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Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6
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Preface

This book describes how to use the Sun Performance Library™ fast Fourier

transform (FFT) routines that are supported by the Sun WorkShop™ 6 update 1

FORTRAN 77, Fortran 95, and C compilers. Sun Performance Library FFT routines

are based on the FFTPACK and VFFTPACK libraries, which are available from

Netlib (http://www.netlib.org ).

This book does not describe the mathematics of the FFT or details of how the FFT

algorithm is implemented. For information on these topics, see the sources listed in

“References” on page 83.

Who Should Use This Book

This book is intended for programmers who want to use the Sun Performance

Library FFT routines in their code. Users should have a working knowledge of the

Fortran or C language and some understanding of the base FFTPACK and

VFFTPACK libraries available from Netlib.
1



Access to Sun WorkShop Development

Tools

Because Sun WorkShop product components and man pages do not install into the

standard /usr/bin/ and /usr/share/man directories, you must change your

PATHand MANPATHenvironment variables to enable access to Sun WorkShop

compilers and tools.

To determine if you need to set your PATHenvironment variable:

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the paths, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the paths, set your PATHenvironment variable

by following the instructions in this section.

To determine if you need to set your MANPATHenvironment variable:

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in this

section for setting your MANPATHenvironment variable.

Note – The information in this section assumes that your Sun WorkShop products

are installed in the /opt directory. If your Sun WorkShop products are not installed

in the /opt directory, contact your system administrator for the equivalent path on

your system.

% echo $PATH

% man workshop
2 Using Sun Performance Library Fast Fourier Transform Routines • October 2000



The PATHand MANPATHvariables should be set in your home .cshrc file if you are

using the C shell or in your home .profile file if you are using the Bourne or Korn

shells:

■ To use Sun WorkShop commands, add the following to your PATHvariable:

/opt/SUNWspro/bin

■ To access Sun WorkShop man pages with the mancommand, add the following to

your MANPATHvariable:

/opt/SUNWspro/man

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 Installation Guide or your system

administrator.

Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop

documentation.

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.
Preface 3



Related Documentation

For more information about this product, see the following sources. (The names of

our development tools has changed from Sun WorkShop™ to Forte™ Developer

products; you might see both product names used.)

Note – If your Sun WorkShop 6 update 1 software is not installed in the /opt
directory, ask your system administrator for the equivalent path on your system.

■ Man pages and readmes. This documentation describes the new features,

performance enhancements, problems and workarounds, and software

corrections in this Sun WorkShop 6 update 1 release.

You can access these documents in HTML on your local system or network by

pointing your browser to file:/opt/SUNWspro/docs/index.html .

■ The Sun WorkShop and Sun WorkShop TeamWare online help. The online help

has been updated for the new features in this Sun WorkShop 6 update 1 release.

You can access the online help on your local system or network by pointing your

browser to file:/opt/SUNWspro/docs/index.html . You can access the

online help from the Help menu in the Sun WorkShop products.

■ What’s New in Sun WorkShop 6 update 1. This book describes the new features

in this Sun WorkShop 6 update 1 release and in the Sun WorkShop 6 release.

You can access this book on your local system or network by pointing your

browser to file:/opt/SUNWspro/docs/index.html . You can also access it by

pointing your browser to http://docs.sun.com and searching for the Forte

Developer 6 update 1 collection.

■ Sun WorkShop 6 manuals. These manuals were provided with Sun WorkShop 6.

Information in the Sun WorkShop 6 update 1 man pages, readmes, and online

help supersedes information in the Sun WorkShop 6 manuals.

You can access the manuals on your local system or network by pointing your

browser to the Sun WorkShop 6 update 1 Documentation Index

(file:/opt/SUNWspro/docs/index.html ). You can also access them by

pointing your browser to http://docs.sun.com and searching for the Forte C,

Forte C++, Forte for High Performance Computing, and Forte TeamWare

products.
4 Using Sun Performance Library Fast Fourier Transform Routines • October 2000



The following Sun WorkShop manuals are only accessible on your local system or

network (by pointing your browser to

file:/opt/SUNWspro/docs/index.html ) and not through

http://docs.sun.com :

■ Sun WorkShop Memory Monitor User’s Manual
■ Standard C++ Class Library Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide
■ Sun Performance Library Reference

■ Sun WorkShop 6 update 1 supplements. The supplements provide more detailed

information on some of the major new features in this Sun WorkShop 6 update 1

release.

You can access the supplements by pointing your browser to

http://docs.sun.com and searching for the Forte Developer 6 update 1

collection.

■ Sun WorkShop 6 update 1 Release Notes. These notes provide installation-

related and late-breaking information about this Sun WorkShop 6 update 1

release. Information in the release notes supersedes information in any of the

other documentation.

The release notes are available as a text file on the Forte Developer 6 update 1 CD

at /cdrom/devpro_v8n1_platform/release_notes.txt . They are also

available in HTML on the Forte Developer Products Hot News page by pointing

your browser at http://www.sun.com/forte/developer/hotnews.html .
Preface 5
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Using Sun Performance Library Fast
Fourier Transform Routines

Many problems involve computing the discrete Fourier transform (DFT) of a

periodic sequence of length N, where N is the number of data points or samples. The

number of calculations required to compute the DFT is proportional to N2. The fast

Fourier transform (FFT) was developed to efficiently compute the DFT, where the

number of calculations required to compute the FFT is proportional to Nlog2N.

Sun Performance Library™ provides routines for computing the FFT or inverse

transform (synthesis) of a sequence of length N. The FFT routines are based on

FFTPACK and VFFTPACK, which are collections of public domain subroutines

available from Netlib (http://www.netlib.org ). These routines have been

enhanced and optimized for SPARC™ platforms, and then bundled with the Sun

Performance Library. The Sun Performance Library also includes two-dimensional

FFT routines, three-dimensional FFT routines, and convolution and correlation

routines.

This document describes how to use the Sun Performance Library FFT routines and

provides examples of their use. This document does not describe the details of the

FFT algorithms or the mathematics of the DFT. For more information on these topics,

see the sources listed in “References” on page 83.

For information on the Fortran and C interfaces and types of arguments used with

each FFT routine, see the section 3P man pages for the individual routines. For

example, to display the man page for the RFFTI routine, type man -s 3P rffti .

The man page routine names use lowercase letters.
7



Introduction to the FFTPACK and
VFFTPACK Packages

Sun Performance Library contains FFT routines based on FFTPACK and VFFTPACK.

Sun Performance Library also contains two-dimensional and three-dimensional FFT

routines, which are not a part of FFTPACK or VFFTPACK.

FFTPACK routines operate on a single one-dimensional sequence of length N. After

storing the sequence as a vector in an array, the fast sine, fast cosine, fast Fourier

transform, or inverse transform of the sequence is computed. To process an

additional sequence, the new sequence must be stored in the array before computing

the FFT or inverse transform.

VFFTPACK routines are extensions of FFTPACK routines that operate on multiple

one-dimensional sequences supplied simultaneously. Rather than storing and

processing each sequence separately, the sequences are stored in a two-dimensional

array, and then each sequence is processed.

VFFTPACK routines store the multiple one-dimensional sequences in a two-

dimensional array, but the routines compute only a one-dimensional Fourier

transform of each sequence. The two-dimensional and three-dimensional FFT

routines provided with Sun Performance Library differ from the VFFTPACK

routines. The two-dimensional FFT routines perform a two-dimensional Fourier

transform of a sequence stored in a two-dimensional array, and the three-

dimensional FFT routines perform a three-dimensional transform of a sequence

stored in a three-dimensional array.
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TABLE 1 summarizes some of the similarities and differences between the single

vector FFTPACK, multiple vector VFFTPACK routines, two-dimensional FFT

routines, and three-dimensional FFT routines.

TABLE 1 Comparison Between Single Vector and Multiple Vector Routines

Single Vector Multiple Vector

One-Dimensional Routines

Input Vector of length N An array of vectors

Output Single transform or

inverse transform

Multiple transforms or

inverse transform (one

transform or inverse

transform per sequence)

Results Unnormalized1

1. Results of inverse transform must be divided by a normalization factor proportional to N.

Normalized

Two-Dimensional Routines

Input Two-dimensional array Multiple vector two-

dimensional routines are

not supported
Output Two-dimensional

transform or inverse

transform

Results Unnormalized

Three-Dimensional Routines

Input Three-dimensional array Multiple vector three-

dimensional routines are

not supported
Output Three-dimensional

transform or inverse

transform

Results Unnormalized
Using Sun Performance Library Fast Fourier Transform Routines 9



Extensions to FFTPACK and VFFTPACK

Sun Performance Library provides the following extensions to the standard Netlib

FFTPACK and VFFTPACK packages.

■ Double precision and double complex transforms. Because routines that process

double precision and double complex data are not available in the standard

package from Netlib, calls to these routines might not be portable.

■ Two-dimensional and three-dimensional FFTs. Netlib FFTPACK and VFFTPACK

routines support one-dimensional FFTs.

■ Convolution and correlation routines.

■ Fortran 95 and C interfaces to FFTPACK and VFFTPACK. Conventions for these

interfaces are described in detail in the Sun Performance Library User’s Guide.

■ Optimizations for specific SPARC instruction set architectures.

■ Support for a 64-bit enabled Solaris™ Operating Environment.

■ Support for parallel processing compiler options.

■ Support for multiple processor hardware options.

The Discrete Fourier Transform (DFT)

The FFT and VFFT routines provide an efficient means of computing the complex or

real discrete Fourier transform and the discrete Fourier sine transform or discrete

Fourier cosine transform of a real symmetric sequence.

The following definition of the DFT is used when calculating the complex discrete

Fourier transform of a periodic sequence, where .

When calculating the inverse complex discrete Fourier transform, the following

definition is used.

The results on the inverse transform are unnormalized and can be normalized by

dividing each value by N.

i 1–=

Xk xne i2π n 1–( ) k 1–( ) N⁄– ,
n 1=

N

∑= k 1 … N, ,=

xn Xkei2π n 1–( ) k 1–( ) N⁄ ,
k 1=

N

∑= n 1 … N, ,=
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When computing the DFT of a real sequence, the resulting array of Fourier

coefficients is conjugate symmetric, where for k > 1, when using a

one-based notation, or for k > 0, when using a zero-based notation. The

asterisk * denotes complex conjugation, where . The number of

calculations required to compute the DFT is reduced by taking advantage of this

symmetry.

When computing the transform of a real sequence, the complex discrete Fourier

transform can be rewritten in the real trigonometric form shown in TABLE 2. In

TABLE 2, equals the real part of , equals the imaginary part of ,

and equals the real part of .

TABLE 2 Formulas for Real FFT Routines

Transform

Odd N ,

Even N

Xk
∗ XN k– 2–=

Xk
∗ XN k–=

a ib+( )∗ a ib–=

X 2k 2–( ) Xk X 2k 1–( ) Xk
XN X N 2⁄( ) 1+

 For k 2 … N 1+( ) 2⁄, ,=

X1 xn
n 1=

N

∑=

X 2k 2–( ) xn
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos
n 1=

N

∑=

X 2k 1–( ) x– n
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin
n 1=

N

∑=

 For k 2 … N 2⁄, ,=

X1 xn
n 1=

N

∑=

X 2k 2–( ) xn
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos
n 1=

N

∑=

X 2k 1–( ) x– n
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin
n 1=

N

∑=

XN 1–( ) n 1–( )xn
n 1=

N

∑=
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The FFT routines can be used to compute the discrete Fourier cosine transform,

discrete Fourier sine transform, and inverse transforms of the functions listed in

TABLE 3.

Inverse Transform

Odd N

Even N ,

TABLE 3 Symmetries Supported by FFT and VFFT Routines

Symmetry Definition Trigonometric Expansion

Cosine Even-Wave An even function f(t) that

satisfies the condition f(-t) = f(t).
Trigonometric series containing

only cosine terms.

Cosine Quarter-Wave A even function with half-wave

symmetry ,

where T is the period of the

function.

Trigonometric series containing

only cosine terms with odd

wave numbers.

Sine Odd-Wave An odd function f(t) that

satisfies the condition f(-t) =-f(t).
Trigonometric series containing

only sine terms.

Sine Quarter-Wave A odd function with half-wave

symmetry .

Trigonometric series containing

only sine terms with odd wave

numbers.

TABLE 2 Formulas for Real FFT Routines (Continued)

 For n 1 … N, ,=

xn X1 +=

2X 2k 2–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos 2X 2k 1–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin– 
 

k 2=

N 1+( ) 2⁄

∑

 For n 1 … N, ,=

xn X1 +=

2X 2k 2–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 cos 2X 2k 1–( )
k 1–( ) n 1–( )2π

N
---------------------------------------- 

 sin– 
 

k 2=

N 2⁄

∑ +

1–( )n 1–
XN

f t( ) f t T 2⁄+( )–=

f t( ) f t T 2⁄+( )–=
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The formulas for the symmetries listed in TABLE 3 are shown in TABLE 4.

For additional information on the formulas used to calculate the discrete transforms

of symmetric sequences, see the documentation provided with FFTPACK, available

on Netlib at http://www.netlib.org/fftpack/doc .

TABLE 4 Formulas for Symmetries Supported by FFT and VFFT Routines

Cosine Even-Wave 1

1. Because the cosine even-wave and sine odd-wave routines perform either the transform or inverse transform,
depending upon whether the input array contains the Fourier coefficients or the periodic sequence, only the no-
tation for the transform is shown in this table.

Transform/
Inverse Transform ,

Cosine Quarter-Wave

Transform ,

Inverse Transform ,

Sine Odd-Wave 1

Transform/
Inverse Transform ,

Sine Quarter-Wave

Transform ,

Inverse Transform ,

Xk x1 2 xn
k 1–( ) n 1–( )π

N 1–
------------------------------------- 

 cos
n 1=

N 1–

∑ 1–( ) k 1–( )
xN+ += k 1 … N, ,=

Xk x1 2 xn
2k 1–( ) n 1–( )π

2N
---------------------------------------- 

 cos
n 2=

N

∑+= k 1 … N, ,=

xn 4 Xk
2k 1–( ) n 1–( )π

2N
---------------------------------------- 

 cos
k 1=

N

∑= n 1 … N, ,=

Xk 2 xn
knπ

N 1+( )
------------------ 

 sin
n 1=

N

∑= k 1 … N, ,=

Xk 2 xn
2k 1–( )nπ

2N
-------------------------- 

 sin
n 1=

N 1–

∑ 1–( ) k 1–( )
xN+= k 1 … N, ,=

xn 4 Xk
2k 1–( )nπ

2N
-------------------------- 

 sin
k 1=

N

∑= n 1 … N, ,=
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Naming Conventions

The name of each FFT or VFFT routine is made up of a base name that denotes the

operation performed and a prefix that denotes the operand data type. For example,

the routine CFFTF performs a fast Fourier transform of a complex sequence.

Prefixes used with FFT and VFFT base names are shown in TABLE 5.

