
Building International Applications
Release 3.5 of Forte™ 4GL
Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6663-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte, and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents
Preface
Organization of This Manual . 8

Conventions. 9
Command Syntax Conventions . 9
TOOL Code Conventions . 9

The Forte Documentation Set . 10
Forte 4GL . 10
Forte Express. 10
Forte WebEnterprise and WebEnterprise Designer 10

Forte Example Programs. 11

Viewing and Searching PDF Files . 12

1 Introduction
About International Applications . 14

What Is a Locale? . 14
Locale Files . 15

What Is a Territory? . 16
What Is a Codeset?. 16
What Is a Multi-Byte Character? . 16
What Is a Multinational Application?. 16
What Is a Multilingual Application? . 17
What Is a Message Catalog? . 17

About Forte’s International Support . 18
International Templates. 18
Message Catalogs. 18
Classes and Methods . 18
Locale Files . 19
Translated Message Files . 19
Extmsg Utility . 20
Compmsg Utility. 20
Codeset Conversion . 20
Where to Go from Here. 20

4

2 Building International Applications
Preparing Multinational Applications . 22

Formatting Numbers, Currency, Dates, and Time. 22
Formatting Numbers . 22
Formatting Currency. 22
Formatting Dates and Times . 23

Using Multi-byte Character Formats . 24
Writing Portable Code . 24

Building Multilingual Applications. 25
Summary of Development Process . 25

Building a Message Catalog File. 27
Creating a Message Source File . 27
Formatting a Message Source File. 27

Source File Comments . 28
Using the Backslash Escape Character . 28
Leading/Trailing Spaces . 29
Parameter Placeholders . 29
Grouping Related Sets of Messages. 30

Compiling a Message Source File . 30
Location of Message Catalogs . 31

Multi-User Application Development . 31

Accessing Message Catalogs. 32
Using the MsgCatalog Class . 32

Referencing a Message Catalog. 32
Explicitly Opening a Message Catalog. 32
Accessing Message Text . 33
Supplying Default Message Text . 34
Accessing Message Sets . 35
Passing Parameters into Message Text . 35

Building Multilingual Windows . 36
Specifying a Message Set for a Window. 36
Specifying Message and Set Numbers for Widgets 37

Multilingual Help Text for Widgets . 38
Multilingual Help Text for Menu Widgets . 38
Specifying Message Numbers Dynamically . 39

Example of a Multilingual Window . 41

Using Extended Fonts . 46

Partitioned International Applications . 47
Accessing External Resources. 48
Building International Applications

5

3 Specifying Locale Settings
Overview . 50

Setting the Default Locale . 51

Customizing Locales . 53
Using Forte-Supplied Locales . 54

Language and Territory Options . 54
Codesets and Codeset Conversion. 55
Specifying the Collating Sequence . 56

Settings Precedence for Locale Information . 57

4 Command Line Utilities
The Extmsg Utility. 60

Preventing String Extraction . 62
Specifying Message Catalog Numbering Sequence 62

The Compmsg Utility . 63

Index . 65
Contents

6

Building International Applications

Preface
Building International Applications provides information about designing and
implementing applications that can be run using multiple languages and national
conventions. Topics covered in this manual include:

■ building message catalog files

■ using Forte 4GL classes to access message catalogs

■ running distributed multilingual applications

■ using the Extmsg and Compmsg utilities

■ using international applications from an end-user perspective

Organization of This Manual8
Organization of This Manual
Building International Applications combines task-oriented information for application
developers and information for the end users of international applications. This manual
contains the following chapters:

Chapter Description

Chapter 1, “Introduction” Describes the concepts and terminology used to discuss
building and using international applications.

Chapter 2, “Building International Applications” Provides instructions for building multinational and
multilingual applications.

Chapter 3, “Specifying Locale Settings” Provides information about environment variables and
other settings related to using international applications.

Chapter 4, “Command Line Utilities” Contains information about utilities used to build
international applications.
Building International Applications

Conventions 9
Conventions
This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions
The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

TOOL Code Conventions
Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format Description

bold Bold text is a reserved word; type the word exactly as shown.

italics Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

UPPERCASE Uppercase text represents a constant. Type uppercase text exactly as shown.

underline Underlined text represents a default value.

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

braces { } Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

brackets [] Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

Format Description

parentheses () Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

comma , Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

colon : Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

semicolon ; Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.
Preface

The Forte Documentation Set10
The Forte Documentation Set
Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help.

Forte 4GL
■ A Guide to the Forte 4GL Workshops

■ Accessing Databases

■ Building International Applications

■ Escript and System Agent Reference Manual

■ Forte 4GL Java Interoperability Guide

■ Forte 4GL Programming Guide

■ Forte 4GL System Installation Guide

■ Forte 4GL System Management Guide

■ Fscript Reference Manual

■ Getting Started With Forte 4GL

■ Integrating with External Systems

■ Programming with System Agents

■ TOOL Reference Manual

■ Using Forte 4GL for OS/390

Forte Express
■ A Guide to Forte Express

■ Customizing Forte Express Applications

■ Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer
■ A Guide to WebEnterprise

■ Customizing WebEnterprise Designer Applications

■ Getting Started with WebEnterprise Designer

■ WebEnterprise Installation Guide
Building International Applications

Forte Example Programs 11
Forte Example Programs
In this manual, we often include code fragments to illustrate the use of a feature that is
being discussed. If a code fragment has been extracted from a Forte example program, the
name of the example program is given after the code fragment. If a major topic is
illustrated by a Forte example program, reference will be made to the example program in
the text.

These Forte example programs come with the Forte product. They are located in
subdirectories under $FORTE_ROOT/install/examples. The files containing the examples
have a .pex suffix. You can search for TOOL commands or anything of special interest with
operating system commands. The .pex files are text files, so it is safe to edit them, though
you should only change private copies of the files.
Preface

Viewing and Searching PDF Files12
Viewing and Searching PDF Files
You can view and search 4GL PDF files directly from the documentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

Note You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

� To copy the documentation to a client or server:

1 Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

2 Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

Note To uninstall the documentation, delete the fortedoc directory.

� To view and search the documentation:

1 Open the file fortedoc.pdf, located in the fortedoc directory.

2 Click the Search button at the bottom of the page or select Edit > Search > Query.

3 Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

Note For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

4 Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5 Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

6 To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

7 To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]
Building International Applications

Chapter 1
Introduction
An international application can adapt at runtime to different languages and formatting
conventions. Forte provides several levels of support for building international applications
that include multinational and/or multilingual features. A Forte multinational application,
for example, uses information specified by the end user, either through control panels or
environment variables, to adapt at runtime to specific conventions for formatting dates,
time, numbers, and currency. And to support the development of multilingual applications,
Forte supplies a set of translated runtime error messages, predefined locale description
files, and special classes and methods.

In addition to a discussion about international concepts, this chapter provides an
introduction to international concepts and an overview of Forte 4GL’s support for
international features.

About International Applications14
About International Applications
There are two distinct areas to consider when developing international applications. One
area is territory-specific conventions, such as how date, time, money, and numeric fields
should be displayed. These conventions vary between geographic regions. An application
that can respond to different territory conventions at runtime is called a multinational
application. The other area to consider is the language used to display all text visible to an
end user—including all error and informational messages and literal strings that appear on
the screen. An application that can adapt to a different language at runtime is called
multilingual. You may need to consider only one of these areas, or both.

Territory and language conventions are characteristics of a particular user’s locale. An
international application takes its cue from a system’s locale settings. Locales, and other
concepts involved in internationalization, are described below.

What Is a Locale?
As mentioned above, a locale is a set of information that describes the characteristics
specific to a language or territory. For example, users in England have different locales than
users in Japan—not only do the users use different languages, but they also use different
conventions for formatting currency, numbers, dates, and time. Likewise, U.S. users use a
similar locale to British users—both use English—but still represent currency, dates, and
time differently.

The following information characterizes a locale:

Collating Sequence The collating sequence describes how a particular locale performs a
sort function. For example, compare how a United States English locale and a Spanish
locale alphabetize the same list of words:

The Spanish convention treats ‘ch’ and ‘ll’ as multi-character collating symbols that collate
after ‘c’ and ‘l’, respectively.

Character Classification In general, characters can be classified into alphanumeric,
alphabetic, control, digit, graphic, lowercase, printable punctuation, space, and uppercase.
An international product must be able to place characters in the proper classifications to
ensure proper results from TextData methods, such as IsAlpha(), IsUpper(), and ToUpper().
Some languages have multi-byte character sets, which are described in the section “What Is
a Multi-Byte Character?” on page 16.

Original List US Sort Spanish Sort

cull cheque cult

cult chess cull

cheque cull czech

czech cult cheque

chess czech chess
Building International Applications

About International Applications 15
Currency Format Strings and Symbols Currency format refers to the representation of
currency in each locale. For example, the string 12,345.67 is represented in territory formats
as shown below:

Numeric, Date, and Time Formats A locale specifies how to format the following:

■ symbols used for numeric decimal point, thousands separator

The symbols used for numeric decimal point thousands separator are locale dependent.
For example, the US decimal point is a period (.), and the German decimal point is a
comma (,).

■ the number of digits grouped between separators

For example, in the U.S., the grouping number is three (3)—the value 1234567 when
grouped becomes 1,234,567.

■ date/time format strings, year names, day and month names

The translation of day, week, and month names, as well as the format of dates and
times, are locale dependent. The following table displays example formats of the date
and time “Tue, April 2, 1994 1:11:44 pm”:

Locale Files
Forte supplies a set of locale files containing default settings for all the locale information
described above, as well as the specification of the current language. The system manager
specifies the default locale file using the FORTE_LOCALE environment variable. There are
additional environment variables that allow a system manager to override specific settings
in the locale file.

In addition, on Windows platforms, the end user of a Forte application can use control
panels to specify language choice and formatting conventions. Forte also provides
environment variables to supplement the native mechanisms. On UNIX and VMS, the end
user specifies language options with a set of environment variables and resource files.

The complete listing of supported locale files, as well as the precedence rules for
determining which settings are active, can be found in Chapter 3, “Specifying Locale
Settings.”

Locale Currency Format

US dollar $12,345.67

Deutschemark DM 12.345,67

Japanese Yen ¥12,345.67

Locale Format

US Tue, April 2, 1994 1:11:44 PM

France Mar., 02, Avr. 1994, 13:11:44
Chapter 1Introduction

About International Applications16
What Is a Territory?
A territory is a distinct geographic region that has its own recognized standards for
formatting numbers, currency, dates, and time. Forte always uses language and territory in
combination. For example, Canada, the United States, and England are territories
associated with the English language; parts of Canada (for example, Quebec) and France
are territories of the French language.

What Is a Codeset?
A codeset is the computer’s internal representation of a character set.

Examples of codesets include:

■ ASCII

■ ShiftJIS

■ ISO8859-1

What Is a Multi-Byte Character?
Most character sets contain a small number of characters and can be represented using 8
bit representation (maximum number of characters is 256), with single-byte storage. Some
character sets (Japanese, Chinese, Korean) contain a few thousand characters, which
require 16, 24, or 32-bit representation. Thus, for large character sets the unit of
representation must be 2, 3, or 4 four bytes, or multi-byte representation.

When manipulating multi-byte characters using TextData methods such as MoveTo and
SizeNext, an international application must make sure to leave the TextData object in a
consistent state, positioned at the start of a multi-byte character.

What Is a Multinational Application?
A multinational application can adapt at runtime to end users’ language and territory
settings. For example, while British users use English, their conventions for formatting
currency, dates, and time are different than users of American English. A multinational
application can accommodate different territory conventions.
Building International Applications

About International Applications 17
What Is a Multilingual Application?
A multilingual application is an application that can be run in multiple languages. There
are two kinds of multilingual applications:

■ an application that responds to language settings and comes up in one of its supported
languages

For example, a software company might provide versions of an application for its
French, German, and Japanese distributors. This application will be run in one language
only, depending on the country in which the application is used. Typically, the language
setting will determine the source of message strings and menus presented to the end
user at runtime.

