Using Sun Performance Library Fast Fourier Transform Routines

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-6147-10
October 2000, Revision A

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.
This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape ${ }^{\mathrm{TM}}$, Netscape Navigator ${ }^{\mathrm{TM}}$, and the Netscape Communications Corporation logo ${ }^{\mathrm{TM}}$, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun ${ }^{\text {TM }}$ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.
Sun f90/f95 is derived from Cray CF90 ${ }^{\mathrm{TM}}$, a product of Silicon Graphics, Inc.
Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.
Ce produit ou document est distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à Netscape ${ }^{\mathrm{TM}}$, Netscape Navigator ${ }^{\mathrm{TM}}$, et the Netscape Communications Corporation logo ${ }^{\mathrm{TM}}$: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L'interface d'utilisation graphique OPEN LOOK et Sun ${ }^{\mathrm{TM}}$ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90 ${ }^{\text {TM }}$, un produit de Silicon Graphics, Inc.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product Names

As part of Sun's new developer product strategy, we have changed the names of our development tools from Sun WorkShop ${ }^{\text {TM }}$ to Forte ${ }^{\text {TM }}$ Developer products. The products, as you can see, are the same high-quality products you have come to expect from Sun; the only thing that has changed is the name.

We believe that the Forte ${ }^{\mathrm{TM}}$ name blends the traditional quality and focus of Sun's core programming tools with the multi-platform, business application deployment focus of the Forte tools, such as Forte Fusion ${ }^{\mathrm{TM}}$ and Forte ${ }^{\mathrm{TM}}$ for Java ${ }^{\mathrm{TM}}$. The new Forte organization delivers a complete array of tools for end-to-end application development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old product names in WorkShop 5.0 to the new names in Forte Developer 6.

Old Product Name	New Product Name
Sun Visual WorkShop ${ }^{\text {TM }}$ C++	Forte ${ }^{\text {TM }} \mathrm{C}++$ Enterprise Edition 6
Sun Visual WorkShop ${ }^{\text {TM }} \mathrm{C}++$ Personal Edition	Forte ${ }^{\text {TM }} \mathrm{C}++$ Personal Edition 6
Sun Performance WorkShop ${ }^{\text {TM }}$ Fortran	Forte ${ }^{\text {TM }}$ for High Performance Computing 6
Sun Performance WorkShop ${ }^{\text {TM }}$ Fortran Personal Edition	Forte ${ }^{\text {TM }}$ Fortran Desktop Edition 6
Sun WorkShop Professional ${ }^{\text {TM }} \mathrm{C}$	Forte ${ }^{\text {TM }} \mathrm{C} 6$
Sun WorkShop ${ }^{\text {TM }}$ University Edition	Forte ${ }^{\text {TM }}$ Developer University Edition 6

In addition to the name changes, there have been major changes to two of the products.

- Forte for High Performance Computing contains all the tools formerly found in Sun Performance WorkShop Fortran and now includes the C++ compiler, so High Performance Computing users need to purchase only one product for all their development needs.
- Forte Fortran Desktop Edition is identical to the former Sun Performance WorkShop Personal Edition, except that the Fortran compilers in that product no longer support the creation of automatically parallelized or explicit, directivebased parallel code. This capability is still supported in the Fortran compilers in Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we can continue to fulfill your needs into the future.

Contents

Preface 1
Using Sun Performance Library Fast Fourier Transform Routines 7
Introduction to the FFTPACK and VFFTPACK Packages 8
Extensions to FFTPACK and VFFTPACK 10
The Discrete Fourier Transform (DFT) 10
Naming Conventions 14
Sun Performance Library FFT Routines 16
Calling FFT Routines 19
Fortran Interface Conventions 19
C Interface Conventions 19
Using 64-Bit FFT Routines 20
Sequence Length N 21
Work Array WSAVE for FFT and VFFT Routines 23
Parallelization 26
One-Dimensional FFT and Inverse Transform Routines 26
Arguments for One-Dimensional FFT and VFFT Routines 27
Data Storage for One-Dimensional FFT and VFFT Routines 28
Storage of Complex Sequences 28
Storage of Real Sequences 28
FFT: Fast Fourier Transform Routines 33
Normalization 34
Sample Programs: Fast Fourier Transform and Inverse Transform 34
EZFFT: EZ Fourier Transform Routines 37
Sample Program: EZ Fourier Transform and Inverse Transform 38
COSQ: Cosine Quarter-Wave Routines 39
Normalization 40
Sample Programs: Cosine Quarter-Wave Transform and Inverse Transform 40
COST: Cosine Even-Wave Routines 44
Normalization 45
Sample Program: Cosine Even-Wave Transform and Inverse Transform 45
SINQ: Sine Quarter-Wave Routines 46
Normalization 47
Sample Programs: Sine Quarter-Wave Transform and Inverse Transform 47
SINT: Sine Odd-Wave Transform Routines 51
Normalization 52
Sample Program: Sine Odd-Wave Transform 52
Two-Dimensional FFT and Inverse Transform Routines 53
Arguments for Two-Dimensional FFT Routines 54
Normalization 55
Data Storage for Two-Dimensional FFT Routines 55
Storage of Complex Two-Dimensional Sequences 55
Storage of Real Two-Dimensional Sequences 55
Using Two-Dimensional FFT Routines to Perform Two-Dimensional Convolution 57
Sample Program: Two-Dimensional FFT and Inverse Transform 58
Three-Dimensional FFT and Inverse Transform Routines 68
Arguments for Three-Dimensional FFT Routines 68
Normalization 70
Data Storage for Three-Dimensional FFT Routines 70
Storage of Complex Three-Dimensional Sequences 70
Storage of Real Three-Dimensional Sequences 70
Sample Program: Three-Dimensional FFT and Inverse Transform 72
Convolution and Correlation Routines 74
Arguments for Convolution and Correlation Routines 74
Work Array work for Convolution and Correlation Routines 77
Sample Program: Convolution 79
References 83
Index 85

Code Examples

CODE EXAMPLE 1 RFFTOPT Example 22
CODE EXAMPLE 2 Real and Complex FFT Example 30
CODE EXAMPLE 3 C Example Showing How to Extract the Complex Result From the Packet Output of dfftf 32
CODE EXAMPLE 4 Fast Fourier Transform and Inverse Transform for Real Values 34
CODE EXAMPLE 5 Fast Fourier Transform and Inverse Transform for Complex Values 36
CODE EXAMPLE 6 EZ Fourier Transform and Inverse Transform 38
CODE EXAMPLE $7 \quad$ Cosine Quarter-Wave Transform and Inverse Transform 40
CODE EXAMPLE 8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines 41
code example $9 \quad$ Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines 43
CODE EXAMPLE 10 Cosine Even-Wave Transform and Inverse Transform 45
CODE EXAMPLE 11 Sine Quarter-Wave Transform and Inverse Transform 47
CODE EXAMPLE 12 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines 48
CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines 49
CODE EXAMPLE 14 Sine Odd-Wave Transform and Inverse Transform 52
CODE EXAMPLE 15 Two-Dimensional FFT and Inverse of Complex Sequence 58
CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place Storage 60
CODE EXAMPLE 17 zFFT2F and zFFT2B Example Using C 63
CODE EXAMPLE 18 Example of Using the Partial Storage Option 65
CODE EXAMPLE 19
CODE EXAMPLE 20 One-Dimensional Convolution Using Fourier Transform Method and complex Data 79
CODE EXAMPLE 21 One-Dimensional Convolution Using Fourier Transform Method and REAL Data 80
CODE EXAMPLE 22 Convolution Used to Compute the Product of a Vector and Circulant Matrix 81
CODE EXAMPLE 23 Two-Dimensional Convolution Using Direct Method 82

Preface

This book describes how to use the Sun Performance Library ${ }^{\text {TM }}$ fast Fourier transform (FFT) routines that are supported by the Sun WorkShop ${ }^{\text {TM }} 6$ update 1 FORTRAN 77, Fortran 95, and C compilers. Sun Performance Library FFT routines are based on the FFTPACK and VFFTPACK libraries, which are available from Netlib (http://www.netlib.org).

This book does not describe the mathematics of the FFT or details of how the FFT algorithm is implemented. For information on these topics, see the sources listed in "References" on page 83.

Who Should Use This Book

This book is intended for programmers who want to use the Sun Performance Library FFT routines in their code. Users should have a working knowledge of the Fortran or C language and some understanding of the base FFTPACK and VFFTPACK libraries available from Netlib.

Access to Sun WorkShop Development Tools

Because Sun WorkShop product components and man pages do not install into the standard/usr/bin/ and/usr/share/man directories, you must change your PATH and MANPATH environment variables to enable access to Sun WorkShop compilers and tools.

To determine if you need to set your PATH environment variable:

1. Display the current value of the PATH variable by typing:
```
% echo $PATH
```

2. Review the output for a string of paths containing /opt/SUNWspro/bin/. If you find the paths, your PATH variable is already set to access Sun WorkShop development tools. If you do not find the paths, set your PATH environment variable by following the instructions in this section.

To determine if you need to set your MANPATH environment variable:

1. Request the workshop man page by typing:
```
% man workshop
```

2. Review the output, if any.

If the workshop(1) man page cannot be found or if the man page displayed is not for the current version of the software installed, follow the instructions in this section for setting your MANPATH environment variable.

Note - The information in this section assumes that your Sun WorkShop products are installed in the /opt directory. If your Sun WorkShop products are not installed in the /opt directory, contact your system administrator for the equivalent path on your system.

The PATH and MANPATH variables should be set in your home. cshrc file if you are using the C shell or in your home . profile file if you are using the Bourne or Korn shells:

- To use Sun WorkShop commands, add the following to your PATH variable:

```
/opt/SUNWspro/bin
```

- To access Sun WorkShop man pages with the man command, add the following to your MANPATH variable:
/opt/SUNWspro/man
For more information about the PATH variable, see the $\operatorname{csh}(1), \operatorname{sh}(1)$, and $\mathrm{ksh}(1)$ man pages. For more information about the MANPATH variable, see the man(1) man page. For more information about setting your PATH and MANPATH variables to access this release, see the Sun WorkShop 6 Installation Guide or your system administrator.

Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop documentation.

TABLE P-1 Typographic Conventions

Typeface	Meaning	Examples
AaBbCc123	The names of commands, files, and directories; on-screen computer output	Edit your . login file. Use ls -a to list all files. $\%$ You have mail.
AaBbCc123	What you type, when contrasted with on-screen computer output	\% su Password:
$A a B b C c 123$	Book titles, new words or terms, words to be emphasized	Read Chapter 6 in the User's Guide. These are called class options. You must be superuser to do this.
$A a B b C c 123$	Command-line placeholder text; replace with a real name or value	To delete a file, type rm filename.

Related Documentation

For more information about this product, see the following sources. (The names of our development tools has changed from Sun WorkShop ${ }^{\text {TM }}$ to Forte ${ }^{\text {TM }}$ Developer products; you might see both product names used.)

Note - If your Sun WorkShop 6 update 1 software is not installed in the /opt directory, ask your system administrator for the equivalent path on your system.

- Man pages and readmes. This documentation describes the new features, performance enhancements, problems and workarounds, and software corrections in this Sun WorkShop 6 update 1 release.

You can access these documents in HTML on your local system or network by pointing your browser to file:/opt/SUNWspro/docs/index.html.

- The Sun WorkShop and Sun WorkShop TeamWare online help. The online help has been updated for the new features in this Sun WorkShop 6 update 1 release.

You can access the online help on your local system or network by pointing your browser to file:/opt/SUNWspro/docs/index.html. You can access the online help from the Help menu in the Sun WorkShop products.

- What's New in Sun WorkShop 6 update 1. This book describes the new features in this Sun WorkShop 6 update 1 release and in the Sun WorkShop 6 release.

You can access this book on your local system or network by pointing your browser to file:/opt/SUNWspro/docs/index.html. You can also access it by pointing your browser to http://docs.sun.com and searching for the Forte Developer 6 update 1 collection.

- Sun WorkShop 6 manuals. These manuals were provided with Sun WorkShop 6. Information in the Sun WorkShop 6 update 1 man pages, readmes, and online help supersedes information in the Sun WorkShop 6 manuals.

You can access the manuals on your local system or network by pointing your browser to the Sun WorkShop 6 update 1 Documentation Index (file:/opt/SUNWspro/docs/index.html). You can also access them by pointing your browser to http://docs.sun.com and searching for the Forte C, Forte C++, Forte for High Performance Computing, and Forte TeamWare products.

The following Sun WorkShop manuals are only accessible on your local system or network (by pointing your browser to
file:/opt/SUNWspro/docs/index.html) and not through
http://docs.sun.com:

- Sun WorkShop Memory Monitor User's Manual
- Standard C++ Class Library Reference
- Standard C++ Library User's Guide
- Tools.h++ Class Library Reference
- Tools.h++ User's Guide
- Sun Performance Library Reference
- Sun WorkShop 6 update 1 supplements. The supplements provide more detailed information on some of the major new features in this Sun WorkShop 6 update 1 release.

You can access the supplements by pointing your browser to http://docs.sun.com and searching for the Forte Developer 6 update 1 collection.

- Sun WorkShop 6 update 1 Release Notes. These notes provide installationrelated and late-breaking information about this Sun WorkShop 6 update 1 release. Information in the release notes supersedes information in any of the other documentation.

The release notes are available as a text file on the Forte Developer 6 update 1 CD at /cdrom/devpro_v8n1_platform/release_notes.txt. They are also available in HTML on the Forte Developer Products Hot News page by pointing your browser at http://www.sun.com/forte/developer/hotnews.html.

Using Sun Performance Library Fast Fourier Transform Routines

Many problems involve computing the discrete Fourier transform (DFT) of a periodic sequence of length N, where N is the number of data points or samples. The number of calculations required to compute the DFT is proportional to N^{2}. The fast Fourier transform (FFT) was developed to efficiently compute the DFT, where the number of calculations required to compute the FFT is proportional to $N \log _{2} N$.

Sun Performance Library ${ }^{\text {TM }}$ provides routines for computing the FFT or inverse transform (synthesis) of a sequence of length N. The FFT routines are based on FFTPACK and VFFTPACK, which are collections of public domain subroutines available from Netlib (http://www.netlib.org). These routines have been enhanced and optimized for SPARC ${ }^{\text {TM }}$ platforms, and then bundled with the Sun Performance Library. The Sun Performance Library also includes two-dimensional FFT routines, three-dimensional FFT routines, and convolution and correlation routines.

This document describes how to use the Sun Performance Library FFT routines and provides examples of their use. This document does not describe the details of the FFT algorithms or the mathematics of the DFT. For more information on these topics, see the sources listed in "References" on page 83.

For information on the Fortran and C interfaces and types of arguments used with each FFT routine, see the section 3P man pages for the individual routines. For example, to display the man page for the RFFTI routine, type man -s 3P rffti. The man page routine names use lowercase letters.

Introduction to the FFTPACK and VFFTPACK Packages

Sun Performance Library contains FFT routines based on FFTPACK and VFFTPACK. Sun Performance Library also contains two-dimensional and three-dimensional FFT routines, which are not a part of FFTPACK or VFFTPACK.

FFTPACK routines operate on a single one-dimensional sequence of length N. After storing the sequence as a vector in an array, the fast sine, fast cosine, fast Fourier transform, or inverse transform of the sequence is computed. To process an additional sequence, the new sequence must be stored in the array before computing the FFT or inverse transform.

VFFTPACK routines are extensions of FFTPACK routines that operate on multiple one-dimensional sequences supplied simultaneously. Rather than storing and processing each sequence separately, the sequences are stored in a two-dimensional array, and then each sequence is processed.

VFFTPACK routines store the multiple one-dimensional sequences in a twodimensional array, but the routines compute only a one-dimensional Fourier transform of each sequence. The two-dimensional and three-dimensional FFT routines provided with Sun Performance Library differ from the VFFTPACK routines. The two-dimensional FFT routines perform a two-dimensional Fourier transform of a sequence stored in a two-dimensional array, and the threedimensional FFT routines perform a three-dimensional transform of a sequence stored in a three-dimensional array.

TABLE 1 summarizes some of the similarities and differences between the single vector FFTPACK, multiple vector VFFTPACK routines, two-dimensional FFT routines, and three-dimensional FFT routines.
table 1 Comparison Between Single Vector and Multiple Vector Routines

	Single Vector	Multiple Vector
One-Dimensional Routines		
Input	Vector of length N	An array of vectors
Output	Single transform or inverse transform	Multiple transforms or inverse transform (one transform or inverse transform per sequence)
Results	Unnormalized ${ }^{1}$	Normalized
Two-Dimensional Routines		
Input	Two-dimensional array	Multiple vector two-
Output	Two-dimensional transform or inverse transform	dimensional routines are not supported
Results	Unnormalized	
Three-Dimensional Routines		
Input	Three-dimensional array	Multiple vector three-
Output	Three-dimensional transform or inverse transform	dimensional routines are not supported
Results	Unnormalized	

[^0]
Extensions to FFTPACK and VFFTPACK

Sun Performance Library provides the following extensions to the standard Netlib FFTPACK and VFFTPACK packages.

- Double precision and double complex transforms. Because routines that process double precision and double complex data are not available in the standard package from Netlib, calls to these routines might not be portable.
- Two-dimensional and three-dimensional FFTs. Netlib FFTPACK and VFFTPACK routines support one-dimensional FFTs.
- Convolution and correlation routines.
- Fortran 95 and C interfaces to FFTPACK and VFFTPACK. Conventions for these interfaces are described in detail in the Sun Performance Library User's Guide.
- Optimizations for specific SPARC instruction set architectures.
- Support for a 64 -bit enabled Solaris ${ }^{\mathrm{TM}}$ Operating Environment.
- Support for parallel processing compiler options.
- Support for multiple processor hardware options.

The Discrete Fourier Transform (DFT)

The FFT and VFFT routines provide an efficient means of computing the complex or real discrete Fourier transform and the discrete Fourier sine transform or discrete Fourier cosine transform of a real symmetric sequence.

