
Integrating with External Systems
Release 3.5 of Forte™ 4GL
Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6672-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte, and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents
Preface
Organization of This Manual . 14

Conventions. 16
Command Syntax Conventions . 16
TOOL Code Conventions . 16

The Forte Documentation Set . 17
Forte 4GL . 17
Forte Express. 17
Forte WebEnterprise and WebEnterprise Designer 17

Forte Example Programs. 18

Viewing and Searching PDF Files . 19

I Integration with Microsoft Windows
Applications

1 Overview
About OLE, ActiveX, and DDE . 24

About OLE . 24
Object Linking and Embedding . 24
Using Windows Applications . 24
Defining Service Objects as OLE Servers . 24

ActiveX Controls. 25
Terminology used in this Part . 25

2 Using OLE to Access Windows Applications
About Using OLE to Access Windows Applications 28

Using Object Linking and Embedding . 29
Defining an OLE Field in the Window Workshop 29

Creating an OLE Field. 30
OLEField Properties Dialog . 30
Linking to an OLE Object . 31
Embedding a Read-Only OLE Object. 32
Embedding an Editable OLE Object . 32

4

Defining an OLE Field in TOOL . 34
OLE Menu Groups . 35

Using OLE Automation . 36

Generating TOOL Projects That Access OLE Methods. 37
Step 1. Generate TOOL Classes for the OLE Application 37

Running the Olegen Utility . 37
Importing the Generated Project Definition .pex File 38

Step 2. Write the Forte Application Using OLE Methods 39
Dealing with Variant Objects . 40

Step 3. Partition the TOOL Application and Make a Distribution . . 42
Step 4. Install the Client Application . 42

Invoking Methods on OLE Interfaces Using CDispatch. 43
Step 1. Decide Which OLE Methods to Invoke. 43
Step 2. Include the OLE Library as a Supplier Plan. 44
Step 3. Instantiate an Object of the CDispatch Class 44
Step 4. Set the ObjectReference Attribute. 44
Step 5. Set the Parameters You Need . 44
Step 6. Use InvokeMethod or InvokeMethodWithResult to

Invoke the OLE Method . 45
Step 7. Check the Results of the Method . 46
Step 8. Handle Any Exceptions . 46
Step 9. Partition the Client Application . 46
Step 10. Install the Forte Application . 46

3 Making a Forte Service Object an OLE Server
About Making a Forte Service Object an OLE Server 48

Examples . 49

Step 1. Define a Service Object in a Forte Application 50
Providing an OLE Interface for a Service Object. 50

Providing Methods to Get and Set Attributes 50
Adding Wrapper Methods to a Service Object 51
Defining an OLE Interface in a New Service Object 51
Raising Exceptions in the TOOL Code . 52

Defining the ProgID for the Service Object . 53

Step 2. Partition the Application Containing the Service Objects 54

Step 3. Mark a Service Object as an OLE Server 55

Step 4. Make the Distribution . 56
Making the Distribution with Auto-Compile and Auto-Install 56
Making the Distribution without Auto-Compiling 58

Step 5. Compile and Link to Produce a
Shared Library and Type Libraries . 59

fcompile command. 59
Steps for Compiling and Linking . 60

Step 6. Install the Executable . 61

Step 7. Start the Forte Partition . 61
Registering the Partition . 62
Troubleshooting the OLE Server . 62
Integrating with External Systems

5

Customizing Registry Entries for a Forte OLE Server 63
Deleting Obsolete Entries from the Windows Registry. 63
Modifying How a Partition Is Autostarted . 65

Using DCOM with Forte OLE Servers. 66
Changing Security Settings . 67
Registering the Forte OLE Server on Client Machines 70

Writing OLE Clients That Access a Forte Service Object. 71
Determining the ProgID for the Service Object 71
Handling Forte Exceptions . 72

4 Using ActiveX Controls in TOOL Applications
About Using ActiveX Controls in TOOL Applications 74

Overview. 74
Support for ActiveX Controls. 74

Including ActiveX Controls in TOOL Applications 75
Using ActiveX Controls as Widgets . 75
Using ActiveX Controls to Display Information 75

Examples. 75

Producing TOOL Classes For an ActiveX Control 76
Step 1. Install the ActiveX Control on Your System. 76
Step 2. Run the Olegen utility . 77
Step 3. Import the Generated Project Definition .pex File 78

