to call thesetData() method,
which copies a rectangular region from a suppliedRaster directly into the
TiledImage.

A final way to modify the contents of aTiledImage is through calls to the
createGraphics() method. This method returns aGraphicsJAI object that can
be used to draw line art, text, and images in the usual AWT manner.

A TiledImage does not attempt to maintain synchronous state on its own. Th
task is left toSnapshotImage. If a synchronous (unchangeable) view of a
TiledImage is desired, itscreateSnapshot() method must be used. Otherwise
changes due to calls toset() or direct writing of tiles by objects that call
getWritableTile() will be visible.

TiledImage does not actually cause its tiles to be computed until their conten
are demanded. Once a tile has been computed, its contents may be discarde
can be determined that it can be recomputed identically from the source. Th
lockTile() method forces a tile to be computed and maintained for the lifetim
of theTiledImage.
75Release 1.0.1, November 1999

4.2.2 Tiled Image IMAGE ACQUISITION AND DISPLAY

76

m

API: javax.media.jai.TiledImage

• TiledImage(Point origin, SampleModel sampleModel,
int tileWidth, int tileHeight)

constructs aTiledImage with aSampleModel that is compatible with a given
SampleModel, and given tile dimensions. The width and height are taken fro
theSampleModel, and the image begins at a specified point.

• TiledImage(SampleModel sampleModel, int tileWidth,
int tileHeight)

constructs aTiledImage starting at the global coordinate origin.

Parameters: origin A Point indicating the image’s upper left
corner.

sampleModel A SampleModel with which to be
compatible.

tileWidth The desired tile width.

tileHeight The desired tile height.

Parameters: sampleModel A SampleModel with which to be
compatible.

tileWidth The desired tile width.

tileHeight The desired tile height.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

of

of

ill
le
• TiledImage(int minX, int minY, int width, int height,
int tileGridXOffset, int tileGridYOffset,
SampleModel sampleModel, ColorModel colorModel)

constructs aTiledImage of a specified width and height.

• void setData(Raster r)

sets a region of aTiledImage to be a copy of a suppliedRaster. TheRaster’s
coordinate system is used to position it within the image. The computation
all overlapping tiles will be forced prior to modification of the data of the
affected area.

• void setData(Raster r, ROI roi)

sets a region of aTiledImage to be a copy of a suppliedRaster. TheRaster’s
coordinate system is used to position it within the image. The computation
all overlapping tiles will be forced prior to modification of the data of the
affected area.

• WritableRaster getWritableTile(int tileX, int tileY)

retrieves a particular tile from the image for reading and writing. The tile w
be computed if it hasn’t been previously. Writes to the tile will become visib
to readers of this image in the normal Java manner.

Parameters: minX The index of the leftmost column of tiles.

minY The index of the uppermost row of tiles.

width The width of theTiledImage.

height The height of theTiledImage.

tileGridX-

Offset

Thex coordinate of the upper-left pixel of
tile (0, 0).

tileGridY-

Offset

They coordinate of the upper-left pixel of
tile (0, 0).

sampleModel a SampleModel with which to be
compatible.

colorModel A ColorModel to associate with the image.

Parameter: r A Raster containing pixels to be copied
into theTiledImage.

Parameters: tileX Thex index of the tile.

tileY They index of the tile.
77Release 1.0.1, November 1999

4.2.2 Tiled Image IMAGE ACQUISITION AND DISPLAY

78

es
ere
of

ce are
• Raster getTile(int tileX, int tileY)

retrieves a particular tile from the image for reading only. The tile will be
computed if it hasn’t been previously. Any attempt to write to the tile will
produce undefined results.

• boolean isTileWritable(int tileX, int tileY)

returns true if a tile has writers.

• boolean hasTileWriters()

returns true if any tile is being held by a writer, false otherwise. This provid
a quick way to check whether it is necessary to make copies of tiles – if th
are no writers, it is safe to use the tiles directly, while registering to learn
future writers.

• void releaseWritableTile(int tileX, int tileY)

indicates that a writer is done updating a tile. The effects of attempting to
release a tile that has not been grabbed, or releasing a tile more than on
undefined.

• void set(RenderedImage im)

overlays a givenRenderedImage on top of the current contents of the
TiledImage. The source image must have aSampleModel compatible with that
of this image.

Parameters: tileX Thex index of the tile.

tileY They index of the tile.

Parameters: tileX Thex index of the tile.

tileY They index of the tile.

Parameters: tileX Thex index of the tile.

tileY They index of the tile.

Parameters: im A RenderedImage source to replace the
current source.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Tiled Image

to

d in
lt

nd

che
• void set(RenderedImage im, ROI roi)

overlays a givenRenderedImage on top of the current contents of the
TiledImage. The source image must have aSampleModel compatible with that
of this image.

• Graphics2D createGraphics()

creates aGraphics2D object that can be used to paint text and graphics on
theTiledImage.

4.2.2.1 Tile Cache

TheTileCache interface provides a central place forOpImages to cache tiles
they have computed. The tile cache is created with a given capacity (measure
tiles). By default, the tile capacity for a new tile cache is 300 tiles. The defau
memory capacity reserved for tile cache is 20M bytes.

TheTileCache to be used by a particular operation may be set during
construction, or by calling theJAI.setTileCache method. This results in the
provided tile cache being added to the set of common rendering hints.

TheTileScheduler interface allows tiles to be scheduled for computation. In
various implementations, tile computation may make use of multithreading a
multiple simultaneous network connections for improved performance.

API: javax.media.jai

• static TileCache createTileCache(int tileCapacity,
long memCapacity)

constructs aTileCache with the given tile capacity in tiles and memory
capacity in bytes. Users may supply an instance ofTileCache to an operation
by supplying aRenderingHint with aJAI.KEY_TILE_CACHE key and the
desiredTileCache instance as its value. Note that the absence of a tile ca
hint will result in the use of theTileCache belonging to the defaultJAI
instance. To force an operation not to perform caching, aTileCache instance
with a tile capacity of 0 may be used.

Parameters: im A RenderedImage source to replace the
current source.

roi The region of interest.

Parameters tileCapacity The tile capacity, in tiles.

memCapacity The memory capacity, in bytes.
79Release 1.0.1, November 1999

4.2.2 Tiled Image IMAGE ACQUISITION AND DISPLAY

80

e

• static TileCache createTileCache()

constructs aTileCache with the default tile capacity in tiles and memory
capacity in bytes.

• void setTileCache(TileCache tileCache)

sets theTileCache to be used by thisJAI instance. ThetileCache parameter
will be added to theRenderingHints of this JAI instance.

• TileCache getTileCache()

returns theTileCache being used by thisJAI instance.

4.2.2.2 Pattern Tiles

A pattern tile consists of a repeated pattern. Thepattern operation defines a
pattern tile by specifying the width and height; all other layout parameters ar
optional, and when not specified are set to default values. Each tile of the
destination image will be defined by a reference to a shared instance of the
pattern.

Thepattern operation takes three parameters:

Listing 4-2 shows a code sample for apattern operation.

Parameter Type Description

width Integer The width of the image in pixels.

height Integer The height of the image in pixels.

pattern Raster The Pattern pixel band values.

Listing 4-2 Example Pattern Operation

// Create the raster.
WritableRaster raster;
int[] bandOffsets = new int[3];
bandOffsets[0] = 2;
bandOffsets[1] = 1;
bandOffsets[2] = 0;

// width, height=64.
PixelInterleavedSampleModel sm;
sm = new PixelInterleavedSampleModel(DataBuffer.TYPE_BYTE, 100,

100, 3, 3*100, bandOffsets);
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Snapshot Image

d

n.
4.2.3 Snapshot Image

TheSnapshotImage class represents the main component of the deferred
execution engine. ASnapshotImage provides an arbitrary number of
synchronous views of a possibly changingWritableRenderedImage.
SnapshotImage is responsible for stabilizing changing sources to allow deferre
execution of operations dependent on such sources.

Any RenderedImage may be used as the source of aSnapshotImage. If the
source is aWritableRenderedImage, theSnapshotImage will register itself as a
TileObserver and make copies of tiles that are about to change.

Multiple versions of each tile are maintained internally, as long as they are in
demand.SnapshotImage is able to track demand and should be able to simply
forward requests for tiles to the source most of the time, without the need to
make a copy.

When used as a source, calls togetTile will simply be passed along to the
source. In other words,SnapshotImage is completely transparent. However, by
calling createSnapshot() an instance of a non-publicPlanarImage subclass
(calledSnapshot in this implementation) will be created and returned. This
image will always return tile data with contents as of the time of its constructio

// Origin is 0,0.
WritableRaster pattern = Raster.createWritableRaster(sm,
 new Point(0, 0));
int[] bandValues = new int[3];
bandValues[0] = 90;
bandValues[1] = 45;
bandValues[2] = 45

// Set values for the pattern raster.
for (int y = 0; y < pattern.getHeight(); y++) {
for (int x = 0; x < pattern.getWidth(); x++) {
 pattern.setPixel(x, y, bandValues);
 bandValues[1] = (bandValues[1]+1)%255;
 bandValues[2] = (bandValues[2]+1)%255;
 }
}

// Create a 100x100 image with the given raster.
PlanarImage im0 = (PlanarImage)JAI.create("pattern",
 100, 100,
 pattern);

Listing 4-2 Example Pattern Operation (Continued)
81Release 1.0.1, November 1999

4.2.3 Snapshot Image IMAGE ACQUISITION AND DISPLAY

82

hat
the

n
or.
tain

s

4.2.3.1 Creating a SnapshotImage

This implementation ofSnapshotImage makes use of a doubly-linked list of
Snapshot objects. A newSnapshot is added to the tail of the list whenever
createSnapshot() is called. EachSnapshot has a cache containing copies of
any tiles that were writable at the time of its construction, as well as any tiles t
become writable between the time of its construction and the construction of
nextSnapshot.

4.2.3.2 Using SnapshotImage with a Tile

When asked for a tile, aSnapshot checks its local cache and returns its versio
of the tile if one is found. Otherwise, it forwards the request onto its success
This process continues until the latest Snapshot is reached; if it does not con
a copy of the tile, the tile is requested from the real source image.

API: javax.media.jai.SnapShotImage

• SnapshotImage(PlanarImage source)

constructs aSnapshotImage from aPlanarImage source.

• Raster getTile(int tileX, int tileY)

returns a non-snapshotted tile from the source.

• void tileUpdate(java.awt.image.WritableRenderedImage source,
int tileX, int tileY, boolean willBeWritable)

receives the information that a tile is either about to become writable, or i
about to become no longer writable.

Parameters: source a PlanarImage source.

Parameters: tileX the X index of the tile.

tileY the Y index of the tile.

Parameters: source theWritableRenderedImage for which we
are an observer.

tileX thex index of the tile.

tileY they index of the tile.

willBeWrit-

able

true if the tile is becoming writable.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Collection Image

, and
e
 a
are

e’s

f

 in
ram
, and
r

g

• PlanarImage createSnapshot()

creates a snapshot of this image. This snapshot may be used indefinitely
will always appear to have the pixel data that this image has currently. Th
snapshot is semantically a copy of this image but may be implemented in
more efficient manner. Multiple snapshots taken at different times may sh
tiles that have not changed, and tiles that are currently static in this imag
source do not need to be copied at all.

4.2.3.3 Disposing of a Snapshot Image

When aSnapshot is no longer needed, itsdispose() method may be called. The
dispose() method will be called automatically when theSnapshot is finalized
by the garbage collector. Thedispose() method attempts to push the contents o
its tile cache back to the previousSnapshot in the linked list. If that image
possesses a version of the same tile, the tile is not pushed back and may be
discarded.

Disposing of theSnapshot allows tile data held by the Snapshot that is not
needed by any otherSnapshot to be disposed of as well.

API: javax.media.jai.PlanarImage

• void dispose()

provides a hint that an image will no longer be accessed from a reference
user space. The results are equivalent to those that occur when the prog
loses its last reference to this image, the garbage collector discovers this
finalize is called. This can be used as a hint in situations where waiting fo
garbage collection would be overly conservative.

4.2.4 Remote Image

A RemoteImage is a sub-class ofPlanarImage which represents an image on a
remote server. ARemoteImage may be constructed from aRenderedImage or
from an imaging chain in either the rendered or renderable modes. For more
information, seeChapter 12, “Client-Server Imaging.”

4.2.5 Collection Image

TheCollectionImage class is an abstract superclass for classes representin
groups of images. Examples of groups of images include pyramids
(ImagePyramid), time sequences (ImageSequence), and planar slices stacked to
form a volume (ImageStack).
83Release 1.0.1, November 1999

4.2.6 Image Sequence IMAGE ACQUISITION AND DISPLAY

84

lapse

n of

tial
sent
API: javax.media.jai.CollectionImage

• CollectionImage()

the default constructor.

• CollectionImage(java.util.Collection images)

constructs aCollectionImage object from a Vector ofImageJAI objects.

4.2.6 Image Sequence

TheImageSequence class represents a sequence of images with associated
timestamps and a camera position. It can be used to represent video or time-
photography.

The images are of the typeImageJAI. The timestamps are of the typelong. The
camera positions are of the typePoint. The tuple (image, time stamp, camera
position) is represented by classSequentialImage.

API: javax.media.jai.ImageSequence

• ImageSequence(Collection images)

constructs a class that represents a sequence of images from a collectio
SequentialImage.

4.2.7 Image Stack

TheImageStack class represents a stack of images, each with a defined spa
orientation in a common coordinate system. This class can be used to repre
CT scans or seismic volumes.

The images are of the typejavax.media.jai.PlanarImage; the coordinates are
of the typejavax.media.jai.Coordinate. The tuple (image, coordinate) is
represented by classjavax.media.jai.CoordinateImage.

API: javax.media.jai.ImageStack

• ImageStack(Collection images)

constructs anImageStack object from a collection ofCoordinateImage.

Parameters: images A Vector of ImageJAI objects.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image MIP Map

e
lice

re

all

ion
e

in
t

r

IP

.

• ImageJAI getImage(Coordinate coordinate)

returns the image associated with the specified coordinate.

• Coordinate getCoordinate(ImageJAI image)

returns the coordinate associated with the specified image.

4.2.8 Image MIP Map

An image MIP map is a stack of images with a fixed operational relationship
between adjacent slices. Given the highest-resolution slice, the others may b
derived in turn by performing a particular operation. Data may be extracted s
by slice or by special iterators.

A MIP map image (MIP stands for the Latinmultim im parvo, meaning “many
things in a small space”) is usually associated with texture mapping. In textu
mapping, the MIP map image contains different-sized versions of the same
image in one location. To use mipmapping for texture mapping, you provide
sizes of the image in powers of 2 from the largest image to a 1× 1 map.

TheImageMIPMap class takes the original source image at the highest resolut
level, considered to be level 0, and a RenderedOp chain that defines how th
image at the next lower resolution level is derived from the current resolution
level.

The RenderedOp chain may have multiple operations, but the first operation
the chain must take only one source image, which is the image at the curren
resolution level.

There are threeImageMIPMap constructors:

• ImageMIPMap(RenderedImage image, AffineTransform transform,
Interpolation interpolation)

This constructor assumes that the operation used to derive the next lowe
resolution is a standardaffine operation.

Any number of versions of the original image may be derived by an affine
transform representing the geometric relationship between levels of the M

Parameters: image The image at the highest resolution level

transform The affine transform matrix used by
“affine” operation.

interpolation The interpolation method used by
“affine” operation.
85Release 1.0.1, November 1999

4.2.8 Image MIP Map IMAGE ACQUISITION AND DISPLAY

86

see

t

t

the
map. The affine transform may include translation, scaling, and rotation (
“Affine Transformation” on page 272).

• ImageMIPMap(RenderedImage image, RenderedOp downSampler)

This constructor specifies thedownSampler, which points to the RenderedOp
chain used to derive the next lower resolution level.

• ImageMIPMap(RenderedOp downSampler)

This constructor specifies only thedownSampler.

ThedownSampler is a chain of operations used to derive the image at the nex
lower resolution level from the image at the current resolution level. That is,
given an image at resolution leveli, thedownSampler is used to obtain the image
at resolution leveli + 1. The chain may contain one or more operation nodes;
however, each node must be aRenderedOp.

Thedownsampler parameter points to the last node in the chain. The very firs
node in the chain must be aRenderedOp that takes oneRenderedImage as its
source. All other nodes may have multiple sources. When traversing back up
chain, if a node has more than one source, the first source,source0, is used to
move up the chain. This parameter is saved by reference.

Listing 4-3 shows a complete code example of the use ofImageMIPMap.

Parameters: image The image at the highest resolution level.

downsampler The RenderedOp chain used to derive the
next lower resolution level. The first
operation of this chain must take one
source, but must not have a source
specified.

Listing 4-3 Example use of ImageMIPMap (Sheet 1 of 3)

import java.awt.geom.AffineTransform;
import java.awt.image.RenderedImage;
import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;
import javax.media.jai.Interpolation;
import javax.media.jai.InterpolationNearest;
import javax.media.jai.ImageMIPMap;
import javax.media.jai.PlanarImage;
import javax.media.jai.RenderedOp;
import com.sun.media.jai.codec.FileSeekableStream;

public class ImageMIPMapTest extends Test {
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image MIP Map
protected static String
file = “/import/jai/JAI_RP/src/share/sample/images/pond.jpg”;

protected Interpolation interp = new InterpolationNearest();

protected ImageMIPMap MIPMap;

protected RenderedOp image;
protected RenderedOp downSampler;

private void test1() {
AffineTransform at = new AffineTransform(0.8, 0.0, 0.0, 0.8,
 0.0, 0.0);
InterpolationNearest interp = new InterpolationNearest();

MIPMap = new ImageMIPMap(image, at, interp);

 display(MIPMap.getDownImage());
 display(MIPMap.getImage(4));
 display(MIPMap.getImage(1));
 }

public void test2() {
downSampler = createScaleOp(image, 0.9F);
downSampler.removeSources();
downSampler = createScaleOp(downSampler, 0.9F);

MIPMap = new ImageMIPMap(image, downSampler);

display(MIPMap.getImage(0));
display(MIPMap.getImage(5));
display(MIPMap.getImage(2));
}

public void test3() {
 downSampler = createScaleOp(image, 0.9F);
 downSampler = createScaleOp(downSampler, 0.9F);

MIPMap = new ImageMIPMap(downSampler);

 display(MIPMap.getImage(5));
 System.out.println(MIPMap.getCurrentLevel());
 display(MIPMap.getCurrentImage());
 System.out.println(MIPMap.getCurrentLevel());
 display(MIPMap.getImage(1));
 System.out.println(MIPMap.getCurrentLevel());
}

Listing 4-3 Example use of ImageMIPMap (Sheet 2 of 3)
87Release 1.0.1, November 1999

4.2.8 Image MIP Map IMAGE ACQUISITION AND DISPLAY

88

 as

st be
API: javax.media.jai.ImageMIPMap

• int getCurrentLevel()

returns the current resolution level. The highest resolution level is defined
level 0.

• RenderedImage getCurrentImage()

returns the image at the current resolution level.

• RenderedImage getImage(int level)

returns the image at the specified resolution level. The requested level mu
greater than or equal to the current resolution level ornull will be returned.

protected RenderedOp createScaleOp(RenderedImage src,
 float factor) {
 ParameterBlock pb = new ParameterBlock();
 pb.addSource(src);
 pb.add(factor);
 pb.add(factor);
 pb.add(1.0F);
 pb.add(1.0F);
 pb.add(interp);
 return JAI.create(“scale”, pb);
}

public ImageMIPMapTest(String name) {
 super(name);

 try {
FileSeekableStream stream = new FileSeekableStream(file);

 image = JAI.create(“stream”, stream);
 } catch (Exception e) {
 System.exit(0);
 }
}

public static void main(String args[]) {
 ImageMIPMapTest test = new ImageMIPMapTest(“ImageMIPMap”);
 // test.test1();
 // test.test2();
 test.test3();
 }
}

Listing 4-3 Example use of ImageMIPMap (Sheet 3 of 3)
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Pyramid

 the

es

ain

on

n
and
nal

er

.

rst
he

an
e.

.3,

he
r.”
• RenderedImage getDownImage()

returns the image at the next lower resolution level, obtained by applying
downSampler on the image at the current resolution level.

4.2.9 Image Pyramid

TheImagePyramid class implements a pyramid operation on aRenderedImage.
Supposing that we have aRenderedImage of 1024× 1024, we could generate ten
additional images by successively averaging 2× 2 pixel blocks, each time
discarding every other row and column of pixels. We would be left with imag
of 512× 512, 256× 256, and so on down to 1× 1.

In practice, the lower-resolution images may be derived by performing any ch
of operations to repeatedly down sample the highest-resolution image slice.
Similarly, once a lower resolution image slice is obtained, the higher resoluti
image slices may be derived by performing another chain of operations to
repeatedly up sample the lower resolution image slice. Also, a third operatio
chain may be used to find the difference between the original slice of image
the resulting slice obtained by first down sampling then up sampling the origi
slice.

This brings us to the discussion of the parameters required of this class:

Starting with the image at the highest resolution level, to find an image at a low
resolution level we use thedownSampler. But, at the same time we also use the
upSampler to retrieve the image at the higher resolution level, then use the
differencer to find the difference image between the original image and the
derived image from theupSampler. We save this difference image for later use

Parameter Description

downSampler A RenderedOp chain used to derive the lower resolution images. The fi
operation in the chain must take only one source. See Section 4.2.9.1, “T
Down Sampler.”

upSampler A RenderedOp chain that derives the image at a resolution level higher th
the current level. The first operation in the chain must take only one sourc
See Section 4.2.9.2, “The Up Sampler.”

differencer A RenderedOp chain that finds the difference of two images. The first
operation in the chain must take exactly two sources. See Section 4.2.9
“The Differencer.”

combiner A RenderedOp chain that combines two images. The first operation in t
chain must take exactly two sources. See Section 4.2.9.4, “The Combine
89Release 1.0.1, November 1999

4.2.9 Image Pyramid IMAGE ACQUISITION AND DISPLAY

90

t

first

l,
To find an image at a higher resolution, we use theupSampler, then combine the
earlier saved difference image with the resulting image using thecombiner to get
the final higher resolution level.

For example:

We have an image at leveln
n + 1 = downSampler(n)
diff n = upSampler(n + 1)
diff n = differencer(n, n') — This diff n is saved for each level
Later we want to getn from n + 1
n' = upSampler(n + 1)
n = combiner(n', diff n)

4.2.9.1 The Down Sampler

ThedownSampler is a chain of operations used to derive the image at the nex
lower resolution level from the image at the current resolution level. That is,
given an image at resolution leveli, thedownSampler is used to obtain the image
at resolution leveli + 1. The chain may contain one or more operation nodes;
however, each node must be aRenderedOp. The parameter points to the last node
in the chain. The very first node in the chain must be aRenderedOp that takes
oneRenderedImage as its source. All other nodes may have multiple sources.
When traversing back up the chain, if a node has more than one source, the
source,source0, is used to move up the chain. This parameter is saved by
reference.

ThegetDownImage method returns the image at the next lower resolution leve
obtained by applying thedownSampler on the image at the current resolution
level.

4.2.9.2 The Up Sampler

TheupSampler is a chain of operations used to derive the image at the next
higher resolution level from the image at the current resolution level. That is,
given an image at resolution leveli, theupSampler is used to obtain the image at
resolution leveli – 1. The requirement for this parameter is similar to the
requirement for thedownSampler parameter.

ThegetUpImage method returns the image at the previous higher resolution
level. If the current image is already at level 0, the current image is returned
without further up sampling. The down-sampled image is obtained by first up
sampling the current image, then combining the resulting image with the
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Pyramid

an

g
ach

n.

has

up

the
t a
previously-saved different image using thecombiner op chain (see
Section 4.2.9.4, “The Combiner”).

4.2.9.3 The Differencer

Thedifferencer is a chain of operations used to find the difference between
image at a particular resolution level and the image obtained by first down
sampling that image then up sampling the result image of the down samplin
operations. The chain may contain one or more operation nodes; however, e
node must be aRenderedOp. The parameter points to the last node in the chai
The very first node in the chain must be aRenderedOp that takes two
RenderedImages as its sources. When traversing back up the chain, if a node
more than one source, the first source,source0, is used to move up the chain.
This parameter is saved by reference.

ThegetDiffImage method returns the difference image between the current
image and the image obtained by first down sampling the current image then
sampling the resulting image of down sampling. This is done using the
differencer op chain. The current level and current image are not changed.

4.2.9.4 The Combiner

Thecombiner is a chain of operations used to combine the resulting image of
up sampling operations and the different image saved to retrieve an image a
higher resolution level. The requirement for this parameter is similar to the
requirement for thedifferencer parameter.

4.2.9.5 Example

Listing 4-4 shows a complete code example of the use ofImagePyramid.

Listing 4-4 Example use of ImagePyramid (Sheet 1 of 4)

import java.awt.image.RenderedImage;
import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;
import javax.media.jai.Interpolation;
import javax.media.jai.ImageMIPMap;
import javax.media.jai.ImagePyramid;
import javax.media.jai.PlanarImage;
import javax.media.jai.RenderedOp;
import com.sun.media.jai.codec.FileSeekableStream;

public class ImagePyramidTest extends ImageMIPMapTest {
91Release 1.0.1, November 1999

4.2.9 Image Pyramid IMAGE ACQUISITION AND DISPLAY

92
 protected RenderedOp upSampler;
 protected RenderedOp differencer;
 protected RenderedOp combiner;

 protected ImagePyramid pyramid;

 private void test1() {
 }

 public void test2() {
 downSampler = createScaleOp(image, 0.9F);
 downSampler.removeSources();
 downSampler = createScaleOp(downSampler, 0.9F);

 upSampler = createScaleOp(image, 1.2F);
 upSampler.removeSources();
 upSampler = createScaleOp(upSampler, 1.2F);

 differencer = createSubtractOp(image, image);
 differencer.removeSources();

 combiner = createAddOp(image, image);
 combiner.removeSources();

pyramid = new ImagePyramid(image, downSampler, upSampler,
 differencer, combiner);
 display(pyramid.getImage(0));
 display(pyramid.getImage(4));
 display(pyramid.getImage(1));
 display(pyramid.getImage(6));
 }

 public void test3() {
 downSampler = createScaleOp(image, 0.9F);
 downSampler = createScaleOp(downSampler, 0.9F);

 upSampler = createScaleOp(image, 1.2F);
 upSampler.removeSources();

 differencer = createSubtractOp(image, image);
 differencer.removeSources();

 combiner = createAddOp(image, image);
 combiner.removeSources();

Listing 4-4 Example use of ImagePyramid (Sheet 2 of 4)
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Pyramid
 pyramid = new ImagePyramid(downSampler, upSampler,
 differencer, combiner);
 // display(pyramid.getCurrentImage());
 display(pyramid.getDownImage());
 // display(pyramid.getDownImage());
 display(pyramid.getUpImage());
 }

 public void test4() {
 downSampler = createScaleOp(image, 0.5F);

 upSampler = createScaleOp(image, 2.0F);
 upSampler.removeSources();

 differencer = createSubtractOp(image, image);
 differencer.removeSources();

 combiner = createAddOp(image, image);
 combiner.removeSources();

 pyramid = new ImagePyramid(downSampler, upSampler,
 differencer, combiner);
 pyramid.getDownImage();

 display(pyramid.getCurrentImage());
 display(pyramid.getDiffImage());
 display(pyramid.getCurrentImage());
 }

 protected RenderedOp createSubtractOp(RenderedImage src1,
RenderedImage src2) {

 ParameterBlock pb = new ParameterBlock();
 pb.addSource(src1);
 pb.addSource(src2);
 return JAI.create(“subtract”, pb);
 }

 protected RenderedOp createAddOp(RenderedImage src1,
 RenderedImage src2) {
 ParameterBlock pb = new ParameterBlock();
 pb.addSource(src1);
 pb.addSource(src2);
 return JAI.create(“add”, pb);
 }

Listing 4-4 Example use of ImagePyramid (Sheet 3 of 4)
93Release 1.0.1, November 1999

4.2.9 Image Pyramid IMAGE ACQUISITION AND DISPLAY

94

n

 that
API: javax.media.jai.ImagePyramid

• ImagePyramid(RenderedImage image, RenderedOp downsampler,
RenderedOp upSampler, RenderedOp differencer,
RenderedOp combiner)

constructs anImagePyramid object. The parameters point to the last operatio
in each chain. The first operation in each chain must not have any source
images specified; that is, its number of sources must be 0.

• ImagePyramid(RenderedOp downSampler, RenderedOp upSampler,
RenderedOp differencer, RenderedOp combiner)

constructs anImagePyramid object. TheRenderedOp parameters point to the
last operation node in each chain. The first operation in thedownSampler chain
must have the image with the highest resolution as its source. The first
operation in all other chains must not have any source images specified;
is, its number of sources must be 0. All input parameters are saved by
reference.

 public ImagePyramidTest(String name) {
 super(name);
 }

 public static void main(String args[]) {
 ImagePyramidTest test = new
ImagePyramidTest(“ImagePyramid”);
 // test.test2();
 test.test3();
 // test.test4();
 }
}

Parameters: image The image with the highest resolution.

downsampler The operation chain used to derive the
lower-resolution images.

upsampler The operation chain used to derive the
higher-resolution images.

differencer The operation chain used to differ two
images.

combiner The operation chain used to combine two
images.

Listing 4-4 Example use of ImagePyramid (Sheet 4 of 4)
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Multi-resolution Renderable Images

t be
by

 the

age
ng.
ing

ined
of
• public RenderedImage getImage(int level)

returns the image at the specified resolution level. The requested level mus
greater than or equal to 0 or null will be returned. The image is obtained
either down sampling or up sampling the current image.

• public RenderedImage getDownImage()

returns the image at the next lower resolution level, obtained by applying
downSampler on the image at the current resolution level.

• public RenderedImage getUpImage()

returns the image at the previous higher resolution level. If the current im
is already at level 0, the current image is returned without further up sampli
The image is obtained by first up sampling the current image, then combin
the result image with the previously saved different image using thecombiner
op chain.

• public RenderedImage getDiffImage()

returns the difference image between the current image and the image obta
by first down sampling the current image then up sampling the result image
down sampling. This is done using thedifferencer op chain. The current
level and current image will not be changed.

4.2.10 Multi-resolution Renderable Images

TheMultiResolutionRenderableImage class produces renderings based on a
set of suppliedRenderedImages at various resolutions. The
MultiResolutionRenderableImage is constructed from a specified dimension
(height; the width is derived by the source image aspect ratio and is not
specified) and a vector of renderedImages of progressively lower resolution.
95Release 1.0.1, November 1999

4.2.10 Multi-resolution Renderable Images IMAGE ACQUISITION AND DISPLAY

96

I

ale

If no
API: javax.media.jai.MultiResolutionRenderableImage

• public MultiResolutionRenderableImage(Vector renderedSources,
float minX, float minY, float height)

constructs aMultiResolutionRenderableImagewith given dimensions from
aVector of progressively lower resolution versions of a RenderedImage.

• RenderedImage createScaledRendering(int width, int height,
RenderingHints hints)

returns a rendering with a given width, height, and rendering hints. If a JA
rendering hint namedJAI.KEY_INTERPOLATION is provided, its corresponding
Interpolation object is used as an argument to the JAI operator used to sc
the image. If no such hint is present, an instance ofInterpolationNearest is
used.

• RenderedImage createDefaultRendering()

returns a 100-pixel high rendering with no rendering hints.

• RenderedImage createRendering(RenderContext renderContext)

returns a rendering based on aRenderContext. If a JAI rendering hint named
JAI.KEY_INTERPOLATION is provided, its correspondingInterpolation
object is used as an argument to the JAI operator used to scale the image.
such hint is present, an instance ofInterpolationNearest is used.

Parameters: rendered-

Sources

A Vector of RenderedImages.

minX The minimumx coordinate of the
Renderable, as a float.

minY The minimumy coordinate of the
Renderable, as a float.

height The height of the Renderable, as a float.

Parameters: width The width of the rendering in pixels.

height The height of the rendering in pixels.

hints A Hashtable of rendering hints.

Parameters: render-

Context

A RenderContext describing the transform
and rendering hints.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Streams

not

th
• Object getProperty(String name)

gets a property from the property set of this image. If the property name is
recognized,java.awt.Image.UndefinedProperty will be returned.

• String[] getPropertyNames()

returns a list of the properties recognized by this image.

• float getWidth()

returns the floating-point width of theRenderableImage.

• float getHeight()

returns the floating-point height of theRenderableImage.

• float getMinX()

returns the floating-point minimumx coordinate of theRenderableImage.

• float getMaxX()

returns the floating-point maximumx coordinate of theRenderableImage.

• float getMinY()

returns the floating-point minimumy coordinate of theRenderableImage.

• float getMaxY()

returns the floating-point maximumy coordinate of theRenderableImage.

4.3 Streams

The Java Advanced Imaging API extends the Java family of stream types wi
the addition of seven “seekable” stream classes, as shown in Figure 4-4.
Table 4-3 briefly describes each of the new classes.

Parameters: name The name of the property to get, as a
String.
97Release 1.0.1, November 1999

4.3 Streams IMAGE ACQUISITION AND DISPLAY

98

that
out

that
on.

s
es
Figure 4-4 JAI Stream Classes

The new seekable classes are used to cache the image data being read so
methods can be used to seek backwards and forwards through the data with
having to re-read the data. This is especially important for image data types
are segmented or that cannot be easily re-read to locate important informati

Table 4-3 JAI Stream Classes

Class Description

SeekableStream Extends:InputStream
Implements:DataInput
An abstract class that combines the functionality of
InputStream andRandomAccessFile, along with the ability
to read primitive data types in little-endian format.

FileSeekableStream Extends:SeekableStream
Implements SeekableStream functionality on data stored in a
File.

ByteArraySeekableStream Extends:SeekableStream
ImplementsSeekableStream functionality on data stored in
an array of bytes.

SegmentedSeekableStream Extends:SeekableStream
Provides a view of a subset of anotherSeekableStream
consisting of a series of segments with given starting position
in the source stream and lengths. The resulting stream behav
like an ordinarySeekableStream.

ForwardSeekableStream Extends:SeekableStream
ProvidesSeekableStream functionality on data from an
InputStream with minimal overhead, but does not allow
seeking backwards.ForwardSeekableStream may be used
with input formats that support streaming, avoiding the need to
cache the input data.

InputStream

Seekable
Stream DataInput

Implements

ByteArray
Seekable

File
Seekable

Segmented
Seekable

Forward
Seekable

Stream Stream StreamStream

FileCache
Seekable
Stream

MemoryCache
Seekable
Stream
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Streams

nd
e.

or

ays
y be

ata

)
ds

on

of
To properly read some image data files requires the ability to seek forward a
backward through the data so as to read information that describes the imag
The best way of making the data seekable is through acache, a temporary file
stored on a local disk or in main memory. The preferred method of storage f
the cached data is local disk, but that it not always possible. For security
concerns or for diskless systems, the creation of a disk file cache may not alw
be permitted. When a file cache is not permissible, an in-memory cache ma
used.

TheSeekableStream class allows seeking within the input, similarly to the
RandomAccessFile class. Additionally, theDataInput interface is supported and
extended to include support for little-endian representations of fundamental d
types.

TheSeekableStream class adds severalread methods to the already extensive
java.io.DataInput class, including methods for reading data in little-endian (LE
order. In Java, all values are written in big-endian fashion. However, JAI nee
methods for reading data that is not produced by Java; data that is produced
other platforms that produce data in the little-endian fashion. Table 4-4 is a
complete list of the methods to read data:

FileCacheSeekableStream Extends:SeekableStream
ProvidesSeekableStream functionality on data from an
InputStream with minimal overhead, but does not allow
seeking backwards.ForwardSeekableStream may be used
with input formats that support streaming, avoiding the need to
cache the input data. In circumstances that do not allow the
creation of a temporary file (for example, due to security
consideration or the absence of local disk), the
MemoryCacheSeekableStream class may be used.

MemoryCacheSeekableStream Extends:SeekableStream
ProvidesSeekableStream functionality on data from an
InputStream, using an in-memory cache to allow seeking
backwards.MemoryCacheSeekableStream should be used
when security or lack of access to local disk precludes the use
FileCacheSeekableStream.

Table 4-4 Read Data Methods

Method Description

readInt Reads a signed 32-bit integer

readIntLE Reads a signed 32-bit integer in little-endian order

readShort Reads a signed 16-bit number

readShortLE Reads a 16-bit number in little-endian order

Table 4-3 JAI Stream Classes (Continued)

Class Description
99Release 1.0.1, November 1999

4.3 Streams IMAGE ACQUISITION AND DISPLAY

100

ho

se
In addition to the familiar methods fromInputStream, the methods
getFilePointer() andseek(), are defined as in theRandomAccessFile class.
ThecanSeekBackwards() method returnstrue if it is permissible to seek to a
position earlier in the stream than the current value ofgetFilePointer(). Some
subclasses ofSeekableStream guarantee the ability to seek backwards while
others may not offer this feature in the interest of efficiency for those users w
do not require backward seeking.

Several concrete subclasses ofSeekableStream are supplied in the
com.sun.media.jai.codec package. Three classes are provided for the purpo
of adapting a standardInputStream to theSeekableStream interface. The
ForwardSeekableStream class does not allow seeking backwards, but is
inexpensive to use. TheFileCacheSeekableStream class maintains a copy of all
of the data read from the input in a temporary file; this file will be discarded

readLong Reads a signed 64-bit integer

readLongLE Reads a signed 64-bit integer in little-endian order

readFloat Reads a 32-bit float

readFloatLE Reads a 32-bit float in little-endian order

readDouble Reads a 64-bit double

readDoubleLE Reads a 64-bit double in little-endian order

readChar Reads a 16-bit Unicode character

readCharLE Reads a 16-bit Unicode character in little-endian order

readByte Reads an signed 8-bit byte

readBoolean Reads a Boolean value

readUTF Reads a string of characters in UTF (Unicode Text Format)

readUnsignedShort Reads an unsigned 16-bit short integer

readUnsignedShortLE Reads an unsigned 16-bit short integer in little-endian order

readUnsignedInt Reads an unsigned 32-bit integer

readUnsignedIntLE Reads an unsigned 32-bit integer in little-endian order

readUnsignedByte Reads an unsigned 8-bit byte

readLine Reads in a line that has been terminated by a line-termination
character.

readFully Reads a specified number of bytes, starting at the current stream
pointer

read() Reads the next byte of data from the input stream.

Table 4-4 Read Data Methods (Continued)

Method Description
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading Image Files

rt
of a

ible.

iting
s

to
idely

e

automatically when theFileSeekableStream is finalized, or when the JVM
exits normally.

TheFileCacheSeekableStream class is intended to be reasonably efficient apa
from the unavoidable use of disk space. In circumstances where the creation
temporary file is not possible, theMemoryCacheSeekableStream class may be
used. TheMemoryCacheSeekableStream class creates a potentially large in-
memory buffer to store the stream data and so should be avoided when poss
TheFileSeekableStream class wraps aFile or RandomAccessFile. It forwards
requests to the real underlying file.FileSeekableStream performs a limited
amount of caching to avoid excessive I/O costs.

A convenience method,wrapInputStream is provided to construct a suitable
SeekableStream instance whose data is supplied by a givenInputStream. The
caller, by means of thecanSeekBackwards parameter, determines whether
support for seeking backwards is required.

4.4 Reading Image Files

The JAI codec architecture consists of encoders and decoders capable of wr
and reading several different raster image file formats. This chapter describe
reading image files. For information on writing image files, seeChapter 13,
“Writing Image Files .”

There are many raster image file formats, most of which have been created
support both image storage and interchange. Some formats have become w
used and are considered de facto standards. Other formats, although very
important to individual software vendors, are less widely used.

JAI directly supports several of the most common image file formats, listed in
Table 4-5. If your favorite file format is not listed in Table 4-5, you may either b
able to create your own file codec (seeChapter 14, “Extending the API”) or
use one obtained from a third party developer.

Table 4-5 Image File Formats

File Format
Name Description

BMP Microsoft Windows bitmap image file

FPX FlashPix format

GIF Compuserve’s Graphics Interchange Format

JPEG A file format developed by the Joint Photographic Experts Group
101Release 1.0.1, November 1999

4.4 Reading Image Files IMAGE ACQUISITION AND DISPLAY

102

The

y to
tself

to

r
ding

m or
age

a

An image file usually has at least two parts: a file header and the image data.
header contains fields of pertinent information regarding the following image
data. At the very least, the header must provide all the information necessar
reconstruct the original image from the stored image data. The image data i
may or may not be compressed.

The main class for image decoders and encoders is theImageCodec class.
Subclasses ofImageCodec are able to perform recognition of a particular file
format either by inspection of a fixed-length file header or by arbitrary access
the source data stream. EachImageCodec subclass implements one of two image
file recognition methods. The codec first calls thegetNumHeaderBytes()

method, which either returns 0 if arbitrary access to the stream is required, o
returns the number of header bytes required to recognize the format. Depen
on the outcome of thegetNumHeaderBytes() method, the codec either reads the
stream or the header.

Once the codec has determined the image format, either by reading the strea
the header, it returns the name of the codec associated with the detected im
format. If no codec is registered with the name,null is returned. The name of
the codec defines the subclass that is called, which decodes the image.

For most image types, JAI offers the option of reading an image data file as
java.io.File object or as one of the subclasses ofjava.io.InputStream.

JAI offers several file operators for reading image data files, as listed in
Table 4-6.

PNG Portable Network Graphics

PNM Portable aNy Map file format. Includes PBM, PGM, and PPM.

TIFF Tag Image File Format

Table 4-6 Image File Operators

Operator Description

AWTImage Imports a standard AWT image into JAI.

BMP Reads BMP data from an input stream.

FileLoad Reads an image from a file.

FPX Reads FlashPix data from an input stream.

FPXFile Reads a standard FlashPix file.

Table 4-5 Image File Formats (Continued)

File Format
Name Description
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Standard File Readers for Most Data Types

rs
d

file
one
he
he
es.

he

e

he

II

tor
4.4.1 Standard File Readers for Most Data Types

You can read a file type directly with one of the available operation descripto
(such as thetiff operation to read TIFF files), by the stream file reader to rea
InputStream files, or theFileLoad operator to read from a disk file. TheStream
andFileLoad operations are generic file readers in the sense that the image
type does not have to be known ahead of time, assuming that the file type is
of those recognized by JAI. These file read operations automatically detect t
file type when invoked and use the appropriate file reader. This means that t
programmer can use the same graph to read any of the “recognized” file typ

TheStream andFileLoad operations use a set ofFormatRecognizer classes to
query the file types when the image data is called for. AFormatRecognizer may
be provided for any format that may be definitively recognized by examining t
initial portion of the data stream. A newFormatRecognizer may be added to the
OperationRegistry by means of theregisterFormatRecognizer method (see
Section 14.5, “Writing New Image Decoders and Encoders”).

4.4.1.1 The Stream Operation

TheStream operation reads an image from aSeekableStream. If the file is one
of the recognized “types,” the file will be read. Thefile operation will query the
set of registeredFormatRecognizers. If a call to theisFormatRecognized
method returns true, the associated operation name is retrieved by calling th
getOperationName method and the named operation is instantiated.

If the operation fails to read the file, no other operation will be invoked since t
input will have been consumed.

GIF Reads GIF data from an input stream.

JPEG Reads a standard JPEG (JFIF) file.

PNG Reads a PNG input stream.

PNM Reads a standard PNM file, including PBM, PGM, and PPM images of both ASC
and raw formats.

Stream Readsjava.io.InputStream files.

TIFF Reads TIFF 6.0 data from an input stream.

URL Creates an image the source of which is specified by a Uniform Resource Loca
(URL).

Table 4-6 Image File Operators (Continued)

Operator Description
103Release 1.0.1, November 1999

4.4.2 Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

104

ve

le

me
TheStream operation takes a single parameter:

Listing 4-5 shows a code sample for aStream operation.

4.4.1.2 The FileLoad Operation

The FileLoad operation reads an image from a file. Like theStream operation, if
the file is one of the recognized “types,” the file will be read. If the operation
fails to read the file, no other operation will be invoked since the input will ha
been consumed.

TheFileLoad operation takes a single parameter:

Listing 4-6 shows a code sample for aFileLoad operation.

4.4.2 Reading TIFF Images

The Tag Image File Format (TIFF) is one of the most common digital image fi
formats. This file format was specifically designed for large arrays of raster
image data originating from many sources, including scanners and video fra
grabbers. TIFF was also designed to be portable across several different
computer platforms, including UNIX, Windows, and Macintosh. The TIFF file
format is highly flexible, which also makes it fairly complex.

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-5 Example Stream Operation

// Load the source image from a Stream.
RenderedImage im = JAI.create("stream", stream);

Parameter Type Description

filename String The path of the file to read from.

Listing 4-6 Example FileLoad Operation

// Load the source image from a file.
RenderedImage src = (RenderedImage)JAI.create("fileload",
 fileName);
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading TIFF Images

e)

r the

he
TheTIFF operation reads TIFF data from a TIFFSeekableStream. TheTIFF
operation takes one parameter:

TheTIFF operation reads the following TIFF image types:

• Bilevel or grayscale, white is zero

• Bilevel or grayscale, black is zero

• Palette-color images

• RGB full color (three samples per pixel)

• RGB full color (four samples per pixel) (Opacity + RGB)

• RGB full color with alpha data

• RGB full color with alpha data (with pre-multiplied color)

• RGB full color with extra components

• Transparency mask

TheTIFF operation supports the following compression types:

• None (no compression)

• PackBits compression

• Modified Huffman compression (CCITT Group3 1-dimensional facsimil

For an example of reading a TIFF file, see Listing A-1 on page 417.

4.4.2.1 Palette Color Images

For TIFF Palette color images, thecolorMap always has entries of short data
type, the color black being represented by 0,0,0 and white by
65536,65536,65536. To display these images, the default behavior is to dithe
short values down to 8 bits. The dithering is done by calling the
decode16BitsTo8Bit method for each short value that needs to be dithered. T
method has the following implementation:

byte b;
short s;
s = s & 0xffff;
b = (byte)((s >> 8) & 0xff);

Parameter Type Description

file SeekableStream TheSeekableStream to read from.
105Release 1.0.1, November 1999

4.4.2 Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

106

hort

byte

ut

it
hile

the

FF

F
r of
If a different algorithm is to be used for the dithering, theTIFFDecodeParam

class should be subclassed and an appropriate implementation should be
provided for thedecode16BitsTo8Bits method in the subclass.

If it is desired that the Palette be decoded such that the output image is of s
data type and no dithering is performed, use thesetDecodePaletteAsShorts

method.

API: com.sun.media.jai.codec.TIFFDecodeParam

• void setDecodePaletteAsShorts(boolean decodePaletteAsShorts)

if set, the entries in the palette will be decoded as shorts and no short-to-
lookup will be applied to them.

• boolean getDecodePaletteAsShorts()

returnstrue if palette entries will be decoded as shorts, resulting in a outp
image with short datatype.

• byte decode16BitsTo8Bits(int s)

returns an unsigned 8-bit value computed by dithering the unsigned 16-b
value. Note that the TIFF specified short datatype is an unsigned value, w
Java’sshort datatype is a signed value. Therefore the Javashort datatype
cannot be used to store the TIFF specified short value. A Javaint is used as
input instead to this method. The method deals correctly only with 16-bit
unsigned values.

4.4.2.2 Multiple Images per TIFF File

A TIFF file may contain more than one Image File Directory (IFD). Each IFD
defines asubfile, which may be used to describe related images. To determine
number of images in a TIFF file, use theTIFFDirectory.getNumDirectories()
method.

API: com.sun.media.jai.codec.TIFFDirectory

• static int getNumDirectories(SeekableStream stream)

returns the number of image directories (subimages) stored in a given TI
file, represented by aSeekableStream.

4.4.2.3 Image File Directory (IFD)

TheTIFFDirectory class represents an Image File Directory (IFD) from a TIF
6.0 stream. The IFD consists of a count of the number of directories (numbe
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading TIFF Images

es
he

to

o

ld.

e

fields), followed by a sequence of field entries identified by a tag that identifi
the field. A field is identified as a sequence of values of identical data type. T
TIFF 6.0 specification defines 12 data types, which are mapped internally in
the Java data types, as described in Table 4-7.

TheTIFFField class contains several methods to query the set of tags and t
obtain the raw field array. In addition, convenience methods are provided for
acquiring the values of tags that contain a single value that fits into abyte, int,
long, float, or double.

ThegetTag method returns the tag number. The tag number identifies the fie
The tag number is anint value between 0 and 65,535. ThegetType method
returns the type of data stored in the IFD. For a TIFF 6.0 file, the value will b
one of those defined in Table 4-7. ThegetCount method returns the number of
elements in the IFD. The count (also known aslength in earlier TIFF
specifications) is the number of values.

API: com.sun.media.jai.codec.TIFFField

• int getTag()

returns the tag number, between 0 and 65535.

Table 4-7 TIFF Data Types

TIFF Field Type
Java Data
Type Description

TIFF_BYTE byte 8-bit unsigned integer

TIFF_ASCII String Null-terminated ASCII strings.

TIFF_SHORT char 16-bit unsigned integers.

TIFF_LONG long 32-bit unsigned integers.

TIFF_RATIONAL long[2] Pairs of 32-bit unsigned integers.

TIFF_SBYTE byte 8-bit signed integers.

TIFF_UNDEFINED byte 16-bit signed integers.

TIFF_SSHORT short 1-bit signed integers.

TIFF_SLONG int 32-bit signed integers.

TIFF_SRATIONAL int[2] Pairs of 32-bit signed integers.

TIFF_FLOAT float 32-bit IEEE floats.

TIFF_DOUBLE double 64-bit IEEE doubles.
107Release 1.0.1, November 1999

4.4.2 Reading TIFF Images IMAGE ACQUISITION AND DISPLAY

108

ed

to

 the
es

are

ent.
• int getType()

returns the type of the data stored in the IFD.

• int getCount()

returns the number of elements in the IFD.

4.4.2.4 Public and Private IFDs

Every TIFF file is made up of one or more public IFDs that are joined in a link
list, rooted in the file header. A file may also contain so-calledprivate IFDs that
are referenced from tag data and do not appear in the main list.

TheTIFFDecodeParam class allows the index of the TIFF directory (IFD) to be
set. In a multipage TIFF file, index 0 corresponds to the first image, index 1
the second, and so on. The index defaults to 0.

API: com.sun.media.jai.codec.TIFFDirectory

• TIFFDirectory(SeekableStream stream, int directory)

constructs aTIFFDirectory from aSeekableStream. The directory
parameter specifies which directory to read from the linked list present in
stream; directory 0 is normally read but it is possible to store multiple imag
in a single TIFF file by maintaining multiple directories.

• TIFFDirectory(SeekableStream stream, long ifd_offset)

constructs a TIFFDirectory by reading aSeekableStream. Theifd_offset
parameter specifies the stream offset from which to begin reading; this
mechanism is sometimes used to store private IFDs within a TIFF file that
not part of the normal sequence of IFDs.

• int getNumEntries()

returns the number of directory entries.

• TIFFField getField(int tag)

returns the value of a given tag as a TIFFField, or null if the tag is not pres

• boolean isTagPresent(int tag)

returns true if a tag appears in the directory.

Parameters: stream A SeekableStream.

directory The index of the directory to read.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading FlashPix Images

 is

at
• int[] getTags()

returns an ordered array of ints indicating the tag values.

• TIFFField[] getFields()

returns an array of TIFFFields containing all the fields in this directory.

• byte getFieldAsByte(int tag, int index)

returns the value of a particular index of a given tag as a byte. The caller
responsible for ensuring that the tag is present and has type
TIFFField.TIFF_SBYTE, TIFF_BYTE, orTIFF_UNDEFINED.

• byte getFieldAsByte(int tag)

returns the value of index 0 of a given tag as a byte.

• long getFieldAsLong(int tag, int index)

returns the value of a particular index of a given tag as a long.

• long getFieldAsLong(int tag)

returns the value of index 0 of a given tag as a long.

• float getFieldAsFloat(int tag, int index)

returns the value of a particular index of a given tag as a float.

• float getFieldAsFloat(int tag)

returns the value of a index 0 of a given tag as a float.

• double getFieldAsDouble(int tag, int index)

returns the value of a particular index of a given tag as a double.

• double getFieldAsDouble(int tag)

returns the value of index 0 of a given tag as a double.

4.4.3 Reading FlashPix Images

FlashPix is a multi-resolution, tiled file format that allows images to be stored
different resolutions for different purposes, such as editing or printing. Each
resolution is divided into 64× 64 blocks, or tiles. Within a tile, pixels can be
either uncompressed, JPEG compressed, or single-color compressed.
109Release 1.0.1, November 1999

4.4.4 Reading JPEG Images IMAGE ACQUISITION AND DISPLAY

110

ut
TheFPX operation reads an image from a FlashPix stream. TheFPX operation
takes one parameter:

Listing 4-7 shows a code sample for aFPX operation.

4.4.4 Reading JPEG Images

The JPEG standard was developed by a working group, known as the Joint
Photographic Experts Group (JPEG). The JPEG image data compression
standard handles grayscale and color images of varying resolution and size.

TheJPEG operation takes a single parameter:

4.4.5 Reading GIF Images

Compuserve’s Graphics Interchange Format (GIF) is limited to 256 colors, b
supported by virtually every platform that supports graphics.

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-7 Example of Reading a FlashPix Image

// Specify the filename.
File file = new File(filename);

// Specify the resolution of the file.
ImageDecodeParam param = new FPXDecodeParam(resolution);

// Create the FPX operation to read the file.
ImageDecoder decoder = ImageCodec.createImageDecoder("fpx",
 file,
 param);

RenderedImage im = decoder.decodeAsRenderedImage();
ScrollingImagePanel p =
 new ScrollingImagePanel(im,
 Math.min(im.getWidth(), 800) + 20,

Math.min(im.getHeight(), 800) + 20);

Parameter Type Description

file SeekableStream TheSeekableStream to read from.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading BMP Images

to
e

ned

a
nt
TheGIF operation reads an image from a GIF stream. TheGIF operation takes a
single parameter:

4.4.6 Reading BMP Images

The BMP (Microsoft Windows bitmap image file) file format is a commonly-
used file format on IBM PC-compatible computers. BMP files can also refer
the OS/2 bitmap format, which is a strict superset of the Windows format. Th
OS/2 2.0 format allows for multiple bitmaps in the same file, for the CCITT
Group3 1bpp encoding, and also a RLE24 encoding.

TheBMP operation reads BMP data from an input stream. TheBMP operation
currently reads Version2, Version3, and some of the Version 4 images, as defi
in the Microsoft Windows BMP file format.

Version 4 of the BMP format allows for the specification of alpha values, gamm
values, and CIE colorspaces. These are not currently handled, but the releva
properties are emitted, if they are available from the BMP image file.

TheBMP operation takes a single parameter:

Listing 4-8 shows a code sample for aGIF operation.

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-8 Example of Reading a BMP Image

// Wrap the InputStream in a SeekableStream.
InputStream is = new FileInputStream(filename);
SeekableStream s = SeekableStream.wrapInputStream(is, false);

// Create the ParameterBlock and add the SeekableStream to it.
ParameterBlock pb = new ParameterBlock();
pb.add(s);

// Perform the BMP operation
op = JAI.create("BMP", pb);
111Release 1.0.1, November 1999

4.4.7 Reading PNG Images IMAGE ACQUISITION AND DISPLAY

112

ally

d as a
IFF.
nal

al,

ne-
re

ded
API: com.sun.media.jai.codec.SeekableStream

• static SeekableStream wrapInputStream(java.io.InputStream is,
boolean canSeekBackwards)

returns a SeekableStream that will read from a given InputStream, option
including support for seeking backwards.

4.4.7 Reading PNG Images

The PNG (Portable Network Graphics) is an extensible file format for the
lossless, portable, compressed storage of raster images. PNG was develope
patent-free alternative to GIF and can also replace many common uses of T
Indexed-color, grayscale, and truecolor images are supported, plus an optio
alpha channel. Sample depths range from 1 to 16 bits.

For more information on PNG images, see the specification at the following
URL:

http://www.cdrom.com/pub/png/spec

ThePNG operation reads a standard PNG input stream. ThePNG operation
implements the entire PNG specification, but only provides access to the fin
high-resolution version of interlaced images. The output image will always
include aComponentSampleModel and either a byte or shortDataBuffer.

Pixels with a bit depth of less than eight are scaled up to fit into eight bits. O
bit pixel values are output as 0 and 255. Pixels with a bit depth of two or four a
left shifted to fill eight bits. Palette color images are expanded into three-ban
RGB. PNG images stored with a bit depth of 16 will be truncated to 8 bits of
output unless theKEY_PNG_EMIT_16BITS hint is set toBoolean.TRUE. Similarly,
the output image will not have an alpha channel unless theKEY_PNG_EMIT_ALPHA

hint is set. See Section 4.4.7.3, “Rendering Hints.”

ThePNG operation takes a single parameter:

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNG Images

pths

For
r the
yte.

-

Listing 4-9 shows a code sample for aPNG operation.

Several aspects of the PNG image decoding may be controlled. By default,
decoding produces output images with the following properties:

• Images with a bit depth of eight or less use aDataBufferByte to hold the
pixel data. 16-bit images use aDataBufferUShort.

• Palette color images and non-transparent grayscale images with bit de
of one, two, or four will have aMultiPixelPackedSampleModel and an
IndexColorModel. For palette color images, theColorModel palette
contains the red, green, blue, and optionally alpha palette information.
grayscale images, the palette is used to expand the pixel data to cove
range 0 to 255. The pixels are stored packed eight, four, or two to the b

• All other images are stored using aPixelInterleavedSampleModel with
each band of a pixel occupying its ownbyte or short within the
DataBuffer. A ComponentColorModel is used, which simply extracts the
red, green, blue, gray, and/or alpha information from separateDataBuffer

entries.

Methods in thePNGDecodeParam class permit changes to five aspects of the
decode process:

• ThesetSuppressAlpha() method prevents an alpha channel from
appearing in the output.

• ThesetExpandPalette() method turns palette-color images into three
or four-banded full-color images.

• ThesetOutput8BitGray() method causes one-, two-, or four-bit
grayscale images to be output in eight-bit form, using a
ComponentSampleModel andComponentColorModel.

• ThesetOuputGamma() method causes the output image to be gamma-
corrected using a supplied output gamma value.

Listing 4-9 Example of Reading a PNG Image

// Create the ParameterBlock.
InputStream image = new FileInputStream(filename);
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the PNG operation.
op = JAI.create("PNG", pb);
113Release 1.0.1, November 1999

4.4.7 Reading PNG Images IMAGE ACQUISITION AND DISPLAY

114

)

ge.

 into

ult is
d to

two,
ll
-bit

ale
this
pth

s in

in
eter

lpha
at
olor
• ThesetExpandGrayAlpha() method causes two-banded gray/alpha (GA
images to be output as full-color (GGGA) images, which may simplify
further processing and display.

API: com.sun.media.jai.codec.PNGDecodeParam

• public void setSuppressAlpha(boolean suppressAlpha)

when set, suppresses the alpha (transparency) channel in the output ima

• public void setExpandPalette(boolean expandPalette)

when set, causes palette color images (PNG color type 3) to be decoded
full-color (RGB) output images. The output image may have three or four
bands, depending on the presence of transparency information. The defa
to output palette images using a single band. The palette information is use
construct the output image’sColorModel.

• public void setOutput8BitGray(boolean output8BitGray)

when set, causes grayscale images with a bit depth of less than eight (one,
or four) to be output in eight-bit form. The output values will occupy the fu
eight-bit range. For example, gray values zero, one, two, and three of a two
image will be output as 0, 85, 170, and 255. The decoding of non-graysc
images and grayscale images with a bit depth of 8 or 16 are unaffected by
setting. The default is not to perform expansion. Grayscale images with a de
of one, two, or four bits will be represented using a
MultiPixelPackedSampleModel and anIndexColorModel.

• public void setOutputGamma(float outputGamma)

sets the desired output gamma to a given value. In terms of the definition
the PNG specification, the output gamma is equal to the viewing gamma
divided by the display gamma. The output gamma must be positive. If the
output gamma is set, the output image will be gamma-corrected using an
overall exponent of output gamma/file gamma. Input files that do not conta
gamma information are assumed to have a file gamma of 1.0. This param
affects the decoding of all image types.

• public void setExpandGrayAlpha(boolean expandGrayAlpha)

when set, causes images containing one band of gray and one band of a
(GA) to be output in a four-banded format (GGGA). This produces output th
may be simpler to process and display. This setting affects both images of c
type 4 (explicit alpha) and images of color type 0 (grayscale) that contain
transparency information.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNG Images

ifies

d

e

a of
the

file
4.4.7.1 Gamma Correction and Exponents

PNG images can contain a gamma correction value. The gamma value spec
the relationship between the image samples and the desired display output
intensity as a power function:

sample = light_outgamma

ThegetPerformGammaCorrection method returnstrue if gamma correction is
to be performed on the image data. By default, gamma correction istrue.

If gamma correction is to be performed, thegetUserExponent and
getDisplayExponent methods are used in addition to the gamma value store
within the file (or the default value of 1/2.2 is used if no value is found) to
produce a single exponent using the following equation:

ThesetUserExponent method is used to set theuser_exponent value. If the
user_exponent value is set, the output image pixels are placed through the
following transformation:

wheregamma_from_file is the gamma of the file data, as determined by th
gAMA, sRGB, and iCCP chunks.display_exponent is the exponent of the
intrinsic transfer curve of the display, generally 2.2.

Input files that do not specify any gamma value are assumed to have a gamm
1/2.2. Such images may be displayed on a CRT with an exponent of 2.2 using
default user exponent of 1.0.

The user exponent may be used to change the effective gamma of a file. If a
has a stored gamma ofX, but the decoder believes that the true file gamma isY,
setting a user exponent ofY/X will produce the same result as changing the file
gamma.

decoding_exponent user_exponent
gamma_from_file display_exponent×
--=

sample integer_sample

2
bitdepth

1.0–()
-------------------------------------=

decoding_exponent user_exponent
gamma_from_file display_exponent×
--=

output sample
decoding_exponent

=

115Release 1.0.1, November 1999

4.4.7 Reading PNG Images IMAGE ACQUISITION AND DISPLAY

116

e

 user

he

e.

l of
of

es to
API: com.sun.media.jai.codec.PNGDecodeParam

• boolean getPerformGammaCorrection()

returnstrue if gamma correction is to be performed on the image data. Th
default istrue.

• void setPerformGammaCorrection(boolean performGammaCorrection)

turns gamma correction of the image data on or off.

• float getUserExponent()

returns the current value of the user exponent parameter. By default, the
exponent is equal to 1.0F.

• void setUserExponent(float userExponent)

sets the user exponent to a given value. The exponent must be positive.

• float getDisplayExponent()

returns the current value of the display exponent parameter. By default, t
display exponent is 2.2F.

• void setDisplayExponent(float displayExponent)

Sets the display exponent to a given value. The exponent must be positiv

4.4.7.2 Expanding Grayscale Images to GGGA Format

Normally, thePNG operation does not expand images that contain one channe
gray and one channel of alpha into a four-channel (GGGA) format. If this type
expansion is desired, use thesetExpandGrayAlpha method. This setting affects
both images of color type 4 (explicit alpha) and images of color type 0
(grayscale) that contain transparency information.

API: com.sun.media.jai.codec.PNGDecodeParam

• void setExpandGrayAlpha(boolean expandGrayAlpha)

sets or unsets the expansion of two-channel (gray and alpha) PNG imag
four-channel (GGGA) images.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reading PNM Images

nts
he

a

he
he

d

4.4.7.3 Rendering Hints

The PNG rendering hints are:

To read the hints, use theOperationDescriptorImpl.getHint method.

API: javax.media.jai.OperationDescriptorImpl

• Object getHint(RenderingHints.Key key,
RenderingHints renderHints)

queries the rendering hints for a particular hint key and copies it into the hi
observed Hashtable if found. If the hint is not found, null is returned and t
hints observed are left unchanged.

4.4.8 Reading PNM Images

ThePNM operation reads a standard PNM file, including PBM, PGM, and PPM
images of both ASCII and raw formats. The PBM (portable bitmap) format is
monochrome file format (single-banded), originally designed as a simple file
format to make it easy to mail bitmaps between different types of machines. T
PGM (portable graymap) format is a grayscale file format (single-banded). T
PPM (portable pixmap) format is a color image file format (three-banded).

PNM image files are identified by amagic numberin the file header that
identifies the file type variant, as follows:

Hints Description

KEY_PNG_EMIT_ALPHA The alpha channel is set. The alpha channel, representing
transparency information on a per-pixel basis, can be include
in grayscale and truecolor PNG images.

KEY_PNG_EMIT_16BITS Defines a bit depth of 16 bits.

Magic
Number File Type SampleModel Type

P1 PBM ASCII MultiPixelPackedSampleModel

P2 PGM ASCII PixelInterleavedSampleModel

P3 PPM ASCII PixelInterleavedSampleModel

P4 PBM raw MultiPixelPackedSampleModel

P5 PGM raw PixelInterleavedSampleModel

P6 PPM raw PixelInterleavedSampleModel
117Release 1.0.1, November 1999

4.4.9 Reading Standard AWT Images IMAGE ACQUISITION AND DISPLAY

118

the

he
r

ThePNM operation reads the file header to determine the file type, then stores
image data into an appropriateSampleModel. ThePNM operation takes a single
parameter:

Listing 4-10 shows a code sample for aPNM operation.

4.4.9 Reading Standard AWT Images

TheAWTImage operation allows standard Java AWT images to be directly
imported into JAI, as a rendered image. By default, the width and height of t
image are the same as the original AWT image. The sample model and colo
model are set according to the AWT image data. The layout of thePlanarImage

may be specified using theImageLayout parameter at constructing time.

TheAWTImage operation takes one parameter.

Listing 4-11 shows a code sample for anAWTImage operation.

Parameter Type Description

stream SeekableStream TheSeekableStream to read from.

Listing 4-10 Example of Reading a PNM Image

// Create the ParameterBlock.
InputStream image = new FileInputStream(filename);
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the PNM operation.
op = JAI.create("PNM", pb);

Parameter Type Description

awtImage Image The standard Java AWT image to be converted.

Listing 4-11 Example of Reading an AWT Image

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.add(image);

// Create the AWTImage operation.
PlanarImage im = (PlanarImage)JAI.create("awtImage", pb);
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reformatting an Image

ge
API: javax.media.jai.PlanarImage

• void setImageParameters(ImageLayout layout, RenderedImage im)

sets the image bounds, tile grid layout,SampleModel, andColorModel to
match those of another image.

4.4.10 Reading URL Images

TheURL operation creates an image whose source is specified by a Uniform
Resource Locator (URL). TheURL operation takes one parameter.

Listing 4-12 shows a code sample for aURL operation.

4.5 Reformatting an Image

TheFormat operation reformats an image by casting the pixel values of an ima
to a given data type, replacing theSampleModel andColorModel of an image,
and restructuring the image’s tile grid layout.

The pixel values of the destination image are defined by the following
pseudocode:

dst[x][y][b] = cast(src[x][y][b], dataType)

Parameters: layout An ImageLayout used to selectively
override the image’s layout,SampleModel,
andColorModel. If null, all parameters will
be taken from the second argument.

im A RenderedImage used as the basis for the
layout.

Parameter Type Description

URL java.net.URL.
class

The path of the file to read from.

Listing 4-12 Example of Reading a URL Image

// Define the URL to the image.
url = new URL(“http://webstuff/images/duke.gif”);

// Read the image from the designated URL.
RenderedOp src = JAI.create("url", url);
119Release 1.0.1, November 1999

4.5 Reformatting an Image IMAGE ACQUISITION AND DISPLAY

120

ble

nd

nce
e

wheredataType is one of the constantsDataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT, DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT, DataBuffer.TYPE_FLOAT, or
TDataBuffer.YPE_DOUBLE.

The outputSampleModel, ColorModel, and tile grid layout are specified by
passing anImageLayout object as aRenderingHint namedImageLayout. The
output image will have aSampleModel compatible with the one specified in the
layout hint wherever possible; however, for output data types of float and dou
a ComponentSampleModel will be used regardless of the value of thehint
parameter.

TheImageLayout may also specify a tile grid origin and size which will be
respected.

The typecasting performed by theFormat operation is defined by the set of
expressions listed in Table 4-8, depending on the data types of the source a
destination. Casting an image to its current data type is a no-op. SeeThe Java
Language Specificationfor the definition of type conversions between primitive
types.

In most cases, it is not necessary to explicitly perform widening typecasts si
they will be performed automatically by image operators when handed sourc
images having different datatypes.

Table 4-8 Format Actions

Source Type
Destination
Type Action

BYTE SHORT (short)(x & 0xff)

USHORT (short)(x & 0xff)

INT (int)(x & 0xff)

FLOAT (float)(x & 0xff)

DOUBLE (double)(x & 0xff)

SHORT BYTE (byte)clamp((int)x, 0, 255)

USHORT (short)clamp((int)x, 0, 32767)

INT (int)x

FLOAT (float)x

DOUBLE (double)x
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Reformatting an Image
Theclamp function may be defined as:

TheFormat operation takes a single parameter:

USHORT BYTE (byte)clamp((int)x & 0xffff, 0, 255)

SHORT (short)clamp((int)x & 0xffff, 0, 32767)

INT (int)(x & 0xffff)

FLOAT (float)(x & 0xffff)

DOUBLE (double)(x & 0xffff)

INT BYTE (byte)clamp(x, 0, 255)

SHORT (short)x

USHORT (short)clamp(x, 0, 65535)

FLOAT (float)x

DOUBLE (double)x

FLOAT BYTE (byte)clamp((int)x, 0, 255)

SHORT (short)x

USHORT (short)clamp((int)x, 0, 65535)

INT (int)x

DOUBLE (double)x

DOUBLE BYTE (byte)clamp((int)x, 0, 255)

SHORT (short)x

USHORT (short)clamp((int)x, 0, 65535)

INT (int)x

FLOAT (float)x

int clamp(int x, int low, int high) {
 return (x < low) ? low : ((x > high) ? high : x);
}

Parameter Type Description

dataType Integer The output data type (from
java.awt.image.DataBuffer). One ofTYPE_BYTE,
TYPE_SHORT, TYPE_USHORT, TYPE_INT, TYPE_FLOAT, or
TYPE_DOUBLE.