The following definition of the DFT is used when calculating the complex discrete Fourier transform of a periodic sequence, where $i=\sqrt{-1}$.

$$
X_{k}=\sum_{n=1}^{N} x_{n} e^{-i 2 \pi(n-1)(k-1) / N}, \quad k=1, \ldots, N
$$

When calculating the inverse complex discrete Fourier transform, the following definition is used.

$$
x_{n}=\sum_{k=1}^{N} X_{k} e^{i 2 \pi(n-1)(k-1) / N}, \quad n=1, \ldots, N
$$

The results on the inverse transform are unnormalized and can be normalized by dividing each value by N.

When computing the DFT of a real sequence, the resulting array of Fourier coefficients is conjugate symmetric, where $X_{k}{ }^{*}=X_{N-k-2}$ for $\mathrm{k}>1$, when using a one-based notation, or $X_{k}{ }^{*}=X_{N-k}$ for $\mathrm{k}>0$, when using a zero-based notation. The asterisk * denotes complex conjugation, where $(a+i b)^{*}=a-i b$. The number of calculations required to compute the DFT is reduced by taking advantage of this symmetry.

When computing the transform of a real sequence, the complex discrete Fourier transform can be rewritten in the real trigonometric form shown in TABLE 2. In TABLE 2, $X_{(2 k-2)}$ equals the real part of $X_{k}, X_{(2 k-1)}$ equals the imaginary part of X_{k}, and X_{N} equals the real part of $X_{(N / 2)+1}$.
table 2 Formulas for Real FFT Routines
Transform
Odd $\boldsymbol{N} \quad$ For $k=2, \ldots,(N+1) / 2$,

$$
\begin{aligned}
X_{1} & =\sum_{n=1}^{N} x_{n} \\
X_{(2 k-2)} & =\sum_{n=1}^{N} x_{n} \cos \left(\frac{(k-1)(n-1) 2 \pi}{N}\right) \\
X_{(2 k-1)} & =\sum_{n=1}^{N}-x_{n} \sin \left(\frac{(k-1)(n-1) 2 \pi}{N}\right)
\end{aligned}
$$

Even $\boldsymbol{N} \quad$ For $k=2, \ldots, N / 2$

$$
\begin{aligned}
X_{1} & =\sum_{n=1}^{N} x_{n} \\
X_{(2 k-2)} & =\sum_{n=1}^{N} x_{n} \cos \left(\frac{(k-1)(n-1) 2 \pi}{N}\right) \\
X_{(2 k-1)} & =\sum_{n=1}^{N}-x_{n} \sin \left(\frac{(k-1)(n-1) 2 \pi}{N}\right) \\
X_{N} & =\sum_{n=1}^{N}(-1)^{(n-1)} x_{n}
\end{aligned}
$$

TABLE 2 Formulas for Real FFT Routines (Continued)
Inverse Transform
Odd $\boldsymbol{N} \quad$ For $n=1, \ldots, N$

$$
\begin{aligned}
x_{n}= & X_{1}+ \\
& \sum_{k=2}^{(N+1) / 2}\left(2 X_{(2 k-2)} \cos \left(\frac{(k-1)(n-1) 2 \pi}{N}\right)-2 X_{(2 k-1)} \sin \left(\frac{(k-1)(n-1) 2 \pi}{N}\right)\right)
\end{aligned}
$$

Even $\boldsymbol{N} \quad$ For $n=1, \ldots, N$,

$$
\begin{aligned}
x_{n}= & X_{1}+ \\
& \sum_{k=2}^{N / 2}\left(2 X_{(2 k-2)} \cos \left(\frac{(k-1)(n-1) 2 \pi}{N}\right)-2 X_{(2 k-1)} \sin \left(\frac{(k-1)(n-1) 2 \pi}{N}\right)\right)+ \\
& (-1)^{n-1} X_{N}
\end{aligned}
$$

The FFT routines can be used to compute the discrete Fourier cosine transform, discrete Fourier sine transform, and inverse transforms of the functions listed in table 3.
table 3 Symmetries Supported by FFT and VFFT Routines

Symmetry	Definition	Trigonometric Expansion
Cosine Even-Wave	An even function $f(t)$ that satisfies the condition $f(-t)=f(t)$.	Trigonometric series containing only cosine terms.
Cosine Quarter-Wave	A even function with half-wave symmetry $f(t)=-f(t+T / 2)$, where T is the period of the function.	Trigonometric series containing only cosine terms with odd wave numbers.
Sine Odd-Wave	An odd function $f(t)$ that satisfies the condition $f(-t)=-f(t)$.	Trigonometric series containing only sine terms.
Sine Quarter-Wave	A odd function with half-wave symmetry $f(t)=-f(t+T / 2)$.	Trigonometric series containing only sine terms with odd wave numbers.

The formulas for the symmetries listed in TABLE 3 are shown in TABLE 4.

TABLE 4 Formulas for Symmetries Supported by FFT and VFFT Routines

Cosine Even-Wave ${ }^{1}$

$\begin{aligned} & \text { Transform/ } \\ & \text { Inverse Transform }\end{aligned} \quad X_{k}=x_{1}+2 \sum_{n=1}^{N-1} x_{n} \cos \left(\frac{(k-1)(n-1) \pi}{N-1}\right)+(-1)^{(k-1)} x_{N}, \quad k=1, \ldots, N$

Cosine Quarter-Wave

Transform $\quad X_{k}=x_{1}+2 \sum_{n=2}^{N} x_{n} \cos \left(\frac{(2 k-1)(n-1) \pi}{2 N}\right), \quad k=1, \ldots, N$

Inverse Transform $\quad x_{n}=4 \sum_{k=1}^{N} X_{k} \cos \left(\frac{(2 k-1)(n-1) \pi}{2 N}\right), \quad n=1, \ldots, N$

Sine Odd-Wave ${ }^{1}$

$\begin{aligned} & \text { Transform/ } \\ & \text { Inverse Transform }\end{aligned} \quad X_{k}=2 \sum_{n=1}^{N} x_{n} \sin \left(\frac{k n \pi}{(N+1)}\right), \quad k=1, \ldots, N$
Sine Quarter-Wave
$\begin{array}{lll}\text { Transform } & X_{k}=2 \sum_{n=1}^{N-1} x_{n} \sin \left(\frac{(2 k-1) n \pi}{2 N}\right)+(-1)^{(k-1)} x_{N}, & k=1, \ldots, N \\ \text { Inverse Transform } & x_{n}=4 \sum_{k=1}^{N} X_{k} \sin \left(\frac{(2 k-1) n \pi}{2 N}\right), & n=1, \ldots, N\end{array}$

1. Because the cosine even-wave and sine odd-wave routines perform either the transform or inverse transform, depending upon whether the input array contains the Fourier coefficients or the periodic sequence, only the notation for the transform is shown in this table.

For additional information on the formulas used to calculate the discrete transforms of symmetric sequences, see the documentation provided with FFTPACK, available on Netlib at http://www.netlib.org/fftpack/doc.

Naming Conventions

The name of each FFT or VFFT routine is made up of a base name that denotes the operation performed and a prefix that denotes the operand data type. For example, the routine CFFTF performs a fast Fourier transform of a complex sequence.

Prefixes used with FFT and VFFT base names are shown in table 5.
table 5 Prefix and Operand Data Types

	Prefix	Operand Data Type
FFT Routines	No prefix	REAL, REAL*4, REAL (4)
	R	REAL, REAL*4, REAL (4)
	D	DOUBLE, REAL*8, REAL (8)
VFFT Routines	C	COMPLEX, COMPLEX*8, COMPLEX (4)
	Z	DOUBLE COMPLEX, COMPLEX*16, COMPLEX (8)
	VD	REAL, REAL*4, REAL (4)
	VC	DOUBLE, REAL*8, REAL (8)
	VZ	DOMPLEX, COMPLEX*8, COMPLEX (4)

FFT and VFFT base names are shown in TABLE 6 on page 15. The last character of the base name is one of the following:

- I: Initialize the Fourier transform or inverse Fourier transform routine
- F: Compute the forward transform (the Fourier transform)
- B: Compute the backward transform (the inverse Fourier transform or synthesis)

TABLE $6 \quad$ FFT and VFFT Base Names

Base Name	Operation
COSQB	Inverse cosine quarter-wave transform (synthesis)
COSQF	Cosine quarter-wave transform
COSQI	Initialize cosine quarter-wave transform or inverse transform
COST	Cosine even-wave transform
COSTI	Initialize cosine even-wave transform
EZFFTB	Inverse EZ transform (synthesis)
EZFFTF	EZ transform
EZFFTI	Initialize EZ transform
FFTB	Inverse transform (synthesis)
FFTF	Forward transform
FFTI	Initialize before computing a transform or inverse transform
SINQB	Inverse sine quarter-wave transform (synthesis)
SINQF	Sine quarter-wave transform
SINQI	Initialize sine quarter-wave transform or inverse transform
SINT	Sine odd-wave transform
SINTI	Initialize sine odd-wave transform

In this manual, the following conventions are used when referring to routines that exist for multiple data types:

- The prefix x is added to the base name when the information applies to REAL, DOUBLE, COMPLEX, and DOUBLE COMPLEX versions of that routine.
- Specific prefixes are listed in square brackets [] before the base name when information does not apply to all versions of the routine.

The following example shows samples of these naming conventions.

Convention	Routines
x FFTF	RFFTF, DFFTF, CFFTF, and ZFFTF
$[R, D]$ FFTI	RFFTI or DFFTI
$[C$, Z]FFTF	CFFTF or ZFFTF
$\mathrm{V}[\mathrm{R}, \mathrm{D}, \mathrm{C}, \mathrm{Z}] \mathrm{FFTF}$	VRFFTF, VDFFTF, VCFFTF, or VZFFTF

Sun Performance Library FFT Routines

Sun Performance Library contains the routines shown in TABLE 8. The data type of the arguments follows the conventions shown in TABLE 7.
table 7 Argument Data Types

Argument	Data Type
AZERO, A, B, R (EZFFT routines)	Real
FULL, PLACE, ROWCOL	Character
N, M, K, LDA, LD2A, LDB, LWORK, MDIMX	Integer
A, B, X, XT	Same as data type of routine called
WSAVE, WORK	See TABLE 11 on page 24

TABLE 8 FFT Routines

Routine	Arguments	Function
COSQB, DCOSQB	$\mathrm{N}, \mathrm{X}, \mathrm{WSAVE}$	Inverse cosine quarter-wave transform
VCOSQB, VDCOSQB	$\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{XT}, \mathrm{MDIMX}, \mathrm{WSAVE}$	Inverse cosine quarter-wave transform (Vector)
COSQF, DCOSQF	$\mathrm{N}, \mathrm{X}, \mathrm{WSAVE}$	Cosine quarter-wave transform
VCOSQF, VDCOSQF	$\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{XT}, \mathrm{MDIMX,WSAVE}$	Cosine quarter-wave transform (Vector)
COSQI, DCOSQI	$\mathrm{N}, \mathrm{WSAVE}$	Initialize cosine quarter-wave transform and inverse transform
VCOSQI, VDCOSQI	$\mathrm{N}, \mathrm{WSAVE}$	Initialize cosine quarter-wave transform and inverse transform (Vector)
COST, DCOST	$\mathrm{N}, \mathrm{X}, \mathrm{WSAVE}$	Cosine even-wave transform
VCOST, VDCOST	$\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{XT}, \mathrm{MDIMX,WSAVE}$	Cosine even-wave transform (Vector)
COSTI, DCOSTI	$\mathrm{N}, \mathrm{WSAVE}$	Initialize cosine even-wave transform
VCOSTI, VDCOSTI	$\mathrm{N}, \mathrm{WSAVE}$	Initialize cosine even-wave transform (Vector)

TABLE $8 \quad$ FFT Routines (Continued)

Routine	Arguments	Function
EZFFTB	N, R, AZERO, A, B, WSAVE	EZ inverse Fourier transform
EZFFTF	N, R, AZERO, A, B, WSAVE	EZ Fourier transform
EZFFTI	N, WSAVE	Initialize EZ Fourier transform and inverse transform
RFFTB, DFFTB, CFFTB, ZFFTB	N, X, WSAVE	Inverse Fourier transform
VRFFTB, VDFFTB	M, N, X, XT, MDIMX, WSAVE	Inverse Fourier transform (Vector)
VCFFTB, VZFFTB	M, N, X, XT, MDIMX, ROWCOL, WSAVE	
RFFTF, DFFTF, CFFTF, ZFFTF	N, X, WSAVE	Fourier transform
VRFFTF, VDFFTF	M, N, X, XT, MD IMX, WSAVE	Fourier transform (Vector)
VCFFTF, VZFFTF	M, N, X, XT, MDIMX, ROWCOL, WSAVE	
RFFTI, DFFTI, CFFTI, ZFFTI	N, WSAVE	Initialize Fourier transform and inverse transform
VRFFTI, VDFFTI, VCFFTI, VZFFTI	N, WSAVE	Initialize Fourier transform and inverse transform (Vector)
SINQB, DSINQB	N, X, WSAVE	Inverse sine quarter-wave transform
VSINQB, VDSINQB	M, N, X, XT, MDIMX, WSAVE	Inverse sine quarter-wave transform (Vector)
SINQF, DSINQF	N, X, WSAVE	Sine quarter-wave transform
VSINQF, VDSINQF	M, N, X, XT, MDIMX, WSAVE	Sine quarter-wave transform (Vector)
SINQI, DSINQI	N, WSAVE	Initialize sine quarter-wave transform and inverse transform
VSINQI, VDSINQI	N, WSAVE	Initialize sine quarter-wave transform and inverse transform (Vector)
SINT, DSINT	N, X, WSAVE	Sine odd-wave transform
VSINT, VDSINT	M, N, X, XT, MD IMX, WSAVE	Sine odd-wave transform (Vector)
SINTI, DSINT	N, WSAVE	Initialize sine odd-wave transform
VSINTI, VDSINTI	N, WSAVE	Initialize sine odd-wave transform (Vector)

TABLE $8 \quad$ FFT Routines (Continued)

Routine	Arguments	Function
RFFT2B, DFFT2B	PLACE, M, N, A, LDA, B, LDB, WORK, LWORK	Inverse two-dimensional Fourier transform
CFFT2B, ZFFT2B	M, N, A, LDA , WORK, LWORK	
RFFT2F, DFFT2F	PLACE, FULL, M, N, A, LDA, B, LDB, WORK, LWORK	Two-dimensional Fourier transform
CFFT2F, ZFFT2F	M, N, A, LDA, WORK, LWORK	
RFFT2I, DFFT2I, CFFT2I, ZFFT2I	M, N, WORK	Initialize two-dimensional Fourier transform and inverse transform
RFFT3B, DFFT3B	PLACE, M, N, K, A, LDA, B, LDB, WORK, LWORK	Inverse three-dimensional Fourier transform
CFFT3B, ZFFT3B	M, N, K, A, LDA, LD2A, WORK, LWORK	
RFFT3F, DFFT3F	PLACE, FULL, M, N, K, A, LDA, B , LDB, WORK, LWORK	Three-dimensional Fourier transform
CFFT3F, ZFFT3F	$\mathrm{M}, \mathrm{~N}, \mathrm{~K}, \mathrm{~A}, \mathrm{LDA}, \mathrm{LD} 2 \mathrm{~A},$ WORK, LWORK	
RFFT3I, DFFT3I, CFFT3I, ZFFT3I	M, N, K, WORK	Initialize three-dimensional Fourier transform and inverse transform

In addition to the FFT and VFFT routines listed in TABLE 8, the following routines are described in this manual.

TABLE 9 Convolution and Correlation Routines

Routine	Arguments	Function
SCNVCOR, DCNVCOR, CCNVCOR, ZCNVCOR	CNVCOR, FOUR, NX, X, IFX, INCX, NY, NPRE, M, Y, IFY, INC1Y, INC2Y, NZ, K, Z, IFZ, INC1Z, INC2Z, WORK, LWORK	Convolution or correlation of two vectors
SCNVCOR2, DCNVCOR2, CCNVCOR2, ZCNVCOR2	CNVCOR, METHOD, TRANSX, SCRATCHX, TRANSY, SCRATCHY, MX, NX, X, LDX, MY, NY, MPRE, NPRE, Y, LDY, MZ, NZ, Z, LDZ, WORKIN, LWORK	Convolution or correlation of two matrices

Calling FFT Routines

FFT routines can be called using FORTRAN 77, Fortran 95, or C interfaces. 64-bit interfaces for compiling code that supports a 64-bit Solaris Operating Environment are also provided.

Fortran Interface Conventions

Sun Performance Library FORTRAN 77 and Fortran 95 interfaces use the following conventions:

- All arguments are passed by reference.
- The number of arguments to a routine is fixed.
- Types of arguments must match.
- Arrays are stored columnwise.
- Indices are based at one, following standard Fortran practice.

C Interface Conventions

Sun Performance Library C interfaces use the following conventions:

- Input-only scalars are passed by value rather than by reference. Complex and double complex arguments are not considered scalars because they are not implemented as a scalar type by C.
- Complex scalars can be passed as either structures or arrays of length 2.
- Types of arguments must match even after C does type conversion. For example, be careful when passing a single precision real value, because a C compiler can automatically promote the argument to double precision.
- Arrays are stored columnwise. For Fortran programmers, this is the natural order in which arrays are stored. For C programmers, this is the transpose of the order in which they usually work. References in the documentation and man pages to rows refer to columns and vice versa.
- Array indices are based at zero in conformance with C conventions, rather than being based at one in conformance with Fortran conventions.

Using 64-Bit FFT Routines

To compile code for a 64-bit enabled Solaris Operating Environment, use -xarch=v9 [a|b] and convert all integer arguments to 64-bit arguments. 64-bit routines require the use of 64 -bit integers.