FFT and VFFT base names are shown in TABLE 6 on page 15. The last character of the

base name is one of the following:

■ I: Initialize the Fourier transform or inverse Fourier transform routine

■ F: Compute the forward transform (the Fourier transform)

■ B: Compute the backward transform (the inverse Fourier transform or synthesis)

TABLE 5 Prefix and Operand Data Types

Prefix Operand Data Type

FFT Routines No prefix REAL, REAL*4, REAL(4)

R REAL, REAL*4, REAL(4)

D DOUBLE, REAL*8, REAL(8)

C COMPLEX, COMPLEX*8, COMPLEX(4)

Z DOUBLE COMPLEX, COMPLEX*16, COMPLEX(8)

VFFT Routines VR REAL, REAL*4, REAL(4)

VD DOUBLE, REAL*8, REAL(8)

VC COMPLEX, COMPLEX*8, COMPLEX(4)

VZ DOUBLE COMPLEX, COMPLEX*16, COMPLEX(8)
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In this manual, the following conventions are used when referring to routines that

exist for multiple data types:

■ The prefix x is added to the base name when the information applies to REAL,
DOUBLE, COMPLEX, and DOUBLE COMPLEXversions of that routine.

■ Specific prefixes are listed in square brackets [ ] before the base name when

information does not apply to all versions of the routine.

The following example shows samples of these naming conventions.

TABLE 6 FFT and VFFT Base Names

Base Name Operation

COSQB Inverse cosine quarter-wave transform (synthesis)

COSQF Cosine quarter-wave transform

COSQI Initialize cosine quarter-wave transform or inverse transform

COST Cosine even-wave transform

COSTI Initialize cosine even-wave transform

EZFFTB Inverse EZ transform (synthesis)

EZFFTF EZ transform

EZFFTI Initialize EZ transform

FFTB Inverse transform (synthesis)

FFTF Forward transform

FFTI Initialize before computing a transform or inverse transform

SINQB Inverse sine quarter-wave transform (synthesis)

SINQF Sine quarter-wave transform

SINQI Initialize sine quarter-wave transform or inverse transform

SINT Sine odd-wave transform

SINTI Initialize sine odd-wave transform

Convention Routines

xFFTF RFFTF, DFFTF, CFFTF, and ZFFTF

[R,D]FFTI RFFTI or DFFTI

[C,Z]FFTF CFFTF or ZFFTF

V[R,D,C,Z]FFTF VRFFTF , VDFFTF, VCFFTF, or VZFFTF
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Sun Performance Library FFT Routines

Sun Performance Library contains the routines shown in TABLE 8. The data type of

the arguments follows the conventions shown in TABLE 7.

TABLE 7 Argument Data Types

Argument Data Type

AZERO, A, B, R (EZFFT routines) Real

FULL, PLACE, ROWCOL Character

N, M, K, LDA, LD2A, LDB, LWORK, MDIMX Integer

A, B, X, XT Same as data type of routine called

WSAVE, WORK See TABLE 11 on page 24

TABLE 8 FFT Routines

Routine Arguments Function

COSQB, DCOSQB N,X,WSAVE Inverse cosine quarter-wave transform

VCOSQB, VDCOSQB M,N,X,XT,MDIMX,WSAVE Inverse cosine quarter-wave transform

(Vector)

COSQF, DCOSQF N,X,WSAVE Cosine quarter-wave transform

VCOSQF, VDCOSQF M,N,X,XT,MDIMX,WSAVE Cosine quarter-wave transform

(Vector)

COSQI, DCOSQI N,WSAVE Initialize cosine quarter-wave

transform and inverse transform

VCOSQI, VDCOSQI N,WSAVE Initialize cosine quarter-wave

transform and inverse transform

(Vector)

COST, DCOST N,X,WSAVE Cosine even-wave transform

VCOST, VDCOST M,N,X,XT,MDIMX,WSAVE Cosine even-wave transform (Vector)

COSTI, DCOSTI N,WSAVE Initialize cosine even-wave transform

VCOSTI, VDCOSTI N,WSAVE Initialize cosine even-wave transform

(Vector)
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EZFFTB N,R,AZERO,A,B,WSAVE EZ inverse Fourier transform

EZFFTF N,R,AZERO,A,B,WSAVE EZ Fourier transform

EZFFTI N,WSAVE Initialize EZ Fourier transform and

inverse transform

RFFTB, DFFTB,

CFFTB, ZFFTB
N,X,WSAVE Inverse Fourier transform

VRFFTB, VDFFTB M,N,X,XT,MDIMX,WSAVE Inverse Fourier transform (Vector)

VCFFTB, VZFFTB M,N,X,XT,MDIMX,
ROWCOL,WSAVE

RFFTF, DFFTF,
CFFTF, ZFFTF

N,X,WSAVE Fourier transform

VRFFTF, VDFFTF M,N,X,XT,MDIMX,WSAVE Fourier transform (Vector)

VCFFTF, VZFFTF M,N,X,XT,MDIMX,
ROWCOL,WSAVE

RFFTI , DFFTI ,

CFFTI , ZFFTI
N,WSAVE Initialize Fourier transform and

inverse transform

VRFFTI , VDFFTI,
VCFFTI , VZFFTI

N,WSAVE Initialize Fourier transform and

inverse transform (Vector)

SINQB, DSINQB N,X,WSAVE Inverse sine quarter-wave transform

VSINQB, VDSINQB M,N,X,XT,MDIMX,WSAVE Inverse sine quarter-wave transform

(Vector)

SINQF, DSINQF N,X,WSAVE Sine quarter-wave transform

VSINQF, VDSINQF M,N,X,XT,MDIMX,WSAVE Sine quarter-wave transform (Vector)

SINQI , DSINQI N,WSAVE Initialize sine quarter-wave transform

and inverse transform

VSINQI , VDSINQI N,WSAVE Initialize sine quarter-wave transform

and inverse transform (Vector)

SINT, DSINT N,X,WSAVE Sine odd-wave transform

VSINT, VDSINT M,N,X,XT,MDIMX,WSAVE Sine odd-wave transform (Vector)

SINTI , DSINT N,WSAVE Initialize sine odd-wave transform

VSINTI , VDSINTI N,WSAVE Initialize sine odd-wave transform

(Vector)

TABLE 8 FFT Routines (Continued)

Routine Arguments Function
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In addition to the FFT and VFFT routines listed in TABLE 8, the following routines are

described in this manual.

RFFT2B, DFFT2B PLACE,M,N,A,LDA,
B,LDB,WORK,LWORK

Inverse two-dimensional Fourier

transform

CFFT2B, ZFFT2B M,N,A,LDA,WORK,LWORK

RFFT2F, DFFT2F PLACE,FULL,M,N,A,LDA,
B,LDB,WORK,LWORK

Two-dimensional Fourier transform

CFFT2F, ZFFT2F M,N,A,LDA,WORK,LWORK

RFFT2I , DFFT2I,
CFFT2I , ZFFT2I

M,N,WORK Initialize two-dimensional Fourier

transform and inverse transform

RFFT3B, DFFT3B PLACE,M,N,K,A,LDA,
B,LDB,WORK,LWORK

Inverse three-dimensional Fourier

transform

CFFT3B, ZFFT3B M,N,K,A,LDA,LD2A,
WORK,LWORK

RFFT3F, DFFT3F PLACE,FULL,M,N,K,
A,LDA,B,LDB,WORK,LWORK

Three-dimensional Fourier transform

CFFT3F, ZFFT3F M,N,K,A,LDA,LD2A,
WORK,LWORK

RFFT3I , DFFT3I,
CFFT3I , ZFFT3I

M,N,K,WORK Initialize three-dimensional Fourier

transform and inverse transform

TABLE 9 Convolution and Correlation Routines

Routine Arguments Function

SCNVCOR,
DCNVCOR,
CCNVCOR,
ZCNVCOR

CNVCOR,FOUR,NX,X,IFX,
INCX,NY,NPRE,M,Y,IFY,
INC1Y,INC2Y,NZ,K,Z,
IFZ,INC1Z,INC2Z,WORK,
LWORK

Convolution or correlation of two

vectors

SCNVCOR2,
DCNVCOR2,
CCNVCOR2,
ZCNVCOR2

CNVCOR,METHOD,TRANSX,
SCRATCHX,TRANSY,
SCRATCHY,MX,NX,X,LDX,
MY,NY,MPRE,NPRE,Y,LDY,
MZ,NZ,Z,LDZ,WORKIN,
LWORK

Convolution or correlation of two

matrices

TABLE 8 FFT Routines (Continued)

Routine Arguments Function
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Calling FFT Routines

FFT routines can be called using FORTRAN 77, Fortran 95, or C interfaces. 64-bit

interfaces for compiling code that supports a 64-bit Solaris Operating Environment

are also provided.

Fortran Interface Conventions

Sun Performance Library FORTRAN 77 and Fortran 95 interfaces use the following

conventions:

■ All arguments are passed by reference.

■ The number of arguments to a routine is fixed.

■ Types of arguments must match.

■ Arrays are stored columnwise.

■ Indices are based at one, following standard Fortran practice.

C Interface Conventions

Sun Performance Library C interfaces use the following conventions:

■ Input-only scalars are passed by value rather than by reference. Complex and

double complex arguments are not considered scalars because they are not

implemented as a scalar type by C.

■ Complex scalars can be passed as either structures or arrays of length 2.

■ Types of arguments must match even after C does type conversion. For example,

be careful when passing a single precision real value, because a C compiler can

automatically promote the argument to double precision.

■ Arrays are stored columnwise. For Fortran programmers, this is the natural order

in which arrays are stored. For C programmers, this is the transpose of the order

in which they usually work. References in the documentation and man pages to

rows refer to columns and vice versa.

■ Array indices are based at zero in conformance with C conventions, rather than

being based at one in conformance with Fortran conventions.
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Using 64-Bit FFT Routines

To compile code for a 64- bit enabled Solaris Operating Environment, use

-xarch=v9[a|b] and convert all integer arguments to 64- bit arguments. 64-bit

routines require the use of 64-bit integers.

Sun Performance Library provides 32-bit and 64-bit interfaces. To use the 64-bit

interfaces:

■ Modify the Sun Performance Library routine name. For C, FORTRAN 77, and

Fortran 95 code, append _64 to the names of Sun Performance Library routines

(for example, rfftf_64 or CFFTB_64) . For Fortran 95 code with the USE
SUNPERFstatement, routines can be called using the optional interfaces

(interfaces where certain arguments can be omitted), but _64 must still be

appended to the Sun Performance Library routine names. The compiler will infer

the correct interface and values for the optional arguments, but the compiler

cannot determine if the optional arguments are 32-bit integers or 64-bit integers.

■ Promote integers to 64 bits. Double precision variables and the real and

imaginary parts of double complex variables are already 64 bits. Only the integers

are promoted to 64 bits.

To control promotion of integer arguments, do one of the following:

■ To promote all default integers (integers declared without explicit byte sizes) from

32 bits to 64 bits, compile with -xtypemap=integer:64 .

■ When using Fortran, to promote specific integers, change INTEGERor

INTEGER*4 declarations to INTEGER*8.

Note – When calling a 32-bit interface, such as ZFFTF, from a 64-bit code, Sun

Performance Library internally converts the arguments to 64 bits, and then calls the

64-bit interface (ZFFTF_64). Extra overhead is associated with this argument

conversion.
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Sequence Length N
The efficiency of the FFT routines depends upon the decomposition and length of

the sequence N. Sun Performance Library FFT routines use the divide-and-conquer

approach, where the transform of a sequence is a composite of transforms of shorter

sequences.

The value of N affects the efficiency of the transform as follows:

■ If N can be factored into powers of 2, 3, 4, 5, 7, 11, or 13, the transform is

computed using the FFT, which is an Nlog2N operation.

■ If N is a product of some of these prime factors, along with additional prime

factors, the part of N that can be factored into powers of 2, 3, 4, 5, 7, 11, or 13 is

computed using the FFT. The transform of the sequence corresponding to the

additional prime factors is computed using the DFT, which is an N2 operation.

■ If N cannot be factored into powers of 2, 3, 4, 5, 7, 11, or 13, the transform of the

sequence is computed using the DFT.

For example, the transform of a vector of length N = 1024 = 4 × 4 × 4 × 4 × 4 can be

computed using an FFT, because 4 is a factor of 1024. If N = 6080 = 4 × 4 × 4 × 5 × 19,

the transform of the vector corresponding to 4 × 4 × 4 × 5 is computed using the FFT,

but the part of the vector corresponding to 19 is computed using the DFT. The

transform of a vector of length N=1019 is computed using the DFT, because 1019 is

not the product of small primes.

Computing the Fourier transform is most efficient when N-1 for fast cosine

transforms, N+1 for fast sine transforms, and M, N, and K for multi-dimensional FFT

routines can be factored into powers of 2, 3, 4, 5, 7, 11, or 13, as summarized in

TABLE 10.

TABLE 10 Values That Must Have 2, 3, 4, 5, 7, 11, or 13 as Factors for Best Performance

Routine Values

COST, DCOST, VCOST, VDCOST N - 1

SINT, DSINT, VSINT, VDSINT N + 1

All other one-dimensional FFT and VFFT routines N

Two-dimensional FFT routines Mand N

Three-dimensional FFT routines M, N, and K
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The function xFFTOPTcan be used to determine the optimal sequence length, as

shown in CODE EXAMPLE 1.

The size of the sequence affects performance. When N is small, such as 8 or 16, the

overhead of calling the routine is large compared to the actual computational work

performed by the routine. Also, when the size of N is too large for the data to fit in

the cache, performance again degrades.

CODE EXAMPLE 1 RFFTOPT Example

my_system% cat fft_ex01.f
      PROGRAM TEST
C
      INTEGER         N, N1, N2, N3, RFFTOPT
C
      N = 1024
      N1 = 1019
      N2 = 71
      N3 = 49
C
      PRINT *, ’N Original  N Suggested’
      PRINT ’(I5, I12)’, (N, RFFTOPT(N))
      PRINT ’(I5, I12)’, (N1, RFFTOPT(N1))
      PRINT ’(I5, I12)’, (N2, RFFTOPT(N2))
      PRINT ’(I5, I12)’, (N3, RFFTOPT(N3))
C
      END

my_system% f95 -dalign fft_ex01.f -xlic_lib=sunperf
my_system% a.out
 N Original  N Suggested
 1024        1024
 1019        1024
   71          72
   49          49
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Work Array WSAVEfor FFT and VFFT
Routines

Each FFT or VFFT routine uses a work array that stores the tabulation of

trigonometric functions computed while generating the Fourier transform or inverse

transform. WSAVEalso stores scratch (temporary) values generated during the

transform or inverse transform.

Note – When using the VFFT routines, an extra work array, XT, is used to store

temporary values generated from performing Fourier transforms or inverse

transforms on multiple sequences.

Before performing the first transform or inverse transform:

1. Specify the minimum dimension and data type of the work array WSAVE.

The minimum dimension and data type depends upon the operand data type and

FFT or VFFT routine, as shown in TABLE 11 on page 24.

2. Initialize the work array by calling the corresponding FFT or VFFT routine whose
base name ends with the character I.

For example, when using RFFTF or RFFTB, initialize the work array by calling

RFFTI .

When using CFFTF or CFFTB, initialize the work array by calling CFFTI.

INTEGER N
REAL WSAVE (2 * N + 15)
CALL RFFTI (N, WSAVE)

INTEGER N
REAL WSAVE (4 * N + 15)
CALL CFFTI (N, WSAVE)
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The same work array can be used for both the transform or inverse transform as

long as N remains unchanged. Different WSAVEarrays are required for different

values of N. As long as N and WSAVEremain unchanged, subsequent transforms can

be obtained faster than the first transform, because the initialization does not have to

be repeated between calls to the transform or inverse transform routines.