Table 4-8 Format Actions (Continued)

Source Type
Destination
Type Action
121Release 1.0.1, November 1999

4.6 Converting a Rendered Image to Renderable IMAGE ACQUISITION AND DISPLAY

122

first
e an
t to

es

e
the
e

e

it

o

n

ly
he
4.6 Converting a Rendered Image to Renderable

To use a Renderable DAG with a non-renderable image type, the image must
be converted from a Rendered type to a Renderable type. For example, to us
image obtained from a remote server in a Renderable chain, you would wan
treat the source image as aRenderedImage, then convert it to a
RenderableImage for further processing.

TheRenderable operation produces aRenderableImage from aRenderedImage
source. TheRenderableImage thus produced consists of a “pyramid” of
RenderedImages at progressively lower resolutions. The lower resolution imag
are produced by invoking the chain of operations specified via thedownSampler

parameter on the image at the next higher resolution level of the pyramid. Th
downSampler operation chain must adhere to the specifications described for
constructors of theImageMIPMap class, which accept this type of parameter (se
Section 4.2.9.1, “The Down Sampler”).

ThedownSampler operation chain must reduce the image width and height at
each level of the pyramid. The default operation chain fordownSampler is a low
pass filter implemented using a 5× 5 separable Gaussian kernel derived from th
one-dimensional kernel:

[0.05 0.25 0.40 0.25 0.05]

followed by subsampling by 2. This filter is known as a Laplacian pyramid1 and
makes a perfectly gooddownSampler for most applications. If this downSampler
doesn’t work for your specific application, you can create your own and call
with thedownSampler parameter.

The number of levels in the pyramid will be such that the larger dimension
(width or height) of the lowest-resolution pyramid level is less than or equal t
the value of themaxLowResDim parameter, which must be positive. The default
value for themaxLowResDim parameter is 64, meaning that the lowest-resolutio
pyramid level will be an image whose largest dimension is 64 pixels or less.

The minimumx andy coordinates and height in rendering-independent
coordinates are supplied by the parametersminX, minY, andheight, respectively.
The value of theheight parameter must be positive. It is not necessary to supp
a value for the rendering-independent width as this is derived by multiplying t
supplied height by the aspect ratio (width divided by height) of the source
RenderedImage.

1. Burt, P.J. and Adelson, E.H., “The Laplacian pyramid as a compact image code,”IEEE
Transactions on Communications, pp. 532–540, 1983.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Creating a Constant Image

all
f the
TheRenderable operation takes five parameters, as follows:

The default values for these parameters are:

• downSampler – a low-pass filter (see Section 4.2.9.1, “The Down
Sampler”)

• maxLowResDim – 64

• minX – 0.0F

• minY – 0.0F

• height – 1.0F

Listing 4-13 shows a code sample for aRenderable operation. The default
parameters are used for all five parameters. The output of theRenderable

operation (ren) can be passed to the next renderable operation in the graph.

4.7 Creating a Constant Image

Theconstant operation defines a multi-banded, tiled rendered image where
the pixels from the same band have a constant value. The width and height o
destination image must be specified and greater than 0.

Parameter Type Description

downSamples RenderedOp The operation chain used to derive the lower resolution
images.

maxLowResDim Integer The maximum dimension of the lowest resolution pyramid
level.

minX Float The minimum rendering-independentx coordinate of the
destination.

minY Float The minimum rendering-independenty coordinate of the
destination.

height Float The rendering-independent height.

Listing 4-13 Example of Converting a Rendered Image to Renderable

// Derive the RenderableImage from the source RenderedImage.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src);
pb.add(null).add(null).add(null).add(null).add(null);

// Create the Renderable operation.
RenderableImage ren = JAI.createRenderable("renderable", pb);
123Release 1.0.1, November 1999

4.8 Image Display IMAGE ACQUISITION AND DISPLAY

124

is

first

el

e

vents,
Theconstant operation takes three parameters, as follows:

At least one constant must be supplied. The number of bands of the image
determined by the number of constant pixel values supplied in thebandValues

parameter. The data type is determined by the type of the constant from the
entry.

Listing 4-14 shows a code sample for aConstant operation.

4.8 Image Display

JAI uses the Java 2DBufferedImage model for displaying images. The
BufferedImage manages an image in memory and provides ways to store pix
data, interpret pixel data, and to render the pixel data to aGraphics2D context.

The display of images in JAI may be accomplished in several ways. First, th
drawRenderedImage() call onGraphics2D may be used to produce an
immediate rendering. Another method is to instantiate a display widget that
responds to user requests such as scrolling and panning, as well as expose e
and requests image data from aRenderedImage source. This technique allows
image data to be computed on demand.

It is for this purpose that JAI provides a widget, available in the
javax.media.jai.widget package, called aScrollingImagePanel. The
ScrollingImagePanel takes aRenderedImage and a specified width and height

Parameter Type Description

width Float The width of the image in pixels.

height Float The height of the image in pixels.

bandValues Number The constant pixel band values.

Listing 4-14 Example Constant Operation

// Create the ParameterBlock.
Byte[] bandValues = new Byte[1];
bandValues[0] = alpha1;
pb = new ParameterBlock();
pb.add(new Float(src1.getWidth())); // The width
pb.add(new Float(src1.getHeight())); // The height
pb.add(bandValues); // The band values

// Create the constant operation.
PlanarImage afa1 = (PlanarImage)JAI.create("constant", pb);
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Display

s

eter
the
hich

idth

tform
and creates a panel with scrolling bars on the right and bottom. The image i
placed in the center of the panel.

The scrolling image panel constructor takes three parameters. The first param
is the image itself, which is usually the output of some previous operation in
rendering chain. The next two parameters are the image width and height, w
can be retrieved with thegetWidth andgetHeight methods of the node in which
the image was constructed (such asRenderedOp).

The width and height parameters do not have to be the same as the image’s w
and height. The parameters can be either larger or smaller than the image.

Once theScrollingImagePanel is created, it can be placed anywhere in a
Frame, just like any other AWT panel. Listing 4-15 shows a code sample
demonstrating the use of a scrolling image panel.

For a little more interesting example, consider the display of four images in a
grid layout. The code sample in Listing 4-16 arranges four images into a 2× 2
grid. This example uses thejava.awt.Panel and thejava.awt.GridLayout
objects. These objects are not described in this document. See the Java Pla
documentation for more information.

Listing 4-15 Example Scrolling Image Panel

// Get the image width and height.
int width = image.getWidth();
int height = image.getHeight();

// Attach the image to a scrolling panel to be displayed.
ScrollingImagePanel panel = new ScrollingImagePanel(
 image, width, height);

// Create a Frame to contain the panel.
Frame window = new Frame(“Scrolling Image Panel Example”);
window.add(panel);
window.pack();
window.show();

Listing 4-16 Example Grid Layout of Four Images

// Display the four images in row order in a 2 x 2 grid.
setLayout(new GridLayout(2, 2));
125Release 1.0.1, November 1999

4.8 Image Display IMAGE ACQUISITION AND DISPLAY

126
The constructor for theGridLayout object specifies the number of rows and
columns in the display (2× 2 in this example). The four images (im1, im2, im3,
andim4) are then added to the panel in separateScrollingImagePanels. The
resulting image is arranged as shown in Figure 4-5.

Figure 4-5 Grid Layout of Four Images

API: javax.media.jai.RenderedOp

• int getWidth()

returns the width of the rendered image.

• int getHeight()

returns the height of the rendered image.

// Add the components, starting with the first entry in the
// first row, the second, etc.
add(new ScrollingImagePanel(im1, width, height));
add(new ScrollingImagePanel(im2, width, height));
add(new ScrollingImagePanel(im3, width, height));
add(new ScrollingImagePanel(im4, width, height));

pack();
show();

Listing 4-16 Example Grid Layout of Four Images (Continued)

im1 im2

im3 im4
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY The ImageCanvas Class

.

d

d

API: javax.media.jai.widget.ScrollingImagePanel

• ScrollingImagePanel(RenderedImage im, int width, int height)

constructs aScrollingImagePanel of a given size for a given
RenderedImage.

4.8.1 Positioning the Image in the Panel

You can define the position of the image within theScrollingImagePanel by
specifying either the position of the image origin or the image center location
ThesetOrigin method sets the origin of the image to a given (x, y) position
within theScrollingImagePanel. ThesetCenter method sets the image center
to a given (x, y) position within theScrollingImagePanel.

API: javax.media.jai.widget.ScrollingImagePanel

• void setOrigin(int x, int y)

sets the image origin to a given (x, y) position. The scrollbars are update
appropriately.

• void setCenter(int x, int y)

sets the image center to a given (x, y) position. The scrollbars are update
appropriately.

4.8.2 The ImageCanvas Class

A canvas in Java is a rectangular area in which you draw. JAI extends the
java.awt.Canvas class with theImageCanvas class, which allows you to
“draw” an image in the canvas. LikeCanvas, theImageCanvas class inherits

Parameters: im TheRenderedImage displayed by the
ImageCanvas.

width The panel width.

height The panel height.

Parameters: x The imagex origin.

y The imagey origin.

Parameters: x The imagex center.

y The imagey center.
127Release 1.0.1, November 1999

4.8.3 Image Origin IMAGE ACQUISITION AND DISPLAY

128

well

rol.
most of its methods fromjava.awt.Component, allowing you to use the same
event handlers for keyboard and mouse input.

TheImageCanvas class is a simple output widget for aRenderedImage and can
be used in any context that calls for aCanvas. TheImageCanvas class monitors
resize and update events and automatically requests tiles from its source on
demand. Any displayed area outside the image is displayed in gray.

Use the constructor or theset method to include aRenderedImage in the canvas,
then use thesetOrigin method to set the position of the image within the
canvas.

API: javax.media.jai.widget.ImageCanvas

• ImageCanvas(RenderedImage im, boolean drawBorder)

constructs anImageCanvas to display aRenderedImage.

• ImageCanvas(java.awt.image.RenderedImage im)

constructs anImageCanvas to display aRenderedImage.

• void set(RenderedImage im)

changes the source image to a new RenderedImage.

• void paint(java.awt.Graphics g)

paint the image onto aGraphics object. The painting is performed tile-by-tile,
and includes a gray region covering the unused portion of image tiles as
as the general background.

4.8.3 Image Origin

The origin of an image is set with theImageCanvas.setOrigin method. The
origin of an image is obtained with thegetXOrigin andgetYOrigin methods.

Geometric operators are treated differently with respect to image origin cont
SeeChapter 8, “Geometric Image Manipulation.”

Parameters: im A RenderedImage to be displayed.

drawBorder True if a raised border is desired.

Parameters: im A RenderedImage to be displayed.

Parameters: im The newRenderedImage to be displayed.
Programming in Java Advanced Imaging

IMAGE ACQUISITION AND DISPLAY Image Origin
API: javax.media.jai.widget.ImageCanvas

• void setOrigin(int x, int y)

sets the origin of the image atx,y.

• int getXOrigin()

returns thex coordinate of the image origin.

• int getYOrigin()

returns they coordinate of the image origin.
129Release 1.0.1, November 1999

4.8.3 Image Origin IMAGE ACQUISITION AND DISPLAY

130
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 5
s.
r by

ors
nner
ly
ree
, and

dye
reen

ded
is

T is
ust
Color Space

THIS chapter describes the JAI color space, transparency, and the color
conversion operators. JAI follows the Java AWT color model.

5.1 Introduction

Digital images, specifically digital color images, come in several different form
The form is often dictated by the means by which the image was acquired o
the image’s intended use.

One of the more basic types of color image is RGB, for the three primary col
(red, green, and blue). RGB images are sometimes acquired by a color sca
or video camera. These devices incorporate three sensors that are spectral
sensitive to light in the red, green, and blue portions of the spectrum. The th
separate red, green, and blue values can be made to directly drive red, green
blue light guns in a CRT. This type of color system is called anadditive linear
RGB color system, as the sum of the three full color values produces white.

Printed color images are based on asubtractivecolor process in which cyan,
magenta, and yellow (CMY) dyes are deposited onto paper. The amount of
deposited is subtractively proportional to the amount of each red, blue, and g
color value. The sum of the three CMY color values produce black.

The black produced by a CMY color system often falls short of being a true
black. To produce a more accurate black in printed images, black is often ad
as a fourth color component. This is known as the CMYK color system and
commonly used in the printing industry.

The amount of light generated by the red, blue, and green phosphors of a CR
not linear. To achieve good display quality, the red, blue, and green values m
be adjusted – a process known asgamma correction. In computer systems,
131

5.2 Color Management COLOR SPACE

132

es
tion

ed
ion

his

 to

g

wo

r

gamma correction often takes place in the frame buffer, where the RGB valu
are passed through lookup tables that are set with the necessary compensa
values.

In television transmission systems, the red, blue, and green gamma-correct
color video signals are not transmitted directly. Instead, a linear transformat
between the RGB components is performed to produce aluminancesignal and a
pair of chrominancesignals. The luminance signal conveys color brightness
levels. The two chrominance signals convey the color hue and saturation. T
color system is called YCC (or, more specifically, YCbCr).

Another significant color space standard for JAI is CIEXYZ. This is a widely-
used, device-independent color standard developed by the Commission
Internationale de l’Éclairage (CIE). The CIEXYZ standard is based on color-
matching experiments on human observers.

5.2 Color Management

JAI uses three primary classes for the management of color:

• ColorModel – describes a particular way that pixel values are mapped
colors. AColorModel is typically associated with anImage or
BufferedImage and provides the information necessary to correctly
interpret pixel values.ColorModel is defined in thejava.awt.image
package.

• ColorSpace – represents a system for measuring colors, typically usin
three separate values or components. TheColorSpace class contains
methods for converting between the original color space and one of t
standard color spaces, CIEXYZ and RGB.ColorSpace is defined in the
java.awt.color package.

• Color – a fixed color, defined in terms of its components in a particula
ColorSpace. Color is defined in thejava.awt package.

5.2.1 Color Models

A ColorModel is used to interpret pixel data in an image. This includes:

• Mapping components in the bands of an image to components of a
particular color space

• Extracting pixel components from packed pixel data

• Retrieving multiple components from a single band using masks
Programming in Java Advanced Imaging

COLOR SPACE Color Models

ow

a

for a
ed

e
he

in
ger
s

ents.
• Converting pixel data through a lookup table

To determine the color value of a particular pixel in an image, you need to kn
how the color information is encoded in each pixel. TheColorModel associated
with an image encapsulates the data and methods necessary for translating
pixel value to and from its constituent color components.

JAI supports five color models:

• DirectColorModel – works with pixel values that represent RGB color
and alpha information as separate samples and that pack all samples
single pixel into a single int, short, or byte quantity. This class can be us
only with ColorSpaces of typeColorSpace.TYPE_RGB.

• IndexColorModel – works with pixel values consisting of a single sampl
that is an index into a fixed colormap in the default sRGB ColorSpace. T
colormap specifies red, green, blue, and optional alpha components
corresponding to each index.

• ComponentColorModel – can handle an arbitraryColorSpace and an array
of color components to match theColorSpace. This model can be used to
represent most color models on most types ofGraphicsDevices.

• PackedColorModel – a base class for models that represent pixel values
which the color components are embedded directly in the bits of an inte
pixel. A PackedColorModel stores the packing information that describe
how color and alpha components are extracted from the channel. The
DirectColorModel is aPackedColorModel.

• FloatDoubleColorModel – works with pixel values that represent color
and alpha information as separate samples, using float or double elem

The following sample code shows the construction of aComponentColorModel

for an RGB color model.

// Create an RGB color model
int[] bits = { 8, 8, 8 };
ColorModel colorModel = new
 ComponentColorModel(ColorSpace.getInstance(ColorSpace.CS_sRGB),
 bits, false, false,
 Transparency.OPAQUE,
 DataBuffer.TYPE_BYTE);
133Release 1.0.1, November 1999

5.2.1 Color Models COLOR SPACE

134
The following sample code shows the construction of aComponentColorModel

for a grayscale color model.

The following sample code shows the construction of a
FloatDoubleColorModel for a linear RGB color model.

API: java.awt.image.ComponentColorModel

• ComponentColorModel(ColorSpace colorSpace, int[] bits,
boolean hasAlpha, boolean isAlphaPremultiplied,
int transparency, int transferType)

constructs aComponentColorModel from the specified parameters.

// Create a grayscale color model.
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
int bits[] = new int[] {8};
ColorModel cm = new ComponentColorModel(cs, bits, false, false,
 Transparency.OPAQUE,
 DataBuffer.TYPE_BYTE);

ColorSpace colorSpace =
 ColorSpace.getInstance(ColorSpace.CS_LINEAR_RGB);
int[] bits = new int[3];
bits[0] = bits[1] = bits[2] = 32;
ColorModel cm = new FloatDoubleColorModel(colorSpace,
 false,
 false,
 Transparency.OPAQUE,

DataBuffer.TYPE_FLOAT);

Parameters: colorSpace TheColorSpace associated with this color
model. See Section 5.2.2, “Color Space.”

bits The number of significant bits per
component.

hasAlpha If true, this color model supports alpha.

isAlphaPremu

ltiplied

If true, alpha is premultiplied.
Programming in Java Advanced Imaging

COLOR SPACE Color Space

ing
olor
API: javax.media.jai.FloatDoubleColorModel

• FloatDoubleColorModel(ColorSpace colorSpace, boolean hasAlpha,
boolean isAlphaPremultiplied, int transparency,
int transferType)

constructs aFloatDoubleColorModel from the specified parameters.

5.2.2 Color Space

TheColorSpace class represents a system for measuring colors, typically us
three or more separate numeric values. For example, RGB and CMYK are c
spaces. AColorSpace object serves as a color space tag that identifies the
specific color space of aColor object or, through aColorModel object, of an
Image, BufferedImage, or GraphicsConfiguration.

transparency Specifies what alpha values can be
represented by this color model. See
Section 5.3, “Transparency.”

transferType Specifies the type of primitive array used to
represent pixel values. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_DOUBLE, or
DataBuffer.TYPE_FLOAT

Parameters: colorSpace TheColorSpace associated with this color
model. See Section 5.2.2, “Color Space.”

hasAlpha If true, this color model supports alpha.

isAlphaPremu

ltiplied

If true, alpha is premultiplied.

transparency Specifies what alpha values can be
represented by this color model. See
Section 5.3, “Transparency.”

transferType Specifies the type of primitive array used to
represent pixel values. One of
DataBuffer.TYPE_FLOAT or
DataBuffer.TYPE_DOUBLE.
135Release 1.0.1, November 1999

5.2.2 Color Space COLOR SPACE

136

rd

t.
ColorSpace provides methods that transformColors in a specific color space to
and fromsRGB and to and from a well-definedCIEXYZ color space. All
ColorSpace objects must be able to map a color from the represented color
space intosRGB and transform ansRGB color into the represented color space.

Table 5-1 lists the variables used to refer to color spaces (such asCS_sRGB and
CS_CIEXYZ) and to color space types (such asTYPE_RGB andTYPE_CMYK).

Table 5-1 Color Space Types

Name Description

CS_CIEXYZ A widely-used, device-independent color standard developed by the
Commission Internationale de Eclairage (CIE), based on color-matching
experiments on human observers.

CS_GRAY Grayscale color space.

CS_LINEAR_RGB Linear RGB. Images that have not been previously color-corrected.

CS_PYCC PhotoCD YCC conversion color space. A luminance/chrominance standa
for Kodak PhotoCD images.

CS_sRGB A proposed default “standard RGB” color standard for use over the Interne

TYPE_2CLR A generic two-component color space.

TYPE_3CLR A generic three-component color space.

TYPE_4CLR A generic four-component color space.

TYPE_5CLR A generic five-component color space.

TYPE_6CLR A generic six-component color space.

TYPE_7CLR A generic seven-component color space.

TYPE_8CLR A generic eight-component color space.

TYPE_9CLR A generic nine-component color space.

TYPE_ACLR A generic 10-component color space.

TYPE_BCLR A generic 11-component color space.

TYPE_CCLR A generic 12-component color space.

TYPE_CMY Any of the family of CMY color spaces.

TYPE_CMYK Any of the family of CMYK color spaces.

TYPE_DCLR Generic 13-component color spaces.

TYPE_ECLR Generic 14-component color spaces.

TYPE_FCLR Generic 15-component color spaces.

TYPE_GRAY Any of the family of GRAY color spaces.

TYPE_HLS Any of the family of HLS color spaces.

TYPE_HSV Any of the family of HSV color spaces.
Programming in Java Advanced Imaging

COLOR SPACE Color Space

map
rm
ur

ed

GB

olor
r
GB

r

time.
Conversion between Java color spaces is simplified by a set of methods that
a color from a represented color space to either sRGB or CIEXYZ and transfo
a sRGB or CIEXYZ color space to the represented color space. There are fo
methods:

• ThetoRGB method transforms aColor in the represented color space to a
Color in sRGB.

• ThetoCIEXYZ method transforms aColor in the represented color space
to aColor in CIEXYZ.

• ThefromRGB method takes aColor in sRGB and transforms into the
represented color space.

• ThefromCIEXYZmethod takes aColor in CIEXYZ and transforms into the
represented color space.

The sRGB (which stands for “standard” RGB) color space is provided as a
convenience to programmers, since many applications are primarily concern
with RGB images. Defining a standard RGB color space makes writing such
applications easier. ThetoRGB andfromRGB methods are provided so that
developers can easily retrieve colors in this standard space. However, the sR
color space is not intended for use with highly accurate color correction or
conversions.

The sRGB color space is somewhat limited in that it cannot represent every c
in the full gamut (spectrum of representable colors) of CIEXYZ color. If a colo
is specified in some space that has a different gammut than sRGB, using sR
as an intermediate color space results in a loss of information. The CIEXYZ
color space is used as an intermediate color space to avoid any loss of colo
quality. The CIEXYZ color space is known as theconversion spacefor this
reason. ThetoCIEXYZ andfromCIEXYZ methods support conversions between
any two color spaces at a reasonably high degree of accuracy, one color at a

TYPE_Lab Any of the family of Lab color spaces.

TYPE_Luv Any of the family of Luv color spaces.

TYPE_RGB Any of the family of RGB color spaces.

TYPE_XYZ Any of the family of XYZ color spaces.

TYPE_YCbCr Any of the family of YCbCr color spaces.

TYPE_Yxy Any of the family of Yxy color spaces.

Table 5-1 Color Space Types (Continued)

Name Description
137Release 1.0.1, November 1999

5.2.3 ICC Profile and ICC Color Space COLOR SPACE

138

aces.

.
es, as
API: java.awt.color.ColorSpace

• abstract float[] toRGB(float[] colorvalue)

transforms a color value assumed to be in thisColorSpace into a value in the
defaultCS_sRGB color space.

• abstract float[] fromRGB(float[] rgbvalue)

transforms a color value assumed to be in the defaultCS_sRGB color space into
thisColorSpace.

• abstract float[] toCIEXYZ(float[] colorvalue)

transforms a color value assumed to be in thisColorSpace into theCS_CIEXYZ
conversion color space.

• abstract float[] fromCIEXYZ(float[] colorvalue)

transforms a color value assumed to be in theCS_CIEXYZ conversion color
space into thisColorSpace.

• static ColorSpace getInstance(int colorspace)

returns a ColorSpace representing one of the specific predefined color sp

• int getType()

returns the color space type of thisColorSpace (for exampleTYPE_RGB,
TYPE_XYZ, etc.).

5.2.3 ICC Profile and ICC Color Space

TheColorSpace class is an abstract class. It is expected that particular
implementations of subclasses ofColorSpace will support high performance
conversion based on underlying platform color management systems. The
ICC_ColorSpace class is one such implementation provided in the base AWT
Developers can define their own subclasses to represent arbitrary color spac

Parameter: colorvalue A float array with length of at least the
number of components in thisColorSpace.

Parameter: rgbvalue A float array with length of at least 3.

Parameter: colorSpace A specific color space identified by one of
the predefined class constants (e.g.,
CS_sRGB, CS_LINEAR_RGB, CS_CIEXYZ,
CS_GRAY, or CS_PYCC).
Programming in Java Advanced Imaging

COLOR SPACE Transparency

.

files

e

lor

cy
h as
t of

each
ap.

r
ncy.

h an

 that
long as the appropriate “to” and “from” conversion methods are implemented
However, most developers can simply use the defaultsRGB color space or color
spaces that are represented by commonly-available ICC profiles, such as pro
for monitors and printers or profiles embedded in image data.

TheICC_ColorSpace class is based on ICC profile data as represented by the
ICC_Profile class. TheICC_Profile class is a representation of color profile
data for device-independent and device-dependent color spaces based on thICC
Profile Format Specification, Version 3.4, August 15, 1997, from the
International Color Consortium. ICC profiles describe aninput spaceand a
connection space, and define how to map between them.

TheICC_Profile class has two subclasses that correspond to the specific co
types:

• ICC_ProfileRGB, which representsTYPE_RGB color spaces

• ICC_ProfileGray, which representsTYPE_GRAY color spaces

5.3 Transparency

Just as images can have color, they can also have transparency. Transparen
defines the specular transmission of light through transparent materials, suc
glass, or the lack of transparency for completely opaque objects. The amoun
transparency is specified by an alpha (α) value. An alpha value of 0.0 specifies
complete translucency; an alpha value of 1.0 specifies complete opacity.

Images can carry transparency information, known as the alpha channel, for
pixel in the image. The alpha value is particularly important when colors overl
The alpha value specifies how much of the previously-rendered color should
show through.

The JavaTransparency interface defines the common transparency modes fo
implementing classes. Table 5-2 lists the variables used to specify transpare

Table 5-2 Transparency

Name Description

BITMASK Represents image data that is guaranteed to be either completely opaque, wit
alpha value of 1.0, or completely transparent, with an alpha value of 0.0.

OPAQUE Represents image data that is guaranteed to be completely opaque, meaning
all pixels have an alpha value of 1.0.

TRANSLUCENT Represents image data that contains or might contain arbitrary alpha values
between and including 0.0 and 1.0.
139Release 1.0.1, November 1999

5.4 Color Conversion COLOR SPACE

140

or

ng no

e;

he
Transparency is specified as part of the color model (see Section 5.2.1, “Col
Models”).

5.4 Color Conversion

TheColorConvert operation performs a pixel-by-pixel color conversion of the
data in a rendered or renderable source image. The data are treated as havi
alpha channel, i.e., all bands are color bands. The color space of the source
image is specified by theColorSpace object of the source imageColorModel
which must not be null.

JAI does not attempt to verify that theColorModel of the destination image is
consistent with theColorSpace parameter. To ensure that this is the case, a
compatibleColorModel must be provided via anImageLayout in the
RenderingHints (see Section 3.7.3, “Rendering Hints”).

Integral data are assumed to occupy the full range of the respective data typ
floating point data are assumed to be normalized to the range [0.0,1.0]. By
default, the destination image bounds, data type, and number of bands are t
same as those of the source image.

TheColorConvert operation takes one parameter:

For information on color space, see Section 5.2.2, “Color Space.”

Listing 5-1 shows a code sample for aColorConvert operation.

Parameters Type Description

colorSpace ColorSpace The destination color space.

Listing 5-1 Example ColorConvert Operation

// Read the image from the specified file name.
RenderedOp src = JAI.create("fileload", fileName);

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src).add(colorSpace);

// Perform the color conversion.
RenderedOp dst = JAI.create("ColorConvert", pb);
Programming in Java Advanced Imaging

COLOR SPACE Non-standard Linear Color Conversion (BandCombine)

r

in

of

e
the
5.5 Non-standard Linear Color Conversion
(BandCombine)

In JAI, theBandCombine operation performs a linear color conversion between
color spaces other than those listed in Table 5-1. TheBandCombine operation
computes a set of arbitrary linear combinations of the bands of a rendered o
renderable source image, using a specified matrix. The matrix must have
dimension (# of source bands plus one) by (# of desired destination bands).

TheBandCombine operation takes one parameter:

As an example, assume the three-band source image and the matrix shown
Figure 5-1. The equation to calculate the value of the destination pixel in this
example would be:

dst= (255 * 0.25) + (157 * 0.5) + (28 * 0.75)

Figure 5-1 Band Combine Example

In this example, the number of columns in the matrix is equal to the number
bands in the source image. The number of rows in the matrix must equal the
number of bands in the destination image. For a destination image with thre
bands, the values in the second row of the matrix would be used to calculate

Parameter Type Description

matrix double The matrix specifying the band combination.

255

157

28

Matrix

Band 0

Band 1

Band 2

The source image

0.25 0.5 0.75
141Release 1.0.1, November 1999

5.5 Non-standard Linear Color Conversion (BandCombine) COLOR SPACE

142

row
values in the second band of the destination image and the values in the third
would be used to calculate the values in the third band.

If the result of the computation underflows or overflows the minimum or
maximum value supported by the destination image, it will be clamped to the
minimum or maximum value, respectively.

Listing 5-2 shows a code sample for aBandCombine operation.

Listing 5-2 Example BandCombine Operation

// Create the matrix.
// Invert center band.
 double[][] matrix = {
 { 1.0D, 0.0D, 0.0D, 0.0D },
 { 0.0D, -1.0D, 0.0D, 255.0D },
 { 0.0D, 0.0D, 1.0D, 0.0D },
 };

// Identity.
 double[][] matrix = {
 { 1.0D, 0.0D, 0.0D, 0.0D },
 { 0.0D, 1.0D, 0.0D, 0.0D },
 { 0.0D, 0.0D, 1.0D, 0.0D },
 };

// Luminance stored into red band (3 band).
 double[][] matrix = {
 { .114D, 0.587D, 0.299D, 0.0D },
 { .000D, 0.000D, 0.000D, 0.0D },
 { .000D, 0.000D, 0.000D, 0.0D }
 };

// Luminance (single band output).
 double[][] matrix = {
 { .114D, 0.587D, 0.299D, 0.0D }
 };

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src_image);
pb.add(matrix);

// Perform the band combine operation.
dst = (PlanarImage)JAI.create("bandcombine", pb, null);
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 6
for

ge.
,

e, a
a

Image Manipulation

THIS chapter describes the basics of manipulating images to prepare them
further processing.

6.1 Introduction

The JAI image manipulation objects and methods are used to enhance and
geometrically modify images and to extract information from images. Image
manipulation includes:

• Region of interest (ROI) control

• Relational operators

• Logical operators

• Arithmetic operators

• Dithering

• Clamping pixel values

• Band copy

6.2 Region of Interest Control

Typically, any image enhancement operation takes place over the entire ima
While the image enhancement operation may improve portions of an image
other portions of the image may lose detail. You usually want some way of
limiting the enhancement operation to specific regions of the image.

To restrict the image enhancement operations to specific regions of an imag
region-of-interest mask is created. A region of interest (ROI) is conceptually
143

6.2.1 The ROI Class IMAGE MANIPULATION

144

els

old
be

are

rical
ge.

ss
ack
is
e
less
mask of true or false values. The ROI mask controls which source image pix
are to be processed and which destination pixels are to be recorded.

JAI supports two different types of ROI mask: a Boolean mask and a thresh
value. TheROIShape class uses a Boolean mask, which allows operations to
performed quickly and with compact storage. TheROI class allows the
specification of a threshold value; pixel values greater than or equal to the
threshold value are included in the ROI. Pixel values less than the threshold
excluded.

The region of interest is usually defined using aROIShape, which stores its area
using thejava.awt.Shape classes. These classes define an area as a geomet
description of its outline. TheROI class stores an area as a single-banded ima

An ROI can be attached to an image as a property. SeeChapter 11, “Image
Properties.”

6.2.1 The ROI Class

TheROI class stores an area as a grayscale (single-banded) image. This cla
represents region information in image form, and can thus be used as a fallb
where aShape representation is unavailable. Inclusion and exclusion of pixels
defined by a threshold value. Source pixel values greater than or equal to th
threshold value indicate inclusion in the ROI and are processed. Pixel values
than the threshold value are excluded from processing.

Where possible, subclasses such asROIShape are used since they provide a more
compact means of storage for large regions.

ThegetAsShape() method may be called optimistically on any instance ofROI.
However, it may return null to indicate that aShape representation of theROI is
not available. In this case,getAsImage() should be called as a fallback.

API: javax.media.jai.ROI

• ROI(RenderedImage im)

constructs anROI object from aRenderedImage. The inclusion threshold is
taken to be halfway between the minimum and maximum sample values
specified by the image’sSampleModel.

Parameters: im A single-bandedRenderedImage.
Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class

s

r

• ROI(RenderedImage im, int threshold)

constructs anROI object from aRenderedImage. The inclusionthreshold is
specified explicitly.

• Shape getAsShape()

returns aShape representation of theROI, if possible. If none is available, null
is returned. A proper instance ofROI (one that is not an instance of any subclas
of ROI) will always return null.

• PlanarImage getAsImage()

returns aPlanarImage representation of theROI. This method will always
succeed.

• int getThreshold()

returns the inclusion/exclusion threshold value.

• void setThreshold(int threshold)

sets the inclusion/exclusion threshold value.

6.2.1.1 Determining the ROI Bounds

ThegetBounds methods in theROI class read the bounds of theROI, as either a
Rectangle or aRectangle2D.

API: javax.media.jai.ROI

• Rectangle getBounds()

returns the bounds of theROI as aRectangle.

• Rectangle2D getBounds2D()

returns the bounds of theROI as aRectangle2D.

6.2.1.2 Determining if an Area Lies Within or Intersects the ROI

Thecontains methods in theROI class test whether a given point or rectangula
region lie within theROI. Theintersects methods test whether a given
rectangular region intersect with theROI.

Parameters: im A single-bandedRenderedImage.

threshold The inclusion/exclusion threshold of the
ROI.
145Release 1.0.1, November 1999

6.2.1 The ROI Class IMAGE MANIPULATION

146
API: javax.media.jai.ROI

• boolean contains(Point p)

returns true if thePoint lies within theROI.

• boolean contains(Point2D p)

returns true if thePoint2D lies within theROI.

• boolean contains(int x, int y)

returns true if the point lies within theROI.

• boolean contains(double x, double y)

returns true if the point lies within theROI.

• boolean contains(Rectangle rect)

returns true if theRectangle lies within theROI.

• boolean contains(Rectangle2D r)

returns true if theRectangle2D lies within theROI.

Parameters: p A Point identifying the pixel to be queried.

Parameters: p A Point2D identifying the pixel to be
queried.

Parameters: x An int specifying thex coordinate of the
pixel to be queried.

y An int specifying they coordinate of the
pixel to be queried.

Parameters: x A double specifying thex coordinate of the
pixel to be queried.

y A double specifying they coordinate of the
pixel to be queried.

Parameters: rect A Rectangle specifying the region to be
tested for inclusion.

Parameters: r A Rectangle2D specifying the region to be
tested for inclusion.
Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class
• boolean contains(int x, int y, int w, int h)

returns true if the rectangle lies within theROI.

• boolean contains(double x, double y, double w, double h)

returns true if the rectangle lies within theROI.

• boolean intersects(Rectangle rect)

returns true if theRectangle intersects theROI.

• boolean intersects(Rectangle2D r)

returns true if theRectangle2D intersects theROI.

Parameters: x The intx coordinate of the upper left corner
of the region.

y The inty coordinate of the upper left corner
of the region.

w The int width of the region.

h The int height of the region.

Parameters: x The doublex coordinate of the upper left
corner of the region.

y The doubley coordinate of the upper left
corner of the region.

w The double width of the region.

h The double height of the region.

Parameters: rect A Rectangle specifying the region to be
tested for inclusion.

Parameters: r A Rectangle2D specifying the region to be
tested for inclusion.
147Release 1.0.1, November 1999

6.2.1 The ROI Class IMAGE MANIPULATION

148
• boolean intersects(int x, int y, int w, int h)

returns true if the rectangle intersects theROI.

• boolean intersects(double x, double y, double w, double h)

returns true if the rectangle intersects theROI.

6.2.1.3 Creating a New ROI from an Existing ROI

Several methods allow the creation of a newROI from an existingROI. Theadd
method adds another ROI to an existing one, creating a new ROI.

API: javax.media.jai.ROI

• ROI add(ROI im)

adds anotherROI to this one and returns the result as a newROI. The addition
is performed by an “AddROIs” RIF to be specified. The suppliedROI will be
converted to a rendered form if necessary.

• ROI subtract(ROI im)

subtracts anotherROI to this one and returns the result as a newROI. The
subtraction is performed by a “SubtractROIs” RIF to be specified. The
suppliedROI will be converted to a rendered form if necessary.

Parameters: x The intx coordinate of the upper left corner
of the region.

y The inty coordinate of the upper left corner
of the region.

w The int width of the region.

h The int height of the region.

Parameters: x The doublex coordinate of the upper left
corner of the region.

y The doubley coordinate of the upper left
corner of the region.

w The double width of the region.

h The double height of the region.

Parameters: im An ROI.

Parameters: im An ROI.
Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROI Class

a

ed

r

• ROI intersect(ROI im)

intersects theROI with anotherROI and returns the result as a newROI. The
intersection is performed by a “IntersectROIs” RIF to be specified. The
suppliedROI will be converted to a rendered form if necessary.

• ROI exclusiveOr(ROI im)

exclusive-ORs theROI with anotherROI and returns the result as a newROI.
The intersection is performed by an “XorROIs” RIF to be specified. The
suppliedROI will be converted to a rendered form if necessary.

• ROI transform(AffineTransform at)

performs an affine transformation and returns the result as a newROI. The
transformation is performed by an “Affine” RIF.

• ROI performImageOp(RenderedImageFactory RIF, ParameterBlock
paramBlock, int sourceIndex, Hashtable renderHints,
Hashtable renderHintsObserved)

transforms anROI using an imaging operation. The operation is specified by
RenderedImageFactory. The operation’sParameterBlock, minus the image
source itself is supplied, along with an index indicating where to insert theROI
image. The usualrenderHints andrenderHintsObserved arguments allow
rendering hints to be passed in and information on which hints were follow
to be passed out.

Parameters: im An ROI.

Parameters: im An ROI.

Parameters: at An AffineTransform specifying the
transformation.

Parameters: RIF A RenderedImageFactory that will be used
to create the op.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except fo
theROI itself.

sourceIndex The index of theParameterBlock’s sources
where theROI is to be inserted.

renderHints A Hashtable of rendering hints.

renderHints-

Observed

A Hashtable of observed rendering hints.
149Release 1.0.1, November 1999

6.2.1 The ROI Class IMAGE MANIPULATION

150

a

y
n’s

d

y
n’s

r

.

r

• ROI performImageOp(RenderedImageFactory RIF, ParameterBlock
paramBlock, int sourceIndex)

transforms anROI using an imaging operation. The operation is specified by
RenderedImageFactory. The operation’sParameterBlock, minus the image
source itself is supplied, along with an index indicating where to insert theROI
image. Rendering hints are taken to be null.

• ROI performImageOp(String name, ParameterBlock paramBlock,
int sourceIndex, Hashtable renderHints,
Hashtable renderHintsObserved)

transforms anROI using an imaging operation. The operation is specified b
name; the default JAI registry is used to resolve this into a RIF. The operatio
ParameterBlock, minus the image source itself is supplied, along with an
index indicating where to insert theROI image. The usualrenderHints and
renderHintsObserved arguments allow rendering hints to be passed in an
information on which hints were followed to be passed out.

• ROI performImageOp(String name, ParameterBlock paramBlock,
int sourceIndex)

transforms anROI using an imaging operation. The operation is specified b
name; the default JAI registry is used to resolve this into a RIF. The operatio
ParameterBlock, minus the image source itself is supplied, along with an

Parameters: RIF A RenderedImageFactory that will be used
to create the op.

paramBlock A ParameterBlock containing all sources
and parameters for the operation except fo
theROI itself.

sourceIndex The index of theParameterBlock’s sources
where theROI is to be inserted.

Parameters: name The name of the operation to be performed

paramBlock A ParameterBlock containing all sources
and parameters for the operation except fo
theROI itself.

sourceIndex The index of theParameterBlock’s sources
where theROI is to be inserted.

renderHints A Hashtable of rendering hints.

renderHints-

Observed

A Hashtable of observed rendering hints.
Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROIShape Class

e

s

n

.

r

index indicating where to insert theROI image. Rendering hints are taken to b
null.

• Shape getAsShape()

returns a Shape representation of theROI, if possible. If none is available, null
is returned. A proper instance ofROI (one that is not an instance of any subclas
of ROI) will always return null.

• PlanarImage getAsImage()

returns aPlanarImage representation of theROI. This method will always
succeed.

6.2.2 The ROIShape Class

TheROIShape class is used to store a region of interest within an image as a
instance of ajava.awt.Shape. Such regions are binary by definition. Using a
Shape representation allows Boolean operations to be performed quickly and
with compact storage. If aPropertyGenerator responsible for generating the
ROI property of a particularOperationDescriptor (such as awarp) cannot
reasonably produce anROIShape representing the region, it should call the
getAsImage() method on its sources and produce its outputROI in image form.

API: javax.media.jai.ROIShape

• ROIShape(Shape s)

constructs anROIShape from aShape.

• ROIShape(Area a)

constructs anROIShape from anArea.

Parameters: name The name of the operation to be performed

paramBlock A ParameterBlock containing all sources
and parameters for the operation except fo
theROI itself.

sourceIndex The index of theParameterBlock’s sources
where theROI is to be inserted.

Parameters: s A Shape.

Parameters: a An Area.
151Release 1.0.1, November 1999

6.2.2 The ROIShape Class IMAGE MANIPULATION

152
6.2.2.1 Determining the ROI Bounds

The following methods in theROIShape class read the bounds of theROI.

API: javax.media.jai.ROIShape

• Rectangle getBounds()

returns the bounds of theROI as aRectangle.

• Rectangle2D getBounds2D()

returns the bounds of theROI as aRectangle2D.

6.2.2.2 Determining if an Area Lies Within or Intersects the ROIShape

TheROIShape.contains method is used to determine if a given pixel lies within
the region of interest. TheROIShape.intersects method is used to determine if
a rectangular region of the image intersects the ROI.

API: javax.media.jai.ROIShape

• boolean contains(Point p)

returns true if the pixel lies within theROI.

• boolean contains(Point2D p)

returns true if the pixel lies within theROI.

• boolean contains(int x, int y)

returns true if the pixel lies within theROI.

• boolean contains(double x, double y)

returns true if the pixel lies within theROI.

Parameters: p The coordinates of the pixel to be queried.

Parameters: p The coordinates of the pixel to be queried.

Parameters: x Thex coordinate of the pixel to be queried.

y They coordinate of the pixel to be queried.

Parameters: x Thex coordinate of the pixel to be queried.

y They coordinate of the pixel to be queried.
Programming in Java Advanced Imaging

IMAGE MANIPULATION The ROIShape Class
• boolean contains(Rectangle rect)

returns true if the rectangular region is entirely contained within theROI.

• boolean contains(Rectangle2D r)

returns true if the rectangular region is entirely contained within theROI.

• boolean contains(int x, int y, int w, int h)

returns true if the rectangular region is entirely contained within theROI.

• boolean contains(double x, double y, double w, double h)

returns true if the rectangular region is entirely contained within theROI.

• boolean intersects(Rectangle rect)

returns true if the rectangular region intersects theROI.

• boolean intersects(Rectangle2D r)

returns true if the rectangular region intersects theROI.

Parameters: rect The region to be tested for inclusion.

Parameters: r The region to be tested for inclusion.

Parameters: x Thex coordinate of the pixel to be queried.

y They coordinate of the pixel to be queried.

w The width of the region.

h The height of the region.

Parameters: x Thex coordinate of the pixel to be queried.

y They coordinate of the pixel to be queried.

w The width of the region.

h The height of the region.

Parameters: rect The region to be tested for inclusion.

Parameters: rect The region to be tested for inclusion.
153Release 1.0.1, November 1999

6.2.2 The ROIShape Class IMAGE MANIPULATION

154

o be
• boolean intersects(int x, int y, int w, int h)

returns true if the rectangular region intersects theROI.

• boolean intersects(double x, double y, double w, double h)

returns true if the rectangular region intersects theROI.

6.2.2.3 Creating a New ROIShape from an Existing ROIShape

Several methods allow the creation of a newROIShape from the oldROIShape.

API: javax.media.jai.ROIShape

• ROI add(ROI im)

adds another mask to this one. This operation may force this mask to be
rendered.

• ROI subtract(ROI im)

subtracts another mask from this one. This operation may force this mask t
rendered.

Parameters: x Thex coordinate of the upper left corner of
the region.

y They coordinate of the upper left corner of
the region.

w The width of the region.

h The height of the region.

Parameters: x Thex coordinate of the upper left corner of
the region.

y They coordinate of the upper left corner of
the region.

w The width of the region.

h The height of the region.

Parameters: im An ROI.

Parameters: im An ROI.
Programming in Java Advanced Imaging

IMAGE MANIPULATION Relational Operators

orce

rce

e

h

rs

ults

ults

ages
• ROI intersect(ROI im)

sets the mask to its intersection with another mask. This operation may f
this mask to be rendered.

• ROI exclusiveOr(ROI im)

sets the mask to its exclusive-OR with another mask. This operation may fo
this mask to be rendered.

• ROI transform(AffineTransform at)

performs an affine transformation and returns the result as a newROI. The
transformation is performed by an “Affine” RIF.

• Shape getAsShape()

returns the internalShape representation or null if not possible. Since we hav
a shape available, we simply return it.

• PlanarImage getAsImage()

returns the shape as aPlanarImage. This requires performing an antialiased
rendering of the internalShape. We use an eight-bit, single channel image wit
aComponentColorModel and aColorSpace.TYPE_GRAY color space.

6.3 Relational Operators

Given two source images and a destination image, the JAI relational operato
allow you to:

• Find the larger of the pixels in the two source images and store the res
in the destination (Max).

• Find the smaller of the pixels in the two source images and store the res
in the destination (Min).

The relational operators require that both source images and the destination
image have the same data type and number of bands. The sizes of the two im
(height and width), however, need not be the same.

When determining the maximum and minimum pixels in the two images, JAI
performs a band-by-band comparison.

Parameters: im An ROI.

Parameters: im An ROI.

Parameters: at The affine transform.
155Release 1.0.1, November 1999

6.3.1 Finding the Maximum Values of Two Images IMAGE MANIPULATION

156

he

ne

. By
age

is the

ows
es
Note: Don’t confuse the relational Min and Max operators with the Extrema
operation (see Section 9.3, “Finding the Extrema of an Image”), which finds t
image-wise minimum and maximum pixel values for each band of an image.

6.3.1 Finding the Maximum Values of Two Images

Themax operation takes two rendered images, and for every pair of pixels, o
from each source image of the corresponding position and band, finds the
maximum pixel value.

The two source images may have different numbers of bands and data types
default, the destination image bound is the intersection of the two source im
bounds. If the two source images don’t intersect, the destination will have a
width and a height of 0. The number of bands of the destination image is the
same as the least number of bands of the source images, and the data type
biggest data type of the source images.

The pixel values of the destination image are defined by the following
pseudocode:

if (srcs[0][x][y][b] > srcs[1][x][y][b]) {
 dst[x][y][b] = srcs[0][x][y][b];
} else {
 dst[x][y][b] = srcs[1][x][y][b];
}

Themax operation takes two source images and no parameters. Listing 6-1 sh
a partial code sample of computing the pixelwise maximum value of two imag
in the rendered mode.

Listing 6-1 Finding the Maximum Value of Two Images

// Create two constant images
RenderedOp im0 = JAI.create(“constant”, param1);
RenderedOp im1 = JAI.create(“constant”, param2);

// Find the maximum value of the two images
RenderedOp im2 = JAI.create(“max”, im0, im1);
Programming in Java Advanced Imaging

IMAGE MANIPULATION Logical Operators

ne

. By
age

is the

ical
o
is a
er-
6.3.2 Finding the Minimum Values of Two Images

Themin operation takes two rendered images, and for every pair of pixels, o
from each source image of the corresponding position and band, finds the
minimum pixel value.

The two source images may have different numbers of bands and data types
default, the destination image bound is the intersection of the two source im
bounds. If the two source images don’t intersect, the destination will have a
width and a height of 0. The number of bands of the destination image is the
same as the least number of bands of the source images, and the data type
biggest data type of the source images.

The pixel values of the destination image are defined by the following
pseudocode:

if (srcs[0][x][y][b] < srcs[1][x][y][b]) {
 dst[x][y][b] = srcs[0][x][y][b];
} else {
 dst[x][y][b] = srcs[1][x][y][b];
}

Themin operation takes two rendered source images and no parameters.
Listing 6-2 shows a partial code sample of computing the pixelwise minimum
value of two images in the renderable mode.

6.4 Logical Operators

JAI supportsmonadic, dyadic, andunary logical operators. The monadic logical
operations include pixel-by-pixel AND, OR, and XOR operations between a
source image and a constant to produce a destination image. The dyadic log
operations include pixel-by-pixel AND, OR, and XOR operations between tw
source images to produce a destination image. The unary logical operation
NOT operation (complement image) on each pixel of a source image on a p
band basis.

Listing 6-2 Finding the Minimum Value of Two Images

// Set up the parameter block and add the two source images to it
ParameterBlock pb = new ParameterBlock();
pb.add(im0);
pb.add(im1);

// Find the maximum value of the two images
RenderableOp im2 = JAI.createRenderable(“min”, pb, hints);
157Release 1.0.1, November 1999

6.4.1 ANDing Two Images IMAGE MANIPULATION

158

the

 the

ore

asis

ce
ands.
me.

rms
of

be

ct,

es,
nge
JAI supports the following logical operations:

• Take the bitwise AND of the two source images and store the results in
destination (And)

• Take the bitwise AND of a source image and one of a set of per-band
constants (AndConst)

• Take the bitwise OR of the two source images and store the results in
destination (Or)

• Take the bitwise OR of a source image and one of a set of per-band
constants (OrConst)

• Take the bitwise XOR (exclusiveOR) of the two source images and st
the results in the destination (Xor)

• Take the bitwise XOR of a source image and one of a set of per-band
constants (XorConst)

• Take the bitwise NOT of a source image on each pixel on a per-band b
(Not)

As with the relational operators, the logical operations require that both sour
images and the destination image have the same data type and number of b
The sizes of the two images (height and width), however, need not be the sa

6.4.1 ANDing Two Images

TheAnd operation takes two rendered or renderable source images, and perfo
a bit-wise logical AND on every pair of pixels, one from each source image,
the corresponding position and band.

Both source images must have integral data types. The two data types may
different.

Unless altered by anImageLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two sources don’t interse
the destination will have a width and height of 0. The number of bands of the
destination image is equal to the lesser number of bands of the source imag
and the data type is the smallest data type with sufficient range to cover the ra
of both source data types.
Programming in Java Advanced Imaging

IMAGE MANIPULATION ANDing an Image with a Constant

y of
in
ntry.

ise,

n
mage.
The following matrix defines the logicalAnd operation.

The destination pixel values are defined by the following pseudocode:

dst[x][y][b] = srcs[0][x][y][b] & srcs[1][x][y][b];

TheAnd operation takes two rendered or renderable source images and no
parameters.

Listing 6-3 shows a partial code sample of using theAnd operation to AND two
images together.

6.4.2 ANDing an Image with a Constant

TheAndConst operation takes one rendered or renderable image and an arra
integer constants, and performs a bit-wise logical AND between every pixel
the same band of the source and the constant from the corresponding array e
If the number of constants supplied is less than the number of bands of the
destination, then the constant from entry 0 is applied to all the bands. Otherw
a constant from a different entry is applied to each band.

The source image must have an integral data type. By default, the destinatio
image bound, data type, and number of bands are the same as the source i

The following matrix defines the logicalAndConst operation:

src0 src1 Result

0 0 0

0 1 0

1 0 0

1 1 1

Listing 6-3 ANDing Two Images

// Set up the parameter block and add the two source images to it.
ParameterBlock pb = new ParameterBlock();
pb.addSource(im0); // The first image
pb.addSource(im1); // The second image

// AND the two images together.
RenderableOp op = JAI.createRenderable(“and”, pb, hints);

src const Result

0 0 0

0 1 0
159Release 1.0.1, November 1999

6.4.3 ORing Two Images IMAGE MANIPULATION

160

one

it-

be

ct,

es,
The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = srcs[x][y][b] & constants[0];
} else {
 dst[x][y][b] = srcs[x][y][b] & constants[b];
}

TheAndConst operation takes one rendered or renderable source image and
parameter:

Listing 6-4 shows a partial code sample of using theAndConst operation to AND
a source image with a defined constant of value 1.2.

6.4.3 ORing Two Images

TheOr operation takes two rendered or renderable images, and performs a b
wise logical OR on every pair of pixels, one from each source image of the
corresponding position and band.

Both source images must have integral data types. The two data types may
different.

Unless altered by anImageLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two sources don’t interse
the destination will have a width and height of 0. The number of bands of the
destination image is equal to the lesser number of bands of the source imag

1 0 0

1 1 1

Parameter Type Description

constants int The per-band constants to logically AND with.

Listing 6-4 ANDing an Image with a Constant

// Set up the parameter block with the source and a constant
// value.
ParameterBlock pb = new ParameterBlock();
pb.addSource(im); // im as the source image
pb.add(1.2f); // The constant

// AND the image with the constant.
RenderableOp op = JAI.createRenderable(“andconst”, pb, hints);

src const Result
Programming in Java Advanced Imaging

IMAGE MANIPULATION ORing an Image with a Constant

nge

of
the
ray
f the
a

and the data type is the smallest data type with sufficient range to cover the ra
of both source data types.

The following matrix defines the logicalOR operation:

The destination pixel values are defined by the following pseudocode:

dst[x][y][b] = srcs[0][x][y][b] | srcs[1][x][y][b];

TheOr operation takes two rendered or renderable source images and no
parameters.

Listing 6-5 shows a partial code sample of using theor operation to OR two
images.

6.4.4 ORing an Image with a Constant

TheOrConst operation takes one rendered or renderable image and an array
integer constants, and performs a bit-wise logical OR between every pixel in
same band of the source image and the constant from the corresponding ar
entry. If the number of constants supplied is less than the number of bands o
destination, the constant from entry 0 is applied to all the bands. Otherwise,
constant from a different entry is applied to each band.

src0 src1 Result

0 0 0

0 1 1

1 0 1

1 1 1

Listing 6-5 ORing Two Images

// Read the first image.
pb = new ParameterBlock();
pb.addSource(file1);
RenderedOp src1 = JAI.create("stream", pb);

// Read the second image.
pb = new ParameterBlock();
pb.addSource(file2);
RenderedImage src2 = JAI.create("stream", pb);

// OR the two images.
RenderedOp dst = JAI.create("or", src1, src2);
161Release 1.0.1, November 1999

6.4.5 XORing Two Images IMAGE MANIPULATION

162

n
mage.

one

bit-

be

nds
e
over
The source image must have an integral data type. By default, the destinatio
image bound, data type, and number of bands are the same as the source i

The following matrix defines the logicalOrConst operation:

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = src[x][y][b] | constants[0];
} else {
 dst[x][y][b] = src[x][y][b] | constants[b];
}

TheOrConst operation takes one rendered or renderable source image and
parameter:

6.4.5 XORing Two Images

TheXor operation takes two rendered or renderable images, and performs a
wise logical XOR on every pair of pixels, one from each source image of the
corresponding position and band.

Both source images must have integral data types. The two data types may
different.

Unless altered by anImageLayout hint, the destination image bound is the
intersection of the two source image bounds. If the two source images don’t
intersect, the destination will have a width and height of 0. The number of ba
of the destination image is equal to the lesser number of bands of the sourc
images, and the data type is the smallest data type with sufficient range to c
the range of both source data types.

src const Result

0 0 0

0 1 1

1 0 1

1 1 1

Parameter Type Description

constants int The per-band constants to logically OR with.
Programming in Java Advanced Imaging

IMAGE MANIPULATION XORing an Image with a Constant

y of
the
ry. If

a

n
mage.
The following matrix defines theXor operation:

The destination pixel values are defined by the following pseudocode:

dst[x][y][b] = srcs[0][x][y][b] ^ srcs[0][x][y][b];

TheXor operation takes one rendered or renderable source image and no
parameters.

6.4.6 XORing an Image with a Constant

TheXorConst operation takes one rendered or renderable image and an arra
integer constants, and performs a bit-wise logical OR between every pixel in
same band of the source and the constant from the corresponding array ent
the number of constants supplied is less than the number of bands of the
destination, the constant from entry 0 is applied to all the bands. Otherwise,
constant from a different entry is applied to each band.

The source image must have an integral data type. By default, the destinatio
image bound, data type, and number of bands are the same as the source i

The following matrix defines the logicalXorConst operation:

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = src[x][y][b] ^ constants[0];
} else {
 dst[x][y][b] = src[x][y][b] ^ constants[b];
}

src0 src1 Result

0 0 0

0 1 1

1 0 1

1 1 0

src const Result

0 0 0

0 1 1

1 0 1

1 1 0
163Release 1.0.1, November 1999

6.4.7 Taking the Bitwise NOT of an Image IMAGE MANIPULATION

164

one

bit-

nd

tion.

n
mage.
TheXorConst operation takes one rendered or renderable source image and
parameter:

6.4.7 Taking the Bitwise NOT of an Image

TheNot operation takes one rendered or renderable image, and performs a
wise logical NOT on every pixel from every band of the source image. This
operation, also known as acomplementoperation, creates an image that is
somewhat like a photographic negative.

TheNot operation looks at the values in the source image as binary values a
changes all the 1’s in those values to 0’s, and all the 0’s to 1’s. The operation
then writes the one’s complement version of the source image to the destina

The source image must have an integral data type. By default, the destinatio
image bound, data type, and number of bands are the same as the source i

The following matrix defines the logical NOT operation.

The pixel values of the destination image are defined by the following
pseudocode:

dst[x][y][b] = ~(src[x][y][b])

TheNot operation takes one rendered or renderable source image and no
parameters.

Listing 6-6 shows a partial code sample of using theNot operation.

Parameter Type Description

constant int The constant to logically XOR with.

src Result

1 0

0 1

Listing 6-6 Taking the NOT of an Image

// Read the source image.
pb = new ParameterBlock();
pb.addSource(file);
RenderedOp src = JAI.create("stream", pb);

// Create the Not operation.
RenderedOp dst = JAI.create("Not", src);
Programming in Java Advanced Imaging

IMAGE MANIPULATION Arithmetic Operators

a
n,
es

sults

e

 the

tion

e

ts in

age
6.5 Arithmetic Operators

JAI supports bothmonadicanddyadicarithmetic operators. The monadic
arithmetic operations include per-band addition, subtraction, division, and
multiplication operations between a source image and a constant to produce
destination image. The dyadic arithmetic operations include per-band additio
subtraction, division, and multiplication operations between two source imag
to produce a destination image.

The JAI arithmetic operators allow you to:

• Add two source images and store the results in a destination image (Add)

• Add a constant value to the pixels in a source image and store the re
in a destination image (AddConst)

• Add a collection of images and store the results in a destination imag
(AddCollection)

• Add a an array of double constants to a collection of rendered images
(AddConstToCollection)

• Subtract one source image from an other and store the results in a
destination image (Subtract)

• Subtract a constant value from the pixels in a source image and store
results in a destination image (SubtractConst)

• Divide one source image into an other and store the results in a destina
image (Divide)

• Divide two source images of complex data and store the results in a
destination image (DivideComplex)

• Divide a source image by a constant value (DivideByConst)

• Divide a source image into a constant value (DivideIntoConst)

• Multiply two source images and store the results in a destination imag
(Multiply)

• Multiply a source image by a constant value (MultiplyConst)

• Multiply two images representing complex data (MultiplyComplex)

• Find the absolute value of pixels in a source image and store the resul
a destination image (Absolute)

• Take the exponent of an image and store the results in a destination im
(Exp)
165Release 1.0.1, November 1999

6.5.1 Adding Two Source Images IMAGE MANIPULATION

166

that

eed

rites
ll
led

nd 0

s
on
data
o
a

st
with
the

ters.
As with the relational and logical operators, the arithmetic operations require
both source images and the destination image have the same data type and
number of bands. The sizes of the two images (height and width), however, n
not be the same.

When JAI adds two images, it takes the value at location 0,0 in one source
image, adds it to the value at location 0,0 in the second source image, and w
the sum at location 0,0 in the destination image. It then does the same for a
other points in the images. Subtraction, multiplication, and division are hand
similarly.

Arithmetic operations on multi-band images are performed on corresponding
bands in the source images. That is, band 0 of the first image is added to ba
of the second image, and so on.

6.5.1 Adding Two Source Images

TheAdd operation takes two rendered or renderable source images, and add
every pair of pixels, one from each source image of the corresponding positi
and band. The two source images may have different numbers of bands and
types. By default, the destination image bounds are the intersection of the tw
source image bounds. If the sources don’t intersect, the destination will have
width and height of 0.

The default number of bands of the destination image is equal to the smalle
number of bands of the sources, and the data type is the smallest data type
sufficient range to cover the range of both source data types (not necessarily
range of their sums).

As a special case, if one of the source images hasN bands (whereN is greater
than one), the other source has one band, and anImageLayout hint is provided
containing a destinationSampleModel with K bands (1 <K ≤ N), then the single
band of the one1-banded source is added to each of the firstK bands of theN-
band source.

The destination pixel values are defined by the following pseudocode:

dst[x][y][dstBand] = clamp(srcs[0][x][y][src0Band] +
 srcs[1][x][y][src1Band]);

If the result of the addition underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

TheAdd operation two rendered or renderable source images and no parame
Programming in Java Advanced Imaging

IMAGE MANIPULATION Adding a Constant Value to an Image

lue

one

e.

the
Listing 6-7 shows a partial code sample of using theAdd operation to add two
images.

6.5.2 Adding a Constant Value to an Image

TheAddConst operation adds one of a set of constant values to every pixel va
of a source image on a per-band basis:

if (constants.length < dstNumBands) {
 dst[x][y][b] = src[x][y][b] + constants[0];
else {
 dst[x][y][b] = src[x][y][b] + constants[b]

TheAddConst operation takes one rendered or renderable source image and
parameter:

The set ofconstants must contain one entry for each band of the source imag
If the number of constants supplied is less than the number of bands of the
destination image, the constant from entry 0 is applied to all the bands.
Otherwise, a constant from a different entry is applied to each band.

By default, the destination image bound, data type, and number of bands are
same as the source image.

Listing 6-7 Adding Two Images

// Read the two images.
pb = new ParameterBlock();
pb.addSource(s1);
RenderedImage src1 = (RenderedImage)JAI.create("stream", pb);

pb = new ParameterBlock();
pb.addSource(s2);
RenderedImage src2 = (RenderedImage)JAI.create("stream", pb);

// Create the ParameterBlock for the operation
pb = new ParameterBlock();
pb.addSource(src1);
pb.addSource(src2);

// Create the Add operation.
RenderedImage dst = (RenderedImage)JAI.create("add", pb);

Parameter Type Description

constants double The per-band constants to be added.
167Release 1.0.1, November 1999

6.5.3 Adding a Collection of Images IMAGE MANIPULATION

168

s
n

o
t

ve
he
he
If the result of the addition underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

Listing 6-8 shows a partial code sample of using theAddConst operation.

6.5.3 Adding a Collection of Images

TheAddCollection operation takes a collection of rendered images and add
every set of pixels, one from each source image of the corresponding positio
and band.

There’s no restriction on the actual class type used to represent the source
collection, but each element of the collection must be of the class
RenderedImages. The number of images in the collection may vary from two t
n, and is only limited by memory size. The source images may have differen
number of bands and data types.

By default, the destination image bound is the intersection of all the source
image bounds. If any of the two sources don’t intersect, the destination will ha
a width and a height of 0. The number of bands of the destination image is t
same as the least number of bands of all the sources, and the data type is t
biggest data type of all the sources.

The destination pixel values are calculated as:

dst[x][y][b] = 0;
for (int i = 0; i < numSources; i++) {

Listing 6-8 Adding a Constant to an Image

// Create the constant values.
RenderedImage im1, im2;
ParameterBlock pb;
double k0, k1, k2;

pb = new ParameterBlock();
pb.addSource(im1);
double[] constants = new double[3]; // or however many bands
 // in im1
constants[0] = k0;
constants[1] = k1;
constants[2] = k2;
pb.add(constants);

// Construct the AddConst operation.
RenderedImage addConstImage = JAI.create("addconst", pb, null);
Programming in Java Advanced Imaging

IMAGE MANIPULATION Subtracting Two Source Images

m
e

d
adds

lass
can

ce

d

ery
d
t

. By

h

 dst[x][y][b] += srcs[i][x][y][b];
}

If the result of the operation underflows or overflows the minimum or maximu
value supported by the destination data type, the value will be clamped to th
minimum or maximum value, respectively.

TheAddCollection operation takes a collection of source images and no
parameters.

6.5.4 Adding Constants to a Collection of Rendered Images

TheAddConstToCollection operation takes a collection of rendered images an
an array of double constants, and for each rendered image in the collection
a constant to every pixel of its corresponding band.

The operation will attempt to store the result images in the same collection c
as that of the source images. If a new instance of the source collection class
not be created, the operation will store the result images in ajava.util.Vector.
The output collection will contain the same number of images as in the sour
collection.

TheAddConstToCollection operation takes a collection of rendered images an
one parameter.

If the number of constants supplied is less than the number of bands of the
source image, the same constant from entry 0 is applied to all the bands.
Otherwise, a constant from a different entry is applied to each band.

6.5.5 Subtracting Two Source Images

TheSubtract operation takes two rendered or renderable images, and for ev
pair of pixels, one from each source image of the corresponding position an
band, subtracts the pixel from the second source from the pixel from the firs
source.

The two source images may have different numbers of bands and data types
default, the destination image bounds are the intersection of the two source
image bounds. If the sources don’t intersect, the destination will have a widt
and height of 0.

Parameter Type Description

constants double The constants to be added.
169Release 1.0.1, November 1999

6.5.6 Subtracting a Constant from an Image IMAGE MANIPULATION

170

st
type

arily

d to

no

n

f

a

the
The default number of bands of the destination image is equal to the smalle
number of bands of the source images, and the data type is the smallest data
with sufficient range to cover the range of both source data types (not necess
the range of their sums).

As a special case, if one of the source images hasN bands (whereN is greater
than one), the other source has one band, and anImageLayout hint is provided
containing a destinationSampleModel with K bands (1 <K ≤ N), then the single
band of the one-banded source is subtracted from or into each of the firstK
bands of theN-band source.

The destination pixel values are defined by the following pseudocode:

dst[x][y][dstBand] = clamp(srcs[0][x][y][src0Band] –
 srcs[1][x][y][src1Band]);

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clampe
the minimum or maximum value respectively.

TheSubtract operation takes two rendered or renderable source images and
parameters.

6.5.6 Subtracting a Constant from an Image

TheSubtractConst operation takes one rendered or renderable image and a
array of double constants, and subtracts every pixel of the same band of the
source from the constant from the corresponding array entry. If the number o
constants supplied is less than the number of bands of the destination, the
constant from entry 0 is applied to all the bands. Otherwise, a constant from
different entry is applied to each band.

By default, the destination image bound, data type, and number of bands are
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = constants[0] - src[x][y][b];
} else {
 dst[x][y][b] = constants[b] - src[x][y][b];
}

Programming in Java Advanced Imaging

IMAGE MANIPULATION Dividing One Image by Another Image

d

d to

pixel

m
y is
nd

d to

y
d
rce.
TheSubtractConst operation takes rendered or renderable source image an
one parameter:

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clampe
the minimum or maximum value respectively.

6.5.7 Subtracting an Image from a Constant

TheSubtractFromConst operation takes one rendered or renderable source
image and an array of double constants, and subtracts a constant from every
of its corresponding band of the source image. If the number of constants
supplied is less than the number of bands of the destination, the constant fro
entry 0 is applied to all the bands. Otherwise, a constant from a different entr
applied to each band. By default, the destination image bounds, data type, a
number of bands are the same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = src[x][y][b] - constants[0];
} else {
 dst[x][y][b] = src[x][y][b] - constants[b];
}

TheSubtractFromConst operation takes one rendered or renderable source
image and one parameter:

If the result of the subtraction underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clampe
the minimum or maximum value respectively.

6.5.8 Dividing One Image by Another Image

TheDivide operation takes two rendered or renderable images, and for ever
pair of pixels, one from each source image of the corresponding position an
band, divides the pixel from the first source by the pixel from the second sou

Parameter Type Description

constants double The per-band constants to be subtracted.

Parameter Type Description

constants double The constants to be subtracted.
171Release 1.0.1, November 1999

6.5.9 Dividing an Image by a Constant IMAGE MANIPULATION

172

the

. By
age
d a
e as
gest

m
um

o

e
f the

a

e,
. By
e

In case of division by 0, if the numerator is 0, the result is set to 0; otherwise,
result is set to the maximum value supported by the destination data type.

TheDivide operation does not require any parameters.

The two source images may have different number of bands and data types
default, the destination image bound is the intersection of the two source im
bounds. If the two sources don’t intersect, the destination will have a width an
height of 0. The default number of bands of the destination image is the sam
the least number of bands of the source images, and the data type is the big
data type of the sources.

As a special case, if one of the source images hasN bands (whereN is greater
than one), the other source has one band, and anImageLayout hint is provided
containing a destinationSampleModel with K bands (1 <K ≤ N), then the single
band of the one-banded source will be divided by or into to each of the firstK
bands of theN-band source.

If the result of the operation underflows or overflows the minimum or maximu
value supported by the destination data type, it will be clamped to the minim
or maximum value respectively.

TheDivide operation takes two rendered or renderable source images and n
parameters.

6.5.9 Dividing an Image by a Constant

TheDivideByConst operation takes one rendered or renderable source imag
and an array of double constants, and divides every pixel of the same band o
source by the constant from the corresponding array entry. If the number of
constants supplied is less than the number of bands of the destination, the
constant from entry 0 is applied to all the bands. Otherwise, a constant from
different entry is applied to each band.

In case of division by 0, if the numerator is 0, the result is set to 0. Otherwis
the result is set to the maximum value supported by the destination data type
default, the destination image bound, data type, and number of bands are th
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = srcs[x][y][b]/constants[0];
} else {
 dst[x][y][b] = srcs[x][y][b]/constants[b];
Programming in Java Advanced Imaging

IMAGE MANIPULATION Dividing an Image into a Constant

e

an
urce
nts
m

y is

,
e.

the

ge
}

TheDivideByConst operation takes one rendered or renderable source imag
and one parameter:

If the result of the division underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

6.5.10 Dividing an Image into a Constant

TheDivideIntoConst operation takes one rendered or renderable image and
array of double constants, and divides every pixel of the same band of the so
into the constant from the corresponding array entry. If the number of consta
supplied is less than the number of bands of the destination, the constant fro
entry 0 is applied to all the bands. Otherwise, a constant from a different entr
applied to each band.

In case of division by 0, if the numerator is 0, the result is set to 0. Otherwise
the result is set to the maximum value supported by the destination data typ

By default, the destination image bound, data type, and number of bands are
same as the source image.