Developing a Forte Application that Uses ActiveX Controls 79
Before You Start. 79
Restrictions . 80
Overview. 80
Step 1. Specify the Supplier Plans. 81
Step 2. Define an ActiveXField Widget . 81

In the Window Workshop—Static Definition 81
In TOOL Code—Dynamic Definition . 83

Step 3. Invoke Methods and Access Properties of the Control. 84
Step 4. Handle Events Posted by the ActiveX Control 85

Partitioning the TOOL Application . 87

Making the Distribution and Installing the Application 88
Install ActiveX Controls Where Client Partitions are Installed 88

Troubleshooting . 89

5 Using Dynamic Data Exchange
About Dynamic Data Exchange . 92

Forte Integration with DDE. 92
Forte’s DDE Classes. 92

Using Methods and Events . 93
Contents

6

II Using External C Functions

6 Encapsulating External C Functions
About Encapsulating External C Functions . 98

Terminology Used in Part II . 98
Accessing C Functions from within Forte Applications 98
TOOL Statements for Defining C projects. 99

Prepare to Wrap C Functions . 100
Set up the Auto-Compile Application . 100
Can or Should the C Project Be Multithreaded?. 100
Make Sure the Proper C++ Compiler Is Installed 101

7 Making C Functions Available to Forte Applications
About Making C Functions Available to Forte Applications 104

Static Loading Platforms . 104
Examples . 104

Step 1. Have the Object Modules for the C Functions 105

Step 2. Create the C Project Definition File . 105
C Project Class Restrictions. 105
Defining a Project. 106

begin C statement . 106
Service Objects . 106
Supplier C projects . 106
Example: C Project File . 106

Defining Properties . 108
Defining a Method. 108

Step 3. Import the C Project Definition File. 109

Step 4. Partition the C Project . 109

Step 5. Make the Distribution . 109
Making the Distribution with Auto-Compile and Auto-Install 110
Making the Distribution without Auto-Compiling 111

Step 6. Compile and Link Shared Libraries . 112

Step 7. Install C Project Shared Libraries . 114

Updating C Projects . 115

Making Installed C Projects Known to Other Repositories 116

8 Writing TOOL Code That Uses C Functions
About Writing TOOL Code That Uses C Functions 118

Examples . 118

Step 1. Add the C Project as the Supplier Project 119

Step 2. For a Distributed Application, Define a Service Object 119

Step 3. Write the TOOL Application. 120
Instantiate an Object for the C Class You Want to Use 120
Use the Methods of the C Class . 120
Map C Function Parameters to TOOL Method Parameters 120
Include Error Handling. 120
Integrating with External Systems

7

Step 4. Test Your Application . 121
Troubleshooting. 121

Unexpected Failures . 121
Unable to Locate the 3GL Supplier Library. 121

Step 5. Partition Your Application . 121

Step 6. Deploy the Application . 122

9 TOOL Statements for Defining C Projects
begin c . 124

Syntax . 124
Description . 124
Project Name . 124
Includes Clause . 124
Definition List. 125
Has Property Clause . 125

restricted Property . 125
compatibilitylevel Property . 125
multithreaded Property . 125
libraryname property . 126
Extended External Properties . 126

class . 128
Syntax . 128
Description . 128
Methods . 128

10 Using C Data Types in TOOL
Using C Data Types in TOOL Methods . 130

General Guidelines. 130

Mapping Simple C Data Types to TOOL Data Types 131

Mapping Derived C Data Types to TOOL Data Types 133
Restrictions . 133

C-style Arrays . 134
Differences Between Array Objects and C-style Arrays 134
Declaring Arrays on the Runtime Stack . 134
Declaring C-style Arrays Dynamically . 136
Converting C-style Arrays of Char to TextData Objects 136
Converting TextData Objects to C-style Array of Char 137
Converting TOOL Strings to C-style Arrays of Char 137

Enumeration Data Types (enums) . 138

Pointers . 140
Generic Pointers . 140
Pointers to Specific Data Types . 141
Dereferencing Pointers . 141
Address Operator (&). 142
Pointer Constants. 143
Casting Pointers . 143
Contents

8

Struct Data Types. 144
Accessing Values in a Data Structure . 145
Alignment of Structs . 146
Defining Structs within Structs . 146
Defining Opaque Structs . 147
Determining the Name Scope of Structs. 149