■ an application that starts in one of any number of languages, but can change language
during runtime in response to an end user’s selection

For example, banks are likely to have to service customers that speak different
languages. A useful menu item on a banking application might be a list of languages
from which the teller can choose to view the screens. Once the teller selects a language,
all subsequent windows will change to reflect the new language and conventions. The
teller can print out statements for customers in the appropriate language, and will be
able to read the screens in the appropriate language, avoiding ad hoc translation during
a banking transaction.

Both types of multilingual applications can use one installed application regardless of the
number of languages each application supports.

What Is a Message Catalog?
A message catalog is a file containing all text strings (including menu, button, and field
labels) for an application. The application developer creates the catalog during the
application development process. Forte provides a utility to help automate the creation of
the message catalog—see the section “Extmsg Utility” on page 20 for more details.

The message catalog supplies the text necessary for translation—each supported language
requires its own message catalog. An internationalized application will access the
appropriate translated text at runtime with invocations of the MsgCatalog methods
GetString or GetTextData. See the section “Accessing Message Catalogs” on page 32 for
information about accessing message catalogs.
Chapter 1Introduction

About Forte’s International Support18
About Forte’s International Support
This section provides a brief overview of Forte’s support for multinational and multilingual
applications. Chapter 2, “Building International Applications,” provides implementation
details for the application developer. Chapter 3, “Specifying Locale Settings,” contains
information about controlling international features through control panel settings and
environment variables.

International Templates
As mentioned above, some international applications will allow end users to change the
language in which all visible text is displayed, as well as the territory conventions applied to
the text. All Forte applications using standard format templates will automatically adapt to
a language or territory change by translating text, such as days of the week, to the
appropriate language. In addition, there are several special formatting templates that you
can use to force the application to apply the specific conventions set by the user. For
example, the international DATE template will force an application to use the specific
formatting instructions provided by the locale file or specified through control panel
settings or environment variables. In this way, an application can adapt to changes in
territory conventions.

The international templates are discussed in the section “Preparing Multinational
Applications” on page 22.

Message Catalogs
At the heart of a multilingual application is one or more message catalogs. A message
catalog contains every visible piece of text displayed in an application—including error
messages, field labels, window titles, and so on.

Replace text with
method invocations

To build a multilingual application, you extract all messages and text strings from a TOOL
application and place them in one or more message files. A language translator would then
use any standard system utilities and text editors to translate these files to another
language. Meanwhile, in every place you removed text, you place invocations of the
GetString or GetTextData methods to access the message file(s) and display the appropriate
text.

The Forte distribution is structured in such a way that if the current locale file setting is
changed to reflect a new language, the application will access the corresponding message
catalog. You create and store message catalogs independently of the TOOL source code,
allowing an application to run in a variety of languages while using the same TOOL source
code.

Details about using message catalogs to build multilingual applications can be found in the
section “Building a Message Catalog File” on page 27.

Classes and Methods
Several special classes, methods, and attributes support internationalized applications and
can be found in the Framework Library. The classes, methods, and attributes are the
following:

ApplicationDesc class Provides access to information about the “current” application in
which TOOL code is executing, giving easy access to the message catalogs.

ExtendedFontDescriptor class Objects of the ExtendedFontDescriptor class represent
fonts that might vary across codesets and window systems.

LocaleDesc class Describes locale information such as locale name, language name, and
territory ID.
Building International Applications

About Forte’s International Support 19
MsgCatalog class Represents a compiled message catalog file, which contains a set of
numbered messages that an application accesses at runtime. Methods on this class allow
an application to retrieve messages from the file at runtime.

NativeLangMgr class Provides various services supporting international functionality in
Forte applications, such as explicitly opening a message catalog, and retrieving a partition’s
locale information.

Collate method This method appears on the TextData class and compares two strings,
returning a positive or negative value depending on the collate sequence.

IsHiragana, IsHankana, IsKanji, IsKatakana methods These methods appear on the
TextData class and identify Hiragana, Hankana, Kanji, and Katakana characters,
respectively.

GetErrorText method This method appears on the ErrorDesc class and returns the
message text of an ErrorDesc object.

GetAppMsgCatalog method This method appears on the NativeLangMgr class and
explicitly opens a manually-installed message catalog and returns a reference to the
created MsgCatalog object.

SetWithParams method This method appears on the ErrorDesc class and sets the
message text and catalog information for an error.

SetLocale method This method appears on the TaskHandle class and allows you to
change the locale from within an application.

GetLocale method This method appears on the TaskHandle class and allows an
application to retrieve the language and territory portions of the locale.

NativeLangMgr attribute This attribute appears on the Partition class and contains a
reference to the NativeLangMgr object created for a partition at startup.

LocaleDesc attribute This attribute appears on the TaskHandle class and contains the
locale information for the current task.

Note All TextData methods automatically take into account locale-specific needs and multi-byte
character sets.

Locale Files
Forte provides a set of pre-defined locale files. The locale files contain default language and
territory conventions for a variety of geographical regions. As mentioned earlier, the default
locale file is set using the FORTE_LOCALE environment variable. However, users can
override default settings with control panels and other environment variables. Refer to
Chapter 3, “Specifying Locale Settings,” for more information about locales. A complete list
of supported locales can be found in the file $FORTE_ROOT/install/nls/locale.

Translated Message Files
To support the use of multilingual applications, Forte supplies a set of translated message
files. Applications reference the translated files at runtime according to the language
setting specified by current locale file or environment variable. A list of the complete set of
translated files can be found in $FORTE_ROOT/install/nls/fortemsg. Note that Forte
Express message files are found in $FORTE_ROOT/install/nls/exmsg.
Chapter 1Introduction

About Forte’s International Support20
Extmsg Utility
To help convert a TOOL program containing embedded strings, Forte provides the
command line utility Extmsg for extracting strings and replacing them with invocations of
the GetString method, and placing the extracted strings into message files. The Extmsg
utility is discussed in Chapter 4, “Command Line Utilities.”

The Extmsg utility is useful to run on existing applications. For new applications, you may
find it more efficient as you develop the application to manually place the text into a
message file and include the appropriate method invocations in your code. Or, you can
develop a new application in your primary language, and then run the Extmsg utility on it.

Compmsg Utility
Once translators translate the message file, you then run it through a command line utility,
called Compmsg, to build the compiled and portable version of the file, called the message
catalog. The message catalog is an indexed file that is portable across machines and
different codesets.

The translation step can be done either before or after a distribution is made for a TOOL
application. The message file is simply represented in a distribution as a source and
compiled version. As a result, the translations can be done at the deployment site, or
during development. The Compmsg utility is discussed in the section Chapter 4,
“Command Line Utilities.”

Codeset Conversion
Forte applications are distributed and may run across a wide variety of machine
architectures. Because different machines can have different codesets, it is likely that a
distributed application will be required to pass textual data across different codesets. Forte
handles this situation by automatically converting codeset-dependent text data when
passing such data between dissimilar codesets.

Where to Go from Here
If your application will be deployed in several languages, but only within a single country,
you will mainly need to concern yourself with the language sections of this chapter. See
“Building Multilingual Applications” on page 25.

If your application will be deployed in several countries, but always in the same language,
you will need to pay more attention to the section about territory considerations. See
“Preparing Multinational Applications” on page 22 and Chapter 3, “Specifying Locale
Settings.”

If you have a multilingual, multinational application, read through the entire chapter.
Building International Applications

Chapter 2
Building International
Applications
As mentioned in Chapter 1, “Introduction”, Forte 4GL provides a set of features for
implementing international applications. There are several Forte features that support an
application’s adaptation to territory conventions, as well as several special features for
implementing multilingual applications. This chapter covers the following topics:

■ international formatting templates

■ using multi-byte characters

■ building multilingual applications

■ translating windows

■ using extended fonts

■ running distributed applications

■ accessing external resources

Preparing Multinational Applications22
Preparing Multinational Applications
The features described below support the development of applications that will be run in
multiple territories. Use these features in conjunction with the features that support
multilingual applications to prepare multinational, multilingual applications.

Formatting Numbers, Currency, Dates, and Time
It is likely that you have used, or will use, Forte templates to format numbers, currency,
dates, and time. As mentioned in Chapter 1, “Introduction,” international applications rely
on locale files and/or locale environment variable settings to determine formatting
conventions. The behavior of any templates you implement in your applications is
dependent on the settings in the current locale, or any environment variables that might
override locale file settings. The following sections describe how each set of templates
acclimates to the current locale.

Formatting Numbers
The NumericFormat class provides templates that format numeric data, including integer,
floating point, and decimal (money) data. Refer to the Forte online Help for a complete
listing of NumericFormat templates.

At runtime, Forte numeric formats adapt to locale specifications as follows:

■ The decimal point in numeric formats is replaced by the radix character specified in the
locale preference.

■ The comma in numeric formats is replaced by the thousands separator character
specified in the locale preference.

■ The grouping convention is implemented as specified in the locale preference.

U.S. English is default If locale information is missing for something specified in the format templates, Forte uses
U.S. English values.

Formatting Currency
Use the special CURRENCY template to request that the local currency formatting
conventions be used to format decimal data. At runtime, any data formatted with the
CURRENCY template will conform to the monetary specification in the current locale file.
For example:

In some languages, currency is formatted differently than numbers. Forte provides a
special convention for formatting currency, which involves prefixing any numeric format
that deals with currency with an exclamation point (!). The ‘!’ tells Forte that it will be
dealing with currency (rather than numbers), and thus Forte will use the locale preferences
for the separator character, grouping, and the decimal point. Refer to the Forte online Help
for more information on numeric formats.

number : DoubleData = new(value=123.45);

numfmt : NumericFormat = new;

numberAsText : TextData;

numfmt.Template = TextData(value=‘CURRENCY’);

numberAsText = numfmt.FormatNumeric(source = number);

...

number = numfmt.DecodeDouble(source = numberAsText);
Building International Applications

Preparing Multinational Applications 23
Note If you use the standard formats, the currency symbol (the American $) is not replaced in all
formats by the locale conventions. For example, if you use the format “$,$$$.99”, Forte will
display the data as “$1,234.56”—even if the application is run in a territory that uses DM as
the currency symbol. Therefore, to ensure proper conventions, use the CURRENCY format.

Formatting Dates and Times
Forte provides international and standard templates in the DateFormat class to format date
and time data. Refer to the Forte online Help for a complete listing of DateFormat
templates. Both types of templates behave according to locale specifications, as are
described below.

International Templates

Forte provides date and time templates to request that an application use territory-specific
formatting conventions at runtime. The formats are specified in the locale file, or through
control panels or environment variables. You apply these templates as you do regular date
and time templates (within TOOL code or in the Window Workshop). The following
international templates are available:

The following example shows how the international DATE template uses the current locale
settings. Assume that the end user has set the date format in the control panel of a PC to
include Weekday, Date, Month, and Year, using no separators—the language is French and
the territory is Canada:

Template Description

DATETIME Specifies that Forte use the local date/time formatting conventions to format the date and time
in a short format.

DATE Specifies that Forte use the local date formatting conventions to format the date in a short
format.

LONGDATETIME Specifies that Forte use the local date/time formatting conventions to format the date and time
in a long format.

LONGDATE Specifies that Forte use the local date formatting conventions to format the date in a long
format.