Sun Performance Library provides 32 -bit and 64-bit interfaces. To use the 64-bit interfaces:

- Modify the Sun Performance Library routine name. For C, FORTRAN 77, and Fortran 95 code, append _64 to the names of Sun Performance Library routines (for example, rfftf_64 or CFFTB_64). For Fortran 95 code with the USE SUNPERF statement, routines can be called using the optional interfaces (interfaces where certain arguments can be omitted), but _ 64 must still be appended to the Sun Performance Library routine names. The compiler will infer the correct interface and values for the optional arguments, but the compiler cannot determine if the optional arguments are 32-bit integers or 64-bit integers.
- Promote integers to 64 bits. Double precision variables and the real and imaginary parts of double complex variables are already 64 bits. Only the integers are promoted to 64 bits.

To control promotion of integer arguments, do one of the following:

- To promote all default integers (integers declared without explicit byte sizes) from 32 bits to 64 bits, compile with -xtypemap=integer: 64 .
- When using Fortran, to promote specific integers, change INTEGER or INTEGER*4 declarations to INTEGER*8.

Note - When calling a 32-bit interface, such as ZFFTF, from a 64-bit code, Sun Performance Library internally converts the arguments to 64 bits, and then calls the 64-bit interface (ZFFTF_64). Extra overhead is associated with this argument conversion.

Sequence Length N

The efficiency of the FFT routines depends upon the decomposition and length of the sequence N. Sun Performance Library FFT routines use the divide-and-conquer approach, where the transform of a sequence is a composite of transforms of shorter sequences.

The value of N affects the efficiency of the transform as follows:

- If N can be factored into powers of $2,3,4,5,7,11$, or 13 , the transform is computed using the FFT, which is an $N \log _{2} N$ operation.
- If N is a product of some of these prime factors, along with additional prime factors, the part of N that can be factored into powers of $2,3,4,5,7,11$, or 13 is computed using the FFT. The transform of the sequence corresponding to the additional prime factors is computed using the DFT, which is an N^{2} operation.
- If N cannot be factored into powers of $2,3,4,5,7,11$, or 13 , the transform of the sequence is computed using the DFT.

For example, the transform of a vector of length $N=1024=4 \times 4 \times 4 \times 4 \times 4$ can be computed using an FFT, because 4 is a factor of 1024. If $N=6080=4 \times 4 \times 4 \times 5 \times 19$, the transform of the vector corresponding to $4 \times 4 \times 4 \times 5$ is computed using the FFT, but the part of the vector corresponding to 19 is computed using the DFT. The transform of a vector of length $N=1019$ is computed using the DFT, because 1019 is not the product of small primes.

Computing the Fourier transform is most efficient when N-1 for fast cosine transforms, $\mathrm{N}+1$ for fast sine transforms, and M, N, and K for multi-dimensional FFT routines can be factored into powers of $2,3,4,5,7,11$, or 13 , as summarized in TABLE 10.
table 10 Values That Must Have 2, 3, 4, 5, 7, 11, or 13 as Factors for Best Performance

Routine	Values
COST, DCOST, VCOST, VDCOST	$\mathrm{N}-1$
SINT, DSINT, VSINT, VDSINT	$\mathrm{N}+1$
All other one-dimensional FFT and VFFT routines	N
Two-dimensional FFT routines	M and N
Three-dimensional FFT routines	M, N, and K

The function x FFTOPT can be used to determine the optimal sequence length, as shown in CODE EXAMPLE 1.

CODE EXAMPLE 1 RFFTOPT Example

```
my_system% cat fft_ex01.f
    PROGRAM TEST
C
    INTEGER N, N1, N2, N3, RFFTOPT
C
    N = 1024
    N1 = 1019
    N2 = 71
    N3 = 49
C
    PRINT *, 'N Original N Suggested'
    PRINT '(I5, I12)', (N, RFFTOPT(N))
    PRINT '(I5, I12)', (N1, RFFTOPT(N1))
    PRINT '(I5, I12)', (N2, RFFTOPT(N2))
    PRINT '(I5, I12)', (N3, RFFTOPT(N3))
C
    END
my_system% f95 -dalign fft_ex01.f -xlic_lib=sunperf
my_system% a.out
    N Original N Suggested
    1024 1024
    1019 1024
        71 72
        49 49
```

The size of the sequence affects performance. When N is small, such as 8 or 16 , the overhead of calling the routine is large compared to the actual computational work performed by the routine. Also, when the size of N is too large for the data to fit in the cache, performance again degrades.

Work Array WSAVE for FFT and VFFT Routines

Each FFT or VFFT routine uses a work array that stores the tabulation of trigonometric functions computed while generating the Fourier transform or inverse transform. WSAVE also stores scratch (temporary) values generated during the transform or inverse transform.

Note - When using the VFFT routines, an extra work array, XT, is used to store temporary values generated from performing Fourier transforms or inverse transforms on multiple sequences.

Before performing the first transform or inverse transform:

1. Specify the minimum dimension and data type of the work array WSAVE.

The minimum dimension and data type depends upon the operand data type and FFT or VFFT routine, as shown in TABLE 11 on page 24.
2. Initialize the work array by calling the corresponding FFT or VFFT routine whose base name ends with the character I.

For example, when using RFFTF or RFFTB, initialize the work array by calling RFFTI.

```
INTEGER N
REAL WSAVE (2 * N + 15)
CALL RFFTI (N, WSAVE)
```

When using CFFTF or CFFTB, initialize the work array by calling CFFTI.

```
INTEGER N
REAL WSAVE (4 * N + 15)
CALL CFFTI (N, WSAVE)
```

The same work array can be used for both the transform or inverse transform as long as N remains unchanged. Different WSAVE arrays are required for different values of N . As long as N and WSAVE remain unchanged, subsequent transforms can be obtained faster than the first transform, because the initialization does not have to be repeated between calls to the transform or inverse transform routines.
table 11 Minimum Dimensions and Data Types for wSAVE Work Array

Routine	Minimum Work Array Size (WSAVE)	Type

One-Dimensional Routines

COSQI, DCOSQI	$3 \mathrm{~N}+15$	REAL,	REAL*8
COSQB, DCOSQB	$3 \mathrm{~N}+15$	REAL,	REAL* 8
COSQF, DCOSQF	$3 \mathrm{~N}+15$	REAL,	REAL* 8
COST, DCOST	$3 \mathrm{~N}+15$	REAL,	REAL* 8
Costi, dCosti	$3 \mathrm{~N}+15$	REAL,	REAL* 8
EZFFTB	$3 \mathrm{~N}+15$	REAL,	REAL* 8
EZFFTF	$3 \mathrm{~N}+15$	REAL,	REAL* 8
EZFFTI	$3 \mathrm{~N}+15$	REAL,	REAL* 8
RFFTB, DFFTB	$2 \mathrm{~N}+15$	REAL,	REAL* 8
RFFTF, DFFTF	$2 \mathrm{~N}+15$	REAL,	REAL* 8
RFFTI, DFFTI	$2 \mathrm{~N}+15$	REAL,	REAL* 8
CFFTB, ZFFTB	$4 \mathrm{~N}+15$	REAL,	REAL*8
CFFTF, ZFFTF	$4 \mathrm{~N}+15$	REAL,	REAL*8
CFFTI, ZFFTI	$4 \mathrm{~N}+15$	REAL,	REAL*8
SINQB, DSINQB	$3 \mathrm{~N}+15$	REAL,	REAL*8
SINQF, DSINQF	$3 \mathrm{~N}+15$	REAL,	REAL*8
SINQI, DSINQI	$3 \mathrm{~N}+15$	REAL,	REAL*8
SINT, DSINT	$2 \mathrm{~N}+\mathrm{N} / 2+15$	REAL,	REAL*8
SINTI, DSINTI	$2 \mathrm{~N}+\mathrm{N} / 2+15$	REAL,	REAL*8

VFFT Routines

VRFFTB, VDFFTB	$\mathrm{N}+15$	REAL, REAL*8
VRFFTF, VDFFTF	$\mathrm{N}+15$	REAL, REAL*8
VRFFTI, VDFFTI	$\mathrm{N}+15$	REAL, REAL*8
VCFFTB, VZFFTB	If transforming rows: $2 * \mathrm{M}+15$	REAL, REAL*8
	If transforming columns: $2 \star \mathrm{~N}+15$	

table 11 Minimum Dimensions and Data Types for WSAVE Work Array (Continued)

Routine	Minimum Work Array Size (WSAVE)	Type
VCFFTF, VZFFTF	If transforming rows: $2 * \mathrm{M}+15$	REAL, REAL*8
	If transforming columns: $2 \mathrm{~N}+15$	
VCFFTI, VZFFTI	$\mathrm{N}+15$	REAL, REAL*8
VCOSQB, VDCOSQB	$2 * \mathrm{~N}+15$	REAL, REAL*8
VCOSQF, VDCOSQF	$2 * \mathrm{~N}+15$	REAL, REAL*8
VCOSQI, VDCOSQI	$2 * \mathrm{~N}+15$	REAL, REAL*8
VCOST, VDCOST	$2 * \mathrm{~N}+15$	REAL, REAL*8
VCOSTI, VDCOSTI	$2 * \mathrm{~N}+15$	REAL, REAL*8
VSINQB, VDSINQB	$2 * \mathrm{~N}+15$	REAL, REAL*8
VSINQF, VDSINQF	$2 * \mathrm{~N}+15$	REAL, REAL*8
VSINQI, VDSINQI	$2 * \mathrm{~N}+15$	REAL, REAL*8
VSINT, VDSINT	$\mathrm{N}+\mathrm{N} / 2+15$	REAL, REAL*8

Two-Dimensional Routines

Parallelization

FFT and VFFT routines have been modified to take advantage of parallelization enhancements, as described in the Sun Performance Library User's Guide. FFT and VFFT routines can also be used in parallelized loops, as shown here.

```
    CALL CFFTI (M, WSAVE)
C$PAR DOALL SHARED(M, WSAVE, N, C), PRIVATE(I)
    DO I = 1, N
    CALL CFFTF (M, C(1, I), WSAVE)
    CALL CFFTB (M, C(1, I), WSAVE)
END DO
```

Note - The Fortran compiler parallelization features require a Sun WorkShop HPC license.

One-Dimensional FFT and Inverse Transform Routines

The routines in this section use the fast Fourier transform to compute the discrete Fourier transform and the inverse Fourier transforms. Routines are also available that compute the fast cosine transform, fast sine transform, and the inverses of these transforms.

Arguments for One-Dimensional FFT and VFFT Routines

FFT and VFFT routines use the arguments shown in TABLE 12. Some routines use additional arguments that are described in the sections for those routines.

TABLE 12 Arguments for FFT and VFFT Routines

Arguments	Description
FFT Routines	
N	Length of the sequence to be transformed, where $\mathrm{N} \geq 0$.
X	On entry, an array of length N containing the sequence to be transformed.
WSAVE	On entry, a work array with a minimum dimension that depends upon the type of routine used and the data type of the operands. See TABLE 11 for a complete list of minimum work array dimensions.
VFFT Routines	
N	Length of the sequence to be transformed, where $\mathrm{N} \geq 0$.
M	Number of sequences to be transformed, where $\mathrm{M} \geq 0$.
X	A two-dimensional array $\mathrm{X}(\mathrm{M}, \mathrm{N})$ whose rows contain the sequences to be transformed.
XT	A two-dimensional work array with dimensions of (MDIMX ${ }^{*} \mathrm{~N}$).
MDIMX	Leading dimension of the arrays X and XT as specified in a dimension or type statement, where MDIMX $\geq \mathrm{M}$.
WSAVE	On entry, a work array with a minimum dimension that depends upon the type of routine used and the data type of the operands. See TABLE 11 for a complete list of minimum work array dimensions.

Data Storage for One-Dimensional FFT and VFFT Routines

The data storage format for the computed Fourier coefficients depends upon whether the sequence is complex or real.

Storage of Complex Sequences

The results of a complex one-dimensional FFT are stored in-place (in the original input array). Storage problems do not occur when performing the Fourier transform of a complex sequence, because the number of calculated Fourier coefficients equals the number of input values. The real and imaginary values of the Fourier coefficients can be stored in the original complex array without additional storage manipulations.

Storage of Real Sequences

Computing the Fourier transform of a real sequence produces complex Fourier coefficients. The number of computed Fourier coefficients is twice the number of values in the original sequence, because of the real and imaginary parts of the complex Fourier coefficients. The complex vector must be packed before it can be stored in the original real array. This packing is done by not storing the imaginary parts of the one or two Fourier coefficients that are always 0 , and by not storing the complex conjugates of the Fourier coefficients.

Given a real sequence $x_{n}, n=0: N-1$, of N data points, the transformed output X_{k}, $k=0: N-1$, is packed and stored in the original array that holds the input data, as follows.

- If N is even:
- The real part of X_{0} is stored.
- The imaginary part of X_{0} is equal to 0 ; this part is not stored.
- The real and imaginary parts of X_{1}, up to and including the real part of $X_{(N / 2)}$, are stored sequentially.
- The imaginary part of $X_{(N / 2)}$ is equal to 0 ; this part is not stored.
- $X_{(N-k)}$ is the complex conjugate of X_{k}, for $k=1: N / 2-1$ and is not stored.
- If N is odd,
- The real part of X_{0} is stored.
- The imaginary part of X_{0} is equal to 0 and is not stored.
- The real and imaginary parts of X_{1}, up to and including the imaginary part of $X_{((\mathrm{N}-1) / 2)}$, are stored sequentially.
- $X_{(N-k)}$ is the complex conjugate of X_{k}, for $k=1:((N-1) / 2)-1$ and is not stored.

For example, if $\mathrm{N}=6$, the input array X contains the following six real data points:

$$
\begin{aligned}
& \mathrm{X}(1)=x_{0} \\
& \mathrm{X}(2)=x_{1} \\
& \mathrm{X}(3)=x_{2} \\
& \mathrm{X}(4)=x_{3} \\
& \mathrm{X}(5)=x_{4} \\
& \mathrm{X}(6)=x_{5}
\end{aligned}
$$

Performing the Fourier transform computes the complex Fourier coefficients X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, and X_{5}, each of which has a real (Re) part and an imaginary (Im) part. Following the transform, the complex Fourier coefficients are stored in the original real array X , as follows:

$$
\begin{aligned}
& x(1)=\operatorname{Re}\left(X_{0}\right) \\
& x(2)=\operatorname{Re}\left(X_{1}\right) \\
& X(3)=\operatorname{Im}\left(X_{1}\right) \\
& X(4)=\operatorname{Re}\left(X_{2}\right) \\
& X(5)=\operatorname{Im}\left(X_{2}\right) \\
& X(6)=\operatorname{Re}\left(X_{3}\right)
\end{aligned}
$$

For even-length vectors, the resulting vector is conjugate-symmetric excluding the first element. The Fourier transform of the vector [11 2334$]$ is:

$$
10+0 i-2+2 i-2+0 i-2-2 i
$$

This is stored in a real vector as:

```
10 -2 2 -2
```

For odd-length vectors, the resulting vector is also conjugate-symmetric excluding the first element. For example, the Fourier transform of the vector [1 234 5] is:

$$
15.0+0 i-2.5+3.44 i-2.5+.81 i-2.5-.81 i-2.5-3.44 i
$$

This is stored in a real vector as:

$$
\begin{array}{lllll}
15 & -2.5 & 3.44 & -2.5 & 0.81
\end{array}
$$

Note - When the transform of complex data is computed, the output is not packed. The transformed sequence contains the same number of real and complex values as the input sequence.

CODE EXAMPLE 2 computes the FFT and inverse of a real or complex sequence for even and odd values of N. The transform of the complex sequence shows all the Fourier coefficients in an unpacked, complex array. The transform of the real sequence shows the Fourier coefficients stored in a packed, real array. Differences between the real arrays for even and odd values of N can also be compared.