Typedef Data Types . 150
Union Data Types . 151

Operator Precedence and Associativity . 153

Managing Memory for C-style Arrays and Data Structures 154
 Dynamically Managing Memory. 155

calloc . 155
free . 156
malloc . 156
strdup . 156
sizeof . 157

Casting Pointers Returned by C Functions . 157
Managing Memory in Exception Handling. 157
Managing Memory for Asynchronous Processing 157
Managing Memory Using ExternalRef Subclasses 158

Mapping C Function Parameters in TOOL Methods 159
Mapping Simple C Data Type Parameters. 160
Mapping Pointer Parameters. 160

Passing an Input Value with the Pointer . 160
Getting an Output Value using the Pointer 161
Passing an Input Value That Will Change . 161

Mapping Data Structure Parameters. 161
Mapping C-Style Array Parameters . 162
Mapping Return Values . 162
Specifying TOOL Parameter Options. 163

Input Mechanism . 163
Output Mechanism . 164
Input Output Mechanism . 165

III Writing C++ Client Applications

11 Accessing Forte Using C++
About Accessing Forte Using C++ . 170

Terminology Used in Part 3 . 171

Designing an Application to be Accessed by C++ 172
Restrictions when Generating and Using a C++ API 172

C++ API Uses Case Defined in TOOL . 172
No Virtual Attributes . 172
Cannot Use Subclasses of Display Library Classes 172
No C++ API for Events. 172
Supplier Libraries Must Be Compiled and Have Handle Classes. . . 172

Defining a Client Partition for the C++ API . 173
Integrating with External Systems

9

Generating a C++ API for a Forte Application. 174
Step 1. Partition the Application . 174
Step 2. Set the Compiled and Client Partition Options. 175
Step 3. Make the Distribution . 175

Using the Auto-compile and Auto-install Feature 175
Step 4. Compile and Install

(If Auto-compile and Auto-install Are Not Used). 176
Using the fcompile Command to Generate the C++ API. 177

Writing a C++ Client Application That Accesses a Forte Application . . 178
Understanding the C++ API. 178

Getting an Overview: client_component_id.txt 179
Locating Global Functions: client_component_id.h 180
Locating Class Definitions: c#.cdf . 180

Setting up Your System and Compiler to Use the C++ API 181
Writing a C++ Client Application . 183

How to Use qqhTaskHandle. 183
How to Use Forte Data Types . 183
Start Forte Interaction . 184
Passing Startup Parameters to Forte . 184
Logging Information for Forte Client Partitions 185
Interacting with Service Objects . 185
Using Handle Classes and Methods. 186
Interacting with the Forte Runtime System 187
Shutting Down the Forte Client Partition. 187

Handling Forte Exceptions . 188
Compiling the C++ Client Application . 189
Deploying the C++ Client Application . 189

Interacting with the Forte Runtime System . 190
Working with Forte Classes . 190
Working with Forte Runtime Objects . 190

12 C++ API Reference Information
Files Generated as Part of a C++ API . 192

client_component_id.txt . 192
client_component_id.h . 193
client_component_id.xxx (shared library) . 193
client_component_id.lib . 194
c#.cdf. 194
p#.h . 194

Elements of the C++ API to a Client Application 195
Handle Classes . 195
C++ Classes—for Type Conversion. 196
Methods . 196
Attributes . 197
Service Objects . 197
Exceptions. 197
Events . 199
Special Handling for Array and Pointer to Char Parameters 199
Contents

10
Utility Global Functions and Member Functions 201
Functions that Start and Stop the Forte Runtime System 201

ForteStartup Function . 201
ForteShutdown Function . 201

qqhObject Handle Class . 202
Delete() Member Function . 202
IsNil() Member Function . 203
New() Member Function . 203
SetObject() Member Function. 203

The C++ API to the Forte Runtime System. 204

IV Using Network and Operating System Features

13 Using System Activities and Network Connections
About Using System Activities and Network Connections 208

About System Activities . 208
About the ExternalConnection Class. 208

Using System Activities . 209
Supported System Activities . 209
Working with System Activities . 209

Registering for Notification about System Activities 209
Waiting for Activity Completion . 210
When the Activity Completes. 212

General Design Suggestions . 213
Available Interfaces . 213
Setting Up User-Defined Activities . 214