TIME Specifies that Forte use the local time formatting conventions to format the time.

aaa Displays the abbreviated name of the day of the week in English, regardless of the current
locale setting.

aaaa Displays the full name of the week in English, regardless of the current locale setting.

nnn Displays the name of the month in English, regardless of the current locale setting.

nnnn Displays the full name of the month in English, regardless of the current locale setting.

g Displays the Japanese era name as the first character in the Romanji representation of the era
name.

gg Displays the abbreviated Japanese Era name as a single Kanji character.

ggg Displays the full Japanese Era name as a double Kanji character.

e Displays the year within the Japanese Emperor era as a number without a leading zero.

ee Displays the year within the Japanese Emperor era as a number with a leading zero.

dt : DateTimeData = new;

dtfmt : DateFormat = new;

DateAsText : TextData;

dt.SetCurrent;

Apply the DATE template dtfmt.Template = ‘DATE’;

DateAsText = dtfmt.formatDate(source=dt);
Chapter 2Building International Applications

Preparing Multinational Applications24
The date will look like the following: Samedi 21 mars 1992. Compare this example with the
next example, which uses a standard template.

Standard Templates

At runtime, standard Forte date and time formats adapt to locale specifications as follows:

■ The month names and abbreviations (specified by the ‘mmm’ and ‘mmmm’ templates)
are replaced by the language equivalents specified in the locale preference.

■ The AM/PM designations (specified by the ‘AM/PM’, ‘am/pm’, ‘A/P’, and ‘a/p’ templates)
are replaced by the language equivalents specified in the locale preference.

■ The weekday names and abbreviations (specified by the ‘ddd’ and ‘dddd’ templates) are
replaced by the language equivalents specified in the locale preference.

The following example uses a standard format along with the locale specification
described in the previous example:

If you run this code with the same settings described above (French Canadian), the date
will look like the following: Mars 21, 1992.

Using Multi-byte Character Formats
The character format templates in the TextFormat class provide a format template (‘k‘) that
supports the multi-byte Kanji characters. However, the standard character template ‘?#’ will
accept one Kanji character input (which may be more than one byte). Kanji is the only
language supported by Forte that requires a special character format template. Refer to the
Forte online Help for a complete listing of TextFormat templates.

Writing Portable Code
The ASCII codeset (“asc”) defines only 127 characters, which correspond to the upper and
lower case Roman characters (without accent), all of the digits, and a number of special
characters (punctuation, arithmetic symbols, and so on). This codeset is usually sufficient
for standard UK and American applications.

All of the defined codesets used by Forte contain the identical ASCII subset of characters as
the first 127 one-byte characters. As a result, any partition that starts up defined with the
ASCII codeset will not need to convert between codesets, because all codesets use the
ASCII codes. However, if you use the ASCII codeset designation and actually send
characters with codes that are not in the ASCII character set, no conversion will occur, and
you may get corrupted information. Refer to the section “Partitioned International
Applications” on page 47 for more information about codeset conversion.

To ensure maximum portability of code across codesets, TOOL identifier names must
consist only of a portable set of ASCII characters. These identifiers include class names,
project names, local variables, and so on. The Forte workshops enforce the use of this set of
characters. Note that the contents of strings, and the names of database tables and
columns do not need to be restricted to ASCII. Refer to the TOOL Reference Manual for
information about Forte naming.

dt : DateTimeData = new;

dtfmt : DateFormat = new;

DateAsText : TextData;

dt.setCurrent;

Apply a standard template dtfmt.Template = ‘mmm dd,yy’;

DateAsText = dtfmt.formatDate(source=dt);
Building International Applications

Building Multilingual Applications 25
Building Multilingual Applications
The basis for building multilingual applications is the use of method invocations to access
a message catalog. A message catalog is an indexed file, external to the TOOL program,
which contains all the text that appears in an application—this includes error messages,
status lines, field labels, and menus. Each message in the message catalog is uniquely
numbered and corresponds to an appropriate method invocation. The message catalog is
translated into each language your application will support.

By providing a set of files with different language translations of the messages, but with the
same numeric identifiers, a single TOOL program can access the appropriate language at
runtime to adapt to the user’s language preferences.

Summary of Development Process
The general steps for developing a multilingual application are the following:

1 Construct and test the application in the “primary” language intended for its use.

2 Export the projects that comprise the application to .pex export files.

3 Use the Extmsg utility to make a first cut at converting strings into messages. (See
Chapter 4, “Command Line Utilities,” for more information.)

The Extmsg utility simply takes strings out of an export file and replaces them with
invocations of the GetString and GetTextData methods. The utility places the strings
into a file that you can use as a basis for the message catalog, or you can add the file to
an existing message file for the application. (See “Creating a Message Source File” on
page 27.)

Strings that you do not want extracted should be bracketed by the function NX().(NX
stands for No Translation.) For example:

Note that you can initially develop your application using the GetString and
GetTextData methods and manually build the message file rather than putting in the
text and then extracting it. This allows better control over the numeric identifiers
assigned to messages.

4 Re-import the projects into the repository.

5 Within the development environment, check the TOOL code and edit or remove any
remaining hard-coded messages.

6 Add more method invocations if necessary, and add the referenced messages to the text
message file. You may want to edit the message file to remove some extracted messages
and put them back into the TOOL source code. (See “Accessing Message Catalogs” on
page 32).

7 Use the widget property dialogs to specify message numbers and message set numbers
for all static text that appears on windows. Add the corresponding text to the message
catalog.

8 Put the message file created for the application into the FORTE_ROOT/workmsg
language subdirectories on the machine upon which you are developing the
application. (See “Location of Message Catalogs” on page 31.)

Note that all message files are external to the repository, and it is the developer’s
responsibility to place these files in the proper location.

username.Value = NX(‘?’);
Chapter 2Building International Applications

Building Multilingual Applications26
9 Use the Compmsg utility to compile the message file into portable binary format. You
must run the Compmsg utility any time you add, modify, or delete messages in the
message file. (See “Compiling a Message Source File” on page 30).

The steps above are described in the sections that follow. Please note that this chapter
assumes that you have an existing application that you wish to internationalize. Therefore,
the steps include running the Extmsg utility to create a message source file. Of course, you
can also build this file manually.
Building International Applications

Building a Message Catalog File 27
Building a Message Catalog File
As mentioned earlier, a message source file contains text messages identified by number, in
ascending (but not necessarily consecutive) order. You generate a message catalog from a
message source file—a message catalog file is the compiled version of the message source
file. Applications access messages in the catalog by invoking the GetString or GetTextData
methods to read in messages from the catalogs.

Creating a Message Source File
You create a message source file in one of two ways: by running the Extmsg utility on the
.pex files of an existing application, or by manually creating a file (using the text editor of
your choice) and entering the message as you develop your application.

Extmsg utility If you use the Extmsg utility, the utility automatically replaces the text strings with
invocations of the GetString method (if you want the GetTextData method, you have to put
it in manually). Refer to Chapter 4, “Command Line Utilities,” for information about the
Extmsg utility.

If you create the file manually, you must be sure that you also modify your TOOL code to
include the appropriate GetString or GetTextData invocations. Using these methods is
described in the section “Accessing Message Text” on page 33.

Source file name You must name the message source file the same name as the unique application identifier
(first 8 characters of the name), plus a .msg suffix. For example, if your application is called
myapp, the message source file would be myapp.msg.

Regardless of how you choose to create the message source file, you can expect to modify
the file throughout the development of your application. The following section describes
the formatting conventions of a message source file.

Formatting a Message Source File
Each message in a source file begins with a number, followed by a single space, followed by
text, and terminated by a newline character. Message numbers are unsigned integers and
must be in ascending order—numbers need not be consecutive.

The sections that follow describe various formatting semantics for preparing message
source files. An example of a message source file is shown below. Forte uses the X/Open
format conventions for language-dependent message files.

A message text source file looks like the following example:

Comment $ Here are the messages for the errors in my app

1 Error entering %1 workshop by user %2.

Escape character 3 You must enter the following: \n\

 1. your name.\n\

 2. your password.

$quote “ $quote “

7 “ here is some text with leading blanks”

8 “here is some text with trailing blanks “

$quote

11 This is back to specifying without quotes
Chapter 2Building International Applications

Building a Message Catalog File28
Source File Comments
Any line beginning with a dollar sign ($) followed by a single space or tab is considered a
comment. You can use comment lines to put in descriptive information that might be
handy during the translation process.

Using the Backslash Escape Character
You use the backslash (\) character in a message as an escape character in the following
ways:

Continuing Lines A backslash followed immediately by a newline allows you to enter a
long message across several lines. For example:

Inserting a Newline A backslash followed by a newline character (\n) inserts a
newline—a carriage return is implied. For example:

Inserting a Tab A backslash followed by a tab character (\t) inserts a tab. For example:

At runtime, the above example will be displayed like the following:

Converting Hexadecimal Numbers A backslash followed by an ‘x’ and a hexadecimal
number (\xNN) converts the hexadecimal number into the character whose binary value in
the current codeset matches the hexadecimal value. The valid values for the hexadecimal
number are in the range 00-FF, and are codeset dependent. This conversion feature is
useful for entering multi-byte characters or European characters where the keyboard
mapping may not be obvious. For example, the following message text format will convert
the hex number to the ‘é’ character at runtime, using the Window Latin 1 codeset:

Another example:

When displayed, message 12 (in the Japanese SHIFT-JIS codeset) appears as the first vowel
(pronounced ‘ah’) of the Japanese Hiragana character set.

7 This message text spans several lines. In this file, the \

message is on 4 lines, but when displayed, it is actually one \

long line. The \ character at the end of each line denotes \

continuation.

8 This message will be displayed\n on two lines.

10 First\tName:

First Name:

11 Fort\xe9

12 \x82\xa0
Building International Applications

Building a Message Catalog File 29
Converting Octal Numbers A backslash followed by an octal number (\NNN) converts
the octal number represented by ‘NNN’ to the binary value that is exactly NNN (in the
current codeset). Valid values are in the range 000-377, and the values are codeset
dependent. This conversion feature is useful for entering multi-byte characters or
European characters where the keyboard mapping may not be obvious. For example, the
following message text format will convert the octal number 351 to the ‘é’ character at
runtime (using the Windows Latin 1 codeset):

Another example:

When displayed, message 14 (in the Japanese SHIFT-JIS codeset) appears as the first vowel
(pronounced ‘ah’) of the Japanese Hiragana character set.

Leading/Trailing Spaces
To make leading or trailing spaces visible, use the $quote directive followed by a character
(such as *, “, #, or @, and so on). Then use the character to delimit the start and end of the
text for the message to which you wish to add spaces. When you use the $quote directive to
specify a character, you must begin and end the text that follows with that character.

To reset the $quote directive, place the $quote directive on a line by itself, with no
delimiting character, as shown below.

Parameter Placeholders
To pass a parameter into message text, you must leave a placeholder for the parameter in
the message source text. The placeholder for the message source text is the percent sign
(%). For example:

To insert the parameter value, use the ReplaceParameters method on a TextData object,
which is described in the section “Passing Parameters into Message Text” on page 35.

13 Fort\351

14 \202\240

$quote “ $quote “

7 “ here is some text with leading blanks”

8 “here is some text with trailing blanks “

$quote

11 This is back to specifying without quotes

1 Error entering %1 workshop by user %2.
Chapter 2Building International Applications

Building a Message Catalog File30
Grouping Related Sets of Messages
For large numbers of messages or related groups of messages, it is useful to group messages
into message sets. Message sets provide a way to subcategorize message numbers and to
keep related messages together in a file. In addition, Forte can read in and cache a message
set at runtime using the LoadSet/UnloadSet methods on the MsgCatalog class, providing
more efficient access to a set of messages. Refer to “Accessing Message Sets” on page 35 for
more information about the LoadSet and UnloadSet methods.

$set You identify a message set by placing a $set directive in the message source file prior to the
first message in the set. All messages that follow belong to the set specified by the most
recent $set directive. Like message numbers, set numbers are unsigned integers and must
be in ascending order, but need not be consecutive. The same message numbers can
appear in different sets. If the $set directive does not appear in the message text source file,
the set number for all messages is assumed to be 1.

Note Message set numbers above 60,000 are reserved for Forte.