TABLE 11 Minimum Dimensions and Data Types for WSAVEWork Array

Routine Minimum Work Array Size ( WSAVE) Type

One-Dimensional Routines

COSQI, DCOSQI 3N + 15 REAL, REAL*8

COSQB, DCOSQB 3N + 15 REAL, REAL*8

COSQF, DCOSQF 3N + 15 REAL, REAL*8

COST, DCOST 3N + 15 REAL, REAL*8

COSTI, DCOSTI 3N + 15 REAL, REAL*8

EZFFTB 3N + 15 REAL, REAL*8

EZFFTF 3N + 15 REAL, REAL*8

EZFFTI 3N + 15 REAL, REAL*8

RFFTB, DFFTB 2N + 15 REAL, REAL*8

RFFTF, DFFTF 2N + 15 REAL, REAL*8

RFFTI, DFFTI 2N + 15 REAL, REAL*8

CFFTB, ZFFTB 4N + 15 REAL, REAL*8

CFFTF, ZFFTF 4N + 15 REAL, REAL*8

CFFTI, ZFFTI 4N + 15 REAL, REAL*8

SINQB, DSINQB 3N + 15 REAL, REAL*8

SINQF, DSINQF 3N + 15 REAL, REAL*8

SINQI, DSINQI 3N + 15 REAL, REAL*8

SINT, DSINT 2N + N/2 + 15 REAL, REAL*8

SINTI, DSINTI 2N + N/2 + 15 REAL, REAL*8

VFFT Routines

VRFFTB, VDFFTB N + 15 REAL, REAL*8

VRFFTF, VDFFTF N + 15 REAL, REAL*8

VRFFTI, VDFFTI N + 15 REAL, REAL*8

VCFFTB, VZFFTB If transforming rows: 2 * M + 15
If transforming columns: 2 * N + 15

REAL, REAL*8
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VCFFTF, VZFFTF If transforming rows: 2 * M + 15
If transforming columns: 2 * N + 15

REAL, REAL*8

VCFFTI, VZFFTI N + 15 REAL, REAL*8

VCOSQB, VDCOSQB 2 * N + 15 REAL, REAL*8

VCOSQF, VDCOSQF 2 * N + 15 REAL, REAL*8

VCOSQI, VDCOSQI 2 * N + 15 REAL, REAL*8

VCOST, VDCOST 2 * N + 15 REAL, REAL*8

VCOSTI, VDCOSTI 2 * N + 15 REAL, REAL*8

VSINQB, VDSINQB 2 * N + 15 REAL, REAL*8

VSINQF, VDSINQF 2 * N + 15 REAL, REAL*8

VSINQI, VDSINQI 2 * N + 15 REAL, REAL*8

VSINT, VDSINT N + N/2 + 15 REAL, REAL*8

VSINTI, VDSINTI N + N/2 + 15 REAL, REAL*8

Two-Dimensional Routines

RFFT2B, DFFT2B (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

RFFT2F, DFFT2F (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

RFFT2I, DFFT2I (M + 2N + MAX(M, 2N) + 30) REAL, REAL*8

CFFT2B, ZFFT2B (4 * (M + N) + 30) REAL, REAL*8

CFFT2F, ZFFT2F (4 * (M + N) + 30) REAL, REAL*8

CFFT2I, ZFFT2I (4 * (M + N) + 30) REAL, REAL*8

Three-Dimensional Routines

RFFT3B, DFFT3B ( M + 2 * (N + K) + 4K + 45) REAL, REAL*8

RFFT3F, DFFT3F ( M + 2 * (N + K) + 4K + 45) REAL, REAL*8

RFFT3I, DFFT3I ( M + 2 * (N + K) + 30) REAL, REAL*8

CFFT3B, ZFFT3B (4 * ( M + N + K) + 45) REAL, REAL*8

CFFT3F, ZFFT3F (4 * ( M + N + K) + 45) REAL, REAL*8

CFFT3I, ZFFT3I (4 * ( M + N + K) + 45) REAL, REAL*8

TABLE 11 Minimum Dimensions and Data Types for WSAVEWork Array (Continued)

Routine Minimum Work Array Size ( WSAVE) Type
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Parallelization

FFT and VFFT routines have been modified to take advantage of parallelization

enhancements, as described in the Sun Performance Library User’s Guide. FFT and

VFFT routines can also be used in parallelized loops, as shown here.

Note – The Fortran compiler parallelization features require a Sun WorkShop HPC

license.

One-Dimensional FFT and Inverse
Transform Routines

The routines in this section use the fast Fourier transform to compute the discrete

Fourier transform and the inverse Fourier transforms. Routines are also available

that compute the fast cosine transform, fast sine transform, and the inverses of these

transforms.

      CALL CFFTI (M, WSAVE)
C$PAR DOALL SHARED(M, WSAVE, N, C), PRIVATE(I)
      DO I = 1, N
        CALL CFFTF (M, C(1, I), WSAVE)
        CALL CFFTB (M, C(1, I), WSAVE)
      END DO
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Arguments for One-Dimensional FFT and VFFT

Routines

FFT and VFFT routines use the arguments shown in TABLE 12. Some routines use

additional arguments that are described in the sections for those routines.

TABLE 12 Arguments for FFT and VFFT Routines

Arguments Description

FFT Routines

N Length of the sequence to be transformed, where N ≥ 0.

X On entry, an array of length N containing the sequence to be

transformed.

WSAVE On entry, a work array with a minimum dimension that depends

upon the type of routine used and the data type of the operands.

See TABLE 11 for a complete list of minimum work array

dimensions.

VFFT Routines

N Length of the sequence to be transformed, where N ≥ 0.

M Number of sequences to be transformed, where M≥ 0.

X A two-dimensional array X(M,N) whose rows contain the

sequences to be transformed.

XT A two-dimensional work array with dimensions of (MDIMX * N) .

MDIMX Leading dimension of the arrays X and XT as specified in a

dimension or type statement, where MDIMX ≥ M.

WSAVE On entry, a work array with a minimum dimension that depends

upon the type of routine used and the data type of the operands.

See TABLE 11 for a complete list of minimum work array

dimensions.
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Data Storage for One-Dimensional FFT and VFFT

Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

Storage of Complex Sequences

The results of a complex one-dimensional FFT are stored in-place (in the original

input array). Storage problems do not occur when performing the Fourier transform

of a complex sequence, because the number of calculated Fourier coefficients equals

the number of input values. The real and imaginary values of the Fourier coefficients

can be stored in the original complex array without additional storage

manipulations.

Storage of Real Sequences

Computing the Fourier transform of a real sequence produces complex Fourier

coefficients. The number of computed Fourier coefficients is twice the number of

values in the original sequence, because of the real and imaginary parts of the

complex Fourier coefficients. The complex vector must be packed before it can be

stored in the original real array. This packing is done by not storing the imaginary

parts of the one or two Fourier coefficients that are always 0, and by not storing the

complex conjugates of the Fourier coefficients.

Given a real sequence xn, n = 0 : N - 1, of N data points, the transformed output Xk,

k = 0 : N - 1, is packed and stored in the original array that holds the input data, as

follows.

■ If N is even:

■ The real part of X0 is stored.

■ The imaginary part of X0 is equal to 0; this part is not stored.

■ The real and imaginary parts of X1, up to and including the real part of X(N/2),

are stored sequentially.

■ The imaginary part of X(N/2) is equal to 0; this part is not stored.

■ X(N-k) is the complex conjugate of Xk, for k = 1 : N/2 - 1 and is not stored.

■ If N is odd,

■ The real part of X0 is stored.

■ The imaginary part of X0 is equal to 0 and is not stored.
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■ The real and imaginary parts of X1, up to and including the imaginary part of

X((N-1)/2), are stored sequentially.

■ X(N-k) is the complex conjugate of Xk, for k = 1 : ((N-1)/2) - 1 and is not stored.

For example, if N = 6, the input array X contains the following six real data points:

X(1) = x0

X(2) = x1

X(3) = x2

X(4) = x3

X(5) = x4

X(6) = x5

Performing the Fourier transform computes the complex Fourier coefficients X0, X1,

X2, X3, X4, and X5, each of which has a real (Re) part and an imaginary (Im) part.

Following the transform, the complex Fourier coefficients are stored in the original

real array X, as follows:

X(1) = Re(X0)

X(2) = Re(X1)

X(3) = Im(X1)

X(4) = Re(X2)

X(5) = Im(X2)

X(6) = Re(X3)

For even-length vectors, the resulting vector is conjugate-symmetric excluding the

first element. The Fourier transform of the vector [1 2 3 4] is:

10+0i -2+2i -2+0i -2-2i

This is stored in a real vector as:

10 -2 2 -2

For odd-length vectors, the resulting vector is also conjugate-symmetric excluding

the first element. For example, the Fourier transform of the vector [1 2 3 4 5] is:

15.0+0i -2.5+3.44i -2.5+.81i -2.5-.81i -2.5-3.44i

This is stored in a real vector as:

15 -2.5 3.44 -2.5 0.81
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Note – When the transform of complex data is computed, the output is not packed.

The transformed sequence contains the same number of real and complex values as

the input sequence.

CODE EXAMPLE 2 computes the FFT and inverse of a real or complex sequence for

even and odd values of N. The transform of the complex sequence shows all the

Fourier coefficients in an unpacked, complex array. The transform of the real

sequence shows the Fourier coefficients stored in a packed, real array. Differences

between the real arrays for even and odd values of N can also be compared.

CODE EXAMPLE 2 Real and Complex FFT Example

my_system% cat fft_ex02.f
      INTEGER I, N_EVEN, N_ODD
C
      REAL XR(9), WORK(1000)
      COMPLEX XC(9)
      N_EVEN = 8
      N_ODD = 9
      XR(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)
      XC(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)
C
      CALL RFFTI(N_EVEN, WORK)
      CALL RFFTF(N_EVEN, XR, WORK)
      CALL CFFTI(N_EVEN, WORK)
      CALL CFFTF(N_EVEN, XC, WORK)
      PRINT 1000
      PRINT ’(F8.3)’,XR(1:N_EVEN)
      PRINT 1010
      PRINT ’(2F8.3,’’I’’)’, (XC(1:N_EVEN))
      XR(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)
      XC(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)
C
      CALL RFFTI(N_ODD, WORK)
      CALL RFFTF(N_ODD, XR, WORK)
      CALL CFFTI(N_ODD, WORK)
      CALL CFFTF(N_ODD, XC, WORK)
      PRINT 1020
      PRINT ’(F8.3)’,XR(1:N_ODD)
      PRINT 1030
      PRINT ’(2F8.3,’’I’’)’, (XC(1:N_ODD))
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 1000 FORMAT (1X, "Transform of Real Sequence With Even N")
 1010 FORMAT (1X, "Transform of Complex Sequence With Even N")
 1020 FORMAT (1X, "Transform of Real Sequence With Odd N")
 1030 FORMAT (1X, "Transform of Complex Sequence With Odd N")
C
      END
my_system% f95 -dalign fft_ex02.f -xlic_lib=sunperf
my_system% a.out
 Transform of real sequence with even N
   3.240
  -0.176
  -0.135
  -0.280
  -0.880
   1.096
   0.785
   0.280
 Transform of complex sequence with even N
    3.240   0.000i
   -0.176  -0.135i
   -0.280  -0.880i
    1.096   0.785i
    0.280   0.000i
    1.096  -0.785i
   -0.280   0.880i
   -0.176   0.135i
 Transform of real sequence with odd N
   3.260
  -0.333
  -0.550
   0.464
  -0.991
   0.080
   1.091
   0.860
  -0.389
 Transform of complex sequence with odd N
    3.260   0.000i
   -0.333  -0.550i
    0.464  -0.991i
    0.080   1.091i
    0.860  -0.389i
    0.860   0.389i
    0.080  -1.091i
    0.464   0.991i
   -0.333   0.550i

CODE EXAMPLE 2 Real and Complex FFT Example (Continued)
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CODE EXAMPLE 3 shows a C example that uses dfftf to compute the Fourier

coefficients of a real sequence.

CODE EXAMPLE 3 C Example Showing How to Extract the Complex Result From the
Packet Output of dfftf

my_system% cat fft_ex03.c
#include <sunperf.h>
#include <math.h>

#define N 16

/*
 dfftf accepts as input a real vector of length N and
 computes its discrete Fourier transform. Since the input
is real, the result of the transform will be conjugate symmetric.

 The output of dfftf is a real vector of length N, which is a
 packet representation of the complex FFT result. Only the first
 half of the complex result is stored since the remaining values
 can be obtained via the conjugate symmetry property. In
particular, if A[N] is the complex result of the FFT, the output

 of dfftf is related to ‘a’ as follows:
 The real part of A[0] is stored in a[0].

A[1] is stored as two consecutive real numbers in a[1] and a[2].
 A[2] is stored in a[3] and a[4].
 If N is even, the real part of A[N/2-1] is stored in a[N-1]. If
 N is odd, the real and imaginary parts of A[(N-1)/2] are stored
 in a[N-2] and a[N-1] respectively.
 The following example shows how to extract the complex result
 from the packet output of dfftf for the case in which N even.
*/

void
main()
{
  int   i,j;
  double a[N];
  doublecomplex b[N];

  double wa[2*N+15];

  for (i=0;i<N;i++) {
    a[i]=sin((double)i);
  }

  dffti(N,wa);
  dfftf(N,a,wa);
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FFT: Fast Fourier Transform Routines

The following routines use the fast Fourier transform to compute the discrete Fourier

transform or inverse transform of a periodic sequence.

  /* extract the first N/2 complex values
     from the packet representation */

  b[0].r = a[0];
  b[0].i = 0.0;

  j=1;
  for (i=1;i<N/2;i++) {
    b[i].r = a[j];
    b[i].i = a[j+1];
    j += 2;
  }
  b[N/2].r = a[N-1];
  b[N/2].i = 0.0;

  /* extract the remaining N/2 values using the conjugate
     symmetry */

  for (i=N/2+1;i<N;i++) {
    b[i].r =  b[N-i].r;
    b[i].i = -b[N-i].i;
  }
}

Routine Function

[R,D,C,Z]FFTI Initialize work array WSAVEfor [R,D,C,Z]FFTF or

[R,D,C,Z]FFTB

[R,D,C,Z]FFTF Compute Fourier coefficients of periodic sequence

[R,D,C,Z]FFTB Compute periodic sequence from Fourier coefficients

V[R,D,C,Z]FFTI Initialize work array for V[R,D,C,Z]FFTF or V[R,D,C,Z]FFTB

V[R,D,C,Z]FFTF Compute Fourier coefficients of multiple periodic sequences

V[R,D,C,Z]FFTB Compute multiple periodic sequences from Fourier coefficients

CODE EXAMPLE 3 C Example Showing How to Extract the Complex Result From the
Packet Output of dfftf (Continued)
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The xFFT and VxFFT routines, where x denotes R, D, C, or Z, use the arguments

defined in “Arguments for One-Dimensional FFT and VFFT Routines” on page 27.

In addition to the VFFT arguments defined in “Arguments for One-Dimensional FFT

and VFFT Routines” on page 27, the VCFFTF, VZFFTF, VCFFTB, and VZFFTBroutines

use one additional argument called ROWCOL. ROWCOLspecifies whether to transform

the rows or columns of X(M,N) . Set ROWCOLequal to ‘R’ or ‘r’ perform the

transform or inverse transform on the rows of X(M,N) . Set ROWCOLequal to ‘C’ or

‘c’ perform the transform or inverse transform on the columns of X(M,N) .