COde example 2 Real and Complex FFT Example

```
my_system% cat fft_ex02.f
    INTEGER I, N_EVEN, N_ODD
C
        REAL XR(9), WORK(1000)
        COMPLEX XC(9)
        N_EVEN = 8
        N_ODD = 9
        XR(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)
        XC(1:N_EVEN) = (/.60,.25,.74,.26,.14,.93,.28,.04/)
C
        CALL RFFTI(N_EVEN, WORK)
        CALL RFFTF (N_EVEN, XR, WORK)
        CALL CFFTI (N_EVEN, WORK)
        CALL CFFTF (N_EVEN, XC, WORK)
        PRINT 1000
        PRINT '(F8.3)',XR(1:N_EVEN)
        PRINT 1010
        PRINT '(2F8.3,''I'')', (XC(1:N_EVEN))
        XR(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)
        XC(1:N_ODD) = (/.60,.25,.74,.26,.14,.93,.28,.04,.02/)
C
        CALL RFFTI(N_ODD, WORK)
        CALL RFFTF (N_ODD, XR, WORK)
        CALL CFFTI(N_ODD, WORK)
        CALL CFFTF (N_ODD, XC, WORK)
        PRINT 1020
        PRINT '(F8.3)',XR(1:N_ODD)
        PRINT 1030
        PRINT '(2F8.3,''I'')', (XC(1:N_ODD))
```

CODE EXAMPLE 2 Real and Complex FFT Example (Continued)

```
    1000 FORMAT (1X, "Transform of Real Sequence With Even N")
    1 0 1 0 ~ F O R M A T ~ ( 1 X , ~ " T r a n s f o r m ~ o f ~ C o m p l e x ~ S e q u e n c e ~ W i t h ~ E v e n ~ N " )
    1020 FORMAT (1X, "Transform of Real Sequence With Odd N")
    1030 FORMAT (1X, "Transform of Complex Sequence With Odd N")
C
            END
my_system% f95 -dalign fft_ex02.f -xlic_lib=sunperf
my_system% a.out
    Transform of real sequence with even N
        3.240
        -0.176
        -0.135
        -0.280
        -0.880
        1.096
        0.785
        0.280
    Transform of complex sequence with even N
            3.240 0.000i
            -0.176 -0.135i
            -0.280 -0.880i
            1.096 0.785i
            0.280 0.000i
            1.096 -0.785i
        -0.280 0.880i
        -0.176 0.135i
    Transform of real sequence with odd N
        3.260
        -0.333
        -0.550
        0.464
        -0.991
            0.080
            1.091
        0.860
        -0.389
    Transform of complex sequence with odd N
            3.260 0.000i
            -0.333 -0.550i
            0.464 -0.991i
            0.080 1.091i
            0.860 -0.389i
            0.860 0.389i
            0.080 -1.091i
            0.464 0.991i
            -0.333 0.550i
```

CODE EXAMPLE 3 shows a C example that uses $d f f t f$ to compute the Fourier coefficients of a real sequence.

code example 3 C Example Showing How to Extract the Complex Result From the Packet Output of dfftf

```
my_system% cat fft_ex03.c
#include <sunperf.h>
#include <math.h>
#define N 16
/*
dfftf accepts as input a real vector of length N and
computes its discrete Fourier transform. Since the input
is real, the result of the transform will be conjugate symmetric.
The output of dfftf is a real vector of length N, which is a
packet representation of the complex FFT result. Only the first
half of the complex result is stored since the remaining values
can be obtained via the conjugate symmetry property. In
particular, if A[N] is the complex result of the FFT, the output
of dfftf is related to 'a' as follows:
The real part of A[0] is stored in a[0].
A[1] is stored as two consecutive real numbers in a[1] and a[2].
A[2] is stored in a[3] and a[4].
If N is even, the real part of A[N/2-1] is stored in a[N-1]. If
N is odd, the real and imaginary parts of A[(N-1)/2] are stored
in a[N-2] and a[N-1] respectively.
The following example shows how to extract the complex result
from the packet output of dfftf for the case in which N even.
*/
void
main()
{
    int i,j;
    double a[N];
    doublecomplex b[N];
    double wa[2*N+15];
    for (i=0;i<N;i++) {
        a[i]=sin((double)i);
    }
    dffti(N,wa);
    dfftf(N,a,wa);
```

code example 3 C Example Showing How to Extract the Complex Result From the Packet Output of $\mathrm{dfft} f$ (Continued)

```
    /* extract the first N/2 complex values
        from the packet representation */
    b[0].r = a[0];
    b[0].i = 0.0;
    j=1;
    for (i=1;i<N/2;i++) {
        b[i].r = a[j];
        b[i].i = a[j+1];
        j += 2;
    }
    b[N/2].r = a[N-1];
    b[N/2].i = 0.0;
    /* extract the remaining N/2 values using the conjugate
        symmetry */
    for (i=N/2+1;i<N;i++) {
        b[i].r = b[N-i].r;
        b[i].i = -b[N-i].i;
    }
```

\}

FFT: Fast Fourier Transform Routines

The following routines use the fast Fourier transform to compute the discrete Fourier transform or inverse transform of a periodic sequence.
Routine Function

[R, D, C, Z]FFTI	Initialize work array WSAVE for [R,D, C, Z] FFTF or [R,D, C, Z] FFTB
[R, D, C, Z] FFTF	Compute Fourier coefficients of periodic sequence
[$\mathrm{R}, \mathrm{D}, \mathrm{C}, \mathrm{Z}] \mathrm{FFTB}$	Compute periodic sequence from Fourier coefficients
$\mathrm{V}[\mathrm{R}, \mathrm{D}, \mathrm{C}, \mathrm{Z}] \mathrm{FFTI}$	Initialize work array for V [R, D, C, Z] FFTF or V [R, D, C, Z] FFTB
$\mathrm{V}[\mathrm{R}, \mathrm{D}, \mathrm{C}, \mathrm{Z}] \mathrm{FFTF}$	Compute Fourier coefficients of multiple periodic sequences
V[R, D, C, Z] FFTB	Compute multiple periodic sequences from Fourier coefficients

The $x \mathrm{FFT}$ and $\mathrm{V} x \mathrm{FFT}$ routines, where x denotes $\mathrm{R}, \mathrm{D}, \mathrm{C}$, or Z , use the arguments defined in "Arguments for One-Dimensional FFT and VFFT Routines" on page 27.

In addition to the VFFT arguments defined in "Arguments for One-Dimensional FFT and VFFT Routines" on page 27, the VCFFTF, VZFFTF, VCFFTB, and VZFFTB routines use one additional argument called ROWCOL. ROWCOL specifies whether to transform the rows or columns of $X(M, N)$. Set ROWCOL equal to ' R ' or ' r ' perform the transform or inverse transform on the rows of $X(M, N)$. Set ROWCOL equal to ' C ' or ' C^{\prime} perform the transform or inverse transform on the columns of $\mathrm{X}(\mathrm{M}, \mathrm{N})$.

Normalization

The x FFT operations are unnormalized, so a call of x FFTF followed by a call of x FFTB will multiply the input sequence by N. The $V x$ FFT operations are normalized, so a call of $\mathrm{V} x \mathrm{FFTF}$ followed by a call of $\mathrm{V} x$ FFTB will return the original sequence.

Sample Programs: Fast Fourier Transform and Inverse Transform

CODE EXAMPLE 4 uses RFFTF to compute the FFT of a real sequence and RFFTB to compute the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is unnormalized and can be normalized by dividing each value by N .

CODE EXAMPLE 4 Fast Fourier Transform and Inverse Transform for Real Values

```
my_system% cat fft_ex04.f
    PROGRAM TEST
C
    INTEGER N
    PARAMETER (N = 9)
C
    INTEGER I
    REAL PI, R(N), WSAVE (2 * N + 15)
C
    EXTERNAL RFFTB, RFFTF, RFFTI
    INTRINSIC ACOS, SIN
C
C Initialize array to a real sequence.
C
    PI = ACOS (-1.0)
    DO 100, I=1, N
        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N)
    100 CONTINUE
```

code example 4 Fast Fourier Transform and Inverse Transform for Real Values

```
C PRINT 1000
    PRINT 1010, (R(I), I = 1, N)
    CALL RFFTI (N, WSAVE)
    CALL RFFTF (N, R, WSAVE)
    PRINT 1020
    PRINT 1010, (R(I), I = 1, N)
    CALL RFFTB (N, R, WSAVE)
    PRINT 1030
    PRINT 1010, (R(I), I = 1, N)
C
    1000 FORMAT (1X, 'Original Sequence R(I): ')
    1010 FORMAT (1X, 100(F4.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Unnormalized Recovered Sequence (R(I)*N): ')
C
        END
my_system% f95 -dalign fft_ex04.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence R(I):
```



```
    Transformed Sequence:
    27.0 0.0 -4.5 0.0 0.0 0.0 0.0 0.0 0.0
    Unnormalized Recovered Sequence (R(I)*N):
    27.0 32.8 35.9 34.8 30.1 23.9 19.2 18.1 21.2
```

CODE EXAMPLE 5 uses CFFTF to compute the FFT of a complex sequence and CFFTB to compute the inverse transform. Because the number of calculated Fourier coefficients equals the number of input values, the real and imaginary values of the Fourier coefficients can be stored in the original array without additional storage manipulations. The inverse transform is unnormalized and can be normalized by dividing each value by N.

CODE EXAMPLE 5 Fast Fourier Transform and Inverse Transform for Complex Values

```
my_system% cat fft_ex05.f
    PROGRAM TEST
C
    INTEGER N
    PARAMETER (N = 4)
C
    INTEGER I
    REAL PI, WSAVE (4 * N + 15), X, Y
    COMPLEX C(N)
C
    EXTERNAL CFFTB, CFFTF, CFFTI
    INTRINSIC ACOS, CMPLX, COS, SIN
C Initialize the array C to a complex sequence.
C
    PI = ACOS (-1.0)
    DO 100, I=1, N
        X = SIN ((I - 1.0) * 2.0 * PI / N)
        Y = COS ((I - 1.0) * 2.0 * PI / N)
        C(I) = CMPLX (X, Y)
    100 CONTINUE
C
    PRINT 1000
    PRINT 1010, (C(I), I = 1, N)
    CALL CFFTI (N, WSAVE)
    CALL CFFTF (N, C, WSAVE)
    PRINT 1020
    PRINT 1010, (C(I), I = 1, N)
    CALL CFFTB (N, C, WSAVE)
    PRINT 1030
    PRINT 1010, (C(I), I = 1, N)
C
    1000 FORMAT (1X, 'Original Sequence C(I):')
1010 FORMAT (1X, 100(F5.1, ' +',F4.1,'i '))
1020 FORMAT (1X, 'Transformed Sequence:')
1030 FORMAT (1X, 'Unnormalized Recovered Sequence (C(I)*N):')
C
    END
my_system% f95 -dalign fft_ex05.f -xlic_lib=sunperf
my_system% a.out
Original Sequence C(I):
    0.0 + 1.0i 1.0 + 0.0i 0.0 +-1.0i -1.0 + 0.0i
Transformed Sequence:
        0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 4.0i
Unnormalized Recovered Sequence (C(I)*N):
        0.0 + 4.0i 4.0 + 0.0i 0.0 +-4.0i -4.0 + 0.0i
```


EZFFT: EZ Fourier Transform Routines

The following routines are used to perform a Fourier transform or inverse transform of a real periodic sequence. The EZ Fourier or inverse transform routines are simplified but slower versions of the Fast Fourier Transform routines.

Routine	Function
EZFFTI	Initialize work array WSAVE for EZFFTF or EZFFTB
EZFFTF	Compute Fourier coefficients of periodic sequence
EZFFTB	Compute periodic sequence from Fourier coefficients

The EZFFT routines use the arguments shown in TABLE 13.

TABLE 13 Arguments for EZFFT Routines

Argument	Definition
N	Sequence length
R	For EZFFTF, a real array containing the sequence to be transformed, unchanged on exit. For EZFFTB, a real array containing the Fourier coefficients of the inputs.
AZERO	The Fourier constant A_{0}
A	Real array containing the real parts of the complex Fourier coefficients. If N is even, then A is length $N / 2$, otherwise A is length ($\mathrm{N}-1$) $/ 2$.
B	Real array containing the imaginary parts of the complex Fourier coefficients. If N is even, then B is length $N / 2$, otherwise B is length ($\mathrm{N}-1$) $/ 2$.
WSAVE	Work array initialized by EZFFTI

Sample Program: EZ Fourier Transform and Inverse Transform

CODE EXAMPLE 6 uses EZFFTF to compute a Fourier transform of a real sequence and EZFFTB to compute the inverse transform. When using EZFFTF, the computed Fourier coefficients are stored in the arrays A and B. The input array R is not overwritten. Unlike the output of RFFTF and DFFTF, no packing is performed, and the complex conjugates are retained.

CODE EXAMPLE 6 EZ Fourier Transform and Inverse Transform

```
my_system% cat fft_ex06.f
    PROGRAM TEST
C
    INTEGER N
    PARAMETER ( }\textrm{N}=9
C
    INTEGER I
    REAL A(N), B(N), AZERO, PI, R(N)
    REAL WSAVE(3 * N + 15)
C
    EXTERNAL EZFFTB, EZFFTF, EZFFTI
    INTRINSIC ACOS, COS, SIN
C
C Initialize array to a sequence of real numbers.
C
    PI = ACOS (-1.0)
    DO 100, I=1, N
        R(I) = 3.0 + SIN ((I - 1.0) * 2.0 * PI / N) +
        $ 4.0 * COS ((I - 1.0) * 8.0 * PI / N)
    1 0 0 ~ C O N T I N U E
C
    CALL EZFFTI (N, WSAVE)
    PRINT 1000
    PRINT 1010, (R(I), I = 1, N)
    CALL EZFFTF (N, R, AZERO, A, B, WSAVE)
    PRINT 1020, AZERO
    PRINT 1030
    PRINT 1010, (A(I), I = 1, N)
    PRINT 1040
    PRINT 1010, (B(I), I = 1, N)
    CALL EZFFTB (N, R, AZERO, A, B, WSAVE)
    PRINT 1050
    PRINT 1010, (R(I), I = 1, N)
```

code example 6 EZ Fourier Transform and Inverse Transform (Continued)

```
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (100(F6.1, 1X))
    1020 FORMAT (1X, 'Azero = ', F4.1)
    1030 FORMAT (1X, 'A = ')
    1040 FORMAT (1X, 'B = ')
    1050 FORMAT (1X, 'Recovered Sequence: ')
C
        END
my_system% f95 -dalign fft_ex06.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        7.0 -0.1 7.0 1.9 4.9 4.0 3.4 0.4 0.1 
    Azero = 3.0
    A =
        0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0
    B}
        1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    Recovered Sequence:
        7.0 -0.1 7.0 1.9 4.0 4.0 3.4 
```


COSQ: Cosine Quarter-Wave Routines

The following routines are used to perform a discrete Fourier cosine transform or inverse transform of a cosine series with only odd wave numbers.

Routine	Function
[D] COSQI	Initialize work array WSAVE for [D] COSQF or [D] COSQB
[D] COSQF	Compute Fourier coefficients of cosine series with odd wave numbers
[D] COSQB	Compute periodic sequence from Fourier coefficients
$\mathrm{V}[\mathrm{D}] \operatorname{COSQI}$	Initialize work array for V[D] COSQF or V[D]COSQB
$\mathrm{V}[\mathrm{D}] \operatorname{COSQF}$	Compute Fourier coefficients of multiple cosine series with odd wave
	numbers
$\mathrm{V}[\mathrm{D}] \operatorname{COSQB}$	Compute multiple periodic sequences from Fourier coefficients

Because of the assumption of symmetry, the sequence used as input to the cosine quarter-wave routine only needs to contain the part of the sequence that is sufficient to determine the entire sequence.

Normalization

The x COSQ operations are unnormalized inverses of themselves, so a call to x COSQF followed by a call to x COSQB will multiply the input sequence by $4 \times N$. The VxCOSQ operations are normalized, so a call of V x COSQF followed by a call of $\mathrm{V} x \mathrm{COSQB}$ will return the original sequence.

Sample Programs: Cosine Quarter-Wave Transform and Inverse Transform

CODE EXAMPLE 7 uses COSQF to compute the cosine quarter-wave transform of a real sequence and COSQB to compute the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is unnormalized and can be normalized by dividing each value by $4 * \mathrm{~N}$.
code example 7 Cosine Quarter-Wave Transform and Inverse Transform

```
my_system% cat fft_ex07.f
    PROGRAM TEST
C
    INTEGER N
    PARAMETER (N = 6)
    INTEGER I
    REAL PI, WSAVE(3 * N + 15), X(N)
C
    EXTERNAL COSQB, COSQF, COSQI
    INTRINSIC ACOS, COS
C
C Initialize array X to a real even quarter-wave sequence,
C that is, it can be expanded in terms of a cosine series
C with only odd wave numbers.
    PI = ACOS (-1.0)
    DO 100, I=1, N
        X(I) = COS((I - 1) * PI / (2.0 * N))
    100 CONTINUE
C
    CALL COSQI (N, WSAVE)
    PRINT 1000
    PRINT 1010, (X(I), I = 1, N)
    CALL COSQF (N, X, WSAVE)
    PRINT 1020
    PRINT 1010, (X(I), I = 1, N)
    CALL COSQB (N, X, WSAVE)
    PRINT 1030
    PRINT 1010, (X(I), I = 1, N)
```

code example 7 Cosine Quarter-Wave Transform and Inverse Transform (Continued)

```
1000 FORMAT(1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F7.3, 1X))
    1020 FORMAT(1X, 'Transformed Sequence: ')
    1030 FORMAT(1X, 'Recovered Sequence: ')
        END
my_system% f95 -dalign fft_ex07.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        1.000 0.966 0.866 0.707 0.500 0.259
    Transformed Sequence:
        6.000 0.000 0.000 0.000 0.000 0.000
    Recovered Sequence:
        24.000 23.182 20.785 16.971 12.000 6.212
```

CODE EXAMPLE 8 uses VCOSQF to compute the cosine quarter-wave transform of a single real sequence and VCOSQB to compute the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is normalized.

CODe example 8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines

```
my_system% cat fft_ex08.f
    PROGRAM TEST
C
    INTEGER M, N
    PARAMETER (M = 1)
    PARAMETER (N = 6)
C
    INTEGER I
    REAL PI, WSAVE(3 * N + 15), X(M, N), XT (M, N)
C
    EXTERNAL VCOSQB, VCOSQF, VCOSQI
    INTRINSIC ACOS, COS
C
C Initialize the first row of the array to a real even
C quarter-wave sequence, that is, it can be expanded in
C terms of a cosine series with only odd wave numbers.
C
        PI = ACOS (-1.0)
        DO 100, I=1, N
            X(M,I) = 40.0 * COS ((I - 1) * PI / (2.0 * N))
    100 CONTINUE
C
```

CODE EXAMPLE 8 Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines (Continued)

```
    PRINT 1000
    PRINT 1010, (X(M, I), I = 1, N)
    CALL VCOSQI (N, WSAVE)
    CALL VCOSQF (M, N, X, XT, M, WSAVE)
    PRINT 1020
    PRINT 1010, (X(M, I), I = 1, N)
    CALL VCOSQB (M, N, X, XT, M, WSAVE)
    PRINT 1030
    PRINT 1010, (X(M, I), I = 1, N)
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F5.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
    END
my_system% f95 -dalign fft_ex08.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
    40.0 38.6 34.6 28.3 20.0 10.4
Transformed Sequence:
    49.0 0.0 0.0 0.0 0.0 0.0
Recovered Sequence:
    40.0 38.6 34.6 28.3 20.0 10.4
```

CODE EXAMPLE 9 on page 43 uses VCOSQF to compute the cosine quarter-wave transform of multiple real sequences and VCOSQB to compute the inverse transforms. The computed Fourier coefficients of each sequence are packed and stored in the rows of the original real array. The inverse transforms are normalized.