A message source text file that uses message sets looks like the following:

Compiling a Message Source File
After you have completed building the message source file, you compile it into a message
catalog file by using the Compmsg utility (see Chapter 4, “Command Line Utilities,”). This
utility takes a message source file and outputs a file that is portable across operating
systems and codesets. An example use of this utility is shown below:

Forte accesses the myapp.cat file at runtime.

Example: message sets $set 1

$ Here are the messages for the errors in my app

1 Error entering %1 workshop by user %2.

2 You must enter the following: \n\

 1. your name.\n\

 2. your password.

$set 2

2 The first message in the second set.

4 The second message, even though I skipped a number.

compmsg -m myapp.msg -c myapp.cat
Building International Applications

Building a Message Catalog File 31
Location of Message Catalogs
To facilitate access to and maintenance of message catalogs, create a subdirectory for each
language your application will support in the FORTE_ROOT/workmsg directory. You can
either specify a single directory for a language or for a language/territory combination. The
name of each directory must correspond exactly to an official Forte language or
language/territory name, such as en, en_us, or fr, fr_fr. You can always add subdirectories
to the deployment distribution after the application has been deployed. Refer to the
$FORTE_ROOT/install/nls/locale for a complete list of supported locales.

For example, if you are distributing an application to several Spanish speaking countries,
you can supply one /es directory. All applications that use a Spanish locale—regardless of
any territory specification—will use the message catalog in that directory. In addition, Forte
gives you the flexibility to also include a territory-specific directory, which will be used if
that locale is defined.

You can also create both types of directories, in which case the more general language-only
directory will be used when the specific territory directory does not exist.

Once you have created this directory structure, created message source files and then
compiled them into message catalogs, place both the .msg and .cat files for each language
in the appropriate language subdirectory. For example:

The directory structure described above ensures an application’s access to the proper
language files at runtime. In addition, if you partition and test a distributed application,
Forte will send the appropriate message catalog files to the nodes on which the test run of
any distributed partitions are to be run. This make it very convenient to finalize and test
with different partitioning schemes. You can even test the multilingual nature of your
application from the Forte Workshops by starting up other clients (with the TestClient
utility) that use different language and territory codes. See the Forte 4GL Programming
Guide for information on the TestClient utility.

Multi-User Application Development
To allow multiple developers to work on the same application with different message
catalogs, Forte provides the FORTE_WORKMSG environment variable. FORTE_WORKMSG
allows you to specify a directory other than FORTE_ROOT/workmsg to house your message
catalogs during development. For example:

Set up the specified directory (/myTests in the example above), just as you would
FORTE_ROOT/workmsg. In other words, create your locale directories, and place the
message source and message catalogs under the appropriate directory.

Standard directories with
language subdirectories

FORTE_ROOT

/workmsg

/en

<appID>.msg

<appID>.cat

/en_us

<appID>.msg

<appID>.cat

/fr

<appID>.msg

<appID>.cat

FORTE_WORKMSG = myDirectory/myTests
Chapter 2Building International Applications

Accessing Message Catalogs32
Accessing Message Catalogs
To incorporate a message catalog into a running application, you modify the TOOL code in
your application to call the message catalog at runtime. The actual call to the catalog is
made by the GetString and GetTextData methods, which reference the specified message
text.

If you ran the Extmsg utility on an application, the utility inserted GetString invocations in
every place it extracted a string (Extmsg uses only GetString). If you are manually creating
your message source file, then you need to insert these GetString or GetTextData calls
yourself. The following sections describe how to use the GetString and GetTextData
methods on the MsgCatalog class to access a message catalog at runtime.

Using the MsgCatalog Class
Before an application can make use of a message in a specific message catalog, the
application must open the right catalog. An application determines which message catalog
to use by the current locale settings. If you have set up your files according to the
instructions in the section “Location of Message Catalogs” on page 31, your application can
implicitly open the appropriate message catalog before the first GetString method retrieves
a message string.

After an application implicitly opens a message catalog, it retrieves messages using the
GetString or GetTextData methods on the MsgCatalog class. Both methods have
parameters to identify the set number and message number within the set to retrieve.

Referencing a Message Catalog
Forte provides a special TOOL keyword called application, which refers to the current
ApplicationDesc object for the code (much like the keywords task and transaction). The
ApplicationDesc object has an attribute called MsgCatalog, which refers to the message
catalog for the current application, while the current locale specifies the required language
for the task. You can simply refer to this MsgCatalog object to access the messages for the
current application, without having to pass around a MsgCatalog object as a parameter to
all of your methods.

The following code shows how to reference the catalog of the “current” application:

Message catalogs that are referenced through the ApplicationDesc object are automatically
managed by the Forte runtime systems. Forte opens and closes the catalogs based on the
message access load. The implicit message catalog is called “<appID>.cat”. You can derive
this message catalog from any number of source message files by concatenating them
before running the Compmsg utility. For example, a common technique is to create a single
message source file for each project. That source file contains a set of set numbers that are
unique across projects. The source files can be concatenated when you build the catalog
for a given application. Using this technique, you can keep just one copy of the messages
for a given project, even if that project was used in more than one application.

Explicitly Opening a Message Catalog
Under certain circumstances, you may wish to explicitly open a message catalog. You can
open a specific message catalog by invoking the OpenMsgCatalog method on the
task.Part.NativeLangMgr object, giving an unopened File object that designates the
location of the compiled message catalog file. The OpenMsgCatalog method returns a

msg : msgCatalog;

msg = application.MsgCatalog;
Building International Applications

Accessing Message Catalogs 33
MsgCatalog object, which can then be used to access messages in that catalog (see the
Forte online Help for more information about these classes and methods). The following
code fragment demonstrates:

This approach, however, is less convenient because you might have to pass the MsgCatalog
object reference as a parameter to any methods that might wish to access the messages in
that catalog. You also will need to determine the language that is needed, and come up
with conventions for identifying the name of the files, and so on. Furthermore, catalogs
explicitly opened in this manner are not managed by Forte, and you will have to maintain
the file resources associated with the catalog by closing the catalog when not in use.

Explicitly Opening a Managed, Application-specific Message Catalog

The task.Part.NativeLangMgr.GetAppMsgCatalog method opens the message catalog that is
installed in $FORTE_ROOT/install/nls/appname/language_territory.cat. The returned
message catalog object is “managed” in the sense that you need not explicitly name the
catalog file or close it. Rather, the NativeLangMgr constructs the catalog file name based on
the running task’s LocaleDesc and closes the catalog when the partition shuts down. This
approach is especially useful in circumstances where a set of common messages used by
related applications can be consolidated under one common message catalog instead of
being duplicated into multiple catalogs under $FORTE_ROOT/userapp.

The following code fragment shows an example of the GetAppMsgCatalog method:

The NativeLangMgr will attempt to open the message catalog
$FORTE_ROOT/install/nls/myBaseApp/en_us.cat by default or if the locale of the running
task is en_US.

See the Forte online Help for information about the NativeLangMgr class and the
GetAppMsgCatalog method.

Accessing Message Text
The GetString and GetTextData methods on the MsgCatalog class return a string or a copy
of a TextData object, respectively, of a message in a message catalog. Both of these methods
have two required parameters: setNumber and msgNumber.

setNumber and
msgNumber parameters

The setNumber parameter indicates the message set that contains the message, and the
msgNumber parameter indicates the specific message string to retrieve.

Note that in most cases, the GetString method is the simpler way to retrieve the message
text. Use the GetTextData method if your application will further manipulate the retrieved
text, as when you set the value of a menu command.

mcat : MsgCatalog;

file_for_cat : File = new;

file_for_cat.SetPortableName

 (name = “/mydisk/locale/french/myApp.cat”);

mcat = task.Part.NativeLangMgr.OpenMsgCatalog

 (file = file_for_cat);

mcat : MsgCatalog =
task.Part.NativeLangMgr.GetAppMsgCatalog('myBaseAp');

mcat.GetString(setNumber=1, msgNumber=3);
Chapter 2Building International Applications

Accessing Message Catalogs34
� To access message text:

1 Create a MsgCatalog object and open the current message catalog.

2 Retrieve a text message into a string variable using the GetString method.

You can similarly retrieve the message into a TextData object with the GetTextData
method:

Supplying Default Message Text
You can provide a default message that your application displays when it cannot find a
specified message. You might choose to specify the defaultString in the developers’
language with an extra indication that the message cannot be found. Use the defaultString
parameter with either the GetString or GetTextData method, as shown below:

-l flag with Extmsg If you use the Extmsg utility to create your GetString or GetTextData method invocations,
use the -l option to supply the extracted message to the defaultString parameter for each
method invocation.

If you do not provide a default parameter on the GetString or the GetTextData method
invocations, and you do not use the -l option with the Extmsg utility, Forte returns a
message like the following:

mcat : MsgCatalog;

mcat = application.MsgCatalog; -- See below

str : string;

str = mcat.GetString(setNumber=1, msgNumber=3);

txt : TextData;

txt = mcat.GetTextData(setNumber=2, msgNumber=1);

task.GetString(setNumber=2, msgNumber=5,

defaultString=’(default) Invalid employee ID entered.’);

ERROR: Set:<number> Msg:<number> does not exist.
Building International Applications

Accessing Message Catalogs 35
Accessing Message Sets
If your TOOL code accesses a number of messages from the same set, you can use the
LoadSet and UnloadSet methods on the MsgCatalog class to read in and cache a message
set at runtime. This technique provides very efficient access to multiple messages. If you
use the LoadSet method, you must explicitly unload the set from memory, using the
UnloadSet method, to free up memory resources.

� To access a message set:

1 Invoke the LoadSet command on the message catalog, specifying the set number you
wish to load.

For example:

2 Proceed to access messages as usual (see the previous section).

3 Unload the message set by invoking the UnloadSet method.

For example:

Passing Parameters into Message Text
If you have parameters in your message text, you need to establish a TextData object on
which to invoke the ReplaceParameters method. The example below shows how
parameters are used in the InternatBank example application. Refer to the Forte online
Help for details about the ReplaceParameters method on the TextData class.

mcat : MsgCatalog = application.MsgCatalog;

mcat.LoadSet(setNumber = 3);

mcat.UnloadSet(setNumber = 3);

when <WithdrawButton>.Click do

myMsg : TextData;

myMsg = mcat.GetTextData(setNumber = WINDOWSET, msgNumber = 9,

 defaultString = NX(‘Branch %1 out of money today: %2.’));

myText : TextData = new;

myText.ReplaceParameters(source = myMsg,

 parameter1 = IntegerData(value = 33),

 parameter2 = <DateField>.TextValue);

self.Window.MessageDialog(messageText = myText);

See InternatBank example Project: InternatBank • Class: AccountWindow • Method: Display
Chapter 2Building International Applications

Building Multilingual Windows36
Building Multilingual Windows
All text within windows and widgets displayed in a user interface can be set through
attributes and methods described in the Display Library online Help. Using Forte’s
international features, you can write code to set these attributes from messages read from a
message catalog before the window is first displayed. If you design the windows using grid
fields and other techniques for letting the interface adapt to the displayed contents, you
can achieve excellent portability of interfaces across languages. See the Forte 4GL
Programming Guide for information about building a portable user interface. Note that you
cannot change the base layout of a window using this technique.

Specifying a Message Set for a Window
All messages for the widgets on a window can be loaded from the same message set, which
is specified as an attribute on a Window object or in a window widget’s Properties dialog.
Alternatively, you can specify a message set number for each widget (or a group of widgets)
on a window; the widget’s message set number will override the window’s message set
number.

On the Window Properties dialog, there are also message number and set number
properties for the window’s title. If you do not specify a set number for the title, Forte will
use the default set number specified for the window. If you do specify a set number for the
title, that set will be used.