Normalization

The xFFT operations are unnormalized, so a call of xFFTF followed by a call of

xFFTB will multiply the input sequence by N. The VxFFT operations are normalized,

so a call of VxFFTF followed by a call of VxFFTB will return the original sequence.

Sample Programs: Fast Fourier Transform and Inverse
Transform

CODE EXAMPLE 4 uses RFFTF to compute the FFT of a real sequence and RFFTBto

compute the inverse transform. The computed Fourier coefficients are packed and

stored in the original real array. The inverse transform is unnormalized and can be

normalized by dividing each value by N.

CODE EXAMPLE 4 Fast Fourier Transform and Inverse Transform for Real Values

my_system% cat fft_ex04.f
      PROGRAM TEST
C
      INTEGER          N
      PARAMETER       (N = 9)
C
      INTEGER          I
      REAL             PI, R(N), WSAVE(2 * N + 15)
C
      EXTERNAL         RFFTB, RFFTF, RFFTI
      INTRINSIC        ACOS, SIN
C
C     Initialize array to a real sequence.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N)
  100 CONTINUE
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CODE EXAMPLE 5 uses CFFTF to compute the FFT of a complex sequence and CFFTB
to compute the inverse transform. Because the number of calculated Fourier

coefficients equals the number of input values, the real and imaginary values of the

Fourier coefficients can be stored in the original array without additional storage

manipulations. The inverse transform is unnormalized and can be normalized by

dividing each value by N.

C
      PRINT 1000
      PRINT 1010, (R(I), I = 1, N)
      CALL RFFTI (N, WSAVE)
      CALL RFFTF (N, R, WSAVE)
      PRINT 1020
      PRINT 1010, (R(I), I = 1, N)
      CALL RFFTB (N, R, WSAVE)
      PRINT 1030
      PRINT 1010, (R(I), I = 1, N)
C
 1000 FORMAT (1X, ’Original Sequence R(I): ’)
 1010 FORMAT (1X, 100(F4.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Unnormalized Recovered Sequence (R(I)*N): ’)
C
      END
my_system% f95 -dalign fft_ex04.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence R(I):
  3.0  3.6  4.0  3.9  3.3  2.7  2.1  2.0  2.4
 Transformed Sequence:
 27.0  0.0 -4.5  0.0  0.0  0.0  0.0  0.0  0.0
 Unnormalized Recovered Sequence (R(I)*N):
 27.0 32.8 35.9 34.8 30.1 23.9 19.2 18.1 21.2

CODE EXAMPLE 4 Fast Fourier Transform and Inverse Transform for Real Values
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CODE EXAMPLE 5 Fast Fourier Transform and Inverse Transform for Complex Values

my_system% cat fft_ex05.f
      PROGRAM TEST
C
      INTEGER           N
      PARAMETER        (N = 4)
C
      INTEGER           I
      REAL              PI, WSAVE(4 * N + 15), X, Y
      COMPLEX           C(N)
C
      EXTERNAL          CFFTB, CFFTF, CFFTI
      INTRINSIC         ACOS, CMPLX, COS, SIN
C     Initialize the array C to a complex sequence.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X = SIN ((I - 1.0) * 2.0 * PI / N)
        Y = COS ((I - 1.0) * 2.0 * PI / N)
        C(I) = CMPLX (X, Y)
  100 CONTINUE
C
      PRINT 1000
      PRINT 1010, (C(I), I = 1, N)
      CALL CFFTI (N, WSAVE)
      CALL CFFTF (N, C, WSAVE)
      PRINT 1020
      PRINT 1010, (C(I), I = 1, N)
      CALL CFFTB (N, C, WSAVE)
      PRINT 1030
      PRINT 1010, (C(I), I = 1, N)
C
 1000 FORMAT (1X, ’Original Sequence C(I):’)
 1010 FORMAT (1X, 100(F5.1, ’ +’,F4.1,’i  ’))
 1020 FORMAT (1X, ’Transformed Sequence:’)
 1030 FORMAT (1X, ’Unnormalized Recovered Sequence (C(I)*N):’)
C
      END
my_system% f95 -dalign fft_ex05.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence C(I):
   0.0 + 1.0i    1.0 + 0.0i    0.0 +-1.0i   -1.0 + 0.0i
 Transformed Sequence:
   0.0 + 0.0i    0.0 + 0.0i    0.0 + 0.0i    0.0 + 4.0i
 Unnormalized Recovered Sequence (C(I)*N):
   0.0 + 4.0i    4.0 + 0.0i    0.0 +-4.0i   -4.0 + 0.0i
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EZFFT: EZ Fourier Transform Routines

The following routines are used to perform a Fourier transform or inverse transform

of a real periodic sequence. The EZ Fourier or inverse transform routines are

simplified but slower versions of the Fast Fourier Transform routines.

The EZFFT routines use the arguments shown in TABLE 13.

Routine Function

EZFFTI Initialize work array WSAVEfor EZFFTF or EZFFTB

EZFFTF Compute Fourier coefficients of periodic sequence

EZFFTB Compute periodic sequence from Fourier coefficients

TABLE 13 Arguments for EZFFT Routines

Argument Definition

N Sequence length

R For EZFFTF, a real array containing the sequence to be transformed,

unchanged on exit. For EZFFTB, a real array containing the Fourier

coefficients of the inputs.

AZERO The Fourier constant A0

A Real array containing the real parts of the complex Fourier

coefficients. If N is even, then A is length N/2, otherwise A is length

(N–1)/2.

B Real array containing the imaginary parts of the complex Fourier

coefficients. If N is even, then B is length N/2, otherwise B is length

(N–1)/2.

WSAVE Work array initialized by EZFFTI
Using Sun Performance Library Fast Fourier Transform Routines 37



Sample Program: EZ Fourier Transform and Inverse
Transform

CODE EXAMPLE 6 uses EZFFTF to compute a Fourier transform of a real sequence and

EZFFTB to compute the inverse transform. When using EZFFTF, the computed

Fourier coefficients are stored in the arrays A and B. The input array R is not

overwritten. Unlike the output of RFFTF and DFFTF, no packing is performed, and

the complex conjugates are retained.

CODE EXAMPLE 6 EZ Fourier Transform and Inverse Transform

my_system% cat fft_ex06.f
      PROGRAM TEST
C
      INTEGER          N
      PARAMETER       (N = 9)
C
      INTEGER          I
      REAL             A(N), B(N), AZERO, PI, R(N)
      REAL             WSAVE(3 * N + 15)
C
      EXTERNAL         EZFFTB, EZFFTF, EZFFTI
      INTRINSIC        ACOS, COS, SIN
C
C     Initialize array to a sequence of real numbers.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N)  +
     $         4.0 * COS ((I - 1.0) * 8.0 * PI / N)
  100 CONTINUE
C
      CALL EZFFTI (N, WSAVE)
      PRINT 1000
      PRINT 1010, (R(I), I = 1, N)
      CALL EZFFTF (N, R, AZERO, A, B, WSAVE)
      PRINT 1020, AZERO
      PRINT 1030
      PRINT 1010, (A(I), I = 1, N)
      PRINT 1040
      PRINT 1010, (B(I), I = 1, N)
      CALL EZFFTB (N, R, AZERO, A, B, WSAVE)
      PRINT 1050
      PRINT 1010, (R(I), I = 1, N)
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COSQ: Cosine Quarter-Wave Routines

The following routines are used to perform a discrete Fourier cosine transform or

inverse transform of a cosine series with only odd wave numbers.

Because of the assumption of symmetry, the sequence used as input to the cosine

quarter-wave routine only needs to contain the part of the sequence that is sufficient

to determine the entire sequence.

C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (100(F6.1, 1X))
 1020 FORMAT (1X, ’Azero = ’, F4.1)
 1030 FORMAT (1X, ’A =  ’)
 1040 FORMAT (1X, ’B = ’)
 1050 FORMAT (1X, ’Recovered Sequence: ’)
C
      END
my_system% f95 -dalign fft_ex06.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   7.0   -0.1    7.0    1.9    4.0    3.4    0.1    5.1   -1.4
 Azero =  3.0
 A =
   0.0    0.0    0.0    4.0    0.0    0.0    0.0    0.0    0.0
 B =
   1.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
 Recovered Sequence:
   7.0   -0.1    7.0    1.9    4.0    3.4    0.1    5.1   -1.4

Routine Function

[D]COSQI Initialize work array WSAVEfor [D]COSQF or [D]COSQB

[D]COSQF Compute Fourier coefficients of cosine series with odd wave numbers

[D]COSQB Compute periodic sequence from Fourier coefficients

V[D]COSQI Initialize work array for V[D]COSQF or V[D]COSQB

V[D]COSQF Compute Fourier coefficients of multiple cosine series with odd wave

numbers

V[D]COSQB Compute multiple periodic sequences from Fourier coefficients

CODE EXAMPLE 6 EZ Fourier Transform and Inverse Transform (Continued)
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Normalization

The xCOSQ operations are unnormalized inverses of themselves, so a call to

xCOSQF followed by a call to xCOSQB will multiply the input sequence by 4 × N.

The VxCOSQ operations are normalized, so a call of VxCOSQF followed by a call of

VxCOSQB will return the original sequence.

Sample Programs: Cosine Quarter-Wave Transform and
Inverse Transform

CODE EXAMPLE 7 uses COSQFto compute the cosine quarter-wave transform of a real

sequence and COSQBto compute the inverse transform. The computed Fourier

coefficients are packed and stored in the original real array. The inverse transform is

unnormalized and can be normalized by dividing each value by 4*N .

CODE EXAMPLE 7 Cosine Quarter-Wave Transform and Inverse Transform

my_system% cat fft_ex07.f
      PROGRAM TEST
C
      INTEGER       N
      PARAMETER    (N = 6)
      INTEGER       I
      REAL          PI, WSAVE(3 * N + 15), X(N)
C
      EXTERNAL      COSQB, COSQF, COSQI
      INTRINSIC     ACOS, COS
C
C     Initialize array X to a real even quarter-wave sequence,
C     that is, it can be expanded in terms of a cosine series
C     with only odd wave numbers.
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(I) = COS((I - 1) * PI / (2.0 * N))
  100 CONTINUE
C
      CALL COSQI (N, WSAVE)
      PRINT 1000
      PRINT 1010, (X(I), I = 1, N)
      CALL COSQF (N, X, WSAVE)
      PRINT 1020
      PRINT 1010, (X(I), I = 1, N)
      CALL COSQB (N, X, WSAVE)
      PRINT 1030
      PRINT 1010, (X(I), I = 1, N)
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CODE EXAMPLE 8 uses VCOSQFto compute the cosine quarter-wave transform of a

single real sequence and VCOSQBto compute the inverse transform. The computed

Fourier coefficients are packed and stored in the original real array. The inverse

transform is normalized.

C
 1000 FORMAT(1X, ’Original Sequence: ’)
 1010 FORMAT(1X, 100(F7.3, 1X))
 1020 FORMAT(1X, ’Transformed Sequence: ’)
 1030 FORMAT(1X, ’Recovered Sequence: ’)
      END
my_system% f95 -dalign fft_ex07.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   1.000   0.966   0.866   0.707   0.500   0.259
 Transformed Sequence:
   6.000   0.000   0.000   0.000   0.000   0.000
 Recovered Sequence:
  24.000  23.182  20.785  16.971  12.000   6.212

CODE EXAMPLE 8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex08.f
      PROGRAM TEST
C
      INTEGER          M, N
      PARAMETER       (M = 1)
      PARAMETER       (N = 6)
C
      INTEGER          I

REAL PI, WSAVE(3 * N + 15), X(M, N), XT(M, N)
C
      EXTERNAL         VCOSQB, VCOSQF, VCOSQI
      INTRINSIC        ACOS, COS
C
C     Initialize the first row of the array to a real even
C     quarter-wave sequence, that is, it can be expanded in
C     terms of a cosine series with only odd wave numbers.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(M,I) = 40.0 * COS ((I - 1) * PI / (2.0 * N))
  100 CONTINUE
C

CODE EXAMPLE 7 Cosine Quarter-Wave Transform and Inverse Transform (Continued)
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CODE EXAMPLE 9 on page 43 uses VCOSQFto compute the cosine quarter-wave

transform of multiple real sequences and VCOSQBto compute the inverse transforms.

The computed Fourier coefficients of each sequence are packed and stored in the

rows of the original real array. The inverse transforms are normalized.

      PRINT 1000
      PRINT 1010, (X(M, I), I = 1, N)
      CALL VCOSQI (N, WSAVE)
      CALL VCOSQF (M, N, X, XT, M, WSAVE)
      PRINT 1020
      PRINT 1010, (X(M, I), I = 1, N)
      CALL VCOSQB (M, N, X, XT, M, WSAVE)
      PRINT 1030
      PRINT 1010, (X(M, I), I = 1, N)
C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, 100(F5.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END

my_system% f95 -dalign fft_ex08.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
  40.0  38.6  34.6  28.3  20.0  10.4
 Transformed Sequence:
  49.0   0.0   0.0   0.0   0.0   0.0
 Recovered Sequence:
  40.0  38.6  34.6  28.3  20.0  10.4

CODE EXAMPLE 8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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CODE EXAMPLE 9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex09.f
      PROGRAM TEST
C
      INTEGER           M, N
      PARAMETER        (M = 4)
      PARAMETER        (N = 6)
C
      INTEGER           I, J
      REAL              PI, WSAVE(N + 15), X(M, N), XT(M, N)
C
      EXTERNAL          VCOSQB, VCOSQF, VCOSQI
      INTRINSIC         ACOS, COS
C
C Initialize the array to m real even quarter-wave sequences,
C that is, they can be expanded in terms of a cosine series
C     with only odd wave numbers.
      PI = ACOS (-1.0)
      DO 110, J=1, M
        DO 100, I=1, N
          X(J,I) = 40.0 * J * COS ((I-1) * PI / 2.0 / N )
  100   CONTINUE
  110 CONTINUE
C
      CALL VCOSQI (N, WSAVE)
      PRINT 1000
      DO 120, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
  120 CONTINUE
      CALL VCOSQF (M, N, X, XT, M, WSAVE)
      PRINT 1020
      DO 130, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
 130  CONTINUE
      CALL VCOSQB (M, N, X, XT, M, WSAVE)
      PRINT 1030
      DO 140, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
 140  CONTINUE
C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT(1X, ’  Sequence’, I2, ’:  ’, 100(F5.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END
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COST: Cosine Even-Wave Routines

The following routines are used to perform a discrete fourier cosine transform of an

even sequence.

The cosine even-wave routines are their own inverse. xCOST computes the Fourier

coefficients from a periodic sequence or the periodic sequence from the Fourier

coefficients. xCOSTF and xCOSTB routines do not exist for cosine even-wave

transforms.