The destination pixel values are defined by the following pseudocode:

if (constants.length < dstNumBands) {
 dst[x][y][b] = constants[0]/src[x][y][b];
} else {
 dst[x][y][b] = constants[b]/src[x][y][b];
}

TheDivideIntoConst operation takes one rendered or renderable source ima
and one parameter:

If the result of the division underflows or overflows the minimum or maximum
value supported by the destination image, the value will be clamped to the
minimum or maximum value, respectively.

Parameter Type Description

constants double The per-band constants to divide by.

Parameter Type Description

constants double The per-band constants to be divided into.
173Release 1.0.1, November 1999

6.5.11 Dividing Complex Images IMAGE MANIPULATION

174

.
en-
(1, 3,
ins
ned

e as
the

rce

s,

ingle

m
um

es

lies
on
6.5.11 Dividing Complex Images

TheDivideComplex operation divides two images representing complex data
The source images must each contain an even number of bands with the ev
indexed bands (0, 2, etc.) representing the real and the odd-indexed bands
etc.) the imaginary parts of each pixel. The destination image similarly conta
an even number of bands with the same interpretation and with contents defi
by:

a = src0[x][y][2k];
b = src0[x][y][2k + 1];
c = src1[x][y][2k];
d = src1[x][y][2k + 1];

dst[x][y][2k] = (a*c + b*d)/(c2 + d2)
dst[x][y][2k + 1] = (b*c – a*d)/(c2 + d2)

where

With one exception, the number of bands of the destination image is the sam
the minimum of the number of bands of the two sources, and the data type is
biggest data type of the sources. The exception occurs when one of the sou
images has two bands, the other source image hasN = 2K bands whereK is
greater than one, and anImageLayout hint is provided containing a destination
SampleModel that specifiesM = 2L bands for the destination image whereL is
greater than one and L≤ K. In this special case if the first source has two band
its single complex component will be divided by each of the firstL complex
components of the second source. If the second source has two bands, its s
complex component will divide each of theL complex components of the first
source.

If the result of the operation underflows or overflows the minimum or /maximu
value supported by the destination data type, it will be clamped to the minim
or maximum value, respectively.

TheDivideComplex operation takes two rendered or renderable source imag
representing complex data and no parameters.

6.5.12 Multiplying Two Images

TheMultiply operation takes two rendered or renderable images, and multip
every pair of pixels, one from each source image of the corresponding positi
and band.

0 k
numBands

2
-------------------------<≤
Programming in Java Advanced Imaging

IMAGE MANIPULATION Multiplying an Image by a Constant

. By
age

st
type
has

no

d to

n

a
nd,
The two source images may have different number of bands and data types
default, the destination image bound is the intersection of the two source im
bounds. If the two source images don’t intersect, the destination will have a
width and a height of 0.

The default number of bands of the destination image is the same as the lea
number of bands of the source images, and the data type is the biggest data
of the source images. A special case may occur if one of the source images
N bands whereN is greater than one, the other source has one band, and an
ImageLayout hint is provided containing a destinationSampleModel. If the
SampleModel hint specifiesK bands for the destination image whereK is greater
than one andK ≤ N, each of the firstK bands of theN-band source is multiplied
by the single band of the one-band source.

In the default case the destination pixel values are calculated as:

for (int h = 0; h < dstHeight; h++) {
 for (int w = 0; w < dstWidth; w++) {
 for (int b = 0; b < dstNumBands; b++) {
 dst[h][w][b] = src1[h][w][b] * src2[h][w][b];
 }
 }
}

TheMultiply operation takes two rendered or renderable source images and
parameters.

If the result of the multiplication underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clampe
the minimum or maximum value, respectively.

6.5.13 Multiplying an Image by a Constant

TheMultiplyConst operation takes one rendered or renderable image and a
array of double constants, and multiplies every pixel of the same band of the
source by the constant from the corresponding array entry. If the number of
constants supplied is less than the number of bands of the destination, the
constant from entry 0 is applied to all the bands. Otherwise, a constant from
different entry is applied to each band. By default, the destination image bou
data type, and number of bands are the same as the source image.

The destination pixel values are calculated as:

if (constants.length < dstNumBands) {
 dst[x][y][b] = srcs[x][y][b]*constants[0];
} else {
175Release 1.0.1, November 1999

6.5.14 Multiplying Two Complex Images IMAGE MANIPULATION

176

e

d to

the
exed

ith

e as
type
e

 dst[x][y][b] = srcs[x][y][b]*constants[b];
}

TheMultiplyConst operation takes one rendered or renderable source imag
and one parameter:

If the result of the multiplication underflows or overflows the minimum or
maximum value supported by the destination image, the value will be clampe
the minimum or maximum value respectively.

6.5.14 Multiplying Two Complex Images

TheMultiplyComplex operation multiplies two images representing complex
data. The source images must each contain an even number of bands, with
with the even-indexed bands (0, 2, etc.) representing the real and the odd-ind
bands (1, 3, etc.) the imaginary parts of each pixel. The destination image
similarly contains an even number of bands with the same interpretation and w
contents defined by:

a = src0[x][y][2k];
b = src0[x][y][2k + 1];
c = src1[x][y][2k];
d = src1[x][y][2k + 1];

dst[x][y][2k] = a*c – b*d;
dst[x][y][2k + 1] =a*d + b*c;

where

With one exception, the number of bands of the destination image is the sam
the minimum of the number of bands of the two source images, and the data
is the biggest data type of the sources. The exception occurs when one of th
source images has two bands, the other source image hasN = 2K bands whereK
is greater than one, and anImageLayout hint is provided containing a destination
SampleModel that specifiesM = 2L bands for the destination image whereL is
greater than one andL ≤ K. In this special case each of the firstL complex
components in theN-band source will be multiplied by the single complex
component in the one-band source.

Parameter Type Description

constants double The per-band constants to multiply by.

0 k
numBands

2
-------------------------<≤
Programming in Java Advanced Imaging

IMAGE MANIPULATION Taking the Exponent of an Image

m
um

ing

e

ve a
lels

no

e:

ded.
If the result of the operation underflows or overflows the minimum or maximu
value supported by the destination data type, it will be clamped to the minim
or maximum value, respectively.

TheMultiplyComplex operation takes two rendered source images represent
complex data and no parameters.

6.5.15 Finding the Absolute Value of Pixels

Images with signed integer pixels have an asymmetrical range of values from
–32,768 to 32,767, which is not very useful for many imaging operations. Th
Absolute operation takes a single rendered or renderable source image, and
computes the mathematical absolute value of each pixel:

if (src[x][y][b] < 0) {
 dst[x][y][b] = –src[x][y][b];
 } else {
 dst[x][y][b] = src[x][y][b];
 }

For signed integral data types, the smallest value of the data type does not ha
positive counterpart; such values will be left unchanged. This behavior paral
that of the Java unary minus operator.

TheAbsolute operation takes one rendered or renderable source image and
parameters

6.5.16 Taking the Exponent of an Image

TheExp operation takes the exponential of the pixel values of an image. The
pixel values of the destination image are defined by the following pseudocod

dst[x][y][b] = java.lang.Math.exp(src[x][y][b])

For integral image datatypes, the result will be rounded and clamped as nee

TheExp operation takes one rendered or renderable source image and no
parameters.

Listing 6-9 shows a partial code sample of using theExp operation to take the
exponent of an image.

Listing 6-9 Taking the Exponent of an Image

// Create a ParameterBlock with the source image.
pb = new ParameterBlock();
pb.addSource(src);
177Release 1.0.1, November 1999

6.6 Dithering an Image IMAGE MANIPULATION

178

is
ring

and

ther

p

st

of a
6.6 Dithering an Image

The display of a 24-bit color image on an 8-bit frame buffer requires an
operation known asdithering. The dithering operation compresses the three
bands of an RGB image to a single-banded byte image.

The dithering operation uses a lookup table through which the source image
passed to produce the destination image. The most-common use for the dithe
operation is to convert true-color (three-band byte) images to pseudo-color
(single-band byte) images.

JAI offers two operations for dithering an image: ordered dither and error-
diffusion dither. The choice of dithering operation depends on desired speed
image quality, as shown in Table 6-1.

6.6.1 Ordered Dither

The ordered dithering operation is somewhat faster than the error-diffusion di
and produces a somewhat better destination image quality than the error-
diffusion dither. TheOrderedDither operation also differs from error-diffusion
dither in that it (OrderedDither) uses a color cube rather than a general looku
table.

TheOrderedDither operation performs color quantization by finding the neare
color to each pixel in a supplied color cube lookup table and “shifting” the
resulting index value by a pseudo-random amount determined by the values
supplieddither mask.

// Perform the Exp operation
RenderedImage dst = JAI.create("exp", pb);

Table 6-1 Dithering Choices

Dither Type Relative Speed Relative Quality

Ordered Medium Medium

Error diffusion Slowest Best

Listing 6-9 Taking the Exponent of an Image (Continued)
Programming in Java Advanced Imaging

IMAGE MANIPULATION Ordered Dither

pth
ied

l

0.

or
n 6.9,

e
nd
er

e
nd
TheOrderedDither operation takes one rendered source image and two
parameters:

6.6.1.1 Color Map Parameter

ThecolorMap parameter can be either one of the predefinedColorCubes, or a
custom color map can be created as aColorCube object. To create a custom
color map, see Section 7.6.1.3, “Creating a Color-cube Lookup Table.”

The predefined color maps are:

6.6.1.2 Dither Mask Parameter

The dither mask is a three-dimensional array of floating point values, the de
of which equals the number of bands in the image. The dither mask is suppl
as an array ofKernelJAI objects. Each element of the array is aKernelJAI

object that represents the dither mask matrix for the corresponding band. Al
KernelJAI objects in the array must have the same dimensions and contain
floating point values greater than or equal to 0.0 and less than or equal to 1.

TheditherMask parameter may either be one of the predefined dither masks
a custom mask may be created. To create a custom dither mask, see Sectio
“Constructing a Kernel.”

Parameter Type Description

colorMap ColorCube The color cube. See Section 6.6.1.1, “Color Map
Parameter.”

ditherMask KernelJAI[] The dither mask. See Section 6.6.1.2, “Dither Mask
Parameter.”

colorMap Description

BYTE_496 A ColorCube with dimensions 4:9:6, useful for dithering RGB images into 216
colors. The offset of this ColorCube is 38. This color cube dithers blue values in th
source image to one of four blue levels, green values to one of nine green levels, a
red values to one of six red levels. This is the default color cube for the ordered dith
operation.

BYTE_855 A ColorCube with dimensions 8:5:5, useful for dithering YCbCr images into 200
colors. The offset of this ColorCube is 54. This color cube dithers blue values in th
source image to one of eight blue levels, green values to one of five green levels, a
red values to one of five red levels.
179Release 1.0.1, November 1999

6.6.1 Ordered Dither IMAGE MANIPULATION

180
The predefined dither masks are (see Figure 6-1):

Figure 6-1 Ordered Dither Masks

ditherMask Description

DITHER_MASK_441 A 4 × 4 × 1 mask useful for dithering eight-bit grayscale images to one-bit
images

DITHER_MASK_443 A 4 × 4 × 3 mask useful for dithering 24-bit color images to eight-bit
pseudocolor images. This is the default dither mask for theOrderedDither
operation.

0.9375 0.4375 0.8125 0.3125

0.1875 0.6875 0.0625 0.5625

0.7500 0.2500 0.8750 0.3750

0.0000 0.5000 0.1250 0.6250

4 X 4 X 1 dither mask
(DITHER_MASK_441)

0.0000 0.5000 0.1250 0.6250

0.7500 0.2500 0.8750 0.3750

0.1875 0.6875 0.0625 0.5625

0.9375 0.4375 0.8125 0.3125

0.6250 0.1250 0.5000 0.0000

0.3750 0.8750 0.2500 0.7500

0.5625 0.0625 0.6875 0.1875

0.3125 0.8125 0.4375 0.9375

0.9375 0.4375 0.8125 0.3125

0.1875 0.6875 0.0625 0.5625

0.7500 0.2500 0.8750 0.3750

0.0000 0.5000 0.1250 0.6250

4 X 4 X 3 dither mask
(DITHER_MASK_443)
Programming in Java Advanced Imaging

IMAGE MANIPULATION Error-diffusion Dither

n

d

6.6.1.3 OrderedDither Example

Listing 6-10 shows a partial code sample of using theOrderedDither operation.

6.6.2 Error-diffusion Dither

The error-diffusion dithering operation produces the most accurate destinatio
image, but is more complex and thus takes longer than the ordered dither.

TheErrorDiffusion operation performs color quantization by finding the
nearest color to each pixel in a supplied lookup table, called a color map, an
“diffusing” the color quantization error below and to the right of the pixel.

Listing 6-10 Ordered Dither Example

// Create the color cube.
ColorCube colorMap =
 srcRescale.getSampleModel().getTransferType() ==
 DataBuffer.TYPE_BYTE ?
 ColorCube.BYTE_496 :

ColorCube.createColorCube(dataType, 38, new int[] {4, 9, 6});

// Set the dither mask to the pre-defined 4x4x3 mask.
KernelJAI[] ditherMask = KernelJAI.DITHER_MASK_443;

// Create a new ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(srcRescale).add(colorMap).add(ditherMask);

// Create a gray scale color model.
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
int bits[] = new int[] {8};
ColorModel cm = new ComponentColorModel(cs, bits, false, false,
 Transparency.OPAQUE,
 DataBuffer.TYPE_BYTE);

// Create a tiled layout with the requested ColorModel.
layout = new ImageLayout();
layout.setTileWidth(TILE_WIDTH).setTileHeight(TILE_HEIGHT);
layout.setColorModel(cm);

// Create RenderingHints for the ImageLayout.
rh = new RenderingHints(JAI.KEY_IMAGE_LAYOUT, layout);

// Create the ordered dither OpImage.
PlanarImage image = (PlanarImage)JAI.create("ordereddither",
 pb, rh);
181Release 1.0.1, November 1999

6.6.2 Error-diffusion Dither IMAGE MANIPULATION

182

ber

u

he
t or

ust

ns
The source image and the color map must have the same data type and num
of bands. Also, the color map must have the same offset in all bands. The
resulting image is single-banded.

TheErrorDiffusion operation takes one rendered source image and two
parameters:

6.6.2.1 Error Filter Kernel

TheerrorKernel parameter can be one of three predefined error filters or yo
can create your own. To create your own, see Section 6.9, “Constructing a
Kernel.”

The predefined kernels are (see Figure 6-2):

The error filter kernel, also known as theerror distribution filter, diffuses the
color quantization error below and to the right of the pixel. The elements of t
error filter kernel that are in the same row and to the right of the key elemen
are in a row below that of the key element must be between 0.0 and 1.0 and m
sum to approximately 1.0. The other elements of the error filter kernel are
ignored.

In operation, the filter is laid on top of the source image so that its origin alig
with the pixel to be passed through the lookup table. Figure 6-3 shows an
example using the Floyd-Steinberg filter. The diffusion operation then:

• Sets the pixel at 0,2 to 214 + (5× [7/16])

• Sets the pixel at 1,0 to 128 + (5× [3/16])

• Sets the pixel at 1,1 to 255 + (5× [5/16])

• Sets the pixel at 1,2 to 104 + (5× [1/16])

Parameter Type Description

colorMap LookupTableJAI The color map. ALookupTableJAI (see Section 7.6.1,
“Creating the Lookup Table”) or aColorCube (see
Section 6.6.1.1, “Color Map Parameter”).

errorKernel KernelJAI The error filter kernel. See Section 6.6.2.1, “Error Filter
Kernel.”

errorKernel Description

ERROR_FILTER_FLOYD_STEINBERG Based on the Floyd-Steinberg filter model (the default if
none is specified).

ERROR_FILTER_JARVIS Based on the Jarvis-Judice-Ninke filter model.

ERROR_FILTER_STUCKI Based on the Stucki filter model
Programming in Java Advanced Imaging

IMAGE MANIPULATION Error-diffusion Dither

sult
h

The filter is then moved to the next pixel and the process is repeated. The re
of this process is an averaging that produces a smoother dithered image wit
little or no contouring.

Figure 6-2 Error Diffusion Dither Filters

Figure 6-3 Error Diffusion Operation

7/16

3/16 5/16 1/16

Floyd-Steinberg filter

7/48 5/48

3/48 5/48 7/48 5/48 3/48

1/48 3/48 5/48 3/48 1/48

Jarvis-Judice-Ninke filter

7/42 5/42

2/42 4/42 8/42 4/42 2/42

1/42 2/42 4/42 2/42 1/42

Stucki filter

Origin Origin

Origin

7/16

3/16 5/16 1/16
Kernel

Source image

0,0 0,3

2,0 2,3

56 18 214 31

128 255 104 0

205 189 122 45
183Release 1.0.1, November 1999

6.7 Clamping Pixel Values IMAGE MANIPULATION

184

ixels
lue
the

rce
the
r of
ch
6.6.2.2 ErrorDiffusion Example

Listing 6-11 shows a partial code sample of using theErrorDiffusion

operation.

6.7 Clamping Pixel Values

Theclamp operation restricts the range of pixel values for a source image by
constraining the range of pixels to defined “low” and “high” values. The
operation takes one rendered or renderable source image, and sets all the p
whose value is below a low value to that low value and all the pixels whose va
is above a high value to that high value. The pixels whose value is between
low value and the high value are left unchanged.

A different set of low and high values may be applied to each band of the sou
image, or the same set of low and high values may be applied to all bands of
source. If the number of low and high values supplied is less than the numbe
bands of the source, the values from entry 0 are applied to all the bands. Ea
low value must be less than or equal to its corresponding high value.

The pixel values of the destination image are defined by the following
pseudocode:

lowVal = (low.length < dstNumBands) ?
 low[0] : low[b];
highVal = (high.length < dstNumBands) ?
 high[0] : high[b];

if (src[x][y][b] < lowVal) {
 dst[x][y][b] = lowVal;
} else if (src[x][y][b] > highVal) {
 dst[x][y][b] = highVal;
} else {
 dst[x][y][b] = src[x][y][b];

Listing 6-11 Error Diffusion Example

// Create a color map with the 4-9-6 color cube and the
// Floyd-Steinberg error kernel.
ParameterBlock pb;
pb.addSource(src);
pb.add(ColorCube.BYTE_496);
pb.add(KernelJAI.ERROR_FILTER_FLOYD_STEINBERG);

// Perform the error diffusion operation.
dst = (PlanarImage)JAI.create("errordiffusion", pb, null);
Programming in Java Advanced Imaging

IMAGE MANIPULATION Band Copying

o

ge in

d a
}

Theclamp operation takes one rendered or renderable source image and tw
parameters:

Listing 6-12 shows a partial code sample of using theClamp operation to clamp
pixels values to between 5 and 250.

6.8 Band Copying

TheBandSelect operation choosesN bands from a rendered or renderable
source image and copies the pixel data of these bands to the destination ima
the order specified. ThebandIndices parameter specifies the source band
indices, and its size (bandIndices.length) determines the number of bands of the
destination image. The destination image may have ay number of bands, an

Parameter Type Description

low Double The lower boundary for each band.

high Double The upper boundary for each band.

Listing 6-12 Clamp Operation

// Get the source image width, height, and SampleModel.
int w = src.getWidth();
int h = src.getHeight();
int b = src.getSampleModel().getNumBands();

// Set the low and high clamp values.
double[] low, high;

low = new double[b];
high = new double[b];

for (int i=0; i<b; i++) {
 low[i] = 5; // The low clamp value
 high[i] = 250; // The high clamp value
}

// Create the ParameterBlock with the source and parameters.
pb = new ParameterBlock();
pb.addSource(src);
pb.add(low);
pb.add(high);

// Perform the operation.
RenderedImage dst = JAI.create("clamp", pb);
185Release 1.0.1, November 1999

6.9 Constructing a Kernel IMAGE MANIPULATION

186

e by

nd

nd

er,

r

particular band of the source image may be repeated in the destination imag
specifying it multiple times in thebandIndices parameter.

Each of thebandIndices value should be a valid band index number of the
source image. For example, if the source only has two bands, 1 is a valid ba
index, but 3 is not. The first band is numbered 0.

The destination pixel values are defined by the following pseudocode:

dst[x][y][b] = src[x][y][bandIndices[b]];

Thebandselect operation takes one rendered or renderable source image a
one parameter:

Listing 6-13 shows a partial code sample of using theBandSelect operation.

6.9 Constructing a Kernel

TheKernelJAI class is an auxiliary class used with the convolve, ordered dith
error diffusion dither, dilate, and erode operations. AKernelJAI is characterized
by its width, height, and key element (origin) position. The key element is the
element that is placed over the current source pixel to perform convolution o
error diffusion.

Parameter Type Description

bandIndices int[] The indices of the selected bands of the image.

Listing 6-13 BandSelect Operation

// Set the indices of three bands of the image.
int[] bandIndices;
bandIndices = new int[3];
bandIndices[0] = 0;
bandIndices[1] = 2;
bandIndices[2] = 2;

// Construct the ParameterBlock.
pb = new ParameterBlock();
pb.addSource(src);
pb.add(bandIndices);

// Perform the operation
RenderedImage dst = (RenderedImage)JAI.create("bandSelect",
 pb);
Programming in Java Advanced Imaging

IMAGE MANIPULATION Constructing a Kernel

y

key
For theOrderedDither operation (see Section 6.6.1, “Ordered Dither”), an arra
of KernelJAI objects is actually required with there being oneKernelJAI per
band of the image to be dithered. The location of the key element is in fact
irrelevant to theOrderedDither operation.

There are four constructors for creating aKernelJAI. The following constructor
constructs aKernelJAI object with the given parameters.

KernelJAI(int width, int height, float[] data)

Thewidth andheight parameters determine the kernel size. Thedata

parameter is a pointer to the floating point values stored in a data array. The
element is set to

The following constructor constructs aKernelJAI object with the given
parameters.

KernelJAI(int width, int height, int xOrigin, int yOrigin,
 float[] data)

ThexOrigin andyOrigin parameters determine the key element’s origin.

The following constructor constructs a separableKernelJAI object from two
float arrays.

KernelJAI(int width, int height, int xOrigin, int yOrigin,
 float[] dataH, float[] dataV)

ThedataH anddataV parameters specify the float data for the horizontal and
vertical directions, respectively.

The following constructor constructs aKernelJAI object from a
java.awt.image.Kernel object.

KernelJAI(java.awt.image.Kernel k)

Listing 6-14 shows a partial code sample for creating a simple 3× 3 kernel with
the key element located at coordinates 1,1, as shown in Figure 6-4.

trunc
width

2

 trunc
height

2

 ,
187Release 1.0.1, November 1999

6.9 Constructing a Kernel IMAGE MANIPULATION

188

led
Figure 6-4 Example Kernel

The Java Advanced Imaging API provides a shorthand method for creating
several commonly-used kernels, listed in Table 6-2, which can simply be cal
by name. These kernels and their use are described in more detail in
Section 6.6.1, “Ordered Dither,” Section 6.6.2, “Error-diffusion Dither,” and
Section 9.5, “Edge Detection.”

The following code sample shows the format for creating a named kernel:

KernelJAI kernel = KernelJAI.ERROR_FILTER_FLOYD_STEINBERG;

Listing 6-14 Constructing a KernelJAI

kernel = new KernelJAI;
float[] kernelData = {
 0.0F, 1.0F, 0.0F,
 1.0F, 1.0F, 1.0F,
 0.0F, 1.0F, 0.0F
};
kernel = new KernelJAI(3, 3, 1, 1, kernelData);

Table 6-2 Named Kernels

Kernel Name Description and Use

DITHER_MASK_441 Ordered dither filter. A 4× 4 × 1 mask useful for dithering 8-
bit grayscale images to 1-bit images

DITHER_MASK_443 Ordered dither filter. A 4× 4 × 3 mask useful for dithering 24-
bit color images to 8-bit pseudocolor images.

ERROR_FILTER_FLOYD_STEINBERG Error diffusion filter, based on the Floyd-Steinberg model.

ERROR_FILTER_JARVIS Error diffusion filter, based on the Jarvis-Judice-Ninke
model.

ERROR_FILTER_STUCKI Error diffusion filter, based on the Stucki model

GRADIENT_MASK_SOBEL_
HORIZONTAL

The horizontal gradient filter mask for theGradient
operation.

GRADIENT_MASK_SOBEL_
VERTICAL

The vertical gradient filter mask for theGradient operation.

0 1 0

1

0

1

0

1

1

Key element
Programming in Java Advanced Imaging

IMAGE MANIPULATION Constructing a Kernel

.

.

API: javax.media.jai.KernelJAI

• public KernelJAI(int width, int height, int xOrigin,
int yOrigin, float[] data)

constructs aKernelJAI with the given parameters. The data array is copied

• public KernelJAI(int width, int height, int xOrigin,
int yOrigin, float[] dataH, float[] dataV)

constructs a separableKernelJAI from two float arrays. The data arrays are
copied.

• public KernelJAI(int width, int height, float[] data)

constructs aKernelJAI with the given parameters. The data array is copied
The key element is set to (trunc(width/2), trunc(height/2)).

• public KernelJAI(Kernel k)

constructs aKernelJAI from ajava.awt.image.Kernel object.

Parameters: width The width of the kernel.

height The height of the kernel

xOrigin Thex coordinate of the key kernel element.

yOrigin They coordinate of the key kernel element.

data The float data in row-major format.

Parameters: dataH The float data for the horizontal direction.

dataV The float data for the vertical direction.

Parameters: data The float data in row-major format.
189Release 1.0.1, November 1999

6.9 Constructing a Kernel IMAGE MANIPULATION

190
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 7

t

ays
Image Enhancemen

THIS chapter describes the basics of improving the visual appearance of
images through enhancement operations.

7.1 Introduction

The JAI API image enhancement operations include:

• Adding borders

• Cropping an image

• Amplitude rescaling

• Histogram equalization

• Lookup table modification

• Convolution filtering

• Median filtering

• Frequency domain processing

• Pixel point processing

• Thresholding (binary contrast enhancement)

7.2 Adding Borders to Images

JAI provides two different ways of adding a border to an image. These two w
are described in the following paragraphs.
191

7.2.1 The Border Operation IMAGE ENHANCEMENT

192

ce
mber

lue
y
plied
try

ixels

ter
7.2.1 The Border Operation

TheBorder operation allows you to add a simple filled border around a sour
image. The border extends the source image’s boundaries by a specified nu
of pixels.The amount of extension may be specified separately for the top,
bottom, and left and right sides. The following types of border fill may be
specified:

• Zero fill – the border area is extended with zeros (BORDER_ZERO_FILL).

• Constant fill – the border area is extended with a specified constant va
(BORDER_CONST_FILL). An array of constants must be supplied. The arra
must have at least one element, in which case this same constant is ap
to all destination image bands. Or, it may have a different constant en
for each corresponding band. For all other border types, thisconstants

parameter may benull.

• Extend – the border area is created by copying the edge and corner p
(BORDER_COPY).

• Reflection – the border area is created by reflection of the image’s ou
edge (BORDER_REFLECT).

• Wrap – the border area is extended by “wrapping” the image plane
toroidally, that is, joining opposite edges of the image (BORDER_WRAP).

Figure 7-1 Image Borders

The image layout (tile width, height, and offsets;SampleModel andColorModel)
is copied from the source. TheBorder operation takes one rendered source
image and six parameters:

leftPadding rightPadding

topPadding

bottomPadding

RenderedImage
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

er
he

g

s
r
4,
7.2.2 Extending the Edge of an Image

Some area operations, such as convolve, scale, and rotate, benefit from the
addition of an extended border around the source image. The extended bord
comes into play when the convolution kernel overlaps the source image as t
key value is scanned over it.

A BorderExtender may be applied to an operation using a suitable hint. The
hints are defined in Table 7-1.

TheBorderExtender class is the superclass for four classes that extend a
WritableRaster with additional pixel data taken from aPlanarImage. Instances

Parameters Type Description

leftPad Integer The image’s left padding.

rightPad Integer The image’s right padding.

topPad Integer The image’s top padding.

bottomPad Integer The image’s bottom padding.

type Integer The border type. One ofBORDER_ZERO,
BORDER_CONST_FILL,BORDER_COPY,BORDER_REFLECT,
or BORDER_WRAP. The default isBORDER_ZERO.

constant double The constants used by theBORDER_CONST_FILL.

Table 7-1 BorderExtender Hints

Name Description

BorderExtenderZero Extends an image’s border by filling all pixels outside the image
bounds with zeros. See Section 7.2.2.1, “BorderExtenderZero.”

BorderExtenderConstant Extends an image’s border by filling all pixels outside the image
bounds with constant values. See Section 7.2.2.2,
“BorderExtenderConstant.”

BorderExtenderCopy Extends an image’s border by filling all pixels outside the image
bounds with copies of the edge pixels. Useful as a way of paddin
source images prior to area or geometric operations, such as
convolution, scaling, or rotation. See Section 7.2.2.3,
“BorderExtenderCopy.”

BorderExtenderWrap Extends an image’s border by filling all pixels outside the image
bounds with copies of the whole image. This form of extension i
appropriate for data that is inherently periodic, such as the Fourie
transform of an image, or a wallpaper pattern. See Section 7.2.2.
“BorderExtenderWrap.”

BorderExtenderReflect Extends an image’s border by filling all pixels outside the image
bounds with copies of the whole image. This form of extension
avoids discontinuities around the edges of the image. See
Section 7.2.2.5, “BorderExtenderReflect.”
193Release 1.0.1, November 1999

7.2.2 Extending the Edge of an Image IMAGE ENHANCEMENT

194

n

e

.

of BorderExtender are used by thePlanarImage.getExtendedData and
PlanarImage.copyExtendedData methods.

ThePlanarImage.getExtendedData method returns a copy of an arbitrary
rectangular region of the image in aRaster. The portion of the rectangle of
interest outside the bounds of the image will be computed by calling the give
BorderExtender. If the region falls entirely within the image, the extender will
not be used. Thus it is possible to use anull value for theextender parameter
when it is known that no actual extension will be required. The returnedRaster

should be considered non-writable. ThecopyExtendedData method should be
used if the returnedRaster is to be modified.

ThePlanarImage.copyExtendedData method copies an arbitrary rectangular
region of theRenderedImage into a caller-suppliedWritableRaster. The
portion of the suppliedWritableRaster that lies outside the bounds of the
image is computed by calling the givenBorderExtender. The supplied
WritableRaster must have aSampleModel that is compatible with that of the
image.

Each instance ofBorderExtender has anextend method that takes a
WritableRaster and aPlanarImage. The portion of the raster that intersects th
bounds of the image will already contain a copy of the image data. The
remaining area is to be filled in according to the policy of theBorderImage

subclass. The subclasses are described in Table 7-1.

API: javax.media.jai.Planarimage

• Raster getExtendedData(Rectangle region,
BorderExtender extender)

returns a copy of an arbitrary rectangular region of this image in a Raster

Parameters: region The region of the image to be returned.

extender An instance ofBorderExtender, used only
if the region exceeds the image bounds.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

ls

of
• void copyExtendedData(WritableRaster dest,
BorderExtender extender)

copies an arbitrary rectangular region of theRenderedImage into a caller-
suppliedWritableRaster.

API: javax.media.jai.BorderExtender

• static BorderExtender createInstance(int extenderType)

returns an instance ofBorderExtender that implements a given extension
policy. The policies understood by this method are:

• abstract void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with data derived from thatPlanarImage.

7.2.2.1 BorderExtenderZero

TheBorderExtenderZero class is a subclass ofBorderExtender that
implements border extension by filling all pixels outside of the image bounds
with zeros. For example, Figure 7-2 shows the result of using
BorderExtenderZero to extend an image by adding two extra rows to the top
and bottom and two extra columns on the left and right sides.

Parameters: dest A WritableRaster to hold the returned
portion of the image.

extender An instance ofBorderExtender.

Policy Description

BORDER_ZERO Set sample values to zero.

BORDER_COPY Set sample values to copies of the nearest valid pixel. For example, pixe
to the left of the valid rectangle will take on the value of the valid edge
pixel in the same row. Pixels both above and to the left of the valid
rectangle will take on the value of the upper-left pixel.

BORDER_REFLECT The output image is defined as if mirrors were placed along the edges
the source image. Thus if the left edge of the valid rectangle lies atx = 10,
pixel (9,y) will be a copy of pixel (10,y); pixel (6,y) will be a copy of pixel
(13,y).

BORDER_WRAP The source image is tiled repeatedly in the plane.
195Release 1.0.1, November 1999

7.2.2 Extending the Edge of an Image IMAGE ENHANCEMENT

196

e

Figure 7-2 BorderExtenderZero Example

API: javax.media.jai.BorderExtenderZero

• final void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with zeros. The portion of Raster that lies withinim.getBounds
is not altered.

7.2.2.2 BorderExtenderConstant

TheBorderExtenderConstant class is a subclass ofBorderExtender that
implements border extension by filling all pixels outside of the image bounds
with constant values. For example, Figure 7-3 shows the result of using
BorderExtenderConstant to extend an image by adding two extra rows to the
top and bottom and two extra columns on the left and right sides.

In the figure,X is the constant fill value. The set of constants is clamped to th
range and precision of the data type of theRaster being filled. The number of
constants used is given by the number of bands of theRaster. If the Raster has
b bands, and there arec constants, constants 0 throughb – 1 are used whenb ≤
c. If b > c, zeros are used to fill out the constants array.

A B C

D E F

G H I

A B C

D E F

G H I

0 0 0

0 0

0 0 0

0 00 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 00 0
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Extending the Edge of an Image

ing

ul
h as
Figure 7-3 BorderExtenderConstant Example

API: javax.media.jai.BorderExtenderConstant

• BorderExtenderConstant(double[] constants)

constructs an instance ofBorderExtenderConstant with a given set of
constants. The constants are specified as an array ofdoubles.

• final void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with constant values. The portion ofRaster that lies within
im.getBounds is not altered.

7.2.2.3 BorderExtenderCopy

TheBorderExtenderCopy class is a subclass ofBorderExtender that
implements border extension by filling all pixels outside of the image bounds
with copies of the edge pixels. For example, Figure 7-4 shows the result of us
BorderExtenderCopy to extend an image by adding two extra rows to the top
and bottom and two extra columns on the left and right sides.

Although this type of extension is not particularly visually appealing, it is usef
as a way of padding source images prior to area or geometric operations, suc
convolution, scaling, or rotation.

A B C

D E F

G H I

A B C

D E F

G H I

X X X

X X

X X X

X XX X X

X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X XX X
197Release 1.0.1, November 1999

7.2.2 Extending the Edge of an Image IMAGE ENHANCEMENT

198

e

as
Figure 7-4 BorderExtenderCopy Example

API: javax.media.jai.BorderExtenderCopy

• final void extend(WritableRaster raster, PlanarImage im)

fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with copies of the edge pixels of the image. The portion of
Raster that lies withinim.getBounds is not altered.

7.2.2.4 BorderExtenderWrap

TheBorderExtenderWrap class is a subclass ofBorderExtender that
implements border extension by filling all pixels outside of the image bounds
with copies of the whole image. For example, Figure 7-5 shows the result of
usingBorderExtenderWrap to extend an image by adding two extra rows to th
top and bottom and two extra columns on the left and right sides.

This form of extension is appropriate for data that is inherently periodic, such
the Fourier transform of an image or a wallpaper pattern.

Figure 7-5 BorderExtenderWrap Example

A B C

D E F

G H I

A B C

D E F

G H I

A B C

I I

A B C

I IG H I

G H I

F F

I I

C C

C C

G G

G G

D D

G G

A A

A A

C CA A

A B C

D E F

G H I

A B C

D E F

G H I

G H I

A B

D E F

D ED E F

A B C

D E

G H

G H

A B

B C

E F

E F

H I

H I

B C

D EE F
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Cropping an Image

ith
lt of

.

of
API: javax.media.jai.BorderExtenderWrap

• final void extend(WritableRaster raster, PlanarImage im)

Fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with copies of the entire image. The portion ofRaster that lies
within im.getBounds is not altered.

7.2.2.5 BorderExtenderReflect

TheBorderExtenderReflect class is a subclass ofBorderExtender that
implements border extension by filling all pixels outside the image bounds w
reflected copies of the whole image. For example, Figure 7-6 shows the resu
usingBorderExtenderReflect to extend an image by adding two extra rows to
the top and bottom and one extra column on the left and right sides.

This form of extension avoids discontinuities around the edges of the image

Figure 7-6 BorderExtenderReflect Example

API: javax.media.jai.BorderExtenderReflect

• final void extend(WritableRaster raster, PlanarImage im)

Fills in the portions of a givenRaster that lie outside the bounds of a given
PlanarImage with suitably reflected copies of the entire image. The portion
Raster that lies withinim.getBounds is not altered.

7.3 Cropping an Image

TheCrop operation crops a rendered or renderable image to a specified
rectangular area. Thex, y, width, and height values are clipped to the source
199Release 1.0.1, November 1999

7.4 Amplitude Rescaling IMAGE ENHANCEMENT

200

d.

ages
as

in
age
e

ps

nt to
n

image’s bounding box. These values are rounded to typeint for rendered
images.

TheCrop operation takes one rendered or renderable source image and four
parameters. None of the parameters have default values; all must be supplie

Figure 7-7 Crop Operation

7.4 Amplitude Rescaling

Amplitude rescaling provides a linear amplitude transformation of input pixel
values to output pixel values. Amplitude rescaling can be used to enhance im
that have insufficient contrast between the lightest and darkest values, such
caused by underexposure or overexposure of the original image.

The full dynamic range of one band of an eight-bit image is 0 to 255. An
underexposed image may only contain pixel values from 10 to 180, resulting
an image that does not fully use the dynamic range of the display. Such an im
can be greatly improved by linearly stretching the contrast range; mapping th
lowest values to 0 and the highest values to 255.

Therescale operation takes a rendered or renderable source image and ma
the pixel values of the image from one range to another range by multiplying
each pixel value by one of a set of constants and then adding another consta
the result of the multiplication. If the number of constants supplied is less tha

Parameter Type Description

x Float Thex origin for each band.

y Float They origin for each band.

width Float The width for each band.

height Float The height for each band.

Original image Crop region applied
to original image

Resulting image
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Amplitude Rescaling

all
nd.
.

e.

d,

two
the number of bands of the destination, the constant from entry 0 is applied to
the bands. Otherwise, a constant from a different entry is applied to each ba
There must be at least one entry in each of the constants and offsets arrays

The pixel values of the destination image are defined by the following
pseudocode:

constant = (constants.length < dstNumBands) ?
 constants[0] : constants[b];
offset = (offsets.length < dstNumBands) ?
 offsets[0] : offsets[b];

dst[x][y][b] = src[x][y][b]*constant + offset;

The pixel arithmetic is performed using the data type of the destination imag
By default, the destination will have the same data type as the source image
unless anImageLayout containing aSampleModel with a different data type is
supplied as a rendering hint.

The values of the lowest and highest pixel amplitudes must be known. This
information can be acquired through theExtrema operation (see Section 9.3,
“Finding the Extrema of an Image”).

The following equations show the relationships between the extrema and the
scale and offset factors.

(7.1)

(7.2)

wheremax(b) andmin(b) are the largest and smallest pixel values in the ban
respectively.

Therescale operation takes one rendered or renderable source image and
parameters:

Parameter Type Description

constants double The per-band constants to multiply by.

offsets double The per-band offsets to be added.

scaleb() 255
max b() min b()–
--=

offset b() 255 min b()×
min b() max b()–
--=
201Release 1.0.1, November 1999

7.5 Histogram Equalization IMAGE ENHANCEMENT

202

to
de

de
a

a
use

ints

e

7.5 Histogram Equalization

An image histogram is an analytic tool used to measure the amplitude
distribution of pixels within an image. For example, a histogram can be used
provide a count of the number of pixels at amplitude 0, the number at amplitu
1, and so on. By analyzing the distribution of pixel amplitudes, you can gain
some information about the visual appearance of an image. A high-contrast
image contains a wide distribution of pixel counts covering the entire amplitu
range. A low contrast image has most of the pixel amplitudes congregated in
relatively narrow range.

See Section 9.4, “Histogram Generation,” for information on how to generate
histogram for an image. The next two sections describe JAI operations that
an image histogram to enhance an image’s appearance.

7.5.1 Piecewise Linear Mapping

ThePiecewise operation performs a piecewise linear mapping of an image’s
pixel values. The piecewise linear mapping is described by a set of breakpo
that are provided as an array of the form:

float breakPoints[N][2][numBreakPoints]

where the value ofN may be either unity or the number of bands in the sourc
image.

If N is unity, the same set of breakpoints will be applied to all bands in the
image. The abscissas of the supplied breakpoints must be monotonically
increasing.

The pixel values of the destination image are defined by the following
pseudocode:

if(src[x][y][b] < breakPoints[b][0][0])
 dst[x][y][b] = breakPoints[b][1][0]);
} else if(src[x][y][b] > breakPoints[b][0][numBreakPoints-1]) {
 dst[x][y][b] = breakPoints[b][1][numBreakPoints-1]);
} else {
 int i = 0;
 while(breakPoints[b][0][i+1] < src[x][y][b]) {
 i++;
 }
 dst[x][y][b] = breakPoints[b][1][i] +
 (src[x][y][b] - breakPoints[b][0][i])*

(breakPoints[b][1][i+1] - breakPoints[b][1][i])/
(breakPoints[b][0][i+1] - breakPoints[b][0][i]);
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Histogram Matching

one

tion

s

ired

nt
The
ThePiecewise operation takes one rendered or renderable source image and
parameter:

Listing 7-1 shows a code sample of aPiecewise operation, showing only the
construction of the piecewise-mapped image and the operation. The genera
of the source image, fmt, is not shown.

7.5.2 Histogram Matching

It is sometimes desirable to transform an image so that its histogram matche
that of a specified functional form. TheMatchCDF operation performs a piecewise
linear mapping of the pixel values of an image such that the cumulative
distribution function (CDF) of the destination image matches as closely as
possible a specified cumulative distribution function.

The CDF of an image is its area-normalized threshold area function. The des
CDF for theMatchCDF operation is described by an array of the form:

float CDF[numBands][numBins[b]]

wherenumBins denotes the number of bins in the histogram of the source
image for bandb.

Each element in the arrayCDF[b] must be non-negative, the array must represe
a non-decreasing sequence, and the last element of the array must be 1.0F.
source image must have aHistogram object available via itsgetProperty
method.

Parameter Type Description

breakPoints Float The breakpoint array.

Listing 7-1 Example Piecewise Operation

// Create a piecewise-mapped image emphasizing low values.
float[][][] bp = new float[numBands][2][];
for(int b = 0; b < numBands; b++) {
 bp[b][0] = new float[] {0.0F, 32.0F, 64.0F, 255.0F};
 bp[b][1] = new float[] {0.0F, 64.0F, 112.0F, 255.0F};
}

// Create the Piecewise operation.
RenderedOp pw = JAI.create("piecewise", fmt, bp);
203Release 1.0.1, November 1999

7.5.2 Histogram Matching IMAGE ENHANCEMENT

204

one

hat
TheMatchCDF operation takes one rendered or renderable source image and
parameter:

The operation requires that the image histogram be available.

Listing 7-2 shows a code sample of aMatchCDF operation, showing only the
histogram operation, construction of two different CDFs, and the operations t
use them.

Parameter Type Description

CDF Float The desired cumulative distribution function.

Listing 7-2 Example MatchCDF Operation

// Retrieves a histogram for the image.
private static Histogram getHistogram(RenderedOp img,
 int binCount) {

 // Get the band count.
 int numBands = img.getSampleModel().getNumBands();

 // Allocate histogram memory.
 int[] numBins = new int[numBands];
 double[] lowValue = new double[numBands];
 double[] highValue = new double[numBands];
 for(int i = 0; i < numBands; i++) {
 numBins[i] = binCount;
 lowValue[i] = 0.0;
 highValue[i] = 255.0;
 }

 // Create the Histogram object.
Histogram hist = new Histogram(numBins, lowValue, highValue);

 // Set the ROI to the entire image.
 ROIShape roi = new ROIShape(img.getBounds());

 // Create the histogram op.
 RenderedOp histImage =
 JAI.create("histogram", img,

hist, roi, new Integer(1), new Integer(1));

 // Retrieve the histogram.
 hist = (Histogram)histImage.getProperty("histogram");

 return hist;
}

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Lookup Table Modification

.
de
e

7.6 Lookup Table Modification

The lookup table modification provides a non-linear amplitude transformation
Non-linear amplitude transformation is useful if you have a non-linear amplitu
response difference between the sensor that captures the image data and th
display.

// Create an equalization CDF.
float[][] CDFeq = new float[numBands][];
for(int b = 0; b < numBands; b++) {
 CDFeq[b] = new float[binCount];
 for(int i = 0; i < binCount; i++) {
 CDFeq[b][i] = (float)(i+1)/(float)binCount;
 }
}

// Create a normalization CDF.
double[] mean = new double[] {128.0, 128.0, 128.0};
double[] stDev = new double[] {64.0, 64.0, 64.0};
float[][] CDFnorm = new float[numBands][];
for(int b = 0; b < numBands; b++) {
 CDFnorm[b] = new float[binCount];
 double mu = mean[b];
 double twoSigmaSquared = 2.0*stDev[b]*stDev[b];
 CDFnorm[b][0] =
 (float)Math.exp(-mu*mu/twoSigmaSquared);
 for(int i = 1; i < binCount; i++) {
 double deviation = i - mu;
 CDFnorm[b][i] = CDFnorm[b][i-1] +

(float)Math.exp(-deviation*deviation/twoSigmaSquared);
 }
}
for(int b = 0; b < numBands; b++) {
 double CDFnormLast = CDFnorm[b][binCount-1];
 for(int i = 0; i < binCount; i++) {
 CDFnorm[b][i] /= CDFnormLast;
 }
}

// Create a histogram-equalized image.
RenderedOp eq = JAI.create("matchcdf", fmt, CDFeq);

// Create a histogram-normalized image.
RenderedOp nm = JAI.create("matchcdf", fmt, CDFnorm);

Listing 7-2 Example MatchCDF Operation (Continued)
205Release 1.0.1, November 1999

7.6 Lookup Table Modification IMAGE ENHANCEMENT

206

e

n in
for

rtial
om
een

and
The lookup table modification mechanism allows you to arbitrarily convert
between the source image byte, short, or integer pixel value and one or mor
output values. The output value can be a byte, short, integer, float, or double
image pixel.

The input pixel value acts as an address to the lookup table inputs, as show
Figure 7-8. Each location in the lookup table stores the desired output value
that particular address.

Figure 7-8 Lookup Table

The lookup table is first loaded with the necessary data. Table 7-2 shows a pa
listing of an example lookup table. In this example, the input values range fr
0 to 255. The output values provide a scaled square root transformation betw
the input and output, according to the following equation:

This example provides a non-linear amplitude transformation between input
output pixel values, in which the smaller input amplitude values are amplified

Table 7-2 Example Lookup Table

Input Output

0 0

1 16

2 23

3 28

. .

253 254

254 255

255 255

Lookup
Table

Source
Image

Dest.
ImageAdrs.

Data
Out

output 255 input×=
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

be

lor
f
- or
s.

he
ffset
he

u

of

lue

ort.

p

and the larger input values are attenuated. Other types of lookup values can
used to solve nearly any non-linear amplitude scaling problem.

7.6.1 Creating the Lookup Table

TheLookupTableJAI object represents a single- or multi-banded table or a co
cube of any supported data types. A single- or multi-banded source image o
integer data types is passed through the table and transformed into a single
multi-banded destination image of both integral and float or double data type

TheLookupTableJAI object is used for theErrorDiffusion operation, where it
describes a color map, and theLookup operation, where it describes the lookup
table. For theLookup operation, the table data may cover only a subrange of t
legal range of the input data type. The subrange is selected by means of an o
parameter that is to be subtracted from the input value before indexing into t
table array.

The procedures for constructing a lookup table vary slightly, depending on
whether the input image is single-banded or multi-banded. For a single-band
input image, you construct a single lookup table. For a multi-band image, yo
construct a single lookup table with entries for each band.

7.6.1.1 Creating a Single-band Lookup Table

The single-banded lookup table contains data for a single channel or image
component. To create a lookup table for a single-band input image, use one
the single-band constructors. The constructors take up to three parameters:

• A pointer to the data to be stored in the table. The data may be of typeByte,
Short, UShort, Int, Float, orDouble.

• The offset. The offset selects the lookup table subrange. The offset va
is subtracted from the input value before indexing into the table array.

• A boolean flag that indicates whether Short data is of type Short or USh

Listing 7-3 shows an example of the construction of a single-band byte looku
table.
207Release 1.0.1, November 1999

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

208

dex

dex
API: javax.media.jai.LookupTableJAI

• LookupTableJAI(byte[] data)

constructs a single-banded byte lookup table with an index offset of 0.

• LookupTableJAI(byte[] data, int offset)

constructs a single-banded byte lookup table with an index offset.

• LookupTableJAI(short[] data, boolean isUShort)

constructs a single-banded short or unsigned short lookup table with an in
offset of 0.

• LookupTableJAI(short[] data, int offset, boolean isUShort)

constructs a single-banded short or unsigned short lookup table with an in
offset.

Listing 7-3 Example Single-band Lookup Table

byte[] tableData = new byte[0x10000];
for (int i = 0; i < 0x10000; i++) {
tableData[i] = (byte)(i >> 8);
}

// Create a LookupTableJAI object to be used with the
// "lookup" operator.
LookupTableJAI table = new LookupTableJAI(tableData);

Parameters: data The single-banded byte data

Parameters: data The single-banded byte data

offset The offset

Parameters: data The single-banded short data

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

Parameters: data The single-banded short data

offset The offset

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

age
le for
• LookupTableJAI(int[] data)

constructs a single-banded int lookup table with an index offset

• LookupTableJAI(int[] data, int offset)

constructs a single-banded int lookup table with an index offset

• LookupTableJAI(float[] data)

constructs a single-banded float lookup table with an index offset of 0

• LookupTableJAI(float[] data, int offset)

constructs a single-banded float lookup table with an index offset

• LookupTableJAI(double[] data)

constructs a single-banded double lookup table with an index offset of 0

• LookupTableJAI(double[] data, int offset)

constructs a single-banded double lookup table with an index offset

7.6.1.2 Creating a Multi-band Lookup Table

The multi-band lookup table contains data for more than one channels or im
components, such as separate arrays for R, G, and B. To create a lookup tab
a multi-band input image, use one of the multi-band constructors. Like the
single-band constructors, the multi-band constructors take up to three
parameters:

Parameters: data The single-banded int data

Parameters: data The single-banded int data

offset The offset

Parameters: data The single-banded float data

Parameters: data The single-banded float data

offset The offset

Parameters: data The single-banded double data

Parameters: data The single-banded double data

offset The offset
209Release 1.0.1, November 1999

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

210

yte,

lue
he
ate

ort.

up

and

me
• A pointer to the data to be stored in the table. The data may be of type B
Short, UShort, Int, Float, or Double.

• The offset. The offset selects the lookup table subrange. The offset va
is subtracted from the input value before indexing into the table array. T
constructors allow you to specify one offset for all of the bands or separ
offsets for each band.

• A boolean flag that indicates whether Short data is of type Short or USh

Listing 7-4 shows an example of the construction of a multi-banded byte look
table.

API: javax.media.jai.LookupTableJAI

• LookupTableJAI(byte[][] data)

constructs a multi-banded byte lookup table with an index offset for each b
of 0.

• LookupTableJAI(byte[][] data, int offset)

constructs a multi-banded byte lookup table where all bands have the sa
index offset.

Listing 7-4 Example Multi-band Lookup Table

// Create the table data.
byte[][] tableData = new byte[3][0x10000];
for (int i = 0; i < 0x10000; i++) {
tableData[0][i] = (byte)(i >> 8); // this may be different
tableData[1][i] = (byte)(i >> 8); // for each band
tableData[2][i] = (byte)(i >> 8);
}

// Create a LookupTableJAI object to be used with the
// "lookup" operator.
LookupTableJAI table = new LookupTableJAI(tableData);

Parameters: data The multi-banded byte data in
[band][index] format

Parameters: data The multi-banded byte data in
[band][index] format

offset The common offset for all bands
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

rent

x

nds

ch
• LookupTableJAI(byte[][] data, int[] offsets)

constructs a multi-banded byte lookup table where each band has a diffe
index offset.

• LookupTableJAI(short[][] data, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table. The inde
offset for each band is 0

• LookupTableJAI(short[][] data, int offset, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table where all ba
have the same index offset

• LookupTableJAI(short[][] data, int[] offsets, boolean isUShort)

constructs a multi-banded short or unsigned short lookup table where ea
band has a different index offset

Parameters: data The multi-banded byte data in
[band][index] format

offsets The offsets for the bands

Parameters: data The multi-banded short data in
[band][index] format.

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

Parameters: data The multi-banded short data in
[band][index] format

offset The common offset for all bands

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.

Parameters: data The multi-banded short data in
[band][index] format

offset The offsets for the bands

isUShort True if the data type is
DataBuffer.TYPE_USHORT; false if the data
type isDataBuffer.TYPE_SHORT.
211Release 1.0.1, November 1999

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

212

is 0

dex

nt

d is

me
• LookupTableJAI(int[][] data)

constructs a multi-banded int lookup table. The index offset for each band

• LookupTableJAI(int[][] data, int offset)

constructs a multi-banded int lookup table where all bands have the same in
offset

• LookupTableJAI(int[][] data, int[] offsets)

constructs a multi-banded int lookup table where each band has a differe
index offset

• LookupTableJAI(float[][] data)

constructs a multi-banded float lookup table. The index offset for each ban
0

• LookupTableJAI(float[][] data, int offset)

constructs a multi-banded float lookup table where all bands have the sa
index offset

Parameters: data The multi-banded int data in [band][index]
format

Parameters: data The multi-banded int data in [band][index]
format

offset The common offset for all bands

Parameters: data The multi-banded int data in [band][index]
format

offset The offsets for the bands

Parameters: data The multi-banded float data in
[band][index] format

Parameters: data The multi-banded float data in
[band][index] format

offset The common offset for all bands
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

rent

and

ame

rent

that
er
• LookupTableJAI(float[][] data, int[] offsets)

constructs a multi-banded float lookup table where each band has a diffe
index offset

• LookupTableJAI(double[][] data)

constructs a multi-banded double lookup table. The index offset for each b
is 0

• LookupTableJAI(double[][] data, int offset)

constructs a multi-banded double lookup table where all bands have the s
index offset

• LookupTableJAI(double[][] data, int[] offsets)

constructs a multi-banded double lookup table where each band has a diffe
index offset

7.6.1.3 Creating a Color-cube Lookup Table

Dithering operations that use a color cube are considerably faster than those
use a generic lookup table. However, the color cube provides less control ov
the exact contents of the lookup table.

TheColorCube class is a subclass ofLookupTableJAI and represents a color
cube lookup table. You create a colorcube using one of the
ColorCube.createColorCube methods. Rather than specifying the data to be
loaded into the lookup table, you provide an array ofdimensions. The

Parameters: data The multi-banded float data in
[band][index] format

offset The offsets for the bands

Parameters: data The multi-banded double data in
[band][index] format

Parameters: data The multi-banded double data in
[band][index] format

offset The common offset for all bands

Parameters: data The multi-banded double data in
[band][index] format

offsets The offsets for the bands
213Release 1.0.1, November 1999

7.6.1 Creating the Lookup Table IMAGE ENHANCEMENT

214

of

The

the

e
 red

e
 red
dimensions parameter specifies the size (or number of levels) of each band
the image.

Although a color cube implies three dimensions, that is not always the case.
color cube has the same number ofdimensions as the image has bands. For
example, a monochrome image requires only onedimension parameter.

The values in thedimensions parameter are signed. A positive value indicates
that the corresponding color ramp increases. A negative value indicates that
ramp decreases.

JAI provides two predefined color cubes, which can be used for the ordered
dither operation (see Section 6.6.1, “Ordered Dither”):

These color cubes are specified by thecolorMap parameter that is required by
theOrderedDither operation.

API: javax.media.jai.ColorCube

• static ColorCube createColorCube(int dataType, int offset,
int[] dimensions)

creates a multi-bandedColorCube of a specified data type.

ColorCube Description

BYTE_496 A ColorCube with dimensions 4:9:6, useful for dithering RGB images into 216
colors. The offset of this ColorCube is 38. This color cube dithers blue values in th
source image to one of 4 blue levels, green values to one of 9 green levels, and
values to one of 6 red levels. This is the default color cube for the ordered dither
operation.

BYTE_855 A ColorCube with dimensions 8:5:5, useful for dithering YCbCr images into 200
colors. The offset of this ColorCube is 54. This color cube dithers blue values in th
source image to one of 8 blue levels, green values to one of 5 green levels, and
values to one of 5 red levels.

Parameters: dataType The data type of theColorCube. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_FLOAT, or
DataBuffer.TYPE_DOUBLE.

offset The common offset for all bands.

dimensions The signed dimensions for each band.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Creating the Lookup Table

r

all
• static ColorCube createColorCube(int dataType,
int[] dimensions)

create a multi-bandedColorCube of a specified data type with zero offset fo
all bands.

• static ColorCube createColorCubeByte(int[] dimensions)

constructs a multi-banded byteColorCube.

• static ColorCube createColorCubeByte(int offset,
int[] dimensions)

constructs a multi-banded byte ColorCube with an index offset common to
bands.

• static ColorCube createColorCubeShort(int[] dimensions)

constructs a multi-banded shortColorCube.

• static ColorCube createColorCubeShort(int offset,
int[] dimensions)

constructs a multi-banded shortColorCube with an index offset common to all
bands.

• static ColorCube createColorCubeUShort(int[] dimensions)

constructs a multi-banded unsigned shortColorCube.

Parameters: dataType The data type of theColorCube. One of
DataBuffer.TYPE_BYTE,
DataBuffer.TYPE_SHORT,
DataBuffer.TYPE_USHORT,
DataBuffer.TYPE_INT,
DataBuffer.TYPE_FLOAT, or
DataBuffer.TYPE_DOUBLE.

dimensions The signed dimensions for each band.

Parameters: dimensions A list of signed sizes of each side of the
color cube.

Parameters: offset The common offset for all bands.

dimensions A list of signed sizes of each side of the
color cube.
215Release 1.0.1, November 1999

7.6.2 Performing the Lookup IMAGE ENHANCEMENT

216

all

age
of

d its
and

er of
of
• static ColorCube createColorCubeUShort(int offset,
int[] dimensions)

constructs a multi-banded unsigned shortColorCube with an index offset
common to all bands.

• static ColorCube createColorCubeInt(int[] dimensions)

constructs a multi-banded intColorCube.

• static ColorCube createColorCubeInt(int offset,
int[] dimensions)

constructs a multi-banded intColorCube with an index offset common to all
bands.

• static ColorCube createColorCubeFloat(int[] dimensions)

constructs a multi-banded floatColorCube.

• static ColorCube createColorCubeFloat(int offset,
int[] dimensions)

constructs a multi-banded float ColorCube with an index offset common to
bands.

• static ColorCube createColorCubeDouble(int[] dimensions)

constructs a multi-banded doubleColorCube with an index offset common to
all bands.

• static ColorCube createColorCubeDouble(int offset,
int[] dimensions)

constructs a multi-banded doubleColorCube with an index offset common to
all bands.

7.6.2 Performing the Lookup

Thelookup operation performs a general table lookup on a rendered or
renderable image. The destination image is obtained by passing the source im
through the lookup table. The source image may be single- or multi-banded
data typesbyte, ushort, short, or int. The lookup table may be single- or
multi-banded of any JAI-supported data types.

The destination image must have the same data type as the lookup table, an
number of bands is determined based on the number of bands of the source
the table. If the source is single-banded, the destination has the same numb
bands as the lookup table; otherwise, the destination has the same number
bands as the source.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Performing the Lookup

If

rray.

ble
of

of

s of

r
s the

ed,
mage:

ed,
age
If either the source or the table is single-banded and the other one is multi-
banded, the single band is applied to every band of the multi-banded object.
both are multi-banded, their corresponding bands are matched up.

The table may have a set of offset values, one for each band. This value is
subtracted from the source pixel values before indexing into the table data a

It is the user’s responsibility to make certain the lookup table supplied is suita
for the source image. Specifically, the table data must cover the entire range
the source data. Otherwise, the result of this operation is undefined.

By the nature of this operation, the destination may have a different number
bands and/or data type from the source. TheSampleModel of the destination is
created in accordance with the actual lookup table used in a specific case.

There are three specific cases of table lookup that determine the pixel value
the destination image:

• If the source image is single-banded and the lookup table is single- o
multi-banded, the destination image has the same number of bands a
lookup table:

 for (int h = 0; h < dstHeight; h++) {
 for (int w = 0; w < dstWidth; w++) {
 for (int b = 0; b < dstNumBands; b++) {

dst[h][w][b] = table[b][src[h][w][0] - offsets[b]]
 }
 }
 }

• If the source image is multi-banded and the lookup table is single-band
the destination image has the same number of bands as the source i

 for (int h = 0; h < dstHeight; h++) {
 for (int w = 0; w < dstWidth; w++) {
 for (int b = 0; b < dstNumBands; b++) {

dst[h][w][b] = table[0][src[h][w][b] - offsets[0]]
 }
 }
 }

• If the source image is multi-banded and the lookup table is multi-band
with the same number of bands as the source image, the destination im
will have the same number of bands as the source image:

 for (int h = 0; h < dstHeight; h++) {
 for (int w = 0; w < dstWidth; w++) {
 for (int b = 0; b < dstNumBands; b++) {
217Release 1.0.1, November 1999

7.6.3 Other Lookup Table Operations IMAGE ENHANCEMENT

218

ne

le.
ing-

.

dst[h][w][b] = table[b][src[h][w][b] - offsets[b]]
 }
 }
 }

Thelookup operation takes one rendered or renderable source image and o
parameter:

See Section 7.6.1, “Creating the Lookup Table” for more information.

For a complete example of theLookup operation, see Listing A-1 on page 417.

7.6.3 Other Lookup Table Operations

7.6.3.1 Reading the Table Data

Several methods are available to read the current contents of the lookup tab
The choice of method depends on the data format: byte, short, integer, float
point, or double floating-point.

API: javax.media.jai.LookupTableJAI

• java.awt.image.DataBuffer getData()

returns the table data as aDataBuffer.

• byte[][] getByteData()

returns the byte table data in array format.

• byte[] getByteData(int band)

returns the byte table data of a specific band in array format.

• short[][] getShortData()

returns the short table data in array format.

• short[] getShortData(int band)

returns the short table data of a specific band in array format.

• int[][] getIntData()

returns the integer table data in array format.

Parameter Type Description

table LookupTableJAI The lookup table through which the source image is passed
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Other Lookup Table Operations

up
• int[] getIntData(int band)

returns the integer table data of a specific band in array format.

• float[][] getFloatData()

returns the float table data in array format.

• float[] getFloatData(int band)

returns the float table data of a specific band in array format.

• double[][] getDoubleData()

returns the double table data in array format.

• double[] getDoubleData(int band)

returns the double table data of a specific band in array format.

7.6.3.2 Reading the Table Offsets

There are three methods for reading the offset values within the current look
table.

API: javax.media.jai.LookupTableJAI

• int[] getOffsets()

returns the index offsets of entry 0 for all bands.

• int getOffset()

returns the index offset of entry 0 for the default band.

• int getOffset(int band)

returns the index offset of entry 0 for a specific band.

7.6.3.3 Reading the Number of Bands

A single method is used to read the number of bands in the lookup table.

API: javax.media.jai.LookupTableJAI

• int getNumBands()

returns the number of bands of the table.

Parameters: band The band to read
219Release 1.0.1, November 1999

7.6.3 Other Lookup Table Operations IMAGE ENHANCEMENT

220

p

er of

n

e.
7.6.3.4 Reading the Number of Entries Per Band

A single method is used to read the number of entries per band in the looku
table.

API: javax.media.jai.LookupTableJAI

• int getNumEntries()

returns the number of entries per band of the table.

7.6.3.5 Reading the Data Type

A single method is used to read the data type of the lookup table.

API: javax.media.jai.LookupTableJAI

• int getDataType()

returns the data type of the table data.

7.6.3.6 Reading the Destination Bands and SampleModel

API: javax.media.jai.LookupTableJAI

• int getDestNumBands(int sourceNumBands)

returns the number of bands of the destination image, based on the numb
bands of the source image and lookup table.

• java.awt.image.SampleModel
getDestSampleModel(java.awt.image.SampleModel
srcSampleModel)

returns aSampleModel suitable for holding the output of a lookup operation o
the source data described by a givenSampleModel with this table. The width
and height of the destinationSampleModel are the same as that of the sourc
This method returns null if the sourceSampleModel has a non-integral data
type.

Parameters: sourceNum-

Bands

The number of bands of the source image.

Parameters: srcSample-

Model

TheSampleModel of the source image.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Convolution Filtering

n

to

el

r

ing

le to

ernel
e
d in
the
ired

s.

ng
rce
• java.awt.image.SampleModel
getDestSampleModel(java.awt.image.SampleModel
srcSampleModel, int width, int height)

returns aSampleModel suitable for holding the output of a lookup operation o
the source data described by a givenSampleModelwith this table. This method
will return null if the sourceSampleModel has a non-integral data type.

7.7 Convolution Filtering

Convolution filtering is often used to reduce the effects of noise in images or
sharpen the detail in blurred images. Convolution filtering is a form ofspatial
filtering that computes each output sample by multiplying elements of a kern
with the samples surrounding a particular source sample.

Convolution filtering operates on a group of input pixels surrounding a cente
pixel. The adjoining pixels provide important information about brightness
trends in the area of the pixel being processed.

Convolution filtering moves across the source image, pixel by pixel, placing
resulting pixels into the destination image. The resulting brightness of each
source pixel depends on the group of pixels surrounding the source pixel. Us
the brightness information of the source pixel’s neighbors, the convolution
process calculates the spatial frequency activity in the area, making it possib
filter the brightness based on the spatial frequency of the area.

Convolution filtering uses aconvolve kernel, containing an array of convolution
coefficient values, calledkey elements, as shown in Figure 7-9. The array is not
restricted to any particular size, and does not even have to be square. The k
can be 1× 1, 3 × 3, 5 × 5, M × N, and so on. A larger kernel size affords a mor
precise filtering operation by increasing the number of neighboring pixels use
the calculation. However, the kernel cannot be bigger in any dimension than
image data. Also, the larger the kernel, the more computations that are requ
to be performed. For example, given a 640× 480 image and a 3× 3 kernel, the
convolve operation requires over five million total multiplications and addition

The convolution filtering operation computes each output sample by multiplyi
the key elements of the kernel with the samples surrounding a particular sou

Parameters: srcSample-

Model

TheSampleModel of the source image.

width The width of the destinationSampleModel.

height The height of the destinationSampleModel.
221Release 1.0.1, November 1999

7.7 Convolution Filtering IMAGE ENHANCEMENT

222

y
xel.

alue.

he

1/9
the

lve
pixel. For each destination pixel, the kernel is rotated 180 degrees and its ke
element is placed over the source pixel corresponding with the destination pi
The key elements are multiplied with the source pixels under them, and the
resulting products are summed together to produce the destination sample v

The selection of the weights for the key elements determines the nature of t
filtering action, such ashigh-passor low-pass. If the values of the key elements
are the reciprocal of the number of key elements in the kernel (for example,
for a 3× 3 kernel), the result is a conventional low-pass averaging process. If
weights are altered, certain pixels in the kernel will have an increased or
decreased influence in the average. Figure 7-10 shows three example convo
filters, low-pass, high-pass, and Laplacian.

Figure 7-9 Convolve Kernel

a b c

f

i

d

g

e

h

Kernel

Key elements

Pixel being processed

Source image
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Performing the Convolve Operation

ight
een
7.2,

the

or

the
Figure 7-10 Convolve Filter Samples

The low-pass filter, also known as abox filter, attenuates the high-spatial
frequency components of an image and has little affect on the low-frequency
components. The effect of passing an image through a low-pass filter is a sl
blurring. This is caused by attenuating the sharp brightness transitions betw
edges and makes the image appear to have less detail. See also Section 7.
“Box Filter.”

The high-pass filter has the opposite effect of the low-pass filter, accentuating
high-frequency components and offering little affect on the low-frequency
components. The effect of passing an image through a high-pass filter is a
sharper image with increased detail in the areas of brightness transition.

The Laplacian filter is another image detail sharpening filter that works well f
noise-free images. This filter subtracts the brightness values of the four
neighboring pixels from the central pixel. The result of applying this filter is to
reduce the gray level to zero.

7.7.1 Performing the Convolve Operation

The following example code shows aconvolve operation on a single sample
dst[x][y], which assumes that the kernel is of sizeM × N and has already been
rotated through 180 degrees. The kernel’s key element is located at position
(xKey, yKey).

dst[x][y] = 0;
 for (int i = -xOrigin; i < -xOrigin + width; i++) {
 for (int j = -yOrigin; j < -yOrigin + height; j++) {

dst[x][y] += src[x + i][y + j]*kernel[xOrigin + i][yOrigin + j];
 }

}

Convolution, or any neighborhood operation, leaves a band of pixels around
edges undefined. For example, for a 3× 3 kernel, only four kernel elements and

1/9 1/9 1/9

1/9 1/9

1/9 1/9

1/9

1/9

Example low-pass
filter

–1 –1 –1

–1 9

–1 –1

–1

–1

Example high-pass
filter

1 –2 1

–2 5

1 –2

–2

1

Example Laplacian
filter
223Release 1.0.1, November 1999

7.7.2 Box Filter IMAGE ENHANCEMENT

224

els
via

a

r:

h
ter
rce
four source pixels contribute to the destination pixel located at (0,0). Such pix
are not included in the destination image. A border extension may be added
theBorderExtender class. The type of border extension can be specified as
RenderingHint to theJAI.create method. If no border extension type is
provided, a default extension ofBorderExtender.BORDER_COPY will be used to
perform the extension. See Section 3.7.3, “Rendering Hints.”

Theconvolve operation takes one rendered source image and one paramete

The defaultkernel is null.

Listing 7-5 shows a code sample for aConvolve operation.

7.7.2 Box Filter

TheBoxFilter operation is a special case of convolve operation in which eac
source pixel contributes the same weight to the destination pixel. The box fil
operation determines the intensity of a pixel in an image by averaging the sou
pixels within a rectangular area around the pixel. The pixel values of the
destination image are defined by the following pseudocode:

int count = width * height; // # of pixels in the box
for (int b = 0; b < numBands; b++) {
 int total = 0;
 for (int j = -yKey; j < -yKey + height; j++) {
 for (int i = -xKey; i < -xKey + width; i++) {
 total += src[x+i][y+j][b];
 }
 }
 dst[x][y][b] = (total + count/2) / count; // round
}

Parameter Type Description

kernel KernelJAI The convolution kernel. See Section 6.9, “Constructing a
Kernel.”