Using the ExternalConnection Class . 215
Types of Connections . 216
Basic Concepts . 216
Accepting Inbound Connections . 217
Making Outbound Connections . 219
Using MemoryStream Buffers . 219
Data Sharing Issues. 220
Scaling Issues. 221
Using Multiple Tasks for a Single Connection 221
Using Task-Level Asynchronous Reads . 222
Error Handling . 223
Diagnostics for ExternalConnection . 224

A Forte Example Applications
Overview of Forte Example Applications . 226

ActiveX Examples . 226
C. 226
C++ . 226
DDE Examples . 226
ExternalConnection . 226
OLE Examples . 226
Integrating with External Systems

11
Application Descriptions. 227
ActiveXDemo . 227

FourDir ActiveX Control. 229
AllCType . 229
CPPBanking . 230
DDEClient . 231
DDEServer. 231
DMathTm . 232
InboundExternalConnection . 233
MathTime . 234
OLEBankEV . 235
OLEBankUV . 236
OLESample . 237
OutboundExternalConnection . 238
XRefTime . 239

B Olegen Mapping Conventions
Olegen Mapping Conventions . 242

Mapping OLE Automation Interfaces to TOOL Classes 242
Mapping ActiveX Interfaces to TOOL Classes. 242
Mapping Data Types in TOOL . 243
Mapping Return Values of Methods. 244
Mapping Optional Parameters in Methods . 244
Mapping Names That Are Forte Reserved Words 245
Mapping ActiveX Control Events to Forte Events 246

Index . 247
Contents

12
Integrating with External Systems

Preface
This manual, Integrating with External Systems, provides reference and usage information
about integrating Forte applications with external products. It contains instructions for
integrating and an appendix with descriptions of sample Forte applications demonstrating
the concepts found in the manual.

Organization of This Manual14
Organization of This Manual
This manual contains four parts and two appendixes:

Chapter (Sheet 1 of 2) Description

Part I, “Integration with Microsoft Windows
Applications” on page 21

Provides usage and reference information about
integrating Forte applications with Microsoft windows
applications.

❚ Chapter 1, “Overview” Provides an overview about how Forte supports Microsoft’s
OLE 2, ActiveX, and DDE on Windows platforms.

❚ Chapter 2, “Using OLE to Access Windows
Applications”

Explains how you can use OLE linking and embedding and
OLE Automation in your Forte applications.

❚ Chapter 3, “Making a Forte Service Object an OLE
Server”

Describes how to make service objects in a Forte
application available as OLE servers on the Windows 95
and Windows NT platforms.

❚ Chapter 4, “Using ActiveX Controls in TOOL
Applications”

Explains how you can use ActiveX in the graphical user
interfaces of your Forte clients that are running in a
Windows NT or Windows 95 environment

❚ Chapter 5, “Using Dynamic Data Exchange” Discusses how to enable Forte applications to
communicate with Windows applications using Dynamic
Data Exchange (DDE).

Part II, “Using External C Functions” on page 95 Provides complete information about the C data types you
can define in TOOL when you are integrating with external
systems. It also provides complete information about
integrating with C.

❚ Chapter 6, “Encapsulating External C Functions” Discusses how to create classes whose methods are
implemented with C functions, store them in a repository
as C projects, and use the methods in your TOOL
applications.

❚ Chapter 7, “Making C Functions Available to Forte
Applications”

Explains how you define a C project whose methods map
to C functions.

❚ Chapter 8, “Writing TOOL Code That Uses C
Functions”

Explains how to include C functions in your TOOL
application.

❚ Chapter 9, “TOOL Statements for Defining C
Projects”

Contains a reference of the TOOL statements for defining
C projects.

❚ Chapter 10, “Using C Data Types in TOOL” With Forte, you can write applications that interact using
several industry-standard products and protocols. This
chapter explains how Forte you can use several standard C
data types to pass parameters between Forte TOOL
methods and certain types of external applications.

Part III, “Writing C++ Client Applications” on
page 167

Provides complete information about integrating with C++.

❚ Chapter 11, “Accessing Forte Using C++” Explains how you can generate a C++ API that lets you
access your Forte appliation using C++ calls.