Because of the assumption of symmetry, the sequence used as input to the cosine

even-wave routine only needs to contain the part of the sequence that is sufficient to

determine the entire sequence.

my_system% f95 -dalign fft_ex09.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   Sequence 1:   40.0  38.6  34.6  28.3  20.0  10.4
   Sequence 2:   80.0  77.3  69.3  56.6  40.0  20.7
   Sequence 3:  120.0 115.9 103.9  84.9  60.0  31.1
   Sequence 4:  160.0 154.5 138.6 113.1  80.0  41.4
 Transformed Sequence:
   Sequence 1:   49.0   0.0   0.0   0.0   0.0   0.0
   Sequence 2:   98.0   0.0   0.0   0.0   0.0   0.0
   Sequence 3:  147.0   0.0   0.0   0.0   0.0   0.0
   Sequence 4:  196.0   0.0   0.0   0.0   0.0   0.0
 Recovered Sequence:
   Sequence 1:   40.0  38.6  34.6  28.3  20.0  10.4
   Sequence 2:   80.0  77.3  69.3  56.6  40.0  20.7
   Sequence 3:  120.0 115.9 103.9  84.9  60.0  31.1
   Sequence 4:  160.0 154.5 138.6 113.1  80.0  41.4

Routine Function

[D]COSTI Initialize work array WSAVEfor [D]COSTF or [D]COSTB

[D]COST Compute the Fourier coefficients or inverse transform of an even sequence

V[D]COSTI Initialize work array for V[D]COSTF or V[D]COSTB

V[D]COST Compute Fourier coefficients or inverse transform of multiple even

sequences

CODE EXAMPLE 9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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Normalization

The xCOST transforms are unnormalized inverses of themselves, so a call of xCOST

followed by another call of xCOST will multiply the input sequence by 2 × (N–1).

The VxCOST transforms are normalized, so a call of VxCOST followed by a call of

VxCOST will return the original sequence.

Sample Program: Cosine Even-Wave Transform and Inverse
Transform

CODE EXAMPLE 10 uses COSTto compute the cosine even-wave transform of a real

sequence and the inverse transform. The computed Fourier coefficients are packed

and stored in the original real array. The inverse transform is unnormalized and can

be normalized by dividing each value by 2*(N-1) .

CODE EXAMPLE 10 Cosine Even-Wave Transform and Inverse Transform

my_system% cat fft_ex10.f
      PROGRAM TEST
C
      INTEGER         N
      PARAMETER      (N = 9)
      INTEGER         I
      REAL            PI, X(N), WSAVE(3 * N + 15)
C
      EXTERNAL        COST, COSTI
      INTRINSIC       ACOS, COS
C
C     Initialize the array X to an even sequence, that is, it
C     can be expanded in terms of a trigonometric series that
C     contains only cosine terms.
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(I) = COS ((I - 1.0) * 2.0 * PI / (N - 1.0))
  100 CONTINUE
C
      CALL COSTI (N, WSAVE)
      PRINT 1000
      PRINT 1010, (X(I), I = 1, N)
      CALL COST (N, X, WSAVE)
      PRINT 1020
      PRINT 1010, (X(I), I = 1, N)
      CALL COST (N, X, WSAVE)
      PRINT 1030
      PRINT 1010, (X(I), I = 1, N)
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SINQ: Sine Quarter-Wave Routines

The following routines are used to compute a a discrete Fourier sine transform or

inverse transform of a of a sine series that contains only odd wave numbers.

Because of the assumption of symmetry, the sequence used as input to the sine

quarter-wave routine only needs to contain the part of the sequence that is sufficient

to determine the entire sequence.

C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, 100(F5.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
      END

my_system% f95 -dalign fft_ex10.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   1.0   0.7   0.0  -0.7  -1.0  -0.7   0.0   0.7   1.0
 Transformed Sequence:
   0.0   0.0   8.0   0.0   0.0   0.0   0.0   0.0   0.0
 Recovered Sequence:
  16.0  11.3   0.0 -11.3 -16.0 -11.3   0.0  11.3  16.0

Routine Function

[D]SINQI Initialize work array WSAVEfor [D]SINQF or [D]SINQB

[D]SINQF Compute Fourier coefficients of sine series with only odd wave numbers

[D]SINQB Compute periodic sequence from Fourier coefficients

V[D]SINQI Initialize work array for V[D]SINQF or V[D]SINQB

V[D]SINQF Compute Fourier coefficients of multiple sine series with only odd wave

numbers

V[D]SINQB Compute multiple periodic sequences from Fourier coefficients

CODE EXAMPLE 10 Cosine Even-Wave Transform and Inverse Transform (Continued)
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Normalization

The xSINQ operations are unnormalized inverses of themselves, so a call to xSINQF

followed by a call to xSINQB will multiply the input sequence by 4 × N. The VxSINQ

operations are normalized, so a call of VxSINQF followed by a call of VxSINQB will

return the original sequence.

Sample Programs: Sine Quarter-Wave Transform and Inverse
Transform

CODE EXAMPLE 11 uses SINQF to compute sine quarter-wave transform of a real

sequence and SINQB to compute the inverse transform. The computed Fourier

coefficients are packed and stored in the original real array. The inverse transform is

unnormalized and can be normalized by dividing each value by 4*N .

CODE EXAMPLE 11 Sine Quarter-Wave Transform and Inverse Transform

my_system% cat fft_ex11.f
      PROGRAM TEST
C
      INTEGER            N
      PARAMETER         (N = 6)
      INTEGER            I
      REAL               PI, WSAVE(3 * N + 15), X(N)
C
      EXTERNAL           SINQB, SINQF, SINQI
      INTRINSIC          ACOS, SIN
C
C     Initialize array X to a real odd quarter-wave sequence,
C that is, it can be expanded in terms of a sine series with
C     only odd wave number.
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(I) = 40.0 * SIN (I * PI / (2.0 * N))
  100 CONTINUE
C
      PRINT 1000
      PRINT 1010, (X(I), I = 1, N)
      CALL SINQI (N, WSAVE)
      CALL SINQF (N, X, WSAVE)
      PRINT 1020
      PRINT 1010, (X(I), I = 1, N)
      CALL SINQB(N, X, WSAVE)
      PRINT 1030
      PRINT 1010, (X(I), I = 1, N)
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CODE EXAMPLE 12 uses VSINQF to compute the sine quarter-wave transform of a

single real sequence and VSINQB to compute the inverse transform. The computed

Fourier coefficients are packed and stored in the original real array. The inverse

transform is normalized.

C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, 100(F6.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END
my_system% f95 -dalign fft_ex11.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   10.4   20.0   28.3   34.6   38.6   40.0
 Transformed Sequence:
  240.0    0.0    0.0    0.0    0.0    0.0
 Recovered Sequence:
  248.5  480.0  678.8  831.4  927.3  960.0

CODE EXAMPLE 12 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex12.f
      PROGRAM TEST
C
      INTEGER         M, N
      PARAMETER      (M = 1)
      PARAMETER      (N = 6)
C
      INTEGER         I
      REAL            PI, WSAVE(N + 15), X(M, N), XT(M, N)
C
      EXTERNAL        VSINQB, VSINQF, VSINQI
      INTRINSIC       ACOS, SIN
C
C     Initialize the first row of the array to a real odd
C     quarter-wave sequence, that is, it can be expanded in
C     terms of a cosine series with only odd wave numbers.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(M,I) = 40.0 * SIN ((I * PI / (2.0 * N)))
  100 CONTINUE

CODE EXAMPLE 11 Sine Quarter-Wave Transform and Inverse Transform (Continued)
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CODE EXAMPLE 13 uses VSINQF to compute the sine quarter-wave transform of

multiple real sequences and VSINQB to compute the inverse transforms. The

computed Fourier coefficients of each sequence are packed and stored in the rows of

the original real array. The inverse transforms are normalized.

C
      CALL VSINQI (N, WSAVE)
      PRINT 1000
      PRINT 1010, (X(M, I), I = 1, N)
      CALL VSINQF (M, N, X, XT, M, WSAVE)
      PRINT 1020
      PRINT 1010, (X(M, I), I = 1, N)
      CALL VSINQB (M, N, X, XT, M, WSAVE)
      PRINT 1030
      PRINT 1010, (X(M, I), I = 1, N)
C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, 100(F5.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END
my_system% f95 -dalign fft_ex12.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
  10.4  20.0  28.3  34.6  38.6  40.0
 Transformed Sequence:
  49.0   0.0   0.0   0.0   0.0   0.0
 Recovered Sequence:
  10.4  20.0  28.3  34.6  38.6  40.0

CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines

my_system% cat fft_ex13.f
      PROGRAM TEST
      INTEGER           M, N
      PARAMETER        (M = 4)
      PARAMETER        (N = 6)
      INTEGER           I, J

REAL PI, WSAVE(N + 15), X(M, N+1), XT(M, N + 1)
C
      EXTERNAL          VSINQB, VSINQF, VSINQI
      INTRINSIC         ACOS, SIN

CODE EXAMPLE 12 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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C
C Initialize the array to m real odd quarter-wave sequence,
C     that is, they can be expanded in terms of a cosine series
C     with only odd wave numbers.
C
      PI = ACOS (-1.0)
      DO 110, J=1, M
        DO 100, I=1, N
          X(J,I) = 40.0 * J * SIN (I * PI / (2.0 * N))
  100   CONTINUE
  110 CONTINUE
C
      CALL VSINQI (N, WSAVE)
      PRINT 1000
      DO 120, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
  120 CONTINUE
      CALL VSINQF (M, N, X, XT, M, WSAVE)
      PRINT 1020
      DO 130, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
  130 CONTINUE
      CALL VSINQB (M, N, X, XT, M, WSAVE)
      PRINT 1030
      DO 140, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
  140 CONTINUE
C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, ’  Sequence’, I2, ’:  ’, 100(F5.1, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END

CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
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SINT: Sine Odd-Wave Transform Routines

The following routines are used to perform a discrete Fourier sine transform of an

odd sequence.

The sine odd-wave routines are their own inverse. xSINT computes the Fourier

coefficients from a periodic sequence or the periodic sequence from the Fourier

coefficients. xSINTF and xSINTB routines do not exist for sine odd-wave transforms.

Because of the assumption of symmetry, the sequence used as input to the sine odd-

wave routine only needs to contain the part of the sequence that is sufficient to

determine the whole sequence.

my_system% f95 -dalign fft_ex13.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
   Sequence 1:   10.4  20.0  28.3  34.6  38.6  40.0
   Sequence 2:   20.7  40.0  56.6  69.3  77.3  80.0
   Sequence 3:   31.1  60.0  84.9 103.9 115.9 120.0
   Sequence 4:   41.4  80.0 113.1 138.6 154.5 160.0
 Transformed Sequence:
   Sequence 1:   49.0   0.0   0.0   0.0   0.0   0.0
   Sequence 2:   98.0   0.0   0.0   0.0   0.0   0.0
   Sequence 3:  147.0   0.0   0.0   0.0   0.0   0.0
   Sequence 4:  196.0   0.0   0.0   0.0   0.0   0.0
 Recovered Sequence:
   Sequence 1:   10.4  20.0  28.3  34.6  38.6  40.0
   Sequence 2:   20.7  40.0  56.6  69.3  77.3  80.0
   Sequence 3:   31.1  60.0  84.9 103.9 115.9 120.0
   Sequence 4:   41.4  80.0 113.1 138.6 154.5 160.0

Routine Function

[D]SINTI Initialize work array WSAVEfor [D]SINQF or [D]SINQB

[D]SINT Compute the Fourier coefficients or inverse transform of a sine

series with only odd wave numbers

V[D]SINTI Initialize work array for V[D]SINQF or V[D]SINQB

V[D]SINT Compute the Fourier coefficients or inverse transform of multiple

sine series with only odd wave numbers

CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector
Routines (Continued)
Using Sun Performance Library Fast Fourier Transform Routines 51



Normalization

The xSINT transforms are unnormalized inverses of themselves, so a call of xSINT

followed by another call of xSINT will multiply the input sequence by 2 × (N+1). The

VxSINT transforms are normalized, so a call of VxSINT followed by a call of VxSINT

will return the original sequence.

Sample Program: Sine Odd-Wave Transform

CODE EXAMPLE 14 uses SINT to compute the sine odd-wave transform of a real

sequence and the inverse transform. The computed Fourier coefficients are packed

and stored in the original real array. The inverse transform is unnormalized and can

be normalized by dividing each value by 2*(N+1) .

CODE EXAMPLE 14 Sine Odd-Wave Transform and Inverse Transform

my_system% cat fft_ex14.f
      PROGRAM TEST
C
      INTEGER             N
      PARAMETER          (N = 9)
C
      INTEGER             I
      REAL                PI, WSAVE(3 * N + 15), X(N)
C
      EXTERNAL            SINT, SINTI
      INTRINSIC           ACOS, SIN
C
C     Initialize the array X to an odd sequence, that is, it
C     can be expanded in terms of a trigonometric series that
C     contains only sine terms.
C
      PI = ACOS (-1.0)
      DO 100, I=1, N
        X(I) =  SIN ( I * 2.0 * PI / (N + 1.0))
  100 CONTINUE
C
      PRINT 1000
      PRINT 1010, (X(I), I = 1, N)
      CALL SINTI (N, WSAVE)
      CALL SINT (N, X, WSAVE)
      PRINT 1020
      PRINT 1010, (X(I), I = 1, N)
      CALL SINT (N, X, WSAVE)
      PRINT 1030
      PRINT 1010, (X(I), I = 1, N)
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Two-Dimensional FFT and Inverse
Transform Routines

The following routines are used to compute a two-dimensional fast Fourier

transform or inverse transform of a two-dimensional periodic sequence.

The xFFT2F routines compute the two-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.

2. Transpose the result matrix.

3. Perform a one-dimensional transform of the columns of the result matrix.

4. Transpose the result matrix to restore the original order of the data points.

C
 1000 FORMAT (1X, ’Original Sequence: ’)
 1010 FORMAT (1X, 100(F7.3, 1X))
 1020 FORMAT (1X, ’Transformed Sequence: ’)
 1030 FORMAT (1X, ’Recovered Sequence: ’)
C
      END
my_system% f95 -dalign fft_ex14.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence:
0.588 0.951 0.951 0.588 0.000 -0.588 -0.951 -0.951 -0.588
 Transformed Sequence:
0.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 Recovered Sequence:
11.756 19.021 19.021 11.756 0.000 -11.756 -19.021 -19.021 -11.756

Routine Function

[R,D,C,Z]FFT2I Initialize the work array WORKfor [R,D,C,Z]FFT2F or

[R,D,C,Z]FFT2B

[R,D,C,Z]FFT2F Compute Fourier coefficients of two-dimensional periodic sequence

[R,D,C,Z]FFT2B Compute periodic sequence from Fourier coefficients

CODE EXAMPLE 14 Sine Odd-Wave Transform and Inverse Transform (Continued)
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Arguments for Two-Dimensional FFT Routines

Complex two-dimensional FFT routines use the arguments shown in TABLE 14.

Arguments for PLACE, FULL, B, and LDB are not used with the complex two-

dimensional FFT routines, because the transformed sequence is stored in the original

input array without any additional manipulations.

Real two-dimensional FFT routines use the arguments shown in TABLE 15.

TABLE 14 Arguments for Complex Two-Dimensional FFT Routines

Argument Definition

M Number of rows to be transformed

N Number of columns to be transformed

A Two-dimensional array A(LDA,N) containing the sequences to be

transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

WORK Work array initialized by xFFT2I

LWORK Dimension of work array WORK

TABLE 15 Arguments for Real Two-Dimensional FFT Routines

Argument Definition

PLACE ‘I’ or ‘i’ specifies that an in-place transform is performed.