Listing 7-5 Example Convolve Operation

// Create the kernel.
kernel = new KernelJAI
float[] = { 0.0F, -1.0F, 0.0F,
 -1.0F, 5.0F, -1.0F,
 0.0F, -1.0F, 0.0F };

// Create the convolve operation.
im1 = JAI.create("convolve", im, kernel);
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Box Filter

d)

, the
a of

the

rce
not

ters:
TheBoxFilter operation uses a low-pass filter that passes (leaves untouche
the low spatial frequency components of the image and attenuates the high-
frequency components. In an area of the image that has constant brightness
brightness values are passed untouched. When the filter passes over an are
sharp black to white transitions, the brightness range is greatly attenuated.

Convolution, like any neighborhood operation, leaves a band of pixels around
edges undefined. For example, for a 3× 3 kernel, only four kernel elements and
four source pixels contribute to the convolution pixel at the corners of the sou
image. Pixels that do not allow the full kernel to be applied to the source are
included in the destination image. ABorder operation (see Section 7.2, “Adding
Borders to Images”) may be used to add an appropriate border to the source
image to avoid shrinkage of the image boundaries.

The kernel may not be bigger in any dimension than the image data.

TheBoxFilter operation takes one rendered source image and four parame

Thewidth parameter is required. The remaining parameters may benull and, if
not supplied, default to the following values:

Listing 7-6 shows a code sample for aBoxFilter operation.

Parameter Type Description

width Integer The width of the box.

height Integer The height of the box.

xKey Integer Thex position of the key element.

yKey Integer They position of the key element.

Listing 7-6 Example BoxFilter Operation

// Read the arguments.
String fileName = args.length > 0 ? args[0] : DEFAULT_FILE;
int width = args.length > 1 ?
 Integer.decode(args[1]).intValue() : DEFAULT_SIZE;
int height = args.length > 2 ?
 Integer.decode(args[2]).intValue() : width;

height width=

xKey
width

2
--------------=

yKey
height

2
-----------------=
225Release 1.0.1, November 1999

7.8 Median Filtering IMAGE ENHANCEMENT

226

us

e

n
the

xel

two
ber
7.8 Median Filtering

A median filter is used to remove impulse noise spikes from an image and th
smoothing the image. Impulse noise spikes appear as bright or dark pixels
randomly distributed throughout the image. Noise spikes are normally
significantly brighter or darker than their neighboring pixels and can easily b
found by comparing the median value of a group of input pixels.

The median filter is a neighborhood-based ranking filter in which the pixels i
the neighborhood are ranked in the order of their levels. The median value of
group is then stored in the output pixel. The resulting image is then free of pi
brightnesses that are at the extremes in each input group of pixels.

The noise-reducing effect that the median filter has on an image depends on
related things: the spatial extent of the neighborhood (the mask) and the num
of pixels involved in the computation. TheMedianFilter operation supports
three different mask shapes, a square, a plus, and an X-shape, as shown in
Figure 7-11.

Figure 7-11 Median Filter Masks

new BoxFilterExample(fileName, width, height);
}

public BoxFilterExample(String fileName, int width, int height)

// Load the image.
RenderedOp src = JAI.create("fileload", fileName);

// Create the BoxFilter operation.
RenderedOp dst = JAI.create("boxfilter", src,
 width, height,
 width/2, height/2);

Listing 7-6 Example BoxFilter Operation (Continued)

Square
mask

Plus
mask X mask
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Median Filtering

, 6,
le

g

n.
TheMedianFilter operation may also be used to compute theseparable median
of a 3× 3 or 5× 5 region of pixels. The separable median is defined as the
median of the medians of each row. For example, if the pixel values in a 3× 3
window are as follows:

the overall (non-separable) median value is 5, while the separable median is
equal to the median of the three row medians: median(1, 2, 3) = 2, median(5
7) = 6, and median(4, 8, 9) = 8, yielding an overall median of 6. The separab
median may be obtained by specifying a mask of type
MEDIAN_MASK_SQUARE_SEPARABLE.

TheMedianFilter operation takes one rendered source image and two
parameters:

ThemaskShape parameter is one of the following:

ThemaskSize parameter must be 1 (1× 1) or greater. The default value, if one is
not provided, is 3 (3× 3). For large masks, the noise reduction effect of more
pixels used in the computation of the median value reaches a point of
diminishing returns. Typical mask sizes are 3× 3 and 5× 5.

Parameter Type Default Description

maskShape Integer MASK_
SQUARE

The shape of the mask to be used for Median Filterin

maskSize Integer 3 The size (width and height) of the mask to be used in
Median Filtering.

maskShape Description

MEDIAN_MASK_SQUARE A square-shaped mask. The default.

MEDIAN_MASK_PLUS A plus-shaped mask.

MEDIAN_MASK_X An X-shaped mask.

MEDIAN_MASK_SQUARE_
SEPARABLE

A separable square mask, used for the separable median operatio

1 2 3

5 6 7

4 8 9
227Release 1.0.1, November 1999

7.9 Frequency Domain Processing IMAGE ENHANCEMENT

228

from
ge

ny

he

nts.

e
nd
e
urce

the
der,

for
and

dd

y

7.9 Frequency Domain Processing

Images contain spatial details that are seen as brightness transitions, cycling
dark to light and back to dark. The rate at which the transitions occur in an ima
represent the image’sspatial frequency.

An image’s spatial frequency can be measured horizontally, vertically, or at a
diagonal in between. An image contains many spatial frequencies that, when
combined in the correct magnitude and phase, form the complex details of t
image.

A frequency transformdecomposes an image from its spatial domain form of
brightness into a frequency domain form of fundamental frequency compone
Each frequency component contains a magnitude and phase value. Aninverse
frequency transformconverts an image from its frequency form back to its
spatial form.

7.9.1 Fourier Transform

JAI supports the most common type of frequency transform, thediscrete Fourier
transformand its inverse, the inverse discrete Fourier transform. The discrete
Fourier transform of an image is a two-dimensional process. The result of th
transform is a two-dimensional array of values, each having two parts: real a
imaginary. Each value represents a distinct spatial frequency component. Th
frequency-transform image has as many values as there are pixels in the so
image.

The real portion of the values can be displayed as an image, visually showing
frequency components of the source image. The result is in “wrap around” or
with the zero-frequency point (also known as “DC” for direct current) at the
upper left corner and the high frequencies at the center.

7.9.1.1 Discrete Fourier Transform

TheDFT (discrete Fourier transform) operation computes the discrete Fourier
transform of an image. A negative exponential is used as the basis function
the transform. The operation supports real-to-complex, complex-to-complex,
complex-to-real transforms. A complex image must have an even number of
bands, with the even bands (0, 2, etc.) representing the real parts and the o
bands (1, 3, etc.) the imaginary parts of each complex pixel.

If an underlying fast Fourier transform (FFT) implementation is used that
requires that the image dimensions be powers of 2, the width and height ma
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Fourier Transform

th

d,

st be
ch

l, the

hat

ta
each be increased to the power of 2 greater than or equal to the original wid
and height, respectively.

Thedft operation takes one rendered or renderable source image and two
parameters.

The default parameters for this operation areSCALING_NONE and
REAL_TO_COMPLEX.

ThescalingType parameter defines how the image dimensions may be scale
as follows:

ThedataNature parameter specifies the nature of the source and destination
data, as follows.

If the source data are complex, the number of bands in the source image mu
a multiple of 2. The number of bands in the destination must match that whi
would be expected given the number of bands in the source image and the
specified nature of the source and destination data. If the source image is rea
number of bands in the destination will be twice that in the source. If the
destination image is real, the number of bands in the destination will be half t

Parameter Type Description

scalingType Integer The type of scaling to perform. One of
DFTDescriptor.SCALING_NONE,
DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS.

dataNature Integer The nature of the data. One of
DFTDescriptor.REAL_TO_COMPLEX,
DFTDescriptor.COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL.

scalingType Description

DFTDescriptor.SCALING_NONE The transform is not to be scaled (the default).

DFTDescriptor.SCALING_UNITARY The transform is to be scaled by the square root of the
product of its dimensions.

DFTDescriptor.SCALING_DIMENSIONS The transform is to be scaled by the product of its
dimensions.

dataNature Description

DFTDescriptor.REAL_TO_COMPLEX The source data are real and the destination data
complex.

DFTDescriptor.COMPLEX_TO_COMPLEX The source and destination data are both complex.

DFTDescriptor.COMPLEX_TO_REAL The source data are complex and the destination da
real.
229Release 1.0.1, November 1999

7.9.1 Fourier Transform IMAGE ENHANCEMENT

230

must

e

in the source. Otherwise the number of bands in the source and destination
be equal.

TheDFT operation defines aPropertyGenerator that sets theCOMPLEX property
of the image toFALSE if the dataNature parameter isCOMPLEX_TO_REAL and to
TRUE if the dataNature parameter isREAL_TO_COMPLEX or
COMPLEX_TO_COMPLEX. The value of this property may be retrieved by calling th
getProperty() method withCOMPLEX as the property name.

Listing 7-7 shows a code sample for aDFT operation.

Listing 7-7 Example DFT Operation

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src)
pb.add(DFTDescriptor.SCALING_NONE);
pb.add(DFTDescriptor.REAL_TO_COMPLEX);

// Create the DFT operation.
PlanarImage dft = (PlanarImage)JAI.create("dft", pb, null);

// Get the DFT image information.
int width = dft.getWidth();
int height = dft.getHeight();
int numBands = dft.getSampleModel().getNumBands();
int dataType = dft.getSampleModel().getDataType();

// Calculate the cutoff "frequencies" from the threshold.
threshold /= 200.0F;
int minX = (int)(width*threshold);
int maxX = width - 1 - minX;
int minY = (int)(height*threshold);
int maxY = height - 1 - minY;

// Retrieve the DFT data.
Raster dftData = dft.getData();
double[] real =

dftData.getSamples(0, 0, width, height, 0, (double[])null);
double[] imag =

dftData.getSamples(0, 0, width, height, 1, (double[])null);

double[] HR = new double[real.length];
double[] HI = new double[imag.length];
double[] LR = new double[real.length];
double[] LI = new double[imag.length];
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Fourier Transform

t
the

x

y
th

d,
7.9.1.2 Inverse Discrete Fourier Transform

TheIDFT (inverse discrete Fourier transform) operation computes the inverse
discrete Fourier transform of an image. A positive exponential is used as the
basis function for the transform. The operation supports real-to-complex,
complex-to-complex, and complex-to-real transforms. A complex image mus
have an even number of bands, with the even bands (0, 2, etc.) representing
real parts and the odd bands (1, 3, etc.) the imaginary parts of each comple
pixel.

If an underlying fast Fourier transform (FFT) implementation is used that
requires that the image dimensions be powers of 2, the width and height ma
each be increased to the power of 2 greater than or equal to the original wid
and height, respectively.

TheIDFT operation takes one rendered or renderable source image and two
parameters.

The default parameters for this operation areSCALING_DIMENSIONS and
COMPLEX_TO_REAL.

ThescalingType parameter defines how the image dimensions may be scale
as follows:

Parameter Type Description

scalingType Integer The type of scaling to perform. One of
DFTDescriptor.SCALING_NONE,
DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS.

dataNature Integer The nature of the data. One of
DFTDescriptor.REAL_TO_COMPLEX,
DFTDescriptor.COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL.

scalingType Description

DFTDescriptor.SCALING_NONE The transform is not to be scaled.

DFTDescriptor.SCALING_UNITARY The transform is to be scaled by the square root of the
product of its dimensions.

DFTDescriptor.SCALING_DIMENSIONS The transform is to be scaled by the product of its
dimensions (the default).
231Release 1.0.1, November 1999

7.9.2 Cosine Transform IMAGE ENHANCEMENT

232

st be
ch

l, the

hat
must

e

rm
ter
orm

.
nal

ta
ThedataNature parameter specifies the nature of the source and destination
data, as follows.

If the source data are complex, the number of bands in the source image mu
a multiple of 2. The number of bands in the destination must match that whi
would be expected given the number of bands in the source image and the
specified nature of the source and destination data. If the source image is rea
number of bands in the destination will be twice that in the source. If the
destination image is real, the number of bands in the destination will be half t
in the source. Otherwise the number of bands in the source and destination
be equal.

TheIDFT operation defines aPropertyGenerator that sets theCOMPLEX property
of the image toFALSE if the dataNature parameter isCOMPLEX_TO_REAL and to
TRUE if the dataNature parameter isREAL_TO_COMPLEX or
COMPLEX_TO_COMPLEX. The value of this property may be retrieved by calling th
getProperty() method withCOMPLEX as the property name.

7.9.2 Cosine Transform

The discrete cosine transform (DCT) is similar to the discrete Fourier transfo
(see Section 7.9.1.1, “Discrete Fourier Transform”). However, the DCT is bet
at compactly representing very small images. Like the discrete Fourier transf
(DFT), the DCT also has an inverse operation, theinverse discrete cosine
transform(IDCT).

7.9.2.1 Discrete Cosine Transform (DCT)

TheDCT operation computes the even discrete cosine transform of an image
Each band of the destination image is derived by performing a two-dimensio
DCT on the corresponding band of the source image.

TheDCT operation takes one rendered or renderable source image and no
parameters.

dataNature Description

DFTDescriptor.REAL_TO_COMPLEX The source data are real and the destination data
complex.

DFTDescriptor.COMPLEX_TO_COMPLEX The source and destination data are both complex.

DFTDescriptor.COMPLEX_TO_REAL The source data are complex and the destination da
real.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Cosine Transform

n

Listing 7-8 shows a code sample for a DCT operation.

7.9.2.2 Inverse Discrete Cosine Transform (IDCT)

TheIDCT operation computes the inverse even discrete cosine transform of a
image. Each band of the destination image is derived by performing a two-
dimensional inverse DCT on the corresponding band of the source image.

TheIDCT operation takes one rendered or renderable source image and no
parameters.

Listing 7-9 shows a code sample for an operation that first takes the discrete
cosine transform of an image, then computes the inverse discrete cosine
transform.

Listing 7-8 Example DCT Operation

// Load the source image.
RenderedImage src = (RenderedImage)JAI.create("fileload",
 fileName);

// Calculate a DCT image from the source image.
ParameterBlock pb = (new ParameterBlock()).addSource(src);
PlanarImage dct = JAI.create("dct", pb, null);

// Get the DCT image data.
int width = dct.getWidth();
int height = dct.getHeight();
int numBands = dct.getSampleModel().getNumBands();
int dataType = dct.getSampleModel().getDataType();
double[] dctData =
 dct.getData().getPixels(0, 0, width, height,
 (double[])null);
double[] pixels = new double[dctData.length];

Listing 7-9 Example IDCT Operation

// Calculate a DCT image from the source image.
System.out.println("Creating DCT of source image ...");
ParameterBlock pb = (new ParameterBlock()).addSource(src);
PlanarImage dct = JAI.create("dct", pb, null);

// Calculate an IDCT image from the DCT image.
System.out.println("Creating IDCT of DCT of source image ...");
pb = (new ParameterBlock()).addSource(dct);
PlanarImage idct = JAI.create("idct", pb, null);
233Release 1.0.1, November 1999

7.9.3 Magnitude Enhancement IMAGE ENHANCEMENT

234

n
he
alf

of

.

7.9.3 Magnitude Enhancement

Themagnitude operation computes the magnitude of each pixel of a complex
image. The source image must have an even number of bands, with the eve
bands (0, 2, etc.) representing the real parts and the odd bands (1, 3, etc.) t
imaginary parts of each complex pixel. The destination image has at most h
the number of bands of the source image with each sample in a pixel
representing the magnitude of the corresponding complex source sample.

The magnitude values of the destination image are defined by the following
pseudocode:

dstPixel[x][y][b] = sqrt(src[x][y][2b]2 + src[x][y][2b + 1]2)

where the number of bandsb varies from zero to one less than the number
bands in the destination image.

For integral image data types, the result is rounded and clamped as needed

Themagnitude operation takes one rendered or renderable source image
containing complex data and no parameters.

Listing 7-10 shows a code sample for amagnitude operation.

// Create display image for inverse DCT of DCT of source image.
System.out.println("Creating display image for IDCT of DCT");
pixels = idct.getData().getPixels(0, 0, width, height,
 (double[])pixels);
BufferedImage bi = createBI(colorImage, width, height, pixels);

Listing 7-10 Example Magnitude Operation

// Calculate a DFT image from the source image.
pb = new ParameterBlock();
pb.addSource(src).add(DFTDescriptor.SCALING_NONE);
PlanarImage dft = JAI.create("dft", pb, null);

// Create the ParameterBlock specifying the source image.
pb = new ParameterBlock();
pb.addSource(dft);

// Calculate the magnitude.
PlanarImage magnitude = JAI.create("magnitude", pb, null);

Listing 7-9 Example IDCT Operation
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Phase Enhancement

xel
with
3,
t

ixel

of

.

ge

n
he
alf

of

al”

ing
7.9.4 Magnitude-squared Enhancement

TheMagnitudeSquared operation computes the squared magnitude of each pi
of a complex image. The source image must have an even number of bands,
the even bands (0, 2, etc.) representing the real parts and the odd bands (1,
etc.) the imaginary parts of each complex pixel. The destination image has a
most half the number of bands of the source image with each sample in a p
representing the magnitude of the corresponding complex source sample.

The squared magnitude values of the destination image are defined by the
following pseudocode:

dstPixel[x][y][b] = src[x][y][2b]2 + src[x][y][2b + 1]2

where the number of bandsb varies from zero to one less than the number
bands in the destination image.

For integral image data types, the result is rounded and clamped as needed

TheMagnitudeSquared operation takes one rendered or renderable source ima
containing complex data and no parameters.

7.9.5 Phase Enhancement

ThePhase operation computes the phase angle of each pixel of a complex
image. The source image must have an even number of bands, with the eve
bands (0, 2, etc.) representing the real parts and the odd bands (1, 3, etc.) t
imaginary parts of each complex pixel. The destination image has at most h
the number of bands of the source image with each sample in a pixel
representing the phase angle of the corresponding complex source sample.

The angle values of the destination image are defined by the following
pseudocode:

dst[x][y][b] = atan2(src[x][y][2b + 1], src[x][y][2b])

where the number of bandsb varies from zero to one less than the number
bands in the destination image.

For integral image data types, the result is rounded and scaled so the “natur
arctangent range from [–π, π) is remapped into the range [0, MAXVALUE). The
result for floating point image data types is the value returned by theatan2()

method.

Thephase operation takes one rendered or renderable source image contain
complex data and no parameters.
235Release 1.0.1, November 1999

7.9.6 Complex Conjugate IMAGE ENHANCEMENT

236

e.
le
ven

eal

he
ch
7.9.6 Complex Conjugate

TheConjugate operation computes the complex conjugate of a complex imag
The operation negates the imaginary components of a rendered or renderab
source image containing complex data. The source image must contain an e
number of bands with the even-indexed bands (0, 2, etc.) representing the r
and the odd-indexed bands (1, 3, etc.) the imaginary parts of each pixel. The
destination image similarly contains an even number of bands with the same
interpretation and with contents defined by:

dst[x][y][2*k] = src[x][y][2*k];
dst[x][y][2*k+1] = -src[x][y][2*k+1];

where the indexk varies from zero to one less than the number of complex
components in the destination image.

TheConjugate operation takes one rendered or renderable source image
containing complex data and no parameters.

7.9.7 Periodic Shift

ThePeriodicShift operation computes the periodic translation of an image.
The destination image of thePeriodicShift operation is the infinite periodic
extension of the source image with horizontal and vertical periods equal to t
image width and height, respectively, shifted by a specified amount along ea
axis and clipped to the bounds of the source image. Thus for each bandb the
destination image sample at location (x,y) is defined by:

if(x < width - shiftX) {
 if(y < height - shiftY) {
 dst[x][y][b] = src[x + shiftX][y + shiftY][b];
 } else {
 dst[x][y][b] = src[x + shiftX][y - height + shiftY][b];
 }
} else {
 if(y < height - shiftY) {
 dst[x][y][b] = src[x - width + shiftX][y + shiftY][b];
 } else {
 dst[x][y][b] = src[x - width + shiftX][y - height +
 shiftY][b];
 }
}

whereshiftX andshiftY denote the translation factors along thexandyaxes,
respectively.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Images Based on a Functional Description

e

xels
de

se

.) the

ple

he

e

es

n.

at
ThePeriodicShift operation takes one rendered or renderable source imag
and two parameters.

7.9.8 Polar to Complex

ThePolarToComplex operation computes a complex image from a magnitude
and a phase image. The operation creates an image with complex-valued pi
from two images, the respective pixel values of which represent the magnitu
(modulus) and phase of the corresponding complex pixel in the destination
image.

The source images should have the same number of bands. The first source
image contains the magnitude values and the second source image the pha
values. The destination will have twice as many bands with the even-indexed
bands (0, 2, etc.) representing the real and the odd-indexed bands (1, 3, etc
imaginary parts of each pixel.

The pixel values of the destination image are defined for a given complex sam
by the following pseudocode:

dst[x][y][2*b] = src0[x][y][b]*Math.cos(src1[x][y][b])
dst[x][y][2*b+1] = src0[x][y][b]*Math.sin(src1[x][y][b])

where the indexb varies from zero to one less than the number of bands in t
source images.

For phase images with integral data type, it is assumed that the actual phas
angle is scaled from the range [–PI, PI] to the range [0,MAX_VALUE] where
MAX_VALUE is the maximum value of the data type in question.

ThePolarToComplex operation takes two rendered or renderable source imag
and no parameters.

7.9.9 Images Based on a Functional Description

TheImageFunction operation generates an image from a functional descriptio
This operation permits the creation of images on the basis of a functional
specification, which is provided by an object that is an instance of a class th
implements thejavax.media.jai.ImageFunction interface. In other words, to

Parameter Type Description

shiftX Integer The displacement in thex direction.

shiftY Integer The displacement in they direction.
237Release 1.0.1, November 1999

7.9.9 Images Based on a Functional Description IMAGE ENHANCEMENT

238

ted

ntial

he

ned
use this operation, a class containing the functional information must be crea
and this class must implement theImageFunction interface.

TheImageFunction interface merely defines the minimal set of methods
required to represent such a function. The actual implementation of a class
implementing this interface is left to the programmer.

For example, if the function you wanted to generate was the negative expone

exp(-|x| - |y|)

Thejavax.media.jai.ImageFunction implementation would return the
following values:

• isComplex() would return false

• getNumElements() would return 1

• float[] real = new real[width*height];

getElements(x, y, width, height, real, null);

and the implementation would initialize the arrayreal such that

real[j*width + i] = exp(-|x + i| - |y + j|)

or, equivalently

real[k] = exp(-|x + (k % width)]| - |y + (k / width)|)

where 0≤ k < width*height.

The (x,y) coordinates passed to theImageFunction.getElements() methods are
derived by applying an optional translation and scaling to the imagex andy
coordinates. The imagex andy coordinates as usual depend on the values of t
minimumx andy coordinates of the image, which need not be zero.

Specifically, the function coordinates passed togetElements() are calculated
from the image coordinates as:

functionX = xScale*imageX + xTrans;
functionY = yScale*imageY + yTrans;

The number of bands in the destination image will be equal to the value retur
by theImageFunction.getNumElements() method unless the
ImageFunction.isComplex() method returnstrue, in which case it will be
twice that. The data type of the destination image is determined by the
SampleModel specified by anImageLayout object provided via a hint. If no
layout hint is provided, the data type will default to single-precision floating
point.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Images Based on a Functional Description

lues
The double precision floating point form of thegetElements() method will be
invoked if and only if the data type is specified to bedouble. For all other data
types the single precision form ofgetElements() will be invoked and the
destination sample values will be clamped to the data type of the image.

TheImageFunction operation takes seven parameters.

The image width and height are provided explicitly as parameters. These va
override the width and height specified by anImageLayout if such is provided.

API: javax.media.jai.ImageFunction

• boolean isComplex();

returns whether or not each value’s elements are complex.

• int getNumElements();

returns the number of elements per value at each position.

Parameter Type Description

function ImageFunction The functional description.

width Integer The image width.

height Integer The image height.

xScale Float Thex scale factor.

yScale Float They scale factor.

xTrans Float Thex translation.

yTrans Float They translation.
239Release 1.0.1, November 1999

7.10 Single-image Pixel Point Processing IMAGE ENHANCEMENT

240

ay
a

• void getElements(float startX, float startY, float deltaX,
float deltaY, int countX, int countY, int element,
float[] real, float[] imag);

returns all values of a given element for a specified set of coordinates.

• void getElements(double startX, double startY, double deltaX,
double deltaY, int countX, int countY, int element,
double[] real, double[] imag);

returns all values of a given element for a specified set of coordinates.

7.10 Single-image Pixel Point Processing

Pixel point operations are the most basic, yet necessary image processing
operations. The pixel point operations are primarily contrast enhancement
operations that alter the gray levels of an image’s pixels. One-by-one, the gr
level of each pixel in the source image is modified to a new value, usually by
mathematical relationship.

JAI supports the following single-image pixel point operations:

Parameters: startX Thex coordinate of the upper left location
to evaluate.

startY They coordinate of the upper left location
to evaluate.

deltaX The horizontal increment.

deltaY The vertical increment.

countX The number of points in the horizontal
direction.

countY The number of points in the vertical
direction.

element The element.

real A pre-allocated float array of length at least
countX*countY in which the real parts of
all elements will be returned.

imag A pre-allocated float array of length at least
countX*countY in which the imaginary
parts of all elements will be returned; may
be null for real data, i.e., when
isComplex() returns false.
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Logarithmic Enhancement

s
by

ta

o

er
ome
ale.
e

• Pixel inverting (Invert)

• Logarithmic enhancement (Log)

7.10.1 Pixel Inverting

TheInvert operation inverts the pixel values of an image. For source image
with signed data types, the pixel values of the destination image are defined
the following pseudocode:

dst[x][y][b] = -src[x][y][b]

For unsigned data types, the destination values are defined by the following
pseudocode:

dst[x][y][b] = MAX_VALUE – src[x][y][b]

whereMAX_VALUE is the maximum value supported by the system of the da
type of the source pixel.

TheInvert operation takes one rendered or renderable source image and n
parameters.

Figure 7-12 shows a simple example of anInvert operation.

Figure 7-12 Pixel Inverting

7.10.2 Logarithmic Enhancement

Occasionally, it is desirable to quantize an image on a logarithmic scale rath
than a linear scale. The human eye has a logarithmic intensity response but s
images are digitized by equipment that quantizes the samples on a linear sc
To make the image better for use by a human observer, these images may b
made to have a logarithmic response by theLog operation.

Original image Pixel inverted
241Release 1.0.1, November 1999

7.11 Dual Image Pixel Point Processing IMAGE ENHANCEMENT

242

.

. For

the
TheLog operation takes the logarithm of the pixel values of the source image
The pixel values of the destination image are defined by the following
pseudocode:

dst[x][y][b] = java.lang.Math.log(src[x][y][b])

For integral image data types, the result is rounded and clamped as needed
all integral data types, the log of 0 is set to 0. For signed integral data types
(short andint), the log of a negative pixel value is set to –1. For all floating
point data types (float anddouble), the log of 0 is set to –Infinity, and the
log of a negative pixel value is set toNaN.

TheLog operation takes one rendered or renderable source image and no
parameters.

Listing 7-11 shows a code sample for aLog operation.

7.11 Dual Image Pixel Point Processing

The previous section described pixel point operations for single images. This
section deals with pixel point processing on two images, also known asdual-
image point processing. Dual-image point processing maps two pixel
brightnesses, one from each image, to an output image.

JAI supports the following dual-image pixel point operations:

• Overlay images (Overlay operation)

• Image compositing (Composite operation)

7.11.1 Overlay Images

TheOverlay operation takes two rendered or renderable source images, and
overlays the second source image on top of the first source image. Usually,
images are identical scenes, but may have been acquired at different times
through different spectral filters.

Listing 7-11 Example Log Operation

// Create the ParameterBlock specifying the source image.
pb = new ParameterBlock();
pb.addSource(image);

// Create the Log operation.
RenderedImage dst = JAI.create("log", pb);
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Image Compositing

.

e on

me

no

ult

d
s and
o

esult

l

The two source images must have the same data type and number of bands
However, theirSampleModel types may differ. The destination image will always
have the same bounding rectangle as the first source image, that is, the imag
the bottom, and the same data type and number of bands as the two source
images. If the two source images don’t intersect, the destination will be the sa
as the first source.

TheOverlay operation is defined by the following pseudocode:

if (srcs[1] contains the point (x, y)) {
 dst[x][y][b] = srcs[1][x][y][b];
} else {
 dst[x][y][b] = srcs[0][x][y][b];
}

TheOverlay operation takes two rendered or renderable source images and
parameters.

7.11.2 Image Compositing

TheComposite operation merges unrelated objects from two images. The res
is a new image that didn’t exist before. TheComposite operation combines two
images based on their alpha values at each pixel. This is done on a per-ban
basis, and the source images are expected to have the same number of band
the same data type. The destination image has the same data type as the tw
sources, but one extra band than the source images, which represents the r
alpha channel.

The destination pixel values may be viewed as representing a fractional pixe
coverage or transparency factor. Specifically, theComposite operation
implements the Porter-Duff “over” rule1, in which the output color of a pixel
with source value and alpha tuples (A, a) and (B, b) is given by:

a*A + (1 – a)*(b*B)

The output alpha value is given by:

a + (1 – a)*b

For premultiplied sources tuples (a*A, a) and (b*B, b), the premultiplied output
value is simply:

(a*A) + (1 – a)*(b*B)

1. SeeComputer Graphics, July 1984 pp. 253–259.
243Release 1.0.1, November 1999

7.11.2 Image Compositing IMAGE ENHANCEMENT

244

.

d

l of

etely
a type

ha

e
n the
r

e.

e

t

The color channels of the two source images are supplied viasource1 and
source2. The two sources must either both be pre-multiplied by alpha or not
Alpha channel should not be included insource1 andsource2.

TheComposite operation takes two rendered or renderable source images an
four parameters:

The alpha channel of the first source images must be supplied via the
source1Alpha parameter. This parameter may not be null. The alpha channe
the second source image may be supplied via thesource2Alpha parameter. This
parameter may be null, in which case the second source is considered compl
opaque. The alpha images should be single-banded, and have the same dat
as the source image.

ThealphaPremultiplied parameter indicates whether or not the supplied alp
image is premultiplied to both the source images.

The destination image is the combination of the two source images. It has th
color channels and one additional alpha channel (the band index depends o
alphaFirst parameter). Whether the alpha value is pre-multiplied to the colo
channels also depends on the value ofalphaPremultiplied (pre-multiplied if
true).

Listing 7-12 shows a code sample for a composite operation.

Parameter Type Description

source1Alpha PlanarImage An alpha image to override the alpha for the first source.

source2Alpha PlanarImage An alpha image to override the alpha for the second sourc

alphaPremultiplied Boolean True if alpha has been premultiplied to both sources and th
destination.

destAlpha Integer Indicates if the destination image should include an extra
alpha channel, and if so, whether it should be the first or las
band. One of:
CompositeDescriptor.DESTINATION_ALPHA_FIRST
CompositeDescriptor.DESTINATION_ALPHA_LAST
CompositeDescriptor.NO_DESTINATION_ALPHA

Listing 7-12 Example Composite Operation

// Get the first image.
pb = new ParameterBlock();
pb.add(s1);
RenderedImage src1 = (RenderedImage)JAI.create("jpeg", pb);
Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Thresholding

ll
ed
7.12 Thresholding

Thresholding, also known asbinary contrast enhancement, provides a simple
means of defining the boundaries of objects that appear on a contrasting
background. TheThreshold operation takes one rendered image, and maps a
the pixels of this image whose values fall within a specified range to a specifi
constant. The range is specified by a low value and a high value.

The pixel values of the destination image are defined by the following
pseudocode:

lowVal = (low.length < dstNumBands) ?
 low[0] : low[b];
highVal = (high.length < dstNumBands) ?
 high[0] : high[b];
const = (constants.length < dstNumBands) ?
 constants[0] : constants[b];

if (src[x][y][b] >= lowVal && src[x][y][b] <= highVal) {
 dst[x][y][b] = const;
} else {
 dst[x][y][b] = src[x][y][b];
}

// Get the second image
pb = new ParameterBlock();
pb.add(s2);
RenderedImage src2 = (RenderedImage)JAI.create("jpeg", pb);

// Create the ParameterBlock
pb = new ParameterBlock();
pb.addSource(src1);
pb.addSource(src2);
pb.add(new Boolean(false));
pb.add(new Boolean(false));

// Create the composite operation.
RenderedImage dst = (RenderedImage)JAI.create("composite", pb);

Listing 7-12 Example Composite Operation (Continued)
245Release 1.0.1, November 1999

7.12 Thresholding IMAGE ENHANCEMENT

246

d

0 is
lied

l to

e

TheThreshold operation takes one rendered or renderable source image an
three parameters:

If the number of elements supplied via thehigh, low, andconstants arrays are
less than the number of bands of the source image, the element from entry
applied to all the bands. Otherwise, the element from a different entry is app
to its corresponding band.

Thelow parameter defines the lower bound for thethreshold operation for each
band of the image. The operation will affect only values greater than or equa
low[0] in band 0, only values greater than or equal tolow[1] in band 1, and so
on. Thehigh parameter defines the upper bound for thethreshold operation for
each band of the image.

A common way to arrive at the optimal values for thelow andhigh parameters
is to perform anextrema operation on the image (see Section 9.3, “Finding th
Extrema of an Image”).

Listing 7-13 shows a code sample for athreshold operation in which the three
parameters are passed as arguments to the operation.

Parameters Type Description

low double[] The low value.

high double[] The high value

constants double[] The constant the pixels are mapped to.

Listing 7-13 Example Threshold Operation

// Set up the operation parameters.
PlanarImage src, dst;
Integer [] low, high, map;
int bands;

low = new Integer[bands];
high = new Integer[bands];
map = new Integer[bands];

for (int i = 0; i < bands; i++) {
 low[i] = new Integer(args[1]);
 high[i] = new Integer(args[2]);
 map[i] = new Integer(args[3]);
}

Programming in Java Advanced Imaging

IMAGE ENHANCEMENT Thresholding
// Create the threshold operation.
pb = new ParameterBlock();
pb.addSource(src);
pb.add(low);
pb.add(high);
pb.add(map);
RenderedImage dst = JAI.create("threshold", pb);

Listing 7-13 Example Threshold Operation (Continued)
247Release 1.0.1, November 1999

7.12 Thresholding IMAGE ENHANCEMENT

248
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 8
te
Geometric Image
Manipulation

THIS chapter describes the basics of JAI’s geometric image manipulation
functions. The geometric image manipulation operators are all part of the
javax.media.operator package.

8.1 Introduction

The JAI geometric image manipulation functions are:

• Geometric transformation (Translate, Scale, Rotate, andAffine)

• Perspective transformation (PerspectiveTransform)

• Transposing (Transpose)

• Shearing (Shear)

• Warping (Warp, WarpAffine, WarpPerspective, WarpPolynomial,
WarpGeneralPolynomial, WarpQuadratic, andWarpOpImage)

Most of these geometric functions require an interpolation argument, so this
chapter begins with a discussion of interpolation.

8.2 Interpolation

Several geometric image operations, such asAffine, Rotate, Scale, Shear,
Translate, andWarp, use a geometric transformation to compute the coordina
of a source image point for each destination image pixel. In most cases, the
destination pixel does not lie at a source pixel location, but rather lands
249

8.2 Interpolation GEOMETRIC IMAGE MANIPULATION

250

s set

al
and
on

eing

oint

nts

d to
and
nd-
c
te
ove.

the
n

od
sed

e

a

somewhere between neighboring pixels. The estimated value of each pixel i
in a process called interpolation orimage resampling.

Resampling is the action of computing a pixel value at a possibly non-integr
position of an image. The image defines pixel values at integer lattice points,
it is up to the resampler to produce a reasonable value for positions not falling
the lattice. A number of techniques are used in practice, the most common b
the following:

• Nearest-neighbor, which simply takes the value of the closest lattice p

• Bilinear, which interpolates linearly between the four closest lattice poi

• Bicubic, which applies a piecewise polynomial function to a 4× 4
neighborhood of nearby points

The area over which a resampling function needs to be computed is referre
as itssupport; thus the standard resampling functions have supports of 1, 4,
16 pixels respectively. Mathematically, the ideal resampling function for a ba
limited image (one containing no energy above a given frequency) is the sin
function, equal to sin(x)/x. This has practical limitations, in particular its infini
support, which lead to the use of the standard approximations described ab

In interpolation, each pixel in a destination image is located with integer
coordinates at a distinct pointD in the image plane. The geometric transformT
identifies each destination pixel with a corresponding pointS in the source
image. Thus,D is the point thatT maps toS. In general,Sdoesn’t correspond to
a single source pixel; that is, it doesn’t have integer coordinates. Therefore,
value assigned to the pixelD must be computed as an interpolated combinatio
of the pixel values closest toS in the source image.

For most geometric transformations, you must specify the interpolation meth
to be used in calculating destination pixel values. Table 8-1 lists the names u
to call the interpolation methods.

Table 8-1 Interpolation Types

Name Description

INTERP_NEAREST Nearest-neighbor interpolation. Assigns to point D in the destination imag
the value of the pixel nearest S in the source image. See Section 8.2.1,
“Nearest-neighbor Interpolation.”

INTERP_BILINEAR Bilinear interpolation. Assigns to Point D in the destination a value that is
bilinear function of the four pixels nearest S in the source image. See
Section 8.2.2, “Bilinear Interpolation.”
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Interpolation

c

he
on

as
e,

y

bic

tion

t

Occasionally, these four options do not provide sufficient quality for a specifi
operation and a more general form of interpolation is called for. The more
general form of interpolation, calledtable interpolationuses tables to store the
interpolation kernels. See Section 8.2.5, “Table Interpolation.”

Other interpolation functions may be required to solve problems other than t
resampling of band-limited image data. When shrinking an image, it is comm
to use a function that combines area averaging with resampling to remove
undesirable high frequencies as part of the interpolation process. Other
application areas may use interpolation functions that operate under other
assumptions about image data, such as taking the maximum value of a 2× 2
neighborhood. TheInterpolation class provides a framework in which a
variety of interpolation schemes may be expressed.

Many Interpolations are separable, that is, they may be equivalently rewritten
a horizontal interpolation followed by a vertical one (or vice versa). In practic
some precision may be lost by the rounding and truncation that takes place
between the passes. TheInterpolation class assumes separability and
implements all vertical interpolation methods in terms of corresponding
horizontal methods, and definesisSeparable to return true. A subclass may
override these methods to provide distinct implementations of horizontal and
vertical interpolation. Some subclasses may implement the two-dimensional
interpolation methods directly, yielding more precise results, while others ma
implement these using a two-pass approach.

When interpolations that require padding the source such as Bilinear or Bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

INTERP_BICUBIC Bicubic interpolation. Assigns to point D in the destination image a value tha
is a bicubic function of the 16 pixels nearest S in the source
image.Section 8.2.3, “Bicubic Interpolation.”

INTERP_BICUBIC2 Bicubic2 interpolation. Similar to Bicubic, but uses a different polynomial
function. See Section 8.2.4, “Bicubic2 Interpolation.”

Table 8-1 Interpolation Types (Continued)

Name Description
251Release 1.0.1, November 1999

8.2 Interpolation GEOMETRIC IMAGE MANIPULATION

252

s, to

l

Listing 8-1 shows a code sample for arotate operation. First, the type of
interpolation is specified (INTERP_NEAREST in this example) using the
Interpolation.create method. Next, a parameter block is created and the
interpolation method is added to the parameter block, as are all the other
parameters required by the operation. Finally, arotate operation is created with
the specified parameter block.

TheInterpolation class provides methods for the most common cases of 2× 1,
1 × 2, 4 × 1, 1 × 4, 2 × 2, and 4× 4 input grids, some of which are shown in
Figure 8-1. These methods are defined in the superclass (Interpolation) to
package their arguments into arrays and forward the call to the array version
simplify implementation. These methods should be called only on
Interpolation objects with the correct width and height. In other words, an
implementor of anInterpolation subclass may implementinterpolateH(int
s0, int s1, int xfrac), assuming that the interpolation width is in fact equa
to 2, and does not need to enforce this constraint.

Listing 8-1 Example Using Nearest-neighbor Interpolation

// Specify the interpolation method to be used
interp = Interpolation.create(Interpolation.INTERP_NEAREST);

// Create the parameter block and add the interpolation to it
ParameterBlock pb = new ParameterBlock();
pb.addSource(im); // The source image
pb.add(0.0F); // The x origin to rotate about
pb.add(0.0F); // The y origin to rotate about
pb.add(theta); // The rotation angle in radians
pb.add(interp); // The interpolation method

// Create the rotation operation and include the parameter
// block
RenderedOp op JAI.create("rotate", pb, null);
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Interpolation

al
Figure 8-1 Interpolation Samples

Another possible source of inefficiency is the specification of the subsample
position. When interpolating integral image data, JAI uses a fixed-point
subsample position specification, that is, a number between 0 and (2n – 1) for
some small value ofn. The value ofn in the horizontal and vertical directions
may be obtained by calling thegetSubsampleBitsH andgetSubsampleBitsV
methods. In general, code that makes use of an externally-provided
Interpolation object must query that object to determine its desired position
precision.

For float anddouble images, JAI uses afloat between 0.0F and 1.0F (not
including 1.0F) as a positional specifier in the interest of greater accuracy.

API: javax.media.jai.Interpolation

• static Interpolation getInstance(int type)

creates an interpolation of one of the standard types, wheretype is one of
INTERP_NEAREST, INTERP_BILINEAR, INTERP_BICUBIC, or
INTERP_BICUBIC_2.

s0 s1

Sample pair

s0 s1

Sample quadruple

s_ s2

Central sample Central sample

s00 s01

Central sample

2 X 2 Grid

s10 s11 s00 s01

Central sample

s10 s11

s02

s12s1_

s0_

s20 s21 s22s2_

s_0 s_1 s_2s__

4 X 4 grid
253Release 1.0.1, November 1999

8.2 Interpolation GEOMETRIC IMAGE MANIPULATION

254

es.
ints.

s

• int interpolate(int[][] samples, int xfrac, int yfrac)

performs interpolation on a two-dimensional array of integral samples. By
default, this is implemented using a two-pass approach.

• float interpolate(float[][] samples, float xfrac, float yfrac)

performs interpolation on a two-dimensional array of floating-point sampl
This is the same as the above method, only using float values instead of

• double interpolate(double[][] samples, float xfrac,
float yfrac)

Performs interpolation on a 2-dimensional array of double samples.

• int interpolate(int s00, int s01, int s10, int s11, int xfrac,
int yfrac)

performs interpolation on a 2× 2 grid of integral samples. It should only be
called if width == height == 2 and leftPadding == topPadding == 0.

Thes00, s01, s10, ands11 parameters are the sample values (see the 2× 2 grid
illustration in Figure 8-1).

• float interpolate(float s00, float s01, float s10, float s11,
float xfrac, float yfrac)

performs interpolation on a 2× 2 grid of integral samples. This is the same a
the above method, only using float values instead of ints.

• double interpolate(double s00, double s01, double s10, double
s11, float xfrac, float yfrac)

performs interpolation on a 2× 2 grid of double samples.

• int interpolate(int s__, int s_0, int s_1, int s_2, int s0_,
int s00, int s01, int s02, int s1_, int s10, int s11,
int s12, int s2_, int s20, int s21, int s22, int xfrac,
int yfrac)

performs interpolation on a 4× 4 grid of integral samples. It should only be
called if width == height == 4 and leftPadding == topPadding == 1.

Thes__, through s22 parameters are the sample values (see the 4× 4 grid
illustration in Figure 8-1).

Parameters: samples A two-dimensional array of ints.

xfrac Thex subsample position, multiplied by
2subsampleBits.

yfrac They subsample position, multiplied by
2subsampleBits.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Nearest-neighbor Interpolation

s

ntal

al

of
• float interpolate(float s__, float s_0, float s_1, float s_2,
float s0_, float s00, float s01, float s02, float s1_,
float s10, float s11, float s12, float s2_, float s20,
float s21, float s22, float xfrac, float yfrac)

performs interpolation on a 4× 4 grid of integral samples. This is the same a
the above method, only using float values instead of ints.

• abstract int getSubsampleBitsH()

returns the number of bits used to index subsample positions in the horizo
direction. All integralxfrac parameters should be in the range of 0 to
2(getSubsampleBitsH) – 1.

• int getSubsampleBitsV()

returns the number of bits used to index subsample positions in the vertic
direction. All integralyfrac parameters should be in the range of 0 to
2(getSubsampleBitsV) – 1.

8.2.1 Nearest-neighbor Interpolation

Nearest-neighbor interpolation, also known as zero-order interpolation, is the
fastest interpolation method, though it can produce image artifacts calledjaggies
or aliasing error. Jaggies are image artifacts in which the straight edges of
objects appear to be rough or jagged.

Nearest-neighbor interpolation simply assigns to pointD in the destination image
the value of the pixel nearestS in the source image.

Neighborhoods of sizes 2× 1, 1× 2, 2× 2, 4× 1, 1× 4, 4× 4, N × 1, and 1× N,
that is, all theinterpolate() methods defined in theInterpolation class, are
supported in the interest of simplifying code that handles a number of types
interpolation. In each case, the central sample is returned and the rest are
ignored.

API: javax.media.jai.InterpolationNearest

• InterpolationNearest()

constructs anInterpolationNearest. The return value of
getSubsampleBitsH() andgetSubsampleBitsV() will be 0.
255Release 1.0.1, November 1999

8.2.2 Bilinear Interpolation GEOMETRIC IMAGE MANIPULATION

256

ng

t-

t

6
r

ic
8.2.2 Bilinear Interpolation

Bilinear interpolation, also known as first-order interpolation, linearly
interpolates pixels along each row of the source image, then interpolates alo
the columns. Bilinear interpolation assigns to PointD in the destination a value
that is a bilinear function of the four pixels nearestS in the source image.

Bilinear interpolation results in an improvement in image quality over neares
neighbor interpolation, but may still result in less-than-desirable smoothing
effects.

Bilinear interpolation requires a neighborhood extending one pixel to the righ
and below the central sample. If the subsample position is given by (u, v), the
resampled pixel value will be:

API: javax.media.jai.InterpolationBilinear

• InterpolationBilinear(int subsampleBits)

constructs anInterpolationBilinear object with a given subsample
precision, in bits.

• InterpolationBilinear()

constructs anInterpolationBilinear object with the default subsample
precision.

8.2.3 Bicubic Interpolation

Bicubic interpolation reduces resampling artifacts even further by using the 1
nearest neighbors in the interpolation and by using bicubic waveforms rathe
than the linear waveforms used in bilinear interpolation. Bicubic interpolation
preserves the fine detail present in the source image at the expense of the
additional time it takes to perform the interpolation.

The bicubic interpolation routine assigns to pointD in the destination image a
value that is a bicubic function of the 16 pixels nearestS in the source image.

Bicubic interpolation performs interpolation using the following piecewise cub
polynomial:

Parameters: subsampleBits The subsample precision.

(1 –v) * [(1 – u) * p00 +u * p01] + v * [(1 – u) * p10 +u * p11]
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Bicubic2 Interpolation

ft of

a

ft of
Bicubic interpolation requires a neighborhood extending one sample to the le
and above the central sample, and two samples to the right of and below the
central sample.

API: javax.media.jai.InterpolationBicubic

• InterpolationBicubic(int subsampleBits)

constructs anInterpolationBicubic with a given subsample precision, in
bits.

8.2.4 Bicubic2 Interpolation

Bicubic2 interpolation is basically the same as bicubic interpolation, but uses
different polynomial function. Bicubic2 interpolation uses the following
piecewise cubic polynomial:

Bicubic interpolation requires a neighborhood extending one sample to the le
and above the central sample, and two samples to the right of and below the
central sample.

API: javax.media.jai.InterpolationBicubic2

• InterpolationBicubic2(int subsampleBits)

constructs anInterpolationBicubic2 with a given subsample precision, in
bits.

Parameters: subsampleBits The subsample precision.

Parameters: subsampleBits The subsample precision.

r(x) = (a + 2)|x|3 – (a + 3)|x|2

r(x) = a|x|3 – 5a|x|2 + 8a|x| – 4a , 1≤ |x| < 2
+ 1 , 0≤ |x| < 1

r(x) = 0 , otherwise

with a set to –0.5

r(x) = (a + 2)|x|3 – (a + 3)|x|2

r(x) = a|x|3 – 5a|x|2 + 8a|x| – 4a , 1≤ |x| < 2
+ 1 , 0≤ |x| < 1

r(x) = 0 , otherwise

with a set to –1.0
257Release 1.0.1, November 1999

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

258

bic,

,

ore
ed
ins

of

cal
arate
ion.

the

l,
d.

l is
ts

on
8.2.5 Table Interpolation

The previous-described types of interpolation, nearest-neighbor, bilinear, bicu
and bicubic2, base the interpolation values on a relatively few pixels: one
(nearest-neighbor), four (bilinear), or 16 (bicubic and bicubic2). Occasionally
these options don’t provide sufficient quality for a specific operation and a
general form of interpolation is called for. Table interpolation uses tables to st
the interpolation kernels. The set of subpixel positions is broken up into a fix
number of “bins” and a distinct kernel is used for each bin. The number of b
must be a power of two.

An InterpolationTable defines a separable interpolation, with a separate set
kernels for the horizontal and vertical dimensions. The number of bins within
each kernel may vary between the two dimensions. The horizontal and verti
kernels may be unique or the same. That is, you can either construct two sep
kernels or use the same kernel for both the horizontal and vertical interpolat

The kernels are stored in both floating- and fixed-point form. The fixed point
representation has a user-specified fractional precision. You must specify an
appropriate level of precision that will not cause overflow when accumulating
results of a convolution against a set of source pixels, using 32-bit integer
arithmetic.

To use table interpolation, create anInterpolationTable with either identical
horizontal and vertical resampling kernels or with different horizontal and
vertical resampling kernels. The table forms the kernels used for the
interpolation.

During a table interpolation operation, the key value of the resampling kerne
generally the center value, is laid over the source image pixel to be processe
The other kernel values lie over neighboring pixels much like a conventional
M × N kernel operation. Each source image pixel that is covered by the kerne
then multiplied by the kernel value that lies over it. The multiplication produc
are then summed together and this sum becomes the pixel value in the
destination.

To save memory space and computation time, the table interpolation operati
does not use a conventional M× N kernel. Instead, the operation uses separate
horizontal and vertical vector arrays (essentially, M× 1 and N× 1) to calculate
the same values that a M× N kernel would calculate. The vector arrays allow
you to provide fewer data elements for the kernel values. This is particularly
significant for large tables with many subsamples.

The basic format for theInterpolationTable constructor is:
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Table Interpolation

.

l

es to

l
s in
InterpolationTable(int leftPadding, int topPadding, int width,
 int height, int subsampleBitsH,
 int subsampleBitsV, int precisionBits,
 float[] dataH, float[] dataV)

The parameters to the constructor are described in the following paragraphs

8.2.5.1 Padding

TheleftPadding andtopPadding parameters define the location of the centra
sample or key value, relative to the left and top of the horizontal and vertical
kernels, respectively. These parameters actually define the number of sampl
the left of or above the central sample, as shown in Figure 8-2.

Figure 8-2 Table Interpolation Padding

8.2.5.2 Width and Height

Thewidth andheight parameters define the size of the horizontal and vertica
kernels, respectively. These parameters specify the number of data element
each subsample of the kernel. The horizontal and vertical tables can have
different kernel sizes. For the two examples shown in Figure 8-2, thewidth

parameter would be 7, theheight parameter would be 5.

ThegetWidth andgetHeight methods return the number of samples required
for horizontal and vertical resampling, respectively.

Central sample

leftPadding

Horizontal kernel

Vertical kernel

topPadding

Central sample
259Release 1.0.1, November 1999

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

260

ely.
ssed

d

rnel
n’s

rnel
4 in

e
r a
8.2.5.3 Subsample Bits

ThesubsampleBitsH andsubsampleBitsV parameters define the number of
bins used to describe the horizontal and vertical subpixel positions, respectiv
The number of bins must be a power of two, so the values are integers expre
as the log2 of the number of horizontal or vertical subsample positions,
respectively. The valuesubsampleBitsH = 1 defines two subsamples per
horizontal sample,subsampleBitsH = 2 defines four subsamples per sample, an
so on.

For each subsample, you must define separate kernel data. Typically, the ke
values for each subsample are weighted according to the subsample locatio
proximity to the pixels used in the calculation. The closer a pixel is to the
subsample location, the more weight it carries in the kernel.

Figure 8-3 shows how the interpolation tables are used to determine which ke
applies to a particular subsample location. The figure shows a subsample of
both the horizontal and vertical directions.

Typically, the kernel values for each subsample are weighted according to th
subsample location’s proximity to the pixels used in the calculation. The close
pixel is to the subsample location, the more weight it carries in the kernel.

Figure 8-3 Table Interpolation Backwards Mapping

Vertical interpolation tableHorizontal interpolation table

0 1 2 3

0

1

2

3

Backward mapping to
point S’s location

0 1 2 3

0

1

2

3

The subpixel location specifies
which kernel to use
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Table Interpolation

d
for
iate
f a

l
l is:

rnel

les.
ave

f the
s

s

8.2.5.4 Precision

TheprecisionBits parameter defines the number of fractional bits to be use
when resampling integral sample values. The same precision value is used
both horizontal and vertical resampling. It is important to choose an appropr
level of precision that will not cause overflow when accumulating the results o
convolution against a set of source pixels, using 32-bit integer arithmetic.

8.2.5.5 Kernel Data

The kernel data for each table is an array of floating point numbers. ThedataH

anddataV parameters specify the floating-point data values for the horizonta
and vertical kernels, respectively. The number of data elements in the kerne

width × 2subsampleBitsHfor dataH

height × 2subsampleBitsVfor dataV

For a two-element kernel size with eight subsample bins (subsampleBits = 4),
you need to define an array of 16 floating point values. The first two values
define the kernel for the first subsample, the second two values define the ke
for the second subsample, and so on. For example:

The above example creates a bilinear interpolation table with eight subsamp
The kernel values indicate how much influence the source image pixels will h
on the destination value. A kernel value of 1 indicates that a source pixel
completely determines the value of the destination pixel. A kernel value of 0
indicates that the source pixel has no influence on the destination value.

To preserve the source image’s intensity in the destination image, the sum o
data values in each interpolation kernel should equal one. If the kernel value
sum to greater than one, the destination image’s intensity will be increased.
Conversely, if the kernel values sum to less than one, the destination image’
intensity will be decreased.

float[] kernelData = {1.0, 0.0,
 0.875, 0.125, // 7/8, 1/8
 0.75, 0.25, // 6/8, 2/8
 0.625, 0.375, // 5/8, 3/8
 0.5, 0.5, // 4/8, 4/8
 0.375, 0.625, // 3/8, 5/8
 0.25, 0.75, // 2/8, 6/8
 0.125, 0.875 }; // 1/8, 7/8
261Release 1.0.1, November 1999

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

262

al
If a value ofnull is given fordataV, thedataH table data is used for vertical
interpolation as well, and thetopPadding, height, andsubsampleBitsV
parameters are ignored.

API: javax.media.jai.InterpolationTable

• InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, float[] data)

constructs anInterpolationTable with identical horizontal and vertical
resampling kernels.

• InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, double[] data)

constructs an InterpolationTable with identical horizontal and vertical
resampling kernels.

• InterpolationTable(int padding, int width, int subsampleBits,
int precisionBits, int[] data)

Constructs an InterpolationTable with identical horizontal and vertical
resampling kernels.

• InterpolationTable(int leftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, float[] dataH, float[] dataV)

constructs anInterpolationTable with specified horizontal and vertical
extents (support), number of horizontal and vertical bins, fixed-point fraction

Parameters: padding The number of samples to the left or above
the central sample to be used during
resampling.

width The width or height of a resampling kernel.

subsample-

Bits

The log2 of the number of subsample bins.

precision-

Bits

The number of bits of fractional precision
to be used when resampling integral sample
values.

data The kernel entries, as a float array of
width*2subsampleBitsHentries.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Table Interpolation

al

l

precision, and kernel entries. The kernel data values are organized as
2subsampleBits entries each containingwidth floats.

• InterpolationTable(int leftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, double[] dataH, double[] dataV)

constructs anInterpolationTable with specified horizontal and vertical
extents (support), number of horizontal and vertical bins, fixed-point fraction
precision, and kernel entries.

Parameters: leftPadding The number of samples to the left of the
central sample to be used during horizonta
resampling.

topPadding The number of samples above the central
sample to be used during vertical
resampling.

width The width of a horizontal resampling
kernel.

height The height of a vertical resampling kernel.
Ignored ifdataV is null.

subsample-

BitsH

The log2 of the number of horizontal
subsample bins.

subsample-

BitsV

The log2 of the number of vertical
subsample bins. Ignored ifdataV is null.

precision-

Bits

The number of bits of fractional precision
to be used when resampling integral sample
values. The same value is used for both
horizontal and vertical resampling.

dataH The horizontal table entries, as a float array
of 2subsampleBitsHentries each of length
width.

dataV The vertical table entries, as a float array of
2subsampleBitsVentries each of length
height, or null. If null, thedataH table is
used for vertical interpolation as well and
thetopPadding, height, and
subsampleBitsV parameters are ignored.
263Release 1.0.1, November 1999

8.2.5 Table Interpolation GEOMETRIC IMAGE MANIPULATION

264

nts

ntal

al

int

int
• InterpolationTable(int leftPadding, int topPadding, int width,
int height, int subsampleBitsH, int subsampleBitsV,
int precisionBits, int[] dataH, int[] dataV)

constructs an InterpolationTable with specified horizontal and vertical exte
(support), number of horizontal and vertical bins, fixed-point fractional
precision, and int kernel entries.

8.2.5.6 Additional Interpolation Table-related Methods

TheInterpolationTable class provides several methods for retrieving an
interpolation table’s kernel data values, subsample size, and precision.

API: javax.media.jai.InterpolationTable

• int getSubsampleBitsH()

returns the number of bits used to index subsample positions in the horizo
direction.

• int getSubsampleBitsV()

returns the number of bits used to index subsample positions in the vertic
direction.

• int getPrecisionBits()

returns the number of bits of fractional precision used to store the fixed-po
table entries.

• int getLeftPadding()

returns the number of bits of fractional precision used to store the fixed-po
table entries.

• int getTopPadding()

returns the number of samples required above the center.

• int getWidth()

returns the number of samples required for horizontal resampling.

• int getHeight()

returns the number of samples required for vertical resampling.

• int[] getHorizontalTableData()

returns the integer (fixed-point) horizontal table data.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Geometric Transformation

sed,
. A
pter

de:

ir
ry

ge
• int[] getVerticalTableData()

returns the integer (fixed-point) vertical table data.

• float[] getHorizontalTableDataFloat()

returns the floating-point horizontal table data.

• float[] getVerticalTableDataFloat()

returns the floating-point vertical table data.

• double[] getHorizontalTableDataDouble()

returns the double horizontal table data.

• double[] getVerticalTableDataDouble()

returns the double vertical table data.

8.3 Geometric Transformation

Geometric transformations provide the ability to reposition pixels within an
image. Pixels may be relocated from their (x,y) spatial coordinates in the source
image to new coordinates in the destination. Geometric transformations are u
for example, to move (translate), rotate, and scale the geometry of an image
general type of geometric transformation, warp, is discussed later in this cha
(see Section 8.7, “Warping”).

Geometric transformations are used to register multiple images, correct
geometric distortions introduced in the image acquisition process, or to add
visual effects. The geometric transformation operations discussed here inclu

• Translation (Translate) – moves an image up, down, left, or right

• Scaling (Scale) – enlarges or shrinks an image

• Rotation (Rotate) – rotates an image about a given point

• Affine (Affine) – includes translation, scaling, and rotation in one
operation

All transformation operations are performed by moving pixel values from the
original spatial coordinates to new coordinates in the destination image. Eve
pixel in the source image is passed through this transformation, creating a
geometrically-transformed output pixel location. Each pixel of the source ima
is transformed, pixel by pixel, to its new location in the destination image.

With a very few exceptions, all transformations result in some output pixel
locations being missed because no input pixels were transformed there. The
265Release 1.0.1, November 1999

8.3.1 Translation Transformation GEOMETRIC IMAGE MANIPULATION

266

in
re

ur

he
n by

is
missed locations will be devoid of any pixel values and result in a black hole
the destination image. To overcome this problem, intermediate pixel values a
estimated through interpolation (See “Interpolation” on page 249). One of fo
interpolation methods may be selected:

8.3.1 Translation Transformation

Image translation is the spatial shifting of an image up, down, left, or right. T
relationships between the source and destination image coordinates are give
the following equation:

(8.1)

where:

xD andyD are the integer pixel coordinates of the destination image

tx andty are the translation values

x'Sandy'Sdenote the source image point from which the pixel estimate
computed.

Translation is often used to register multiple images geometrically. The
translation is often carried out to align the images before performing a
combination operation, such as image addition, subtraction, division, or
compositing.

interpolation
Methods Description

INTERP_NEAREST Use nearest-neighbor interpolation

INTERP_BILINEAR Use bilinear interpolation

INTERP_BICUBIC Use bicubic interpolation

INTERP_BICUBIC2 Use bicubic2 interpolation (uses a different polynomial function)

xD x'S tx+=

yD y'S ty+=
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Translation Transformation

d

bic

tion
Figure 8-4 Translate Operation

Thetranslate operation takes one rendered or renderable source image an
three parameters:

ThexTrans parameter corresponds totx and theyTrans parameter corresponds
to ty in equation 8.1. IfxTrans is positive, the translation is to the right; if
negative, to the left. IfyTrans is positive, the translation is down; if negative,
upward. If bothxTrans andyTrans are integral, the operation simplywraps its
source image to change the image’s position in the coordinate plane.

When interpolations that require padding the source such as bilinear or bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Parameters Type Description

xTrans Float The displacement in thex direction. The default value is
0.0F.

yTrans Float The displacement in they direction. The default value is
0.0F.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2. The default
value isnull.

Original image Image translated using
positive values in both x and y
267Release 1.0.1, November 1999

8.3.2 Scaling Transformation GEOMETRIC IMAGE MANIPULATION

268

hbor

is.

el
Listing 8-2 shows a code sample for a translate operation using nearest-neig
interpolation.

8.3.2 Scaling Transformation

Scaling, also known asminificationandmagnification, enlarges or shrinks an
image. Anx-value defines the amount of scaling in thex direction, and ay-value
defines the amount of scaling in they direction. TheScale operation both
translates and resizes.

Scaling is often used to geometrically register multiple images prior to
performing a combination operation, such as image addition, subtraction,
division, or compositing. Scaling can also be used to correct geometric
distortions introduced in the image acquisition process, although theAffine

operation (“Affine Transformation” on page 272) would be more suitable for th

For each pixel (x, y) of the destination, the source value at the fractional subpix
position is constructed by means of anInterpolation object and written to the
destination.

Thescale operation takes one rendered or renderable source image and five
parameters:

Listing 8-2 Example Translate Operation

// Create a ParameterBlock and specify the source and
// parameters.
ParameterBlock pb = new ParameterBlock();
 pb.addSource(im); // The source image
 pb.add((float)Math.max(-mx, 0)); // The x translation
 pb.add((float)Math.max(-my, 0)); // The y translation
 pb.add(new InterpolationNearest()); // The interpolation

// Create the translate operation
im = JAI.create("translate", pb, null);

Parameters Type Description

xScale Float Thex scale factor.

yScale Float They scale factor.

x' x xTrans–
xScale

-------------------------=

y' y yTrans–
yScale

-------------------------=
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Scaling Transformation

ge.

bic

tion

led
ver

at
When applying scale factors (xScale andyScale) to a source image with width
of src_width and height ofsrc_height, the resulting image is defined to have
the following dimensions:

dst_width = src_width * xScale
dst_height = src_height * yScale

Scale factors greater than 1.0 magnify the image; less than 1.0 minify the ima
ThexTrans parameter corresponds totx and theyTrans parameter corresponds
to ty in equation 8.1. IfxTrans is positive, the translation is to the right; if
negative, to the left. IfyTrans is positive, the translation is down; if negative,
upward.

Figure 8-5 Scale Operation

When interpolations that require padding the source such as Bilinear or Bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. See Section 3.7.3, “Rendering Hints.”

If no Border Extension is specified, the source will not be extended. The sca
image size is still calculated according to the equation specified above. Howe
since there isn’t enough source to compute all the destination pixels, only th

xTrans Float Thex translation.

xTrans Float They translation.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2.

Parameters Type Description

Original image Image scaled by a factor
of 1.2 in x and y (no

Image scaled by
0.8 in x and 1.0 in y

translation (no translation)
269Release 1.0.1, November 1999

8.3.3 Rotation Transformation GEOMETRIC IMAGE MANIPULATION

270

in

to

ve
subset of the destination image’s pixels that can be computed will be written
the destination. The rest of the destination will not be written.

Listing 8-3 shows a code sample for aScale operation using a scale factor of 1.2
and nearest-neighbor interpolation.

8.3.3 Rotation Transformation

Therotate operation rotates an image about a given point by a given angle.
Specifiedx andy values define the coordinate of the source image about which
rotate the image and a rotation angle inradiansdefines the angle of rotation
about the rotation point. If no rotation point is specified, a default of (0,0) is
assumed.

A negative rotation value rotates the image counter-clockwise, while a positi
rotation value rotates the image clockwise.

Figure 8-6 Rotate Operation

Listing 8-3 Example Scale Operation

// Create a ParameterBlock and specify the source and
// parameters
ParameterBlock pb = new ParameterBlock();
 pb.addSource(im); // The source image
 pb.add(1.2); // The xScale
 pb.add(1.2); // The yScale
 pb.add(0.0F); // The x translation
 pb.add(0.0F); // The y translation
 pb.add(new InterpolationNearest()); // The interpolation

// Create the scale operation
im = JAI.create("scale", pb, null);

Original image Image rotated 45 degrees
about the reference point
(0.0, 0.0)
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Rotation Transformation

ur

bic

tion

ple
Therotate operation takes one rendered or renderable source image and fo
parameters:

When interpolations that require padding the source such as Bilinear or Bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Listing 8-4 shows a code sample for aRotate operation for a rotation angle of
45 degrees. Since the rotation angle must be specified in radians, the exam
first converts 45 degrees to radians.

Parameters Type Description

xOrigin Float Thex origin to rotate about.

yOrigin Float They origin to rotate about.

angle Float The rotation angle in radians.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2.

Listing 8-4 Example Rotate Operation

// Create the rotation angle (45 degrees) and convert to
// radians.
int value = 45;
float angle = (float)(value * (Math.PI/180.0F));

// Create a ParameterBlock and specify the source and
// parameters
ParameterBlock pb = new ParameterBlock();
 pb.addSource(im); // The source image
 pb.add(0.0F); // The x origin
 pb.add(0.0F); // The y origin
 pb.add(angle); // The rotation angle
 pb.add(new InterpolationNearest()); // The interpolation

// Create the rotate operation
im = JAI.create("Rotate", pb, null);
271Release 1.0.1, November 1999

8.3.4 Affine Transformation GEOMETRIC IMAGE MANIPULATION

272

ines

d
y

o

8.3.4 Affine Transformation

An affine transformis a transformation of an image in which straight lines
remain straight and parallel lines remain parallel, but the distance between l
and the angles between lines may change. Affine transformations include
translation, scaling, and rotation.

Although there are separate JAI operations to handle translation, scaling, an
rotation, theAffine operation can perform any of these transformations or an
combination, such as scale and rotate.

TheAffine operation performs (possibly filtered) affine mapping between a
source and a destination image. For each pixel (x, y) of the destination, the
source value at the fractional subpixel position (x', y') is constructed by means of
anInterpolation object and written to the destination.

Theaffine operation takes one rendered or renderable source image and tw
parameters:

The mapping between the destination pixel (x, y) and the source position (x', y')
is given by:

x' = m00 * x + m01 * y + m02
y' = m10 * x + m11 * y + m12 (8.2)

wherem is a 3× 2 transform matrix that inverts the matrix supplied as the
transform argument.

The six elements of the transform matrix arem00, m01, m02, m10, m11, andm12.
The constructor looks like this:

AffineTransform tr = new AffineTransform(m00, m10,
 m01, m11,
 m02, m12);

These six elements affect the transformation as follows:

Parameter Type Description

transform AffineTransform The affine transform matrix.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2.

Element Description

m00 Thex coordinate scale element

m10 They coordinate shear element
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Affine Transformation

bic

tion
The following matrix will translate an image 100 pixels to the right and 200
pixels down:

The following matrix will zoom an image by a factor of 2 in both thex andy
directions:

Figure 8-7 Affine Operation

When interpolations that require padding the source such as Bilinear or Bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina

m01 Thex coordinate shear element

m11 They coordinate scale element

m02 Thex coordinate translate element

m12 They coordinate translate element

AffineTransform tr = new AffineTransform(1.0,
 0.0,
 0.0,
 1.0,
 100.0,
 200.0);

AffineTransform tr = new AffineTransform(2.0,
 0.0,
 0.0,
 2.0,
 0.0,
 0.0);

Element Description

Original image Affine operation showing
a 45 degree counterclockwise
rotation about the center
273Release 1.0.1, November 1999

8.3.4 Affine Transformation GEOMETRIC IMAGE MANIPULATION

274
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Listing 8-5 shows a code sample for anAffine operation that performs a 45
degree counterclockwise rotation.

API: java.awt.geom.AffineTransform

• static AffineTransform getTranslateInstance(double tx,
double ty)

returns a transform representing a translation transformation.

Listing 8-5 Example Affine Transform Operation

// Load the image.
String filename = "images/Trees.gif";
PlanarImage im = (PlanarImage)JAI.create("fileload",
 filename);

// Create the affine transform matrix.
AffineTransform tr = new AffineTransform(0.707107,
 -0.707106,
 0.707106,
 0.707106,
 0.0,
 0.0);

// Specify the type of interpolation.
Interpolation interp = new InterpolationNearest();

// Create the affine operation.
PlanarImage im2 = (PlanarImage)JAI.create("affine", im, tr,
 interp);

Parameters: tx The distance by which coordinates are
translated in thex axis direction.

ty The distance by which coordinates are
translated in they axis direction
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Perspective Transformation

ra is
ove
flat

the
• static AffineTransform getRotateInstance(double theta)

returns a transform representing a rotation transformation.