� To specify message and set numbers for a window in the Window Workshop:

1 Enter the Window Workshop.

2 Choose the File > Window Properties command.

The Window Properties dialog is shown in the following figure:

3 Enter a default set number.

This message set will be used for all the widgets on the window that do not specify their
own message set.

4 (Optional) Enter a message number and set number for the window title if you wish to
internationalize that text. Remember to enter the message number and corresponding
text in the message catalog.

Will be used for all
widgets on the window
if no set number is specified
in the widgets’ Properties dialogs

Use for multilingual
window title
Building International Applications

Building Multilingual Windows 37
Specifying Message and Set Numbers for Widgets
All widgets that display static text have message numbers as attributes and as properties in
the Window Workshop. Message number attributes are not available on widgets that
display text only at runtime, such as a data field. You can specify message and set numbers
for a widget in your TOOL code or in the Window Workshop. You typically specify message
and set numbers in the Window Workshop, unless you are writing a dynamic application
that you wish to internationalize. In this case, you can specify the numbers in your TOOL
code. Note that regardless of how you specify the numbers, you keep track of them and
enter them manually in the message catalog.

Window Workshop
property dialogs

For each widget that has a single text value that you can internationalize, there is a message
number and set number property. For lists (radio list, drop list, scroll list, fillin field, menu
list), there is a Text Value Set Number that specifies the set number for all the list elements,
as well as message numbers for individual list elements.

For outline fields and listview fields, there is a Column Title Set Number that specifies the
set number for all the column titles.

Default set number If you do not specify a value for the widget’s set number, Forte will use the message set
number specified on the widget’s window. If you do specify a set number for the individual
widget, that set will be used.

� To specify message and set numbers for widgets in the Window Workshop:

1 Create a widget in the Window Workshop.

2 Double-click on the widget to display its Properties dialog, or select the widget and
choose the Widget > Properties command.

3 Enter a message number in the Message Number field and a set number, if necessary, in
the Set Number field.

Remember that you can use the set number for the window as the default set number
for every widget on the window. In this case, you do not need to enter a set number in
the widget’s property dialog, but you must enter a set number in the window’s property
dialog. However, if you do enter a set number in the widget’s Properties dialog, it will
override the set number in the window’s Properties dialog.

4 In the message catalog, enter the message number and the appropriate text according
to the syntax described in “Formatting a Message Source File” on page 27.
Chapter 2Building International Applications

Building Multilingual Windows38
Multilingual Help Text for Widgets
All widgets have a Help Properties dialog in the Window Workshop, shown in Figure 1,
where you can enter floatover help text and status line help text. Each dialog has a Message
Number and Set Number property in which you specify the message number and,
optionally, the set number for the status line text. If you do not specify a set number, the
help text will use the set number specified on the widget’s window.

Figure 1 Help Properties Dialog

Note There is only one message and (optional) set number for the two types of help—floatover
and status line. When you enter the help text in the message catalog, you must use the
syntax described in the Display Library online Help, which is the following:

float_over_help \n status_line_help

This syntax places both help strings on one line in the catalog, and thus only one message
number is required.

You can also specify message and set numbers using the following attributes:
FloatOverTextMsgNum and FloatOverTextSetNum. These attributes are available on every
widget.

Multilingual Help Text for Menu Widgets
Menu widgets also have status line help text that you specify using the Item > Status Text...
command in the Menu Workshop. The Item > Status Text... command displays the Status
Text dialog, shown in Figure 2, in which you enter the status line text and its message
number and optional set number.

Figure 2 Status Text Dialog

You can also specify message and set numbers using the following attributes in your TOOL
code: StatusTextMsgNum and Status TextSetNum.
Building International Applications

Building Multilingual Windows 39
Specifying Message Numbers Dynamically
You can write TOOL code to dynamically display text on a widget according to different
application states that you specify in your TOOL code, as shown in the following example:

To accommodate a multinational, dynamic application that makes use of message
catalogs, you would alter the code to use message numbers and the ReloadLabelText
method, code like the following:

For information about the ReloadLabelText method, see the Forte online help.

If you wish to set the message and set numbers dynamically, the following table contains
the widgets and their corresponding attributes.

if state == 1

pb.label = ‘Push Me’:

else

pb.label = ‘Pull Me’;

end if

if state == 1

pb.labelMsgNum = 45;

else

pb.labelMsgNum = 46;

end if

pb.ReloadLabelText();

Widget Attribute Description

Window SetNum Specifies the default set number for the window. If a widget on the
window specifies a set number of zero (the default), then the
window’s set number is used.

TitleMsgNum Specifies the message number for the window’s title text. A value
of 0 (the default) means that the current value of the Title attribute
for the window is used.

TitleSetNum Specifies the set number for the message number that contains
window’s title text.

PushButton LabelMsgNum Specifies the message number for the push button’s label text. A
value of 0 means that the current value of the Label attribute is
displayed on the widget.

LabelSetNum Specifies the set number for the message number that contains the
push button’s label text. If you specify a value of 0 (the default),
then the window’s SetNum value, if any, is used.

ToggleField TextMsgNum Specifies the message number for the toggle’s text. A value of 0
(the default) means that the current value of the Text attribute is
displayed on the widget.

TextSetNum Specifies the set number for the message number that contains the
toggle’s text. If you specify a value of 0 (the default), then the
window’s SetNum value, if any, is used.

MenuWidget TextMsgNum Specifies the message number for the menu widget’s text. A value
of 0 (the default) means that the current value of the Text attribute
is displayed on the widget.

TextSetNum Specifies the set number for the message number that contains the
menu widget’s text. If you specify a value of 0 (the default), then
the window’s SetNum value, if any, is used.
Chapter 2Building International Applications

Building Multilingual Windows40
StatusTextMsgNum Specifies the message number for the menu widget’s status text. A
value of 0 (the default) means that the current value of the
StatusText attribute is displayed on the widget.

StatusTextSetNum Specifies the set number for the message number that contains the
menu widget’s status text. If you specify a value of 0 (the default),
then the window’s SetNum value, if any, is used.

TextGraphic TextMsgNum Specifies the message number for the text graphic’s text. A value of
0 (the default) means that the current value of the Text attribute is
displayed in the status line.

TextSetNum Specifies the set number for the message number that contains the
text graphic’s text. If you specify a value of 0 (the default), then the
window’s SetNum value, if any, is used.

RadioList CaptionMsgNum Specifies the message number for the radio list’s caption text. A
value of 0 (the default) means that the current value of the Caption
attribute is displayed on the widget.

CaptionSetNum Specifies the set number for the message number that contains the
radio list’s caption text. If you specify a value of 0 (the default), then
the window’s SetNum value, if any, is used.

CompoundField CaptionMsgNum Specifies the message number for the compound field widget’s
caption text. A value of 0 (the default) means that the current value
of the Caption attribute is displayed on the widget.

CaptionSetNum Specifies the set number for the message number that contains the
compound fields widget’s caption text. If you specify a value of 0
(the default), then the window’s SetNum value, if any, is used.

FieldWidget FloatOverTextMsgNum Specifies the message number for the field widget’s floatover help
text. A value of 0 (the default) means that the current value of the
FloatOverText attribute is displayed for the widget.

FloatOverTextSetNum Specifies the set number for the message number that contains the
field widget’s floatover help text. If you specify a value of 0 (the
default), then the window’s SetNum value, if any, is used.

ListElement TextValueMsgNum A value of 0 means that the text entered in the Window Workshop
is displayed on the widget.

ListField TextValueSetNum Specifies the set number for the message number that contains the
list field’s text. If you specify a value of 0 (the default), then the
window’s SetNum value, if any, is used.

FillinField TextValueSetNum Specifies the set number for the message number that contains the
fillin field’s text. If you specify a value of 0 (the default), then the
window’s SetNum value, if any, is used.

MenuList TextValueSetNum Specifies the set number for the message number that contains the
menu list’s text. If you specify a value of 0 (the default), then the
window’s SetNum value, if any, is used.

OutlineColumnDesc TitleMsgNum Specifies the message number for the column title. A value of 0
means that the current value for the Title attribute is displayed on
the widget.

TreeField TitleSetNum Specifies the set number for the message number that contains the
tree field’s column title.If you specify a value of 0 (the default), then
the window’s SetNum value, if any, is used.

Widget Attribute Description
Building International Applications

Example of a Multilingual Window 41
Example of a Multilingual Window
Assume that you have a window that looks like Figure 3:

Figure 3 Sample Window in English

The following example first checks to see if the language has to be changed by checking the
LanguageName attribute on the LocaleDesc class. Assume the application is developed in
English.

Assume you have the following constant defined:

constant DEFALT_LOCALE = ‘en_us’;

method LoginWindow.Init()

super.Init();

-- Set current locale name. Use GetLocale() to extract the language

-- and territory parts only from task.LocaleDesc.LocaleName.

self.CurrentLocale = task.GetLocale();

-- Check to see if locale is a supported one.

if self.CurrentLocale <> 'en_us' and

self.CurrentLocale <> 'fr_fr' and

self.CurrentLocale <> 'de_de' then

errMsg : TextData = new(value = self.CurrentLocale);

errMsg.Concat(NX(' not supported. Defaulting to '));

errMsg.Concat(DEFAULT_LOCALE);

self.Window.MessageDialog(errMsg);

self.CurrentLocale = DEFAULT_LOCALE;

end if;

-- Set radiolist to highlight the correct start-up choice

if self.CurrentLocale = 'en_us' then

self.LanguageChoice = 1;

elseif self.CurrentLocale = 'fr_fr' then

self.LanguageChoice = 2;

elseif self.CurrentLocale = 'de_de' then

self.LanguageChoice = 3;
Chapter 2Building International Applications

Example of a Multilingual Window42
The following Display method handles resetting the locale if the user chooses another
language:

end if;

if self.CurrentLocale <> DEFAULT_LOCALE then

-- make sure to reset

task.SetLocale(locale = self.CurrentLocale);

-- A special built-in variable, called "application"

-- is defined, which refers to the current

-- ApplicationDesc object for the code. This object

-- has an attribute called MsgCatalog, which

-- refers to the message catalog for the current

-- project. This message catalog will reflect the

-- current locale set on the task.

mcat : MsgCatalog = application.MsgCatalog;

-- Calling ReloadLabelText on the Window

-- causes widgets in the form and menu to be

-- reloaded.

self.Window.ReloadLabelText(mcat);

end if;

See InternatBank example Project: InternatBank • Class: LoginWindow • Method: Init

method LoginWindow.Display()

-- English is the default value in the radio list.

requestedLocale : string = DEFAULT_LOCALE;

self.Open();

event loop

when task.Shutdown do

exit;

-- The user has selected English, French or German

-- from a RadioList.

when <LanguageChoice>.AfterValueChange do

case LanguageChoice is

when 1 do

requestedLocale = ’en_us’;

when 2 do

requestedLocale = ’fr_fr’;

when 3 do

requestedLocale = ’de_de’;

end case;
Building International Applications

Example of a Multilingual Window 43
-- Check whether the requested locale is different

-- from the current locale for the task.