❚ Chapter 12, “C++ API Reference Information” Describes the handle classes that are generated by Forte
when you have Forte generate a C++ API for a client
partition.
Integrating with External Systems

Organization of This Manual 15
Part IV, “Using Network and Operating System
Features” on page 205

Describes how you can use system activities and network
sockets to enable your application to communicate with a
Forte applications.

❚ Chapter 13, “Using System Activities and Network
Connections”

Discusses how to interact with other applications using
system activities and network connections.

Appendix A, “Forte Example Applications” Provides instructions for using the example appliations
used in this manual.

Appendix B, “Olegen Mapping Conventions” Describes how the Olegen utility interprets the interfaces
provided by OLE servers and ActiveX controls

Chapter (Sheet 2 of 2) Description
Preface

Conventions16
Conventions
This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions
The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

TOOL Code Conventions
Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format Description

bold Bold text is a reserved word; type the word exactly as shown.

italics Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

UPPERCASE Uppercase text represents a constant. Type uppercase text exactly as shown.

underline Underlined text represents a default value.

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

braces { } Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

brackets [] Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

Format Description

parentheses () Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

comma , Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

colon : Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

semicolon ; Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.
Integrating with External Systems

The Forte Documentation Set 17
The Forte Documentation Set
Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help .

Forte 4GL
■ A Guide to the Forte 4GL Workshops

■ Accessing Databases

■ Building International Applications

■ Escript and System Agent Reference Manual

■ Forte 4GL Java Interoperability Guide

■ Forte 4GL Programming Guide

■ Forte 4GL System Installation Guide

■ Forte 4GL System Management Guide

■ Fscript Reference Manual

■ Getting Started With Forte 4GL

■ Integrating with External Systems

■ Programming with System Agents

■ TOOL Reference Manual

■ Using Forte 4GL for OS/390

Forte Express
■ A Guide to Forte Express

■ Customizing Forte Express Applications

■ Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer
■ A Guide to WebEnterprise

■ Customizing WebEnterprise Designer Applications

■ Getting Started with WebEnterprise Designer

■ WebEnterprise Installation Guide
Preface

Forte Example Programs18
Forte Example Programs
In this manual, we often include code fragments to illustrate the use of a feature that is
being discussed. If a code fragment has been extracted from a Forte example program, the
name of the example program is given after the code fragment. If a major topic is
illustrated by a Forte example program, reference will be made to the example program in
the text.

These Forte example programs come with the Forte product. They are located in
subdirectories under $FORTE_ROOT/install/examples. The files containing the examples
have a .pex suffix. You can search for TOOL commands or anything of special interest with
operating system commands. The .pex files are text files, so it is safe to edit them, though
you should only change private copies of the files.
Integrating with External Systems

Viewing and Searching PDF Files 19
Viewing and Searching PDF Files
You can view and search 4GL PDF files directly from the documentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

Note You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

� To copy the documentation to a client or server:

1 Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

2 Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

Note To uninstall the documentation, delete the fortedoc directory.

� To view and search the documentation:

1 Open the file fortedoc.pdf, located in the fortedoc directory.

2 Click the Search button at the bottom of the page or select Edit > Search > Query.

3 Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

Note For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

4 Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5 Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

6 To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

7 To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]
Preface

Viewing and Searching PDF Files20
Integrating with External Systems

Part I
Integration with Microsoft
Windows Applications
Part I of Integrating with External Systems provides usage and reference information about
integrating Forte applications with Microsoft windows applications.

Part I contains the following chapters:

■ Chapter 1, “Overview” on page 23

■ Chapter 2, “Using OLE to Access Windows Applications” on page 27

■ Chapter 3, “Making a Forte Service Object an OLE Server” on page 47

■ Chapter 4, “Using ActiveX Controls in TOOL Applications” on page 73

■ Chapter 5, “Using Dynamic Data Exchange” on page 91

22
Integrating with External Systems

Chapter 1
Overview
Forte provides ways for you to use Microsoft’s OLE Version 2 (OLE 2) methods in your Forte
applications, and ways for OLE clients to access service objects in Forte applications. You
can also incorporate ActiveX controls into your Forte applications.

The chapters in this part discuss the following topics:

■ embedding and linking external OLE-enabled Windows objects in a Forte window using
an OLE field

■ interacting with Windows applications within your Forte application

■ making Forte service objects available as OLE servers

■ using ActiveX custom controls in Forte applications

■ using DDE interfaces to interact with Window applications

This chapter provides an overview of these features.