• static AffineTransform getRotateInstance(double theta,
double x, double y)

returns a transform that rotates coordinates around an anchor point.

• static AffineTransform getScaleInstance(double sx, double sy)

returns a transform representing a scaling transformation.

• static AffineTransform getShearInstance(double shx, double shy)

returns a transform representing a shearing transformation.

8.4 Perspective Transformation

Perspective distortions in images are sometimes introduced when the came
at an angle to the subject. For an example, think of a camera in an aircraft ab
the earth. If the camera is aimed straight down, the resulting image will be a
perspective image; that is, no distortion. All objects in the image appear in
correct size relative to one another. However, if the camera is angled toward

Parameters: theta The angle of rotation in radians.

Parameters: theta The angle of rotation in radians.

x Thex coordinate of the anchor point of the
rotation.

y They coordinate of the anchor point of the
rotation.

Parameters: sx The factor by which coordinates are scaled
along thex axis direction.

sy The factor by which coordinates are scaled
along they axis direction.

Parameters: shx The multiplier by which coordinates are
shifted in the direction of the positivex axis
as a factor of theiry coordinate.

shy The multiplier by which coordinates are
shifted in the direction of the positivey axis
as a factor of theirx coordinate.
275Release 1.0.1, November 1999

8.4 Perspective Transformation GEOMETRIC IMAGE MANIPULATION

276

era
ctive

ved
earth horizon, perspective distortion is introduced. Objects closer to the cam
appear larger than same-sized objects farther away from the camera. Perspe
distortion has reduced the scale of the objects farthest away.

Perspective distortion can be corrected by applying aperspective transform. The
perspective transform maps an arbitrary quadrilateral into another arbitrary
quadrilateral, while preserving the straightness of lines. Unlike an affine
transformation, the parallelism of lines in the source is not necessarily preser
in the output.

The perspective transform is represented by a 3× 3 matrix that transforms
homogenous source coordinates (x, y, 1) into destination coordinates (x', y', w).
To convert back into non-homogenous coordinates,x' andy' are divided byw.

The perspective transform is used with the perspective warp operation. See
Section 8.7.7, “Perspective Warp.”

API: javax.media.jai.PerspectiveTransform

• PerspectiveTransform(float m00, float m01, float m02,
float m10, float m11, float m12, float m20, float m21,
float m22)

constructs a newPerspectiveTransform from nine float values.

• PerspectiveTransform(float[] flatmatrix)

constructs a newPerspectiveTransform from a one-dimensional array of
nine float values, in row-major order.

x'

y'

w

m00 m01 m02

m10 m11 m12

m20 m21 m22

x

y

1

m00x m01y m02+ +

m10x m11y m12+ +

m20x m21y m22+ +

= =

x' m00x m01y m02+ +
m20x m21y m22+ +
---=

y' m10x m11y m12+ +
m20x m21y m22+ +
---=

X
x'
w
----=

Y
y'
w
----=
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Mapping a Quadrilateral

ve

e a

ary
• PerspectiveTransform(float[][] matrix)

constructs a newPerspectiveTransform from a two-dimensional array of
float values.

• PerspectiveTransform(double m00, double m01, double m02,
double m10, double m11, double m12, double m20, double m21,
double m22)

constructs a newPerspectiveTransform from nine double values.

• PerspectiveTransform(double[] flatmatrix)

constructs a newPerspectiveTransform from a one-dimensional array of
nine double values, in row-major order.

• PerspectiveTransform(double[][] matrix)

constructs a newPerspectiveTransform from a two-dimensional array of
double values.

• PerspectiveTransform(AffineTransform transform)

constructs a newPerspectiveTransform with the same effect as an existing
AffineTransform.

8.4.1 Performing the Transform

ThePerspectiveTransform class contains methods that perform the perspecti
transform on a specified point, an array of point objects, an array of floating
point coordinates, or an array of double precision coordinates.

8.4.2 Mapping a Quadrilateral

ThePerspectiveTransform class contains methods that may be used to creat
perspective transform that can be used to map a unit square to or from an
arbitrary quadrilateral and to map an arbitrary quadrilateral onto another arbitr
quadrilateral. ThegetSquareToQuad methods map the unit square onto an
arbitrary quadrilateral:

(0, 0)→ (x0, y0)
(1, 0)→ (x1, y1)
(1, 1)→ (x2, y2)
(0, 1)→ (x3, y3)

ThegetQuadToSquare methods map an arbitrary quadrilateral onto the unit
square:

(x0, y0) → (0, 0)
277Release 1.0.1, November 1999

8.4.2 Mapping a Quadrilateral GEOMETRIC IMAGE MANIPULATION

278

y

y

e

e

(x1, y1) → (1, 0)
(x2, y2) → (1, 1)
(x3, y3) → (0, 1)

ThegetQuadToQuad methods map an arbitrary quadrilateral onto another
arbitrary quadrilateral:

(x0, y0) → (x0p,y0p)
(x1, y1) → (x1p,y1p)
(x2, y2) → (x2p,y2p)
(x3, y3) → (x3p,y3p)

API: javax.media.jai.PerspectiveTransform

• static PerspectiveTransform getSquareToQuad(double x0,
double y0, double x1, double y1, double x2, double y2,
double x3, double y3)

creates aPerspectiveTransform that maps the unit square onto an arbitrar
quadrilateral.

• static PerspectiveTransform getSquareToQuad(float x0, float y0,
float x1, float y1, float x2, float y2, float x3, float y3)

creates aPerspectiveTransform that maps the unit square onto an arbitrar
quadrilateral.

• static PerspectiveTransform getQuadToSquare(double x0,
double y0, double x1, double y1, double x2, double y2,
double x3, double y3)

creates aPerspectiveTransform that maps an arbitrary quadrilateral onto th
unit square.

• static PerspectiveTransform getQuadToSquare(float x0, float y0,
float x1, float y1, float x2, float y2, float x3, float y3)

creates aPerspectiveTransform that maps an arbitrary quadrilateral onto th
unit square.

• static PerspectiveTransform getQuadToQuad(double x0, double y0,
double x1, double y1, double x2, double y2, double x3,
double y3, double x0p, double y0p, double x1p, double y1p,
double x2p, double y2p, double x3p, double y3p)

creates aPerspectiveTransform that maps an arbitrary quadrilateral onto
another arbitrary quadrilateral.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Inverse Perspective Transform

e a
her
• static PerspectiveTransform getQuadToQuad(float x0, float y0,
float x1, float y1, float x2, float y2, float x3, float y3,
float x0p, float y0p, float x1p, float y1p, float x2p,
float y2p, float x3p, float y3p)

creates aPerspectiveTransform that maps an arbitrary quadrilateral onto
another arbitrary quadrilateral.

8.4.3 Mapping Triangles

ThePerspectiveTransform class contains methods that may be used to creat
perspective transform that can be used to map one arbitrary triangle to anot
arbitrary triangle. This is done with one of thegetTriToTri methods

API: javax.media.jai.PerspectiveTransform

• static AffineTransform getTriToTri(double x0, double y0, double
x1, double y1, double x2, double y2)

creates anAffineTransform that maps an arbitrary triangle onto another
arbitrary triangle:

(x0, y0) → (x0p,y0p)
(x1, y1) → (x1p,y1p)
(x2, y2) → (x2p,y2p)

• static AffineTransform getTriToTri(float x0, float y0, float
x1, float y1, float x2, float y2)

creates anAffineTransform that maps an arbitrary triangle onto another
arbitrary triangle:

(x0, y0) → (x0p,y0p)
(x1, y1) → (x1p,y1p)
(x2, y2) → (x2p,y2p)

8.4.4 Inverse Perspective Transform

ThePerspectiveTransform class contains methods to perform an inverse
perspective transform. One of theinverseTransform methods inverse
transforms a specified Point2D to another Point2D. AnotherinverseTransform

method inverse transforms an array of double-precision coordinates.
279Release 1.0.1, November 1999

8.4.5 Creating the Adjoint of the Current Transform GEOMETRIC IMAGE MANIPULATION

280

,
hat
n

form.

t is

the

tors
API: javax.media.jai.PerspectiveTransform

• Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)

inverse transforms the specifiedptSrc and stores the result inptDst. If ptDst
is null, a newPoint2D object will be allocated before storing. In either case
ptDst containing the transformed point is returned for convenience. Note t
ptSrc andptDst can the same. In this case, the input point will be overwritte
with the transformed point.

• inverseTransform(double[] srcPts, int srcOff, double[] dstPts,
int dstOff, int numPts)

inverse transforms an array of double precision coordinates by this trans

8.4.5 Creating the Adjoint of the Current Transform

ThePerspectiveTransform class contains a method for creating a new
PerspectiveTransform that is the adjoint of the current transform. The adjoin
defined as the matrix of cofactors, which in turn are the determinants of the
submatrices defined by removing the row and column of each element from
original matrix in turn.

The adjoint is a scalar multiple of the inverse matrix. Because points to be
transformed are converted into homogeneous coordinates, where scalar fac

Parameters: ptSrc The point to be inverse transformed.

ptDst The resulting transformed point.

Parameters: srcPts The array containing the source point
coordinates. Each point is stored as a pair
of x,y coordinates.

srcOff The offset to the first point to be
transformed in the source array.

dstPts The array where the transformed point
coordinates are returned. Each point is
stored as a pair ofx,y coordinates.

dstOff The offset to the location where the first
transformed point is stored in the
destination array.

numPts The number of point objects to be
transformed.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Transposing

rm.

left

per

one
are irrelevant, the adjoint may be used in place of the true inverse. Since it is
unnecessary to normalize the adjoint, it is both faster to compute and more
numerically stable than the true inverse.

API: javax.media.jai.PerspectiveTransform

• public PerspectiveTransform createAdjoint()

returns a new PerpectiveTransform that is the adjoint of the current transfo

8.5 Transposing

TheTranspose operation is a combination of flipping and rotating. With a
Transpose operation, you can (see Figure 8-8):

• Flip an image vertically across an imaginary horizontal axis that runs
through the center of the image (FLIP_VERTICAL).

• Flip an image horizontally across an imaginary vertical axis that runs
through the center of the image (FLIP_HORIZONTAL).

• Flip an image across its main diagonal axis, which runs from the upper
to the lower right corner (FLIP_DIAGONAL).

• Flip an image across its main anti-diagonal axis, which runs from the up
right to the lower left corner (FLIP_ANTIDIAGONAL).

• Rotate an image counterclockwise about its center by 90, 180, or 270
degrees (ROTATE_90, ROTATE_180, ROTATE_270).

Thetranspose operation takes one rendered or renderable source image and
parameter:

Parameter Type Description

type Integer The type of flip operation to be performed. One of
FLIP_VERTICAL, FLIP_HORIZONTAL, FLIP_DIAGONAL,
FLIP_ANTIDIAGONAL, ROTATE_90, ROTATE_180, or
ROTATE_270
281Release 1.0.1, November 1999

8.5 Transposing GEOMETRIC IMAGE MANIPULATION

282

age
Figure 8-8 Transpose Operations

Listing 8-6 shows sample code for creating aTranspose operation. The example
performs a horizontal flip on the source image and creates the destination im
im2.

Original image FLIP_VERTICAL FLIP_HORIZONTAL

FLIP_DIAGONAL FLIP_ANTIDIAGONAL

ROTATE_90 ROTATE_180 ROTATE_270
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Shearing

ible
in

.

el
8.6 Shearing

Shearing can be visualized by thinking of an image superimposed onto a flex
rubber sheet. If you hold the sides of the sheet and move them up and down
opposite directions, the image will undergo a spatial stretching known as
shearing. Theshear operation shears an image either horizontally or vertically

Figure 8-9 Shearing Operations

For each pixel (x, y) of the destination, the source value at the fractional subpix
position (x', y') is constructed by means of anInterpolation object and written
to the destination (see “Interpolation” on page 249).

Listing 8-6 Example Transpose Operation

// Create a pattern image.
ParameterBlock pb = new ParameterBlock();
pb.add(image);
PlanarImage im0 = (PlanarImage)JAI.create("awtImage", pb);

// Transpose type : 0=FLIP_VERTICAL
// : 1=FLIP_HORIZONTAL
// : 2=FLIP_DIAGONAL
// : 3=FLIP_ANTIDIAGONAL
// : 4=ROTATE_90
// : 5=ROTATE_180
// : 6=ROTATE_270
int type = 1;

// Create the Transpose operation.
PlanarImage im2 = (PlanarImage)JAI.create("transpose", im0,
 type);

Original image Shear horizontal Shear vertical
283Release 1.0.1, November 1999

8.6 Shearing GEOMETRIC IMAGE MANIPULATION

284

bic

tion
Theshear operation takes one rendered source image and five parameters:

For ashearDir parameter ofSHEAR_HORIZONTAL:

For ashearDir parameter ofSHEAR_VERTICAL:

When interpolations that require padding the source such as Bilinear or Bicu
interpolation are specified, the boundary of the source image needs to be
extended such that it has the extra pixels needed to compute all the destina
pixels. This extension is performed via theBorderExtender class. The type of
border extension can be specified as aRenderingHint to theJAI.create
method. If no border extension type is provided, a default extension of
BorderExtender.BORDER_COPY will be used to perform the extension. See
Section 3.7.3, “Rendering Hints.”

Listing 8-7 shows a code sample for aShear operation.

Parameters Type Description

shear Float The shear value.

shearDir Integer The shear direction:SHEAR_HORIZONTAL or
SHEAR_VERTICAL

xTrans Float Thex translation.

yTrans Float They translation.

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2.

Listing 8-7 Example Shear Operation

// Load the image.
String filename = "images/Picketfence.gif";
PlanarImage im0 = (PlanarImage)JAI.create("fileload",
 filename);

imagePanel1 = new ScrollingImagePanel(im0, 512, 512);

// Specify the type of interpolation.
Interpolation interp = new InterpolationNearest();

x' x xTrans y shear⋅––=

y' y=

x' x=

y' y yTrans x shear⋅––=
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Warping

the
has

des

er
8.7 Warping

The linear geometric transformations described in Section 8.3, “Geometric
Transformation,” cannot introduce curvature in the mapping process. Image
warping is a type of geometric transformation that introduces curvature into
mapping process. The introduction of curvature is important when an image
been distorted through lens aberrations and other non-linear processes.

Warping transformations, also known asrubber sheettransformations, can
arbitrarily stretch the image about defined points. This type of operation provi
a nonlinear transformation between source and destination coordinates.

JAI provides a transformation class,Warp, that is used for non-linear image
coordinate transformation. As in theInterpolation class (see Section 8.2,
“Interpolation”), pixel positions in theWarp class are represented using fixed-
point coordinates, yielding subpixel accuracy but still allowing the use of integ
arithmetic. The degree of precision is set by means of thegetSubSampleBitsH

(horizontal) andgetSubSampleBitsV (vertical) parameters to thewarpRect
method.

// Set the shear direction:
// 0 = SHEAR_HORIZONTAL
// 1 = SHEAR_VERTICAL
int shear_dir = 1;

// Set the shear value and the x and y translation values.
float shear_amt = 0.7F;
float x_trans = 50.0F;
float y_trans = 100.0F;

// Create the Shear operation.
PlanarImage im2 = (PlanarImage)JAI.create("shear",
 im0,
 shear_amt,
 shear_dir,
 x_trans,
 y_trans,
 interp);

// Display the image.
imagePanel2 = new ScrollingImagePanel(im2, 512, 512);
add(imagePanel2);
pack();
show();

Listing 8-7 Example Shear Operation (Continued)
285Release 1.0.1, November 1999

8.7 Warping GEOMETRIC IMAGE MANIPULATION

286

tput

an

n
l)
ixed
The key method of this class iswarpRect, which provides the locations of the
pixels in source space that map to a given rectangular output region. The ou
region is specified using normal integer (full pixel) coordinates. The source
positions returned by the method are specified in fixed-point, subpixel
coordinates.

JAI supports seven warping functions:

• Polynomial warp – a polynomial-based description of an image warp
(WarpPolynomial).

• General polynomial warp – a general polynomial-based description of
image warp (WarpGeneralPolynomial).

• Grid warp – a regular grid-based description of an image warp (WarpGrid).

• Quadratic warp – a quadratic-based description of an image warp
(WarpQuadratic).

• Cubic warp – a cubic-based description of an image warp (WarpCubic).

• Perspective warp – a perspective (projective) warp (WarpPerspective).

• Affine warp – affine-based warp (WarpAffine).

API: javax.media.jai.Warp

• int[] warpRect(int x, int y, int width, int height,
int subsampleBitsH, int subsampleBitsV, int[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region. The destination region is specified using normal integral (full pixe
coordinates. The source positions returned by the method are specified in f
point, subpixel coordinates using the current value ofgetSubsampleBitsH()
andgetSubsampleBitsV().

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

subsampleBitsH The number of fractional bits used to
specify horizontal offsets in the
warpPositions data.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Warping

ls

n
l)
n

ls

he
l

ls

he

ls
or
As a convenience, an implementation is provided for this method that cal
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

• float[] warpRect(int x, int y, int width, int height,
float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region. The destination region is specified using normal integral (full pixe
coordinates. The source positions returned by the method are specified i
floating point.

As a convenience, an implementation is provided for this method that cal
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

• int[] warpPoint(int x, int y, int subsampleBitsH,
int subsampleBitsV, int[] destRect)

computes the source subpixel position for a given destination pixel. The
destination pixel is specified using normal integral (full pixel) coordinates. T
source position returned by the method is specified in fixed point, subpixe
coordinates using thesubsampleBitsH andsubsampleBitsV parameters.

As a convenience, an implementation is provided for this method that cal
warpSparseRect(). Subclasses may wish to provide their own
implementations for better performance.

• float[] warpPoint(int x, int y, float[] destRect)

computes the source subpixel position for a given destination pixel. The
destination pixel is specified using normal integral (full pixel) coordinates. T
source position returned by the method is specified in floating point.

As a convenience, an implementation is provided for this method that cal
warpRect(). Subclasses may wish to provide their own implementations f
better performance.

subsampleBitsV The number of fractional bits used to
specify vertical offsets in the
warpPositions data.

destRect An int array containing at least
2*width*height elements, or null. If null,
a new array will be constructed.
287Release 1.0.1, November 1999

8.7 Warping GEOMETRIC IMAGE MANIPULATION

288

n
fied
by

ls
o

n
fied
by
• int[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, int subsampleBitsH,
int subsampleBitsV, int[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period. The destination region is speci
using normal integral (full pixel) coordinates. The source positions returned
the method are specified in fixed point, subpixel coordinates using the
subsampleBitsH andsubsampleBitsV parameters.

As a convenience, an implementation is provided for this method that cal
warpSparseRect() with a floatdestRect parameter. Subclasses may wish t
provide their own implementations for better performance.

• abstract float[] warpSparseRect(int x, int y, int width,
int height, int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period. The destination region is speci
using normal integral (full pixel) coordinates. The source positions returned
the method are specified in floating point.

Parameters: x The minimumX coordinate of the
destination region.

y The minimumY coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The horizontal sampling period.

subsample-

BitsH

The number of fractional bits used to
specify horizontal offsets in the
warpPositions data.

subsample-

BitsV

The number of fractional bits used to
specify vertical offsets in the
warpPositions data.

destRect An int array containing at least

elements, or null. If null, a new array will
be constructed.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Performing a Warp Operation

e that
tine

he

d

,

This method is abstract in this class and must be provided in concrete
subclasses.

• Rectangle mapDestRect(Rectangle destRect)

computes a rectangle that is guaranteed to enclose the region of the sourc
is required in order to produce a given rectangular output region. The rou
may return null if it is infeasible to compute such a bounding box.

The default (superclass) implementation returns null.

8.7.1 Performing a Warp Operation

TheWarp operation performs general warping on an image. Thewarp operation
takes one rendered source image and two parameters:

To create a warp operation:

1. Create the warp object, which specifies the type of warp operation. T
warp object will be one of the following:

Parameters: destRect TheRectangle in destination coordinates.

Parameters Type Description

warp Warp The warp object. One of
WarpAffine
WarpGrid
WarpPerspective
WarpPolynomial
WarpQuadratic
WarpOpImage

interpolation Interpolation The interpolation method for resampling. One of
INTERP_NEAREST, INTERP_BILINEAR,
INTERP_BICUBIC, orINTERP_BICUBIC2.

Object Description

WarpAffine An affine-based image warp. See Section 8.7.8, “Affine
Warp.”

WarpCubic A cubic-based image warp. See Section 8.7.6, “Cubic
Warp.”

WarpGeneralPolynomial A polynomial-based image warp for polynomials of a
higher degree. See Section 8.7.3, “General Polynomial
Warp.”

WarpGrid A grid-based image warp where the image may be warpe
in pieces. See Section 8.7.4, “Grid Warp.”

WarpPerspective A perspective or projective image warp. See Section 8.7.7
“Perspective Warp.”
289Release 1.0.1, November 1999

8.7.1 Performing a Warp Operation GEOMETRIC IMAGE MANIPULATION

290

or

te all

s a
2. Create theParameterBlock object and add the source image and the
necessary parameters to it. TheWarp operation takes two parameters:

When interpolations that require padding the source such as Bilinear
Bicubic interpolation are specified, the boundary of the source image
needs to be extended such that it has the extra pixels needed to compu
the destination pixels. This extension is performed via the
BorderExtender class. The type of border extension can be specified a
RenderingHint to theJAI.create method. If no border extension type is
provided, a default extension ofBorderExtender.BORDER_COPY will be
used to perform the extension. See Section 3.7.3, “Rendering Hints.”

3. Create the warp operation with theJAI.create method.

Listing 8-8 shows a sample code for a simple second-order warp operation.

WarpPolynomial A polynomial-based description of an image warp. See
Section 8.7.2, “Polynomial Warp.”

WarpQuadratic A quadratic-based description of an image warp. See
Section 8.7.5, “Quadratic Warp.”

Parameter Description

warp TheWarp object. One ofWarpAffine, WarpCubic,
WarpGeneralPolynomial, WarpGrid, WarpPerspective,
WarpPolynomial, orWarpQuadratic.

interpolation The interpolation method for resampling. One ofINTERP_NEAREST,
INTERP_BILINEAR, INTERP_BICUBIC, orINTERP_BICUBIC2.

Listing 8-8 Example of a Second-order Warp

// Create WarpPolynomial object for a polynomial warp
// operation.
WarpPolynomial warp;
 float[] coeffs = { 1.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F };

// Create the ParameterBlock and add the parameters to it.
ParameterBlock pb = new ParameterBlock();
 pb.addSource(srcImage);
 pb.add(warp);
 pb.add(new InterpolationNearest());

// Create the warp operation.
dstImage = JAI.create("warp", pb);

Object Description
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Polynomial Warp

ge

er:

the

p.
r

8.7.2 Polynomial Warp

TheWarpPolynomial class provides a polynomial-based description of an ima
warp. The mapping is defined by two bivariate polynomial functionsX(x, y) and
Y(x, y) that define the sourcex andy positions that map to a given destination
(x, y) pixel coordinate.

The functionsX(x, y) andY(x, y) have the form:

(8.3)

TheWarpPolynomial constructor takes acoeffs parameter that must contain a
number of coefficients of the form (n + 1)(n + 2) for somen, wheren is the
degree power of the polynomial. The coefficients appear in the following ord

with the coefficients of the polynomial defining the sourcex coordinates
appearing before those defining they coordinates.

The source (x, y) coordinate is pre-scaled by the factorspreScaleX and
preScaleY prior to the evaluation of the polynomial. The result of the
polynomial evaluations are scaled bypostScaleX andpostScaleY to produce
the destination pixel coordinates. This process allows for better precision of
results.

The number of points needed to control the alignment of the image relates
directly to the order of warp. Three control points constitute a first-order war
Six points constitute a second-order warp. The number of points required fo
each degree of warp are as follows:

Degree of
Warp

Number of
Points

1 3

2 6

3 10

4 15

5 21

6 28

7 36

aij x
i j–

y
j⋅ ⋅

j 0=

i

∑
i 0=

n

∑

1 x y x
2

xy y
2 … x

n
x

n 1–()y … xy
n 1–()

y
n, , , , , , , , , , ,
291Release 1.0.1, November 1999

8.7.2 Polynomial Warp GEOMETRIC IMAGE MANIPULATION

292
API: javax.media.jai.WarpPolynomial

• WarpPolynomial(float[] coeffs)

constructs aWarpPolynomial with pre- and post-scale factors of 1.

• WarpPolynomial(float[] coeffs, float preScaleX, float
preScaleY, float postScaleX, float postScaleY)

constructs aWarpPolynomial with a given transform mapping destination
pixels into source space. Note that this is the inverse of the customary
specification of the mapping of an image.

• float[] getCoeffs()

returns the raw coefficients array.

• int getDegree()

returns the degree of the warp polynomials.

Parameters: coeffs The destination to source transform
coefficients.

Parameters: coeffs The destination-to-source transform
coefficients.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION General Polynomial Warp

d

• static WarpPolynomial createWarp(float[] sourceCoords,
int sourceOffset, float[] destCoords, int destOffset,
int numCoords, float preScaleX, float preScaleY,
float postScaleX, float postScaleY, int degree)

returns an instance ofWarpPolynomial or its subclasses that approximately
maps the given scaled destination image coordinates into the given scale
source image coordinates.

8.7.3 General Polynomial Warp

TheWarpGeneralPolynomial class provides a concrete implementation of
WarpPolynomial for polynomials of a higher degree.

The mapping is defined by two bivariate polynomial functionsX(x, y) andY(x, y)
that define the sourceX andY positions that map to a given destination (x, y)
pixel coordinate.

The functionsX(x, y) andY(x, y) have the form:

Parameters: sourceCoords An array of floats containing the source
coordinates withx andy alternating.

sourceOffset The initial entry ofsourceCoords to be
used.

destCoords An array of floats containing the destination
coordinates withx andy alternating.

destOffset The initial entry ofdestCoords to be used.

numCoords The number of coordinates from
sourceCoords anddestCoords to be used.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

degree The desired degree of the warp
polynomials.
293Release 1.0.1, November 1999

8.7.3 General Polynomial Warp GEOMETRIC IMAGE MANIPULATION

294

ith

)
ns
(8.4)

ThexCoeffs andyCoeffs parameters must contain the same number of
coefficients of the form (n + 1)(n + 2)/2 for somen, wheren is the non-negative
degree power of the polynomial. The coefficients, in order, are associated w
the terms:

1, x, y, x2, x*y, y2, ..., xn, x(n – 1)*y, ..., x*y(n – 1), yn

and coefficients of value 0 can not be omitted.

The destination pixel coordinates (the arguments to the X() and Y() functions
are given in normal integral pixel coordinates, while the output of the functio
is given in fixed-point, subpixel coordinates with a number of fractional bits
specified by thesubsampleBitsH andsubsampleBitsV parameters.

API: javax.media.jai.WarpGeneralPolynomial

• WarpGeneralPolynomial(float[] xCoeffs, float[] yCoeffs)

constructs aWarpGeneralPolynomial with pre- and post-scale factors of 1.

Parameters: xCoeffs The destination to source transform
coefficients for thex coordinate.

yCoeffs The destination to source transform
coefficients for they coordinate.

aij x
i j–

y
j⋅ ⋅

j 0=

i

∑
i 0=

n

∑

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION General Polynomial Warp

n

• WarpGeneralPolynomial(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)

constructs aWarpGeneralPolynomial with a given transform mapping
destination pixels into source space. Note that this is the inverse of the
customary specification of the mapping of an image.

• float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period.

Parameters: xCoeffs The destination to source transform
coefficients for thex coordinate.

yCoeffs The destination to source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

Parameters: x The minimumX coordinate of the
destination region.

y The minimumY coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The horizontal sampling period.

destRect An int array containing at least

elements, or null. If null, a new array will
be constructed.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

295Release 1.0.1, November 1999

8.7.4 Grid Warp GEOMETRIC IMAGE MANIPULATION

296

g

g
ion

h

m

8.7.4 Grid Warp

If polynomial warping is impractical, the image may be warped in pieces usin
grid warping, also known ascontrol grid interpolation. In the most common
implementation of grid warping, specified input control points form a grid of
contiguous, horizontally-oriented rectangles in the output image. The mappin
from destination pixels to source positions is described by bilinear interpolat
between a rectilinear grid of points with known mappings.

Given a destination pixel coordinate (x, y) that lies within a cell having corners at
(x0, y0), (x1, y0), (x0, y1), and (x1, y1), with source coordinates defined at eac
respective corner equal to (sx0, sy0), (sx1, sy1), (sx2, sy2), and (sx3, sy3), the
source position (sx, sy) that maps onto (x, y) is given by the following equations:

(8.5)

(8.6)

(8.7)

(8.8)

The sourcex andy values are interpolated horizontally along the top and botto
edges of the grid cell, and the results are interpolated vertically, as shown in
Figure 8-10.

xfrac
x x0–

x1 x0–
------------------=

yfrac
y y0–

y1 y0–
------------------=

s sx0 sx1 sx0–() xfrac⋅+=

t sy0 sy1 sy0–() xfrac⋅+=

u sx2 sx3 sx2–() xfrac⋅+=

v sy2 sy3 sy2–() xfrac⋅+=

sx s u s–() yfrac⋅+=
sy t v t–() yfrac⋅+=
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Grid Warp

ated
t,
Figure 8-10 Warp Grid

The grid is defined by a set of equal-sized cells starting at (xStart, yStart). The
width of each cell is defined by thexStep parameter and the height is defined by
theyStep parameter. There arexNumCells cells horizontally andyNumCells
cells vertically.

The degree of warping within each cell is defined by the values in the
warpPositions parameter. This parameter must contain the following values:

These values alternately contain the sourcex andy coordinates that map to the
upper-left corner of each cell in the destination image. The cells are enumer
in row-major order, that is, all the grid points along a row are enumerated firs
then the gird points for the next row are enumerated, and so on.

For example, ifxNumCells is 2 andyNumCells is 1, the order of the data in the
table would be as follows:

x00, y00, x10, y10, x20, y20, x01, y01, x11, y11, x21, y21

for a total of 2(2 + 1)(1 + 1) = 12 elements.

(x0, y0) →
(sx0, sy0)

(x1, y0) →
(sx1, sy1)

(x0, y1) →
(sx2, sy2)

(x1, y1) →
(sx3, sy3)

(s, t)

(u, v)

(x, y) →
(sx, sy)

warpPositions 2 xnumCells 1+() yNumCells 1+()=
297Release 1.0.1, November 1999

8.7.4 Grid Warp GEOMETRIC IMAGE MANIPULATION

298

n

er

n
)

API: javax.media.jai.WarpGrid

• WarpGrid(int xStart, int xStep, int xNumCells, int yStart,
int yStep, int yNumCells, float[] warpPositions)

constructs aWarpGrid with a given grid-based transform mapping destinatio
pixels into source space. Note that this is the inverse of the customary
specification of the mapping of an image.

• WarpGrid(Warp master, int xStart, int xStep, int xNumCells,
int yStart, int yStep, int yNumCells)

constructs aWarpGrid object by sampling the displacements given by anoth
Warp object of any kind.

• float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region. The destination region is specified using normal integer (full pixel

Parameters: xStart The minimumx coordinate of the grid.

xStep The horizontal spacing between grid cells.

xNumCells The number of grid cell columns.

yStart The minimumy coordinate of the grid.

yStep The vertical spacing between grid cells.

yNumCells The number of grid cell rows.

warp-

Positions

A float array of length
containing

the warp positions at the grid points in row-
major order.

Parameters: master TheWarp object used to initialized the grid
displacements.

xStart The minimumx coordinate of the grid.

xStep The horizontal spacing between grid cells.

xNumCells The number of grid cell columns.

yStart The minimumy coordinate of the grid.

yStep The vertical spacing between grid cells.

yNumCells The number of grid cell rows.

2 xNumCells 1+() yNumCells 1+()
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Quadratic Warp

ixed

els
tion
coordinates. The source positions returned by the method are specified in f
point, subpixel coordinates using the ofsubsampleBitsH and
subsampleBitsV parameters.

8.7.5 Quadratic Warp

TheWarpQuadratic class provides a quadratic-based description of an image
warp. The source position (x', y') of a point (x, y) is given by the following
quadratic bivariate polynomial:

(8.9)

API: javax.media.jai.WarpQuadratic

• WarpQuadratic(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)

constructs a WarpQuadratic with a given transform mapping destination pix
into source space. Note that this is the inverse of the customary specifica

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The vertical sampling period.

destRect An int array containing at least

elements, or null. If null, a new array will
be constructed.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

x' p x y,() c1 c2x c3y c4x
2

c5xy c6y
2

+ ++++= =

y' q x y,() c7 c8x c9y c10x
2

c11xy c12y
2

+ ++++= =
299Release 1.0.1, November 1999

8.7.5 Quadratic Warp GEOMETRIC IMAGE MANIPULATION

300

ts
ent..

n
fied
by
of the mapping of an image. The coeffs arrays must each contain six floa
corresponding to the coefficients c1, c2, etc. as shown in the class comm

• WarpQuadratic(float[] xCoeffs, float[] yCoeffs)

constructs a WarpQuadratic with pre- and post-scale factors of 1.

• float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period. The destination region is speci
using normal integral (full pixel) coordinates. The source positions returned
the method are specified in floating point.

Parameters: xCoeffs The six destination-to-source transform
coefficients for thex coordinate.

yCoeffs The six destination-to-source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Cubic Warp

n

o
f the
8.7.6 Cubic Warp

TheWarpCubic class performs a cubic-based image warp. The source positio
(x', y') of a point (x, y) is given by the following cubic polynomial:

(8.10)

(8.11)

API: javax.media.jai.WarpCubic

• WarpCubic(float[] xCoeffs, float[] yCoeffs, float preScaleX,
float preScaleY, float postScaleX, float postScaleY)

constructs aWarpCubicwith a given transform mapping destination pixels int
source space. Note that this is the inverse of the customary specification o
mapping of an image. Thecoeffs array must contain 12 floats corresponding
to the coefficients a, b, etc. as shown in the class comment.

periodY The vertical sampling period.

destRect A float array containing at least

elements, or null. If null, a new array will
be constructed.

Parameters: xCoeffs The ten destination to source transform
coefficients for thex coordinate.

yCoeffs The ten destination to source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

x' p x y,() c1 c2x c3y c4x
2

c5xy c6y
2

+ + + + + += =

c7x
3

c8x
2
y c9xy

2
c10y

3
+ + +

y' q x y,() c11 c12x c13y c14x
2

c15xy c16y
2

+ + + + + += =

c17x
3

c18x
2
y c19xy

2
c20y

3
+ + +
301Release 1.0.1, November 1999

8.7.7 Perspective Warp GEOMETRIC IMAGE MANIPULATION

302

n

can
the

. In
ge
ion
• WarpCubic(float[] xCoeffs, float[] yCoeffs)

constructs aWarpCubic with pre- and post-scale factors of 1.

• float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period.

8.7.7 Perspective Warp

Perspective distortions in images caused by camera-to-target viewing angle
be restored through perspective warping. Perspective distortion appears as
reduction in scale of an object that recedes from the foreground into the
background of the image.

TheWarpPerspective class provides a perspective (projective) warp. The
transform is specified as a mapping from destination space to source space
other words, it is the inverse of the normal specification of a perspective ima
transformation. See Section 8.4, “Perspective Transformation,” for a descript
of thePerspectiveTransform class.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The vertical sampling period.

destRect A float array containing at least

elements, or null. If null, a new array will
be constructed.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Affine Warp

n
ified
by

ed
e

API: javax.media.jai.WarpPerspective

• WarpPerspective(PerspectiveTransform transform)

constructs aWarpPerspective with a given transform mapping destination
pixels into source space. Note that this is the inverse of the customary
specification of perspective mapping of an image.

• PerspectiveTransform getTransform()

returns a clone of thePerspectiveTransform associated with this
WarpPerspective object.

• int[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
regions subsampled with an integral period. The destination region is spec
using normal integral (full pixel) coordinates. The source positions returned
the method are specified in floating-point.

8.7.8 Affine Warp

TheWarpAffine class provides an affine-based warp. The transform is specifi
as a mapping from destination space to source space. In other words, it is th
inverse of the normal specification of an affine image transformation.

Parameters: transform The destination-to-source transform.

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The vertical sampling period.

destRect A float array containing at least

elements, or null. If null, a new array will
be constructed.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

303Release 1.0.1, November 1999

8.7.8 Affine Warp GEOMETRIC IMAGE MANIPULATION

304
The source position (x', y') of a point (x, y) is given by the quadratic bivariate
polynomial:

(8.12)

Listing 8-9 shows a code sample for an affine-based warp operation.

API: javax.media.jai.WarpAffine

• public WarpAffine(float[] xCoeffs, float[] yCoeffs,
float preScaleX, float preScaleY, float postScaleX,
float postScaleY)

constructs aWarpAffine with a given transform mapping destination pixels
into source space. The transform is given by:
 x’ = xCoeffs[0] + xCoeffs[1]*x + xCoeffs[2]*y;
 y’ = yCoeffs[0] + yCoeffs[1]*x + yCoeffs[2]*y;

Listing 8-9 Example Affine Warp

// Create the transform parameter (WarpAffine).
double m00 = 0.8;
double m10 = 0.3;
double m01 = -0.7;
double m11 = 1.4;
double m02 = 230.3;
double m12 = -115.7;
AffineTransform transform = new AffineTransform(m00, m10,
 m01, m11,
 m02, m12);
Warp warp = new WarpAffine(transform);

// Create the interpolation parameter.
Interpolation interp = new InterpolationNearest(8);

// Create the ParameterBlock.
ParameterBlock pb = new ParameterBlock();
pb.addSource(src);
pb.add(warp);
pb.add(interp);

// Create the warp operation.
return (RenderedImage)JAI.create("warp", pb);

x' p x y,() c1 c2x+ c3y= = =

y' q x y,() c4 c5x c6y+ += =
Programming in Java Advanced Imaging

GEOMETRIC IMAGE MANIPULATION Affine Warp

ation
where x' and y' are the source image coordinates and x and y are the destin
image coordinates.

• WarpAffine(float[] xCoeffs, float[] yCoeffs)

constructs aWarpAffine with pre- and post-scale factors of 1.

• public WarpAffine(AffineTransform transform, float preScaleX,
float preScaleY, float postScaleX, float postScaleY)

constructs aWarpAffine with a given transform mapping destination pixels
into source space.

• WarpAffine(AffineTransform transform)

constructs aWarpAffine with pre- and post-scale factors of 1.

Parameters: xCoeffs The three destination-to-source transform
coefficients for thex coordinate.

yCoeffs The three destination-to-source transform
coefficients for they coordinate.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

Parameters: transform The destination-to-source transform.

preScaleX The scale factor to apply to sourcex
positions.

preScaleY The scale factor to apply to sourcey
positions.

postScaleX The scale factor to apply to destinationx
positions.

postScaleY The scale factor to apply to destinationy
positions.

Parameters: transform An AffineTransform.
305Release 1.0.1, November 1999

8.7.8 Affine Warp GEOMETRIC IMAGE MANIPULATION

306

n
fied
by

ce
• AffineTransform getTransform()

returns a clone of theAffineTransform associated with thisWarpAffine
object.

• float[] warpSparseRect(int x, int y, int width, int height,
int periodX, int periodY, float[] destRect)

computes the source subpixel positions for a given rectangular destinatio
region, subsampled with an integral period. The destination region is speci
using normal integral (full pixel) coordinates. The source positions returned
the method are specified in floating point.

• Rectangle mapDestRect(Rectangle destRect)

computes aRectangle that is guaranteed to enclose the region of the sour
that is required in order to produce a given rectangular output region.

Parameters: x The minimumx coordinate of the
destination region.

y The minimumy coordinate of the
destination region.

width The width of the destination region.

height The height of the destination region.

periodX The horizontal sampling period.

periodY The vertical sampling period.

destRect A float array containing at least

elements, or null. If null, a new array will
be constructed.

Parameter: destRect TheRectangle in destination coordinates.

2
width periodX 1–+

periodX
-- height periodY 1–+

periodY
--×

Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 9
ct
is

tire
the
Image Analysis

THIS chapter describes the JAI API image analysis operators.

9.1 Introduction

The JAI API image analysis operators are used to directly or indirectly extra
information from an image. The JAI API supports the following image analys
functions:

• Finding the mean value of an image region

• Finding the minimum and maximum values in an image (extrema)

• Producing a histogram of an image

• Detecting edges in an image

• Performing statistical operations

9.2 Finding the Mean Value of an Image Region

TheMean operation scans a specified region of an image and computes the
image-wise mean pixel value for each band within the region. The region of
interest does not have to be a rectangle. If no region is specified (null), the en
image is scanned to generate the histogram. The image data pass through
operation unchanged.
307

9.3 Finding the Extrema of an Image IMAGE ANALYSIS

308

:

alue

the

l

the
Themean operation takes one rendered source image and three parameters

The region of interest (ROI) does not have to be a rectangle. It may benull, in
which case the entire image is scanned to find the image-wise mean pixel v
for each band.

The set of pixels scanned may be reduced by specifying thexPeriod and
yPeriod parameters, which define the sampling rate along each axis. These
variables may not be less than 1. However, they may benull, in which case the
sampling rate is set to 1; that is, every pixel in the ROI is processed.

The image-wise mean pixel value for each band may be retrieved by calling
getProperty method with"mean" as the property name. The return value has
typejava.lang.Number[#bands].

Listing 9-1 shows a partial code sample of finding the image-wise mean pixe
value of an image in the rendered mode.

9.3 Finding the Extrema of an Image

TheExtrema operation scans a specific region of a rendered image and finds
image-wise minimum and maximum pixel values for each band within that

Parameter Type Description

roi ROI The region of the image to scan. Anull value means the
whole image.

xPeriod Integer The horizontal sampling rate. May not be less than 1.

yPeriod Integer The vertical sampling rate. May not be less than 1.

Listing 9-1 Finding the Mean Value of an Image Region

// Set up the parameter block for the source image and
// the three parameters.
ParameterBlock pb = new ParameterBlock();
pb.addSource(im); // The source image
pb.add(null); // null ROI means whole image
pb.add(1); // check every pixel horizontally
pb.add(1); // check every pixel vertically

// Perform the mean operation on the source image.
RenderedImage meanImage = JAI.create("mean", pb, null);

// Retrieve and report the mean pixel value.
double[] mean = (double[])meanImage.getProperty("mean");
System.out.println("Band 0 mean = " + mean[0]);
Programming in Java Advanced Imaging

IMAGE ANALYSIS Finding the Extrema of an Image

te
7.4,

xel
e

d

rs:

e.
region of the image. The image pixel data values pass through the operation
unchanged. Theextrema operation can be used to obtain information to compu
the scale and offset factors for the amplitude rescaling operation (see Section
“Amplitude Rescaling”).

The region-wise maximum and minimum pixel values may be obtained as
properties. Calling thegetProperty method on this operation with“extrema” as
the property name retrieves both the region-wise maximum and minimum pi
values. Calling it with“maximum” as the property name retrieves the region-wis
maximum pixel value, and with“minimum” as the property name retrieves the
region-wise minimum pixel value.

The return value forextrema has typedouble[2][#bands], and those for
maximum andminimum have typedouble[#bands].

The region of interest (ROI) does not have to be a rectangle. It may benull, in
which case the entire image is scanned to find the image-wise maximum an
minimum pixel values for each band.

Theextrema operation takes one rendered source image and three paramete

The set of pixels scanned may be further reduced by specifying thexPeriod and
yPeriod parameters that represent the sampling rate along each axis. These
variables may not be less than 1. However, they may benull, in which case the
sampling rate is set to 1; that is, every pixel in the ROI is processed.

Listing 9-2 shows a partial code sample of using theextrema operation to obtain
both the image-wise maximum and minimum pixel values of the source imag

Parameter Type Description

roi ROI The region of the image to scan.

xPeriod Integer The horizontal sampling rate (may not be less than 1).

yPeriod Integer The vertical sampling rate (may not be less than 1).

Listing 9-2 Finding the Extrema of an Image

// Set up the parameter block for the source image and
// the constants
ParameterBlock pb = new ParameterBlock();
pb.addSource(im); // The source image
pb.add(roi); // The region of the image to scan
pb.add(50); // The horizontal sampling rate
pb.add(50); // The vertical sampling rate
309Release 1.0.1, November 1999

9.4 Histogram Generation IMAGE ANALYSIS

310

to
de

de
a

9.4 Histogram Generation

An image histogram is an analytic tool used to measure the amplitude
distribution of pixels within an image. For example, a histogram can be used
provide a count of the number of pixels at amplitude 0, the number at amplitu
1, and so on. By analyzing the distribution of pixel amplitudes, you can gain
some information about the visual appearance of an image. A high-contrast
image contains a wide distribution of pixel counts covering the entire amplitu
range. A low contrast image has most of the pixel amplitudes congregated in
relatively narrow range.

Usually, the wider histogram represents a more visually-appealing image.

Figure 9-1 Example Histograms

The primary tasks needed to perform a histogram operation are as follows:

1. Create aHistogram object, which specifies the type of histogram to be
generated.

// Perform the extrema operation on the source image
RenderedOp op = JAI.create(“extrema”, pb);

// Retrieve both the maximum and minimum pixel value
double[][] extrema = (double[][]) op.getProperty(“extrema”);

Listing 9-2 Finding the Extrema of an Image (Continued)

High contrast image Low contrast image

Pixel
count

Amplitude

Pixel
count

Amplitude
Programming in Java Advanced Imaging

IMAGE ANALYSIS Specifying the Histogram

of

is
t
of
f

red
on.

d
the

ts

r
ts
2. Create aHistogram operation with the required parameters or create a
ParameterBlock with the parameters and pass it to theHistogram

operation.

3. Read the histogram data stored in the object. The data consists of:
• Number of bands in the histogram

• Number of bins for each band of the image

• Lowest value checked for each band

• Highest value checked for each band

9.4.1 Specifying the Histogram

TheHistogram object accumulates the histogram information. A histogram
counts the number of image samples whose values lie within a given range
values, or “bins.” The source image may be of any data type.

TheHistogram contains a set of bins for each band of the image. These bins
hold the information about gray or color levels. For example, to take the
histogram of an eight-bit grayscale image, theHistogram might contain 256
bins. When reading theHistogram, bin 0 will contain the number of 0’s in the
image, bin 1 will contain the number of 1’s, and so on.

TheHistogram need not contain a bin for every possible value in the image. It
possible to specify the lowest and highest values that will result in a bin coun
being incremented. It is also possible to specify fewer bins than the number
levels being checked. In this case, each bin will hold the count for a range o
values. For example, for aHistogram with only four bins used with an 8-bit
grayscale image, the number of occurrences of values 0 through 63 will be sto
in bin 0, occurrences of values 64 through 127 will be stored in bin 1, and so

TheHistogram object takes three parameters:

Parameter Description

numBins An array ofints, each element of which specifies the number of bins to be use
for one band of the image. The number of elements in the array must match
number of bands in the image.

lowValue An array offloats, each element of which specifies the lowest gray or color
level that will be checked for in one band of the image. The number of elemen
in the array must match the number of bands in the image.

highValue An array offloats, each element of which specifies the highest gray or colo
level that will be checked for in one band of the image. The number of elemen
in the array must match the number of bands in the image.
311Release 1.0.1, November 1999

9.4.2 Performing the Histogram Operation IMAGE ANALYSIS

312

bins

age.
ed
ta

ters:
For an example histogram, see Listing 9-3 on page 315.

API: javax.media.jai.Histogram

• Histogram(int[] numBins, float[] lowValue, float[] highValue)

constructs aHistogram that may be used to accumulate data within a given
range for each band of an image. The legal pixel range and the number of
may be controlled separately.

If binWidth is defined as (highValue – lowValue)/numBins, bin i will count
pixel values in the range from

9.4.2 Performing the Histogram Operation

Once you have created theHistogram object to accumulate the histogram
information, you generate the histogram for an image with thehistogram

operation. Thehistogram operation scans a specified region of an image and
generates a histogram based on the pixel values within that region of the im
The region of interest does not have to be a rectangle. If no region is specifi
(null), the entire image is scanned to generate the histogram. The image da
passes through the operation unchanged.

Thehistogram operation takes one rendered source image and four parame

Parameters: numBins The number of bins for each band of the
image;numBins.length must be equal to
the number of bands of the image which the
histogram is taken.

lowValue The lowest pixel value checked for each
band.

highValue The highest pixel value checked for each
band. Note when counting the pixel values,
thishighValue is not included based on the
formula below.

Parameter Type Description

specification Histogram The specification for the type of histogram to be generated.
See Section 9.4.1, “Specifying the Histogram.”

roi ROI The region of the image to scan. See Section 6.2, “Region of
Interest Control.”

lowValue i binWidth x lowValue i 1+() binWidth⋅+<≤⋅+
Programming in Java Advanced Imaging

IMAGE ANALYSIS Reading the Histogram Data

the

ion
The set of pixels scanned may be further reduced by specifying thexPeriod and
yPeriod parameters that represent the sampling rate along each axis. These
variables may not be less than 1. However, they may be null, in which case
sampling rate is set to 1; that is, every pixel in the ROI is processed.

9.4.3 Reading the Histogram Data

The histogram data is stored in the user suppliedHistogram object, and may be
retrieved by calling thegetProperty method on this operation with
“histogram” as the property name. The return value will be of typeHistogram.

Several get methods allow you to check on the four histogram parameters:

• The bin data for all bands (getBins)

• The bin data for a specified band (getBins)

• The number of pixel values found in a given bin for a given band
(getBinSize)

• The lowest pixel value found in a given bin for a given band
(getBinLowValue)

The set of pixels counted in the histogram may be limited by the use of a reg
of interest (ROI), and by horizontal and vertical subsampling factors. These
factors allow the accuracy of the histogram to be traded for speed of
computation.

API: javax.media.jai.Histogram

• int[][] getBins()

returns the bins of the histogram for all bands.

• int[] getBins(int band)

returns the bins of the histogram for a specified band.

xPeriod Integer The horizontal sampling rate. May not be less than 1.

yPeriod Integer The vertical sampling rate. May not be less than 1.

Parameters: band The band to be checked

Parameter Type Description
313Release 1.0.1, November 1999

9.4.3 Reading the Histogram Data IMAGE ANALYSIS

314

s in
ay
• int getBinSize(int band, int bin)

returns the number of pixel values found in a given bin for a given band.

• float getBinLowValue(int band, int bin)

returns the lowest pixel value found in a given bin for a given band.

• void clearHistogram()

resets the counts of all bins to zero.

• void countPixels(java.awt.image.Raster pixels, ROI roi,
int xStart, int yStart, int xPeriod, int yPeriod)

adds the pixels of aRaster that lie within a given region of interest (ROI) to
the histogram. The set of pixels is further reduced by subsampling factor
the horizontal and vertical directions. The set of pixels to be accumulated m
be obtained by intersecting the grid

with the region of interest and the bounding rectangle of theRaster.

Parameters: band The band to be checked

bin The bin to be checked

Parameters: band The band to be checked

bin The bin to be checked

Parameters: pixels A Raster containing pixels to be
histogrammed.

roi The region of interest, as a ROI.

xStart The initial x sample coordinate.

yStart The initial y sample coordinate.

xPeriod Thex sampling rate.

yPeriod They sampling rate.

xStart i xPeriod, yStart j yPeriod⋅+⋅+(); i, j 0≥
Programming in Java Advanced Imaging

IMAGE ANALYSIS Edge Detection

ed

ge.

f
to
9.4.4 Histogram Operation Example

Listing 9-3 shows a sample listing for a histogram operation on a three-band
source image.

9.5 Edge Detection

Edge detection is useful for locating the boundaries of objects within an ima
Any abrupt change in image frequency over a relatively small area within an
image is defined as an edge. Image edges usually occur at the boundaries o
objects within an image, where the amplitude of the object abruptly changes
the amplitude of the background or another object.

TheGradientMagnitude operation is an edge detector that computes the
magnitude of the image gradient vector in two orthogonal directions. This

Listing 9-3 Example Histogram Operation

// Set up the parameters for the Histogram object.
int[] bins = {256, 256, 256}; // The number of bins.
double[] low = {0.0D, 0.0D, 0.0D}; // The low value.
double[] high = {256.0D, 256.0D, 256.0D}; // The high value.

// Construct the Histogram object.
Histogram hist = new Histogram(bins, low, high);

// Create the parameter block.
ParameterBlock pb = new ParameterBlock();
pb.addSource(image); // Specify the source image
pb.add(hist); // Specify the histogram
pb.add(null); // No ROI
pb.add(1); // Sampling
pb.add(1); // periods

// Perform the histogram operation.
dst = (PlanarImage)JAI.create(“histogram”, pb, null);

// Retrieve the histogram data.
hist = (Histogram) dst.getProperty(“histogram”);

// Print 3-band histogram.
for (int i=0; i< histogram.getNumBins(); i++) {
 System.out.println(hist.getBinSize(0, i) + “ “ +
 hist.getBinSize(1, i) + “ “ +
 hist.getBinSize(2, i) + “ “ +
}

315Release 1.0.1, November 1999

9.5 Edge Detection IMAGE ANALYSIS

316

n
t.

cts

wo

.

less
the
operation is used to improve an image by showing the directional informatio
only for those pixels that have a strong magnitude for the brightness gradien

• It performs two convolution operations on the source image. One
convolution detects edges in one direction, the other convolution dete
edges the orthogonal direction. These two convolutions yield two
intermediate images.

• It squares all the pixel values in the two intermediate images, yielding t
more intermediate images.

• It takes the square root of the last two images forming the final image

The result of theGradientMagnitude operation may be defined as:

whereSH(x,y,b) andSV(x,y,b) are the horizontal and vertical gradient
images generated from bandb of the source image by correlating it with the
supplied orthogonal (horizontal and vertical) gradient masks.

TheGradientMagnitude operation uses two gradient masks; one for passing
over the image in each direction. TheGradientMagnitude operation takes one
rendered source image and two parameters.

The default masks for theGradientMagnitude operation are:

• KernelJAI.GRADIENT_MASK_SOBEL_HORIZONTAL

• KernelJAI.GRADIENT_MASK_SOBEL_VERTICAL

These masks, shown in Figure 9-2 perform the Sobel edge enhancement
operation. The Sobel operation extracts all of the edges in an image, regard
of the direction. The resulting image appears as an omnidirectional outline of
objects in the original image. Constant brightness regions are highlighted.

Parameter Type Description

mask1 KernelJAI A gradient mask.

mask2 KernelJAI A gradient mask orthogonal to the first one.

dst[x][y][b] SH(x,y,b)()2
SV(x,y,b)()2

+=
Programming in Java Advanced Imaging

IMAGE ANALYSIS Edge Detection

in
d
nt.
cts

o

Figure 9-2 Sobel Edge Enhancement Masks

The Roberts’ cross edge enhancement operation uses the two masks shown
Figure 9-3. This operation extracts edges in an image by taking the combine
differences of directions at right angles to each other to determine the gradie
The resulting image appears as a fairly-coarse directional outline of the obje
within the image. Constant brightness regions become black and changing
brightness regions become highlighted. The following is a listing of how the tw
masks are constructed.

float[] roberts_h_data = { 0.0F, 0.0F, -1.0F,
 0.0F, 1.0F, 0.0F,
 0.0F, 0.0F, 0.0F
};
float[] roberts_v_data = {-1.0F, 0.0F, 0.0F,
 0.0F, 1.0F, 0.0F,
 0.0F, 0.0F, 0.0F
};

KernelJAI kern_h = new KernelJAI(3,3,roberts_h_data);
KernelJAI kern_v = new KernelJAI(3,3,roberts_v_data);

1.0 0.0 –1.0

–2.0

–1.0

2.0

1.0

0.0

0.0

–1.0 –2.0 –1.0

0.0

1.0

0.0

1.0

0.0

2.0

Horizontal maskVertical mask
317Release 1.0.1, November 1999

9.5 Edge Detection IMAGE ANALYSIS

318

n in
th,
rs as

ons
Figure 9-3 Roberts’ Cross Edge Enhancement Masks

The Prewitt gradient edge enhancement operation uses the two masks show
Figure 9-4. This operation extracts the north, northeast, east, southeast, sou
southwest, west, or northwest edges in an image. The resulting image appea
a directional outline of the objects within the image. Constant brightness regi
become black and changing brightness regions become highlighted. The
following is a listing of how the two masks are constructed.

float[] prewitt_h_data = { 1.0F, 0.0F, -1.0F,
 1.0F, 0.0F, -1.0F,
 1.0F, 0.0F, -1.0F
};
float[] prewitt_v_data = {-1.0F, -1.0F, -1.0F,
 0.0F, 0.0F, 0.0F,
 1.0F, 1.0F, 1.0F
};

KernelJAI kern_h = new KernelJAI(3,3,prewitt_h_data);
KernelJAI kern_v = new KernelJAI(3,3,prewitt_v_data);

0.0 0.0 –1.0

0.0

0.0

0.0

0.0

1.0

0.0

–1.0 0.0 0.0

0.0

0.0

0.0

0.0

1.0

0.0

Horizontal maskVertical mask
Programming in Java Advanced Imaging

IMAGE ANALYSIS Edge Detection

in

e

Figure 9-4 Prewitt Edge Enhancement Masks

The Frei and Chen edge enhancement operation uses the two masks shown
Figure 9-5. This operation, when compared to the other edge enhancement,
operations, is more sensitive to a configuration of relative pixel values
independent of the brightness magnitude. The following is a listing of how th
two masks are constructed.

float[] freichen_h_data = { 1.0F, 0.0F, -1.0F,
 1.414F, 0.0F, -1.414F,
 1.0F, 0.0F, -1.0F
};
float[] freichen_v_data = {-1.0F, -1.414F, -1.0F,
 0.0F, 0.0F, 0.0F,
 1.0F, 1.414F, 1.0F
};

KernelJAI kern_h = new KernelJAI(3,3,freichen_h_data);
KernelJAI kern_v = new KernelJAI(3,3,freichen_v_data);

1.0 0.0 –1.0

–1.0

–1.0

1.0

1.0

0.0

0.0

–1.0 –1.0 –1.0

0.0

1.0

0.0

1.0

0.0

1.0

Horizontal maskVertical mask
319Release 1.0.1, November 1999

9.5 Edge Detection IMAGE ANALYSIS

320
Figure 9-5 Frei and Chen Edge Enhancement Masks

To use a different mask, see Section 6.9, “Constructing a Kernel.”

Listing 9-4 shows a sample listing for aGradientMagnitude operation, using the
Frei and Chen edge detection kernel.

Listing 9-4 Example GradientMagnitude Operation

// Load the image.
PlanarImage im0 = (PlanarImage)JAI.create("fileload",
 filename);

// Create the two kernels.
float data_h[] = new float[] { 1.0F, 0.0F, -1.0F,
 1.414F, 0.0F, -1.414F,
 1.0F, 0.0F, -1.0F};
float data_v[] = new float[] {-1.0F, -1.414F, -1.0F,
 0.0F, 0.0F, 0.0F,
 1.0F, 1.414F, 1.0F};

KernelJAI kern_h = new KernelJAI(3,3,data_h);
KernelJAI kern_v = new KernelJAI(3,3,data_v);

// Create the Gradient operation.
PlanarImage im1 =
 (PlanarImage)JAI.create("gradientmagnitude", im0,
 kern_h, kern_v);

// Display the image.
imagePanel = new ScrollingImagePanel(im1, 512, 512);
 add(imagePanel);
 pack();
 show();

1.0 0.0 –1.0

–1.414

–1.0

1.414

1.0

0.0

0.0

–1.0 –1.414 –1.0

0.0

1.0

0.0

1.0

0.0

1.414

Horizontal maskVertical mask
Programming in Java Advanced Imaging

IMAGE ANALYSIS Statistical Operations

ate.

r set
9.6 Statistical Operations

TheStatisticsOpImage class is an abstract class for image operators that
compute statistics on a given region of an image and with a given sampling r
A subclass ofStatisticsOpImage simply passes pixels through unchanged from
its parent image. However, the desired statistics are available as a property o
of properties on the image (see Chapter 11, “Image Properties”).

All instances ofStatisticsOpImage make use of a region of interest, specified
as anROI object. Additionally, they may perform spatial subsampling of the
region of interest according toxPeriod andyPeriod parameters that may vary
from 1 (sample every pixel of theROI) upwards. This allows the speed and
quality of statistics gathering to be traded off against one another.

TheaccumulateStatistics method is used to accumulate statistics on a
specified region into the previously-created statistics object.

API: javax.media.jai.StatisticsOpImage

• StatisticsOpImage()

constructs a defaultStatisticsOpImage.

• StatisticsOpImage(RenderedImage source, ROI roi, int xStart,
int yStart, int xPeriod, int yPeriod, int maxWidth,
int maxHeight)

constructs aStatisticsOpImage. The image layout is copied from the source
image.

Parameters: source A RenderedImage.

roi The region of interest, as anROI.

xStart The initial x sample coordinate.

ystart The initial y sample coordinate.

xPeriod Thex sampling rate.

yPeriod They sampling rate.

maxWidth The largest allowed width for processing.

maxHeight The largest allowed height for processing.
321Release 1.0.1, November 1999

9.6 Statistical Operations IMAGE ANALYSIS

322
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 10

g

d

d in

text
Graphics Renderin

THIS chapter describes the JAI presentation of rendering shapes, text, an
images.

10.1 Introduction

JAI provides classes that support drawing operations beyond theGraphics2D

class. Three different types of graphics rendering are offered: simple 2D
graphics, renderable graphics, and tiled image graphics. These are describe
more detail in the sections that follow.

Figure 10-1 Simple Text and Line Added to an Image

10.1.1 Simple 2D Graphics

TheGraphics2D class extends the even simplerGraphics class to provide more
control over geometry, coordinate transformations, color management, and
323

10.1.2 Renderable Graphics GRAPHICS RENDERING

324

of

s.

e

an

e
g

layout.Graphics2D is the fundamental class for rendering two-dimensional
shapes, text and images.Graphics2D supports geometric rendering by providing
a mechanism for rendering virtually any geometric shape, draw styled lines
any width, and fill geometric shapes with virtually any texture.

TheBufferedImage.createGraphics method creates aGraphics2D object,
which can then be used to draw into thisBufferedImage.

Geometric shapes are provided through implementations of theShape interface,
such asPolygon, Rectangle, CubicCurve2D, andQuadCurve2D. Fill and pen
styles are provided through implementations of thePaint andStroke interfaces.
For example, thePaint interface supportsColor, GradientPaint, and
TexturePaint. TheStroke interface supportsBasicStroke, which defines a set
of attributes for the outlines of graphics primitives.

Text is added to graphics using theFont class, which represents character font
A Font is defined by a collections ofGlyphs, which in turn are defined by
individual Shapes. Since text is represented by glyphs, text strings can also b
stroked and filled like other geometric objects.

10.1.2 Renderable Graphics

TheRenderableGraphics class is an implementation ofGraphics2D with
RenderableImage semantics. This means that content may be drawn into the
image using theGraphics2D interface and later be turned intoRenderedImages
with different resolutions and characteristics.

TheRenderableGraphics class allows you to store a sequence of drawing
commands and “replay” them at an arbitrary output resolution. By serializing
instance ofRenderableGraphics, you create a kind of metafile for storing the
graphical content.

The methods in theRenderableGraphics class override the methods in the
java.awt.Graphics andjava.awt.Graphics2D classes. This means that you
can use the methods inRenderableGraphics to set your fonts and colors, to
create the graphics shapes and text, define a clipping path, and so on.

The only method unique toRenderableGraphics is thecreateRendering
method, which creates aRenderedImage that represents a rendering of the imag
using a givenRenderContext. This is the most general way to obtain a renderin
of a RenderableImage.
Programming in Java Advanced Imaging

GRAPHICS RENDERING Overview of the Rendering Process

the

hics

n

h.

o

10.2 A Review of Graphics Rendering

To render a graphic object, you set up theGraphics2D context and pass the
graphic object to one of theGraphics2D rendering methods. Before rendering
the graphic object, you first need to set certain state attributes that define how
Graphics2D context displays the graphics. For example, you specify:

• The stroke width

• How strokes are joined

• A clipping path to limit the area that is rendered

• Define colors and patterns to fill shapes with

Graphics2D defines several methods that add or change attributes in the grap
context. Most of these methods take an object that represents a particular
attribute, such as aPaint or Stroke object.

10.2.1 Overview of the Rendering Process

When a graphic object is rendered, the geometry, image, and attribute
information are combined to calculate which pixel values must be changed o
the display.

The rendering process for aShape is described into the following four steps:

1. If theShape is to be stroked, theStroke attribute in theGraphics2D
context is used to generate a newShape that encompasses the stroked pat

2. The coordinates of theShape’s path are transformed from user space int
device coordinate space according to the transform attribute in the
Graphics2D context.

3. TheShape’s path is clipped using the clip attribute in theGraphics2D

context.

4. The remainingShape is filled using thePaint andComposite attributes in
theGraphics2D context.

Rendering text is similar to rendering aShape, since the text is rendered as
glyphs and each glyph is aShape. However, you still must specify whatFont to
use for the text and get the appropriate glyphs from theFont before rendering.
The attributes are described in more detail in the following sections.
325Release 1.0.1, November 1999

10.2.2 Stroke Attributes GRAPHICS RENDERING

326

set

al
10.2.2 Stroke Attributes

TheGraphics2D Stroke attribute defines the characteristics of strokes. The
BasicStroke object is used to define the stroke attributes for aGraphics2D

context.BasicStroke defines characteristics such as line width, endcap style,
segment join style, and pattern (solid or dashing). To change theStroke attribute
in theGraphics2D context, you call thesetStroke method.

10.2.2.1 Line Width

The line width is specified inpoints(there are 72 points to the inch). To set the
stroke width, create aBasicStroke object with the desired width and call
setStroke. The following example sets the stroke width to 12 points.

wideStroke = new BasicStroke(12.0);
g2.setStroke(wideStroke);

10.2.2.2 Endcap Style

Table 10-1 lists the endcap style attributes.

To set the endcap style, create aBasicStroke object with the desired attribute.
The following example sets the stroke width to 12 points and endcap style is
to CAP_ROUND.

wideStroke = new BasicStroke(12.0, BasicStroke.CAP_ROUND);
g2.setStroke(roundStroke);

Table 10-1 Endcap Styles

Appearance Attribute Description

CAP_BUTT Ends unclosed subpaths with no added decoration.

CAP_ROUND Ends unclosed subpaths with a round end cap that has a
radius equal to half the pen width.

CAP_SQUARED Ends unclosed subpaths with a square projection that
extends beyond the end of the segment to a distance equ
to half the line width.
Programming in Java Advanced Imaging

GRAPHICS RENDERING Stroke Attributes

e of

ents
n
e first

e
em is

ir

s

til
10.2.2.3 Join Style

Table 10-2 lists the join style attributes. These attributes affect the appearanc
line junctions.

To set the join style, create aBasicStroke object with the desired attribute. The
following example sets the stroke width to 12 points, an endcap style of
CAP_ROUND, and a join style ofJOIN_ROUND.

wideStroke = new BasicStroke(12.0, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);
g2.setStroke(roundStroke);

10.2.2.4 Stroke Style

The stroke style is defined by two parameters:

• dash – an array that represents the dashing pattern. Alternating elem
in the array represent the dash size and the size of the space betwee
dashes. Element 0 represents the first dash, element 1 represents th
space.

• dash_phase – an offset that defines where the dashing pattern starts.

Listing 10-1 shows a code sample in which two different dashing patterns ar
created. In the first pattern, the size of the dashes and the space between th

Table 10-2 Join Styles

Appearance Attribute Description

JOIN_BEVEL Joins path segments by connecting the outer corners of the
wide outlines with a straight segment.

JOIN_ROUND Joins path segments by rounding off the corner at a radiu
of half the line width.

JOIN_MITER Joins path segments by extending their outside edges un
they meet.
327Release 1.0.1, November 1999

10.2.2 Stroke Attributes GRAPHICS RENDERING

328

or

1
or.
constant. The second pattern uses a six-element array to define the dashing
pattern. The two dash patterns are shown in Figure 10-2.

Figure 10-2 Example Stroke Styles

10.2.2.5 Fill Styles

ThePaint attribute in theGraphics2D context defines the fill color or pattern
used when text andShapes are rendered.

Filling a Shape with a Gradient

TheGradientPaint class allows a shape to be filled with a gradient of one col
to another. When creating aGradientPaint object, you specify a beginning
position and color, and an ending position and color. The fill color changes
proportionally from one color to the other along the line connecting the two
positions, as shown in Figure 10-3.

In all three stars, the gradient line extends from point P1 to point P2. In the
middle star, all of the points along the gradient line extending to the left of P
take the beginning color and the points to the right of P2 take the ending col

Listing 10-1 Example Stroke Styles

// Define the first dashed line.
float dash1[] = {10.0f};
BasicStroke bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER, 10.0f, dash1, 0.0f);

g2.setStroke(bs);
Line2D line = new Line2D.Float(20.0f, 10.0f, 100.0f, 10.0f);
g2.draw(line);

// Define the second dashed line.
float[] dash2 = {6.0f, 4.0f, 2.0f, 4.0f, 2.0f, 4.0f};
bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER, 10.0f, dash2, 0.0f);
g2.setStroke(bs);
g2.draw(line);

dash1 dash2
Programming in Java Advanced Imaging

GRAPHICS RENDERING Stroke Attributes

en
Figure 10-3 Filling a Shape with a Gradient

To fill a shape with a gradient of one color to another:

1. Create aGradientPaint object

2. CallGraphics2D.setPaint

3. Create theShape object

4. CallGraphics2D.fill(shape)

Listing 10-2 shows sample code in which a rectangle is filled with a blue-gre
gradient.

Filling a Shape with a Texture

TheTexturePaint class allows you to fill a shape with a repeating pattern.
When you create aTexturePaint, you specify aBufferedImage to use as the
pattern. You also pass the constructor a rectangle to define the repetition
frequency of the pattern.

To fill a shape with a texture:

1. Create aTexturePaint object

2. CallGraphics2D.setPaint

3. Create theShape

4. CallGraphics2D.fill(shape)

Listing 10-2 Example Filling a Rectangle with a Gradient

GradientPaint gp = new GradientPaint(50.0f, 50.0f, Color.blue,
50.0f, 250.0f, Color.green);

g2.setPaint(gp);
g2.fillRect(50, 50, 200, 200);

P1 P2 P1 P2
P1

P2
329Release 1.0.1, November 1999

10.2.3 Rendering Graphics Primitives GRAPHICS RENDERING

330
Listing 10-3 shows sample code in which a shape is filled with texture.

10.2.3 Rendering Graphics Primitives

TheGraphics2D class provides methods for creatingShapes andText, and for
renderingImages. Table 10-3 lists these methods.