-- Call the method to reload label text if it is.

if self.CurrentLocale <> requestedLocale then

-- Need to reset the LocaleDesc.

self.CurrentLocale = requestedLocale;

task.SetLocale(locale = self.CurrentLocale);

-- A special built-in variable, called "application"

-- is defined, which refers to the current

-- ApplicationDesc object for the code. This object

-- has an attribute called MsgCatalog, which

-- refers to the message catalog for the current

-- project. This message catalog will reflect the

-- current locale set on the task.

mcat : MsgCatalog = application.MsgCatalog;

-- Calling ReloadLabelText on the Window causes

-- widgets in the form and menu to be reloaded.

self.Window.ReloadLabelText(mcat);

end if;

when <IdNumber>.AfterFirstKeystroke do

<OKButton>.State = FS_UPDATE;

when <OKButton>.Click do

accountWindow : AccountWindow = new;

start task accountWindow.Display(

requestedLocale = self.CurrentLocale);

end event;

self.Close();

See InternatBank example Project: InternatBank • Class: LoginWindow • Method: Display
Chapter 2Building International Applications

Example of a Multilingual Window44
Your translated window would look like Figure 4:

Figure 4 Sample Window in German

The following Display method handles the language requirements of the Account Window
(second window of the example application):

method AccountWindow.Display(input requestedLocale : string)

-- Call the ReloadLabelText method if the language is different

-- from the language the application was developed in.

mcat : MsgCatalog = application.MsgCatalog;

if requestedLocale <> DEFAULT_LOCALE then

self.Window.ReloadLabelText(mcat);

end if;

-- Define a constant for the set number in the

-- catalog file.

constant WINDOWSET = 2;

-- This string variable can be reused by several

-- MessageDialog boxes, as long as GetString is

-- called each time.

myMsg : string;

self.Open();

event loop

when task.shutdown do

exit;
Building International Applications

Example of a Multilingual Window 45
when <DepositButton>.Click do

myMsg = mcat.GetString

 (setNumber = WINDOWSET, msgNumber = 8);

self.Window.MessageDialog

 (messageText = myMsg);

-- The text for this message has two parameters.

when <WithdrawButton>.Click do

myMsg = mcat.GetString

 (setNumber = WINDOWSET, msgNumber = 9,

 defaultString = NX(’Branch %1 out of money today: %2.’));

myText : TextData = new;

myText.ReplaceParameters

 (source = myMsg,

 parameter1 = IntegerData(value = 33),

 parameter2 = <DateField>.TextValue);

self.Window.MessageDialog

 (messageText = myText);

end event;

See InternatBank example Project: InternatBank • Class: AccountWindow • Method: Display
Chapter 2Building International Applications

Using Extended Fonts46
Using Extended Fonts
Forte provides a set of fonts for multinational use. These fonts will vary depending on
locale settings. For example, the fonts available to a user of Japanese locale settings will be
different than the fonts available for a French locale. As a result, these fonts are not
necessarily portable beyond a single codeset or window system type. In fact, most codesets
have a set of fonts that have been specifically designed for that codeset. In Japan, for
example, a special set of fonts is available (most common is called Mincho) for the
standard Kanji set of characters. In Korea, a font representing the Hangul characters is
available. These locale-specific fonts are referred to as Forte’s extended fonts.

ExtendedFontDescriptor class The extended fonts are a set of six additional typefaces supported through the
ExtendedFontDescriptor class (see the Display Library online Help for more information).
Typeface identifiers 1 through 6 designate each typeface, and, as stated above, these
typefaces can be different for each of the codesets (such as ISO88591 or SHIFTJIS), and for
each supported window system (Windows and Motif).

These new fonts are also available as a set of options within the Font menu in the Window
Workshop. The menu items use the descriptive name for the font on the system upon
which the user is running. Whenever possible—to assure maximum portability—use the
system or portable fonts. These fonts will always work on all systems.
Building International Applications

Partitioned International Applications 47
Partitioned International Applications
When you start a client partition, the client uses locale settings to determine codeset
translation, language usage, and default formatting. When an application invokes a
method on a remote object (in a partition on another machine), that partition may have
been started using a different locale (different codeset, different language, and so on).
However, because the method invoked on the remote partition is logically part of the client
application, some of the locale information is critical to the “natural” operation of the
system.

Codeset conversion Codesets can affect the semantics of an application at runtime. For example, if the string
‘Forte’ is taken from an NT field and sent to a remote UNIX server to be inserted into a
database, the system must confirm that the characters inserted into the database are the
same characters typed in by the user, even though the codesets of the two machines may
differ. The strings that pass between the partitions must be converted between any
mismatching codesets (this is particularly important for the character é). In addition, any
error messages returned from the remote partition must be translated to the language
being used in the client machine. Because the remote partition may be servicing requests
from several clients, which might be running under different locale settings, the remote
partition must adapt to the locale information that is defined for the client.

Fortunately, the majority of these conversions take place automatically. For example:

■ Conversion between the codeset running in the client machine and the codeset running
in the remote machine is handled automatically and transparently.

■ The language and territory code for the client partition is passed to the remote
partition, so that messages and errors looked up on the remote partition will use that
language and territory code.

■ The collating sequence from the client partition is passed across such that comparisons
and sorts done in the remote partition will use the collating sequence defined for the
client.

Passing formatting
information across partitions

Forte does not pass the formatting information specified in control panels or environment
variables between partitions. Instead, any modification to the locale will apply only to the
formatting specifications in the client partition. That is, the formatting will conform as if
the server were started with the FORTE_LOCALE set to the language and territory code of
the client, using the codeset of the server. To assure that the formatting conventions are
exactly as the client has set, you must make sure to do all formatting in the client partition
of the application.
Chapter 2Building International Applications

Partitioned International Applications48
Accessing External Resources
As mentioned above, the majority of codeset conversion between partitions takes place
automatically. However, there is one case where you will have to alter the startup command
of a partition.

External resources, such as databases, often use specific codesets for data storage. If your
application accesses a data source that uses a different codeset than the codeset of the
partition accessing the data source, you must do one of two things:

■ partition your application such that the object that accesses the data source resides on
the same partition as the data source

or

■ start up the partition on which the object resides using the same codeset as the
partition in which the data source resides

To start up a partition using a particular codeset, include the -flc flag in the Server
Arguments field in the Assigned Partition Properties dialog of the Partition Workshop. See A
Guide to the Forte 4GL Workshops for more information about partition properties.

Typically, a Forte server running against an external resource on a particular machine or
network will interact correctly if the resource is codeset aware.
Building International Applications

Chapter 3
Specifying Locale Settings
The term locale represents properties relating to language and territory conventions. In
Windows environments, control panels are available through which users can set locale
information. Date and time formats, for example, are typical control panel settings. On
UNIX and VMS platforms, users can set default locale information using a single
environment variable.

This chapter contains information about Forte locale settings. Topics covered include:

■ setting default locales

■ customizing locales

■ Forte locale environment variables

■ precedence rules for locale behavior

Overview50
Overview
As described in previous chapters, an international application adapts to an environment’s
locale information—a set of characteristics pertaining to language and territory
conventions.

The following table lists the information controlled by a locale:

Users define locales on a setting-by-setting basis (on platforms with control panels), or by
setting an environment variable to activate a single locale definition file. See the section
“Setting the Default Locale” on page 51 for information about defining locales.

In addition, end users can modify particular information for their locale using locale
environment variables. See the section “Customizing Locales” on page 53 for information
about modifying locale information using Forte locale environment variables.

Category Description

Language The language for messages that are seen by the user.

Territory The territory (usually a country) for other conventions, which determines a set of defaults
for currency, money, and date formatting.

Character Handling Within a codeset, the conventions for classifying characters as upper or lower case,
punctuation marks, white space, and so on.

Collating Sequence Within a codeset, the collating sequence for characters. Most codesets have at least two
sequences, one for sorting upper and lower case characters intermixed, and one for
sorting uppercase before lowercase.

Currency Format The default format to use when a numeric format of “CURRENCY” is used. This format is
based on a number of settings in the locale definitions and control panels.

Numeric Format The default formats to use for thousands separators and decimal point. These formats are
based on a number of settings in the locale definitions and control panels.

Date and Time Format The default formats to use when a DateTime format of “DATE”, “TIME”, or “DATETIME”
is used. This is based on a number of settings in the locale definitions and control panels.
Building International Applications

Setting the Default Locale 51
Setting the Default Locale
Most platforms offer their own conventions for setting locale information. Forte’s
international support takes advantage of industry standard mechanisms whenever
possible. In most cases, that mechanism is a control panel or the LANG environment
variable. On systems that do not support the LANG variable, Forte provides its own
variable, FORTE_LOCALE, which, like LANG, sets up a default locale. Refer to the section
“Customizing Locales” on page 53 for more information about the FORTE_LOCALE
environment variable.

� To set the default locale:

1 Select the appropriate settings in your platform’s control panel.

or

1 Set your platform’s locale environment variable (LANG or FORTE_LOCALE) to the locale
you desire. Check the table below for the variable available on your platform.

c locale If you do not specify a locale on a UNIX platform, the operating system will use the default
locale setting ‘c’. A ‘c’ locale represents the default locale for the operating system. Many
operating systems set the LANG environment variable to ‘c’ as a default. A ‘c’ locale,’
however, tells Forte NOT to perform any codeset conversion. If you are certain you will only
need characters found in an ASCII codeset, then the ‘c’ locale is sufficient. If you use
characters outside the ASCII codeset, such as characters with a grave accent or umlaut,
then you must specify the appropriate locale. Or, if you have non-ASCII characters in a
window, the FORTE_LOCALE environment variable must be set before loading the .pex file.
This is not an issue in Windows environments, because a locale is always specified in a
control panel; therefore, codeset conversion will always be performed when necessary.

Note Specific locale support varies between environments, because locale support is an optional
feature in most operating systems. Therefore, the examples below may use a locale that
your system does not support. Check with your system administrator for the list of
available locales on your system.

Platform Setting Example

DEC UNIX LANG setenv LANG en_US.88591

DGUX LANG setenv LANG en_US

HP LANG setenv LANG american.iso88591

NT Control Panel or
FORTE_LOCALE

see Figure 5 for Control Panel settings, or,
setenv FORTE_LOCALE (in the forte.ini file)

RS/6000 LANG setenv LANG en_US

Sequent LANG setenv LANG en_US

Solaris LANG setenv LANG en_US

Sun FORTE_LOCALE setenv FORTE_LOCALE en_US.iso

Windows Control Panel or
FORTE_LOCALE

see Figure 5 for Control Panel settings, or,
setenv FORTE_LOCALE (in the forte.ini file)

VMS FORTE_LOCALE setenv FORTE_LOCALE en_US.iso
Chapter 3Specifying Locale Settings

Setting the Default Locale52
Figure 5 WindowsNT Date/Time Control Panel

If you wish to change a particular setting of your default locale, refer to the
section“Customizing Locales” on page 53.
Building International Applications

Customizing Locales 53
Customizing Locales
To offer users flexibility when establishing locales, Forte provides a set of locale
environment variables for enhancing or modifying the default locale settings on your
system. Most of the time, though, the default locale settings will be sufficient. The table
below lists the Forte locale environment variables.

Note X/Open variables are available on most UNIX systems and are synonymous to the Forte
variables.

The syntax for the Forte locale environment variables is:

variable_name language_territory.codeset[@collate_sequence]

The environment variable arguments are described below:

When you set any of the FORTE_LC_* variables, specify the full locale, although only the
category of information appropriate to the environment variable is actually taken from that
file. Sample settings of FORTE_LOCALE (in UNIX C-shell format) are shown below:

Forte Variable X/Open Variable Definition

FORTE_LOCALE LANG Sets all of the locale conventions to the information in the Forte
specified locale file.

FORTE_LC_CTYPE LC_CTYPE Uses the locale you specify for character classifications.

FORTE_LC_COLLATE LC_COLLATE Uses the locale you specify for collating sequence information.

FORTE_LC_MONETARY LC_MONETARY Uses the locale you specify for currency formatting information.

FORTE_LC_NUMERIC LC_NUMERIC Uses the locale you specify for numeric formatting information.

FORTE_LC_TIME LC_TIME Uses the locale you specify for date and time formatting
information.