CODE EXAMPLE 9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines

```
my_system% cat fft_ex09.f
    PROGRAM TEST
C
    INTEGER M, N
    PARAMETER (M = 4)
    PARAMETER ( }\textrm{N}=6
C
    INTEGER I, J
    REAL PI, WSAVE (N + 15), X(M, N), XT (M, N)
    EXTERNAL VCOSQB, VCOSQF, VCOSQI
    INTRINSIC ACOS, COS
C
C Initialize the array to m real even quarter-wave sequences,
C that is, they can be expanded in terms of a cosine series
C with only odd wave numbers.
    PI = ACOS (-1.0)
    DO 110, J=1, M
        DO 100, I=1, N
            X(J,I) = 40.0 * J * COS ((I-1) * PI / 2.0 / N )
    100 CONTINUE
    110 CONTINUE
C
    CALL VCOSQI (N, WSAVE)
    PRINT 1000
    DO 120, J=1, M
            PRINT 1010, J, (X(J, I), I = 1, N)
    120 CONTINUE
    CALL VCOSQF (M, N, X, XT, M, WSAVE)
    PRINT 1020
    DO 130, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
    130 CONTINUE
        CALL VCOSQB (M, N, X, XT, M, WSAVE)
        PRINT 1030
        DO 140, J=1, M
            PRINT 1010, J, (X(J, I), I = 1, N)
    140 CONTINUE
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT(1X, ' Sequence', I2, ': ', 100(F5.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
    END
```

CODE EXAMPLE 9 Cosine Quarter-Wave Transform and Inverse Transform Using Vector Routines (Continued)

```
my_system% f95 -dalign fft_ex09.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        Sequence 1: 40.0 38.6 34.6 28.3 20.0
        Sequence 2: 80.0 77.3 69.3 56.6 40.0 20.7
        Sequence 3: 120.0 115.9 103.9 84.9 60.0 31.1
        Sequence 4: 160.0 154.5 138.6 113.1 80.0 41.4
Transformed Sequence:
        Sequence 1: 49.0 0.0 0.0 0.0 0.0 0.0
        Sequence 2: 98.0 0.0 0.0 0.0 0.0 0.0
        Sequence 3: 147.0 0.0 0.0 0.0 0.0 0.0
        Sequence 4: 196.0 0.0 0.0 0.0 0.0}00.
Recovered Sequence:
        Sequence 1: 40.0 38.6 34.6 28.3 20.0 10.4
        Sequence 2: 80.0 77.3 69.3 56.6 40.0 20.7
        Sequence 3: 120.0 115.9 103.9 84.9 60.0 31.1
        Sequence 4: 160.0 154.5 138.6 113.1 80.0 41.4
```


COST: Cosine Even-Wave Routines

The following routines are used to perform a discrete fourier cosine transform of an even sequence.

Routine	Function
$[D] \operatorname{COSTI}$	Initialize work array WSAVE for [D] COSTF or [D] COSTB
$[D] \operatorname{COST}$	Compute the Fourier coefficients or inverse transform of an even sequence
$\mathrm{V}[\mathrm{D}] \operatorname{COSTI}$	Initialize work array for V[D]COSTF or V[D] COSTB
$\mathrm{V}[\mathrm{D}] \operatorname{COST}$	Compute Fourier coefficients or inverse transform of multiple even sequences

The cosine even-wave routines are their own inverse. x COST computes the Fourier coefficients from a periodic sequence or the periodic sequence from the Fourier coefficients. x COSTF and x COSTB routines do not exist for cosine even-wave transforms.

Because of the assumption of symmetry, the sequence used as input to the cosine even-wave routine only needs to contain the part of the sequence that is sufficient to determine the entire sequence.

Normalization

The x COST transforms are unnormalized inverses of themselves, so a call of x COST followed by another call of x COST will multiply the input sequence by $2 \times(N-1)$. The V x COST transforms are normalized, so a call of V x COST followed by a call of $\mathrm{V} x \operatorname{COST}$ will return the original sequence.

Sample Program: Cosine Even-Wave Transform and Inverse Transform

CODE EXAMPLE 10 uses COST to compute the cosine even-wave transform of a real sequence and the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is unnormalized and can be normalized by dividing each value by $2 *(\mathrm{~N}-1)$.

CODE EXAMPLE 10 Cosine Even-Wave Transform and Inverse Transform
my_system\% cat fft_ex10.f
PROGRAM TEST
C
INTEGER N
PARAMETER $\quad(\mathrm{N}=9)$
INTEGER I
REAL $\quad P I, X(N)$, WSAVE (3 * $N+15$)
C
EXTERNAL COST, COSTI
INTRINSIC ACOS, COS
C
C Initialize the array X to an even sequence, that is, it
C can be expanded in terms of a trigonometric series that
C contains only cosine terms.
$P I=\operatorname{ACOS}(-1.0)$
DO 100, I=1, N
$X(I)=\cos ((I-1.0) * 2.0 * P I /(N-1.0))$
100 CONTINUE
C
CALL COSTI (N, WSAVE)
PRINT 1000
PRINT 1010, ($\mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}$)
CALL COST ($\mathrm{N}, \mathrm{X}, \mathrm{WSAVE}$)
PRINT 1020
PRINT 1010, ($\mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}$)
CALL COST ($\mathrm{N}, \mathrm{X}, \mathrm{WSAVE}$)
PRINT 1030
PRINT 1010, (X(I), $I=1, N$)

```
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F5.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
        END
my_system% f95 -dalign fft_ex10.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
    1.0 0.7 0.0 -0.7 -1.0 -0.7 0.0 0.7 1.0
    Transformed Sequence:
    0.0 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0
    Recovered Sequence:
    16.0 11.3 0.0 -11.3 -16.0 -11.3 0.0 11.3 16.0
```


SINQ: Sine Quarter-Wave Routines

The following routines are used to compute a a discrete Fourier sine transform or inverse transform of a of a sine series that contains only odd wave numbers.

Routine	Function
[D] SINQI	Initialize work array WSAVE for [D] SINQF or [D] SINQB
[D] SINQF	Compute Fourier coefficients of sine series with only odd wave numbers
[D] SINQB	Compute periodic sequence from Fourier coefficients
$\mathrm{V}[\mathrm{D}]$ SINQI	Initialize work array for V[D]SINQF or V[D]SINQB
$\mathrm{V}[\mathrm{D}]$ SINQF	Compute Fourier coefficients of multiple sine series with only odd wave numbers

Because of the assumption of symmetry, the sequence used as input to the sine quarter-wave routine only needs to contain the part of the sequence that is sufficient to determine the entire sequence.

Normalization

The x SINQ operations are unnormalized inverses of themselves, so a call to x SINQF followed by a call to x SINQB will multiply the input sequence by $4 \times N$. The V x SINQ operations are normalized, so a call of $\mathrm{V} x$ SINQF followed by a call of $\mathrm{V} x$ SINQB will return the original sequence.

Sample Programs: Sine Quarter-Wave Transform and Inverse Transform

CODE EXAMPLE 11 uses SINQF to compute sine quarter-wave transform of a real sequence and SINQB to compute the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is unnormalized and can be normalized by dividing each value by $4 * \mathrm{~N}$.
code example 11 Sine Quarter-Wave Transform and Inverse Transform
my_system\% cat fft_ex11.f
PROGRAM TEST
C
INTEGER N
PARAMETER $\quad(\mathrm{N}=6)$
INTEGER I
REAL \quad PI, WSAVE $(3 * N+15), \quad X(N)$
C
EXTERNAL SINQB, SINQF, SINQI
INTRINSIC ACOS, SIN
C
C Initialize array X to a real odd quarter-wave sequence,
C that is, it can be expanded in terms of a sine series with
C only odd wave number.
$P I=A C O S(-1.0)$
DO 100, $\mathrm{I}=1, \mathrm{~N}$
$X(I)=40.0 \star \operatorname{SIN}(I * P I /(2.0 * N))$
100 CONTINUE
C
PRINT 1000
PRINT 1010, (X (I), $I=1, N$)
CALL SINQI (N, WSAVE)
CALL SINQF (N, X, WSAVE)
PRINT 1020
PRINT 1010, (X (I), $I=1, N)$
CALL SINQB (N, X, WSAVE)
PRINT 1030
PRINT 1010, (X (I), $I=1, N)$
code example 11 Sine Quarter-Wave Transform and Inverse Transform (Continued)

```
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F6.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
            END
my_system% f95 -dalign fft_ex11.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        10.4 20.0 28.3 34.6 38.6 40.0
    Transformed Sequence:
        240.0 0.0 0.0 0.0 0.0 0.0
    Recovered Sequence:
    248.5 480.0 678.8 831.4 927.3 960.0
```

CODE EXAMPLE 12 uses VSINQF to compute the sine quarter-wave transform of a single real sequence and VSINQB to compute the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is normalized.

Code example 12 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines

```
my_system% cat fft_ex12.f
        PROGRAM TEST
C
        INTEGER M, N
        PARAMETER (M = 1)
        PARAMETER ( }\textrm{N}=6
C
        INTEGER I
        REAL PI, WSAVE (N + 15), X(M, N), XT (M, N)
C
        EXTERNAL VSINQB, VSINQF, VSINQI
        INTRINSIC ACOS, SIN
C
C Initialize the first row of the array to a real odd
C quarter-wave sequence, that is, it can be expanded in
C terms of a cosine series with only odd wave numbers.
C
    PI = ACOS (-1.0)
        DO 100, I=1, N
            X(M,I) = 40.0 * SIN ((I * PI / (2.0 * N)))
100 CONTINUE
```

CODE EXAMPLE 12 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines (Continued)

```
C
    CALL VSINQI (N, WSAVE)
    PRINT 1000
    PRINT 1010, (X(M, I), I = 1, N)
    CALL VSINQF (M, N, X, XT, M, WSAVE)
    PRINT 1020
    PRINT 1010, (X(M, I), I = 1, N)
    CALL VSINQB (M, N, X, XT, M, WSAVE)
    PRINT 1030
    PRINT 1010, (X(M, I), I = 1, N)
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F5.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
    END
my_system% f95 -dalign fft_ex12.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        10.4 20.0 28.3 34.6 38.6 40.0
    Transformed Sequence:
        49.0 0.0 0.0 0.0 0.0 0.0
    Recovered Sequence:
        10.4 20.0 28.3 34.6 38.6 40.0
```

CODE EXAMPLE 13 uses VSINQF to compute the sine quarter-wave transform of multiple real sequences and VSINQB to compute the inverse transforms. The computed Fourier coefficients of each sequence are packed and stored in the rows of the original real array. The inverse transforms are normalized.

CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines

```
my_system% cat fft_ex13.f
    PROGRAM TEST
    INTEGER M, N
    PARAMETER (M = 4)
    PARAMETER ( }\textrm{N}=6\mathrm{ )
    INTEGER I, J
    REAL PI, WSAVE (N + 15), X(M, N+1), XT (M, N + 1)
C
    EXTERNAL VSINQB, VSINQF, VSINQI
    INTRINSIC ACOS, SIN
```

```
C Initialize the array to m real odd quarter-wave sequence,
C that is, they can be expanded in terms of a cosine series
C with only odd wave numbers.
C
    PI = ACOS (-1.0)
    DO 110, J=1, M
        DO 100, I=1, N
            X(J,I) = 40.0 * J * SIN (I * PI / (2.0 * N))
    100 CONTINUE
    110 CONTINUE
C
    CALL VSINQI (N, WSAVE)
    PRINT 1000
    DO 120, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
    120 CONTINUE
    CALL VSINQF (M, N, X, XT, M, WSAVE)
    PRINT 1020
    DO 130, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
    130 CONTINUE
    CALL VSINQB (M, N, X, XT, M, WSAVE)
    PRINT 1030
    DO 140, J=1, M
        PRINT 1010, J, (X(J, I), I = 1, N)
    140 CONTINUE
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, ' Sequence', I2, ': ', 100(F5.1, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
    END
```

CODE EXAMPLE 13 Sine Quarter-Wave Transform and Inverse Transform Using Vector Routines (Continued)

```
my_system% f95 -dalign fft_ex13.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
        Sequence 1: 10.4 20.0 28.3 34.6 38.6 40.0
        Sequence 2: 20.7 40.0 56.6 69.3 77.3 80.0
        Sequence 3: 31.1 60.0 84.9 103.9 115.9 120.0
        Sequence 4: 41.4 80.0 113.1 138.6 154.5 160.0
    Transformed Sequence:
        Sequence 1: 49.0 0.0 0.0 0.0 0.0 0.0
        Sequence 2: 98.0 0.0 0.0 0.0 0.0 0.0
        Sequence 3: 147.0 0.0 0.0 0.0 0.0 0.0
        Sequence 4: 196.0 0.0 0.0 0.0 0.0 0.0
    Recovered Sequence:
        Sequence 1: 10.4 20.0 28.3 34.6 38.6 40.0
        Sequence 2: 20.7 40.0 56.6 69.3 77.3 80.0
        Sequence 3: 31.1 60.0 84.9 103.9 115.9 120.0
        Sequence 4: 41.4 80.0 113.1 138.6 154.5 160.0
```


SINT: Sine Odd-Wave Transform Routines

The following routines are used to perform a discrete Fourier sine transform of an odd sequence.

Routine	Function
[D] SINTI	Initialize work array WSAVE for [D] SINQF or [D]SINQB
[D] SINT	Compute the Fourier coefficients or inverse transform of a sine series with only odd wave numbers
V[D]SINTI	Initialize work array for V[D]SINQF or V [D]SINQB V[D]SINT
Compute the Fourier coefficients or inverse transform of multiple sine series with only odd wave numbers	

The sine odd-wave routines are their own inverse. x SINT computes the Fourier coefficients from a periodic sequence or the periodic sequence from the Fourier coefficients. x SINTF and x SINTB routines do not exist for sine odd-wave transforms.

Because of the assumption of symmetry, the sequence used as input to the sine oddwave routine only needs to contain the part of the sequence that is sufficient to determine the whole sequence.

Normalization

The x SINT transforms are unnormalized inverses of themselves, so a call of x SINT followed by another call of x SINT will multiply the input sequence by $2 \times(N+1)$. The V x SINT transforms are normalized, so a call of V x SINT followed by a call of V x SINT will return the original sequence.

Sample Program: Sine Odd-Wave Transform

CODE EXAMPLE 14 uses SINT to compute the sine odd-wave transform of a real sequence and the inverse transform. The computed Fourier coefficients are packed and stored in the original real array. The inverse transform is unnormalized and can be normalized by dividing each value by $2 *(\mathrm{~N}+1)$.
code example 14 Sine Odd-Wave Transform and Inverse Transform

```
my_system% cat fft_ex14.f
    PROGRAM TEST
C
        INTEGER N
        PARAMETER (N = 9)
C
        INTEGER I
        REAL PI, WSAVE(3 * N + 15), X(N)
C
    EXTERNAL SINT, SINTI
    INTRINSIC ACOS, SIN
C
C Initialize the array X to an odd sequence, that is, it
C can be expanded in terms of a trigonometric series that
C contains only sine terms.
C
        PI = ACOS (-1.0)
        DO 100, I=1, N
            X(I) = SIN ( I * 2.0 * PI / (N + 1.0))
    100 CONTINUE
C
    PRINT 1000
    PRINT 1010, (X(I), I = 1, N)
    CALL SINTI (N, WSAVE)
    CALL SINT (N, X, WSAVE)
    PRINT 1020
    PRINT 1010, (X(I), I = 1, N)
    CALL SINT (N, X, WSAVE)
    PRINT 1030
    PRINT 1010, (X(I), I = 1, N)
```

```
C
    1000 FORMAT (1X, 'Original Sequence: ')
    1010 FORMAT (1X, 100(F7.3, 1X))
    1020 FORMAT (1X, 'Transformed Sequence: ')
    1030 FORMAT (1X, 'Recovered Sequence: ')
C
        END
my_system% f95 -dalign fft_ex14.f -xlic_lib=sunperf
my_system% a.out
    Original Sequence:
0.588 0.951 0.951 0.588 0.000 -0.588 -0.951 -0.951-0.588
    Transformed Sequence:
0.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    Recovered Sequence:
11.756 19.021 19.021 11.756 0.000 -11.756 -19.021 -19.021 -11.756
```


Two-Dimensional FFT and Inverse Transform Routines

The following routines are used to compute a two-dimensional fast Fourier transform or inverse transform of a two-dimensional periodic sequence.

Routine	Function
$[R, D, C, Z] F F T 2 I$	Initialize the work array WORK for $[R, D, C, Z] F F T 2 F$ or $[R, D, C, Z] F F T 2 B$
$[R, D, C, Z] F F T 2 F$	Compute Fourier coefficients of two-dimensional periodic sequence
$[R, D, C, Z] F F T 2 B$	Compute periodic sequence from Fourier coefficients

The x FFT2F routines compute the two-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.
2. Transpose the result matrix.
3. Perform a one-dimensional transform of the columns of the result matrix.
4. Transpose the result matrix to restore the original order of the data points.

Arguments for Two-Dimensional FFT Routines

Complex two-dimensional FFT routines use the arguments shown in TABLE 14.

TABLE 14 Arguments for Complex Two-Dimensional FFT Routines

Argument	Definition
M	Number of rows to be transformed
N	Number of columns to be transformed
A	Two-dimensional array A (LDA, N) containing the sequences to be transformed and the results of an in-place transform
LDA	Leading dimension of array containing data to be transformed
WORK	Work array initialized by x FFT2I
LWORK	Dimension of work array WORK

Arguments for PLACE, FULL, B, and LDB are not used with the complex twodimensional FFT routines, because the transformed sequence is stored in the original input array without any additional manipulations.

Real two-dimensional FFT routines use the arguments shown in TABLE 15.
table 15 Arguments for Real Two-Dimensional FFT Routines

Argument	Definition
PLACE	'I' or ' i ' specifies that an in-place transform is performed. ' O ' or ' $○$ ' specifies that an out-of-place transform is performed.
FULL	RFFT2F or DFFT2F only: ' F ' or ' f ' specifies that a full result matrix is generated. Any other character specifies that a partial result matrix is generated.
M	Number of rows to be transformed
N	Number of columns to be transformed
A	Two-dimensional array $A(L D A, N$) containing the sequences to be transformed and the results of an in-place transform
LDA	Leading dimension of array containing data to be transformed
B	Two-dimensional array $B(2 * L D B, N)$ that stores the results of an out-of-place transform

tABLE 15 Arguments for Real Two-Dimensional FFT Routines (Continued)

Argument	Definition
LDB	One half of the actual leading dimension of array that stores results of out-of-place transform
WORK	Work array initialized by x FFT2I LWORK

Normalization

The x FFT2 operations are unnormalized, so a call of x FFT2F followed by a call of x FFT2B will multiply the input sequence by $\mathrm{M}^{*} \mathrm{~N}$.