Listing 10-3 Example Filling a Shape with Texture

// Create a buffered image texture patch of size 5 X 5.
BufferedImage bi = new BufferedImage(5, 5,
 BufferedImage.TYPE_INT_RGB);
Graphics2D big bi.createGraphics();

// Render into the BufferedImage graphics to create the texture.
big.setColor(Color.green);
big.fillRect(0, 0, 5, 5);
big.setColor(Color.lightGray);
big.fillOval(0, 0, 5, 5);

// Create a texture paint from the buffered image.
Rectangle r = new Rectangle(0, 0, 5, 5);
TexturePaint tp = new
 TexturePaint(bi, r, TexturePaint.NEAREST_NEIGHBOR);

// Add the texture paint to the graphics context.
g2.setPaint(tp);

// Create and render a rectangle filled with the texture.
g2.fillRect(0, 0, 200, 200);
}

Table 10-3 Graphics Primitives Methods

Method Description

draw Strokes the outline of aShape using theStroke andPaint settings of
the currentGraphics2D context.

fill Fills the interior of aShape using thePaint settings of the
Graphics2D context.

drawString Renders the specified text string using thePaint setting of the
Graphics2D context.

drawImage Renders the specifiedImage.

drawRenderableImage Renders the specifiedRenderableImage.

drawRenderedImage Renders the specifiedRenderedImage.
Programming in Java Advanced Imaging

GRAPHICS RENDERING Rendering Graphics Primitives
10.2.3.1 Drawing a Shape

TheGraphics2D.draw method is used to render the outline of anyShape. The
Graphics2D class also inherits draw methods from theGraphics class, such as
drawLine, drawRect, drawRoundRect, drawOval, drawArc, drawPolyline,
drawPolygon, anddraw3DRect.

When aShape is drawn, its path is stroked with theStroke object in the
Graphics2D context. (See Section 10.2.2, “Stroke Attributes,” for more
information.) By setting an appropriateBasicStroke object in theGraphics2D
context, you can draw lines of any width or pattern. TheBasicStroke object
also defines the line’s endcap and join attributes.

To render aShape’s outline:

1. Create theBasicStroke object

2. CallGraphics2D.setStroke

3. Create theShape

4. CallGraphics2D.draw(shape)

Listing 10-4 shows a code example in which aGeneralPath object is used to
define a star and aBasicStroke object is added to theGraphics2D context to
define the star’s line width and join attributes.

Listing 10-4 Example Drawing a Shape

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

 // Create and set the stroke.
 g2.setStroke(new BasicStroke(4.0f));

 // Create a star using a general path object.
 GeneralPath p new GeneralPath(GeneralPath.NON_ZERO);
 p.moveTo(- 100.0f, - 25.0f);
 p.lineTo(+ 100.0f, - 25.0f);
 p.lineTo(- 50.0f, + 100.0f);
 p.lineTo(+ 0.0f, - 100.0f);
 p.lineTo(+ 50.0f, + 100.0f);
 p.closePath();

 // Translate the origin towards the center of the canvas.
 g2.translate(100.0f, 100.0f);
331Release 1.0.1, November 1999

10.2.3 Rendering Graphics Primitives GRAPHICS RENDERING

332

ere.
10.2.3.2 Filling a Shape

TheGraphics2D.fill method is used to fill anyShape. When aShape is filled,
the area within its path is rendered with thePaint object in the Graphics2D
context: aColor, TexturePaint, or GradientPaint.

TheGraphics2D class also inherits fill methods from theGraphics class, such as
fillRect, fill3DRect, fillRoundRect, FillOval, fillArc, fillPolygon, and
clearRect.

To fill a Shape:

1. Set the fill color or pattern on theGraphics2D context using
Graphics2D.setColor, orGraphics2DsetPaint.

2. Create theShape

3. CallGraphics2D.fill to render theShape

Listing 10-5 shows a code example in which thesetColor method is called to
define a green fill for aRectangle2D.

10.2.3.3 Rendering Text

The entire subject of fonts and text layout is too extensive to try to describe h
In this section, we’ll give a brief overview of theGraphics2D.drawString
method, which is used to render a text string.

There are two basic variations on thedrawString method. Two methods takes a
String for an argument and two methods take an
AttributedCharacterIterator. If the argument is aString, the currentFont

 // Render the star’s path.
 g2.draw(p);
}

Listing 10-5 Example Filling a Shape

Public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

 g2.setpaint(Color.green);
 Rectangle2D r2 = new Rectangle2D.float(25, 25, 150, 150);

 g2.fill(r2);
}

Listing 10-4 Example Drawing a Shape (Continued)
Programming in Java Advanced Imaging

GRAPHICS RENDERING Adding Graphics and Text to an Image

r

,

in theGraphics2D context is used to convert the characters in theString into a
set of glyphs with whatever basic layout and shaping algorithms the font
implements. If the argument is anAttributedCharacterIterator, the iterator
is asked to convert itself to aTextLayout using its embedded font attributes. The
TextLayout implements more sophisticated glyph layout algorithms that
perform Unicode I-directional layout adjustments automatically for multiple
fonts of differing writing directions.

A third method used to render text is theGraphics2D.drawGlyphVector
method, which takes aGlyphVector as an argument. TheGlyphVector object
contains the appropriate font-specific glyph codes with explicit coordinates fo
the position of each glyph.

The character outlines are filled with thePaint object in the Graphics2D
context.

10.3 Graphics2D Example

Listing 10-6 shows a code sample for a Graphics2D example.

10.4 Adding Graphics and Text to an Image

Thejava.awt.Graphics2D class enables you to draw lines, geometric shapes
images, and text. These objects can then be “painted” over aTiledImage.

Listing 10-6 Graphics2D Example

// Read a RenderedImage and convert it to a BufferedImage.
imagePath = new String("./images/sample.jpg");
Image ai = loadAWTImage(imagePath, this);
RenderedImage ri = JAI.create("awtimage", ai);
BufferedImage bi = getBufferedImage(ri);
RenderedImage targetImage = null;
targetImage = new BufferedImage(bi.getWidth(),
 bi.getHeight(),
 bi.getType());

// Create a Graphics2D object to draw into the BufferedImage.
Graphics2D g2d = targetImage.createGraphics();
333Release 1.0.1, November 1999

10.4 Adding Graphics and Text to an Image GRAPHICS RENDERING

334
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 11

s

ata

h a

ides

erty

f a

if
Image Propertie

THIS chapter describes image properties.

11.1 Introduction

In addition to the pixel data, images occasionally have many other kinds of d
associated with them. These data, known asproperties, is a simple database of
arbitrary data attached to the images. Each property is simply an Object wit
unique, case-insensitive name.

The properties are arbitrary and depend on the intended application. JAI prov
methods that enable effective use of properties in the context of an image
processing application but, in most cases, leaves the specification of the prop
objects themselves to the developer.

Some examples of properties are:

• Descriptions of exotic shapes, such as hexagonal grids

• Mapping from digital pixel values to photometric values

• A defined region of interest (ROI) in the source image

Every node in an image chain may be queried for its properties. The value o
property at a particular node may be derived by one of the following
mechanisms:

• It may becopied from the node’s sources. This is the default behavior
no other behavior is specified.

• It may beproducedby the node from non-property information available
in the node.

• It may besynthesized by the node from a rendering.
335

11.1 Introduction IMAGE PROPERTIES

336

e

d.

i.e.,

he

ing
elf

r

ciated

than

.,

k to

e is
s on

ck to
• It may beinheritedor produced computationally from the properties of th
node’s sources.

• It may beset explicitly by thesetProperty method in one of the
appropriate classes:Planarimage, RenderedOp, orRenderableOp.
Properties of a node may not be set once the node has been rendere

When the value of a property is requested from a node in a rendered chain,
a RenderedOp node, it will be derived from the first of the following for which it
is defined:

1. Synthetic properties (see below).

2. Local properties, i.e., those set by an invocation of setProperty() on t
node.

3. The source image of the operation specified by invoking the method
OperationRegsitry.copyPropertyFromSource().

4. The rendering of the node. Note however that properties set by invok
setProperty() on the rendering of the node rather than on the node its
will not be propagated back to the node itself.

5. Any PropertyGenerators either defined by the associated operation o
added by an invocation ofRenderedOp.addPropertyGenerator().
PropertyGenerators added by the latter method supersede those asso
with the operation, e.g., via its OperationDescriptor.

6. The sources of the operation. The first source has higher precedence
the second source and so on.

The same order of precedence applies in the case of renderable chains, i.e
RenderableOp nodes, with the exception of item 4, viz., properties created
within the contextual rendering of the RenderableOp are not propagated bac
the RenderableOp node itself.

There are a couple of important items to note at this point. First, when a nod
created with another node or nodes as its source(s), it might invoke method
the source node that force the source node to be rendered. Consequently
properties should be set on a node before it is used as the source of other
operations. Second, the rendering of a node doesnot inherit the properties of the
node itself nor are properties set on the rendering of the node propagated ba
the node. Image properties are controlled and generated by thePropertySource

andPropertyGenerator interfaces.
Programming in Java Advanced Imaging

IMAGE PROPERTIES The PropertyGenerator Interface

at
s

e

11.1.1 The PropertySource Interface

ThePropertySource interface contains methods from theRenderedImage and
RenderableImage interfaces that identify and read properties.PlanarImage,
RenderableOp, andRenderedOp all implementPropertySource.

The interface consists of thegetProperty andgetPropertyNames methods
familiar from theRenderedImage andRenderableImage interfaces.

PropertySource is implemented byImageJAI. Since all RenderedImages used
within JAI are descendents ofPlanarImage which implementsImageJAI, all
images may be assumed to implementPropertySource.

API: javax.media.jai.PropertySource

• String[] getPropertyNames()

returns an array ofStrings recognized as names by this property source.

• String[] getPropertyNames(String prefix)

returns an array ofStrings recognized as names by this property source th
begin with the suppliedprefix. If the method cannot find any property name
that match, null is returned.

• Object getProperty(String name)

returns the value of a property.

11.1.2 The PropertyGenerator Interface

ThePropertyGenerator interface allows you to affect the property inheritance
computation of an operation. APropertyGenerator simply implements two
methods:

• ThegetPropertyNames method returns a list of the names of all availabl
properties.

• ThegetProperty method returns the value of the property, given the
property name and aRenderedOp.

New PropertyGenerators may be added to theOperationRegistry to be
applied at a particular operation node. TheOperationRegistry also allows an
existing property on a node to be suppressed if it is no longer useful. See

Parameters: name The name of the property, as aString.
337Release 1.0.1, November 1999

11.2 Synthetic Properties IMAGE PROPERTIES

338

g

ill

f
ge,
for
y
in
Chapter 14, “Extending the API,” for more information on the
OperationRegistry.

API: javax.media.jai.PropertyGenerator

• String[] getPropertyNames()

returns an array ofStrings naming properties emitted by this property
generator.

• Object getProperty(String name, RenderedOp op)

computes the value of a property relative to an environment of pre-existin
properties emitted by the sources of aRenderedOp, and the parameters of that
operation.

The operation name, sources, andParameterBlock of theRenderedOp being
processed may be obtained by means of theop.getOperationName,
op.getSources(), andop.getParameterBlock() methods. It is legal to call
getProperty() on the operation’s sources.

11.2 Synthetic Properties

Certain properties aresynthesizedwhen a node is rendered. These synthetic
properties are image width (image_width), image height (image_height),
minimumx coordinate (image_min_x_coord), and minimumy coordinate
(image_min_y_coord). All of these properties have a value of class
java.lang.Integer. These properties are fixed and any attempt to set them w
result in an error.

11.3 Regions of Interest

The specification of a region of interest (ROI) is a common property that is
supported by all of the standard operators. The ROI is simply a description o
some portion of an image. This description is propogated, along with the ima
through the rendering chain. The ROI is transformed appropriately (inherited)
all geometric and area operators. For all other types of operations it is simpl
copied. The ROI has no bearing on the processing of image pixels, although

Parameters: name The name of the property, as aString.

op TheRenderedOp representing the operation.
Programming in Java Advanced Imaging

IMAGE PROPERTIES Complex Data

,

lex-
s

f the
its rendered form it can be used as input to histogram operations. For more
information, see Section 6.2, “Region of Interest Control.”

The ROI may be used as an argument to theTiledImage.set and
TiledImage.setData methods so as to copy a selected area of a source or
Raster into an existingTiledImage (see Section 4.2.2, “Tiled Image”). The ROI
may also be used as an argument to many compositing (see Section 7.11.2
“Image Compositing”) and statistical operators (see Chapter 9, “Image
Analysis”).

11.4 Complex Data

The COMPLEX property has value of classjava.lang.Boolean and indicates
whether the pixel values of an image represent complex-value data. (A comp
valued image wherein each pixel has N complex elements contains 2N band
with the real and imaginary components of theith complex element being stored
in bands 2i and 2i + 1, respectively.) This property may beproducedby a given
node either with a fixed value or with a value dependent on the parameters o
node. See Section 7.9, “Frequency Domain Processing.”
339Release 1.0.1, November 1999

11.4 Complex Data IMAGE PROPERTIES

340
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 12
a
ful
I, it

ing
d

nd

ll
by

g an

lues
Client-Server Imaging

THIS chapter describes JAI’s client-server imaging system.

12.1 Introduction

Client-server imaging provides the ability to distribute computation between
set of processing nodes. For example, it is possible to set up a large, power
server that provides image processing services to several thin clients. With JA
is possible for a client to set up a complex imaging chain on a server, includ
references to source images on other network hosts, and to request rendere
output from the server.

JAI uses Java Remote Method Invocation (RMI) to implement client-server
imaging. To communicate using Remote Method Invocation, both the client a
server must be running Java. Astubobject is instantiated on the client. The stub
object forwards its method calls to a corresponding server object. Method ca
arguments and return values are transmitted between the client and server
means of the Java Development Environment’sserializationcapability.

The hostname and port depend on the local setup. The host must be runnin
RMI registry process and have aRemoteImageServer listening at the desired
port.

This call will result in the creation of a server-sideRMIImageImpl object and a
client-side stub object. The client stub serializes its method arguments and
transfers them to the server over a socket; the server serializes its return va
and returns them in the same manner.
341

12.2 Server Name and Port Number CLIENT-SERVER IMAGING

342

uest
ils
12.2 Server Name and Port Number

TheRemoteImage constructor requires aserverName parameter that consists of a
host name and port number, in the following format:

host:port

For example:

camus.eng.sun.com:1099

The port number is optional and need be supplied only if the host name is
supplied. If theserverName parameter is null, the default is to search for the
RMIImage service on the local host at the defaultrmiregistryport (1099.

API: javax.media.jai.RemoteImage

• RemoteImage(String serverName, RenderedImage source)

constructs aRemoteImage from aRenderedImage.

• RemoteImage(String serverName, RenderedOp source)

constructs aRemoteImage from aRenderedOp, i.e., an imaging DAG (directed
acyclic graph). Note that the properties of theRemoteImage will be those of
theRenderedOp node and not of its rendering.

• RemoteImage(String serverName, RenderableOp source,
RenderContext renderContext)

constructs aRemoteImage from aRenderableOp andRenderContext. The
entireRenderableOp DAG will be copied over to the server. Note that the
properties of theRemoteImagewill be those of theRenderableOp node and not
of its rendering.

12.3 Setting the Timeout Period and Number of Retries

A network error or a delay caused by the server failing to respond to the req
for an image is dealt with through retries. If, on the first attempt, the server fa
to respond, the program will wait a specified amount of time and then make
another request for the image. When the limit of retries is exceeded, a null
Raster may be returned.

Parameters: serverName The name of the server in the appropriate
format.

source A RenderedImage source.
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example

be

7]
The amount of time to wait between retries defaults to 1 second (1000
milliseconds). ThegetTimeout method is used to get the amount of time
between retries, in milliseconds. ThesetTimeout method is used to set the
amount of time between retries.

The number of times the program will attempt to read the remote image may
read with thegetNumRetries method. ThesetNumRetries method is used to set
the maximum number of retries.

API: javax.media.jai.RemoteImage

• void setTimeout(int timeout)

sets the amount of time between retries.

• int getTimeout()

returns the amount of time between retries.

• void setNumRetries(int numRetries)

sets the number of retries.

12.4 Remote Imaging Test Example

This section contains two examples of remote imaging programs.

12.4.1 Simple Remote Imaging Example

Listing 12-1 shows a complete code example of aRemoteImaging test. This
example displays a 2× 2 grid of ScrollingImagePanels, with each window
displaying the sum of two byte images that were rescaled to the range [0,12
prior to addition. The panels display the following specific results:

• upper left: local rendering

• upper right: result of remote rendering of a RenderedOp graph

• lower left: result of remote loading of a RenderedImage

Parameter: timeout The time interval between retries in
milliseconds.

Parameter: numRetries The maximum number of retries. If this is a
negative value, the number of retries is
unchanged.
343Release 1.0.1, November 1999

12.4.1 Simple Remote Imaging Example CLIENT-SERVER IMAGING

344

h a
e

• lower right: result of remote rendering of a RenderableOp graph

The lower right image is a dithered version of the sum image passed throug
color cube lookup table and may appear slightly different from the other thre
images, which should be identical.

Listing 12-1 Remote Imaging Example Program (Sheet 1 of 4)

import java.awt.*;
import java.awt.event.WindowEvent;
import java.awt.geom.*;
import java.awt.image.*;
import java.awt.image.renderable.*;
import java.util.*;
import javax.media.jai.*;
import javax.media.jai.operator.*;
import javax.media.jai.widget.*;
public class RemoteImagingTest extends WindowContainer {

/** Default remote server. */
private static final String DEFAULT_SERVER =
 "camus.eng.sun.com:1099";

/** Tile dimensions. */
private static final int TILE_WIDTH = 256;
private static final int TILE_HEIGHT = 256;

public static void main(String args[]) {
String fileName1 = null;
String fileName2 = null;

// Check args.
 if(!(args.length >= 0 && args.length <= 3)) {
 System.out.println("\nUsage: java RemoteImagingTest "+

"[[[serverName] | [fileName1 fileName2]] | "+
"[serverName fileName1 fileName2]]"+"\n");

 System.exit(1);
 }

// Set the server name.
String serverName = null;
 if(args.length == 0 || args.length == 2) {
 serverName = DEFAULT_SERVER;
 System.out.println("\nUsing default server '"+
 DEFAULT_SERVER+"'\n");
 } else {
 serverName = args[0];
 }
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example
// Set the file names.
 if(args.length == 2) {
 fileName1 = args[0];
 fileName2 = args[1];
 } else if(args.length == 3) {
 fileName1 = args[1];
 fileName2 = args[2];
 } else {
fileName1 = "/import/jai/JAI_RP/test/images/Boat_At_Dock.tif";
 fileName2 = "/import/jai/JAI_RP/test/images/FarmHouse.tif";
 System.out.println("\nUsing default images '"+

fileName1 + "' and '" + fileName2 + "'\n");
 }

RemoteImagingTest riTest =
new RemoteImagingTest(serverName, fileName1, fileName2);

 }

/**
* Run a remote imaging test.
*
* @param serverName The name of the remote server to use.
* @param fileName1 The first addend image file to use.
* @param fileName2 The second addend image file to use.
*/
RemoteImagingTest(String serverName, String fileName1, String
 fileName2) {
// Create the operations to load the images from files.
RenderedOp src1 = JAI.create("fileload", fileName1);
RenderedOp src2 = JAI.create("fileload", fileName2);

// Render the sources without freezing the nodes.
PlanarImage ren1 = src1.createInstance();
PlanarImage ren2 = src2.createInstance();

Listing 12-1 Remote Imaging Example Program (Sheet 2 of 4)
345Release 1.0.1, November 1999

12.4.1 Simple Remote Imaging Example CLIENT-SERVER IMAGING

346
// Create TiledImages with the file images as their sources
// thereby ensuring that the serialized images are truly tiled.
 SampleModel sampleModel1 =
ren1.getSampleModel().createCompatibleSampleModel(TILE_WIDTH,

TILE_HEIGHT);
TiledImage ti1 = new TiledImage(ren1.getMinX(), ren1.getMinY(),

ren1.getWidth(), ren1.getHeight(),
 ren1.getTileGridXOffset(),
 ren1.getTileGridYOffset(),

sampleModel1, ren1.getColorModel());
ti1.set(src1);
SampleModel sampleModel2 =
ren2.getSampleModel().createCompatibleSampleModel(TILE_WIDTH,

TILE_HEIGHT);
TiledImage ti2 = new TiledImage(ren2.getMinX(), ren2.getMinY(),

ren2.getWidth(), ren2.getHeight(),
 ren2.getTileGridXOffset(),
 ren2.getTileGridYOffset(),

sampleModel2, ren2.getColorModel());
 ti2.set(src2);

// Create a hint to specify the tile dimensions.
ImageLayout layout = new ImageLayout();
layout.setTileWidth(TILE_WIDTH).setTileHeight(TILE_HEIGHT);
 RenderingHints rh = new
 RenderingHints(JAI.KEY_IMAGE_LAYOUT, layout);

// Rescale the images to the range [0, 127].
ParameterBlock pb = (new ParameterBlock());
pb.addSource(ti1);
pb.add(new double[] {0.5}).add(new double[] {0.0});
RenderedOp addend1 = JAI.create("rescale", pb, rh);
pb = (new ParameterBlock());
pb.addSource(ti2);
pb.add(new double[] {0.5}).add(new double[] {0.0});
RenderedOp addend2 = JAI.create("rescale", pb, rh);

// Add the rescaled images.
pb = (new
 ParameterBlock()).addSource(addend1).addSource(addend2);
 RenderedOp sum = JAI.create("add", pb, rh);

 // Dither the sum of the rescaled images.
 pb = (new ParameterBlock()).addSource(sum);

pb.add(ColorCube.BYTE_496).add(KernelJAI.DITHER_MASK_443);
RenderedOp dithered = JAI.create("ordereddither", pb, rh);

Listing 12-1 Remote Imaging Example Program (Sheet 3 of 4)
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Simple Remote Imaging Example
// Construct a RemoteImage from the RenderedOp chain.
RemoteImage remoteImage = new RemoteImage(serverName, sum);

// Set the display title and window layout.
setTitle(getClass().getName());
setLayout(new GridLayout(2, 2));

// Local rendering.
add(new ScrollingImagePanel(sum,
 sum.getWidth(),
 sum.getHeight()));

// RenderedOp remote rendering.
add(new ScrollingImagePanel(remoteImage,
 remoteImage.getWidth(),
 remoteImage.getHeight()));

// RenderedImage remote rendering
PlanarImage sumImage = sum.getRendering();
remoteImage = new RemoteImage(serverName, sumImage);
add(new ScrollingImagePanel(remoteImage,
 remoteImage.getWidth(),
 remoteImage.getHeight()));

// RenderableOp remote rendering.
pb = new ParameterBlock();
pb.addSource(dithered);
RenderableOp absImage = JAI.createRenderable("absolute", pb);
pb = new ParameterBlock();
pb.addSource(absImage).add(ColorCube.BYTE_496);
RenderableOp lutImage = JAI.createRenderable("lookup", pb);
AffineTransform tf =

AffineTransform.getScaleInstance(384/dithered.getWidth(),
256/dithered.getHeight());

Rectangle aoi = new Rectangle(128, 128, 384, 256);
RenderContext rc = new RenderContext(tf, aoi, rh);
remoteImage = new RemoteImage(serverName, lutImage, rc);
add(new ScrollingImagePanel(remoteImage,
 remoteImage.getWidth(),
 remoteImage.getHeight()));

// Finally display everything
 pack();
 show();
 }
}

Listing 12-1 Remote Imaging Example Program (Sheet 4 of 4)
347Release 1.0.1, November 1999

12.4.2 RemoteImaging Example Across Two Nodes CLIENT-SERVER IMAGING

348

o

12.4.2 RemoteImaging Example Across Two Nodes

Listing 12-2 shows an example of a RemoteImaging chain spread across tw
remote nodes, and displays the results locally.

Listing 12-2 RemoteImaging Example Program Using Two Nodes (Sheet 1 of 2)

import java.awt.image.*;
import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.*;
import javax.media.jai.widget.*;

/**
* This test creates an imaging chain spread across two remote
 * nodes and displays the result locally.
 */

public class MultiNodeTest extends WindowContainer {
 public static void main(String[] args) {
 if(args.length != 3) {

throw new RuntimeException(“Usage: java MultiNodeTest “+
 “file node1 node2”);
 }

 new MultiNodeTest(args[0], args[1], args[2]);
 }
public MultiNodeTest(String fileName, String node1, String
 node2) {

// Create a chain on node 1.
System.out.println(“Creating dst1 = log(invert(fileload(“+
 fileName+”))) on “+node1);
 RenderedOp src = JAI.create(“fileload”, fileName);
 RenderedOp op1 = JAI.create(“invert”, src);
 RenderedOp op2 = JAI.create(“log”, op1);
 RemoteImage rmt1 = new RemoteImage(node1, op2);

// Create a chain on node 2.
System.out.println(“Creating dst2 = not(exp(dst1)) on “+node2);
 RenderedOp op3 = JAI.create(“exp”, rmt1);
 RenderedOp op4 = JAI.create(“not”, op3);
 RemoteImage rmt2 = new RemoteImage(node2, op4);
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING RemoteImaging Example Across Two Nodes

is
the
n
he
le

-
the
API: javax.media.jai.RemoteImage

• int getWidth()

returns the width of theRemoteImage.

• int getHeight()

returns the height of theRemoteImage.

• Raster getData()

returns the entire image as one large tile.

• Raster getData(Rectangle rect)

returns an arbitrary rectangular region of theRemoteImage.

• WritableRaster copyData(WritableRaster raster)

returns an arbitrary rectangular region of theRemoteImage in a user-supplied
WritableRaster. The rectangular region is the entire image if the argument
null or the intersection of the argument bounds with the image bounds if
region is non-null. If the argument is non-null but has bounds that have a
empty intersection with the image bounds, the return value will be null. T
return value may also be null if the argument is non-null but is incompatib
with theRaster returned from the remote image.

If the raster argument is null, the entire image will be copied into a newly
created WritableRaster with a SampleModel that is compatible with that of
image.

// Display the result of node 2.
System.out.println(“Displaying results”);
setTitle(getClass().getName()+” “+fileName);
add(new ScrollingImagePanel(rmt2, rmt2.getWidth(),
 rmt2.getHeight()));
 pack();
 show();
 }
}

Parameters: rect The region of theRemoteImage to be
returned.

Parameters: raster A WritableRaster to hold the returned
portion of the image.

Listing 12-2 RemoteImaging Example Program Using Two Nodes (Sheet 2 of 2)
349Release 1.0.1, November 1999

12.5 Running Remote Imaging CLIENT-SERVER IMAGING

350

re
are
file

is
d,
• Raster getTile(int x, int y)

returns a tile (x, y). Note thatx andy are indices into the tile array, not pixel
locations. Unlike in the trueRenderedImage interface, theRaster that is
returned should be considered a copy.

12.5 Running Remote Imaging

To run remote imaging in JAI, you have to do the following:

1. Create a security policy file

2. Start the RMI registry

3. Start the remote image server

4. Run the local application

These four steps are explained in more detail in the following sections.

12.5.1 Step 1: Create a Security Policy File

The default RMI security policy implementation is specified within one or mo
policy configuration files. These configuration files specify what permissions
allowed for code from various sources. There is a default system-wide policy
and a single user policy file. For more information on policy files and
permissions, see:

http://java.sun.com/products/jdk/1.2/docs/guide/security/
PolicyFiles.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/
permissions.html

The policy file is located in the base directory where Java Advanced Imaging
installed. If$JAI is the base directory where Java Advanced Imaging is installe
use any simple text editor to create a text file named$JAI/policy containing the
following:

grant {
// Allow everything for now
 permission java.security.AllPermission;

Parameters: x Thex index of the requested tile in the tile
array

y They index of the requested tile in the tile
array
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING Step 3: Start the Remote Image Server

nts
ate
n

ch

ing

ge
};

Note that this policy file is for testing purposes only.

12.5.2 Step 2: Start the RMI Registry

The RMI registry is a simple server-side name server that allows remote clie
to get a reference to a remote object. Typically, the registry is used only to loc
the first remote object an application needs to talk to. Then that object in tur
provides application-specific support for finding other objects.

Note: Before starting the rmiregistry, make sure that the shell or window in whi
you will run the registry either has noCLASSPATH set or has aCLASSPATH that does
not include the path to any classes you want downloaded to your client, includ
the stubs for your remote object implementation classes.

To start the registry on the server, log in to the remote system where the ima
server will be running and execute thermiregistry command.

For example, in theSolaris operating environment using a Bourne-compatible
shell (e.g., /bin/sh):

$ unset CLASSPATH
$ rmiregistry &

Note that theCLASSPATH environment variable is deliberately not set.

For example, onWindows 95or Windows NT:

start rmiregistry

If the start command is not available, usejavaw.

12.5.3 Step 3: Start the Remote Image Server

While still logged in to the remote server system, set theCLASSPATH and
LD_LIBRARY_PATH environment variables as required for JAI (see theINSTALL

file) and start the remote imaging server. For example:

$ CLASSPATH=$JAI/lib/jai.jar:\
 $JAI/lib/mlibwrapper_jai.jar
$ export CLASSPATH
$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAI/lib
$ export LD_LIBRARY_PATH
$ java \
351Release 1.0.1, November 1999

12.5.4 Step 4: Run the Local Application CLIENT-SERVER IMAGING

352

ress

.

mote

et

ge.

ol

are

rver
sted
-Djava.rmi.server.codebase=\
 file:$JAI/lib/jai.jar \
-Djava.rmi.server.useCodebaseOnly=false \
-Djava.security.policy=file:$JAI/policy \
 com.sun.media.jai.rmi.RMIImageImpl

For example, when the above steps are executed on a machine with IP add
123.456.78.90 the following is printed:

Server: using host 123.456.78.90 port 1099
Registering image server as
 "rmi://123.456.78.90:1099/RemoteImageServer".
Server: Bound RemoteImageServer into
 the registry.

12.5.4 Step 4: Run the Local Application

After completing steps 1 through 3, you are ready to run the local application
When running the local application, make sure that theserverName parameter of
any RemoteImage constructors corresponds to the machine on which the re
image server is running. For example, if the machine with IP address
123.456.78.90 above is namedmyserver, theserverName parameter of any
RemoteImage() constructors should be"myserver".

12.6 Internet Imaging Protocol (IIP)

There are two JAI operations that support Internet Imaging Protocol (IIP)
operations. Two separate operations provide client-side support of the Intern
Imaging Protocol. These operations,IIP andIIPResolution, request an image
from an IIP server then create either a RenderedImage or a RenderableIma

12.6.1 IIP Operation

TheIIP operation provides client-side support of the Internet Imaging Protoc
(IIP) in both the rendered and renderable modes. It creates aRenderedImage or
a RenderableImage based on the data received from the IIP server, and
optionally applies a sequence of operations to the created image.

The operations that may be applied and the order in which they are applied
defined in section 2.2.1.1 of theInternet Imaging Protocol Specificationversion
1.0.5. Some or all of the requested operations may be executed on the IIP se
if it is determined that the server supports such operations. Any of the reque
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIP Operation

the

ode
in

sing
age

ch
operations not supported by the server will be executed on the host on which
operation chain is rendered.

The processing sequence for the supplied operations is as follows:

• Filtering (blur or sharpen)

• Tone and color correction (“color twist”)

• Contrast adjustment

• Selection of source rectangle of interest

• Spatial orientation (rendering-independent affine transformation)

• Selection of destination rectangle of interest

• Rendering transformation (renderable mode only)

• Transposition (rotation and/or mirroring).

As indicated, the rendering transformation is performed only in renderable m
processing. This transformation is derived from the AffineTransform supplied
the RenderContext when rendering actually occurs. Rendered mode proces
creates a RenderedImage which is the default rendering of the RenderableIm
created in renderable mode processing.

TheIIP operation takes 14 parameters.

Parameter Type Description

URL String The URL of the IIP image

subImages int[] The sub-images to be used by the server for images at ea
resolution level

filter Float The filtering value

colorTwist float[] The color twist matrix

contrast Float The contrast value

sourceROI Rectangle2D.Float The source rectangle of interest in rendering-independent
coordinates

transform AffineTransform The rendering-independent spatial orientation transform

aspectRatio Float The aspect ratio of the destination image

destROI Rectangle2D.Float The destination rectangle of interest in rendering-
independent coordinates

rotation Integer The counterclockwise rotation angle to be applied to the
destination

mirrorAxis String The mirror axis

ICCProfile color.ICC_Profile The ICC profile used to represent the color space of the
source image
353Release 1.0.1, November 1999

12.6.1 IIP Operation CLIENT-SERVER IMAGING

354

ds.

the

ort
oth

o

han
12,
ta
ha
if

e
ing
n

A

ge
the

0.0F,
hat
of
TheURL parameter specifies the URL of the IIP image as ajava.lang.String.
It must represent a valid URL and include any required FIF or SDS comman
It cannot be null.

ThesubImages parameter optionally indicates the sub-images to be used by
server to get the images at each resolution level. The values in thisint array
cannot be negative. If this parameter is not specified, or if the array is too sh
(length is 0), or if a negative value is specified, this operation will use the zer
sub-image of the resolution level actually processed.

Thefilter parameter specifies a blur or sharpen operation; a positive value
indicates sharpen and a negative value blur. A unit step should produce a
perceptible change in the image. The default value is 0 which signifies that n
filtering will occur.

ThecolorTwist parameter represents a 4× 4 matrix stored in row-major order
and should have an array length of at least 16. If an array of length greater t
16 is specified, all elements from index 16 and beyond are ignored. Elements
13, and 14 must be 0. This matrix will be applied to the (possibly padded) da
in an intermediate normalized PhotoYCC color space with a premultiplied alp
channel. This operation will force an alpha channel to be added to the image
the last column of the last row of the color twist matrix is not 1.0F. Also, if th
image originally has a grayscale color space it will be cast up to RGB if cast
the data back to grayscale after applying the color twist matrix would result i
any loss of data. The default value is null.

Thecontrast parameter specifies a contrast enhancement operation with
increasing contrast for larger value. It must be greater than or equal to 1.0F.
value of 1.0F indicates no contrast adjustment. The default value is 1.0F.

ThesourceROI parameter specifies the rectangle of interest in the source ima
in rendering-independent coordinates. The intersection of this rectangle with
rendering-independent bounds of the source image must equal itself. The
rendering-independent bounds of the source image are defined to be (0.0F,
r, 1.0F) where r is the aspect ratio (width/height) of the source image. Note t
the source image will not in fact be cropped to these limits but values outside
this rectangle will be suppressed.

JPEGQuality Integer The JPEG quality factor

JPEGTable Integer The JPEG compression group index number

Parameter Type Description
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIP Operation

ied
n is
s a

f the
t

n-

By

r

ith
er a
Thetransform parameter represents an affine backward mapping to be appl
in rendering-independent coordinates. Note that the direction of transformatio
opposite to that of the AffineTransform supplied in the RenderContext which i
forward mapping. The default value of this transform is the identity mapping.
The supplied AffineTransform must be invertible.

TheaspectRatio parameter specifies the rendering-independent width of the
destination image and must be positive. The rendering-independent bounds o
destination image are (0.0F, 0.0F, aspectRatio, 1.0F). If this parameter is no
provided, the destination aspect ratio defaults to that of the source.

ThedestROI parameter specifies the rectangle of interest in the destination
image in rendering-independent coordinates. This rectangle must have a no
empty intersection with the rendering-independent bounds of the destination
image but is not constrained to the destination image bounds.

Therotation parameter specifies a counter-clockwise rotation angle of the
destination image. The rotation angle is limited to 0, 90, 180, or 270 degrees.
default, the destination image is not rotated.

ThemirrorAxis parameter may be null, in which case no flipping is applied, o
a String ofx, X, y, or Y.

TheICCProfile parameter may only be used with client-side processing or w
server-side processing if the connection protocol supports the ability to transf
profile.

TheJPEGQuality andJPEGTable parameters are only used with server-side
processing. If provided,JPEGQuality must be in the range [0,100] and
JPEGTable in [1,255].

There is no source image associated with this operation.

Listing 12-3 shows a code sample for anIIP operation.

Listing 12-3 IIP Operation Example

public static final String SERVER = "http://istserver:8087/";
public static final String DEFAULT_IMAGE = "cat.fpx";
public static final int DEFAULT_HEIGHT = 512;

public static void main(String[] args) {
 String imagePath = DEFAULT_IMAGE;
355Release 1.0.1, November 1999

12.6.1 IIP Operation CLIENT-SERVER IMAGING

356
 for(int i = 0; i < args.length; i++) {
 if(args[i].equalsIgnoreCase("-image")) {
 imagePath = args[++i];
 if(!(imagePath.toLowerCase().endsWith(".fpx"))) {
 imagePath += ".fpx";
 }
 }
 }

 String url = SERVER + "FIF=" + imagePath;

 new IIPTest(url);
}

// Define the parameter block.
ParameterBlock pb = (new ParameterBlock()).add(url);

// Default sub-image array
pb.set(-10.0F, 2); // filter
float[] colorTwist = new float[]
 {1.0F, 0.0F, 0.0F, 0.0F,
 0.0F, 0.0F, 1.0F, 0.0F,
 0.0F, 1.0F, 0.0F, 0.0F,
 0.0F, 0.0F, 0.0F, 1.0F};
pb.set(colorTwist, 3); //color-twist
pb.set(2.0F, 4); // contrast
pb.set(new Rectangle2D.Float(0.10F, 0.10F,
 0.80F*aspectRatioSource, 0.80F),
 5); // srcROI

AffineTransform afn = AffineTransform.getShearInstance(0.2,
 0.1);
pb.set(afn, 6); // transform
Rectangle2D destBounds = null;

try {
 Rectangle2D sourceRect =

new Rectangle2D.Float(0.0F, 0.0F, aspectRatioSource,
 1.0F);
 Shape shape =

afn.createInverse().createTransformedShape(sourceRect);
 destBounds = shape.getBounds2D();
} catch(Exception e) {
}

Listing 12-3 IIP Operation Example (Continued)
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIPResolution Operation

sts

el

 the
l be
12.6.2 IIPResolution Operation

TheIIPResolution operation provides client-side support of the Internet
Imaging Protocol (IIP) in the rendered mode. It is resolution-specific. It reque
from the IIP server an image at a particular resolution level, and creates a
RenderedImage based on the data received from the server. Once the
RenderedImage is created, the resolution level cannot be changed.

The layout of the created RenderedImage is set as follows:

• minX, minY, tileGridXOffset, and tileGridYOffset are set to 0

• width and height are determined based on the specified resolution lev

• tileWidth and tileHeight are set to 64

• sampleModel is of the typePixelInterleavedSampleModel with byte
data type and the appropriate number of bands

• colorModel is of the typejava.awt.image.ComponentColorModel, with
the ColorSpace set to sRGB, PhotoYCC, or Grayscale, depending on
color space of the remote image; if an alpha channel is present, it wil
premultiplied

float aspectRatio = (float)destBounds.getHeight();
pb.set(aspectRatio, 7); // destination aspect ratio
pb.set(new Rectangle2D.Float(0.0F, 0.0F,

0.75F*aspectRatio, 0.75F), 8); // dstROI
pb.set(90, 9); // rotation angle
pb.set("x", 10); // mirror axis

// Default ICC profile
// Default JPEG quality
// Default JPEG table index

int height = DEFAULT_HEIGHT;
AffineTransform at =
 AffineTransform.getScaleInstance(height*aspectRatioSource,
 height);
RenderContext rc = new RenderContext(at);

// Create a RenderableImage.
RenderableImage renderable = JAI.createRenderable("iip", pb);

Listing 12-3 IIP Operation Example (Continued)
357Release 1.0.1, November 1999

12.6.2 IIPResolution Operation CLIENT-SERVER IMAGING

358

ds.

ot
t is

get
e. If

iated
on
TheIIPResolution operation takes three parameters.

TheURL parameter specifies the URL of the IIP image as ajava.lang.String.
It must represent a valid URL, and include any required FIF or SDS comman
It cannot be null.

Theresolution parameter specifies the resolution level of the requested IIP
image from the server. The lowest resolution level is 0, with larger integers
representing higher resolution levels. If the requested resolution level does n
exist, the nearest resolution level is used. If this parameter is not specified, i
set to the default valueIIPResolutionDescriptor.MAX_RESOLUTION, which
indicates the highest resolution level.

ThesubImage parameter indicates the sub-image to be used by the server to
the image at the specified resolution level. This parameter cannot be negativ
this parameter is not specified, it is set to the default value 0.

There is no source image associated with this operation.

If available from the IIP server certain properties may be set on the
RenderedImage. The names of properties and the class types of their assoc
values are listed in the following table. See the IIP specification for informati
on each of these properties.

Parameter Type Description

URL String The URL of the IIP image

resolution Integer The resolution level to request

subImage Integer The sub-image to be used by the server

Property Type

affine-transform java.awt.geom.AffineTransform

app-name java.lang.String

aspect-ratio java.lang.Float

author java.lang.String

colorspace int[]

color-twist float[16]

comment java.lang.String

contrast-adjust java.lang.Float

copyright java.lang.String

create-dtm java.lang.String
Programming in Java Advanced Imaging

CLIENT-SERVER IMAGING IIPResolution Operation
Listing 12-4 shows a code sample for anIIPResolution operation.

edit-time java.lang.String

filtering-value java.lang.Float

iip java.lang.String

iip-server java.lang.String

keywords java.lang.String

last-author java.lang.String

last-printed java.lang.String

last-save-dtm java.lang.String

max-size int[2]

resolution-numberjava.lang.Integer

rev-number java.lang.String

roi-iip java.awt.geom.Rectangle2D.Float

subject java.lang.String

title java.lang.String

Listing 12-4 IIPResolution Operation Example

public static final String SERVER = "http://istserver:8087/";
public static final String DEFAULT_IMAGE = "cat.fpx";
public static final int DEFAULT_RESOLUTION = 3;

public static void main(String[] args) {
 String imagePath = DEFAULT_IMAGE;
 int resolution = DEFAULT_RESOLUTION;

 for(int i = 0; i < args.length; i++) {
 if(args[i].equalsIgnoreCase("-image")) {
 imagePath = args[++i];
 if(!(imagePath.toLowerCase().endsWith(".fpx"))) {
 imagePath += ".fpx";
 }
 } else if(args[i].equalsIgnoreCase("-res")) {

resolution = Integer.valueOf(args[++i]).intValue();
 }
 }

 String url = SERVER + "FIF=" + imagePath;

 new IIPResolutionTest(url, resolution);
}

Property Type
359Release 1.0.1, November 1999

12.6.2 IIPResolution Operation CLIENT-SERVER IMAGING

360
ParameterBlock pb = new ParameterBlock();
pb.add(url).add(resolution);
PlanarImage pi = JAI.create("iipresolution", pb);

Listing 12-4 IIPResolution Operation Example (Continued)
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 13
ge

n

n the

eters:
Writing Image Files

THIS chapter describes JAI’s codec system for writing image data files.

13.1 Introduction

The JAI codec system supports a variety of image formats for writing an ima
to a file or to anOutputStream for further manipulation. For writing an image to
a file, theFileStore operation (see Section 13.2, “Writing to a File”) writes an
image to a specified file in the specified format. For encoding an image to a
OutputStream, theEncode operation (see Section 13.3, “Writing to an Output
Stream”) writes an image to a givenOutputStream in a specified format using
the encoding parameters supplied via theImageEncodeParam operation
parameter.

13.2 Writing to a File

TheFileStore operation writes an image to a given file in a specified format
using the specified encoding parameters. This operation is much simpler tha
encoders described in the remainder of this chapter.

TheFileStore operation takes one rendered source image and three param

Thefilename parameter must be supplied or the operation will not be
performed. Also, the specified file path must be writable.

Parameter Type Description

filename String The path of the file to write to.

format String The format of the file.

param ImageEncodeParam The encoding parameters.
361

13.3 Writing to an Output Stream WRITING IMAGE FILES

362

rs:

meter
ll of
For
e

Theformat parameter defaults totiff if no value is provided. Table 13-1 lists
the recognized JAI file formats.

Theparam parameter must either be null or an instance of anImageEncodeParam

subclass appropriate to the format.

Listing 13-1 shows a code sample demonstrating the use of both theEncode and
FileStore operations.

13.3 Writing to an Output Stream

TheEncode operation writes an image to a givenOutputStream in a specified
format using the encoding parameters supplied via theImageEncodeParam

operation parameter.

TheEncode operation takes one rendered source image and three paramete

Theparam parameter must either be null or an instance of anImageEncodeParam

subclass appropriate to the specified image format. The image encode para
depends on the type of image file to be encoded. This parameter contains a
the information about the file type that the encoder needs to create the file.
example, the BMP format requires two parameter values, as described in th
BMPEncodeParam class:

• Version number – One of three values:VERSION_2, VERSION_3, or
VERSION_4.

• Data layout – One of two values:TOP_DOWN or BOTTOM_UP.

Table 13-1 JAI Writable File Formats

File Format Description

BMP Microsoft Windows bitmap image file

JPEG A file format developed by the Joint Photographic Experts Group

PNG Portable Network Graphics

PNM Portable aNy Map file format. Includes PBM, PGM, and PPM

TIFF Tag Image File Format

Parameter Type Description

stream OutputStream TheOutputStream to write to.

format String The format of the created file.

param ImageEncodeParam The encoding parameters.
Programming in Java Advanced Imaging

WRITING IMAGE FILES BMP Version

ge

of
These parameters are described in detail in Section 13.4, “Writing BMP Ima
Files.”

Listing 13-1 shows a code sample demonstrating the use of both theEncode and
FileStore operations.

13.4 Writing BMP Image Files

As described above, the encoding of BMP images requires the specification
two parameters: version and data layout. By default, these values are:

• Version – VERSION_3

• Data layout – pixels are stored in bottom-up order

The JAI BMP encoder does not support compression of BMP image files.

13.4.1 BMP Version

JAI currently reads and writes Version2, Version3, and some of the Version 4
images. The BMP version number is read and specified withgetVersion and
setVersion methods in theBMPEncodeParam class. The BMP version
parameters are as follows:

Listing 13-1 Writing an OutputStream and a File

// Define the source and destination file names.
String inputFile = /images/FarmHouse.tif
String outputFile = /images/FarmHouse.bmp

// Load the input image.
RenderedOp src = JAI.create("fileload", inputFile);

// Encode the file as a BMP image.
FileOutputStream stream =
 new FileOutputStream(outputFile);
JAI.create("encode", src, stream, BMP, null);

// Store the image in the BMP format.
JAI.create("filestore", src, outputFile, BMP, null);

Parameter Description

VERSION_2 Specifies BMP Version 2

VERSION_3 Specifies BMP Version 3

VERSION_4 Specifies BMP Version 4
363Release 1.0.1, November 1999

13.4.2 BMP Data Layout WRITING IMAGE FILES

364

s
the
If not specifically set,VERSION_3 is the default version.

API: com.sun.media.jai.codec.BMPEncodeParam

• void setVersion(int versionNumber)

sets the BMP version to be used.

• int getVersion()

returns the BMP version to be used.

13.4.2 BMP Data Layout

The scan lines in the BMP bitmap are stored from the bottom up. This mean
that the first byte in the array represents the pixels in the lower-left corner of
bitmap, and the last byte represents the pixels in the upper-right corner.

The in-memory layout of the image data to be encoded is specified with
getDataLayout andsetDataLayout methods in theBMPEncodeParam class.

API: com.sun.media.jai.codec.BMPEncodeParam

• void setTopDown(boolean topDown)

sets the data layout to be top down.

13.4.3 Example Code

Listing 13-2 shows a code sample for encoding a BMP image.

13.5 Writing JPEG Image Files

The JPEG standard was developed by a working group, known as the Joint
Photographic Experts Group (JPEG). The JPEG image data compression
standard handles grayscale and color images of varying resolution and size.

Listing 13-2 Encoding a BMP Image

OutputStream os = new FileOutputStream(fileToWriteTo);
BMPEncodeParam param = new BMPEncodeParam();
ImageEncoder enc = ImageCodec.createImageEncoder("BMP", os,
 param);
enc.encode(op);
os.close();
Programming in Java Advanced Imaging

WRITING IMAGE FILES JFIF Header

he
is

nd
es,

but

lt
hem.

es

res
he
JPEG compression identifies and discards “extra” data that is beyond what t
human eye can see. Since it discards data, the JPEG compression algorithm
considered “lossy.” This means that once an image has been compressed a
then decompressed, it will not be identical to the original image. In most cas
the difference between the original and compressed version of the image is
indistinguishable.

An advantage of JPEG compression is the ability to select the quality when
compressing the image. The lower the quality, the smaller the image file size,
the more different it will appear than the original.

Table 13-2 lists the JPEG encode parameters that may be set and the defau
values. The remaining sections describe these settings and how to change t

13.5.1 JFIF Header

The JPEG File Interchange Format (JFIF) is a minimal file format that enabl
JPEG bitstreams to be exchanged between a wide variety of platforms and
applications. This minimal format does not include any of the advanced featu
found in the TIFF JPEG specification or any application-specific file format. T

Table 13-2 JPEG Encode Parameters

Parameter Description Default Value

writeJFIFHeader Controls whether the encoder writes a JFIF
header using the APP0 marker. See
Section 13.5.1, “JFIF Header.”

True

qTabSlot[0],[1],[2] Quantization tables. See Section 13.5.3,
“Quantization Table.”

0 for Y channel, 1 for
Cb and Cr channels

qTab[0],[1],[2] Quantization table contents. See Section 13.5.3,
“Quantization Table.”

Null for all three
channels

qTabSet[0],[1],[2] Quantization table usage. See Section 13.5.3,
“Quantization Table.”

False for all three
channels

hSamp[0],[1],[2] Horizontal subsampling. See Section 13.5.4,
“Horizontal and Vertical Subsampling.”

1 for Y channel, 2 for
Cb and Cr channels

vSamp[0],[1],[2] Vertical subsampling. See Section 13.5.4,
“Horizontal and Vertical Subsampling.”

1 for Y channel, 2 for
Cb and Cr channels

qual Quality setting. See Section 13.5.5,
“Compression Quality.”

0.75F

rstInterval Restart interval. Section 13.5.6, “Restart
Interval.”

0

writeImageOnly Controls whether encoder writes only the
compressed image data. See Section 13.5.7,
“Writing an Abbreviated JPEG Stream.”

False
365Release 1.0.1, November 1999

13.5.2 JPEG DCT Compression Parameters WRITING IMAGE FILES

366

ts,

on

. By
sole purpose of this simplified format is to allow the exchange of JPEG
compressed images.

The JFIF features are:

• Uses the JPEG baseline image compression algorithm

• Uses JPEG interchange format compressed image representation

• Compatible with most platforms (PC, Mac, or Unix)

• Standard color space: one or three components. For three componen
YCbCr (CCIR 601-256 levels)

An APP0 marker is used to identify a JFIF file. The marker provides informati
that is missing from the JPEG stream, such as version number,x andy pixel
density (dots per inch or dots per cm.), pixel aspect ratio (derived fromx andy
pixel density), and thumbnail. ThesetWriteJFIFHeader method controls
whether the encoder writes a JFIF header using the APP0 marker.

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setWriteJFIFHeader(boolean writeJFIF)

controls whether the encoder writes a JFIF header using the APP0 marker
default an APP0 marker is written to create a JFIF file.

13.5.2 JPEG DCT Compression Parameters

JAI uses the JPEG baseline DCT coding process, shown in Figure 13-1.

Figure 13-1 JPEG Baseline DCT Coding

For encoding, the image array is divided into 8× 8 pixel blocks and a discrete
cosine transform (DCT) is taken of each block, resulting in an 8× 8array of

Parameter: writeJFIF If true, writes a JFIF header.

Image

Encoder

Discrete
Cosine

Transform
Quantizer

Entropy
Encoder

Array

Compressed
Image
Array
Data
Programming in Java Advanced Imaging

WRITING IMAGE FILES Quantization Table

ock

m of

g

e

ch

nt

er

ss.
der,
ients
n

e.

s
e

transform coefficients. The DCT is a mathematical operation that takes the bl
of image samples as its input and converts the information from the spatial
domain to the frequency domain. The 8× 8 matrix input to the DCT represents
brightness levels at specificx, y coordinates. The resulting 8× 8 matrix values
represent relative amounts of 64 spatial frequencies that make up the spectru
the input data.

The next stage in the encoder quantizes the transform coefficients by dividin
each DCT coefficient by a value from a quantization table. The quantization
operation discards the smaller-valued frequency components, leaving only th
larger-valued components.

After an image block has been quantized, it enters the entropy encoder, whi
creates the actual JPEG bitstream. The entropy encoder assigns a binary
Huffman code to coefficient values. The length of each code is chosen to be
inversely proportional to the expected probability of occurrence of a coefficie
amplitude – frequently-occurring coefficient values get short code words,
seldom-occurring coefficient values get long code words. The entropy encod
uses two tables, one for the AC frequency components and one for the DC
frequency components.

The JPEG decoding process is essentially the inverse of the encoding proce
The compressed image array data stream passes through the entropy enco
which recreates the quantized coefficient values. Then, the quantized coeffic
are reconstructed by multiplication with the quantizer table values. Finally, a
inverse DCT is performed and the reconstructed image array is produced.

The following are the parameters that may be specified for JPEG DCT
compression.

13.5.3 Quantization Table

ThesetQTable andgetQTable methods are used to specify and retrieve the
quantization table that will be used in encoding a particular band of the imag
There are, by default, two quantizer tables:

The parametertableNum is usually a value between 0 and 3. This value indicate
which of four quantization tables you are specifying. Table 0 is designed to b

Table Band

0 Band 0

1 All other bands
367Release 1.0.1, November 1999

13.5.4 Horizontal and Vertical Subsampling WRITING IMAGE FILES

368

be
an

p to

s

ence
h of

ence
h of
ll use

lled

tion

xes.
used with the luminance band of eight-bit YCC images. Table 1 is designed to
used with the chrominance bands of eight-bit YCC images. The two tables c
also be set individually using thesetLumaQTable (table 0) and
setChromaQTable (table 1) methods. Tables 2 and 3 are not normally used.

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setQTable(int component, int tableNum, int[] qTable)

sets a quantization table to be used for a component. This method allows u
four independent tables to be specified. This disables any quality setting.

• int[] getQTable(int component)

returns the contents of the quantization table used for a component. If thi
method is called before the quantization table is set, an error is thrown.

• void setLumaQTable(int[] qTable)

sets the quantization table to be used for luminance data. This is a conveni
method that explicitly sets the contents of quantization table 0. The lengt
the table must be 64. This disables any quality setting.

• void setChromaQTable(int[] qTable)

sets the quantization table to be used for luminance data. This is a conveni
method that explicitly sets the contents of quantization table 0. The lengt
the table must be 64. This method assumes that all chroma components wi
the same table. This disables any quality setting.

• int getQTableSlot(int component)

returns the quantization table slot used for a component. If this method is ca
before the quantization table data is set, an error is thrown.

13.5.4 Horizontal and Vertical Subsampling

JPEG allows the image components to be subsampled to reduce their resolu
prior to encoding. This is typically done with YCC images, where the two
chroma components can be subsampled, usually by a factor of two in both a

Parameters: component The band to which this table applies.

tableNum The table number that this table is assigned
to (0 to 3).

qTable Quantization table values in “zig-zag”
order.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Compression Quality

es
t

 to 1

for

een

a
tio,

by
the
This is possible due to the human visual system’s low sensitivity to color imag
relative to luminance (Y) errors By default, the sampling factors for YCC inpu
images are set to {1, 2, 2} for both horizontal and vertical axes.

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setHorizontalSubsampling(int component, int subsample)

sets the horizontal subsampling to be applied to an image band. Defaults
for grayscale and (1,2,2) for RGB.

• void setVerticalSubsampling(int component, int subsample)

sets the vertical subsampling to be applied to an image band. Defaults to 1
grayscale and (1,2,2) for RGB.

• int getHorizontalSubsampling(int component)

returns the horizontal subsampling factor for a band.

• int getVerticalSubsampling(int component)

returns the vertical subsampling factor for a band.

13.5.5 Compression Quality

Compression quality specifies a factor that relates to the desired tradeoff betw
image quality and the image data compression ratio. The quality value is afloat

between 0.0 and 1.0. A setting of 1.0 produces the highest quality image at
lower compression ratio. A setting of 0.0 produces the highest compression ra
with a sacrifice to image quality. The quality value is typically set to 0.75.

The compression quality value controls image quality and compression ratio
determining a scale factor the encoder will use in creating scaled versions of
quantization tables. Some guidelines:

Parameter: component The band for which to set horizontal
subsampling.

subsample The horizontal subsampling factor.

Quality
Value Meaning

1.0 Highest quality, no compression

0.75 High quality, good compression ratio
369Release 1.0.1, November 1999

13.5.6 Restart Interval WRITING IMAGE FILES

370

d

and

rt
ents

rs).
Note: The values stored in the quantization table also affect image quality an
compression ratio. See also Section 13.5.3, “Quantization Table.”

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setQuality(float quality)

sets the compression quality factor. Creates new quantization tables that
replace the currently-installed quantization tables.

• float getQuality()

returns the quality setting for this encoding. This is a number between 0.0
1.0.

• boolean isQualitySet()

tests if the quality parameter has been set in thisJPEGEncodeParam.

13.5.6 Restart Interval

JPEG images use restart markers to define multiple strips or tiles. The resta
markers are inserted periodically into the image data to delineate image segm
known asrestart intervals. To limit the effect of bitstream errors to a single
restart interval, JAI provides methods to set the restart interval in JPEG
Minimum Coded Units (MCUs). The default is zero (no restart interval marke

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setRestartInterval(int restartInterval)

sets the restart interval in Minimum Coded Units (MCUs).

0.5 Medium quality, medium compression ratio

0.25 Low quality, high compression ratio

Parameter: quality The desired quality level; a value of 0.0 to
1.0. The default value is 0.75.

Parameter: restartInterval Number of MCUs between restart
markers.

Quality
Value Meaning
Programming in Java Advanced Imaging

WRITING IMAGE FILES Example Code

ge
ble

ed
• int getRestartInterval()

returns the restart interval.

13.5.7 Writing an Abbreviated JPEG Stream

Normally, both the JPEG table data and compressed (or uncompressed) ima
data is written to the output stream. However, it is possible to write just the ta
data or just the image data. ThesetWriteTablesOnly method instructs the
encoder to write only the table data to the output stream. The
setWriteImageOnly method instructs the encoder to write only the compress
image data to the output stream.

API: com.sun.media.jai.codec.JPEGEncodeParam

• void setWriteTablesOnly(boolean tablesOnly)

instructs the encoder to write only the table data to the output stream.

• void setWriteImageOnly(boolean imageOnly)

instructs the encoder to write only the image data to the output stream.

13.5.8 Example Code

Listing 13-3 shows a code sample for encoding a JPEG image.

Parameter: tablesOnly If true, only the tables will be written.

Parameter: imageOnly If true, only the compressed image will be
written.

Listing 13-3 Encoding a JPEG Image (Sheet 1 of 5)

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.awt.image.renderable.*;
import java.io.*;
import javax.media.jai.*;
import javax.media.jai.widget.*;
import com.sun.media.jai.codec.*;

public class JPEGWriterTest extends WindowContainer {

private ImageEncoder encoder = null;
private JPEGEncodeParam encodeParam = null;
371Release 1.0.1, November 1999

13.5.8 Example Code WRITING IMAGE FILES

372
// Create some Quantization tables.
 private static int[] qtable1 = {
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1
 };

 private static int[] qtable2 = {
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2,
 2,2,2,2,2,2,2,2
 };

 private static int[] qtable3 = {
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3,
 3,3,3,3,3,3,3,3
 };

 // Really rotten quality Q Table
 private static int[] qtable4 = {
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200,
 200,200,200,200,200,200,200,200
 };

Listing 13-3 Encoding a JPEG Image (Sheet 2 of 5)
Programming in Java Advanced Imaging

WRITING IMAGE FILES Example Code
public static void main(String args[]) {
 JPEGWriterTest jtest = new JPEGWriterTest(args);
 }

// Load the source image.
private PlanarImage loadImage(String imageName) {
ParameterBlock pb = (new
 ParameterBlock()).add(imageName);
PlanarImage src = JAI.create(“fileload”, pb);
 if (src == null) {

System.out.println(“Error in loading image “ + imageName);
 System.exit(1);
 }
 return src;
 }

// Create the image encoder.
private void encodeImage(PlanarImage img, FileOutputStream out)
 {
encoder = ImageCodec.createImageEncoder(“JPEG”, out,
 encodeParam);
 try {
 encoder.encode(img);
 out.close();
 } catch (IOException e) {
 System.out.println(“IOException at encoding..”);
 System.exit(1);
 }
 }

private FileOutputStream createOutputStream(String outFile) {
 FileOutputStream out = null;
 try {
 out = new FileOutputStream(outFile);
 } catch(IOException e) {
 System.out.println(“IOException.”);
 System.exit(1);
 }

 return out;
 }

public JPEGWriterTest(String args[]) {
// Set parameters from command line arguments.
String inFile = “images/Parrots.tif”;

Listing 13-3 Encoding a JPEG Image (Sheet 3 of 5)
373Release 1.0.1, November 1999

13.5.8 Example Code WRITING IMAGE FILES

374
FileOutputStream out1 = createOutputStream(“out1.jpg”);
FileOutputStream out2 = createOutputStream(“out2.jpg”);
FileOutputStream out3 = createOutputStream(“out3.jpg”);

// Create the source op image.
PlanarImage src = loadImage(inFile);

 double[] constants = new double[3];
 constants[0] = 0.0;
 constants[1] = 0.0;
 constants[2] = 0.0;
 ParameterBlock pb = new ParameterBlock();
 pb.addSource(src);
 pb.add(constants);

// Create a new src image with weird tile sizes
ImageLayout layout = new ImageLayout();
layout.setTileWidth(57);
layout.setTileHeight(57);
RenderingHints hints = new RenderingHints(JAI.KEY_IMAGE_LAYOUT,
 layout);
PlanarImage src1 = JAI.create("addconst", pb, hints);

// ----- End src loading ------

// Set the encoding parameters if necessary.
encodeParam = new JPEGEncodeParam();

encodeParam.setQuality(0.1F);

encodeParam.setHorizontalSubsampling(0, 1);
encodeParam.setHorizontalSubsampling(1, 2);
encodeParam.setHorizontalSubsampling(2, 2);

encodeParam.setVerticalSubsampling(0, 1);
encodeParam.setVerticalSubsampling(1, 1);
encodeParam.setVerticalSubsampling(2, 1);

encodeParam.setRestartInterval(64);
//encodeParam.setWriteImageOnly(false);
//encodeParam.setWriteTablesOnly(true);
//encodeParam.setWriteJFIFHeader(true);

// Create the encoder.
encodeImage(src, out1);
PlanarImage dst1 = loadImage(“out1.jpg”);

// ----- End first encode ---------

Listing 13-3 Encoding a JPEG Image (Sheet 4 of 5)
Programming in Java Advanced Imaging

WRITING IMAGE FILES Writing PNG Image Files

ed

ec
s as
13.6 Writing PNG Image Files

The Portable Network Graphics (PNG) format is a file standard for compress
lossless bitmapped image files. A PNG file consists of an eight-byte PNG
signaturefollowed by severalchunks. The signature identifies the file as a PNG
file. The chunks provide additional information about the image. The JAI cod
architecture supports PNG 1.1 and provides control over several of the chunk
described in this section.

encodeParam.setLumaQTable(qtable1);
encodeParam.setChromaQTable(qtable2);

encodeImage(src, out2);
PlanarImage dst2 = loadImage(“out2.jpg”);

// ----- End second encode ---------

encodeParam = new JPEGEncodeParam();
encodeImage(loadImage(“images/BlackCat.tif”), out3);
PlanarImage dst3 = loadImage(“out3.jpg”);

// ----- End third encode ---------

setTitle (“JPEGWriter Test”);
setLayout(new GridLayout(2, 2));
ScrollingImagePanel panel1 = new ScrollingImagePanel(src, 512,
 400);
ScrollingImagePanel panel2 = new ScrollingImagePanel(dst1, 512,
 400);
ScrollingImagePanel panel3 = new ScrollingImagePanel(dst2, 512,
 400);
ScrollingImagePanel panel4 = new ScrollingImagePanel(dst3, 512,
 400);
 add(panel1);
 add(panel2);
 add(panel3);
 add(panel4);
 pack();
 show(); }
}

Listing 13-3 Encoding a JPEG Image (Sheet 5 of 5)
375Release 1.0.1, November 1999

13.6.1 PNG Image Layout WRITING IMAGE FILES

376

ded
f the

ing
13.6.1 PNG Image Layout

PNG images can be encoded in one of three pixel types, as defined by the
subclass ofPNGEncodeParam, as follows:

Optionally, grayscale and RGB pixels can also include an alpha sample (see
Section 13.6.6.12, “Transparency (tRNS Chunk)”).

A call to thegetDefaultEncodeParam method returns an instance of:

• PNGEncodeParam.Palette for an image with anIndexColorModel.

• PNGEncodeParam.Gray for an image with only one or two bands.

• PNGEncodeParam.RGB for all other images.

This method provides no guarantee that the image can be successfully enco
by the PNG encoder, since the encoder only performs a superficial analysis o
image structure.

API: com.sun.media.jai.codec.PNGEncodeParam

• static PNGEncodeParam getDefaultEncodeParam(RenderedImage im)

returns an instance ofPNGEncodeParam.Palette, PNGEncodeParam.Gray, or
PNGEncodeParam.RGB appropriate for encoding the given image.

13.6.2 PNG Filtering

The PNG file definition allows the image data to be filtered before it is
compressed, which can improve the compressibility of the data. PNG encod

Pixel Type Description

PNGEncodeParam.Palette Also known asindexed-color, where each pixel is represented by a
single sample that is an index into a supplied color palette. The
com.sun.media.jai.codec.PNGEncodeParam.Palette
class supports the encoding of palette pixel images.

PNGEncodeParam.Gray Each pixel is represented by a single sample that is a grayscale
level. The
com.sun.media.jai.codec.PNGEncodeParam.Gray class
supports the encoding of grayscale pixel images.

PNGEncodeParam.RGB Also known astruecolor, where each pixel is represented by three
samples: red, green, and blue. The
com.sun.media.jai.codec.PNGEncodeParam.RGB class
supports the encoding of RGB pixel images.
Programming in Java Advanced Imaging

WRITING IMAGE FILES PNG Filtering

.

ow

sed
en

of

x of

e

e)

ls
l

supports five filtering algorithms, including “none,” which indicates no filtering
The filtering algorithms are described below.

The filtering can be different for each row of an image by using thefilterRow

method. The method can be overridden to provide a custom algorithm for
choosing the filter type for a given row.

ThefilterRow method is supplied with the current and previous rows of the
image. For the first row of the image, or of an interlacing pass, the previous r
array will be filled with zeros as required by the PNG specification.

The method is also supplied with five scratch arrays. These arrays may be u
within the method for any purpose. At method exit, the array at the index giv
by the return value of the method should contain the filtered data. The return
value will also be used as the filter type.

The default implementation of the method performs a trial encoding with each
the filter types, and computes the sum of absolute values of the differences
between the raw bytes of the current row and the predicted values. The inde
the filter producing the smallest result is returned.

As an example, to perform only “sub” filtering, this method could be
implemented (non-optimally) as follows:

Table 13-3 PNG Filtering Algorithms

Parameter Description

PNG_FILTER_NONE No filtering – the scanline is transmitted unaltered.

PNG_FILTER_SUB The filter transmits the difference between each byte and the value of th
corresponding byte of the prior pixel.

PNG_FILTER_UP Similar to the Sub filter, except that the pixel immediately above the
current pixel, rather than just to its left, is used as the predictor.

PNG_FILTER_AVERAGE The filter uses the average of the two neighboring pixels (left and abov
to predict the value of a pixel.

PNG_FILTER_PAETH The filter computes a simple linear function of the three neighboring pixe
(left, above, upper left), then chooses as predictor the neighboring pixe
closest to the computed value.

for (int i = bytesPerPixel; i < bytesPerRow + bytesPerPixel; i++)
{
 int curr = currRow[i] & 0xff;
 int left = currRow[i - bytesPerPixel] & 0xff;
 scratchRow[PNG_FILTER_SUB][i] = (byte)(curr - left);
}
return PNG_FILTER_SUB;
377Release 1.0.1, November 1999

13.6.3 Bit Depth WRITING IMAGE FILES

378

of
API: com.sun.media.jai.codec.PNGEncodeParam

• int filterRow(byte[] currRow, byte[] prevRow,
byte[][] scratchRows, int bytesPerRow, int bytesPerPixel)

returns the type of filtering to be used on a row of an image.

13.6.3 Bit Depth

The PNG specification identifies the following bit depth restrictions for each
the color types:

Parameters: currRow The current row as an array ofbytes of
length at leastbytesPerRow +
bytesPerPixel. The pixel data starts at
indexbytesPerPixel; the initial
bytesPerPixel bytes are zero.

prevRow The current row as an array ofbytes. The
pixel data starts at indexbytesPerPixel;
the initial bytesPerPixel bytes are zero.

scratchRows An array of 5byte arrays of length at
leastbytesPerRow + bytesPerPixel,
usable to hold temporary results. The
filtered row will be returned as one of the
entries of this array. The returned filtered
data should start at index
bytesPerPixel; The initial
bytesPerPixel bytes are not used.

bytesPerRow The number of bytes in the image row.
This value will always be greater than 0.

bytesPerPixel The number of bytes representing a single
pixel, rounded up to an integer. This is
thebpp parameter described in the PNG
specification.

Table 13-4 PNG Bit Depth Restrictions

Color
Type

Allowed Bit
Depths Description

0 1, 2, 4, 8, 16 Grayscale. Each pixel is a grayscale sample.

2 8, 16 Truecolor (RGB) without alpha. Each pixel is an RGB triple.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Interlaced Data Order

or 8.

2, 4,

16.

Two
ing

ass
The bit depth is specified by thesetBithDepth method in the class type.