Argument Description

language_territory Specifies the language and the territory conventions to use for locale information. See the
section “Language and Territory Options” on page 54 for more information.

codeset Specifies the codeset to use when running any partition. See the section “Codesets and
Codeset Conversion” on page 55 for more information.

collate_sequence Specifies the collating sequence to use within the locale definition file. See the section
“Specifying the Collating Sequence” on page 56 for more information.

setenv FORTE_LOCALE en_US.mac -- uses all settings

setenv FORTE_LC_MONETARY en_GB.iso -- uses only currency setting

setenv FORTE_LC_CTYPE ja_JA.euc -- character classification settings

setenv FORTE_LOCALE fr_FR.iso@2 -- specific collating sequence
Chapter 3Specifying Locale Settings

Customizing Locales54
Using Forte-Supplied Locales
As mentioned earlier, every platform supports its own set of locales that you specify using
the LANG environment variable. There is no guarantee that a particular locale on one
platform will reflect exactly the same conventions on another platform. For example, the
collating sequence for a French locale on an IBM/RS6000 may be different than the
collating sequence for a French locale on an HP.

FORTE_LOCALE Forte provides its own set of locales, all of which perform exactly the same across
platforms. To set these locales, you use the FORTE_LOCALE environment variable. The
syntax for setting this variable is the same on every UNIX and VMS platform. The following
are examples of setting the FORTE_LOCALE environment variable:

Available Forte locales are listed in the file $FORTE_ROOT/install/nls/locale.

Language and Territory Options
All Forte locale environment variables use a language_territory argument. The language
argument is a two-letter code that specifies which language to use. The language code is
followed by an underscore character, followed by a two-letter territory code. The territory
code specifies territory-specific conventions, such as how date, time, money, and numeric
values are formatted. The set of language_territory (locale) codes are pre-defined by Forte
and are listed in the file $FORTE_ROOT/install/nls/locale.

The following table lists a subset of supported, commonly-used locales:

setenv FORTE_LOCALE en_US.iso

setenv FORTE_LOCALE fr_CA.iso

setenv FORTE_LOCALE de_DE.iso

Language/Territory Locale Code

English—United States en_us

English—Great Britain en_gb

English—Australia en_au

English—Canada en_ca

French—France fr_fr

French—Canada fr_ca

German—Germany de_de

Italian it_it

Japanese ja_jp

Spanish es_es
Building International Applications

Customizing Locales 55
Codesets and Codeset Conversion
The codeset argument of a locale environment variable specifies the codeset to use when
running any partition. Note that specifying any codeset other than the default for the
system can reduce performance with external resources on that system that are running in
a different codeset.

The values for codeset are pre-defined by Forte and based on the X/Open standard
wherever possible. If you use the Forte variables you can, of course, use Forte’s abbreviated
codeset names; otherwise, use the native settings.

The following table shows the most common codeset values. Refer to the Release Notes for
complete listing of supported codesets:

ja_jp codesets The iso, win, and dec codesets are available for all locales except for ja_jp, which uses sjs,
euc, and dec.

Codesets and Distributed Environments

In a distributed environment, partitions may be running in different codesets. Wherever
possible, Forte performs codeset conversion automatically and transparently. The following
table shows the conversion behavior between platforms:

Note All codesets are compatible with the ASCII codeset, provided that there are no non-ASCII
characters. If there are non-ASCII characters, they will be lost in the conversion.

During codeset conversion, characters in the source codeset that do not have equivalent
characters in the destination codeset are usually mapped to characters in the destination
codeset that are used as placeholders or are unused slots.

Short Name Full Name Description

iso ISO8859-1 Standard ISO - Western Europe and Americas

win WinLatin1 Windows - Western Europe and Americas

dec DecMulti Digital - Western Europe and Americas

sjs Shift-JIS Japanese Shift-JIS

euc JaEUC UNIX extended Japanese codeset

Codesets ISO8859-1 MacRom Win Lat1 DecMulti Shift-JIS JaEUC

ASCII ✔ ✔ ✔ ✔ ✔ ✔

ISO8859-1 ✔ ● ● ● — —

Win Lat1 ● ● ✔ ● — —

DecMulti ● ● ● ✔ — —

Shift-JIS — — — — ✔ ●

JaEUC — — — — ● ✔

Legend:

✔ No conversion required

● Automatic conversion by Forte

— Conversion not possible
Chapter 3Specifying Locale Settings

Customizing Locales56
Codesets and Exported .pex Files

If your project includes non-ASCII characters and you export the project into a .pex file,
you must be careful to use the right codeset when you import the .pex file. There are two
areas where you must be aware of this:

■ non-ASCII characters included in TOOL source code, for example, in message text

In this scenario, you must be using exactly the same codeset when exporting and
importing the .pex file.

■ non-ASCII characters in window text, for example, in widget labels

In this scenario, you must be running a compatible codeset when exporting and
importing the .pex file.

non-ASCII source code If you have non-ASCII characters in your TOOL code and plan to export your project to a
.pex file and then import it, you must be running Forte in the same codeset you were
running when you exported the project.

Note that if you use the Extmsg and Compmsg utilities, the message catalog is tagged with
a codeset that allows all characters to be mapped to any compatible codeset.

non-ASCII window labels If you use the Window Workshop and enter non-ASCII characters in widget labels, such as
menus and button names, you must also take care when you export and import the .pex
file. When you export the project, the window definition in the .pex file is marked with a
codeset identifier. When you import that .pex file, any non-ASCII characters from the base
codeset are mapped to the running codeset. If you are running the ‘C’ codeset (ASCII), it is
likely that characters will not be correctly mapped and will be dropped. Therefore, it is
important that you specify an explicit locale setting before you import the file.

It is particularly important to set the locale before the import if you are using window
inheritance to write multilingual windows.

Specifying the Collating Sequence
This is the numeric identifier for the collating sequence to use within the locale definition
file. Values start at 0 (for the first collating sequence). The default is 0, and the maximum is
15.

For example:

setenv FORTE_LOCALE en_US.iso@1

setenv FORTE_LOCALE fr_CA.iso@4
Building International Applications

Customizing Locales 57
Settings Precedence for Locale Information
In the vast majority of cases, it is not necessary for an end user to set the FORTE_LC_*
environment variables, because the default locale settings and control panel information
will cover the majority of situations. In some cases, though, users will supplement or
modify the default settings using one or more of the Forte locale environment variables.

When you set environment variables in conjunction with default locale settings, Forte must
determine which settings take priority. For example, default locales include currency
formats, but when a user sets the FORTE_LC_CURRENCY variable, Forte needs to
distinguish which setting is the current setting.

When a partition starts up, the exact resolution of the settings will be done according to the
following precedence (from highest precedence first):

On all systems, if Forte cannot determine any of the locale information from the various
settings above, or if the specified locale is not available on the system, Forte will print a
warning and default to the ASCII codeset and English language with U.S. territory
conventions.

Setting System What Happens

-flc flag All systems If you use the -flc command line flag with the startup command for a partition,
Forte consults the specified locale file and uses the settings within that file that
pertain to all categories. The locale syntax of the flag is the same as for setting
the FORTE_LOCALE environment variable. For example,

ftexec -flc en_US.iso

If any FORTE_LC_* environment variables were set prior to using the -flc flag,
Forte ignores them and uses the settings in the locale specified with the -flc
flag.

FORTE_LC_*
variables

All systems If you set any of the FORTE_LC_* environment variables, Forte consults the
associated locale file and uses the settings within that file that pertain to the
category.

For example, if FORTE_LC_TIME is set to “en_US.iso”, then the settings from
the locale file for en_US for the iso codeset will be used regardless of what else
is set.

FORTE_LOCALE
variable

All systems If you set the FORTE_LOCALE environment variable, Forte consults the specified
locale file and uses the settings within that file that pertain to all categories that
are not already specified with a FORTE_LC_* environment variable.

LC_* variables X/OPEN On X/Open compliant systems that use the LC_* environment variables, Forte
uses those variables in the same way as the FORTE_LC_* environment variables
to specify the behavior for a group of settings taken from the system locale
files. Note that if the FORTE_LOCALE variable is set, none of the LC_*
environment variables will take effect, as FORTE_LOCALE has higher
precedence.

LANG variable X/OPEN On X/Open compliant systems that use the LANG environment variables, Forte
uses the LANG environment variables in the same way it uses the
FORTE_LOCALE environment variable. Forte consults the specified locale file
and uses the settings within that file that pertain to all categories that are not
already specified with a LC_* environment variable.

Control Panels NT and
Windows

Forte uses the appropriate control panel settings to collect the information
needed to determine the settings for any missing group. This will “fill in” the
groups which did not get specifically assigned through the use of a
FORTE_LC_* environment variable. Note that if the FORTE_LOCALE variable is
set, no information will be taken from the control panels.
Chapter 3Specifying Locale Settings

Customizing Locales58
Building International Applications

Chapter 4
Command Line Utilities
This chapter describes the Extmsg and Compmsg utilities.

The Extmsg Utility60
The Extmsg Utility
The Extmsg utility takes a TOOL project export file as input and replaces any single-quoted
strings found in the text within the file with invocations of the GetString method on the
default message catalog for the application. This utility is provided as a simple convenience
only, and is in no way required.

The Extmsg utility produces two pieces of output: a text file containing the new TOOL code
and a newly created message text source file. You must import the TOOL code back into the
repository, and, if necessary, append the message text file information to any existing
message file. If you are running the Extmsg utility before you have created any messages, of
course, the output message file can act as the starting message file.

The syntax of the Extmsg utility is the following:

Portable syntax extmsg -i input_TOOL_file -o output_TOOL_file
-m output_msg_file [-s set_string] [-n first_msg_number]
[-t substitution_text_string] [-l]

OpenVMS syntax VFORTE EXTMSG
/INPUT_TOOL=input_TOOL_file
/OUTPUT_TOOL=output_TOOL_file
/MSG_TEXT=output_msg_file
[/SET=set_string]
[/FIRST_MSG=first_msg_number]
[/SUBSTITUTE=substitution_text_string]
[/LEAVE_MSG=TRUE]
Building International Applications

The Extmsg Utility 61
The following table describes the command line flags for the extmsg command:

The following example demonstrates the use of the Extmsg utility. Assume that you had the
following TOOL code in a file called myin.tol:

Flag Description

-i input_TOOL_file

/INPUT_TOOL=input_TOOL_FILE

Specifies the name of a text file containing TOOL code from which the
strings are to be extracted. The file can be a full export file, or just an
arbitrary piece of TOOL code.

-o output_TOOL_file

/OUTPUT_TOOL=output_TOOL_file

Specifies the name of the text file that will contain the TOOL code, with
all strings replaced by invocations of the GetString method.

-m output_msg_file

/MSG_TEXT=output_msg_file

Specifies the name of the message text source file that extmsg
generates, containing the strings that were extracted.

-s set_string

/SET=set_string

Specifies a single set number to use for all invocations of the GetString
method. The default set number is 1. This flag will also place a set
command in the output message text file. This parameter may include a
literal string, so you can use a string that might refer to a constant name,
for example, -s WINDOWSET=5. To complete this example, you would
need to edit the pex file and explicitly include the following constant at
the appropriate place:

WINDOWSET=5;

-n first_msg_number

/FIRST_MSG=first_msg_number

Specifies the first message number within the set that will be used for
the invocations of the GetString method. The first message extracted
will be given this number, and subsequent extractions will increment the
value by 1. The default is 1.

-t substitution_text_string

/SUBSTITUTE=substitution_text_string

The text to use to substitute for the leading portion of the GetString
method invocation. The default value is:
application.MsgCatalog.GetString

-l

/LEAVE_MSG=TRUE

The single-quoted strings are left as the value of the defaultString
parameter. Refer to the Forte online Help for information about the
GetString method on the MsgCatalog class. The default is not to leave
the strings for the parameter.

method classX.methodY

m : TextData = new;

m.SetValue(‘Preparing long running query...’);

self.Window.MessageDialog(message = m);

sql select into my_array from my_table

where my_table.Name = NX(‘Jones’);

m.SetValue(‘Done with query.’);

self.Window.MessageDialog(message = m);

end method;
Chapter 4Command Line Utilities

The Extmsg Utility62
You could run the following command:

The command above would generate the output file myout.tol:

The output file would look like the following:

Preventing String Extraction
The Extmsg utility has no knowledge of TOOL syntax, so it will translate all strings it finds in
TOOL code, excluding comments. To prevent extraction unnecessary strings, Forte
provides a special TOOL function that takes the form NX(string_literal). NX is short for No
Translation.