About OLE, ActiveX, and DDE24
About OLE, ActiveX, and DDE
This section provides an overview about how Forte supports Microsoft’s OLE 2, ActiveX,
and DDE on Windows platforms.

About OLE
To use OLE 2, you need to have an OLE server application installed. OLE servers are
expected to provide the OLE shared libraries you need to use either an OLEField or the
classes provided by the Forte system OLE library.

OLE is a mechanism for interacting with objects associated with Windows applications.
Forte can interact with two main parts of OLE: object linking and embedding and OLE
Automation. The explanations in this chapter assume that you understand the concepts of
OLE and have access to information about using OLE, including object linking and
embedding and OLE Automation.

OLE is based on a set of interfaces provided by many Windows applications. A Windows
program can interact with the objects associated with another Windows application. These
two programs are known, respectively, as the client and the server. An OLE server is a
program that has access to data and that provides functions that might be useful to other
programs. An OLE client is a program that obtains this data or interacts with objects
associated with the server. A client corresponds to an OLE controller.

An OLE object is anything that can be considered a “thing” in Windows. For example,
applications, documents, and interfaces can all be objects to OLE.

Object Linking and Embedding
Forte provides a class in the Display Library called OLEField. This OLEField class supports
most object linking and embedding functions provided by Windows applications. For
example, in the Window Workshop, you can create a new OLE field, then embed part of a
Microsoft Word for Windows document into your window. For more information about
using OLE fields, see “Using Object Linking and Embedding” on page 29.

Using Windows Applications
When Forte invokes methods on OLE server applications, Forte is acting as an OLE
automation controller, which means that Forte applications can use interfaces provided by
other Windows applications. For more information about invoking methods on Windows
applications, see Chapter 2, “Using OLE to Access Windows Applications.”

Forte provides a library called OLE that lets you invoke functions calls on external Windows
programs from within your TOOL methods. You can either use a Forte utility, Olegen, to
generate a TOOL project that contains methods that map to the functions provided by an
OLE Automation interface, or you can invoke a function directly using methods provided
by Forte.

Defining Service Objects as OLE Servers
When a Forte service object provides an OLE interface to OLE client applications, Forte is
acting as an OLE automation server, or OLE server. For information about how to define a
Forte service object as an OLE server, see Chapter 3, “Making a Forte Service Object an OLE
Server.”
Integrating with External Systems

About OLE, ActiveX, and DDE 25
ActiveX Controls
You can also add ActiveX controls, which are sometimes called OLE custom controls and
OCX controls, to your Forte graphical user interfaces. Forte provides a Display library class
named ActiveXField that lets you add an ActiveX control to a Forte window in the Window
Workshop.

For information about using ActiveX controls, see Chapter 4, “Using ActiveX Controls
in TOOL Applications.”

Terminology used in this Part
Because this documentation integrates two independent systems, there may be some
confusion about our terminology. The following list defines terms that are specific to
integrating with external Windows applications using OLE:

ActiveX control (also called OCX control or OLE custom control) a specialized OLE
server that provides small, self-contained functions with a graphical interface.

client (OLE) an OLE-enabled application (object) that requires the services of another
Windows application (server).

DDE (Dynamic Data Exchange) a mechanism for interprocess communication
supported in Windows applications.

embedding (OLE) inserting an object in your client application. This object might be
editable by another OLE-enabled server application.

interface (OLE) an object that provides the means of invoking a group of related
functions belonging to an object.

linking (OLE) establishing a connection between the client application and an object that
uses the server application.

object (OLE) anything that can be considered a “thing” in Windows. For example,
applications, documents, and interfaces can all be objects to OLE.

object linking and embedding defines how part of one object created using one
application is associated with another object created using another application. For
example, part of a Microsoft Excel spreadsheet can appear as part of a Microsoft Word for
Windows document.

OLE 2 Microsoft’s specification for how Windows objects interact.

OLE Automation a set of interfaces that enables an application to be used as an OLE
object.

OLE automation controller an application that uses external Windows objects using
OLE Automation interfaces.

OLE server an application that supplies OLE Automation interfaces that can be accessed
by a client application.