‘O’ or ‘o’ specifies that an out-of-place transform is performed.

FULL RFFT2F or DFFT2F only:

‘F’ or ‘f’ specifies that a full result matrix is generated.

Any other character specifies that a partial result matrix is

generated.

M Number of rows to be transformed

N Number of columns to be transformed

A Two-dimensional array A(LDA,N) containing the sequences to be

transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

B Two-dimensional array B(2*LDB,N ) that stores the results of an

out-of-place transform
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Normalization

The xFFT2 operations are unnormalized, so a call of xFFT2F followed by a call of

xFFT2B will multiply the input sequence by M*N.

Data Storage for Two-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

Storage of Complex Two-Dimensional Sequences

When CFFT2For ZFFT2F computes the two-dimensional FFT of a complex sequence,

all Fourier coefficients are retained, and the results are stored in the original array.

Additional storage options for complex two-dimensional sequences are not needed.

Storage of Real Two-Dimensional Sequences

The result of using RFFT2F or DFFT2F to compute the two-dimensional FFT of a real

sequence is a complex vector that contains twice the number of values as the input

sequence.

The data storage format of real two-dimensional FFT routines depends upon the

following storage options.

■ In-place or Out-of-place. When using In-Place, the results are stored in the

modified input array that contains one or two additional rows, depending upon

whether Mis odd or even. When using Out-of-Place, the results are stored in a

separate array.

■ Full or Partial. When using Full, the complex conjugates are retained. When using

Partial, the complex conjugates are discarded.

LDB One half of the actual leading dimension of array that stores results

of out-of-place transform

WORK Work array initialized by xFFT2I

LWORK Dimension of work array WORK

TABLE 15 Arguments for Real Two-Dimensional FFT Routines (Continued)

Argument Definition
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When computing a real one-dimensional FFT, the complex result can be packed and

stored in the original array, because the values identically equal to zero and the

complex conjugates are not stored. When computing the real two-dimensional FFT

using the in-place and partial storage options, the complex conjugates are not stored,

but the values identically equal to zero are stored. Saving the values identically

equal to zero simplifies the indexing that occurs when computing the two-

dimensional FFT. However, the size of the original array is modified to contain one

or two additional rows, which are needed to store the values identically equal to

zero.

The values of the arguments used with the real two-dimensional FFT routines

depend upon whether an in-place or out-of place transform is performed, and

whether the results are stored in a full or partial result matrix, as shown in TABLE 16.

When computing the real two-dimensional FFT of an input sequence of Mrows and

N columns, the computed Fourier coefficients will be stored in a result matrix with

2*M rows and N columns when using the Full storage option. When using the Partial

storage option, the Fourier coefficients will be stored in a result matrix with M+2
rows and N columns when Mis even, or in a result matrix with M+1 rows and N
columns when Mis odd.

TABLE 16 Relationships Between Values of Arguments for Real Two-Dimensional FFT
Routines

Full Result Matrix Partial Result Matrix

In-Place Transform B unused B unused

LDB unused LDB unused

LDA must be even LDA must be even

LDA ≥ 2*M LDA ≥ M+2 if Mis even

LDA ≥ M+1 if Mis odd

A(1:2*M , 1:N) A(1:M+2, 1:N) if Mis even

A(1:M+1, 1:N) if Mis odd

Out-of-Place Transform A unchanged A unchanged

LDA ≥ M LDA≥ M

2*LDB ≥ M 2*LDB ≥ M+2 if Mis even

2*LDB ≥ M+1 if Mis odd

B(1:2*M , 1:N) B(1:M+2 , 1:N) if Mis even

B(1:M+1 , 1:N) if Mis odd
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For example, if M=4 and N=2, the Fourier coefficients will be stored in the output

array as follows:

Using Two-Dimensional FFT Routines to Perform

Two-Dimensional Convolution

Sun Performance Library provides the [S,D,C,Z]CNVCOR routines for computing

the convolution or correlation of a filter with one or more input vectors and the

[S,D,C,Z]CNVCOR2 routines for computing the two-dimensional convolution or

correlation of two matrices. These routines are described in Section “Convolution

and Correlation Routines” on page 74. The two-dimensional FFT routines can also be

used to compute the two-dimensional convolutions of the two two-dimensional

arrays A and B, as described in the following procedure.

1. Compute the two-dimensional FFT of A.

2. Compute the two-dimensional FFT of B.

3. Perform pointwise multiplication of A and B.

4. Compute the inverse two-dimensional FFT of the previous result.

Full Storage Option

X(1,1) = Re(X_0)  X(1,2) = Re(X_0)
X(2,1) = Im(X_0)  X(2,2) = Im(X_0)
X(3,1) = Re(X_1)  X(3,2) = Re(X_1)
X(4,1) = Im(X_1)  X(4,2) = Im(X_1)
X(5,1) = Re(X_2)  X(5,2) = Re(X_2)
X(6,1) = Im(X_2)  X(6,2) = Im(X_2)
X(7,1) = Re(X_3)  X(7,2) = Re(X_3)
X(8,1) = Im(X_3)  X(8,2) = Im(X_3)

Partial Storage Option
X(1,1) = Re(X_0)  X(1,2) = Re(X_0)
X(2,1) = Im(X_0)  X(2,2) = Im(X_0)
X(3,1) = Re(X_1)  X(3,2) = Re(X_1)
X(4,1) = Im(X_1)  X(4,2) = Im(X_1)
X(5,1) = Re(X_2)  X(5,2) = Re(X_2)
X(6,1) = Im(X_2)  X(6,2) = Im(X_2)
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The second transpose can be avoided for increased performance by using the VFFT
and [SDCZ]TRANS routines to explicitly compute the transposed two-dimensional

FFT, as described in the following procedure.

1. Use VFFT to compute one dimensional FFTs along the columns of A.

2. Use ZTRANSto transpose A.

3. Use VFFT to compute one-dimensional FFTs along the columns of the new A.

4. Use VFFT to compute one-dimensional FFTs along the columns of B.

5. Use ZTRANSto transpose B.

6. Use VFFT to compute one-dimensional FFTs along the columns of the new B.

7. Perform pointwise multiplication of A and B.

8. Use VFFT to compute inverse one-dimensional FFTs along the columns of the
result.

9. Use ZTRANSto transpose the result back into its original order.

Sample Program: Two-Dimensional FFT and

Inverse Transform

CODE EXAMPLE 15 uses CFFT2F to compute the two-dimensional FFT of a two-

dimensional complex sequence and CFFT2B to compute the inverse transform. The

computed Fourier coefficients are stored in the original complex array. The inverse

transform is unnormalized and can be normalized by dividing each value by M*N.

CODE EXAMPLE 15 Two-Dimensional FFT and Inverse of Complex Sequence

my_system: cat fft_ex15.f
      PROGRAM TEST
C
      INTEGER           LWORK, M, N
      PARAMETER        (M = 2)
      PARAMETER        (N = 4)
      PARAMETER        (LWORK = 4 * (M + N + N) + 40)
      INTEGER           I, J
      REAL              PI, WORK(LWORK)
      REAL              X, Y
      COMPLEX           A(M,N)
C
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      EXTERNAL          CFFT2B, CFFT2F, CFFT2I
      INTRINSIC         ACOS, CMPLX, COS, SIN
C
C     Initialize the array C to a complex sequence.
      PI = ACOS (-1.0)
      DO 110, J = 1, N
        DO 100, I = 1, M
          X = SIN ((I - 1.0) * 2.0 * PI / N)
          Y = COS ((J - 1.0) * 2.0 * PI / M)
          A(I,J) = CMPLX (X, Y)
  100   CONTINUE
  110 CONTINUE
C
      PRINT 1000
      DO 200, I = 1, M
        PRINT 1010, (A(I,J), J = 1, N)
  200 CONTINUE
      CALL CFFT2I (M, N, WORK)
      CALL CFFT2F (M, N, A, M, WORK, LWORK)
      PRINT 1020
      DO 300, I = 1, M
        PRINT 1010, (A(I,J), J = 1, N)
  300 CONTINUE
      CALL CFFT2B (M, N, A, M, WORK, LWORK)
      PRINT 1030
      DO 400, I = 1, M
        PRINT 1010, (A(I,J), J = 1, N)
  400 CONTINUE
C
 1000 FORMAT (1X, ’Original Sequences:’)
 1010 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i  ’))
 1020 FORMAT (1X, ’Transformed Sequences:’)
 1030 FORMAT (1X, ’Recovered Sequences:’)
C
      END
my_system: f95 -dalign fft_ex15.f -xlic_lib=sunperf
my_system: a.out
 Original Sequences:
  0.0 + 1.0i   0.0 +-1.0i   0.0 + 1.0i   0.0 +-1.0i
  1.0 + 1.0i   1.0 +-1.0i   1.0 + 1.0i   1.0 +-1.0i
 Transformed Sequences:
  4.0 + 0.0i   0.0 + 0.0i   0.0 + 8.0i   0.0 + 0.0i
 -4.0 + 0.0i   0.0 + 0.0i   0.0 + 0.0i   0.0 + 0.0i
 Recovered Sequences:
  0.0 + 8.0i   0.0 +-8.0i   0.0 + 8.0i   0.0 +-8.0i
  8.0 + 8.0i   8.0 +-8.0i   8.0 + 8.0i   8.0 +-8.0i

CODE EXAMPLE 15 Two-Dimensional FFT and Inverse of Complex Sequence (Continued)
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CODE EXAMPLE 15 on page 58 uses RFFT2F to compute the two-dimensional FFT of a

real two-dimensional sequence and RFT2B to compute the inverse transform. This

example uses the FULL storage option and PLACE set to 'O' for out-of-place storage.

The computed Fourier coefficients are stored in a (2*M, N) array where one row

contains the real part of the complex coefficient and the next row contains the

imaginary part of the complex coefficient. In CODE EXAMPLE 15, to better display the

complex conjugate symmetry, the real and imaginary parts of each complex

coefficient are displayed on one line. For example, the following output:

 Transformed Out-of-Place, Full

  (   6.241,   0.000)  (   1.173,   0.000)

  (  -0.018,   1.169)  (   0.304,   0.111)

represents the following values for the Fourier coefficients.

The inverse transform is unnormalized and can be normalized by dividing each

value by M*N.

Column 1 Column 2

Re(X0) Im(X0) Re(X0) Im(X0)

Re(X1) Im(X1) Re(X1) Im(X1)

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage

my_system% cat fft_ex16.f
      PROGRAM TESTFFT
      INTEGER M, N
      PARAMETER(M = 6, N = 2)
      CALL FFT(M,N)
      END

      SUBROUTINE FFT(M, N)
      CHARACTER*1 IS_FULL
      INTEGER I, J, M, N, ISTAT, LWORK, LDA, LDB, LDB_ACTUAL
      REAL RNUM, RAND
      EXTERNAL RFFT2F, RFFT2B, RFFT2I, RAND
      REAL, DIMENSION(:,:), ALLOCATABLE :: AT, B, INPUT
      REAL, DIMENSION(:), ALLOCATABLE :: WT
      LDA = 2*M
      LDB = 2*M

      LWORK = M+2*N+MAX(M,2*N)+30
      ALLOCATE(AT(LDA,N), INPUT(LDA,N), WT(LWORK), B(LDB_ACTUAL,N))
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      CALL RFFT2I (M, N, WT)

      DO  I = 1, N
        DO  J = 1, M
          INPUT(J,I) = RAND(0)
        END DO
      END DO
      AT = INPUT
*
      PRINT *, ’Original Sequence’
      DO I = 1, M
        PRINT ’(100(F8.3))’, (AT(I,J), J = 1, N)
      END DO
      PRINT *
*
*     Example 1
*     Out-of-place, full
*     leading dimension of B (2*LDB) must be at least 2*M
*
      IS_FULL = ’F’
      LDB = M
      CALL RFFT2F (’O’, IS_FULL, M, N, AT, LDA, B, LDB, WT, LWORK)
      PRINT *, ’Transformed Out-of-Place, Full’
      DO I = 1, LDB_ACTUAL, N
        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,
     $     (B(I,J), B(I+1,J), J = 1, N)
      END DO
*      B(M+3:LDB,1:N) = 0
*      PRINT *, ’Transformed, last half clear:’
*      DO I = 1, LDB, N
*        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,
*     $     (B(I,J), B(I+1,J), J = 1, N)
*      END DO
      CALL RFFT2B (’O’, M, N, AT, LDA, B, LDB, WT, LWORK)
      PRINT *, ’Inverse: Scaled Output, Out-of-Place, Full’
      DO I = 1, M
        PRINT ’(100(F8.3))’, (AT(I,J) / (M * N), J = 1, N)
      END DO
      PRINT *
*
*     Example 2
*     in-place, full
*     LDA must be at least 2*M
*
      AT = INPUT
      IS_FULL = ’F’

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage (Continued)
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      CALL RFFT2F (’I’, IS_FULL, M, N, AT, LDA, 0, 0, WT, LWORK)
      PRINT *, ’Transformed In-Place, Full’
      DO I = 1, LDA, 2
        PRINT ’(100(’’  (’’, F8.3, ’’,’’, F8.3, ’’)’’ :))’,
     $     (AT(I,J), AT(I+1,J), J = 1, N)
      END DO
      CALL RFFT2B (’I’, M, N, AT, LDA, 0, 0, WT, LWORK)
      PRINT *, ’Inverse: Scaled Output, In-Place, Full’
      DO I = 1, M
        PRINT ’(100(F8.3))’, (AT(I,J) / (M * N), J = 1, N)
      END DO
      PRINT *
      DEALLOCATE(AT,WT,B)
      END SUBROUTINE
my_system% f95 -dalign fft_ex16.f -xlic_lib=sunperf
my_system% a.out
 Original Sequence
   0.968   0.654
   0.067   0.021
   0.478   0.512
   0.910   0.202
   0.352   0.940
   0.933   0.204

 Transformed Out-of-Place, Full
  (   6.241,   0.000)  (   1.173,   0.000)
  (  -0.018,   1.169)  (   0.304,   0.111)
  (   0.981,   0.647)  (   0.945,   1.071)
  (   1.569,   0.000)  (  -1.790,   0.000)
  (   0.981,  -0.647)  (   0.945,  -1.071)
  (  -0.018,  -1.169)  (   0.304,  -0.111)
 Inverse: Scaled Output, Out-of-Place, Full
   0.968   0.654
   0.067   0.021
   0.478   0.512
   0.910   0.202
   0.352   0.940
   0.933   0.204

 Transformed In-Place, Full
  (   6.241,   0.000)  (   1.173,   0.000)
  (  -0.018,   1.169)  (   0.304,   0.111)
  (   0.981,   0.647)  (   0.945,   1.071)
  (   1.569,   0.000)  (  -1.790,   0.000)
  (   0.981,  -0.647)  (   0.945,  -1.071)
  (  -0.018,  -1.169)  (   0.304,  -0.111)

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage (Continued)
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CODE EXAMPLE 17 is a C example that uses zfft2f to compute the two-dimensional

FFT of a two-dimensional complex sequence and zfft2b to compute the inverse

transform. The computed Fourier coefficients are stored in the original complex

array. The inverse transform is unnormalized and can be normalized by dividing

each value by m*n.