Data Storage for Two-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon whether the sequence is complex or real.

Storage of Complex Two-Dimensional Sequences

When CFFT2F or ZFFT2F computes the two-dimensional FFT of a complex sequence, all Fourier coefficients are retained, and the results are stored in the original array. Additional storage options for complex two-dimensional sequences are not needed.

Storage of Real Two-Dimensional Sequences

The result of using RFFT2F or DFFT2F to compute the two-dimensional FFT of a real sequence is a complex vector that contains twice the number of values as the input sequence.

The data storage format of real two-dimensional FFT routines depends upon the following storage options.

- In-place or Out-of-place. When using In-Place, the results are stored in the modified input array that contains one or two additional rows, depending upon whether M is odd or even. When using Out-of-Place, the results are stored in a separate array.
- Full or Partial. When using Full, the complex conjugates are retained. When using Partial, the complex conjugates are discarded.

When computing a real one-dimensional FFT, the complex result can be packed and stored in the original array, because the values identically equal to zero and the complex conjugates are not stored. When computing the real two-dimensional FFT using the in-place and partial storage options, the complex conjugates are not stored, but the values identically equal to zero are stored. Saving the values identically equal to zero simplifies the indexing that occurs when computing the twodimensional FFT. However, the size of the original array is modified to contain one or two additional rows, which are needed to store the values identically equal to zero.

The values of the arguments used with the real two-dimensional FFT routines depend upon whether an in-place or out-of place transform is performed, and whether the results are stored in a full or partial result matrix, as shown in TABLE 16.
table 16 Relationships Between Values of Arguments for Real Two-Dimensional FFT Routines

	Full Result Matrix	Partial Result Matrix
In-Place Transform	B unused	B unused
	LDB unused	LDB unused
	LDA must be even	LDA must be even
	LDA $\geq 2 * M$	LDA $\geq M+2$ if M is even $L D A \geq M+1$ if M is odd
	A (1:2*M, 1:N)	$A(1: M+2,1: N)$ if M is even $A(1: M+1,1: N)$ if M is odd
Out-of-Place Transform	A unchanged	A unchanged
	LDA $\geq \mathrm{M}$	$L D A \geq M$
	$2 * L D B \geq M$	$2 *$ LDB $\geq M+2$ if M is even $2 * \operatorname{LDB} \geq M+1$ if M is odd
	$B(1: 2 * M, 1: N)$	$B(1: M+2,1: N)$ if M is even $B(1: M+1,1: N)$ if M is odd

When computing the real two-dimensional FFT of an input sequence of M rows and N columns, the computed Fourier coefficients will be stored in a result matrix with $2 * \mathrm{M}$ rows and N columns when using the Full storage option. When using the Partial storage option, the Fourier coefficients will be stored in a result matrix with $\mathrm{M}+2$ rows and N columns when M is even, or in a result matrix with $M+1$ rows and N columns when M is odd.

For example, if $\mathrm{M}=4$ and $\mathrm{N}=2$, the Fourier coefficients will be stored in the output array as follows:

```
Full Storage Option
X(1,1) = Re(X_0) X (1,2) = Re(X_0)
X(2,1) = Im(X_0) X(2,2) = Im(X_0)
X(3,1) = Re(X_1) X (3,2) = Re(X_1)
X(4,1) = Im(X_1) X(4,2) = Im(X_1)
X(5,1) = Re(X_2) X (5,2) = Re(X_2)
X(6,1) = Im(X_2) X (6,2) = Im(X_2)
X(7,1) = Re(X_3) X (7,2) = Re(X_3)
X(8,1) = Im(X_3) X (8,2) = Im(X_3)
Partial Storage Option
X(1,1) = Re(X_0) X(1,2) = Re(X_0)
X(2,1) = Im(X_0) X(2,2) = Im(X_0)
X(3,1) = Re(X_1) X(3,2) = Re(X_1)
X(4,1) = Im(X_1) X(4,2) = Im(X_1)
X(5,1) = Re(X_2) X (5,2) = Re(X_2)
X(6,1) = Im(X_2) X(6,2) = Im(X_2)
```


Using Two-Dimensional FFT Routines to Perform Two-Dimensional Convolution

Sun Performance Library provides the [S, D, C, Z] CNVCOR routines for computing the convolution or correlation of a filter with one or more input vectors and the $[S, D, C, Z]$ CNVCOR2 routines for computing the two-dimensional convolution or correlation of two matrices. These routines are described in Section "Convolution and Correlation Routines" on page 74. The two-dimensional FFT routines can also be used to compute the two-dimensional convolutions of the two two-dimensional arrays A and B, as described in the following procedure.

1. Compute the two-dimensional FFT of A.
2. Compute the two-dimensional FFT of $в$.
3. Perform pointwise multiplication of A and B.
4. Compute the inverse two-dimensional FFT of the previous result.

The second transpose can be avoided for increased performance by using the VFFT and [SDCZ] TRANS routines to explicitly compute the transposed two-dimensional FFT, as described in the following procedure.

1. Use VFFT to compute one dimensional FFTs along the columns of A.
2. Use ZTRANS to transpose A.
3. Use VFFT to compute one-dimensional FFTs along the columns of the new A.
4. Use VFFT to compute one-dimensional FFTs along the columns of b.
5. Use ZTRANS to transpose B.
6. Use VFFT to compute one-dimensional FFTs along the columns of the new B.
7. Perform pointwise multiplication of A and B.
8. Use VFFT to compute inverse one-dimensional FFTs along the columns of the result.
9. Use ZTRANS to transpose the result back into its original order.

Sample Program: Two-Dimensional FFT and Inverse Transform

CODE EXAMPLE 15 uses CFFT2F to compute the two-dimensional FFT of a twodimensional complex sequence and CFFT2B to compute the inverse transform. The computed Fourier coefficients are stored in the original complex array. The inverse transform is unnormalized and can be normalized by dividing each value by $\mathrm{M}^{*} \mathrm{~N}$.

CODE EXAMPLE 15 Two-Dimensional FFT and Inverse of Complex Sequence

```
my_system: cat fft_ex15.f
    PROGRAM TEST
C
    INTEGER LWORK, M, N
    PARAMETER (M = 2)
    PARAMETER (N = 4)
    PARAMETER (LWORK = 4 * (M + N + N) + 40)
    INTEGER I, J
    REAL PI, WORK(LWORK)
    REAL X, Y
    COMPLEX A(M,N)
C
```

CODE EXAMPLE 15 Two-Dimensional FFT and Inverse of Complex Sequence (Continued)

```
    EXTERNAL CFFT2B, CFFT2F, CFFT2I
    INTRINSIC ACOS, CMPLX, COS, SIN
C
C Initialize the array C to a complex sequence.
    PI = ACOS (-1.0)
    DO 110, J = 1, N
        DO 100, I = 1, M
            X = SIN ((I - 1.0) * 2.0 * PI / N)
            Y = CoS ((J - 1.0) * 2.0 * PI / M)
            A(I,J) = CMPLX (X, Y)
    100 CONTINUE
    110 CONTINUE
C
    PRINT 1000
    DO 200, I = 1, M
        PRINT 1010, (A(I,J), J = 1, N)
    200 CONTINUE
        CALL CFFT2I (M, N, WORK)
        CALL CFFT2F (M, N, A, M, WORK, LWORK)
        PRINT 1020
        DO 300, I = 1, M
            PRINT 1010, (A(I,J), J = 1, N)
        300 CONTINUE
            CALL CFFT2B (M, N, A, M, WORK, LWORK)
            PRINT 1030
            DO 400, I = 1, M
        PRINT 1010, (A(I,J), J = 1, N)
        400 CONTINUE
C
    1000 FORMAT (1X, 'Original Sequences:')
    1010 FORMAT (1X, 100(F4.1,' +',F4.1,'i '))
    1020 FORMAT (1X, 'Transformed Sequences:')
    1030 FORMAT (1X, 'Recovered Sequences:')
C
END
my_system: f95 -dalign fft_ex15.f -xlic_lib=sunperf
my_system: a.out
    Original Sequences:
        0.0 + 1.0i 0.0 +-1.0i 0.0 + 1.0i 0.0 +-1.0i
        1.0 + 1.0i 1.0 +-1.0i 1.0 + 1.0i 1.0 +-1.0i
Transformed Sequences:
    4.0 + 0.0i 0.0 + 0.0i 0.0 + 8.0i 0.0 + 0.0i
    -4.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i
    Recovered Sequences:
\begin{tabular}{llll}
\(0.0+8.0 i\) & \(0.0+-8.0 i\) & \(0.0+8.0 i\) & \(0.0+-8.0 i\) \\
\(8.0+8.0 i\) & \(8.0+-8.0 i\) & \(8.0+8.0 i\) & \(8.0+-8.0 i\)
\end{tabular}
```

CODE EXAMPLE 15 on page 58 uses RFFT2F to compute the two-dimensional FFT of a real two-dimensional sequence and RFT2B to compute the inverse transform. This example uses the FULL storage option and PLACE set to ' O ' for out-of-place storage.

The computed Fourier coefficients are stored in a $(2 * M, N)$ array where one row contains the real part of the complex coefficient and the next row contains the imaginary part of the complex coefficient. In CODE EXAMPLE 15, to better display the complex conjugate symmetry, the real and imaginary parts of each complex coefficient are displayed on one line. For example, the following output:

represents the following values for the Fourier coefficients.

Column 1

$\operatorname{Re}\left(X_{0}\right)$	$\operatorname{Im}\left(X_{0}\right)$	$\operatorname{Re}\left(X_{0}\right)$	$\operatorname{Im}\left(X_{0}\right)$
$\operatorname{Re}\left(X_{1}\right)$	$\operatorname{Im}\left(X_{1}\right)$	$\operatorname{Re}\left(X_{1}\right)$	$\operatorname{Im}\left(X_{1}\right)$

The inverse transform is unnormalized and can be normalized by dividing each value by $\mathrm{M}^{*} \mathrm{~N}$.

Code example 16 RFft2F and Rfft2b Example Showing In-Place and Out-of-Place Storage

```
my_system% cat fft_ex16.f
    PROGRAM TESTFFT
    INTEGER M, N
    PARAMETER(M = 6, N = 2)
    CALL FFT (M,N)
    END
    SUBROUTINE FFT (M, N)
    CHARACTER*1 IS_FULL
    INTEGER I, J, M, N, ISTAT, LWORK, LDA, LDB, LDB_ACTUAL
    REAL RNUM, RAND
    EXTERNAL RFFT2F, RFFT2B, RFFT2I, RAND
    REAL, DIMENSION(:,:), ALLOCATABLE :: AT, B, INPUT
    REAL, DIMENSION(:), ALLOCATABLE :: WT
    LDA = 2*M
    LDB = 2*M
    LWORK = M+2*N+MAX (M, 2*N) +30
    ALLOCATE (AT (LDA,N) , INPUT (LDA,N) , WT (LWORK) , B (LDB_ACTUAL,N))
```


CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place Storage (Continued)

```
CALL RFFT2I (M, N, WT)
DO I = 1, N
    DO J = 1, M
            INPUT(J,I) = RAND(0)
        END DO
END DO
AT = INPUT
PRINT *, 'Original Sequence'
DO I = 1, M
    PRINT '(100(F8.3))', (AT(I,J), J = 1, N)
END DO
PRINT *
Example 1
Out-of-place, full
leading dimension of B (2*LDB) must be at least 2*M
IS_FULL = 'F'
LDB = M
CALL RFFT2F ('O', IS_FULL, M, N, AT, LDA, B, LDB, WT, LWORK)
PRINT *, 'Transformed Out-of-Place, Full'
DO I = 1, LDB_ACTUAL, N
    PRINT '(100('' ('', F8.3, '','', F8.3, '')'' :))',
$ (B(I,J), B(I+1,J), J = 1, N)
END DO
    B(M+3:LDB,1:N) = 0
    PRINT *, 'Transformed, last half clear:'
    DO I = 1, LDB, N
        PRINT '(100('' ('', F8.3, '','', F8.3, 'r)'' :))',
$ (B(I,J), B(I+1,J), J = 1, N)
    END DO
CALL RFFT2B ('O', M, N, AT, LDA, B, LDB, WT, LWORK)
PRINT *, 'Inverse: Scaled Output, Out-of-Place, Full'
DO I = 1, M
    PRINT '(100 (F8.3))', (AT(I,J) / (M * N), J = 1, N)
END DO
PRINT *
Example 2
in-place, full
LDA must be at least 2*M
AT = INPUT
IS_FULL = 'F'
```

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place Storage (Continued)

```
    CALL RFFT2F ('I', IS_FULL, M, N, AT, LDA, 0, 0, WT, LWORK)
    PRINT *, 'Transformed In-Place, Full'
    DO I = 1, LDA, 2
        PRINT '(100('r ('r, F8.3, 'r,'r, F8.3, 'r)'' :))',
        $ (AT (I,J), AT (I+1,J), J = 1, N)
        END DO
        CALL RFFT2B ('I', M, N, AT, LDA, 0, 0, WT, LWORK)
        PRINT *, 'Inverse: Scaled Output, In-Place, Full'
        DO I = 1, M
        PRINT '(100 (F8.3))', (AT(I,J) / (M * N), J = 1, N)
    END DO
    PRINT *
    DEALLOCATE (AT,WT,B)
    END SUBROUTINE
my_system% f95 -dalign fft_ex16.f -xlic_lib=sunperf
my_system% a.out
Original Sequence
    0.968 0.654
    0.067 0.021
    0.478 0.512
    0.910 0.202
    0.352 0.940
    0.933 0.204
Transformed Out-of-Place, Full
    ( 6.241, 0.000) ( 1.173, 0.000)
    ( -0.018, 1.169) ( 0.304, 0.111)
    ( 0.981, 0.647) ( 0.945, 1.071)
    ( 1.569, 0.000) ( -1.790, 0.000)
    ( 0.981, -0.647) ( 0.945, -1.071)
    ( -0.018, -1.169) ( 0.304, -0.111)
Inverse: Scaled Output, Out-of-Place, Full
    0.968 0.654
    0.067 0.021
    0.478 0.512
    0.910 0.202
    0.352 0.940
    0.933 0.204
Transformed In-Place, Full
\begin{tabular}{|c|c|c|c|c|c|}
\hline ( & 6.241 , & 0.000) & ( & 1.173, & \(0.000)\) \\
\hline ( & -0.018, & 1.169) & & 0.304 , & \(0.111)\) \\
\hline ( & 0.981, & \(0.647)\) & & 0.945, & 1.071) \\
\hline ( & 1.569, & \(0.000)\) & & -1.790, & \(0.000)\) \\
\hline \((\) & 0.981, & -0.647) & & 0.945, & -1.071) \\
\hline ( & -0.018, & -1.169) & & 0.304 , & -0.111) \\
\hline
\end{tabular}
```

CODE EXAMPLE 16 RFFT2F and RFFT2B Example Showing In-Place and Out-of-Place Storage (Continued)

```
Inverse: Scaled Output, In-Place, Full
    0.968 0.654
    0.067 0.021
    0.478 0.512
    0.910 0.202
    0.352 0.940
    0.933 0.204
```

CODE EXAMPLE 17 is a C example that uses $z f f t 2 f$ to compute the two-dimensional FFT of a two-dimensional complex sequence and $z f f t 2 b$ to compute the inverse transform. The computed Fourier coefficients are stored in the original complex array. The inverse transform is unnormalized and can be normalized by dividing each value by m*n.

CODE EXAMPLE 17 ZFFT2F and ZFFT2B Example Using C

```
my_system% cat fft_ex17.c
#include <sunperf.h>
#include <math.h>
#include <stdlib.h>
/*
    * This code demonstrates the use of zfft2i, zfft2f, zfft2b
    */
void
main()
{
    int i,j,ip;
    int m,n,max_mn;
    int lwork,lda;
    doublecomplex *a;
    double *work;
    double scale;
    double err,maxerr;
    m = 16; n = 8;
    a = (doublecomplex *)malloc(m*n*sizeof(doublecomplex));
    max_mn = m; if (n > m) max_mn = n;
    lwork = 2*(m+n+max_mn)+40;
    work = (double *)malloc(lwork*sizeof(double));
```

```
    /* initialize a as complex(sin(i),sin(j)) */
    ip = 0;
    for (j=0;j<n;j++) {
        for (i=0;i<m;i++) {
            a[ip].r=sin((double)i);
            a[ip].i=sin((double)j);
            ip++;
        }
    }
    zfft2i(m,n,work);
    lda = m;
    /* compute the forward fft */
    zfft2f(m,n,a,lda,(doublecomplex *)&work,lwork);
    /* compute the inverse fft. Note that the same work array can
        be used for both the forward and the inverse fft */
    zfft2b(m,n,a,lda,(doublecomplex *)&work,lwork);
    /* the reconstruction result will be scaled by m*n */
    scale = (double) (m*n);
    maxerr = 0.0;
    ip = 0;
    for (j=0;j<n;j++) {
        for (i=0;i<m;i++) {
            err = fabs(a[ip].r/scale-sin((double)i))+
            fabs(a[ip].i/scale-sin((double)j));
            if (err > maxerr) maxerr = err;
            ip++;
        }
    }
    printf("reconstruction error %g \n",maxerr);
    /* clean up */
    free(a);
    free(work);
}
```

CODE EXAMPLE 18 is a C example that uses $r f f t 2 f$ to compute the two-dimensional FFT of a two-dimensional real sequence and rfft $2 b$ to compute the inverse transform. The computed Fourier coefficients are stored in the original real array using the partial storage option. The inverse transform is unnormalized and can be normalized by dividing each value by m*n.