OLE library (Forte) a library provided by Forte, which supports the functions needed to
integrate with OLE.

server (OLE) an OLE-enabled application (object) that provides services to another
Windows application (client).
Chapter 1Overview

About OLE, ActiveX, and DDE26
Integrating with External Systems

Chapter 2
Using OLE to Access
Windows Applications
Forte supports two features that lets you use OLE to access the functions provided by
Windows applications:

■ OLE linking and embedding using the OLEField class

■ OLE Automation, which lets you invoke TOOL methods that invoke methods on a
Windows application

This chapter explains how you can use OLE linking and embedding and OLE Automation in
your Forte applications.

About Using OLE to Access Windows Applications28
About Using OLE to Access Windows Applications
In a Forte application, you can use OLE linking and embedding to display a Windows
document in your Forte application. The end user can then interact with the document
using the Windows application that created it. For example, you can include a portion of an
Microsoft Graph chart in a TOOL window, and an end user can double-click the chart to
edit it using Microsoft Graph.

Figure 1 A Microsoft Graph Chart in a TOOL window

“Using Object Linking and Embedding” on page 29 explains how you can use the OLEField
class to include Windows documents in your applications.

OLE Automation You can also write TOOL code that interacts with Windows applications using OLE
Automation. OLE Automation defines a set of common interfaces that Windows
applications (OLE servers) can provide. Other Windows applications (OLE clients) can use
these common interfaces to invoke the OLE methods supported by the OLE server.

“Using OLE Automation” on page 36 begins a description of how to write TOOL code that
interacts with a Windows application.

In addition to OLE linking and embedding and OLE Automation, you can also embed
ActiveX controls. For information about using ActiveX controls in your TOOL application,
see Chapter 4, “Using ActiveX Controls in TOOL Applications.”
Integrating with External Systems

Using Object Linking and Embedding 29
Using Object Linking and Embedding
The simplest type of integration between Forte and a Windows applications is object
linking and embedding. This type of integration lets you either:

■ link a Forte OLE field to all or part of a Windows document managed by a Windows
application

In this case, any changes made by the Forte application are maintained in the original
Windows document.

■ embed all or part of a Windows document in an OLE field and its associated cache file

In this case, any changes made by the Forte application must be maintained in a cache
file, and the original Windows document does not change.

Cache file A cache file is a file that stores information about the linked or embedded object. If you
do not define an embedded OLE object as a cached object with a cache file, then the
user of your application cannot save changes made to the embedded OLE object.
Similarly, you cannot save information about how a linked object appears in the Forte
application unless the linked object is a cached object.

In-place activation When the user runs the Forte application containing OLE fields, she can change the linked
or embedded object by double-clicking the OLE field in the Forte window to start the
Windows application that manages the document. This type of editing is called in-place
activation or editing in place.

Your TOOL code can interact with the managing application for the linked or embedded
object if you use OLE automation methods, as described in Chapter 2, “Using OLE to
Access Windows Applications.”

There are two ways to include OLE fields in a TOOL application: defining an OLEField
widget in the Window Workshops, or instantiating and defining an OLEField object in
TOOL.

Defining an OLE Field in the Window Workshop
In general, to define an OLE field, you need to create an OLE field and define the OLE
object that is linked or embedded in the OLE field.

This section describes the simplest, most common ways to define an OLE linked or
embedded object in the Window Workshop.

Note You can define OLE fields on any platform. However, you can only insert OLE objects and
run applications that use OLE objects if you are running Forte on Windows machines that
have the required OLE server applications installed.
Chapter 2Using OLE to Access Windows Applications

Using Object Linking and Embedding30
Creating an OLE Field
These instructions describe how to create a new OLE field in the Window Workshop. The
following sections describe how to define the kind of OLE object in the OLE field.

� To create an OLE field:

1 Choose the OLE button on the tool bar. Draw the OLE field in the window.

2 Double-click the OLE field to open its property dialog.

3 Specify the name of the OLE field in the Attribute Name field.

Mapped Type field If you plan to write TOOL methods that invoke OLE Automation methods, you should set
the Mapped Type field to the appropriate subclass of CDispatch. For more information
about possible subclasses of CDispatch, see “Generating TOOL Projects That Access OLE
Methods” on page 37. The data type for the mapped attribute is CDispatch, by default, or
the specified subclass of CDispatch. If you delete CDispatch from the Mapped Type field,
the OLEField widget will not have a mapped attribute.