 Inverse: Scaled Output, In-Place, Full
   0.968   0.654
   0.067   0.021
   0.478   0.512
   0.910   0.202
   0.352   0.940
   0.933   0.204

CODE EXAMPLE 17 ZFFT2F and ZFFT2B Example Using C

my_system% cat fft_ex17.c
#include <sunperf.h>
#include <math.h>
#include <stdlib.h>

/*
 * This code demonstrates the use of zfft2i, zfft2f, zfft2b
 */
void
main()
{
  int                     i,j,ip;
  int                     m,n,max_mn;
  int                     lwork,lda;
  doublecomplex    *a;
  double                *work;
  double                scale;
  double                err,maxerr;

  m = 16; n = 8;
  a = (doublecomplex *)malloc(m*n*sizeof(doublecomplex));
  max_mn = m; if (n > m) max_mn = n;
  lwork = 2*(m+n+max_mn)+40;
  work = (double *)malloc(lwork*sizeof(double));

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place
Storage (Continued)
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  /* initialize a as complex(sin(i),sin(j)) */

  ip = 0;
  for (j=0;j<n;j++) {
    for (i=0;i<m;i++) {
      a[ip].r=sin((double)i);
      a[ip].i=sin((double)j);
      ip++;
    }
  }

  zfft2i(m,n,work);

  lda = m;

  /* compute the forward fft */

  zfft2f(m,n,a,lda,(doublecomplex *)&work,lwork);

  /* compute the inverse fft. Note that the same work array can
     be used for both the forward and the inverse fft */

  zfft2b(m,n,a,lda,(doublecomplex *)&work,lwork);

  /* the reconstruction result will be scaled by m*n */

  scale = (double)(m*n);

  maxerr = 0.0;

  ip = 0;
  for (j=0;j<n;j++) {
    for (i=0;i<m;i++) {
      err = fabs(a[ip].r/scale-sin((double)i))+
      fabs(a[ip].i/scale-sin((double)j));
      if (err > maxerr) maxerr = err;
      ip++;
    }
  }

  printf("reconstruction error %g \n",maxerr);

  /* clean up */
  free(a);
  free(work);
}

CODE EXAMPLE 17 ZFFT2F and ZFFT2B Example Using C (Continued)
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CODE EXAMPLE 18 is a C example that uses rfft2f to compute the two-dimensional

FFT of a two-dimensional real sequence and rfft2b to compute the inverse

transform. The computed Fourier coefficients are stored in the original real array

using the partial storage option. The inverse transform is unnormalized and can be

normalized by dividing each value by m*n.

CODE EXAMPLE 18 Example of Using the Partial Storage Option

my_system% fft_ex18.c
#include <sunperf.h>
#include <math.h>
#include <stdlib.h>
/*
 This code demonstrates the use of dfft2i, dfft2f
 a is being initialized as a 2D real array of size
 m x n = 8 x 4:
 a =
   0.700000   1.375463  -0.296165   1.493668
   0.995520   1.127380  -0.225815   1.638000
   1.264642   0.841120  -0.072764   1.698543
   1.483327   0.542254   0.149314   1.669890
   1.632039   0.257480   0.420585   1.554599
   1.697495   0.012234   0.716814   1.362969
   1.673848  -0.171576   1.011541   1.112118
   1.563209  -0.277530   1.278440   0.824454

 The 2D FFT of a is:
 A =
 Columns 0 through 2:
   29.05310 +  0.00000i    8.02813 +  7.64742i   -1.06904 +  0.00000i
   -1.09423 -  0.24829i   -1.78923 -  3.37830i   -2.81937 +  7.27093i
   -0.21980 -  0.09124i   -0.16036 -  1.30903i   -2.62181 +  2.67179i
   -0.08924 -  0.03707i    0.20683 -  0.80372i   -2.59231 +  1.08567i
   -0.06281 +  0.00000i    0.38653 -  0.53453i   -2.58634 +  0.00000i
   -0.08924 +  0.03707i    0.50611 -  0.32973i   -2.59231 -  1.08567i
   -0.21980 +  0.09124i    0.57617 -  0.14256i   -2.62181 -  2.67179i
   -1.09423 +  0.24829i    0.21514 -  0.20391i   -2.81937 -  7.27093i

 Column 3:
    8.02813 -  7.64742i
    0.21514 +  0.20391i
    0.57617 +  0.14256i
    0.50611 +  0.32973i
    0.38653 +  0.53453i
    0.20683 +  0.80372i
   -0.16036 +  1.30903i
   -1.78923 +  3.37830i
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 To use dfft2f with the 'in-place' and 'partial storage'  options,
 a has to be embedded into an  (m+2) x n = 10 x 8 real array (case
 m even). After calling dfft2f, this array contains the (m/2+1) x n =

5 x 4 upper half of the complex result (the lower part can be determined
 via the conjugate symmetry property of the result along the first
 dimension.

 The result of dfft2f will be:

   A(0:4,:) =

 Columns 0 through 2:

   29.05310 +  0.00000i    8.02813 +  7.64742i   -1.06904 +  0.00000i
   -1.09423 -  0.24829i   -1.78923 -  3.37830i   -2.81937 +  7.27093i
   -0.21980 -  0.09124i   -0.16036 -  1.30903i   -2.62181 +  2.67179i
   -0.08924 -  0.03707i    0.20683 -  0.80372i   -2.59231 +  1.08567i
   -0.06281 +  0.00000i    0.38653 -  0.53453i   -2.58634 +  0.00000i

 Column 3:

    8.02813 -  7.64742i
    0.21514 +  0.20391i
    0.57617 +  0.14256i
    0.50611 +  0.32973i
    0.38653 +  0.53453i

  This result is stored in the original real array, i.e. a(0,0) contains
  29.05310, a(1,0) contains 0.00000, a(2,0) contains -1.09423 etc.

 */
void
main()
{
  int           i,j,ipa;
  int           ip;
  int           m,n,max_m2n,max_mn;
  int           lwork,lda;
  double        *a;
  double        *work_a;
  char          place,full;

CODE EXAMPLE 18 Example of Using the Partial Storage Option (Continued)
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  m = 8; n = 4;
  lda = m+2;

  a = (double *)malloc(lda*n*sizeof(double));

  max_m2n = m; if (2*n > m) max_m2n = 2*n;

  lwork = 2*(m+n+max_m2n)+30;

  work_a = (double *)malloc(lwork*sizeof(double));

  /* initialize a */

  ipa = 0;
  ip  = 0;
  for (j=0;j<n;j++) {
    for (i=0;i<m;i++) {
      a[ipa]=sin(.3*ip)+.7;
      ipa++;
      ip++;
    }
    ipa+=2;
  }

  dfft2i(m,n,work_a);

  full = 'N';
  place = 'I';

  dfft2f(place,full,m,n,a,lda,NULL,0,work_a,lwork);

  /* clean up */
  free );
  free(work_a);
}

CODE EXAMPLE 18 Example of Using the Partial Storage Option (Continued)
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Three-Dimensional FFT and Inverse
Transform Routines

The following routines are used to perform a three-dimensional fast Fourier

transform or inverse transform of a three-dimensional periodic sequence.

The xFFT3F routines compute the three-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.

2. Transpose the result matrix.

3. Perform a one-dimensional transform of the columns of the result matrix.

4. Reflect the result matrix so that the planes become columns.

5. Perform a one-dimensional transform of the columns of the result matrix.

6. Reflect and transpose the result matrix to restore the original order of the data

points.

Arguments for Three-Dimensional FFT Routines

Complex three-dimensional FFT routines use the arguments shown in TABLE 17.

Routine Function

[R,D,C,Z]FFT3I Initialize the work array WORKfor [R,D,C,Z]FFT3F or
[R,D,C,Z]FFT3B

[R,D,C,Z]FFT3F Compute Fourier coefficients of three-dimensional periodic

sequence

[R,D,C,Z]FFT3B Compute periodic sequence from Fourier coefficients

TABLE 17 Arguments for Complex Three-Dimensional FFT Routines

Argument Definition

M Number of rows to be transformed

N Number of columns to be transformed

K Number of planes to be transformed
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Arguments for PLACE, FULL, B, and LDB are not used with the complex three-

dimensional FFT routines, because the transformed sequence is stored in the original

input array without any additional manipulations.

Real three-dimensional FFT routines use the arguments shown in TABLE 18.

A Three-dimensional array A(LDA,N,K) containing the sequences to

be transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed,

where LDA ≥ M

LD2A Second dimension of array to be transformed, where LD2A ≥ N

WORK Work array initialized by xFFT3I

LWORK Dimension of work array WORK

TABLE 18 Arguments for Real Three-Dimensional FFT Routines

Argument Definition

PLACE ‘I’ or ‘i’ specifies that an in-place transform is performed.

‘O’ or ‘o’ specifies that an out-of-place transform is performed.

FULL RFFT3F or DFFT3F only:

‘F’ or ‘f’ specifies that a full result matrix is generated.

Any other character specifies that a partial result matrix is

generated.

M Number of rows to be transformed

N Number of columns to be transformed

K Number of planes to be transformed

A Three-dimensional array A(LDA,N,K) containing the sequences to

be transformed and the results of an in-place transform

LDA Leading dimension of array containing data to be transformed

B Three-dimensional array B(2*LDB,N,K) that stores the results of

an out-of-place transform

LDB Leading dimension of array that stores results of out-of-place

transform

WORK Work array initialized by xFFT3I

LWORK Dimension of work array WORK

TABLE 17 Arguments for Complex Three-Dimensional FFT Routines (Continued)

Argument Definition
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Normalization

The xFFT3 operations are unnormalized, so a call of xFFT3F followed by a call of

xFFT3B will multiply the input sequence by M*N*K.

Data Storage for Three-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon

whether the sequence is complex or real.

Storage of Complex Three-Dimensional Sequences

When CFFT3F or ZFFT3F computes the three-dimensional FFT of a complex

sequence, all Fourier coefficients are retained, and the results are stored in the

original three-dimensional array A(LDA, LD2A, K) . Additional storage options for

complex three-dimensional sequences are not required.

Storage of Real Three-Dimensional Sequences

The result of using RFFT3For DFFT3F to compute the three-dimensional FFT of a real

sequence is a complex vector that contains twice the number of values as the input

sequence.

The data storage format of real three-dimensional FFT routines depends upon the

following storage options.

■ In-place or Out-of-place. When using In-Place, the results are stored in the

modified input array that contains one or two additional rows, depending upon

whether Mis odd or even. When using Out-of-Place, the results are stored in a

separate array.

■ Full or Partial. When using Full, complex conjugates are retained. When using

Partial, the complex conjugates are discarded.

When computing a real one-dimensional FFT, the complex result can be packed and

stored in the original array, because the values identically equal to zero and the

complex conjugates are not stored. When computing the real three-dimensional FFT

using the in-place and partial storage options, the complex conjugates are not stored,

but the values identically equal to zero are stored. Saving the values identically

equal to zero simplifies the indexing that occurs when computing the three-

dimensional FFT. However, the size of the original array is modified to contain one

or two additional rows, which are needed to store the values identically equal to

zero.
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The values of the arguments used with the real three-dimensional FFT routines

depend upon whether an in-place or out-of place transform is performed, and

whether the results are stored in a full or partial result matrix, as shown in TABLE 19.

When computing the real 3D FFT of an input sequence of Mrows, N columns, and K
planes, the computed Fourier coefficients will be stored in a result matrix with 2*M
rows, N columns for each value of K when using the Full storage option. When using

the Partial storage option, the Fourier coefficients will be stored in a result matrix

with M+2 rows and N columns for each value of K when Mis even, or in M+1 rows

and N columns when Mis odd. For each value of K, the storage format of the Fourier

coefficients in the Mrows and N columns is the same as for the real two-dimensional

FFT routines. See “Storage of Real Two-Dimensional Sequences” on page 55.

TABLE 19 Relationship Between Values of Arguments for Real Three-Dimensional FFT
Routines

Full Result Array Partial Result Array

In-Place Transform B unused B unused

LDB unused LDB unused

LDA must be even LDA must be even

LDA ≥ 2*M LDA ≥ M+2 if Mis even

LDA ≥ M+1 if Mis odd

A(1:2*M, 1:N) A(1:M+2, 1:N) if Mis even

A(1:M+1, 1:N) if Mis odd

Out-of-Place Transform A unchanged A unchanged

LDA ≥ M LDA≥ M

LDB ≥ 2*M LDB ≥ M/2+1 if Mis even

LDB ≥ (M-1)/2+1 if Mis odd

B(1:2*M , 1:N , 1:K) B(1:M+2, 1:N , 1:K) if Mis even

B(1:M+1, 1:N, 1:K) if Mis odd
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Sample Program: Three-Dimensional FFT and

Inverse Transform

CODE EXAMPLE 19 uses CFFT3F to compute the three-dimensional FFT of a three-

dimensional complex sequence and CFFT3B to compute the inverse transform. The

computed Fourier coefficients are stored in the original complex array. The inverse

transform is unnormalized and can be normalized by dividing each value by M*N*K.

CODE EXAMPLE 19 Three-Dimensional Fast Fourier Transform and Inverse Transform

my_system% cat fft_ex19.f
      PROGRAM TEST
      INTEGER          LWORK, M, N, K
      PARAMETER        (K = 2)
      PARAMETER        (M = 2)
      PARAMETER        (N = 4)
      PARAMETER        (LWORK = 4 * (M + N + N) + 45)
      INTEGER           I, J, L
      REAL              PI, WORK(LWORK)
      REAL              X, Y
      COMPLEX           C(M,N,K)
C
      EXTERNAL          CFFT3B, CFFT3F, CFFT3I
      INTRINSIC         ACOS, CMPLX, COS, SIN
C     Initialize the array C to a complex sequence.
      PI = ACOS (-1.0)
      DO 120, L = 1, K
        DO 110, J = 1, N
          DO 100, I = 1, M
            X = SIN ((I - 1.0) * 2.0 * PI / N)
            Y = COS ((J - 1.0) * 2.0 * PI / M)
            C(I,J,L) = CMPLX (X, Y)
  100     CONTINUE
  110   CONTINUE
  120 CONTINUE
C
      PRINT 1000
      DO 210, L = 1, K
        PRINT 1010, L
        DO 200, I = 1, M
          PRINT 1020, (C(I,J,L), J = 1, N)
  200   CONTINUE
  210 CONTINUE
      CALL CFFT3I (M, N, K, WORK)
      CALL CFFT3F (M, N, K, C, M, N, WORK, LWORK)
      PRINT 1030
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      DO 310, L = 1, K
        PRINT 1010, L
        DO 300, I = 1, M
          PRINT 1020, (C(I,J,L), J = 1, N)
  300   CONTINUE
  310 CONTINUE
      CALL CFFT3B (M, N, K, C, M, N, WORK, LWORK)
      PRINT 1040
      DO 410, L = 1, K
        PRINT 1010, L
        DO 400, I = 1, M
          PRINT 1020, (C(I,J,L), J = 1, N)
  400   CONTINUE
  410 CONTINUE
C
 1000 FORMAT (1X, ’Original Sequences:’)
 1010 FORMAT (1X, ’  Plane’, I2)
 1020 FORMAT (5X, 100(F5.1,’ +’,F5.1,’i  ’))
 1030 FORMAT (/1X, ’Transformed Sequences:’)
 1040 FORMAT (/1X, ’Recovered Sequences:’)
      END
my_system% f95 -dalign fft_ex19.f -xlic_lib=sunperf
my_system% a.out
 Original Sequences:
   Plane 1

0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i
1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i

   Plane 2
0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i
1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i

 Transformed Sequences:
   Plane 1

8.0 + 0.0i 0.0 + 0.0i 0.0 + 16.0i 0.0 + 0.0i
-8.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i

   Plane 2
0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i
0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i

 Recovered Sequences:
   Plane 1

0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i
16.0 + 16.0i 16.0 +-16.0i 16.0 + 16.0i 16.0 +-16.0i

   Plane 2
0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i

      16.0 + 16.0i   16.0 +-16.0i   16.0 + 16.0i   16.0 +-16.0i

CODE EXAMPLE 19 Three-Dimensional Fast Fourier Transform and Inverse Transform
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Convolution and Correlation Routines

The [S,D,C,Z]CNVCOR routines are used to compute the convolution or correlation

of a filter with one or more input vectors. The [S,D,C,Z]CNVCOR2 routines are used

to compute the two-dimensional convolution or correlation of two matrices.