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

• void setBitDepth(int bitDepth)

sets the desired bit depth for a palette image. The bit depth must be 1, 2, 4,

API: com.sun.media.jai.codec.PNGEncodeParam.Gray

• public void setBitDepth(int bitDepth)

sets the desired bit depth for a grayscale image. The bit depth must be 1,
8, or 16.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

• void setBitDepth(int bitDepth)

sets the desired bit depth for an RGB image. The bit depth must be 8 or

13.6.4 Interlaced Data Order

The interlaced data order indicates the transmission order of the image data.
settings are currently allowed: no interlace and Adam7 interlace. With interlac
turned off, pixels are stored sequentially from left to right, and scanlines
sequentially from top to bottom. Adam7 interlacing (named after its author,
Adam M. Costello), consists of seven distinct passes over the image; each p
transmits a subset of the pixels in the image.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setInterlacing(boolean useInterlacing)

turns Adam7 interlacing on or off.

3 1, 2, 4, 8 Indexed color (Palette). Each pixel is a palette index.

4 8, 16 Grayscale with alpha. Each pixel is a grayscale sample followed by an
alpha sample.

6 8, 16 Truecolor (RGB) with alpha. Each pixel is an RGB triple followed by an
alpha sample.

Table 13-4 PNG Bit Depth Restrictions (Continued)

Color
Type

Allowed Bit
Depths Description
379Release 1.0.1, November 1999

13.6.5 PLTE Chunk for Palette Images WRITING IMAGE FILES

380

es

ries

d

a
ized
• boolean getInterlacing()

returnstrue if Adam7 interlacing will be used.

13.6.5 PLTE Chunk for Palette Images

The PLTE chunk provides the palette information palette or indexed-color
images. The PLTE chunk must be supplied for all palette (color type 3) imag
and is optional for RGB (color type 2 and 6) images.

The PLTE chunk contains from 1 to 256 palette entries, each a three-byte se
of the alternating red, green, and blue values, as follows:

• Red: one byte (0 = black, 255 = red)

• Green: one byte (0 = black, 255 = green)

• Blue: one byte (0 = black, 255 = blue)

The number of elements in the palette must be a multiple of 3, between 3 an
768 (3× 256). The first entry in the palette is referenced by pixel value 0, the
second by pixel value 1, and so on.

For RGB (color type 2 and 6) images, the PLTE chunk, if included, provides
suggested set of from 1 to 256 colors to which the RGB image can be quant
in case the viewing system cannot display RGB directly.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setPalette(int[] rgb)

sets the RGB palette of the image to be encoded.

• int[] getPalette()

returns the current RGB palette.

• void unsetPalette()

suppresses the PLTE chunk from being output.

• boolean isPaletteSet()

returns true if a PLTE chunk will be output.

Parameters: rgb An array ofints.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

G

set

h is

,

ch
13.6.6 Ancillary Chunk Specifications

All ancillary PNG chunks are optional but are recommended. Most of the PN
chunks can be specified prior to encoding the image byset methods in the
PNGEncodeParam class. The chunks that can be set and the methods used to
them are described in the following paragraphs.

13.6.6.1 Background Color (bKGD Chunk)

Methods are provided to set and read the suggested background color, whic
encoded by the bKGD chunk.

For Palette (indexed color) images, the bKGD chunk contains a single value
which is the palette index of the color to be used as the background.

For Grayscale images, the bKGD chunk contains a single value, which is the
gray level to be used as the background. The range of values is 0 to 2bitdepth– 1.

For RGB (truecolor) images, the bKGD chunk contains three values, one ea
for red, green, and blue. Each value has the range of 0 to 2bitdepth– 1.

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

• void setBackgroundPaletteIndex(int index)

sets the palette index of the suggested background color.

• int getBackgroundPaletteIndex()

returns the palette index of the suggested background color.

API: com.sun.media.jai.codec.PNGEncodeParam.Gray

• void setBackgroundGray(int gray)

sets the suggested gray level of the background.

• int getBackgroundGray()

returns the suggested gray level of the background.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

• void setBackgroundRGB(int[] rgb)

sets the RGB value of the suggested background color. Thergb parameter
should have three entries.
381Release 1.0.1, November 1999

13.6.6 Ancillary Chunk Specifications WRITING IMAGE FILES

382

le

the

ed.
• int[] getBackgroundRGB()

returns the RGB value of the suggested background color.

13.6.6.2 Chromaticity (cHRM Chunk)

Applications that need device-independent specification of colors in a PNG fi
can specify the 1931 CIE (x,y) chromaticities of the red, green, and blue
primaries used in the image, and the referenced white point.

The chromaticity parameter should be afloat array of length 8 containing the
white pointX andY, redX andY, greenX andY, and blueX andY values in order.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setChromaticity(float[] chromaticity)

sets the white point and primary chromaticities in CIE (x,y) space.

• void setChromaticity(float whitePointX, float whitePointY,
float redX, float redY, float greenX, float greenY,
float blueX, float blueY)

a convenience method that calls the array version.

• float[] getChromaticity()

returns the white point and primary chromaticities in CIE (x,y) space.

13.6.6.3 Gamma Correction (gAMA Chunk)

The gamma value specifies the relationship between the image samples and
desired display output intensity as a power function:

sample = light_outgamma

If the image’s gamma value is unknown, the gAMA chunk should be suppress
The absence of the gAMA chunk indicates that the gamma is unknown.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setGamma(float gamma)

sets the gamma value for the image.

• float getGamma()

returns the gamma value for the image.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

of
s
of

ted
the
• void unsetGamma()

suppresses the gAMA chunk from being output.

13.6.6.4 Palette Histogram (hIST Chunk)

The palette histogram is a value that gives the approximate usage frequency
each color in the color palette. If the viewer is unable to provide all the color
listed in the palette, the histogram may help decide how to choose a subset
colors for display. The hIST chunk is only valid with Palette images.

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

• void setPaletteHistogram(int[] paletteHistogram)

sets the palette histogram for the image.

• int[] getPaletteHistogram()

returns the palette histogram for the image.

• void unsetPaletteHistogram()

suppresses the hIST chunk from being output.

13.6.6.5 Embedded ICC Profile Data (iCCP Chunk)

You can specify that RGB image samples conform to the color space presen
by the embedded International Color Consortium profile. The color space of
ICC profile must be an RGB color space.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setICCProfileData(byte[] ICCProfileData)

sets the ICC profile data.

• byte[] getICCProfileData()

returns the ICC profile data.

• void unsetICCProfileData()

suppresses the iCCP chunk from being output.
383Release 1.0.1, November 1999

13.6.6 Ancillary Chunk Specifications WRITING IMAGE FILES

384

fied
s

the

cant

sly,
13.6.6.6 Physical Pixel Dimensions (pHYS Chunk)

The intended pixel size or aspect ratio for display of the image may be speci
in the pHYS chunk. The physical pixel dimensions information is presented a
three integer values:

• Pixels per unit,x axis

• Pixels per unit,y axis

• Unit specifier

The unit specifier may have one of two values:

0 = Unit is unknown
1 = Unit is meters

When the unit specifier is 0, the pHYS chunk defines pixel aspect ratio only;
actual size of the pixels remains unspecified.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setPhysicalDimension(int[] physicalDimension)

sets the physical pixel dimension.

• void setPhysicalDimension(int xPixelsPerUnit,
int yPixelsPerUnit, int unitSpecifier)

a convenience method that calls the array version.

• int[] getPhysicalDimension()

returns the physical pixel dimension.

13.6.6.7 Significant Bits (sBIT Chunk)

For PNG data that has been converted from a lower sample depth, the signifi
bits information in the sBIT chunk stores the number of significant bits in the
original image. This value allows decoders to recover the original data lossles
even if the data had a sample depth not directly supported by PNG.

The number of entries in thesignificantBits array must be equal to the
number of output bands in the image:

• 1 – for a grayscale image

• 2 – for a grayscale image with alpha

• 3 – for palette or RGB images
Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

e of

e

to

ge
has
• 4 – for RGB images with alpha

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

• void setSignificantBits(int[] significantBits)

sets the significant bits.

• int[] getSignificantBits()

returns the significant bits.

• void unsetSignificantBits()

suppresses the sBIT chunk from being output.

13.6.6.8 Suggested Palette (sPLT Chunk)

A suggested palette may be specified when the display device is not capabl
displaying the full range of colors in the image. This palette provides a
recommended set of colors, with alpha and frequency information, that can b
used to construct a reduced palette to which the image can be quantized.

The suggested palette, as defined by thePNGSuggestedPaletteEntry class,
consists of the following:

• A palette name – a String that provides a convenient name for referring
the palette

• A sampleDepth parameter – must be either 8 or 16

• Red sample

• Green sample

• Blue sample

• Alpha sample

• Frequency – the value is proportional to the fraction of pixels in the ima
that are closest to that palette entry in RGBA space, before the image
been composited against any background

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

• void setSuggestedPalette(PNGSuggestedPaletteEntry[] palette)

sets the suggested palette.
385Release 1.0.1, November 1999

13.6.6 Ancillary Chunk Specifications WRITING IMAGE FILES

386

e
nt.”
ur

n

• PNGSuggestedPaletteEntry[] getSuggestedPalette()

returns the suggested palette.

• void unsetSuggestedPalette()

suppresses the sPLT chunk from being output.

13.6.6.9 PNG Rendering Intent (sRGB Chunk)

If the PNG image includes an sRGB chunk, the image samples confirm to th
sRGB color space and should be displayed using the specified rendering “inte
The rendering intent specifies tradeoffs in colorimetric accuracy. There are fo
rendering intents:

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

• void setSRGBIntent(int SRGBIntent)

sets the PNG rendering intent.

• int getSRGBIntent()

returns the rendering intent.

• void unsetSRGBIntent()

suppresses the sRGB chunk from being output.

Table 13-5 PNG Rendering Intent

Parameter Description

INTENT_PERCEPTUAL The “perceptual” intent is for images that prefer good adaptation to the
output device gamut at the expense of colorimetric accuracy, such as
photographs.

INTENT_RELATIVE The “relative colorimetric” intent is for images that require color
appearance matching.

INTENT_SATURATION The “saturation” intent is for images that prefer preservation of saturatio
at the expense of hue and lightness.

INTENT_ABSOLUTE The “absolute colorimetric” intent is for images that require absolute
colorimetry.

Parameter: SRGBIntent The sRGB rendering intent to be stored
with the image. The legal values are 0 =
Perceptual, 1 = Relative colorimetric, 2 =
Saturation, and 3 = Absolute colorimetric.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

ce.
e

d.
13.6.6.10 Textual Data (tEXt Chunk)

Textual data can be encoded along with the image in the tEXt chunk. The
information stored in this chunk can be an image description or copyright noti
A keyword indicates what the text string contains. The following keywords ar
defined:

API: com.sun.media.jai.codec.PNGEncodeParam

• void setText(String[] text)

sets the text string to be encoded with the image.

• String[] getText()

returns the text string to be encoded with the image.

• void unsetText()

suppresses the tEXt chunk from being output.

13.6.6.11 Image Modification Timestamp (tIME Chunk)

The tIME chunk provides information on the last time the image was modifie
The tIME information is aDate and the internal storage format uses UTC
regardless of how themodificationTime parameter was created.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setModificationTime(Date modificationTime)

sets the image modification time as aDate that will be sent in the tIME chunk.

Title A title or caption for the image
Author The name of the image’s creator
Description A description of the image
Copyright A copyright notice
Creation Time The time the original image was created
Software The software used to create the image
Disclaimer A legal disclaimer
Warning A warning of the nature of the image content
Source The hardware device used to create the image
Comment Miscellaneous information
387Release 1.0.1, November 1999

13.6.6 Ancillary Chunk Specifications WRITING IMAGE FILES

388

k.

alette

ha
s of
a

lue,
t. If
age’s

int.
ge
to be

meter

will
• Date getModificationTime()

returns the image modification time data that will be sent in the tIME chun

• void unsetModificationTime()

suppresses the tIME chunk from being output.

13.6.6.12 Transparency (tRNS Chunk)

The tRNS chunk specifies that the image uses simple transparency. Simple
transparency means either alpha values associated with palette entries for P
images, or a single transparent color, for Grayscale and RGB images.

For Palette images, the tRNS chunk should contain a series of one-byte alp
values, one for each RGB triple in the palette. Each entry indicates that pixel
the corresponding palette index must be treated as having the specified alph
value.

For grayscale images, the tRNS chunk should contain a single gray level va
stored as an int. Pixels of the specified gray value are treated as transparen
the grayscale image has an alpha value, setting the gray level causes the im
alpha channel to be ignored.

For RGB images, the tRNS chunk should an RGB color value, stored as an
Pixels of the specified gray value are treated as transparent. If the RGB ima
has an alpha value, setting the gray level causes the image’s alpha channel
ignored.

API: com.sun.media.jai.codec.PNGEncodeParam.Palette

• void setPaletteTransparency(byte[] alpha)

sets the alpha values associated with each palette entry. The alpha para
should have as many entries as there are RGB triples in the palette.

• byte[] getPaletteTransparency()

returns the alpha values associated with each palette entry.

API: com.sun.media.jai.codec.PNGEncodeParam.Gray

• void setTransparentGray(int transparentGray)

sets the gray value to be used to denote transparency. Setting this attribute
cause the alpha channel of the input image to be ignored.
Programming in Java Advanced Imaging

WRITING IMAGE FILES Ancillary Chunk Specifications

will

ext

not
or
• int getTransparentGray()

returns the gray value to be used to denote transparency.

API: com.sun.media.jai.codec.PNGEncodeParam.RGB

• void setTransparentRGB(int[] transparentRGB)

sets the RGB value to be used to denote transparency. Setting this attribute
cause the alpha channel of the input image to be ignored.

• int[] getTransparentRGB()

returns the RGB value to be used to denote transparency.

13.6.6.13 Compressed Text Data (zTXt Chunk)

Text data may be stored in the zTXt chunk, in addition to the text in the tEXt
chunk. The zTXt chunk is intended for storing large blocks of text, since the t
is compressed.

API: com.sun.media.jai.codec.PNGEncodeParam

• void setCompressedText(String[] text)

sets the compressed text to be sent in the zTXt chunk.

• String[] getCompressedText()

returns the compressed text to be sent in the zTXt chunk.

• void unsetCompressedText()

suppresses the zTXt chunk from being output.

13.6.6.14 Private Chunks

Private chunks may be added to the output file. These private chunks carry
information that is not understood by most other applications. Private chunks
should be given names with lowercase second letters to ensure that they do
conflict with any future public chunk information. See the PNG specification f
more information on chunk naming conventions.

API: com.sun.media.jai.codec.PNGEncodeParam

• synchronized void addPrivateChunk(String type, byte[] data)

adds a private chunk to the output file.
389Release 1.0.1, November 1999

13.7 Writing PNM Image Files WRITING IMAGE FILES

390

e
G

,

ail
• synchronized int getNumPrivateChunks()

returns the number of private chunks to be written to the output file.

• synchronized String getPrivateChunkType(int index)

returns the type of the private chunk at a given index, as a four-character
String. The index must be smaller than the return value of
getNumPrivateChunks.

• synchronized void removeUnsafeToCopyPrivateChunks()

removes all private chunks associated with this parameter instance whos
“safe-to-copy” bit is not set. This may be advisable when transcoding PN
images.

• synchronized void removeAllPrivateChunks()

remove all private chunks associated with this parameter instance.

13.7 Writing PNM Image Files

The PNM format is one of the extensions of the PBM file format (PBM, PGM
and PPM). The portable bitmap format is a lowest-common-denominator
monochrome file format. It was originally designed to make it reasonable to m
bitmaps between different types of machines. It now serves as the common
language of a large family of bitmap conversion filters.

The PNM format comes in six variants:

• PBM ASCII – three-banded images

• PBM raw – three-banded images

• PGM ASCII – single-banded images

• PGM raw – single-banded images

• PPM ASCII – single-banded images

• PPM raw – single-banded images

The parameter values, then areRAW andASCII.

Listing 13-4 shows a code sample for encoding a PNM image.

Listing 13-4 Encoding a PNM Image

// Create the OutputStream.
OutputStream out = new FileOutputStream(fileToWriteTo);
Programming in Java Advanced Imaging

WRITING IMAGE FILES TIFF Tiled Images

e

ge)
into
API: com.sun.media.jai.codec.PNMEncodeParam

• void setRaw(boolean raw)

sets the RAWBITS option flag.

• boolean getRaw()

retrieves the RAWBITS option flag.

13.8 Writing TIFF Image Files

The TIFF file format is a tag-based file format for storing and interchanging
raster images. TIFF files typically come from scanners, frame grabbers, and
paint- or photo-retouching programs.

By default, TIFF images in JAI are encoded without any compression and ar
written out in strips rather than tiles. However, JAI does support image
compression, and the writing of tiled TIFF images.

13.8.1 TIFF Compression

JAI currently does not support compression of TIFF images.

13.8.2 TIFF Tiled Images

By default, the JAI encoder organizes TIFF images into strips. For low- to
medium-resolution images, this is adequate. However, for high-resolution (lar
images, the images can be accessed more efficiently if the image is divided
roughly square tiles instead of strips.

Writing of tiled TIFF images can be enabled by calling thesetWriteTiled

method.

// Create the ParameterBlock.
PNMEncodeParam param = new PNMEncodeParam();
param.setRaw(true.equals("raw"));

//Create the PNM image encoder.
ImageEncoder encoder = ImageCodec.createImageEncoder("PNM",
 out,
 param);

Listing 13-4 Encoding a PNM Image (Continued)
391Release 1.0.1, November 1999

13.8.2 TIFF Tiled Images WRITING IMAGE FILES

392
API: com.sun.media.jai.codec.TIFFEncodeParam

• void setWriteTiled(boolean writeTiled)

enables writing of TIFF images in tiles rather than in strips.

• boolean getWriteTiled()

returns the value of thewriteTiled parameter.

Parameter: writeTiled Specifies whether the image data should be
written out in tiled format.
Programming in Java Advanced Imaging

Release 1.0.1, November 1999
C H A P T E R 14
PI.

iple
to
lex

of
an
ing

s and

w
ss of
Extending the API

THIS chapter describes how the JAI API may be extended.

14.1 Introduction

No image processing API can hope to capture the enormous variety of
operations that can be performed on a digital image. Although the JAI API
supports a large number of imaging operations, it was designed from the
beginning to encourage programmers to write extensions rather than
manipulating image data directly. JAI allows virtuallyany image processing
algorithm to be added to the API and used as if it were a native part of the A

The mechanism for adding functionality to the API can be presented at mult
levels of encapsulation and complexity. This allows programmers who wish
add simple things to the API to deal with simple concepts, while more comp
extensions have complete control over their environment at the lowest levels
abstraction. The API also supports a variety of programming styles, including
immediate mode and a deferred mode of execution for different types of imag
applications.

14.2 Package Naming Convention

All extensions to JAI require the addition of new classes. All new classes are
grouped into packages as a convenient means of organizing the new classe
separating the new classes from code libraries provided by others.

All new packages are given aproduct name. A product name is the accepted
Java method of using your company’s reversed Internet address to name ne
packages. This product naming convention helps to guarantee the uniquene
package names. Supposing that your company’s Internet address is
393

14.3 Writing New Operators EXTENDING THE API

394

t

the
or

a
ize

ew
ility
ent.
cing

and
g
of

w

WebStuff.COM and you wish to create a new package namedPrewitt. A good
choice of package name would be

com.webstuff.Prewitt

Or, even

com.webstuff.media.jai.Prewitt

To uniquely identify the package as part of JAI.

The above newprewitt class file must now be placed into a subdirectory tha
matches the product name, such as:

com/webstuff/media/jai for Solaris-based systems

or

com\webstuff\media\jai for Windows systems

The Java convention for class naming is to use initial caps for the name, as in
Prewitt example above. So called multi-word class names use initial caps f
each word. For exampleAddOpImage.

Vendors are encouraged to use unique product names (by means of the Jav
programming language convention of reversed internet addresses) to maxim
the likelihood of a clean installation.

14.3 Writing New Operators

To extend the JAI API by creating new operations, you will need to write a n
OpImage subclass. This may be done by subclassing one or more existing ut
classes to automate some of the details of the operator you wish to implem
For most operators, you need only supply a routine that is capable of produ
an arbitrary rectangle of output, given contiguous source data.

Once created, new operators may be made available to users transparently
without user source code changes using the JAI registry mechanism. Existin
applications may be tuned for new hardware platforms by strategic insertion
new implementations of existing operators.

To create a new operator, you need to create the following new classes:

• A class that extends theOpImage class or any of its subclasses. This ne
class does the actual processing. See Section 14.3.1, “Extending the
OpImage Class.”
Programming in Java Advanced Imaging

EXTENDING THE API Extending the OpImage Class

ch

.

r
.

es.

 a

l

r

• A class that extends theOperationDescriptor class. This new class
describes the operation such as name, parameter list, and so on. See
Section 14.3.2, “Extending the OperationDescriptor Interface.”

• If the operator will function in the Rendered mode only, a class that
implementsjava.awt.image.renderable.RenderedImageFactory.

14.3.1 Extending the OpImage Class

Every new operator being written must be a subclass ofOpImage or one of its
subclasses. TheOpImage class currently has the following subclasses:

Table 14-1 OpImage Subclasses

Class Description

AreaOpImage An abstract base class for image operators that require only a fixed
rectangular source region around a source pixel in order to compute ea
destination pixel.

NullOpImage Extends:PointOpImage
A trivial OpImage subclass that simply transmits its source unchanged
Potentially useful when an interface requires anOpImage but another
sort ofRenderedImage (such as aTiledImage) is to be used.

PointOpImage An abstract base class for image operators that require only a single
source pixel in order to compute each destination pixel.

ScaleOpImage Extends:WarpOpImage
An abstract base class for scale-like operations that require rectilinea
backwards mapping and padding by the resampling filter dimensions

SourcelessOpImage An abstract base class for image operators that have no image sourc

StatisticsOpImage An abstract base class for image operators that compute statistics on
given region of an image, and with a given sampling rate.

UntiledOpImage A general class for single-source operations in which the values of al
pixels in the source image contribute to the value of each pixel in the
destination image.

WarpOpImage A general implementation of image warping, and a superclass for othe
geometric image operations.
395Release 1.0.1, November 1999

14.3.2 Extending the OperationDescriptor Interface EXTENDING THE API

396

t be

e

 is

d.
All abstract methods defined inOpImage must be implemented by any new
OpImage subclass. Specifically, there are two fundamental methods that mus
implemented:

First, you have to decide which of theOpImage subclasses to extend. To write a
new statistics operation, you would most likely extend theStatisticsOpImage

class. Each subclass has a specific purpose, as described in Table 14-1.

14.3.2 Extending the OperationDescriptor Interface

Operations that are to be created using one of theJAI.create methods must be
defined in theregistryFile, which is included in thejai_core.jar. Each
operation has an OperationDescriptor (denoted as “odesc” in the
registryFile), which provides a textual description of the operation and
specifies the number and type of its sources and parameters. The
OperationDescriptor also specifies whether the operation supports rendered
mode, renderable mode, or both.

Listing 14-1 shows a sample of theregistryFile contents. Note that this is not
the entireregistryFile, only a small sample showing two operators (absolut
and addconst).

Method Description

getTile Gets a tile for reading. This method is called by the object that has the new
operator name as its source with a rectangle as its parameter. The operation
responsible for returning a rectangle filled in with the correct values.

computeRect Computes a rectangle of output, givenRaster sources. The method is called by
getTile to do the actual computation. The extension must override this metho
Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

de
or

IFs

f
me

e by
All high-level operation names in JAI (such asRotate, Convolve, and
AddConst) are mapped to instances ofRenderedImageFactory (RIF) and/or
ContextualRenderedImageFactory (CRIF) that are capable of instantiating
OpImage chains to perform the named operation. The RIF is for rendered mo
operations only; the CRIF is for operations that can handle renderable mode
both rendered and renderable modes.

To avoid the problems associated with directly editing theregistryFile and
then repackaging it, you can register OperationDescriptors and RIFs and CR
using the OperationRegistry’sregisterOperationDescription, and
registerRIF andregisterCRIF methods. The only drawback to this method o
registration is that the new operator will not be automatically reloaded every ti
a JAI program is executed., since the operation is not actually present in the
registryFile. This means that to use the new operation, the operation will
always have to be invoked beforehand.

To temporarily register a new operation:

1. Register the operation name.

The high-level operation name, called anoperation descriptor, is
registered by calling theregisterOperationByName() method or the
registerOperationDescriptor() method. The operation descriptor
name must be unique.

Once an operation descriptor is registered, it may be obtained by nam
calling thegetOperationDescriptor() method.

2. Register the set of rendered image factory objects.

The rendered image factory (RIF) is registered using theregisterRIF

Listing 14-1 registryFile Example

odesc javax.media.jai.operator.AbsoluteDescriptor absolute
odesc javax.media.jai.operator.AddConstDescriptor addconst

rif com.sun.media.jai.opimage.AbsoluteCRIF
 com.sun.media.jai absolute sunabsoluterif
rif com.sun.media.jai.mlib.MlibAbsoluteRIF
 com.sun.media.jai absolute mlibabsoluterif
rif com.sun.media.jai.opimage.AddConstCRIF
 com.sun.media.jai addconst sunaddconstrif
rif com.sun.media.jai.mlib.MlibAddConstRIF
 com.sun.media.jai addconst mlibaddconstrif

crif com.sun.media.jai.opimage.AbsoluteCRIF absolute
crif com.sun.media.jai.opimage.AddConstCRIF addconst
397Release 1.0.1, November 1999

14.3.2 Extending the OperationDescriptor Interface EXTENDING THE API

398

ven
age

a
as

ons

d be

d:

me

nym

tion

ay

be a

e

te.

he

ired
.

method. Each RIF is registered with a specific operation name and is gi
a product name. Similar methods exist for registering a contextual im
factory (CRIF).

TheOperationDescriptor interface provides a comprehensive description of
specific image operation. All of the information regarding the operation, such
the operation name, version, input, and property, should be listed. Any conditi
placed on the operation, such as its input format and legal parameter range,
should also be included, and the methods to enforce these conditions shoul
implemented. A set ofPropertyGenerators may be specified to be used as a
basis for the operation’s property management.

Each family of the image operation in JAI must have a descriptor that
implements this interface. The following basic resource data must be provide

• GlobalName – a global operation name that is visible to all and is the sa
in all Locales

• LocalName – a localized operation name that may be used as a syno
for the global operation name

• Vendor – the name of the vendor (company name) defining this opera

• Description – a brief description of this operation

• DocURL – a URL where additional documentation on this operation m
be found (the javadoc for the operation)

• Version – the version of the operation

• arg0Desc, arg1Desc, etc. – descriptions of the arguments. There must
property for each argument.

• hint0Desc, hint1Desc, etc. – descriptions of the rendering hints. Ther
must be a property for each hint.

Additional information about the operation must be provided when appropria
It is also good idea to provide a detailed description of the operation’s
functionality in the class comment. When all of the above data is provided, t
operation can be added to anOperationRegistry.

Listing 14-2 shows an example of an operation descriptor for the Clamp
operation. Note that the descriptor also contains descriptions of the two requ
operation parameters, but no hints as these aren’t required for the operation
Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

:
es
d

es
,
d

ds

for

le
s.
As described in Section 3.3, “Processing Graphs,” JAI has two image modes
Rendered and Renderable. An operation supporting the Rendered mode tak
RenderedImages as its sources, can only be used in a Rendered op chain, an
produces aRenderedImage. An operation supporting the Renderable mode tak
RenderableImages as its sources, can only be used in a Renderable op chain
and produces aRenderableImage. Therefore, the class types of the sources an
the destination of an operation are different between the two modes, but the
parameters must be the same for both modes.

All operations must support the rendered mode and implement those metho
that supply the information for this mode. Those operations that support the
renderable mode must specify this feature using theisRenderableSupported

method and implement those methods that supply the additional information
the Renderable mode.

Table 14-2 lists the Rendered mode methods. Table 14-3 lists the Renderab
mode methods. Table 14-4 lists the methods relative to operation parameter

Listing 14-2 Operation Descriptor for Clamp Operation

public class ClampDescriptor extends OperationDescriptorImpl {
/**
* The resource strings that provide the general documentation
* and specify the parameter list for this operation.
*/
private static final String[][] resources = {
 {"GlobalName", "Clamp"},
 {"LocalName", "Clamp"},
 {"Vendor", "com.sun.javax.media.jai"},

{"Description", “Clamps the pixel values of a rendered image”},
{"DocURL", "http://java.sun.com/products/java-media/jai/

forDevelopers/jaiapi/
javax.media.jai.operator.ClampDescriptor.html"},

 {"Version", “Beta”)},
 {"arg0Desc", “The lower boundary for each band.”},
 {"arg1Desc", “The upper boundary for each band.”}
};

Table 14-2 Rendered Mode Methods

Method Description

isRenderedSupported Returnstrue if the operation supports the Rendered image
mode. This must betrue for all operations.

isImmediate Returnstrue if the operation should be rendered immediately
during the call toJAI.create; that is, the operation is placed
in immediate mode.
399Release 1.0.1, November 1999

14.3.2 Extending the OperationDescriptor Interface EXTENDING THE API

400

s)
getSourceClasses Returns an array ofClasses that describe the types of sources
required by this operation in the Rendered image mode.

getDestClass Returns aClass that describes the type of destination this
operation produces in the Rendered image mode.

validateArguments Returnstrue if this operation is capable of handling the input
rendered source(s) and/or parameter(s) specified in the
ParameterBlock.

Table 14-3 Renderable Mode Methods

Method Description

isRenderableSupported Returnstrue if the operation supports the Renderable image
mode.

getRenderableSourceClasses Returns an array ofClasses that describe the types of sources
required by this operation in the Renderable image mode.

getRenderableDestClass Returns aClass that describes the type of destination this
operation produces in the Renderable image mode.

validateRenderableArguments Returnstrue if this operation is capable of handling the input
Renderable source(s) and/or parameter(s) specified in the
ParameterBlock.

Table 14-4 Parameter Methods

Method Description

getNumParameters Returns the number of parameters (not including the source
required by this operation.

getParamClasses Returns an array ofClasses that describe the types of
parameters required by this operation.

getParamNames Returns an array ofStrings that are the localized parameter
names of this operation.

getParamDefaults Returns an array ofObjects that define the default values of
the parameters for this operation.

getParamDefaultValue Returns the default value of a specified parameter.

getParamMinValue Returns the minimum legal value of a specified numeric
parameter for this operation.

getParamMaxValue Returns the maximum legal value of a specified numeric
parameter for this operation.

Table 14-2 Rendered Mode Methods (Continued)

Method Description
Programming in Java Advanced Imaging

EXTENDING THE API Extending the OperationDescriptor Interface

er
API: javax.media.jai.OperationRegistry

• void registerOperationDescriptor(OperationDescriptor odesc,
String operationName)

registers anOperationDescriptor with the registry. Each operation must
have anOperationDescriptor beforeregisterRIF() may be called to add
RIFs to the operation.

A OperationDescriptor cannot be registered under an operation name und
which anotherOperationDescriptor was registered previously. If such an
attempt is made, an Error will be thrown.

• void registerOperationByName(String odescClassName,
String operationName)

registers anOperationDescriptor by its class name.

• void unregisterOperationDescriptor(String operationName)

unregisters anOperationDescriptor from the registry.

• void registerRIF(String operationName, String productName,
RenderedImageFactory RIF)

registers aRIF with a particular product and operation.

Parameter: odesc An OperationDescriptor containing
information about the operation.

operationName The operation name as aString.

Parameter: odescClassName The fully-qualified class name of the
OperationDescriptor.

operationName The operation name as aString.

Parameter: operationName The operation name as aString.

productName The product name, as aString.

RIF TheRenderedImageFactory to be
registered.
401Release 1.0.1, November 1999

14.4 Iterators EXTENDING THE API

402

AI

rsed

-

ll as
ted

nds.
• void registerRIFByClassName(String operationName,
String productName, String RIFClassName)

registers aRIF with a particular product and operation, constructing an
instance using its class name.

14.4 Iterators

Iterators are provided to help the programmer who writes extensions to the J
API and does not want to use any of the existing API methods for traversing
pixels. Iterators define the manner in which the source image pixels are trave
for processing. Iterators may be used both in the implementation ofcomputeRect

methods orgetTile methods of OpImage subclasses, and for ad-hoc pixel-by
pixel image manipulation.

Iterators provide a mechanism for avoiding the need to cobble sources, as we
to abstract away the details of source pixel formatting. An iterator is instantia
to iterate over a specified rectangular area of a sourceRenderedImage or Raster.
The iterator returns pixel values inint, float, or double format, automatically
promoting integral values smaller than 32 bits toint when reading, and
performing the corresponding packing when writing.

JAI offers three different types of iterator, which should cover nearly all of a
programmer’s needs. However, extenders may wish to build others for more
specialized needs.

The most basic iterator isRectIter, which provides the ability to move one line
or pixel at a time to the right or downwards, and to step forward in the list of
bands.RookIter offers slightly more functionality thanRectIter, allowing
leftward and upward movement and backwards motion through the set of ba
Both RectIter andRookIter allow jumping to an arbitrary line or pixel, and
reading and writing of a random band of the current pixel. TheRookIter also
allows jumping back to the first line or pixel, and to the last line or pixel.

RandomIter allows an unrelated set of samples to be read by specifying theirx
andy coordinates and band offset. TheRandomIter will generally be slower than
either theRectIter or RookIter, but remains useful for its ability to hide pixel
formats and tile boundaries.

Parameter: operationName The operation name as aString.

productName The product name, as aString.

RIFClassName The fully-qualified class name of a
RenderedImageFactory.
Programming in Java Advanced Imaging

EXTENDING THE API RectIter

in

in

nds

set
Figure 14-1 shows the Iterator package hierarchy. The classes are described
the following paragraphs.

14.4.1 RectIter

TheRectIter interface represents an iterator for traversing a read-only image
top-to-bottom, left-to-right order (Figure 14-2). The RectIter traversal will
generally be the fastest style of iterator, since it does not need to perform bou
checks against the top or left edges of tiles. TheWritableRectIter interface
traverses a read/write image in the same manner as the RectIter.

The iterator is initialized with a particular rectangle as its bounds. The
initialization takes place in a factory method (theRectIterFactory class) and is
not a part of the iterator interface itself. Once initialized, the iterator may be re
to its initial state by means of thestartLines(), startPixels(), and
startBands() methods. Its position may be advanced using thenextLine(),
jumpLines(), nextPixel(), jumpPixels(), andnextBand() methods.

Figure 14-1 Iterator Hierarchy

Object
RandomIterFactory
RectIterFactory
RookIterFactory

RandomIter

RectIter

WritableRandomIter

RookIter
WritableRookIter

WritableRectIter

Class Hierarchy

Interface Hierarchy
403Release 1.0.1, November 1999

14.4.1 RectIter EXTENDING THE API

404

s

Figure 14-2 RectIter Traversal Pattern

TheWritableRookIter interface adds the ability to alter the source pixel value
using the varioussetSample() andsetPixel() methods.

An instance ofRectIter may be obtained by means of the
RectIterFactory.create() method, which returns an opaque object
implementing this interface.

API: javax.media.jai.iterator.RectIterFactory

• static RectIter create(RenderedImage im, Rectangle bounds)

constructs and returns an instance ofRectIter suitable for iterating over the
given bounding rectangle within the givenRenderedImage source. If the
bounds parameter is null, the entire image will be used.

Parameters: im A read-onlyRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Bounds
Programming in Java Advanced Imaging

EXTENDING THE API RectIter

and

d

• static RectIter create(Raster ras, Rectangle bounds)

constructs and returns an instance ofRectIter suitable for iterating over the
given bounding rectangle within the givenRaster source. If thebounds
parameter is null, the entire Raster will be used.

• static WritableRectIter createWritable(WritableRenderedImage
im, Rectangle bounds)

constructs and returns an instance ofWritableRectIter suitable for iterating
over the given bounding rectangle within the givenWritableRenderedImage
source. If thebounds parameter is null, the entire image will be used.

• static WritableRectIter createWritable(WritableRaster ras,
Rectangle bounds)

constructs and returns an instance ofWritableRectIter suitable for iterating
over the given bounding rectangle within the givenWritableRaster source.
If the bounds parameter is null, the entireRaster will be used.

API: javax.media.jai.iterator.RectIter

• void startLines()

sets the iterator to the first line of its bounding rectangle. The pixel and b
offsets are unchanged.

• void startPixels()

sets the iterator to the leftmost pixel of its bounding rectangle. The line an
band offsets are unchanged.

Parameters: ras A read-onlyRaster source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: im A WritableRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: ras A WritableRaster source.

bounds The boundingRectangle for the iterator, or
null.
405Release 1.0.1, November 1999

14.4.2 RookIter EXTENDING THE API

406

are

are
o

he

 are

e

heir

ator
• void startBands()

sets the iterator to the first band of the image. The pixel column and line
unchanged.

• void nextLine()

sets the iterator to the next line of the image. The pixel and band offsets
unchanged. If the iterator passes the bottom line of the rectangles, calls t
get() methods are not valid.

• void jumpLines(int num)

jumps downwardnum lines from the current position. Thenum parameter may
be negative. The pixel and band offsets are unchanged.

• void nextPixel()

sets the iterator to the next pixel in the image (that is, move rightward). T
line and band offsets are unchanged.

• void jumpPixels(int num)

jumps rightwardnum pixels from the current position. Thenum parameter may
be negative. The line and band offsets are unchanged.

• void nextBand()

sets the iterator to the next band in the image. The pixel column and line
unchanged.

14.4.2 RookIter

TheRookIter interface represents an iterator for traversing a read-only imag
using arbitrary up-down and left-right moves (Figure 14-3 shows two of the
possibilities for traversing the pixels). The RookIter traversal will generally be
somewhat slower than a corresponding instance ofRectIter, since it must
perform bounds checks against the top and left edges of tiles in addition to t
bottom and right edges. TheWritableRookIter interface traverses a read/write
image in the same manner as the RookIter.

An instance of RookIter may be obtained by means of the
RookIterFactory.create() or RookIterFactory.createWritable()
methods, which return an opaque object implementing this interface. The iter
is initialized with a particular rectangle as its bounds. This initialization takes
place in a factory method (theRookIterFactory class) and is not a part of the
iterator interface itself.
Programming in Java Advanced Imaging

EXTENDING THE API RookIter
Once initialized, the iterator may be reset to its initial state by means of the
startLines(), startPixels(), andstartBands() methods. As withRectIter,
its position may be advanced using thenextLine(), jumpLines(),
nextPixel(), jumpPixels(), andnextBand() methods.

Figure 14-3 RookIter Traversal Patterns

Bounds

Or
407Release 1.0.1, November 1999

14.4.2 RookIter EXTENDING THE API

408
API: avax.media.jai.iterator.RookIterFactory

• static RookIter create(RenderedImage im, Rectangle bounds)

constructs and returns an instance ofRookIter suitable for iterating over the
given bounding rectangle within the givenRenderedImage source. If the
bounds parameter is null, the entire image will be used.

• static RookIter create(Raster ras, Rectangle bounds)

constructs and returns an instance ofRookIter suitable for iterating over the
given bounding rectangle within the givenRaster source. If the bounds
parameter is null, the entireRaster will be used.

• static WritableRookIter createWritable(WritableRenderedImage
im, Rectangle bounds)

constructs and returns an instance ofWritableRookIter suitable for iterating
over the given bounding rectangle within the givenWritableRenderedImage
source. If thebounds parameter is null, the entire image will be used.

• static WritableRookIter createWritable(WritableRaster ras,
Rectangle bounds)

constructs and returns an instance ofWritableRookIter suitable for iterating
over the given bounding rectangle within the givenWritableRaster source.
If the bounds parameter is null, the entireRaster will be used.

Parameters: im A read-onlyRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: ras A read-onlyRaster source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: im A WritableRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: ras A WritableRaster source.

bounds The boundingRectangle for the iterator, or
null.
Programming in Java Advanced Imaging

EXTENDING THE API RandomIter

any
l

14.4.3 RandomIter

TheRandomIter interface represents an iterator that allows random access to
sample within its bounding rectangle. The flexibility afforded by this class wil
generally exact a corresponding price in speed and setup overhead.

The iterator is initialized with a particular rectangle as its bounds. This
initialization takes place in a factory method (theRandomIterFactory class) and
is not a part of the iterator interface itself. An instance ofRandomIter may be
obtained by means of theRandomIterFactory.create() method, which returns
an opaque object implementing this interface.

ThegetSample(), getSampleFloat(), andgetSampleDouble() methods are
provided to allow read-only access to the source data. ThegetPixel() methods
allow retrieval of all bands simultaneously.

API: javax.media.jai.iterator.RandomIterFactory

• static RandomIter create(RenderedImage im, Rectangle bounds)

constructs and returns an instance ofRandomIter suitable for iterating over the
given bounding rectangle within the givenRenderedImage source. If the
bounds parameter is null, the entire image will be used.

• static RandomIter create(Raster ras, Rectangle bounds)

constructs and returns an instance ofRandomIter suitable for iterating over the
given bounding rectangle within the givenRaster source. If thebounds
parameter is null, the entireRaster will be used.

• static WritableRandomIter createWritable(WritableRenderedImage
im, Rectangle bounds)

constructs and returns an instance ofWritableRandomIter suitable for
iterating over the given bounding rectangle within the given

Parameters: im A read-onlyRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: ras A read-onlyRaster source.

bounds The boundingRectangle for the iterator, or
null.
409Release 1.0.1, November 1999

14.4.4 Example RectIter EXTENDING THE API

410
WritableRenderedImage source. If thebounds parameter is null, the entire
image will be used.

• static WritableRandomIter createWritable(WritableRaster ras,
Rectangle bounds)

constructs and returns an instance ofWritableRandomIter suitable for
iterating over the given bounding rectangle within the givenWritableRaster
source. If thebounds parameter is null, the entire Raster will be used.

14.4.4 Example RectIter

Listing 14-3 shows an example of the construction of a newRectIter.

Parameters: im A WritableRenderedImage source.

bounds The boundingRectangle for the iterator, or
null.

Parameters: ras A read-onlyRaster source.

bounds The boundingRectangle for the iterator, or
null.

Listing 14-3 Example RectIter (Sheet 1 of 4)

import java.awt.Rectangle;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.PixelInterleavedSampleModel;
import java.awt.image.SampleModel;
import java.util.Random;
import javax.media.jai.*;
import javax.media.jai.iterator.*;

class RectIterTest {

 int width = 10;
 int height = 10;
 int tileWidth = 4;
 int tileHeight = 4;

 public static void main(String[] args) {
 new RectIterTest();
 }

 public RectIterTest() {
Programming in Java Advanced Imaging

EXTENDING THE API Example RectIter
 Random rand = new Random(1L);
 Rectangle rect = new Rectangle();

 int[] bandOffsets = { 2, 1, 0 };
 SampleModel sampleModel =

new PixelInterleavedSampleModel(DataBuffer.TYPE_BYTE,
tileWidth, tileHeight,

 3, 3*tileWidth,
 bandOffsets);
 ColorModel colorModel = null;

TiledImage im = new TiledImage(0, 0, width, height, 0, 0,
 sampleModel,
 colorModel);

 int[][][] check = new int[width][height][3];
 int x, y, b;

 for (int i = 0; i < 10; i++) {
 rect.x = rand.nextInt(width);
 rect.width = rand.nextInt(width - rect.x) + 1;

 rect.y = rand.nextInt(height);
 rect.height = rand.nextInt(height - rect.y) + 1;

System.out.println(“Filling rect “ + rect + “ with “ + i);

WritableRectIter witer = RectIterFactory.createWritable(im,
 rect);

 b = 0;
 witer.startBands();
 while (!witer.finishedBands()) {
 y = rect.y;
 witer.startLines();
 while (!witer.finishedLines()) {
 x = rect.x;
 witer.startPixels();
 while (!witer.finishedPixels()) {
 witer.setSample(i);
 check[x][y][b] = i;

 ++x;
 witer.nextPixel();
 }

Listing 14-3 Example RectIter (Sheet 2 of 4)
411Release 1.0.1, November 1999

14.4.4 Example RectIter EXTENDING THE API

412
 ++y;
 witer.nextLine();
 }

 ++b;
 witer.nextBand();
 }
 }

 rect.x = 0;
 rect.y = 0;
 rect.width = width;
 rect.height = height;

RectIter iter = RectIterFactory.createWritable(im, rect);

 b = 0;
 iter.startBands();
 while (!iter.finishedBands()) {
 System.out.println();

 y = 0;
 iter.startLines();
 while (!iter.finishedLines()) {

 x = 0;
 iter.startPixels();
 while (!iter.finishedPixels()) {
 int val = iter.getSample();
 System.out.print(val);

 if (val != check[x][y][b]) {
System.out.print(“(“ + check[x][y][b] + “) “);

 } else {
 System.out.print(“ “);
 }

 ++x;
 iter.nextPixel();
 }

 ++y;
 iter.nextLine();
 System.out.println();
 }

Listing 14-3 Example RectIter (Sheet 3 of 4)
Programming in Java Advanced Imaging

EXTENDING THE API Image Codecs

ec.
y

 file
 are
e
for

he
14.5 Writing New Image Decoders and Encoders

Thesample directory contains an example of how to create a new image cod
The example is of a PNM codec, but can be used as a basis for creating an
codec. The PNM codec consists of three files:

14.5.1 Image Codecs

Note: The codec classes are provided for the developer as a convenience for
IO. These classes are not part of the official Java Advanced Imaging API and
subject to change as a result of the near future File IO extension API. Until th
File IO extension API is defined, these classes and functions will be supported
JAI use.

TheImageCodec class allows the creation of image decoders and encoders.
Instances ofImageCodec may be registered by name. TheregisterCodec
method associates anImageCodec with the given name. Any codec previously
associated with the name is discarded. Once a codec has been registered, t
name associated with it may be used as thename parameter in the
createImageEncoder andcreateImageDecoder methods.

TheImageCodec class maintains a registry ofFormatRecognizer objects that
examine anInputStream and determine whether it adheres to the format
handled by a particularImageCodec. A FormatRecognizer is added to the

 ++b;
 iter.nextBand();
 }
 }
}

File Name Description

SamplePNMCodec.java Defines a subclass ofImageCodec for handling the PNM
family of image files.

SamplePNMImageDecoder.java Defines anImageDecoder for the PNM family of image files.
Necessary for reading PNM files.

SamplePNMImageEncoder.java Defines anImageEncoder for the PNM family of image files.
Necessary for writing PNM files.

Listing 14-3 Example RectIter (Sheet 4 of 4)
413Release 1.0.1, November 1999

14.5.1 Image Codecs EXTENDING THE API

414
registry with theregisterFormatRecognizer method. The
unregisterFormatRecognizer method removes a previously registered
FormatRecognizer from the registry.

ThegetCodec method returns theImageCodec associated with a given name. If
no codec is registered with the given name,null is returned.

API: com.sun.media.jai.codec.ImageCodec

• static ImageEncoder createImageEncoder(String name,
OutputStream dst, ImageEncodeParam param)

returns anImageEncoder object suitable for encoding to the supplied
OutputStream, using the suppliedImageEncodeParam object.

• static ImageEncoder createImageEncoder(String name,
OutputStream dst)

returns anImageEncoder object suitable for encoding to the supplied
OutputStream object. A nullImageEncodeParam is used.

• static ImageDecoder createImageDecoder(String name,
InputStream src, ImageDecodeParam param)

returns anImageDecoder object suitable for decoding from the supplied
InputStream, using the suppliedImageDecodeParam object.

• static ImageDecoder createImageDecoder(String name,
InputStream src)

returns anImageDecoder object suitable for decoding from the supplied
InputStream. A null ImageDecodeParam is used.

Parameter: name The name associated with the codec.

dst An OutputStream to write to.

param An instance of ImageEncodeParam suitable
for use with the named codec, or null.

Parameter: name The name associated with the codec.

src An InputStream to read from.

param An instance of ImageEncodeParam suitable
for use with the named codec, or null.
Programming in Java Advanced Imaging

EXTENDING THE API Image Codecs
• static void registerCodec(String name, ImageCodec codec)

associates anImageCodec with the given name. Case is not significant. Any
codec previously associated with the name is discarded.

• static void unregisterCodec(String name)

removes the association between a givenname and anImageCodec object. Case
is not significant.

• static ImageCodec getCodec(String name)

returns theImageCodec associated with the given name. If no codec is
registered with the given name, null is returned. Case is not significant.

Parameter: name The name associated with the codec.

codec TheImageCodec object to be associated
with the given name.

Parameter: name The name associated with the codec.
415Release 1.0.1, November 1999

14.5.1 Image Codecs EXTENDING THE API

416
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
A P P E N D I X A

s

ple
are

t be

ge.
Program Example

THIS appendix contains fully-operational JAI program examples.

The examples in this appendix are provided to demonstrate how to create sim
programs using JAI. Although these examples can be compiled and run, they
not intended to be used that way since they are pretty simple and would no
particularly interesting, visually.

A.1 Lookup Operation Example

Listing A-1 shows an example of theLookup operation. This example program
decodes a TIFF image file into aRenderedImage. If the TIFF image is an
unsigned short type image, the program performs aLookup operation to convert
the image into a byte type image. Finally, the program displays the byte ima

Listing A-1 Example Lookup Program (Sheet 1 of 3)

import java.awt.Frame;
import java.awt.RenderingHints;
import java.awt.image.DataBuffer;
import java.awt.image.renderable.ParameterBlock;
import java.io.IOException;
import javax.media.jai.JAI;
import javax.media.jai.LookupTableJAI;
import javax.media.jai.RenderedOp;
import com.sun.media.jai.codec.FileSeekableStream;
import com.sun.media.jai.codec.TIFFDecodeParam;
import javax.media.jai.widget.ScrollingImagePanel;

public class LookupSampleProgram {

 // The main method.
 public static void main(String[] args) {
417

A.1 Lookup Operation Example PROGRAM EXAMPLES

418
// Validate input.
 if (args.length != 1) {

System.out.println(“Usage: java LookupSampleProgram “ +
 “TIFF_image_filename”);
 System.exit(-1);
 }

// Create an input stream from the specified file name to be
// used with the TIFF decoder.
 FileSeekableStream stream = null;
 try {
 stream = new FileSeekableStream(args[0]);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }

// Store the input stream in a ParameterBlock to be sent to
// the operation registry, and eventually to the TIFF
// decoder.
 ParameterBlock params = new ParameterBlock();
 params.add(stream);

// Specify to TIFF decoder to decode images as they are and
// not to convert unsigned short images to byte images.
 TIFFDecodeParam decodeParam = new TIFFDecodeParam();
 decodeParam.setDecodePaletteAsShorts(true);

// Create an operator to decode the TIFF file.
 RenderedOp image1 = JAI.create(“tiff”, params);

// Find out the first image’s data type.
 int dataType = image1.getSampleModel().getDataType();
 RenderedOp image2 = null;
 if (dataType == DataBuffer.TYPE_BYTE) {
// Display the byte image as it is.
 System.out.println(“TIFF image is type byte.”);
 image2 = image1;
 } else if (dataType == DataBuffer.TYPE_USHORT) {

// Convert the unsigned short image to byte image.
 System.out.println(“TIFF image is type ushort.”);

Listing A-1 Example Lookup Program (Sheet 2 of 3)
Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example
A.2 Adding an OperationDescriptor Example

Chapter 14, “Extending the API,” describes how to extend the API by writing
custom OperationDescriptors. Listing A-2 shows the construction of an
OperationDescriptor, calledSampleDescriptor, that is both an

// Setup a standard window-level lookup table. */
 byte[] tableData = new byte[0x10000];
 for (int i = 0; i < 0x10000; i++) {
 tableData[i] = (byte)(i >> 8);
 }

// Create a LookupTableJAI object to be used with the
// “lookup” operator.

LookupTableJAI table = new LookupTableJAI(tableData);

// Create an operator to lookup image1.
 image2 = JAI.create(“lookup”, image1, table);

 } else {
System.out.println(“TIFF image is type “ + dataType +

“, and will not be displayed.”);
 System.exit(0);
 }

// Get the width and height of image2.
 int width = image2.getWidth();
 int height = image2.getHeight();

// Attach image2 to a scrolling panel to be displayed.
 ScrollingImagePanel panel = new ScrollingImagePanel(

image2, width, height);

// Create a frame to contain the panel.
 Frame window = new Frame(“Lookup Sample Program”);
 window.add(panel);
 window.pack();
 window.show();
 }
}

Listing A-1 Example Lookup Program (Sheet 3 of 3)
419Release 1.0.1, November 1999

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

420
OperationDescriptor and aRenderedImageFactory. The operation created
here is calledSample and takes two parameters for the operation.

Listing A-2 Example OperationDescriptor (Sheet 1 of 8)

import java.awt.Rectangle;
import java.awt.RenderingHints;
import java.awt.image.ComponentSampleModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.awt.image.Raster;
import java.awt.image.RenderedImage;
import java.awt.image.SampleModel;
import java.awt.image.WritableRaster;
import java.awt.image.renderable.ParameterBlock;
import java.awt.image.renderable.RenderedImageFactory;
import javax.media.jai.ImageLayout;
import javax.media.jai.OperationDescriptorImpl;
import javax.media.jai.OpImage;
import javax.media.jai.PointOpImage;
import javax.media.jai.RasterAccessor;

// A single class that is both an OperationDescriptor and
// a RenderedImageFactory along with the one OpImage it is
// capable of creating. The operation implemented is a variation
// on threshold, although the code may be used as a template for
// a variety of other point operations.
public class SampleDescriptor extends OperationDescriptorImpl

implements RenderedImageFactory {

// The resource strings that provide the general documentation
// and specify the parameter list for the “Sample” operation.
private static final String[][] resources = {
 {“GlobalName”, “Sample”},
 {“LocalName”, “Sample”},
 {“Vendor”, “com.mycompany”},
 {“Description”, “A sample operation that thresholds source
 pixels”},
 {“DocURL”, “http://www.mycompany.com/
 SampleDescriptor.html”},
 {“Version”, “1.0”},
 {“arg0Desc”, “param1”},
 {“arg1Desc”, “param2”}
 };
Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example
// The parameter names for the “Sample” operation. Extenders may
// want to rename them to something more meaningful.
 private static final String[] paramNames = {
 “param1”, “param2”
 };

// The class types for the parameters of the “Sample” operation.
// User defined classes can be used here as long as the fully
// qualified name is used and the classes can be loaded.
 private static final Class[] paramClasses = {
 java.lang.Integer.class, java.lang.Integer.class
 };

// The default parameter values for the “Sample” operation
// when using a ParameterBlockJAI.
 private static final Object[] paramDefaults = {
 new Integer(0), new Integer(255)
 };

// Constructor.
public SampleDescriptor() {

super(resources, 1, paramClasses, paramNames, paramDefaults);
 }

// Creates a SampleOpImage with the given ParameterBlock if the
// SampleOpImage can handle the particular ParameterBlock.
 public RenderedImage create(ParameterBlock paramBlock,
 RenderingHints renderHints) {
 if (!validateParameters(paramBlock)) {
 return null;
 }

return new SampleOpImage(paramBlock.getRenderedSource(0),
 new ImageLayout(),

(Integer)paramBlock.getObjectParameter(0),
(Integer)paramBlock.getObjectParameter(1));

 }

Listing A-2 Example OperationDescriptor (Sheet 2 of 8)
421Release 1.0.1, November 1999

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

422
// Checks that all parameters in the ParameterBlock have the
// correct type before constructing the SampleOpImage
public boolean validateParameters(ParameterBlock paramBlock) {
 for (int i = 0; i < this.getNumParameters(); i++) {
 Object arg = paramBlock.getObjectParameter(i);
 if (arg == null) {
 return false;
 }
 if (!(arg instanceof Integer)) {
 return false;
 }
 }
 return true;
 }
}

// SampleOpImage is an extension of PointOpImage that takes two
// integer parameters and one source and performs a modified
// threshold operation on the given source.
class SampleOpImage extends PointOpImage {

 private int param1;
 private int param2;

// A dummy constructor used by the class loader. */
 public SampleOpImage() {}

/** Constructs an SampleOpImage. The image dimensions are copied
* from the source image. The tile grid layout, SampleModel, and
* ColorModel may optionally be specified by an ImageLayout
* object.
*
* @param source a RenderedImage.
* @param layout an ImageLayout optionally containing the tile
* grid layout, SampleModel, and ColorModel, or
* null.
*/
 public SampleOpImage(RenderedImage source,
 ImageLayout layout,
 Integer param1,
 Integer param2) {
 super(source, null, layout, true);
 this.param1 = param1.intValue();
 this.param2 = param2.intValue();
 }

Listing A-2 Example OperationDescriptor (Sheet 3 of 8)
Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example
/**
* Performs a modified threshold operation on the pixels in a
* given rectangle. Sample values below a lower limit are clamped
* to 0, while those above an upper limit are clamped to 255. The
* results are returned in the input WritableRaster dest. The
* sources are cobbled.
*
* @param sources an array of sources, guarantee to provide all
* necessary source data for computing the rectangle.
* @param dest a tile that contains the rectangle to be computed.
* @param destRect the rectangle within this OpImage to be
* processed.
*/
 protected void computeRect(Raster[] sources,
 WritableRaster dest,
 Rectangle destRect) {
 Raster source = sources[0];
 Rectangle srcRect = mapDestRect(destRect, 0);

// RasterAccessor is a convienient way to represent any given
// Raster in a usable format. It has very little overhead if
// the underlying Raster is in a common format (PixelSequential
// for this release) and allows generic code to process
// a Raster with an exotic format. Essentially, it allows the
// common case to processed quickly and the rare case to be
// processed easily.

// This “best case” formatTag is used to create a pair of
// RasterAccessors for processing the source and dest rasters

RasterFormatTag[] formatTags = getFormatTags();
RasterAccessor srcAccessor =
 new RasterAccessor(sources[0], srcRect, formatTags[0],
 getSource(0).getColorModel());
RasterAccessor dstAccessor =
 new RasterAccessor(dest, destRect, formatTags[1],
 getColorModel());

Listing A-2 Example OperationDescriptor (Sheet 4 of 8)
423Release 1.0.1, November 1999

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

424
// Depending on the base dataType of the RasterAccessors,
// either the byteLoop or intLoop method is called. The two
// functions are virtually the same, except for the data type
// of the underlying arrays.
 switch (dstAccessor.getDataType()) {
 case DataBuffer.TYPE_BYTE:
 byteLoop(srcAccessor,dstAccessor);
 break;
 case DataBuffer.TYPE_INT:
 intLoop(srcAccessor,dstAccessor);
 break;
 default:
 String className = this.getClass().getName();
 throw new RuntimeException(className +

“ does not implement computeRect” +
“ for short/float/double data”);

 }

// If the RasterAccessor object set up a temporary buffer for the
// op to write to, tell the RasterAccessor to write that data
// to the raster now that we’re done with it.
 if (dstAccessor.isDataCopy()) {
 dstAccessor.clampDataArrays();
 dstAccessor.copyDataToRaster();
 }
 }

/**
* Computes an area of a given byte-based destination Raster using
* a souce RasterAccessor and a destination RasterAccesor.
* Processing is done as if the bytes are unsigned, even though
* the Java language has support only for signed bytes as a
* primitive datatype.
*/
private void byteLoop(RasterAccessor src, RasterAccessor dst) {
 int dwidth = dst.getWidth();
 int dheight = dst.getHeight();
 int dnumBands = dst.getNumBands();

 byte dstDataArrays[][] = dst.getByteDataArrays();
 int dstBandOffsets[] = dst.getBandOffsets();
 int dstPixelStride = dst.getPixelStride();
 int dstScanlineStride = dst.getScanlineStride();

Listing A-2 Example OperationDescriptor (Sheet 5 of 8)
Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example
 byte srcDataArrays[][] = src.getByteDataArrays();
 int srcBandOffsets[] = src.getBandOffsets();
 int srcPixelStride = src.getPixelStride();
 int srcScanlineStride = src.getScanlineStride();

 byte bp1 = (byte)(param1 & 0xff);
 byte bp2 = (byte)(param2 & 0xff);

 // A standard imaging loop
 for (int k = 0; k < dnumBands; k++) {
 byte dstData[] = dstDataArrays[k];
 byte srcData[] = srcDataArrays[k];
 int srcScanlineOffset = srcBandOffsets[k];
 int dstScanlineOffset = dstBandOffsets[k];
 for (int j = 0; j < dheight; j++) {
 int srcPixelOffset = srcScanlineOffset;
 int dstPixelOffset = dstScanlineOffset;
 for (int i = 0; i < dwidth; i++) {

// This code can be specialized by rewriting the
// following block of code to do some other
// operation.
//
// Some examples:
// InvertOp:
// dstData[dstPixelOffset] =
// (byte)(0xff & ~srcData[srcPixelOffset]);
//
// AddConst:
// dstData[dstPixelOffset] =
// (byte)(0xff & (srcData[srcPixelOffset]+param1));
//
// Currently, the operation performs a threshold.

 int pixel = srcData[srcPixelOffset] & 0xff;
 if (pixel < param1) {
 dstData[dstPixelOffset] = 0; // bp1;
 } else if (pixel > param2) {
 dstData[dstPixelOffset] = (byte)255; // bp2;
 } else {

dstData[dstPixelOffset] = srcData[srcPixelOffset];
 }

Listing A-2 Example OperationDescriptor (Sheet 6 of 8)
425Release 1.0.1, November 1999

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

426
 srcPixelOffset += srcPixelStride;
 dstPixelOffset += dstPixelStride;
 }
 srcScanlineOffset += srcScanlineStride;
 dstScanlineOffset += dstScanlineStride;
 }
 }
 }

/**
* Computes an area of a given int-based destination Raster using
* a source RasterAccessor and a destination RasterAccesor.
*/
private void intLoop(RasterAccessor src, RasterAccessor dst) {
 int dwidth = dst.getWidth();
 int dheight = dst.getHeight();
 int dnumBands = dst.getNumBands();

 int dstDataArrays[][] = dst.getIntDataArrays();
 int dstBandOffsets[] = dst.getBandOffsets();
 int dstPixelStride = dst.getPixelStride();
 int dstScanlineStride = dst.getScanlineStride();

 int srcDataArrays[][] = src.getIntDataArrays();
 int srcBandOffsets[] = src.getBandOffsets();
 int srcPixelStride = src.getPixelStride();
 int srcScanlineStride = src.getScanlineStride();

Listing A-2 Example OperationDescriptor (Sheet 7 of 8)
Programming in Java Advanced Imaging

PROGRAM EXAMPLES Adding an OperationDescriptor Example
 for (int k = 0; k < dnumBands; k++) {
 int dstData[] = dstDataArrays[k];
 int srcData[] = srcDataArrays[k];
 int srcScanlineOffset = srcBandOffsets[k];
 int dstScanlineOffset = dstBandOffsets[k];
 for (int j = 0; j < dheight; j++) {
 int srcPixelOffset = srcScanlineOffset;
 int dstPixelOffset = dstScanlineOffset;
 for (int i = 0; i < dwidth; i++) {
 int pixel = srcData[srcPixelOffset];
 if (pixel < param1) {
 dstData[dstPixelOffset] = 0;
 } else if (pixel > param2) {
 dstData[dstPixelOffset] = 255;
 } else {

dstData[dstPixelOffset] = srcData[srcPixelOffset];
 }
 srcPixelOffset += srcPixelStride;
 dstPixelOffset += dstPixelStride;
 }
 srcScanlineOffset += srcScanlineStride;
 dstScanlineOffset += dstScanlineStride;
 }
 }
 }
}

Listing A-2 Example OperationDescriptor (Sheet 8 of 8)
427Release 1.0.1, November 1999

A.2 Adding an OperationDescriptor Example PROGRAM EXAMPLES

428
 Programming in Java Advanced Imaging

Release 1.0.1, November 1999
A P P E N D I X B

I

WT,

It
he

es.
Java Advanced Imaging AP
Summary

THIS appendix summarizes the imaging interfaces and classes for Java A
Java 2D, and Java Advanced Imaging API.

B.1 Java AWT Imaging

Table B-1 lists and describes thejava.awt imaging classes.

B.2 Java 2D Imaging

The Java 2D API is a set of classes for advanced 2D graphics and imaging.
encompasses line art, text, and images in a single comprehensive model. T
API provides extensive support for image compositing and alpha channel
images, a set of classes to provide accurate color space definition and
conversion, and a rich set of display-oriented imaging operators.

The Java 2D classes are provided as additions to thejava.awt and
java.awt.image packages (rather than as a separate package).

Table B-1 java.awt Imaging Classes

Class Description

Image Extends:Object
The superclass of all classes that represent graphical imag
429

B.2.1 Java 2D Imaging Interfaces JAVA ADVANCED IMAGING API SUMMARY

430

n
s

e

or

n

B.2.1 Java 2D Imaging Interfaces

Table B-2 lists and briefly describes the imaging interfaces defined in the
java.awt.image (Java 2D) API.

Table B-2 java.awt.image Interfaces

Interface Description

BufferedImageOp Describes single-input/single-output operations performed o
BufferedImage objects. This is implemented by such classe
asAffineTransformOp, ConvolveOp, BandCombineOp,
andLookupOp.

ImageConsumer Used for objects expressing interest in image data through th
ImageProducer interfaces.

ImageObserver Receives notifications aboutImage information as theImage
is constructed.

ImageProducer Used for objects that can produce the image data forImages.
Each image contains anImageProducer that is used to
reconstruct the image whenever it is needed, for example,
when a new size of the Image is scaled, or when the width
height of the Image is being requested.

ImagingLib Provides a hook to access platform-specific imaging code.

RasterImageConsumer Extends:ImageConsumer
The interface for objects expressing interest in image data
through theImageProducer interfaces. When a consumer is
added to an image producer, the producer delivers all of the
data about the image using the method calls defined in this
interface.

RasterOp Describes single-input/single-output operations performed o
Raster objects. This is implemented by such classes as
AffineTransformOp, ConvolveOp, andLookupOp.

RenderedImage A common interface for objects that contain or can produce
image data in the form ofRasters.

TileChangeListener An interface for objects that wish to be informed when tiles of
aWritableRenderedImage become modifiable by some
writer via a call togetWritableTile, and when they become
unmodifiable via the last call toreleaseWritableTile.

WriteableRenderedImage Extends:RenderedImage
A common interface for objects that contain or can produce
image data that can be modified and/or written over.
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY Java 2D Imaging Classes

.

,

a

.

B.2.2 Java 2D Imaging Classes

Table B-3 lists and briefly describes the imaging classes defined in the
java.awt.image (Java 2D) API.

Table B-3 java.awt.image Classes

Class Description

AffineTransformOp Extends:Object
Implements:BufferedImageOp, RasterOp
An abstract class that uses an affine transform to perform a
linear mapping from 2D coordinates in the source image or
Raster to 2D coordinates in the destination image or Raster

AreaAveragingScaleFilter Extends:ReplicateScaleFilter
An ImageFilter class for scaling images using a simple area
averaging algorithm that produces smoother results than the
nearest-neighbor algorithm.

BandCombineOp Extends:Object
Implements:RasterOp
Performs an arbitrary linear combination of bands in a Raster
using a specified matrix.

BandedSampleModel Extends:SampleModel
Provides more efficent implementations for accessing
image data than are provided inSampleModel. Used when
working with images that store sample data for each band in
different bank of the DataBuffer.

BilinearAffineTransformOp Extends:AffineTransformOp
Uses an affine transformation with bilinear interpolation to
transform an image or Raster.

BufferedImage Extends:Image
Implements:WritableRenderedImage
Describes an Image with an accessible buffer of image data

BufferedImageFilter Extends:ImageFilter
Implements:RasterImageConsumer, Cloneable
Provides a simple means of using a single-source/single-
destination image operator (BufferedImageOp) to filter a
BufferedImage or Raster in the Image Producer/
Consumer/Observer paradigm.
431Release 1.0.1, November 1999

B.2.2 Java 2D Imaging Classes JAVA ADVANCED IMAGING API SUMMARY

432

r
n

g
)

ta

.

ByteLookupTable Extends:LookupTable
Defines a lookup table object. The lookup table contains byte
data for one or more tile channels or image components (fo
example, separate arrays for R, G, and B), and it contains a
offset that will be subtracted from the input value before
indexing the array.

ColorConvertOp Extends:Object
Implements:BufferedImageOp, RasterOp
Performs a pixel-by-pixel color conversion of the data in the
source image. The resulting color values are scaled to the
precision of the destination image data type.

ColorModel Extends:Object
Implements:Transparency
An abstract class that encapsulates the methods for translatin
from pixel values to color components (e.g., red, green, blue
for an image.

ComponentColorModel Extends:ColorModel
A ColorModel class that can handle an arbitraryColorSpace
and an array of color components to match theColorSpace.

ComponentSampleModel Extends:SampleModel
Stores the N samples that make up a pixel in N separate da
array elements all of which are in the same bank of a
dataBuffer.

ConvolveOp Extends:Object
Implements:BufferedImageOp, RasterOp
Implements a convolution from the source to the destination
Convolution using a convolution kernel is a spatial operation
that computes the output pixel from an input pixel by
multiplying the kernel with the surround of the input pixel.

CropImageFilter Extends:ImageFilter
An ImageFilter class for cropping images.

DataBuffer Extends:Object
Wraps one or more data arrays. Each data array in the
DataBuffer is referred to as a bank. Accessor methods for
getting and setting elements of theDataBuffer’s banks exist
with and without a bank specifier.

DataBufferByte Extends:DataBuffer
Stores data internally as bytes.

Table B-3 java.awt.image Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY Java 2D Imaging Classes

p

DataBufferInt Extends:DataBuffer
Stores data internally as ints.

DataBufferShort Extends:DataBuffer
Stores data internally as shorts.

DirectColorModel Extends:PackedColorModel
Represents pixel values that have RGB color components
embedded directly in the bits of the pixel itself.

FilteredImageSource Extends:Object
Implements:ImageProducer
An implementation of theImageProducer interface which
takes an existing image and a filter object and uses them to
produce image data for a new filtered version of the original
image.

ImageFilter Extends:Object
Implements:ImageConsumer, Cloneable
Implements a filter for the set of interface methods that are
used to deliver data from anImageProducer to an
ImageConsumer.

IndexColorModel Extends:ColorModel
Represents pixel values that are indices into a fixed colorma
in theColorModel’s color space.

Kernel Extends:Object
Defines a Kernel object – a matrix describing how a given
pixel and its surrounding pixels affect the value of the given
pixel in a filtering operation.

LookupOp Extends:Object
Implements:BufferedImageOp, RasterOp
Implements a lookup operation from the source to the
destination.

LookupTable Extends:Object
Defines a lookup table object. The subclasses are
ByteLookupTable andShortLookupTable, which contain
byte and short data, respectively.

MemoryImageSource Extends:Object
Implements:ImageProducer
An implementation of theImageProducer interface, which
uses an array to produce pixel values for an Image.