CODE EXAMPLE 18 Example of Using the Partial Storage Option

```
my_system% fft_ex18.c
#include <sunperf.h>
#include <math.h>
#include <stdlib.h>
/*
This code demonstrates the use of dfft2i, dfft2f
a is being initialized as a 2D real array of size
m x n = 8 x 4:
a =
    0.700000 1.375463 -0.296165 1.493668
    0.995520 1.127380 -0.225815 1.638000
    1.264642 0.841120 -0.072764 1.698543
    1.483327 0.542254 0.149314 1.669890
    1.632039 0.257480 0.420585 1.554599
    1.697495 0.012234 0.716814 1.362969
    1.673848 -0.171576 1.011541 1.112118
    1.563209 -0.277530 1.278440 0.824454
The 2D FFT of a is:
A =
Columns 0 through 2:
    29.05310 + 0.00000i 8.02813 + 7.64742i -1.06904 + 0.00000i
    -1.09423 - 0.24829i -1.78923 - 3.37830i -2.81937 + 7.27093i
    -0.21980 - 0.09124i -0.16036 - 1.30903i -2.62181 + 2.67179i
    -0.08924 - 0.03707i 0.20683 - 0.80372i -2.59231 + 1.08567i
    -0.06281 + 0.00000i 0.38653 - 0.53453i -2.58634 + 0.00000i
    -0.08924 + 0.03707i 0.50611 - 0.32973i -2.59231 - 1.08567i
    -0.21980 + 0.09124i 0.57617 - 0.14256i -2.62181 - 2.67179i
    -1.09423 + 0.24829i 0.21514 - 0.20391i -2.81937 - 7.27093i
```

Column 3:
8.02813 - $7.64742 i$
$0.21514+0.20391 i$
$0.57617+0.14256 i$
$0.50611+0.32973 i$
$0.38653+0.53453 i$
$0.20683+0.80372 i$
$-0.16036+1.30903 i$
$-1.78923+3.37830 i$

```
To use dfft2f with the 'in-place' and 'partial storage' options,
a has to be embedded into an (m+2) x n = 10 x 8 real array (case
m even). After calling dfft2f, this array contains the (m/2+1) x n =
5 x 4 upper half of the complex result (the lower part can be determined
via the conjugate symmetry property of the result along the first
dimension.
The result of dfft2f will be:
    A(0:4,:) =
Columns 0 through 2:
\begin{tabular}{rrrr}
\(29.05310+0.00000 i\) & \(8.02813+7.64742 i\) & \(-1.06904+0.00000 i\) \\
\(-1.09423-0.24829 i\) & \(-1.78923-3.37830 i\) & \(-2.81937+7.27093 i\) \\
\(-0.21980-0.09124 i\) & \(-0.16036-1.30903 i\) & \(-2.62181+2.67179 i\) \\
\(-0.08924-0.03707 i\) & \(0.20683-0.80372 i\) & \(-2.59231+\) & \(1.08567 i\) \\
\(-0.06281+0.00000 i\) & \(0.38653-0.53453 i\) & \(-2.58634+0.00000 i\)
\end{tabular}
Column 3:
    8.02813 - 7.64742i
    0.21514 + 0.20391i
    0.57617 + 0.14256i
    0.50611 + 0.32973i
    0.38653 + 0.53453i
    This result is stored in the original real array, i.e. a(0,0) contains
    29.05310, a(1,0) contains 0.00000, a(2,0) contains -1.09423 etc.
    */
void
main()
{
    int i,j,ipa;
    int ip;
    int m,n,max_m2n,max_mn;
    int lwork,lda;
    double *a;
    double *work_a;
    char place,full;
```

CODE EXAMPLE 18 Example of Using the Partial Storage Option (Continued)

```
    m = 8; n = 4;
    lda = m+2;
    a = (double *)malloc(lda*n*sizeof(double));
    max_m2n = m; if (2*n > m) max_m2n = 2*n;
    lwork = 2*(m+n+max_m2n)+30;
    work_a = (double *)malloc(lwork*sizeof(double));
    /* initialize a */
    ipa = 0;
    ip = 0;
    for (j=0;j<n;j++) {
        for (i=0;i<m;i++) {
            a[ipa]=sin(.3*ip)+.7;
            ipa++;
            ip++;
        }
        ipa+=2;
    }
    dfft2i(m,n,work_a);
    full = 'N';
    place = 'I';
    dfft2f(place,full,m,n,a,lda,NULL,0,work_a,lwork);
    /* clean up */
    free );
    free(work_a);
}
```


Three-Dimensional FFT and Inverse Transform Routines

The following routines are used to perform a three-dimensional fast Fourier transform or inverse transform of a three-dimensional periodic sequence.

Routine	Function
$[R, D, C, Z]$ FFT3I	Initialize the work array WORK for $[R, D, C, Z] F F T 3 F$ or $[R, D, C, Z] F F T 3 B$
$[R, D, C, Z]$ FFT3F	Compute Fourier coefficients of three-dimensional periodic sequence
$[R, D, C, Z]$ FFT3B	Compute periodic sequence from Fourier coefficients

The x FFT3F routines compute the three-dimensional FFT by doing the following:

1. Perform a one-dimensional transform of the columns of the input vector.
2. Transpose the result matrix.
3. Perform a one-dimensional transform of the columns of the result matrix.
4. Reflect the result matrix so that the planes become columns.
5. Perform a one-dimensional transform of the columns of the result matrix.
6. Reflect and transpose the result matrix to restore the original order of the data points.

Arguments for Three-Dimensional FFT Routines

Complex three-dimensional FFT routines use the arguments shown in TABLE 17.
table 17 Arguments for Complex Three-Dimensional FFT Routines

Argument	Definition
M	Number of rows to be transformed
N	Number of columns to be transformed
K	Number of planes to be transformed

tABLE 17 Arguments for Complex Three-Dimensional FFT Routines (Continued)

Argument	Definition
A	Three-dimensional array A (LDA, N, K) containing the sequences to be transformed and the results of an in-place transform
LDA	Leading dimension of array containing data to be transformed, where LDA $\geq \mathrm{M}$
LD2A	Second dimension of array to be transformed, where LD2A $\geq \mathrm{N}$
WORK	Work array initialized by x FFT3I
LWORK	Dimension of work array WORK

Arguments for PLACE, FULL, B, and LDB are not used with the complex threedimensional FFT routines, because the transformed sequence is stored in the original input array without any additional manipulations.

Real three-dimensional FFT routines use the arguments shown in TABLE 18.
table 18 Arguments for Real Three-Dimensional FFT Routines

Argument	Definition
PLACE	'I' or ' i ' specifies that an in-place transform is performed. ' O ' or ' \bigcirc ' specifies that an out-of-place transform is performed.
FULL	RFFT3F or DFFT3F only: ' F ' or ' f ' specifies that a full result matrix is generated. Any other character specifies that a partial result matrix is generated.
M	Number of rows to be transformed
N	Number of columns to be transformed
K	Number of planes to be transformed
A	Three-dimensional array $A(L D A, N, K$) containing the sequences to be transformed and the results of an in-place transform
LDA	Leading dimension of array containing data to be transformed
B	Three-dimensional array $B(2 * L D B, N, K)$ that stores the results of an out-of-place transform
LDB	Leading dimension of array that stores results of out-of-place transform
WORK	Work array initialized by x FFT3I
LWORK	Dimension of work array WORK

Normalization

The x FFT3 operations are unnormalized, so a call of x FFT3F followed by a call of x FFT3B will multiply the input sequence by $M * N * K$.

Data Storage for Three-Dimensional FFT Routines

The data storage format for the computed Fourier coefficients depends upon whether the sequence is complex or real.

Storage of Complex Three-Dimensional Sequences

When CFFT3F or ZFFT3F computes the three-dimensional FFT of a complex sequence, all Fourier coefficients are retained, and the results are stored in the original three-dimensional array A (LDA, LD2A, K). Additional storage options for complex three-dimensional sequences are not required.

Storage of Real Three-Dimensional Sequences

The result of using RFFT3F or DFFT3F to compute the three-dimensional FFT of a real sequence is a complex vector that contains twice the number of values as the input sequence.

The data storage format of real three-dimensional FFT routines depends upon the following storage options.

- In-place or Out-of-place. When using In-Place, the results are stored in the modified input array that contains one or two additional rows, depending upon whether M is odd or even. When using Out-of-Place, the results are stored in a separate array.
- Full or Partial. When using Full, complex conjugates are retained. When using Partial, the complex conjugates are discarded.

When computing a real one-dimensional FFT, the complex result can be packed and stored in the original array, because the values identically equal to zero and the complex conjugates are not stored. When computing the real three-dimensional FFT using the in-place and partial storage options, the complex conjugates are not stored, but the values identically equal to zero are stored. Saving the values identically equal to zero simplifies the indexing that occurs when computing the threedimensional FFT. However, the size of the original array is modified to contain one or two additional rows, which are needed to store the values identically equal to zero.

The values of the arguments used with the real three-dimensional FFT routines depend upon whether an in-place or out-of place transform is performed, and whether the results are stored in a full or partial result matrix, as shown in TABLE 19.
table 19 Relationship Between Values of Arguments for Real Three-Dimensional FFT Routines

	Full Result Array	Partial Result Array
In-Place Transform	B unused	B unused
	LDB unused	LDB unused
	LDA must be even	LDA must be even
	LDA $\geq 2 *$ M	LDA $\geq M+2$ if M is even LDA $\geq M+1$ if M is odd
	A (1:2*M, 1:N)	$A(1: M+2,1: N)$ if M is even $A(1: M+1,1: N)$ if M is odd
Out-of-Place Transform	A unchanged	A unchanged
	LDA \geq M	LDA \geq M
	LDB $\geq 2 * M$	$\operatorname{LDB} \geq M / 2+1$ if M is even $\operatorname{LDB} \geq(M-1) / 2+1$ if M is odd
	$B(1: 2 * M, 1: N, 1: K)$	$B(1: M+2,1: N, 1: K)$ if M is even $B(1: M+1,1: N, 1: K)$ if M is odd

When computing the real 3D FFT of an input sequence of M rows, N columns, and K planes, the computed Fourier coefficients will be stored in a result matrix with $2 * \mathrm{M}$ rows, N columns for each value of K when using the Full storage option. When using the Partial storage option, the Fourier coefficients will be stored in a result matrix with $M+2$ rows and N columns for each value of K when M is even, or in $M+1$ rows and N columns when M is odd. For each value of K, the storage format of the Fourier coefficients in the M rows and N columns is the same as for the real two-dimensional FFT routines. See "Storage of Real Two-Dimensional Sequences" on page 55.

Sample Program: Three-Dimensional FFT and Inverse Transform

CODE EXAMPLE 19 uses CFFT3F to compute the three-dimensional FFT of a threedimensional complex sequence and CFFT3B to compute the inverse transform. The computed Fourier coefficients are stored in the original complex array. The inverse transform is unnormalized and can be normalized by dividing each value by $\mathrm{M}^{*} \mathrm{~N} * \mathrm{~K}$.

CODE EXAMPLE 19 Three-Dimensional Fast Fourier Transform and Inverse Transform

```
my_system% cat fft_ex19.f
    PROGRAM TEST
    INTEGER LWORK, M, N, K
    PARAMETER (K = 2)
    PARAMETER (M = 2)
    PARAMETER (N = 4)
    PARAMETER (LWORK = 4* (M + N + N) + 45)
    INTEGER I, J, L
    REAL PI, WORK (LWORK)
    REAL X, Y
    COMPLEX C (M,N,K)
C
    EXTERNAL CFFT3B, CFFT3F, CFFT3I
    INTRINSIC ACOS, CMPLX, COS, SIN
C Initialize the array C to a complex sequence.
    PI = ACOS (-1.0)
    DO 120, L = 1, K
        DO 110, J = 1, N
                DO 100, I = 1, M
                X = SIN ((I - 1.0) * 2.0 * PI / N)
                Y = COS ((J - 1.0) * 2.0 * PI / M)
                C(I,J,L) = CMPLX (X, Y)
    100 CONTINUE
    110 CONTINUE
    120 CONTINUE
C
    PRINT 1000
    DO 210, L = 1, K
        PRINT 1010, L
        DO 200, I = 1, M
            PRINT 1020, (C(I,J,L), J = 1, N)
    200 CONTINUE
    210 CONTINUE
    CALL CFFT3I (M, N, K, WORK)
    CALL CFFT3F (M, N, K, C, M, N, WORK, LWORK)
    PRINT 1030
```

CODE EXAMPLE 19 Three-Dimensional Fast Fourier Transform and Inverse Transform

```
    DO 310, L = 1, K
    PRINT 1010, L
    DO 300, I = 1, M
                PRINT 1020, (C (I,J,L), J = 1, N)
    300 CONTINUE
    3 1 0 ~ C O N T I N U E
        CALL CFFT3B (M, N, K, C, M, N, WORK, LWORK)
        PRINT 1040
        DO 410, L = 1, K
            PRINT 1010, L
            DO 400, I = 1, M
                PRINT 1020, (C (I,J,L), J = 1, N)
    400 CONTINUE
    410 CONTINUE
C
    1000 FORMAT (1X, 'Original Sequences:')
    1010 FORMAT (1X, ' Plane', I2)
    1020 FORMAT (5X, 100(F5.1,' +',F5.1,'i '))
    1030 FORMAT (/1X, 'Transformed Sequences:')
    1040 FORMAT (/1X, 'Recovered Sequences:')
        END
my_system% f95 -dalign fft_ex19.f -xlic_lib=sunperf
my_system% a.out
    Original Sequences:
        Plane 1
            0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i
            1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i
        Plane 2
            0.0 + 1.0i 0.0 + -1.0i 0.0 + 1.0i 0.0 + -1.0i
            1.0 + 1.0i 1.0 + -1.0i 1.0 + 1.0i 1.0 + -1.0i
    Transformed Sequences:
        Plane 1
            8.0 + 0.0i 0.0 + 0.0i 0.0 + 16.0i 0.0 + 0.0i
            -8.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i
        Plane 2
            0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i
            0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i 0.0 + 0.0i
    Recovered Sequences:
        Plane 1
            0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i
            16.0 + 16.0i 16.0 +-16.0i 16.0 + 16.0i 16.0 +-16.0i
        Plane 2
            0.0 + 16.0i 0.0 +-16.0i 0.0 + 16.0i 0.0 +-16.0i
            16.0 + 16.0i 16.0 +-16.0i 16.0 + 16.0i 16.0 +-16.0i
```


Convolution and Correlation Routines

The [S, D, C, Z] CNVCOR routines are used to compute the convolution or correlation of a filter with one or more input vectors. The [S, D, C, Z] CNVCOR2 routines are used to compute the two-dimensional convolution or correlation of two matrices.

Arguments for Convolution and Correlation Routines

The one-dimensional convolution and correlation routines use the arguments shown in TABLE 20.
table 20 Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR

Argument	Definition
CNVCOR	' V ' or ' v ' specifies that convolution is computed. ' R ' or ' r ' specifies that correlation is computed.
FOUR	' T ' or ' t ' specifies that the Fourier transform method is used. ' D ' or ' d ' specifies that the direct method is used, where the convolution or correlation is computed from the definition of convolution and correlation. (See Note 1)
NX	Length of filter vector, where $\mathrm{NX} \geq 0$.
x	Filter vector
IfX	Index of first element of x , where $\mathrm{NX} \geq$ IFX ≥ 1
Incx	Stride between elements of the vector in X , where INCX >0.
NY	Length of input vectors, where $\mathrm{NY} \geq 0$.
NPRE	Number of implicit zeros prefixed to the Y vectors, where NPRE ≥ 0.
M	Number of input vectors, where $\mathrm{M} \geq 0$.
Y	Input vectors.
IFY	Index of the first element of Y , where $\mathrm{NY} \geq \mathrm{IFY} \geq 1$
INC1Y	Stride between elements of the input vectors in Y , where $\operatorname{INC1Y}>0$.
INC2Y	Stride between input vectors in Y , where INC2Y >0.
NZ	Length of the output vectors, where $\mathrm{NZ} \geq 0$.

table 20 Arguments for One-Dimensional Convolution and Correlation Routines SCNVCOR, DCNVCOR, CCNVCOR, and ZCNVCOR (Continued)

Argument	Definition
K	Number of Z vectors, where $K \geq 0$. If $K<M$, only the first K vectors will be processed. If $K>M$, all input vectors will be processed and the last M-K output vectors will be set to zero on exit.
Z	Result vectors IFZ Index of the first element of Z, where $N Z \geq I F Z \geq 1$ INC1Z Stride between elements of the output vectors in Z, where INCYZ >0.
WORK	Stride between output vectors in Z, where $I N C 2 Z>0$.
LWORK	Work array

Note 1. When the lengths of the two sequences to be convolved are similar, the FFT method is faster than the direct method. However, when one sequence is much larger than the other, such as when convolving a large time-series signal with a small filter, the direct method performs faster than the FFT-based method.