Specifying Message Catalog Numbering Sequence
You can use the -s and -f parameters to tell Extmsg to use a specific set number string and
starting message number within the set when it extracts the string messages. By default, it
uses set number 1, starting at message number 1.

extmsg -i myin.tol -o myout.tol -m myout.msg -s 4 -f 102 -l

 -t application.MsgCatalog.GetString

method classX.methodY

m : TextData = new;

m.SetValue(application.MsgCatalog.GetString(4, 102, ‘Preparing

 long running query...’);

self.Window.MessageDialog(message = m);

sql select into my_array from my_table

where my_table.Name = NX(‘Jones’);

m.SetValue(application.MsgCatalog.GetString(4, 103, ‘Done with

query.’);

self.Window.MessageDialog(message = m);

end method;

$set 4

102 Preparing long running query...

103 Done with query.
Building International Applications

The Compmsg Utility 63
The Compmsg Utility
The Compmsg utility takes a file containing source message text and numbers, and
compiles it into a portable binary format for use at runtime by the Forte runtime system.
You must run the Compmsg utility whenever you add or change the messages in the
message source text file.

The syntax of the Compmsg utility is the following:

Portable syntax compmsg -m [@]input_msg_file -c output_msg_catalog [-o] [-d msg_catalog]
[-e log_file] [-flc locale]

VMS syntax VFORTE COMPMSG
/MSG_TEXT=input_msg_file
/CATALOG=output_msg_catalog
[/OVERWRITE=TRUE]
[/DISPLAY=msg_catalog]
[/ERROR_LOGFILE=log_file]

The following table describes the command line flags for the compmsg command:

The message catalog generated by the Compmsg utility is completely portable across
operating systems and codesets. For maximum performance, however, you might want to
compile separately on machines that use different native codesets to avoid runtime codeset
conversion when the message is read.

Flag Description

-m [@]input_msg_file

/MSG_TEXT=input_msg_file

Specifies the name of the source message text file to compile. To support a
batch input file, preface input_msg_file with an ‘@’.

-c output_msg_catalog

/CATALOG=output_msg_catalog

Specifies the name of the portable binary message catalog file to create.

-o Overwrites the output_msg_catalog file if it exists. Otherwise, compmsg
merges input_msg_file with output_msg_catalog.

-d msg_catalog
/DISPLAY=msg_catalog

Displays the contents of the compiled catalog msg_catalog, allowing you to
reconstruct the message file from the catalog.

-e log_file
/ERROR_LOGFILE=log_file

Specifies the name of the log file to use for capturing all output
messages/diagnostics from Compmsg. This is particularly useful when used
together with the /DISPLAY=msg_catalog to capture the output to a file.

-flc locale Overrides the FORTE_LOCALE or control panel setting.This allows you to
maximize performance by running Compmsg with the locale specific to the
target environment. For example, if you are using Compmsg on a PC, but
compiling a file for use on a Macintosh, use a locale with a .mac suffix.

The -flc flag has no effect if the -d option is also specified.
Chapter 4Command Line Utilities

The Compmsg Utility64
Alternatively, you can use the -flc flag to override the LANG or FORTE_LOCALE setting on
the current machine. In this way you can compile the application specifically for its
destination codeset. For example, the following table shows example uses of the -flc flag for
specific codesets (note that the language_territory specification is not relative to the
codeset, but is included for completeness):

The -flc option has no effect when the -d option is in use. In other words, if you are
displaying the contents of a message catalog, the contents will always be displayed in the
codeset in which the catalog was originally created.

Message catalog contains... Use this command line option

ASCII characters only -flc C

ASCII and ISO8859-1 characters -flc en_US.iso

ASCII and DEC MultiNational characters -flc en_US.dec

ASCII and Windows Latin 1 characters -flc en_US.win

ASCII and Japanese Shift-JIS characters -flc ja_JP.sjs

ASCII and Japanese EUC characters -flc ja_JP euc
Building International Applications

Index
Symbols
! (exclamation point prefix) 22

$quote directive 29

$set directive 30

A
ApplicationDesc class 18, 32

Application keyword 32

C
CaptionMsgNum attribute 40

CompundField class 40
RadioList class 40

CaptionSetNum attribute 40

Character classification 14

Character formats, multi-byte 24

Codeset
ASCII 24
conversion 20, 47
definition 16
specifying 55
values 55

Collate method 19

Collating sequence 14

command syntax conventions 9

Compiling message files 30, 63

Compmsg utility 20, 26, 30
definition 63
syntax 63

Currency formats 15, 22
CURRENCY template 23
using the ! symbol 22

CURRENCY template 23

Customizing locales 53

D
DATE template 23

DATETIME template 23

Default locale 51

Default message text 34

DefaultString parameter 34

Development environment, directory
structure of 31

E
ExtendedFontDescriptor class 18, 46

Extended fonts 46

Extmsg utility 20, 25, 27
definition 60
syntax 60

F
FieldWidget class

FloatOverTextMsgNum attribute 40
FloatOverTextSetNum attribute 40

FillinField class
TextValueSetNum attribute 40

FloatOverTextMsgNum attribute 40

FloatOverTextSetNum attribute 40

66 Section G
Formatting
currency 22
dates 23
message files 27
numbers 22
templates 22

FORTE_LC_COLLATE 53

FORTE_LC_CTYPE 53

FORTE_LC_MONETARY 53

FORTE_LC_NUMERIC 53

FORTE_LC_TIME 53

FORTE_LOCALE 15, 19, 51, 53, 54
setting 51
setting in forte.ini file 51
syntax 53

FORTE_WORKMSG 31

G
GetAppMsgCatalog method 19

GetErrorText method 19

GetLocale method 19

GetString method 25, 32, 33

GetTextData method 25, 32, 33

Grouping messages 30

H
Help, multilingual 38

I
International application 14

International templates 23

IsHankana method 19

IsHiragana method 19

IsKanji method 19

IsKatakana method 19

L
LabelMsgNum attribute 39

LabelSetNum attribute 39

Language
code 54
specifying 54

LanguageName attribute 41

LoadSet method 30
using 35

Locale
c (default locale setting) 51
character classification 14
checking at runtime 41
collating sequence 14
currency format 15
customizing 53
definition 14
files 15, 19
FORTE_LC_COLLATE 53
FORTE_LC_CTYPE 53
FORTE_LC_MONETARY 53
FORTE_LC_NUMERIC 53
FORTE_LC_TIME 53
FORTE_LOCALE 15, 53, 54
Forte-supplied 54
information controlled by 50
setting default 51
setting in forte.ini 51
settings precedence 57

LocaleDesc attribute 19

LocaleDesc class 18
using 41

LONGDATE template 23

LONGDATETIME template 23

M
MenuList class

TextValueSetNum attribute 40

MenuWidget class
StatusTextMsgNum attribute 40
StatusTextSetNum attribute 40
TextMsgNum attribute 39
TextSetNum attribute 39

Message catalog
accessing 32
definition 17
opening 34
overview 18
referencing 32
referencing explicitly 32
referencing the current catalog 32
retrieving text 34
using MsgCatalog class 32
Building International Applications

67Section N
Message file
comments 28
compiling 30, 63
converting hex numbers 28
converting octal numbers 29
creating 27
escape character 28
grouping messages 30
leading/trailing spaces 29
line continuation 28
naming 27
newline insertion 28
parameters 29
tabs 28

Message number 37

Message sets, accessing 35

MsgCatalog attribute 32

MsgCatalog class 19, 32

MsgNumber parameter 33

Multi-byte character
definition 16
formats 24

Multilingual application
building 25
building windows 36
definition 14, 17

Multinational application
definition 14, 16
format templates 18

N
NativeLangMgr attribute 19

NativeLangMgr class 19

Numbers, formatting 22

Numeric formats 22
behavior at runtime 22

O
OpenMsgCatalog method 32

P
Partitioned international applications 47

PDF files, viewing and searching 12

Placeholders 29

PushButton class
LabelMsgNum attribute 39
LabelSetNum attribute 39

S
SetLocale method 19

SetNum attribute 39

Set number 37

SetNumber parameter 33

SetWithParams method 19

StatusTextMsgNum attribute 40

StatusTextSetNum attribute 40

T
Templates

aaa, aaaa 23
DATE 23
DATETIME 23
e, ee 23
formatting 22
g, gg, ggg 23
international 23
k 24
LONGDATETIME 23
nnn, nnnn 23
standard, for dates 24
TIME 23

Territory
code 54
definition 16
specifying 54

Territory conventions
definition 14
formatting 18

TextGraphic class
TextMsgNum attribute 40
TextSetNum attribute 40

TextMsgNum attribute 39
MenuWidget class 39
TextGraphic class 40
ToggleField class 39

TextSetNum attribute 39
Menu Widget class 39
TextGraphic class 40
ToggleField class 39

TextValueMsgNum attribute 40
Index

68 Section U
TextValueSetNum attribute 40
FillinField class 40
MenuList class 40

TIME template 23

TitleMsgNum attribute 40
OutlineColumnDesc class 40
Window class 39

TitleSetNum attribute
TreeField class 40
Window class 39

TOOL code conventions 9

TreeField class
TitleSetNum attribute 40

U
UnloadSet method 30

using 35

W
Window

multilingual 36
multilingual example 41

Window class
SetNum attribute 39
TitleMsgNum attribute 39
TitleSetNum attribute 39

Window Workshop
message and set numbers 37
multilingual help 38
Building International Applications

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	1 Introduction
	About International Applications
	What Is a Locale?
	Locale Files

	What Is a Territory?
	What Is a Codeset?
	What Is a Multi-Byte Character?
	What Is a Multinational Application?
	What Is a Multilingual Application?
	What Is a Message Catalog?

	About Forte’s International Support
	International Templates
	Message Catalogs
	Classes and Methods
	Locale Files
	Translated Message Files
	Extmsg Utility
	Compmsg Utility
	Codeset Conversion
	Where to Go from Here

	2 Building International Applications
	Preparing Multinational Applications
	Formatting Numbers, Currency, Dates, and Time
	Formatting Numbers
	Formatting Currency
	Formatting Dates and Times

	Using Multi-byte Character Formats
	Writing Portable Code

	Building Multilingual Applications
	Summary of Development Process

	Building a Message Catalog File
	Creating a Message Source File
	Formatting a Message Source File
	Source File Comments
	Using the Backslash Escape Character
	Leading/Trailing Spaces
	Parameter Placeholders
	Grouping Related Sets of Messages

	Compiling a Message Source File
	Location of Message Catalogs
	Multi-User Application Development

	Accessing Message Catalogs
	Using the MsgCatalog Class
	Referencing a Message Catalog
	Explicitly Opening a Message Catalog
	Accessing Message Text
	Supplying Default Message Text
	Accessing Message Sets
	Passing Parameters into Message Text

	Building Multilingual Windows
	Specifying a Message Set for a Window
	Specifying Message and Set Numbers for Widgets
	Multilingual Help Text for Widgets
	Multilingual Help Text for Menu Widgets
	Specifying Message Numbers Dynamically

	Example of a Multilingual Window
	Using Extended Fonts
	Partitioned International Applications
	Accessing External Resources

	3 Specifying Locale Settings
	Overview
	Setting the Default Locale
	Customizing Locales
	Using Forte-Supplied Locales
	Language and Territory Options
	Codesets and Codeset Conversion
	Specifying the Collating Sequence

	Settings Precedence for Locale Information

	4 Command Line Utilities
	The Extmsg Utility
	Preventing String Extraction
	Specifying Message Catalog Numbering Sequence

	The Compmsg Utility

	Index
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	S
	T
	U
	W