Table B-3 java.awt.image Classes (Continued)

Class Description
433Release 1.0.1, November 1999

B.2.2 Java 2D Imaging Classes JAVA ADVANCED IMAGING API SUMMARY

434

le

t
n

s

,

MultiPixelPackedSampleModel Extends:SampleModel
Stores one-banded images, but can pack multiple one-samp
pixels into one data element.

NearestNeighborAffine-
TransformOp

Extends:AffineTransformOp
Uses an affine transformation with nearest neighbor
interpolation to transform an image or Raster.

PackedColorModel Extends:ColorModel
An abstract ColorModel class that represents pixel values tha
have the color components embedded directly in the bits of a
integer pixel.

PixelGrabber Extends:Object
Implements:ImageConsumer
Implements anImageConsumer which can be attached to an
Image or ImageProducer object to retrieve a subset of the
pixels in that image.

RGBImageFilter Extends:ImageFilter
Provides an easy way to create anImageFilter that modifies
the pixels of an image in the default RGB ColorModel. It is
meant to be used in conjunction with a
FilteredImageSource object to produce filtered versions
of existing images.

Raster Extends:Object
Represents a rectanglular array of pixels and provides method
for retrieving image data. It contains aDataBuffer object
that holds a buffer of image data in some format, a
SampleModel that describes the format is capable of storing
and retrieving Samples from the DataBuffer, and aRect that
defines the coordinate space of the raster (upper left corner
width and height).

ReplicateScaleFilter Extends:ImageFilter
Scales images using the simplest algorithm.

RescaleOp Extends:Object
Implements:BufferedImageOp, RasterOp
Performs a pixel-by-pixel rescaling of the data in the source
image by multiplying each pixel value by a scale factor and
then adding an offset.

Table B-3 java.awt.image Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY Java Advanced Imaging

g

t
r
n

e
t

s

B.3 Java Advanced Imaging

The Java Advanced Imaging API consists of the following packages:

• javax.media.jai – contains the “core” JAI interfaces and classes

• javax.media.jai.iterator – contains special iterator interfaces and
classes, which are useful for writing extension operations

• javax.media.jai.operator – contains classes that describe all of the
image operators

• javax.media.jai.widget – contains interfaces and classes for creatin
simple image canvases and scrolling windows for image display

SampleModel Extends:Object
Defines an interface for extracting samples of an image
without knowing how the underlying data is stored in a
DataBuffer.

ShortLookupTable Extends:LookupTable
Defines a lookup table object. The lookup table contains shor
data for one or more tile channels or image components (fo
example, separate arrays for R, G, and B), and it contains a
offset that will be subtracted from the input value before
indexing the array.

SinglePixelPackedSample-
Model

Extends:SampleModel
Stores (packs) the N samples that make up a single pixel in on
data array element. All data array elements reside in the firs
bank of a DataBuffer.

ThresholdOp Extends:Object
Implements:BufferedImageOp, RasterOp
Performs thresholding on the source image by mapping the
value of each image component (forBufferedImages) or
channel element (forRasters) that falls between a low and a
high value, to a constant.

TileChangeMulticaster Extends:Object
A convenience class that takes care of the details of
implementing theTileChangeListener interface.

WritableRaster Extends:Raster
Provides methods for storing image data and inherits method
for retrieving image data from it’s parent classRaster.

Table B-3 java.awt.image Classes (Continued)

Class Description
435Release 1.0.1, November 1999

B.3.1 JAI Interfaces JAVA ADVANCED IMAGING API SUMMARY

436

ced

d

y
y,
B.3.1 JAI Interfaces

Table B-4 lists and briefly describes the interfaces defined in the Java Advan
Imaging API (javax.media.jai).

Table B-4 Summary of jai Interfaces

Interface Description

CollectionImageFactory Abbreviated CIF, this interface is intended to be implemente
by classes that wish to act as factories to produce different
collection image operators.

ImageFunction A common interface for vector-valued functions that are to be
evaluated at positions in the X-Y coordinate system.

ImageJAI The top-level JAI image type, implemented by all JAI image
classes.

OperationDescriptor Describes a family of implementations of a high-level
operation (RIF) that are to be added to an
OperationRegistry.

PropertyGenerator An interface through which properties may be computed
dynamically with respect to an environment of pre-existing
properties.

PropertySource Encapsulates the set of operations involved in identifying and
reading properties.

TileCache Implements a caching mechanism for image tiles. The
TileCache is a central place for OpImages to cache tiles the
have computed. The tile cache is created with a given capacit
measured in tiles.

TileScheduler Implements a mechanism for scheduling tile calculation.
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Classes

d

 a
r

of
B.3.2 JAI Classes

Table B-5 lists and briefly describes the classes defined in the Java Advance
Imaging API (javax.media.jai).

Table B-5 Summary of jai Classes

Class Description

AreaOpImage Extends:OpImage
An abstract base class for image operators that require only
fixed rectangular source region around a source pixel in orde
to compute each each destination pixel.

BorderExtender An abstract superclass for classes that extend a
WritableRaster with additional pixel data taken from a
PlanarImage.

BorderExtenderConstant Extends:BorderExtender
Implements border extension by filling all pixels outside of the
image bounds with constant values.

BorderExtenderCopy Extends:BorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the edge pixels.

BorderExtenderReflect Extends:BorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the whole image.

BorderExtenderWrap Extends:BorderExtender
Implements border extension by filling all pixels outside of the
image bounds with copies of the whole image.

BorderExtenderZero Extends:BorderExtender
Implements border extension by filling all pixels outside of the
image bounds with zeros.

CanvasJAI Extends: java.awt.Canvas
Automatically returns an instance ofGraphicsJAI from its
getGraphics method.

CollectionImage Extends:ImageJAI
Implements:java.util.Collection
An abstract superclass for classes representing a collection
objects.

CollectionOp Extends:CollectionImage
A node in a rendered imaging chain representing a
CollectionImage.
437Release 1.0.1, November 1999

B.3.2 JAI Classes JAVA ADVANCED IMAGING API SUMMARY

438

s.

 of

is

a

a

ColorCube Extends:LookupTableJAI
Represents a color cube lookup table that provides a fixed,
invertible mapping between tables indices and sample value

ComponentSampleModelJAI Extends:ComponentSampleModel
Represents image data that is stored such that each sample
a pixel occupies one data element of theDataBuffer.

CoordinateImage Extends:java.lang.Object
Represents an image that is associated with a coordinate. Th
class is used withImageStack.

DataBufferDouble Extends:java.awt.image.DataBuffer
StoresDataBuffer data internally in double form.

DataBufferFloat Extends: java.awt.image.DataBuffer
StoresDataBuffer data internally in float form.

DisplayOpImage Extends:OpImage
A placeholder for display functionality.

FloatDoubleColorModel Extends:ComponentColorModel
A ColorModel class that works with pixel values that
represent color and alpha information as separate samples,
using float or double elements, and that store each sample in
separate data element.

GraphicsJAI Extends:java.awt.Graphics2D
An extension ofjava.awt.Graphics and
java.awt.Graphics2D that will support new drawing
operations.

Histogram Extends:java.lang.Object
Accumulates histogram information on an image. A histogram
counts the number of image samples whose values lie within
given range of values, orbin.

ImageLayout Extends:java.lang.Object
Implements:java.lang.Clonable
Describes the desired layout of anOpImage.

ImageMIPMap Extends:ImageCollection
Represents a stack of images with a fixed operational
relationship between adjacent slices.

ImagePyramid Extends:ImageCollection
Represents a stack of images with a fixed operational
relationship between adjacent slices.

Table B-5 Summary of jai Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Classes

ps
r

s

is

s,
ImageSequence Extends:ImageCollection
Represents a sequence of images with associated timestam
and camera positions that can be used to represent video o
time-lapse photography.

ImageStack Extends:ImageCollection
Represents a group of images, each with a defined spatial
orientation in a common coordinate system, such as CT scan
or seismic volumes.

IntegerSequence Extends:java.lang.Object
Represents an image that is associated with a coordinate. Th
class is used withImageStack.

Interpolation Extends:java.lang.Object
Encapsulates a particualr algorithm for performing sampling
on a regular grid of pixels using a local neighborhood. It is
intended to be used by operations that resample their source
including affine mapping and warping.

InterpolationBicubic Extends:InterpolationTable
Performs bicubic interpolation.

InterpolationBicubic2 Extends:InterpolationTable
Performs bicubic interpolation using a different polynomial
thanInterpolationBicubic.

InterpolationBilinear Extends:Interpolation
Represents bilinear interpolation.

InterpolationNearest Extends:Interpolation
Represents nearest-neighbor interpolation.

InterpolationTable Extends:Interpolation
Represents nearest-neighbor interpolation.

JAI Extends:java.lang.Object
A convenience class for instantiating operations.

KernelJAI Extends:java.lang.Object
A convolution kernel, used by theConvolve operation.

LookupTableJAI Extends:java.lang.Object
A lookup table object for theLookup operation.

Table B-5 Summary of jai Classes (Continued)

Class Description
439Release 1.0.1, November 1999

B.3.2 JAI Classes JAVA ADVANCED IMAGING API SUMMARY

440

t

f

rs
MultiResolutionRenderable-
Image

Extends:java.lang.Object
Implements:java.awt.image.renderable,
RenderableImage
A RenderableImage that produces renderings based on a se
of suppliedRenderedImages at various
resolution.

NullOpImage Extends:PointOpImage
A trivial OpImage subclass that simply transmits its source
unchanged. Potentially useful when an interface requires an
OpImage but another sort ofRenderedImage (such as a
TiledImage) is to be used.

OperationDescriptorImpl Extends:java.lang.Object
Implements:OperationDescriptor
A concrete implementation of theOperationDescriptor
interface, suitable for subclassing.

OperationRegistry Extends:java.lang.Object
Implements:java.io.Externalizable
Maps an operation name into aRenderedImageFactory
capable of implementing the operation, given a specific set o
sources and parameters.

OpImage Extends:PlanarImage
The parent class for all imaging operations.OpImage
centralizes a number of common functions, including
connecting sources and sinks during construction ofOpImage
chains, and tile cache management.

ParameterBlockJAI Extends:java.awt.image.renderable,
ParameterBlock
A convenience subclass ofParameterBlock that allows the
use of default parameter values and getting/setting paramete
by name.

PerspectiveTransform Extends:java.lang.Object
Implements:java.lang.Cloneable,
java.io.Serializable
A 2D perspective (or projective) transform, used by various
OpImages.

PlanarImage Extends:java.awt.Image
Implements:java.awt.image.RenderedImage
A fundamental base class representing two-dimensional
images.

Table B-5 Summary of jai Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Classes

 a

PointOpImage Extends:OpImage

An abstract base class for image operators that require only
single source pixel to compute each destination pixel.

PropertyGeneratorImpl Extends:java.lang.Object
A utility class to simplify the writing of property generators.

RasterAccessor Extends:java.lang.Object
An adapter class for presenting image data in a
ComponentSampleModel format, even if the data is not
stored that way.

RasterFactory A convenience class for the construction of various types of
WritableRaster andSampleModel objects.

RasterFormatTag Encapsulates some of the information needed for
RasterAccessor to understand how aRaster is laid out.

RemoteImage Extends:PlanarImage
An implementation ofRenderedImage that uses aRMIImage
as its source.

RenderableGraphics Extends:Graphics2D
Implements:RenderableImage, Serializable
An implementation ofGraphics2D with RenderableImage
semantics.

RenderableImageAdapter Extends:java.lang.Object
Implements:
java.awt.image.renderable.RenderableImage,
PropertySource
An adapter class for externally-generated
RenderableImages.

RenderableOp Extends:
java.awt.image.renderable.RenderableImageOp
Implements:PropertySource
A JAI version ofRenderableImageOp.

RenderedImageAdapter Extends:PlanarImage
A PlanarImage wrapper for a non-writable
RenderedImage.

RenderedOp Extends:PlanarImage
A node in a rendered imaging chain.

ROI Extends:java.lang.Object
Represents a region of interest of an image.

Table B-5 Summary of jai Classes (Continued)

Class Description
441Release 1.0.1, November 1999

B.3.2 JAI Classes JAVA ADVANCED IMAGING API SUMMARY

442

d

nd

e

ROIShape Extends:ROI
Represents a region of interest within an image as aShape.

ScaleOpImage Extends:WarpOpImage
Used by further extension classes that perform scale-like
operations and thus require rectilinear backwards mapping an
padding by the resampling filter dimensions.

SequentialImage Extends:java.lang.Object
Represents an image that is associated with a time stamp a
a camera position. Used with ImageSequence.

SnapshotImage Extends:PlanarImage:
Implements: java.awt.image.TileObserver
Provides an arbitrary number of synchronous views of a
possibly changingWritableRenderedImage.

SourcelessOpImage Extends:OpImage
An abstract base class for image operators that have no imag
sources.

StatisticsOpImage Extends:OpImage
An abstract base class for image operators that compute
statistics on a given region of an image and with a given
sampling rate.

TiledImage Extends:PlanarImage
Implements:java.awt.image.WritableRenderedImage
A concrete implementation ofWritableRenderedImage.

UntiledOpImage Extends:OpImage
A general class for single-source operations in which the
values of all pixels in the source image contribute to the value
of each pixel in the destination image.

Warp Extends:java.lang.Object
A description of an image warp.

WarpAffine Extends:WarpPolynomial
A description of an Affine warp.

WarpCubic Extends:WarpPolynomial
A cubic-based description of an image warp.

WarpGeneralPolynomial Extends:WarpPolynomial
A general polynomial-based description of an image warp.

Table B-5 Summary of jai Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Iterator Interfaces

s

e

-

e

B.3.3 JAI Iterator Interfaces

Table B-6 lists the JAI iterator classes (javax.media.jai.iterator).

WarpGrid Extends:Warp
A regular grid-based description of an image warp.

WarpOpImage Extends:OpImage
A general implementation of image warping, and a superclas
for other geometric image operations.

WarpPerspective Extends:Warp
A description of a perspective (projective) warp.

WarpPolynomial Extends:Warp
A polynomial-based description of an image warp.

WarpQuadratic Extends:WarpPolynomial
A quadratic-based description of an image warp.

WritableRenderedImage-
Adapter

Extends:RenderedImageAdapter
Implements:java.awt.image.WritableRenderedImage
A PlanarImage wrapper for aWritableRenderedImage.

Table B-6 JAI Iterator Interfaces

Interface Description

RandomIter An iterator that allows random read-only access to any sampl
within its bounding rectangle.

RectIter An iterator for traversing a read-only image in top-to-bottom,
left-to-right order.

RookIter An iterator for traversing a read-only image using arbitrary up
down and left-right moves.

WritableRandomIter Extends:RandomIter
An iterator that allows random read/write access to any sampl
within its bounding rectangle.

WritableRectIter Extends:RectIter
An iterator for traversing a read/write image in top-to-bottom,
left-to-right order.

WritableRookIter Extends:RookIter, WritableRectIter
An iterator for traversing a read/write image using arbitrary
up-down and left-right moves.

Table B-5 Summary of jai Classes (Continued)

Class Description
443Release 1.0.1, November 1999

B.3.4 JAI Iterator Classes JAVA ADVANCED IMAGING API SUMMARY

444

a

y
g

B.3.4 JAI Iterator Classes

Table B-7 lists the JAI iterator classes (javax.media.jai.iterator).

B.3.5 JAI Operator Classes

Table B-8 lists the JAI operator classes (javax.jai.operator). These classes
extend the JAIOperationDescriptor class.

Table B-7 JAI Iterator Classes

Class Description

RandomIterFactory Extends:java.lang.Object
A factory class to instantiate instances of theRandomIter and
WritableRandomIter interfaces on sources of typeRaster,
RenderedImage, andWritableRenderedImage.

RectIterFactory Extends:java.lang.Object
A factory class to instantiate instances of theRectIter and
WritableRectIter interfaces on sources of typeRaster,
RenderedImage, andWritableRenderedImage.

RookIterFactory Extends:java.lang.Object
A factory class to instantiate instances of theRookIter and
WritableRookIter interfaces on sources of typeRaster,
RenderedImage, andWritableRenderedImage.

Table B-8 JAI Operator Classes

Class Description

AbsoluteDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAbsolute operation, which
gives the mathematical absolute value of the pixel values of
source image.

AddCollectionDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAddCollection operation,
which takes a collection of rendered images, and adds ever
set of pixels, one from each source image of the correspondin
position and band.

AddConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAddConst operation, which
adds one of a set of constant values to the pixel values of a
source image on a per-band basis.
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Operator Classes

g

r.
AddConstToCollection-
Descriptor

Extends:OperationDescriptorImpl
An OperationDescriptor for theAddConstToCollection
operation, which adds constants to a collection of rendered
images.

AddDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAdd operation, which adds the
pixel values of two source images on a per-band basis.

AffineDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAffine operation, which
performs an affine mapping between a source and a
destination image.

AndConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAndConst operation, which
performs a bitwise logical AND between the pixel values of a
source image with one of a set of per-band constants.

AndDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAnd operation, which
performs a bitwise logical AND between the pixel values of
the two source images on a per-band basis.

AWTImageDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theAWTImage operation, which
imports a standard AWT image into JAI.

BandCombineDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theBandCombine operation,
which computes an arbitrary linear combination of the bands
of a source image for each band of a destination image, usin
a specified matrix.

BandSelectDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theBandSelect operation,
which copies the pixel data from a specified number of bands
in a source image to a destination image in a specified orde

BMPDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theBMP operation, which reads
BMP image data file from an input stream.

BorderDecriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theBorder operation, which adds
a border around an image.

Table B-8 JAI Operator Classes (Continued)

Class Description
445Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING API SUMMARY

446

e

.

el.

e

a.
BoxFilterDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theBoxFilter operation, which
determines the intensity of a pixel in an image by averaging th
source pixels within a rectangular area around the pixel.

ClampDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theClamp operation, which sets
all the pixel values below a “low” value to that low value, and
sets all the pixel values above a “high” value to that high value

ColorConvertDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theColorConvert operation,
which performs a pixel-by-pixel color conversion of the data
in a source image.

CompositeDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theComposite operation, which
combines two images based on their alpha values at each pix

ConjugateDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theConjugate operation, which
negates the imaginary components of pixel values of an imag
containing complex data.

ConstantDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theConstant operation, which
defines a multi-banded, tiled rendered image with constant
pixel values.

ConvolveDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theConvolve operation, which
computes each output sample by multiplying elements of a
kernel with the samples surrounding a particular source
sample.

CropDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theCrop operation, which crops a
rendered or renderable image to a specified rectangular are

DCTDescriptor Extends:OperationDescriptorImpl
An operation descriptor for theDCT operation, which
computes the even discrete cosine transform of an image.

DFTDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theDFT operation, which
computes the discrete Fourier transform of an image.

Table B-8 JAI Operator Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Operator Classes

t.
DivideByConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theDivideByConst operation,
which divides the pixel values of a source image by a constan

DivideComplexDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theDivideComplex operation,
which divides two images representing complex data.

DivideDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theDivide operation, which
divides the pixel values of one first source image by the pixel
values of another source image on a per-band basis.

DivideIntoConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theDivideIntoConst
operation, which divides a constant by the pixel values of a
source image.

EncodeDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theEncode operation, which
stores an image to anOutputStream.

ErrorDiffusionDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theErrorDiffusion operation,
which performs color quantization by finding the nearest color
to each pixel in a supplied color map.

ExpDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theExp operation, which takes the
exponential of the pixel values of an image.

ExtremaDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theExtrema operation, which
scans an image and finds the image-wise maximum and
minimum pixel values for each band.

FileLoadDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theFileLoad operation, which
reads an image from a file.

FileStoreDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theFileStore operation, which
stores an image to a file.

FormatDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theFormat operation, which
reformats an image.

Table B-8 JAI Operator Classes (Continued)

Class Description
447Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING API SUMMARY

448

m

.

.

the

s

FPXDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theFPX operation, which reads
FlashPix data from an input stream.

GIFDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theGIF operation, which reads
GIF data from an input stream.

GradientMagnitudeDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theGradient operation, which is
an edge detector that computes the magnitude of the image
gradient vector in two orthogonal directions.

HistogramDecriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theHistogram operation, which
scans a specified region of an image and generates a histogra
based on the pixel values within that region of the image.

IDCTDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theIDCT operation, which
computes the inverse discrete cosine transform of an image

IDFTDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theIDFT operation, which
computes the inverse discrete Fourier transform of an image

IIPDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theIIP operation, which reads an
image from an IIP server and creates a RenderedImage or a
RenderableImage based on data from the server.

IIPResolutionDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theIIPResolution operation,
which reads an image at a particular resolution from an IIP
server and creates a RenderedImage based on the data from
server.

ImageFunctionDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theImageFunction operation,
which generates an image on the basis of a functional
description provided by an object that is an instance of a clas
that implements theImageFunction interface.

InvertDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theInvert operation, which
inverts the pixel values of an image.

Table B-8 JAI Operator Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Operator Classes

e-
JPEGDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theJPEG operation, which
reads a standard JPEG (JFIF) file.

LogDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theLog operation, which
takes the logarithm of the pixel values of an image.

LookupDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theLookup operation, which
performs general table lookup on an image.

MagnitudeDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMagnitude operation,
which computes the magnitude of each pixel of an image.

MagnitudeSquaredDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMagnitudeSquared
operation, which computes the squared magnitude of each
pixel of a complex image.

MatchCDFDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMatchCDF operation,
which matches pixel values to a supplied cumulative
distribution function (CDF).

MaxDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMax operation, which
computes the pixelwise maximum value of two images.

MeanDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMean operation, which
scans a specified region of an image and computes the imag
wise mean pixel value for each band within the region.

MedianFilterDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMedianFilter
operation, which is useful for removing isolated lines or pixels
while preserving the overall appearance of an image.

MinDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMin operation, which
computes the pixelwise minimum value of two images.

MultiplyComplexDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMultiplyComplex
operation, which multiplies two images representing complex
data.

Table B-8 JAI Operator Classes (Continued)

Class Description
449Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING API SUMMARY

450

.

MultiplyConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMultiplyConst
operation, which multiplies the pixel values of a source image
with a constant on a per-band basis.

MultiplyDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMultiply operation,
which multiplies the pixel values of two source images on a
per-band basis.

NotDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theMultiply operation,
which performs a bitwise logical NOT operation on each pixel
of a source image on a per-band basis.

OrConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theOrConst operation,
which performs a bitwise logical OR between the pixel values
of a source image with a constant on a per-band basis.

OrderedDitherDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theOrderedDither
operation, which performs color quantization by finding the
nearest color to each pixel in a supplied color cube and
“shifting” the resulting index value by a pseudo-random
amount determined by the values of a supplied dither mask.

OrDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theOr operation, which
performs a bitwise logical OR between the pixel values of the
two source images on a per-band basis.

OverlayDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theOverlay operation,
which overlays one image on top of another image.

PatternDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePattern operation,
which defines a tiled image consisting of a repeated pattern

PeriodicShiftDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePeriodicShift
operation, which computes the periodic translation of an
image.

PhaseDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePhase operation, which
computes the phase angle of each pixel of an image.

Table B-8 JAI Operator Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Operator Classes
PiecewiseDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePiecewise operation,
which applies a piecewise pixel value mapping to an image.

PNGDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePNG operation, which
reads a PNG input stream.

PNMDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePNM operation, which
reads a standard PNM file, including PBM, PGM, and PPM
images of both ASCII and raw formats.

PolarToComplexDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for thePolarToComplex
operation, which computes a complex image from a
magnitude and a phase image.

RenderableDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theRenderable operation,
which produces aRenderableImage from a
RenderedImage.

RescaleDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theRescale operation,
which maps the pixel values of an image from one range to
another range.

RotateDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theRotate operation, which
rotates an image about a given point by a given angle.

ScaleDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theScale operation, which
translates and resizes an image.

ShearDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theShear operation, which
shears an image horizontally or vertically.

StreamDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theStream operation, which
readsjava.io.InputStream files.

SubtractConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theSubtractConst
operation, which subtracts one of a set of constant values from
the pixel values of a source image on a per-band basis.

Table B-8 JAI Operator Classes (Continued)

Class Description
451Release 1.0.1, November 1999

B.3.5 JAI Operator Classes JAVA ADVANCED IMAGING API SUMMARY

452

e

SubtractDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theSubtract operation,
which subtracts the pixel values of the second source image
from the first source image on a per-band basis.

SubtractFromConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theSubtractFromConst
operation, which subtracts the pixel values of a source imag
from one of a set of constant values on a per-band basis.

ThresholdDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theThreshold operation,
which maps all the pixel values of an image that fall within a
given range to one of a set of per-band constants.

TIFFDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theTIFF operation, which
reads TIFF 6.0 data from an input stream.

TranslateDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theTranslate operation,
which copies an image to a new location in the plane.

TransposeDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theTranspose operation,
which flips or rotates an image.

URLDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theURL operation, which
reads an image from a file, via a URL path.

WarpDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theWarp operation, which
performs general warping on an image.

XorConstDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theXorConst operation,
which performs a bitwise logical XOR between the pixel
values of a source image with a constant.

XorDescriptor Extends:OperationDescriptorImpl
An OperationDescriptor for theXor operation, which
performs a bitwise logical XOR between the pixel values of
two source images on a per-band basis.

Table B-8 JAI Operator Classes (Continued)

Class Description
Programming in Java Advanced Imaging

JAVA ADVANCED IMAGING API SUMMARY JAI Widget Classes
B.3.6 JAI Widget Interfaces

Table B-9 lists the JAI widget interfaces (javax.media.jai.widget).

B.3.7 JAI Widget Classes

Table B-10 lists the JAI widget classes (javax.media.jai.widget).

Table B-9 JAI Widget Interfaces

Interface Description

ViewportListener Used by theScrollingImagePanel class to inform
listeners of the current viewable area of the image.

Table B-10 JAI Widget Classes

Class Description

ImageCanvas Extends:java.awt.Canvas
A simple output widget for aRenderedImage. This class can
be used in any context that calls for aCanvas.

ScrollingImagePanel Extends:java.awt.Panel
Implements:java.awt.event.AdjustmentListener,
java.awt.event.MouseListener,
java.awt.event.MouseMotionListener
An extension ofjava.awt.Panel that contains an
ImageCanvas and vertical and horizontal scrollbars.
453Release 1.0.1, November 1999

B.3.7 JAI Widget Classes JAVA ADVANCED IMAGING API SUMMARY

454
 Programming in Java Advanced Imaging

all

n a

in

odes.
Glossary

THIS glossary contains descriptions of significant terms that appear in this
book.

affine transformation
Geometric image transformation, such as translation, scaling, or rotation.

band
The set of all samples of one type in an image, such as all red samples or
green samples.

box filter
A low-pass spatial filter composed of uniformly-weighted convolution
coefficients.

bicubic interpolation
Two-dimensional cubic interpolation of pixel values based on the 16 pixels i
4 × 4 pixel neighborhood. See alsobilinear interpolation, nearest-neighbor
interpolation.

bilinear interpolation
Two-dimensional linear interpolation of pixel values based on the four pixels
a 2 × 2 pixel neighborhood. See alsobicubic interpolation, nearest-neighbor
interpolation.

binary image
An image that consists of only two brightness levels: black and white.

chain code
A pixel-by-pixel direction code that defines boundaries of objects within an
image. The chain code records an object boundary as a series of direction c
455Release 1.0.1, November 1999

GLOSSARY

456

RGB

its

om

tes

s of
cobble
To assemble multiple tile regions into a single contiguous region.

color space conversion
The conversion of a color using one space to another color space, such as
to CMYK.

components
Values of samples independent of color interpretation.

compression ratio
In image compression, the ratio of an uncompressed image data file size to
compressed counterpart.

data element
Primitive types used as units of storage of image data. Data elements are
individual members of aDataBuffer array.

directed graph (digraph)
A graph with one-way edges. See alsodirected acyclic graph (DAG).

directed acyclic graph (DAG)
A directed graph containing no cycles. This means that if there is a route fr
node A to node B then there is no way back.

first-order interpolation
Seebilinear interpolation.

high-pass filter
A spatial filter that accentuates an image’s high-frequency detail or attenua
the low-frequency detail. Contrast withlow-pass filter, median filter.

histogram
A measure of the amplitude distribution of pixels within an image.

Lempel-Ziv-Welch (LZW) compression
A lossless image coding method that scans the image for repeating pattern
blocks of pixels and codes the patterns into a code list.
Programming in Java Advanced Imaging

tes

ing.

els

n

low-pass filter
A spatial filter that attenuates an image’s high-frequency detail or accentua
the low-frequency detail. Contrast withhigh-pass filter, median filter.

median filter
A non-linear spatial filter used to remove noise spikes from an image.

nearest-neighbor interpolation
Two-dimensional interpolation of pixel values in which the amplitude of the
interpolated sample is the amplitude of its nearest neighbor. See alsobicubic
interpolation, bilinear interpolation.

perspective warp
An image distortion in which objects appear trapezoidal due to foreshorten

projective warp
Seeperspective warp.

quantization
The conversion of discrete image samples to digital quantities.

ROI
Abbreviation forregion of interest. An area or pixel group within an image that
has been selected for processing.

run-length coding
A type of lossless image data compression that scans for sequences of pix
with the same brightness level and codes them into a reduced description.

Sobel edge detection
A spatial edge detection filter that detects edges by finding the gradient of a
image.

square pixel
A pixel with equal height and width.

thresholding
A point operation that maps all the pixel values of an image that fall within a
given range to one of a set of per-band constants.
457Release 1.0.1, November 1999

GLOSSARY

458

ial

er.
transform coding
A form of lossy block coding that transforms blocks of an image from the spat
domain to the frequency domain.

trapping
An image manipulation technique used in printing that uses dilation and
erosion to compensation for misregistration of colors.

unsharp masking
An image enhancement technique using a high-frequency accentuating filt

zero-order interpolation
Seenearest-neighbor interpolation.
Programming in Java Advanced Imaging

Index
2D image filters 12

A
Absolute operation 177

absolute value, finding177

accumulateStatistics method 321

Adam7 interlace, PNG images379

Add operation 166

AddCollection operation 168

AddConst operation 167

AddConstToCollection operation
169

adding
a collection of images168

a constant to an image167

constants to a collection of images
169

two images 166

adjoint transform 280

affine
transform 272

warp 303

Affine operation 272

AffineTransform class 272

alpha channel suppression114

alpha transparency139

Alpha_Interpolation rendering
hint 60

amplitude rescaling 200

analysis, image 307–321

ancillary chunks, PNG images381

And operation 158

AndConst operation 159

ANDing

an image with a constant159

two images 158

Antialiasing rendering hint 60

API extension 393–416

Applet.getImage method 10

area operators46

Border 191

BoxFilter 224

Convolve 223

Crop 199

MedianFilter 226

AreaOpImage class 40, 395

arg0Desc 399

arithmetic operators165–178

Absolute 177

Add 166

AddConst 167

Divide 171

DivideByConst 172

DivideComplex 174

DivideIntoConst 173

Exp 177

Multiply 174

MultiplyComplex 176

MultiplyConst 175

Subtract 169

SubtractConstant170

AWT producer/consumer model12

AWTImage operation 118

B
background color, PNG images381

band copying 185
459Release 1.0.1, November 1999

INDEX

460
BandCombine operation 141

BandedSampleModel data format 69

BandSelect operation 186

BasicStroke class 324, 326

bicubic interpolation 251, 256, 266, 267,
269, 271, 272, 284, 289

bicubic2 interpolation 251, 257, 266, 267,
269, 271, 272, 284, 289

bilevel images 105

bilinear interpolation 250, 256, 266, 267,
269, 271, 272, 284, 289

binary contrast enhancement245

bit depth for palette images379

BITMASK transparency hint139

bKGD chunk 381

BMP images
decoding 111

encoding 363–364

BMP operation 111

Border operation 191

BORDER_CONST_FILL hint 192

BORDER_COPY hint 192, 195

BORDER_REFLECT hint 192, 195

BORDER_WRAP hint 192, 195

BORDER_ZERO hint 195

BORDER_ZERO_FILL hint 192

BorderExtender class 193, 224, 251,
267, 271, 274, 284, 290

BorderExtenderConstant class 193,
196

BorderExtenderCopy class 193, 197

BorderExtenderReflect class 193,
199

BorderExtenderWrap class 193, 198

BorderExtenderZero class 193, 195

box filter 223

BoxFilter operation 224

bpp parameter (PNG images)378

BufferedImage class 70, 124

BYTE_496 hint 179, 214

BYTE_855 hint 179, 214

ByteArraySeekableStream class 98

C
canSeekBackwards method 100

canvas 127

CAP_BUTT attribute 326

CAP_ROUND attribute 326

CAP_SQUARED attribute 326

CCITT Group3 1bpp encoding111

CCITT Group3 1D facsimile
compression 105

chain graph 28

cHRM chunk 382

chromaticity, PNG images382

CIE colorspaces 111

CIEXYZ color 137

CIEXYZ color space 136

Clamp operation 184

clamp pixel values 184

clipping path 325

codecs 414

CollectionImage class 39, 83

color
conversion 140, 141

profile 139

quantization operators
ErrorDiffusion 181
OrderedDither 178

space 131–142

Color class 132, 324

color cube lookup table213

Color_Rendering rendering hint 61

ColorConvert operation 140

ColorCube class 213

colorMap parameter 179

ColorModel class 10, 70, 132
ColorSpace class 132, 135, 138

combiner (ImagePyramid)91

Complement operation 164

complex conjugate 236

complex data 339

complex image 234, 235, 236, 237

COMPLEX property 339

COMPLEX_TO_COMPLEX hint 229, 232

COMPLEX_TO_REAL hint 229, 232

Component.createImage method 10

ComponentColorModel class 113, 133
Programming in Java Advanced Imaging

INDEX
ComponentSampleModel data format
69

ComponentSampleModelJAI data
format 69

Composite operation 243

compressed data, PNG images389

compression quality, JPEG images369

Conjugate operation 236

constant image 123

Constant operation 123

contains method 146, 152

ContextualRenderedImageFactory
interface 16

control grid interpolation 296

conversion space137

convolution filtering 221

convolve kernel 221

Convolve operation 223

coordinates 67

copyExtendedData method 194

createImageDecoder method 414

createImageEncoder method 414

Crop operation 199

cross mask 226

CS_CIEXYZ color space 136

CS_GRAY color space 136

CS_LINEAR_RGB color space 136

CS_PYCC color space 136

CS_sRGB color space 136

cubic warp 301

cumulative distribution function (CDF)
203

D
dash parameter 327

dash_phase parameter 327

data type, reading220

DataBufferByte data type 68

DataBufferDouble data type 68

DataBufferFloat data type 68

DataBufferInt data type 68

DataBufferShort data type 68

DataBufferUShort data type 68

DCT operation 232

decode16BitsTo8Bit method 105

decoding image files101–119

BMP 111

FlashPix 109

GIF 110

JPEG 110

PNG 112

PNM 117

TIFF 104

Description 399

DFT operation 229

differencer 91

DirectColorModel class 133

directed acyclic graph (DAG)28

discrete cosine transform (DCT)366

discrete Fourier transform (DFT)228

display component 115

dither
error-diffusion 181

mask 179

ordered 178

DITHER_MASK_441 hint 180, 188

DITHER_MASK_443 hint 180, 188

dithering operation 105, 178

color cube 213

Dithering rendering hint 61

ditherMask parameter 179

Divide operation 171

DivideByConst operation 172

DivideComplex operation 174

DivideIntoConst operation 173

dividing
an image by a constant172

an image into a constant173

complex images 174

one image by another171

DocURL 399

down sampling 89

downSampler 86, 90, 122

drawing a shape331

drawing operations 323

dyadic logical operations157

AND 158

OR 160
461Release 1.0.1, November 1999

INDEX

462
XOR 162

E
edge detection 315–320

Frei and Chen 319

GradientMagnitude 315

Prewitt gradient 318

Robert’s cross 317

edge extraction operators51

Encode operation 362

encoding
BMP images 363–364

image files 361–392

JPEG images 364–375

PNG images 375–390

PNM images 390–391

endcap style 326

entropy encoder 367

error distribution filter 182

ERROR_FILTER_FLOYD_STEINBERG
hint 182, 188

ERROR_FILTER_JARVIS hint 182, 188

ERROR_FILTER_STUCKI hint 182, 188

error-diffusion dither 181

ErrorDiffusion operation 181

errorKernel parameter 182

example program 6, 417–427

exclusion threshold (ROI)144

Exp operation 177

exponent, taking 177

extended border193

extending the API 393–416

Extrema operation 308

F
features 3–5

file operators 48

AWTImage 118

BMP 111

FileLoad 104

Format 119

FPX 110

GIF 111

JPEG 110

PNG 112

PNM 117

Stream 103

TIFF 105

URL 119

FileCacheSeekableStream class 99

FileLoad operation 104

FileSeekableStream class 98

FileStore operation 361

fill color or pattern 328

filling a shape 332

FilteredImageSource object 10

filtering algorithms, PNG images376

filtering, convolution 221

filterRow method 377

finding the maximum values of two
images 156

finding the minimum values of two
images 157

first-order interpolation 256

FlashPix images, reading109

FLIP_ANTIDIAGONAL hint 281

FLIP_DIAGONAL hint 281

FLIP_HORIZONTAL hint 281

FLIP_VERTICAL hint 281

flipping an image 281

FloatComponentSampleModel data
format 69

FloatDoubleColorModel class 133

Floyd-Steinberg filter 182, 188

Font class 324

Format operation 119

FormatRecognizer class 103, 414

ForwardSeekableStream class 98

Fourier transform 228

FPX operation 110

FractionalMetrics rendering hint 61

Frei and Chen edge enhancement319

frequency
domain processing228

transform 228

frequency operators49
Programming in Java Advanced Imaging

INDEX
Conjugate 236

DCT 232

DFT 228, 229

IDCT 233

IDFT 231

ImageFunction 237

Magnitude 234

MagnitudeSquared235

PeriodicShift 236

Phase 235

PolarToComplex 237

fromCIEXYZ method 137

fromRGB method 137

functional description, images based on
237

G
gAMA chunk 382

gamma correction, PNG images115, 382

gamma value 113, 114

general polynomial warp293

general table lookup216

geometric image manipulation249–306

geometric operators
Affine 272

Rotate 271

Scale 268

Shear 283

Translate 267

Transpose 281

Warp 289

geometric transformations265

getAsImage method 145

getAsShape method 145

getBounds method 145, 152

getBounds2D method 145, 152

getCodec method 415

getDefaultEncodeParam method 376

getElements method 239

getExtendedData method 194

getFilePointer method 100

getHeight method 259

getHint method 117

getOperationDescriptor method
398

getProperty method 308, 309, 313, 337

getPropertyNames method 337

getQTable method 367

getQuadToQuad method 278

getQuadToSquare method 277

getSquareToQuad method 277

getTag method 107

getTriToTri method 279

getWidth method 259

GGGA images 114

GIF images, reading110

GIF operation 111

GlobalName 399

glossary 455–458

GRADIENT_MASK_SOBEL_HORIZONTAL
gradient filter 188, 316

GRADIENT_MASK_SOBEL_VERTICAL
gradient filter 188, 316

GradientMagnitude edge detection315

GradientMagnitude operation 315

GradientPaint class 324, 328

graph
overview 28

renderable 32

rendered 30

Graphics class 323

graphics primitives, rendering330

graphics rendering323–333

Graphics.drawImage method 10

Graphics2D class 323

grayscale color space136

grayscale images105, 113

grid warp 296

GridLayout class 125

H
high-pass filter 223

HINT_BORDER_EXTENDER rendering
hint 62

HINT_IMAGE_LAYOUT rendering hint 63

HINT_INTERPOLATION rendering hint
63
463Release 1.0.1, November 1999

INDEX

464
HINT_OPERATION_BOUND rendering
hint 63

HINT_OPERATION_REGISTRY rendering
hint 63

HINT_PNG_EMIT_SQUARE_PIXELS
rendering hint 63

HINT_TILE_CACHE rendering hint 63

hint0Desc 399

hIST chunk 383

histogram generation310

Histogram operation 312

Huffman compression105

I
ICC Profile Format Specification139

ICC profile, PNG images383

ICC profiles 139

ICC_ColorSpace class 138

ICC_Profile class 139

ICC_ProfileGray class 139

ICC_ProfileRGB class 139

iCCP chunk 383

IDCT operation 233

IDFT operation 231

IIP operation 352

IIPResolution operation 357

image
analysis 307–321

compositing 243

data 67

enhancement191–247

file formats 101

file operators 102

format conversion 119

histogram 202, 310

layout, PNG images376

manipulation 143–189

modification timestamp, PNG
images 387

properties 335–339

resampling,Seeinterpolation
translation 266–268

warping 285–306

image coordinates67

Image File Directory (IFD) 106

Image object 9

Image.getGraphics method 10

Image.getSource method 10

ImageCanvas class 127, 129

ImageCodec class 102, 414

ImageComplete method 10

ImageConsumer interface 10

ImageFunction interface 237

ImageFunction operation 237

ImageMIPMap class 40, 85

ImageObserver object 10

ImageProducer interface 9, 10

ImagePyramid class 39, 89

ImageSequence class 39, 84

ImageStack class 39, 84

imaging graph 28

impulse noise spikes226

inclusion threshold (ROI) 144

IndexColorModel class 113, 133

input memory array 10

INTENT_ABSOLUTE hint 386

INTENT_PERCEPTUAL hint 386

INTENT_RELATIVE hint 386

INTENT_SATURATION hint 386

interlaced data order, PNG images379

interlaced images112

Internet Imaging Protocol (IIP)352

INTERP_BICUBIC hint 251, 266

INTERP_BICUBIC2 hint 251, 266

INTERP_BILINEAR hint 250, 266

INTERP_NEAREST hint 250, 266

interpolation 249–262

bicubic 251, 256, 266, 267, 269, 271,
272, 284, 289

bicubic2 251, 257, 266, 267, 269, 271,
272, 284, 289

bilinear 250, 256, 266, 267, 269, 271,
272, 284, 289

nearest-neighbor250, 255, 266, 267,
269, 271, 272, 284, 289

table 258–262

Interpolation rendering hint 61

InterpolationTable object 258
Programming in Java Advanced Imaging

INDEX
intersects method147, 153

inverse discrete cosine transform
(IDCT) 233

inverse discrete Fourier transform
(IDFT) 231

inverse perspective transform279

inverseTransform method 279

Invert operation 241

iterators 403

J
JAI class 38

Jarvis-Judice-Ninke filter 182, 188

Java 2D API 11

Java 3D API 1

Java Media Framework1

Java Sound API 1

Java Speech1

Java Swing 1

Java Telephony 1

javax.media.jai package 38, 435

javax.media.jai.iterator
package 38, 435

javax.media.jai.operator
package 38, 435

javax.media.jai.widget package
38, 435

join style 327

JOIN_BEVEL attribute 327

JOIN_MITER attribute 327

JOIN_ROUND attribute 327

JPEG images
abbreviated stream371

baseline DCT coding366

compression quality 369

decoding 110

encoding 364–375

file format 364–375

Minimum Coded Units (MCUs) 370

quantization table 367

restart interval 370

subsampling 368

JPEG operation 110

K
KernelJAI class 186, 187

key elements 221

KEY_PNG_EMIT_16BITS rendering
hint 112, 117

KEY_PNG_EMIT_ALPHA rendering hint
112, 117

L
Laplacian filter 223

line number 67

line width 326

linear RGB color space136

LocalName 399

Log operation 242

logarithmic enhancement241

logical operators 157

AND 158

AND constant 159

NOT 164

OR 160

OR constant 161

XOR 162

XOR constant 163

Lookup operation 216

lookup table
creating 207

multi-banded 209
single-banded 207

modification 205

reading data 218

low-pass filter 223

M
magic number, PNM images117

magnification 268

magnitude 237

magnitude enhancement234

Magnitude operation 234

magnitude-squared enhancement235

MagnitudeSquared operation 235
465Release 1.0.1, November 1999

INDEX

466
MatchCDF operation 203

Max operation 156

Mean operation 307

median filtering 226

MEDIAN_MASK_PLUS hint 227

MEDIAN_MASK_SQUARE hint 227

MEDIAN_MASK_SQUARE_ SEPARABLE
hint 227

MEDIAN_MASK_SQUARE_SEPARABLE
hint 227

MEDIAN_MASK_X hint 227

MedianFilter operation 226

memory-backed persistent image data
object 12

MemoryCacheSeekableStream class99

Min operation 157

minification 268

modified Huffman compression105

modulus 237

monadic logical operations157

ANDConst 159

OrConst 161

XorConst 163

multi-banded lookup table209

MultiPixelPackedSampleModel data
format 69, 113

Multiply operation 174

MultiplyComplex operation 176

MultiplyConst operation 175

multiplying
an image by a constant175

two complex images176

two images 174

MultiResolutionRenderableImage
class 95

N
nearest-neighbor interpolation250, 255,

266, 267, 269, 271, 272, 284, 289

noise spikes, impulse226

non-standard color conversion141

Not operation 164

NullOpImage class 395

number of bands, reading219

number of entries per band, reading220

O
offset values, reading219

one’s complement 164

OPAQUE transparency hint139

operation name 55

OperationDescriptor interface 397,
399

OperationRegistry class 337

operations, creating52–64

operators, writing new 394

OpImage class 40

Or operation 160

OrConst operation 161

ordered dither 178

OrderedDither operation 178

ORing
an image with a constant161

two images 160

output gamma 114

output memory array10

Overlay operation 242

P
PackBits compression105

PackedColorModel class 133

Paeth filter 377

Paint attribute 328

Paint interface 324

palette color images105, 113, 114

palette histogram, PNG images383

Panel class 125

parameter block 56

ParameterBlock class 56, 57

ParameterBlockJAI class 56–59

Pattern operation 80

pattern tiles 80

PBM (portable bitmap) images117

periodic shift 236

periodic translation 236
Programming in Java Advanced Imaging

INDEX
PeriodicShift operation 236

perspective
transform 276, 279

warp 302

PerspectiveTransform class 277–
280

PGM (portable graymap) images117

phase 237

phase enhancement235

Phase operation 235

PhotoCD YCC conversion color space
136

pHYS chunk 384

Piecewise operation 202

pixel
dimensions, PNG images384

inverting 241

pixel number 67

pixel point processing
dual image 242

single image 240

PixelInterleavedSampleModel data
format 69, 113

PlanarImage class 39, 72, 193

PLTE chunk 380

plus mask 226

PNG color type 3 114

PNG images
decoding 112

encoding 375–390

PNG operation 112

PNG_FILTER_AVERAGE hint 377

PNG_FILTER_NONE hint 377

PNG_FILTER_PAETH hint 377

PNG_FILTER_SUB hint 377

PNG_FILTER_UP hint 377

PNGDecodeParam class 113

PNGEncodeParam class 376

PNGSuggestedPaletteEntry class
385

PNM images
encoding 390–391

reading 117

PNM operation 117

point operators 43

Absolute 177

Add 166

AddCollection 168

AddConst 167

AddConstToCollection 169

And 158

AndConst 159

BandCombine 141

BandSelect 186

Clamp 184

Composite 243

Constant 123

Divide 171

DivideByConst 172

DivideComplex 174

DivideIntoConst 173

Exp 177

Invert 241

Log 242

Lookup 216

MatchCDF 203

Max 156

Min 157

Multiply 174

MultiplyComplex 176

MultiplyConst 175

Not 164

Or 160

OrConst 161

Overlay 242

Pattern 80

Piecewise 202

Rescale 200

Subtract 169

SubtractConst 170

SubtractFromConst171

Threshold 246

Xor 162

XorConst 163

PointOpImage class 40, 395

PolarToComplex operation 237

polynomial warp 291

portable bitmap (PBM) images117

portable graymap (PGM) images117

portable pixmap (PPM) images117
467Release 1.0.1, November 1999

INDEX

468
Porter-Duff “over” rule 243

PPM (portable pixmap) images117

Prewitt gradient edge enhancement318

private chunks (PNG images)389

private IFDs 108

product name 393

projective warp 302

properties 335–339

PropertyGenerator interface 337

PropertySource interface 337

push model 10

pyramid operation 89

Q
quadratic warp 299

quantization table 367

R
RandomIter interface 410

RandomIterFactory class 410

Raster class 70

read data methods99

reading image files 101–119

REAL_TO_COMPLEX hint 229, 232

RectIter interface 404

RectIterFactory class 404, 405

reformatting an image119

region of interest (ROI) control143
registerCodec method 414

registerFormatRecognizer
method 415

registerOperationByName method
398

registerOperationDescriptor
method 398

relational operators155

remote execution 38

remote imaging 83

remote method invocation (RMI)4, 38

RemoteImage class 38

renderable graph32

Renderable operation 122

RenderableGraphics class 324

RenderableImage interface 16

RenderableOp class 41

rendered graphs30

RenderedImage interface 70

RenderedImageAdapter class 72

RenderedOp class 42

rendering hints 60–64

alpha interpolation 60

antialiasing 60

border extender 62

color rendering 61

dithering 61

fractional metrics 61

image layout 63

interpolation 61, 63

operation bound 63

operation registry 63

PNG images 117

PNG_Emit_16Bits 112, 117

PNG_Emit_Alpha 112, 117

PNG_Emit_Square_Pixels63

rendering 61

text antialiasing 61

tile cache 63

rendering intent, PNG images386

Rendering rendering hint 61

rendering text 332

RenderingHints class 60

Rescale operation 200

rescaling, amplitude200

restart interval 370

RGB full color images 105

RLE24 encoding 111

Roberts’ cross edge enhancement317

ROI class 144
ROIShape class 151
RookIter interface 407

RookIterFactory class 407

Rotate operation 271

ROTATE_180 hint 281

ROTATE_270 hint 281

ROTATE_90 hint 281

rubber sheet transformation285
Programming in Java Advanced Imaging

INDEX
S
SampleModel class 20, 39, 68, 69

sBIT chunk 384

Scale operation 268

ScaleOpImage class 41, 395

scaling 268

SCALING_DIMENSIONS hint 229, 231

SCALING_NONE hint 229, 231

SCALING_UNITARY hint 229, 231

ScrollingImagePanel class 124

seek method 100

SeekableStream class 98

SegmentedSeekableStream class 98

separable interpolation258

separable kernel187

separable median227

setBithDepth method 379

setCenter method 127

setDecodePaletteAsShorts
method 106

setExpandGrayAlpha method 114

setExpandPalette method 113

setOrigin method 127

setOuputGamma method 113

setOutput8BitGray method 113

setQTable method 367

setSuppressAlpha method 113

Shape interface 324

shape, drawing 331

shape, filling 332

Shear operation 283

SHEAR_HORIZONTAL hint 284

SHEAR_VERTICAL hint 284

significant bits, PNG images384

single-banded lookup table207

SinglePixelPackedSampleModel
data format 69

SnapshotImage class 81

Sobel edge enhancement188, 316

SourcelessOpImage class 40, 395

spatial filtering 221

spatial frequency 228

sPLT chunk 385

square mask 226

sRGB chunk 386

sRGB color 137

standard RGB (sRGB)136

statistical operators51, 321
Extrema 308

Histogram 312

Mean 307

StatisticsOpImage class 40, 321, 395

Stream operation 103

stroke attributes 326

Stroke interface 324

stroke style 327

stroke width 325

Stucki filter 182, 188

style conventions xvi

subsampling, JPEG images368

Subtract operation 169

SubtractConst operation 170

SubtractFromConst operation 171

subtracting
a constant from an image170

an image from a constant171

two images 169

suggested palette, PNG images385

synthetic properties338

T
table interpolation 258–262

Tag Image File Format (TIFF)104

tEXt chunk 387

text data, PNG images387

text, rendering 332

Text_Antialiasing rendering hint 61

texture mapping 85

TexturePaint class 324, 329

Threshold operation 246

thresholding 245

TIFF images
multiple images per file 106

Palette color images105

reading 104

tiled images 391

writing 391
469Release 1.0.1, November 1999

INDEX

470
TIFF operation 105

TIFFDecodeParam class 106, 108

TIFFDirectory class 106

TIFFField class 107

TileCache interface 79

TiledImage class 40, 74, 75

TileScheduler interface 79

tIME chunk 387

toCIEXYZ method 137

toRGB method 137

transforms 265–279

affine 272

perspective 276–279

Translate operation 267

translation 266, 268

TRANSLUCENT transparency hint139

transparency
mask 105

modes 139

PNG images 388

suppression 114

Transparency interface 139

Transpose operation 281

tRNS chunk 388

TYPE_3BYTE_BGR image type 71

TYPE_4BYTE_ABGR image type 71

TYPE_4BYTE_ABGR_PRE image type 71

TYPE_BYTE data type 69

TYPE_BYTE_BINARY image type 71

TYPE_BYTE_GRAY image type 71

TYPE_BYTE_INDEXED image type 71

TYPE_CUSTOM image type 71

TYPE_DOUBLE data type 69

TYPE_FLOAT data type 69

TYPE_INT data type 69

TYPE_INT_ARGB image type 71

TYPE_INT_ARGB_PRE image type 71

TYPE_INT_BGR image type 71

TYPE_INT_RGB image type 71

TYPE_SHORT data type 69

TYPE_UNDEFINED data type 69

TYPE_USHORT data type 69

TYPE_USHORT_555_RGB image type 71

TYPE_USHORT_565_RGB image type 71

TYPE_USHORT_GRAY image type 71

U
unary logical operations157

unregisterFormatRecognizer
method 415

UntiledOpImage class 395

UntiledOpimage class 40

up sampling 89

upSampler 90

URL images, reading119

URL operation 119

user exponent 115

V
Vendor 399

Version 399

VERSION_2 hint 363

VERSION_3 hint 363

VERSION_4 hint 363

W
warp 285–306

affine 303

cubic 301

general polynomial 293

grid 296

perspective 302

polynomial 291

quadratic 299

Warp operation 289

WarpAffine class 303

WarpCubic class 301

WarpGeneralPolynomial class 293

WarpOpImage class 41, 395

WarpPerspective class 302

WarpPolynomial class 291

WarpQuadratic class 299

warpRect method 285

wrapInputStream method 101

WritableRaster class 70

WritableRookIter interface 405, 407
Programming in Java Advanced Imaging

INDEX
WriteableRenderedImage interface
70

writing image files 361–392

BMP images 363–364

JPEG images 364–375

PNG images 375–390

PNM images 390–391

X
Xor operation 162

XorConst operation 163

XORing
an image with a constant163

two images 162

Y
YCC images 366, 368

Z
zTXT chunk 389
471Release 1.0.1, November 1999

INDEX

472
 Programming in Java Advanced Imaging

	Contents
	Figures
	Preface
	Disclaimer
	About This Book
	Related Documentation
	Additional Information
	Style Conventions

	Introduction to Java Advanced Imaging
	1.1 The Evolution of Imaging in Java
	1.2 Why Another Imaging API?
	1.3 JAI Features
	1.3.1 Cross-platform Imaging
	1.3.2 Distributed Imaging
	1.3.3 Object-oriented API
	1.3.4 Flexible and Extensible
	1.3.5 Device Independent
	1.3.6 Powerful
	1.3.7 High Performance
	1.3.8 Interoperable

	1.4 A Simple JAI Program

	Java AWT Imaging
	2.1 Introduction
	2.1.1 The AWT Push Model
	2.1.2 AWT Push Model Interfaces and Classes

	2.2 The Immediate Mode Model
	2.2.1 Rendering Independence
	2.2.2 Rendering-independent Imaging in Java AWT
	2.2.3 The Renderable Layer vs. the Rendered Layer
	2.2.3.1 Renderable Layer
	2.2.3.2 Rendered Layer
	2.2.3.3 Using the Layers

	2.2.4 The Render Context

	2.3 Renderable and Rendered Classes
	2.3.1 The Renderable Layer
	2.3.2 The Rendered Layer

	2.4 Java Image Data Representation
	2.5 Introducing the Java Advanced Imaging API
	2.5.1 Similarities with the Java 2D API
	2.5.2 JAI Data Classes
	2.5.2.1 The DataBufferFloat Class
	2.5.2.2 The DataBufferDouble Class

	Programming in Java Advanced Imaging
	3.1 Introduction
	3.2 An Overview of Graphs
	3.3 Processing Graphs
	3.3.1 Rendered Graphs
	3.3.2 Renderable Graphs
	3.3.3 Reusing Graphs
	3.3.3.1 Editing Rendered Graphs
	3.3.3.2 Editing Renderable Graphs

	3.4 Remote Execution
	3.5 Basic JAI API Classes
	3.5.1 The JAI Class
	3.5.2 The PlanarImage Class
	3.5.3 The CollectionImage Class
	3.5.4 The TiledImage Class
	3.5.5 The OpImage Class
	3.5.6 The RenderableOp Class
	3.5.7 The RenderedOp Class

	3.6 JAI API Operators
	3.6.1 Point Operators
	3.6.2 Area Operators
	3.6.3 Geometric Operators
	3.6.4 Color Quantization Operators
	3.6.5 File Operators
	3.6.6 Frequency Operators
	3.6.7 Statistical Operators
	3.6.8 Edge Extraction Operators
	3.6.9 Miscellaneous Operators

	3.7 Creating Operations
	3.7.1 Operation Name
	3.7.2 Parameter Blocks
	3.7.2.1 Adding Sources to a Parameter Block
	3.7.2.2 Adding or Setting Parameters

	3.7.3 Rendering Hints
	3.7.3.1 Java AWT Rendering Hints
	3.7.3.2 JAI Rendering Hints

	Image Acquisition and Display
	4.1 Introduction
	4.1.1 Image Data
	4.1.2 Basic Storage Types

	4.2 JAI Image Types
	4.2.1 Planar Image
	4.2.2 Tiled Image
	4.2.2.1 Tile Cache
	4.2.2.2 Pattern Tiles

	4.2.3 Snapshot Image
	4.2.3.1 Creating a SnapshotImage
	4.2.3.2 Using SnapshotImage with a Tile
	4.2.3.3 Disposing of a Snapshot Image

	4.2.4 Remote Image
	4.2.5 Collection Image
	4.2.6 Image Sequence
	4.2.7 Image Stack
	4.2.8 Image MIP Map
	4.2.9 Image Pyramid
	4.2.9.1 The Down Sampler
	4.2.9.2 The Up Sampler
	4.2.9.3 The Differencer
	4.2.9.4 The Combiner
	4.2.9.5 Example

	4.2.10 Multi-resolution Renderable Images

	4.3 Streams
	4.4 Reading Image Files
	4.4.1 Standard File Readers for Most Data Types
	4.4.1.1 The Stream Operation
	4.4.1.2 The FileLoad Operation

	4.4.2 Reading TIFF Images
	4.4.2.1 Palette Color Images
	4.4.2.2 Multiple Images per TIFF File
	4.4.2.3 Image File Directory (IFD)
	4.4.2.4 Public and Private IFDs

	4.4.3 Reading FlashPix Images
	4.4.4 Reading JPEG Images
	4.4.5 Reading GIF Images
	4.4.6 Reading BMP Images
	4.4.7 Reading PNG Images
	4.4.7.1 Gamma Correction and Exponents
	4.4.7.2 Expanding Grayscale Images to GGGA Format
	4.4.7.3 Rendering Hints

	4.4.8 Reading PNM Images
	4.4.9 Reading Standard AWT Images
	4.4.10 Reading URL Images

	4.5 Reformatting an Image
	4.6 Converting a Rendered Image to Renderable
	4.7 Creating a Constant Image
	4.8 Image Display
	4.8.1 Positioning the Image in the Panel
	4.8.2 The ImageCanvas Class
	4.8.3 Image Origin

	Color Space
	5.1 Introduction
	5.2 Color Management
	5.2.1 Color Models
	5.2.2 Color Space
	5.2.3 ICC Profile and ICC Color Space

	5.3 Transparency
	5.4 Color Conversion
	5.5 Non-standard Linear Color Conversion (BandCombine)

	Image Manipulation
	6.1 Introduction
	6.2 Region of Interest Control
	6.2.1 The ROI Class
	6.2.1.1 Determining the ROI Bounds
	6.2.1.2 Determining if an Area Lies Within or Intersects the ROI
	6.2.1.3 Creating a New ROI from an Existing ROI

	6.2.2 The ROIShape Class
	6.2.2.1 Determining the ROI Bounds
	6.2.2.2 Determining if an Area Lies Within or Intersects the ROIShape
	6.2.2.3 Creating a New ROIShape from an Existing ROIShape

	6.3 Relational Operators
	6.3.1 Finding the Maximum Values of Two Images
	6.3.2 Finding the Minimum Values of Two Images

	6.4 Logical Operators
	6.4.1 ANDing Two Images
	6.4.2 ANDing an Image with a Constant
	6.4.3 ORing Two Images
	6.4.4 ORing an Image with a Constant
	6.4.5 XORing Two Images
	6.4.6 XORing an Image with a Constant
	6.4.7 Taking the Bitwise NOT of an Image

	6.5 Arithmetic Operators
	6.5.1 Adding Two Source Images
	6.5.2 Adding a Constant Value to an Image
	6.5.3 Adding a Collection of Images
	6.5.4 Adding Constants to a Collection of Rendered Images
	6.5.5 Subtracting Two Source Images
	6.5.6 Subtracting a Constant from an Image
	6.5.7 Subtracting an Image from a Constant
	6.5.8 Dividing One Image by Another Image
	6.5.9 Dividing an Image by a Constant
	6.5.10 Dividing an Image into a Constant
	6.5.11 Dividing Complex Images
	6.5.12 Multiplying Two Images
	6.5.13 Multiplying an Image by a Constant
	6.5.14 Multiplying Two Complex Images
	6.5.15 Finding the Absolute Value of Pixels
	6.5.16 Taking the Exponent of an Image

	6.6 Dithering an Image
	6.6.1 Ordered Dither
	6.6.1.1 Color Map Parameter
	6.6.1.2 Dither Mask Parameter
	6.6.1.3 OrderedDither Example

	6.6.2 Error-diffusion Dither
	6.6.2.1 Error Filter Kernel
	6.6.2.2 ErrorDiffusion Example

	6.7 Clamping Pixel Values
	6.8 Band Copying
	6.9 Constructing a Kernel

	Image Enhancement
	7.1 Introduction
	7.2 Adding Borders to Images
	7.2.1 The Border Operation
	7.2.2 Extending the Edge of an Image
	7.2.2.1 BorderExtenderZero
	7.2.2.2 BorderExtenderConstant
	7.2.2.3 BorderExtenderCopy
	7.2.2.4 BorderExtenderWrap
	7.2.2.5 BorderExtenderReflect

	7.3 Cropping an Image
	7.4 Amplitude Rescaling
	7.5 Histogram Equalization
	7.5.1 Piecewise Linear Mapping
	7.5.2 Histogram Matching

	7.6 Lookup Table Modification
	7.6.1 Creating the Lookup Table
	7.6.1.1 Creating a Single-band Lookup Table
	7.6.1.2 Creating a Multi-band Lookup Table
	7.6.1.3 Creating a Color-cube Lookup Table

	7.6.2 Performing the Lookup
	7.6.3 Other Lookup Table Operations
	7.6.3.1 Reading the Table Data
	7.6.3.2 Reading the Table Offsets
	7.6.3.3 Reading the Number of Bands
	7.6.3.4 Reading the Number of Entries Per Band
	7.6.3.5 Reading the Data Type
	7.6.3.6 Reading the Destination Bands and SampleModel

	7.7 Convolution Filtering
	7.7.1 Performing the Convolve Operation
	7.7.2 Box Filter

	7.8 Median Filtering
	7.9 Frequency Domain Processing
	7.9.1 Fourier Transform
	7.9.1.1 Discrete Fourier Transform
	7.9.1.2 Inverse Discrete Fourier Transform

	7.9.2 Cosine Transform
	7.9.2.1 Discrete Cosine Transform (DCT)
	7.9.2.2 Inverse Discrete Cosine Transform (IDCT)

	7.9.3 Magnitude Enhancement
	7.9.4 Magnitude-squared Enhancement
	7.9.5 Phase Enhancement
	7.9.6 Complex Conjugate
	7.9.7 Periodic Shift
	7.9.8 Polar to Complex
	7.9.9 Images Based on a Functional Description

	7.10 Single-image Pixel Point Processing
	7.10.1 Pixel Inverting
	7.10.2 Logarithmic Enhancement

	7.11 Dual Image Pixel Point Processing
	7.11.1 Overlay Images
	7.11.2 Image Compositing

	7.12 Thresholding

	Geometric Image Manipulation
	8.1 Introduction
	8.2 Interpolation
	8.2.1 Nearest-neighbor Interpolation
	8.2.2 Bilinear Interpolation
	8.2.3 Bicubic Interpolation
	8.2.4 Bicubic2 Interpolation
	8.2.5 Table Interpolation
	8.2.5.1 Padding
	8.2.5.2 Width and Height
	8.2.5.3 Subsample Bits
	8.2.5.4 Precision
	8.2.5.5 Kernel Data
	8.2.5.6 Additional Interpolation Table-related Methods

	8.3 Geometric Transformation
	8.3.1 Translation Transformation
	8.3.2 Scaling Transformation
	8.3.3 Rotation Transformation
	8.3.4 Affine Transformation

	8.4 Perspective Transformation
	8.4.1 Performing the Transform
	8.4.2 Mapping a Quadrilateral
	8.4.3 Mapping Triangles
	8.4.4 Inverse Perspective Transform
	8.4.5 Creating the Adjoint of the Current Transform

	8.5 Transposing
	8.6 Shearing
	8.7 Warping
	8.7.1 Performing a Warp Operation
	8.7.2 Polynomial Warp
	8.7.3 General Polynomial Warp
	8.7.4 Grid Warp
	8.7.5 Quadratic Warp
	8.7.6 Cubic Warp
	8.7.7 Perspective Warp
	8.7.8 Affine Warp

	Image Analysis
	9.1 Introduction
	9.2 Finding the Mean Value of an Image Region
	9.3 Finding the Extrema of an Image
	9.4 Histogram Generation
	9.4.1 Specifying the Histogram
	9.4.2 Performing the Histogram Operation
	9.4.3 Reading the Histogram Data
	9.4.4 Histogram Operation Example

	9.5 Edge Detection
	9.6 Statistical Operations

	Graphics Rendering
	10.1 Introduction
	10.1.1 Simple 2D Graphics
	10.1.2 Renderable Graphics

	10.2 A Review of Graphics Rendering
	10.2.1 Overview of the Rendering Process
	10.2.2 Stroke Attributes
	10.2.2.1 Line Width
	10.2.2.2 Endcap Style
	10.2.2.3 Join Style
	10.2.2.4 Stroke Style
	10.2.2.5 Fill Styles

	10.2.3 Rendering Graphics Primitives
	10.2.3.1 Drawing a Shape
	10.2.3.2 Filling a Shape
	10.2.3.3 Rendering Text

	10.3 Graphics2D Example
	10.4 Adding Graphics and Text to an Image

	Image Properties
	11.1 Introduction
	11.1.1 The PropertySource Interface
	11.1.2 The PropertyGenerator Interface

	11.2 Synthetic Properties
	11.3 Regions of Interest
	11.4 Complex Data

	Client-Server Imaging
	12.1 Introduction
	12.2 Server Name and Port Number
	12.3 Setting the Timeout Period and Number of Retries
	12.4 Remote Imaging Test Example
	12.4.1 Simple Remote Imaging Example
	12.4.2 RemoteImaging Example Across Two Nodes

	12.5 Running Remote Imaging
	12.5.1 Step 1: Create a Security Policy File
	12.5.2 Step 2: Start the RMI Registry
	12.5.3 Step 3: Start the Remote Image Server
	12.5.4 Step 4: Run the Local Application

	12.6 Internet Imaging Protocol (IIP)
	12.6.1 IIP Operation
	12.6.2 IIPResolution Operation

	Writing Image Files
	13.1 Introduction
	13.2 Writing to a File
	13.3 Writing to an Output Stream
	13.4 Writing BMP Image Files
	13.4.1 BMP Version
	13.4.2 BMP Data Layout
	13.4.3 Example Code

	13.5 Writing JPEG Image Files
	13.5.1 JFIF Header
	13.5.2 JPEG DCT Compression Parameters
	13.5.3 Quantization Table
	13.5.4 Horizontal and Vertical Subsampling
	13.5.5 Compression Quality
	13.5.6 Restart Interval
	13.5.7 Writing an Abbreviated JPEG Stream
	13.5.8 Example Code

	13.6 Writing PNG Image Files
	13.6.1 PNG Image Layout
	13.6.2 PNG Filtering
	13.6.3 Bit Depth
	13.6.4 Interlaced Data Order
	13.6.5 PLTE Chunk for Palette Images
	13.6.6 Ancillary Chunk Specifications
	13.6.6.1 Background Color (bKGD Chunk)
	13.6.6.2 Chromaticity (cHRM Chunk)
	13.6.6.3 Gamma Correction (gAMA Chunk)
	13.6.6.4 Palette Histogram (hIST Chunk)
	13.6.6.5 Embedded ICC Profile Data (iCCP Chunk)
	13.6.6.6 Physical Pixel Dimensions (pHYS Chunk)
	13.6.6.7 Significant Bits (sBIT Chunk)
	13.6.6.8 Suggested Palette (sPLT Chunk)
	13.6.6.9 PNG Rendering Intent (sRGB Chunk)
	13.6.6.10 Textual Data (tEXt Chunk)
	13.6.6.11 Image Modification Timestamp (tIME Chunk)
	13.6.6.12 Transparency (tRNS Chunk)
	13.6.6.13 Compressed Text Data (zTXt Chunk)
	13.6.6.14 Private Chunks

	13.7 Writing PNM Image Files
	13.8 Writing TIFF Image Files
	13.8.1 TIFF Compression
	13.8.2 TIFF Tiled Images

	Extending the API
	14.1 Introduction
	14.2 Package Naming Convention
	14.3 Writing New Operators
	14.3.1 Extending the OpImage Class
	14.3.2 Extending the OperationDescriptor Interface

	14.4 Iterators
	14.4.1 RectIter
	14.4.2 RookIter
	14.4.3 RandomIter
	14.4.4 Example RectIter

	14.5 Writing New Image Decoders and Encoders
	14.5.1 Image Codecs

	Program Examples
	A.1 Lookup Operation Example
	A.2 Adding an OperationDescriptor Example

	Java Advanced Imaging API Summary
	B.1 Java AWT Imaging
	B.2 Java 2D Imaging
	B.2.1 Java 2D Imaging Interfaces
	B.2.2 Java 2D Imaging Classes

	B.3 Java Advanced Imaging
	B.3.1 JAI Interfaces
	B.3.2 JAI Classes
	B.3.3 JAI Iterator Interfaces
	B.3.4 JAI Iterator Classes
	B.3.5 JAI Operator Classes
	B.3.6 JAI Widget Interfaces
	B.3.7 JAI Widget Classes

	Glossary
	Index