The two-dimensional convolution and correlation routines use the arguments shown in TABLE 21.
tAbLE 21 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument	Definition
CNVCOR	' V ' or ' v ' specifies that convolution is computed. ' R ' or ' r ' specifies that correlation is computed.
METHOD	' T ' or ' t ' specifies that the Fourier transform method is used. ' D ' or ' d ' specifies that the direct method is used, where the convolution or correlation is computed from the definition of convolution and correlation. (See Note 1)
TRANSX	' N ' or ' n ' specifies that X is the filter matrix ' T ' or ' t ' specifies that the transpose of X is the filter matrix
SCRATCHX	' N ' or ' n ' specifies that X must be preserved ' S ' or ' s ' specifies that X can be used for scratch space. The contents of X are undefined after returning from a call where X is used for scratch space.
TRANSY	' N ' or ' n ' specifies that Y is the input matrix ' T ' or ' t ' specifies that the transpose of Y is the input matrix

TABLE 21 Arguments for Two-Dimensional Convolution and Correlation Routines SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2 (Continued)

Argument	Definition
SCRATCHY	' N ' or ' n ' specifies that Y must be preserved ' S ' or ' s ' specifies that Y can be used for scratch space. The contents of X are undefined after returning from a call where Y is used for scratch space.
MX	Number of rows in the filter matrix X , where MX ≥ 0
NX	Number of columns in the filter matrix X , where NX ≥ 0
X	Filter matrix. X is unchanged on exit when SCRATCHX is ' N ' or ' n ' and undefined on exit when SCRATCHX is ' S ' or ' s '.
LDX	Leading dimension of array containing the filter matrix X.
MY	Number of rows in the input matrix Y , where MY ≥ 0.
NY	Number of columns in the input matrix Y, where NY ≥ 0
MPRE	Number of implicit zeros prefixed to each row of the input matrix Y vectors, where MPRE ≥ 0.
NPRE	Number of implicit zeros prefixed to each column of the input matrix Y , where NPRE ≥ 0.
Y	Input matrix. Y is unchanged on exit when SCRATCHY is ' N ' or ' n ' and undefined on exit when SCRATCHY is ' S ' or ' s '.
LDY	Leading dimension of array containing the input matrix Y .
MZ	Number of output vectors, where MZ ≥ 0.
NZ	Length of output vectors, where $\mathrm{NZ} \geq 0$.
Z	Result vectors
LDZ	Leading dimension of the array containing the result matrix Z , where $L D Z \geq$ MAX ($1, M Z$).
WORKIN	Work array
LWORK	Length of work array

Note 1. When the sizes of the two matrices to be convolved are similar, the FFT method is faster than the direct method. However, when one sequence is much larger than the other, such as when convolving a large data set with a small filter, the direct method performs faster than the FFT-based method.

Work Array WORK for Convolution and Correlation Routines

The minimum dimensions for the WORK work arrays used with the one-dimensional and two-dimensional convolution and correlation routines are shown in TABLE 24 on page 78. The minimum dimensions for one-dimensional convolution and correlation routines depend upon the values of the arguments NPRE, NX, NY, and NZ.

The minimum dimensions for two-dimensional convolution and correlation routines depend upon the values of the arguments shown TABLE 22.
table 22 Arguments Affecting Minimum Work Array Size for Two-Dimensional Routines: SCNVCOR2, DCNVCOR2, CCNVCOR2, and ZCNVCOR2

Argument	Definition
MX	Number of rows in the filter matrix
MY	Number of rows in the input matrix
MZ	Number of output vectors
NX	Number of columns in the filter matrix
NY	Number of columns in the input matrix
NZ	Length of output vectors
MPRE	Number of implicit zeros prefixed to each row of the input matrix
NPRE	Number of implicit zeros prefixed to each column of the input matrix
MPOST	MAX (0, MZ-MYC)
NPOST	MAX (0, NZ-NYC)
MYC	filter and input matrices, as shown in TABLE 23
	NPRE + NPOST + NYC_INIT, where NYC_INIT depends upon filter and input matrices, as shown in TABLE 23
NYC	

MYC_INIT and NYC_INIT depend upon the following, where X is the filter matrix and Y is the input matrix.

TABLE 23 MYC_INIT and NYC_INIT Dependencies

	Y		Transpose(Y)	
	\mathbf{X}	Transpose(X)	\mathbf{X}	Transpose(X)
MYC_INIT	MAX (MX, MY)	MAX (NX, MY)	MAX (MX, NY)	MAX (NX, NY)
NYC_INIT	MAX (NX, NY)	MAX (MX, NY)	MAX (NX, MY)	MAX (MX, MY)

The values assigned to the minimum work array size is shown in TABLE 24.
table 24 Minimum Dimensions and Data Types for work Work array Used With Convolution and Correlation Routines

Routine	Minimum Work Array Size (WORK)	Type
SCNVCOR, DCNVCOR	$\begin{aligned} & 4^{*}(\text { MAX }(N X, N P R E+N Y)+ \\ & \operatorname{MAX}(0, N Z-N Y)) \end{aligned}$	REAL, REAL* 8
CCNVCOR, ZCNVCOR	$\begin{aligned} & 2 \star(\text { MAX (NX,NPRE+NY) + } \\ & \text { MAX }(0, N Z-N Y))) \end{aligned}$	COMPLEX, COMPLEX*16
SCNVCOR2 ${ }^{1}$, DCNVCOR2 1	MY + NY + 30	COMPLEX, COMPLEX*16
CCNVCOR2 ${ }^{1}$, ZCNVCOR2 1	$\begin{aligned} & \text { If MY = NY: } \quad \text { MYC }+8 \\ & \text { If MY } \neq \text { NY }: \quad \text { MYC }+N Y C+16 \end{aligned}$	$\begin{aligned} & \text { COMPLEX, } \\ & \text { COMPLEX*16 } \end{aligned}$

1. Memory will be allocated within the routine if the workspace size, indicated by LWORK, is not large enough.

Sample Program: Convolution

CODE EXAMPLE 20 uses CCNVCOR to perform FFT convolution of two complex vectors.
code example 20 One-Dimensional Convolution Using Fourier Transform Method and COMP LEX Data

```
my_system% cat con_ex20.f
```

 PROGRAM TEST
 C
INTEGER LWORK
INTEGER N
PARAMETER ($\mathrm{N}=3$)
PARAMETER (LWORK $=4 * \mathrm{~N}+15)$
C
COMPLEX P1(N), P2(N), P3(2*N-1), WORK (LWORK)
C
DATA P1 / 1, 2, 3 /, P2 / 4, 5, 6 /
C
EXTERNAL CCNVCOR
C
PRINT *, 'P1:'
PRINT 1000, P1
PRINT *, 'P2:'
PRINT 1000, P2
C
CALL CCNVCOR ('V', 'T', N, P1, 1, 1, N, 0, 1, P2, 1, 1, 1,
\$ 2 * $\mathrm{N}-1,1, \mathrm{P} 3,1,1,1$, WORK, LWORK)
C
PRINT *, 'P3:'
PRINT 1000, P3
C
1000 FORMAT (1X, $100(F 4.1, '$ +',F4.1,'i '))
C
END
my_system\% f95 -dalign con_ex20.f -xlic_lib=sunperf
my_system\% a.out
P1:
$1.0+0.0 i \quad 2.0+0.0 i \quad 3.0+0.0 i$
P2:
$4.0+0.0 i \quad 5.0+0.0 i \quad 6.0+0.0 i$
P3:
$4.0+0.0 i \quad 13.0+0.0 i \quad 28.0+0.0 i \quad 27.0+0.0 i \quad 18.0+0.0 i$

If any vector overlaps a writable vector, either because of argument aliasing or ill-
chosen values of the various INC arguments, the results are undefined and can vary from one run to the next.

The most common form of the computation, and the case that executes fastest, is applying a filter vector X to a series of vectors stored in the columns of Y with the result placed into the columns of Z. In that case, $\operatorname{INCX}=1$, INC1Y $=1, I N C 2 Y \geq$ NY, $I N C 1 Z=1, I N C 2 Z \geq N Z$. Another common form is applying a filter vector X to a series of vectors stored in the rows of Y and store the result in the row of Z, in which case INCX $=1$, INC $1 Y \geq N Y$, INC $2 Y=1, I N C 1 Z \geq N Z$, and $\operatorname{INC} 2 Z=1$.

Convolution can be used to compute the products of polynomials. CODE EXAMPLE 21 uses SCNVCOR to compute the product of $1+2 x+3 x^{2}$ and $4+5 x+6 x^{2}$.

Code example 21 One-Dimensional Convolution Using Fourier Transform Method and REAL Data

```
my_system% cat con_ex21.f
        PROGRAM TEST
        INTEGER LWORK, NX, NY, NZ
        PARAMETER (NX = 3)
        PARAMETER (NY = NX)
        PARAMETER (NZ = 2*NY-1)
        PARAMETER (LWORK = 4*NZ+32)
        REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
        DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /
C
        PRINT 1000, 'X'
        PRINT 1010, X
        PRINT 1000, 'Y'
        PRINT 1010, Y
        CALL SCNVCOR ('V', 'T', NX, X, 1, 1,
        $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1, WORK, LWORK)
        PRINT 1020, 'Z'
        PRINT 1010, Z
1000 FORMAT (1X, 'Input vector ', A1)
1010 FORMAT (1X, 300F5.0)
1020 FORMAT (1X, 'Output vector ', A1)
        END
my_system% f95 -dalign con_ex21.f -xlic_lib=sunperf
my_system% a.out
    Input vector X
        1. 2. 3.
Input vector Y
        4. 5. 6.
Output vector Z
        4. 13. 28. 27. 18.
```

Making the output vector longer than the input vectors, as in the example above, implicitly adds zeros to the end of the input. No zeros are actually required in any of the vectors, and none are used in the example, but the padding provided by the implied zeros has the effect of an end-off shift rather than an end-around shift of the input vectors.

CODE EXAMPLE 22 will compute the product between the vector [$1,2,3$] and the circulant matrix defined by the initial column vector [4,5,6]:
code example 22 Convolution Used to Compute the Product of a Vector and Circulant Matrix

```
my_system% cat con_ex22.f
    PROGRAM TEST
C
    INTEGER LWORK, NX, NY, NZ
    PARAMETER (NX = 3)
    PARAMETER (NY = NX)
    PARAMETER (NZ = NY)
    PARAMETER (LWORK = 4*NZ+32)
    REAL X(NX), Y(NY), Z(NZ), WORK(LWORK)
C
    DATA X / 1, 2, 3 /, Y / 4, 5, 6 /, WORK / LWORK*0 /
C
    PRINT 1000, 'X'
    PRINT 1010, X
    PRINT 1000, 'Y'
    PRINT 1010, Y
    CALL SCNVCOR ('V', 'T', NX, X, 1, 1,
    $NY, 0, 1, Y, 1, 1, 1, NZ, 1, Z, 1, 1, 1,
    $WORK, LWORK)
        PRINT 1020, 'Z'
        PRINT 1010, Z
C
    1000 FORMAT (1X, 'Input vector ', A1)
    1010 FORMAT (1X, 300F5.0)
    1020 FORMAT (1X, 'Output vector ', A1)
    END
my_system% f95 -dalign con_ex22.f -xlic_lib=sunperf
my_system% a.out
    Input vector X
            1. 2. 3.
    Input vector Y
            4. 5. 6.
    Output vector Z
        31. 31. 28.
```

The difference between this example and the previous example is that the length of the output vector is the same as the length of the input vectors, so there are no implied zeros on the end of the input vectors. With no implied zeros to shift into, the effect of an end-off shift from the previous example does not occur and the endaround shift results in a circulant matrix product.

CODE EXAMPLE 23 Two-Dimensional Convolution Using Direct Method

```
my_system% cat con_ex23.f
    PROGRAM TEST
C
    INTEGER M, N
    PARAMETER (M = 2)
    PARAMETER ( N = 3)
C
    INTEGER I, J
    COMPLEX P1 (M,N), P2 (M,N), P3 (M,N)
    DATA P1 / 1, -2, 3, -4, 5, -6 /, P2 / -1, 2, -3, 4, -5, 6 /
    EXTERNAL CCNVCOR2
C
    PRINT *, 'P1:'
    PRINT 1000, ((P1(I,J), J = 1, N), I = 1, M)
    PRINT *, 'P2:'
    PRINT 1000, ((P2(I,J), J = 1, N), I = 1, M)
C
    CALL CCNVCOR2 ('V', 'Direct', 'No Transpose X', 'No Overwrite X',
    $ 'No Transpose Y', 'No Overwrite Y', M, N, P1, M,
    $ M, N, 0, O, P2, M, M, N, P3, M, 0, 0)
C
    PRINT *, 'P3:'
    PRINT 1000, ((P3(I,J), J = 1, N), I = 1, M)
C
    1000 FORMAT (3(F5.1,' +',F5.1,'i '))
C
    END
my_system% f95 -dalign con_ex23.f -xlic_lib=sunperf
my_system% a.out
    P1:
    1.0 + 0.0i 3.0 + 0.0i 5.0 + 0.0i
    -2.0 + 0.0i -4.0 + 0.0i -6.0 + 0.0i
    P2:
    -1.0 + 0.0i -3.0 + 0.0i -5.0 + 0.0i
    2.0 + 0.0i 4.0 + 0.0i 6.0 + 0.0i
    P3:
-83.0 + 0.0i -83.0 + 0.0i -59.0 + 0.0i
    80.0 + 0.0i 80.0 + 0.0i 56.0 + 0.0i
```


References

For additional information on the DFT or FFT, see the following sources.
Briggs, William L., and Henson, Van Emden. The DFT: An Owner's Manual for the Discrete Fourier Transform. Philadelphia, PA: SIAM, 1995.

Brigham, E. Oran. The Fast Fourier Transform and Its Applications. Upper Saddle River, NJ: Prentice Hall, 1988.

Chu, Eleanor, and George, Alan. Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. Boca Raton, FL: CRC Press, 2000.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. Numerical Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge, United Kingdom: Cambridge University Press, 1992.

Ramirez, Robert W. The FFT: Fundamentals and Concepts. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Rodrigue, Garry ed. Parallel Computations. New York: Academic Press, Inc., 1982.
Strang, Gilbert. Linear Algebra and Its Applications. 3 ed. Orlando, FL: Harcourt Brace \& Company, 1988.

Van Loan, Charles. Computational Frameworks for the Fast Fourier Transform. Philadelphia, PA: SIAM, 1992.

Walker, James S. Fast Fourier Transforms. Boca Raton, FL: CRC Press, 1991.

Index

NUMERICS

2D FFT routines
arguments, 18,54
data storage format, 55
FULL argument, 54
normalization, 55
PLACE argument, 54
routines, 53
3D FFT routines
arguments, 18,68
data storage format, 70
FULL argument, 69
normalization, 70
PLACE argument, 69
routines, 68
64-bit code
See 64-bit enabled Solaris Operating Environment
64-bit enabled Solaris Operating Environment
appending _ 64 to routine names, 20
compiling code, 20
Fortran 95 code, 20
integer promotion, 20
USE SUNPERF statement, 20

A

argument data types
summary, 16
WSAVE work array, 24
arguments
2D FFT routines, 54
3D FFT routines, 68
convolution and correlation, 74
EZFFT routines, 37
FFT routines, 27
VFFT routines, 27

C

C
array storage, 19
routine calling conventions, 19
C interfaces
routine calling conventions, 19
calling conventions
C, 19
FORTRAN 77 and Fortran 95, 19
complex conjugate symmetry, 11
complex conjugation, 11
complex sequence
DFT definition, 10
convolution and correlation
arguments, 74
routines, 18, 74
cosine even-wave definition, 12
cosine even-wave routines
see COST routines
cosine quarter-wave definition, 12
cosine quarter-wave routines
see COSQ routines
COSQ routines
normalization, 40
routines, 39

COST routines

normalization, 45
routines, 44

D

data storage format
complex one-dimensional FFT routines, 28
complex three-dimensional FFT routines, 70
complex two-dimensional FFT routines, 55
real one-dimensional FFT routines, 28
real three-dimensional FFT routines, 70
real two-dimensional FFT routines, 55
data types
arguments, 16
WSAVE work array, 24
DFT
definition, 10
DFT definition, 10
efficiency of FFT versus DFT, 7
inverse transform definition, 10
real sequence, 11
discrete Fourier transform
See DFT

E

EZ Fourier transform routines, 37
EZFFT routines
arguments, 37

F

FFT
arguments, 27
data storage format, 28
efficiency of FFT versus DFT, 7
normalization, 34
routines, 16,33
FFT routine naming conventions, 14
FFT routines, 33
FFTPACK
compared to VFFTPACK, 8
Netlib, 7
routines, 16
Sun Performance Library extensions, 10

FORTRAN 77 and Fortran 95
array storage, 19
routine calling conventions, 19
FORTRAN 77 and Fortran 95 interfaces
routine calling conventions, 19
FULL argument
2D FFT routines, 54
3D FFT routines, 69

I

inverse DFT
definition, 10
real sequence, 12

N

naming conventions
base names, 14
prefixes, 14
Netlib, 7
normalization
2D FFT routines, 55
3D FFT routines, 70
COSQ routines, 40
COST routines, 45
FFT routines, 34
SINQ routines, 47
SINT routines, 52

P

parallelization, 26
PLACE argument
2D FFT routines, 54
3D FFT routines, 69

R

real sequence
DFT, 11
DFT definition, 11
inverse DFT definition, 12
routine base names, 14
routine calling conventions
C, 19
FORTRAN 77 and Fortran 95, 19
routines
2D FFT, 18, 53
3D FFT, 18, 68
convolution and correlation, 18, 74
cosine even-wave, 44
cosine quarter-wave, 39
EZ Fourier transform, 37
FFT, 16, 33
FFTPACK, 16
sine odd-wave, 51
sine quarter-wave, 46
VFFT, 16, 33
VFFTPACK, 16
ROWCOLVFFT routines
ROWCOL, 34

S

section 3P man pages, 7
sequence length N
definition, 7
effect of size of N on performance, 22
effect of values of N on performance, 21
most efficient values of $N, 21$
sine odd-wave definition, 12
sine odd-wave routines
see SINT routines
sine quarter-wave definition, 12
sine quarter-wave routines
see SINQ routines
SINQ routines
normalization, 47
routines, 46
SINT routines
normalization, 52
routines, 51

T

three-dimensional FFT routines see 3D FFT routines
two-dimensional FFT routines see 2D FFT routines

V

VFFT
arguments, 27
routines, 16, 33
VFFT routine naming conventions, 14
VFFT routines, 33
VFFTPACK
compared to FFTPACK, 8
Netlib, 7
routines, 16
Sun Performance Library extensions, 10

W

work array
data types, 24
initializing, 23
minimum dimension, 24
procedure for initializing, 23
WSAVE
see work array

X

x FFTOPT, 22
-xtypemap, 20

U

USE SUNPERF statement, 20

[^0]: 1. Results of inverse transform must be divided by a normalization factor proportional to N.