Arguments for Convolution and Correlation

Routines

The one-dimensional convolution and correlation routines use the arguments shown

in TABLE 20.

TABLE 20 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.

‘R’ or ‘r’ specifies that correlation is computed.

FOUR ‘T’ or ‘t’ specifies that the Fourier transform method is used.

‘D’ or ‘d’ specifies that the direct method is used, where the

convolution or correlation is computed from the definition of

convolution and correlation. (See Note 1)

NX Length of filter vector, where NX≥ 0.

X Filter vector

IFX Index of first element of X, where NX≥ IFX ≥ 1

INCX Stride between elements of the vector in X, where INCX > 0.

NY Length of input vectors, where NY≥ 0.

NPRE Number of implicit zeros prefixed to the Y vectors, where NPRE≥ 0.

M Number of input vectors, where M≥ 0.

Y Input vectors.

IFY Index of the first element of Y, where NY≥ IFY ≥ 1

INC1Y Stride between elements of the input vectors in Y, where INC1Y > 0.

INC2Y Stride between input vectors in Y, where INC2Y > 0.

NZ Length of the output vectors, where NZ ≥ 0.
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Note 1. When the lengths of the two sequences to be convolved are similar, the FFT

method is faster than the direct method. However, when one sequence is much

larger than the other, such as when convolving a large time-series signal with a small

filter, the direct method performs faster than the FFT-based method.

The two-dimensional convolution and correlation routines use the arguments shown

in TABLE 21.

K Number of Z vectors, where K ≥ 0. If K < M, only the first K vectors

will be processed. If K > M, all input vectors will be processed and

the last M-K output vectors will be set to zero on exit.

Z Result vectors

IFZ Index of the first element of Z, where NZ ≥ IFZ ≥ 1

INC1Z Stride between elements of the output vectors in Z, where

INCYZ > 0.

INC2Z Stride between output vectors in Z, where INC2Z > 0.

WORK Work array

LWORK Length of work array

TABLE 21 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

CNVCOR ‘V’ or ‘v’ specifies that convolution is computed.

‘R’ or ‘r’ specifies that correlation is computed.

METHOD ‘T’ or ‘t’ specifies that the Fourier transform method is used.

‘D’ or ‘d’ specifies that the direct method is used, where the

convolution or correlation is computed from the definition of

convolution and correlation. (See Note 1)

TRANSX ‘N’ or ‘n’ specifies that X is the filter matrix

‘T’ or ‘t’ specifies that the transpose of X is the filter matrix

SCRATCHX ‘N’ or ‘n’ specifies that X must be preserved

‘S’ or ‘s’ specifies that X can be used for scratch space. The

contents of X are undefined after returning from a call where X is

used for scratch space.

TRANSY ‘N’ or ‘n’ specifies that Y is the input matrix

‘T’ or ‘t’ specifies that the transpose of Y is the input matrix

TABLE 20 Arguments for One-Dimensional Convolution and Correlation Routines
SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR(Continued)

Argument Definition
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Note 1. When the sizes of the two matrices to be convolved are similar, the FFT

method is faster than the direct method. However, when one sequence is much

larger than the other, such as when convolving a large data set with a small filter, the

direct method performs faster than the FFT-based method.

SCRATCHY ‘N’ or ‘n’ specifies that Y must be preserved

‘S’ or ‘s’ specifies that Y can be used for scratch space. The

contents of X are undefined after returning from a call where Y is

used for scratch space.

MX Number of rows in the filter matrix X, where MX≥ 0

NX Number of columns in the filter matrix X, where NX≥ 0

X Filter matrix. X is unchanged on exit when SCRATCHXis ‘N’ or ‘n’
and undefined on exit when SCRATCHXis ‘S’ or ‘s’ .

LDX Leading dimension of array containing the filter matrix X.

MY Number of rows in the input matrix Y, where MY≥ 0.

NY Number of columns in the input matrix Y, where NY≥ 0

MPRE Number of implicit zeros prefixed to each row of the input matrix Y
vectors, where MPRE≥ 0.

NPRE Number of implicit zeros prefixed to each column of the input

matrix Y, where NPRE≥ 0.

Y Input matrix. Y is unchanged on exit when SCRATCHYis ‘N’ or ‘n’
and undefined on exit when SCRATCHYis ‘S’ or ‘s’ .

LDY Leading dimension of array containing the input matrix Y.

MZ Number of output vectors, where MZ≥ 0.

NZ Length of output vectors, where NZ ≥ 0.

Z Result vectors

LDZ Leading dimension of the array containing the result matrix Z,

where LDZ ≥ MAX(1,MZ) .

WORKIN Work array

LWORK Length of work array

TABLE 21 Arguments for Two-Dimensional Convolution and Correlation Routines
SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2(Continued)

Argument Definition
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Work Array WORKfor Convolution and

Correlation Routines

The minimum dimensions for the WORKwork arrays used with the one-dimensional

and two-dimensional convolution and correlation routines are shown in TABLE 24 on

page 78. The minimum dimensions for one-dimensional convolution and correlation

routines depend upon the values of the arguments NPRE, NX, NY, and NZ.

The minimum dimensions for two-dimensional convolution and correlation routines

depend upon the values of the arguments shown TABLE 22.

TABLE 22 Arguments Affecting Minimum Work Array Size for Two-Dimensional
Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument Definition

MX Number of rows in the filter matrix

MY Number of rows in the input matrix

MZ Number of output vectors

NX Number of columns in the filter matrix

NY Number of columns in the input matrix

NZ Length of output vectors

MPRE Number of implicit zeros prefixed to each row of the input

matrix

NPRE Number of implicit zeros prefixed to each column of the input

matrix

MPOST MAX(0,MZ-MYC)

NPOST MAX(0,NZ-NYC)

MYC MPRE+ MPOST+ MYC_INIT, where MYC_INIT depends upon

filter and input matrices, as shown in TABLE 23

NYC NPRE+ NPOST+ NYC_INIT , where NYC_INIT depends upon

filter and input matrices, as shown in TABLE 23
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MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix and

Y is the input matrix.

The values assigned to the minimum work array size is shown in TABLE 24.

TABLE 23 MYC_INIT and NYC_INIT Dependencies

Y Transpose(Y)

X Transpose(X) X Transpose(X)

MYC_INIT MAX(MX,MY) MAX(NX,MY) MAX(MX,NY) MAX(NX,NY)

NYC_INIT MAX(NX,NY) MAX(MX,NY) MAX(NX,MY) MAX(MX,MY)

TABLE 24 Minimum Dimensions and Data Types for WORKWork array Used With
Convolution and Correlation Routines

Routine Minimum Work Array Size ( WORK) Type

SCNVCOR, DCNVCOR 4*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY))

REAL, REAL*8

CCNVCOR, ZCNVCOR 2*(MAX(NX,NPRE+NY) +
MAX(0,NZ-NY)))

COMPLEX,
COMPLEX*16

SCNVCOR21, DCNVCOR21

1. Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

MY + NY + 30 COMPLEX,
COMPLEX*16

CCNVCOR21, ZCNVCOR21 If MY= NY: MYC + 8
If MY≠ NY: MYC + NYC + 16

COMPLEX,
COMPLEX*16
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Sample Program: Convolution

CODE EXAMPLE 20 uses CCNVCORto perform FFT convolution of two complex

vectors.

If any vector overlaps a writable vector, either because of argument aliasing or ill-

CODE EXAMPLE 20 One-Dimensional Convolution Using Fourier Transform Method and
COMPLEXData

my_system% cat con_ex20.f
      PROGRAM TEST
C
      INTEGER           LWORK
      INTEGER           N
      PARAMETER        (N = 3)
      PARAMETER        (LWORK = 4 * N + 15)
C
      COMPLEX           P1(N), P2(N), P3(2*N-1), WORK(LWORK)
C
      DATA P1 / 1, 2, 3 /,  P2 / 4, 5, 6 /
C
      EXTERNAL          CCNVCOR
C
      PRINT *, ’P1:’
      PRINT 1000, P1
      PRINT *, ’P2:’
      PRINT 1000, P2
C

CALL CCNVCOR (’V’, ’T’, N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,
     $              2 * N - 1, 1, P3, 1, 1, 1, WORK, LWORK)
C
      PRINT *, ’P3:’
      PRINT 1000, P3
C
 1000 FORMAT (1X, 100(F4.1,’ +’,F4.1,’i  ’))
C
      END
my_system% f95 -dalign con_ex20.f -xlic_lib=sunperf
my_system% a.out
 P1:
  1.0 + 0.0i   2.0 + 0.0i   3.0 + 0.0i
 P2:
  4.0 + 0.0i   5.0 + 0.0i   6.0 + 0.0i
 P3:

4.0 + 0.0i 13.0 + 0.0i 28.0 + 0.0i 27.0 + 0.0i 18.0 + 0.0i
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chosen values of the various INC arguments, the results are undefined and can vary

from one run to the next.

The most common form of the computation, and the case that executes fastest, is

applying a filter vector X to a series of vectors stored in the columns of Y with the

result placed into the columns of Z. In that case, INCX = 1, INC1Y = 1, INC2Y ≥ NY,
INC1Z = 1, INC2Z ≥ NZ. Another common form is applying a filter vector X to a series

of vectors stored in the rows of Y and store the result in the row of Z, in which case

INCX = 1, INC1Y ≥ NY, INC2Y = 1, INC1Z ≥ NZ, and INC2Z = 1.

Convolution can be used to compute the products of polynomials. CODE EXAMPLE 21

uses SCNVCORto compute the product of 1 + 2x + 3x2 and 4 + 5x + 6x2.

CODE EXAMPLE 21 One-Dimensional Convolution Using Fourier Transform Method and
REALData

my_system% cat con_ex21.f
      PROGRAM TEST
      INTEGER     LWORK, NX, NY, NZ
      PARAMETER  (NX = 3)
      PARAMETER  (NY = NX)
      PARAMETER  (NZ = 2*NY-1)
      PARAMETER  (LWORK = 4*NZ+32)
      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /
C
      PRINT 1000, ’X’
      PRINT 1010, X
      PRINT 1000, ’Y’
      PRINT 1010, Y
      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,
     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1, WORK, LWORK)
      PRINT 1020, ’Z’
      PRINT 1010, Z
 1000 FORMAT (1X, ’Input vector ’, A1)
 1010 FORMAT (1X, 300F5.0)
 1020 FORMAT (1X, ’Output vector ’, A1)
      END
my_system% f95 -dalign con_ex21.f -xlic_lib=sunperf
my_system% a.out
 Input vector X
    1.   2.   3.
 Input vector Y
    4.   5.   6.
 Output vector Z
    4.  13.  28.  27.  18.
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Making the output vector longer than the input vectors, as in the example above,

implicitly adds zeros to the end of the input. No zeros are actually required in any of

the vectors, and none are used in the example, but the padding provided by the

implied zeros has the effect of an end-off shift rather than an end-around shift of the

input vectors.

CODE EXAMPLE 22 will compute the product between the vector [ 1, 2, 3 ] and the

circulant matrix defined by the initial column vector [ 4, 5, 6 ]:

CODE EXAMPLE 22 Convolution Used to Compute the Product of a Vector and Circulant
Matrix

my_system% cat con_ex22.f
      PROGRAM TEST
C
      INTEGER     LWORK, NX, NY, NZ
      PARAMETER  (NX = 3)
      PARAMETER  (NY = NX)
      PARAMETER  (NZ = NY)
      PARAMETER  (LWORK = 4*NZ+32)
      REAL        X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
      DATA X / 1, 2, 3 /,  Y / 4, 5, 6 /, WORK / LWORK*0 /
C
      PRINT 1000, ’X’
      PRINT 1010, X
      PRINT 1000, ’Y’
      PRINT 1010, Y
      CALL SCNVCOR (’V’, ’T’, NX, X, 1, 1,
     $NY, 0, 1, Y, 1, 1, 1,   NZ, 1, Z, 1, 1, 1,
     $WORK, LWORK)
      PRINT 1020, ’Z’
      PRINT 1010, Z
C
 1000 FORMAT (1X, ’Input vector ’, A1)
 1010 FORMAT (1X, 300F5.0)
 1020 FORMAT (1X, ’Output vector ’, A1)
      END
my_system% f95 -dalign con_ex22.f -xlic_lib=sunperf
my_system% a.out
 Input vector X
    1.   2.   3.
 Input vector Y
    4.   5.   6.
 Output vector Z
   31.  31.  28.
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The difference between this example and the previous example is that the length of

the output vector is the same as the length of the input vectors, so there are no

implied zeros on the end of the input vectors. With no implied zeros to shift into, the

effect of an end-off shift from the previous example does not occur and the end-

around shift results in a circulant matrix product.

CODE EXAMPLE 23 Two-Dimensional Convolution Using Direct Method

my_system% cat con_ex23.f
      PROGRAM TEST
C
      INTEGER           M, N
      PARAMETER        (M = 2)
      PARAMETER        (N = 3)
C
      INTEGER           I, J
      COMPLEX           P1(M,N), P2(M,N), P3(M,N)
      DATA P1 / 1, -2, 3, -4, 5, -6 /,  P2 / -1, 2, -3, 4, -5, 6 /
      EXTERNAL          CCNVCOR2
C
      PRINT *, ’P1:’
      PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)
      PRINT *, ’P2:’
      PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)
C
      CALL CCNVCOR2 (’V’, ’Direct’, ’No Transpose X’, ’No Overwrite X’,
     $   ’No Transpose Y’, ’No Overwrite Y’, M, N, P1, M,
     $   M, N, 0, 0, P2, M, M, N, P3, M, 0, 0)
C
      PRINT *, ’P3:’
      PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)
C
 1000 FORMAT (3(F5.1,’ +’,F5.1,’i  ’))
C
      END
my_system% f95 -dalign con_ex23.f -xlic_lib=sunperf
my_system% a.out
 P1:
  1.0 +  0.0i    3.0 +  0.0i    5.0 +  0.0i
 -2.0 +  0.0i   -4.0 +  0.0i   -6.0 +  0.0i
 P2:
 -1.0 +  0.0i   -3.0 +  0.0i   -5.0 +  0.0i
  2.0 +  0.0i    4.0 +  0.0i    6.0 +  0.0i
 P3:
-83.0 +  0.0i  -83.0 +  0.0i  -59.0 +  0.0i
 80.0 +  0.0i   80.0 +  0.0i   56.0 +  0.0i
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