OLEField Properties Dialog
The OLEField Properties dialog has the following fields and buttons:

Use This Property For This Purpose

Attribute Name Sets an attribute name for the picture field.

Mapped Type Specifies the mapped data type for the OLE field. This value must be CDispatch or a subclass
of CDispatch.

Allow Activate in
Place

Sets whether to start the application for the current object as part of the current window.

Allow In Place
Toolbar

Sets whether to display the tool bar for the application activated in-place as part of the
current window.

Insert Cached
Object button

Allows you to add a linked or embedded object that can be saved. The dialog that this
button displays is provided by Windows, so you must be running on a Windows machine to
access it. See your Windows documentation for information about the Insert Cached Object
dialog.

Insert Object
button

Lets you add a linked or embedded object. This button displays a dialog, in which you can
define the linked or embedded OLE object. To add a new file, following the instructions in
“To define a new OLE object:” on page 33. To insert an object based on an existing object,
see “To create an embedded object based on an existing file:” on page 33.

Load Cache File
button

Lets you link to an OLE object stored in a cache file. This button displays a file selection
dialog to select the cache file.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the SIze Policy dialog for the field.
Integrating with External Systems

Using Object Linking and Embedding 31
Figure 2 OLEField Properties Dialog

Cache File Name is a read-only field that contains the name and path of the cache file,
which contains saved information about the linked or embedded OLE object.

Linking to an OLE Object
These instructions describe how to link to an OLE object. When you run an application
containing a linked object, the end user can (if the OLEField is in Update mode), start the
application that manages the object and edit the object.

1 In the OLEField Properties dialog, choose the Insert Object button to open the Insert
OLE Object dialog.

2 Choose Create from File.

3 Select a file path and name.

4 Click the Link check box.

5 Click OK.
Chapter 2Using OLE to Access Windows Applications

Using Object Linking and Embedding32
Embedding a Read-Only OLE Object
These instructions describe how to embed an OLE object. When you run an application
containing this embedded OLE object, the end user can only look at the object.

� To create a read-only embedded object based on an existing file:

1 Choose the Insert Object button to open the Insert OLE Object dialog.

2 Choose Create from File.

3 Select a file path and name.

4 Click OK.

5 Set the initial state of the OLE field to View, Disable, or Inactive.

Embedding an Editable OLE Object
These instructions describe how to embed an editable OLE object. When you run an
application containing this embedded OLE object, the end user can double-click on the
OLE field to start the managing Windows application. Any changes that the user makes to
the OLE object are saved when she closes the TOOL window containing this OLE field.

� To create an editable embedded object:

1 Choose the Insert Cached Object button to open the OLE Cache File dialog.

2 Specify the name of a new file in which to save information about the embedded OLE
object. Click Save.

The Insert OLE Object dialog opens.

3 Follow either of the following sets of instructions to define a new OLE object or create
an OLE object from a file.
Integrating with External Systems

Using Object Linking and Embedding 33
� To define a new OLE object:

1 Choose the Create New radio button and an object type in the Object Type field.

2 Click OK.

� To create an embedded object based on an existing file:

1 Choose Create from File.

2 Select a file path and name.

3 Click OK.
Chapter 2Using OLE to Access Windows Applications

Using Object Linking and Embedding34
Defining an OLE Field in TOOL
This section describes how to define an OLEField object in TOOL.

� To define an OLEField object in TOOL:

1 Define and instantiate an OLEField object:

2 Use an OLEField method to create an embedded or linked object. The following table
lists the various options for creating an embedded or linked object with the appropriate
OLEField method:

3 Specify the Parent attribute of the OLEField widget as the window or the grid where you
want the OLE field to appear.

myOLEField : OLEField = new;

Contents of the OLE Field OLEField Method

User-specified linked or embedded object InsertOLEObject

New embedded object CreateEmbeddedObjectFromProgID
CreateEmbeddedObjectFromCLSID

Embedded object based on an existing file CreateEmbeddedObjectFromFile

Linked object based on an existing file LinkTo

Linked object based on a cache file LoadObjectFromCacheFile
ReadFromFile

Linked object based on the document in the clipboard PasteLink
Integrating with External Systems

Using Object Linking and Embedding 35
OLE Menu Groups
When you start the Windows application in place to edit an embedded object, Forte merges
the menus for the TOOL application and the Windows application based on the settings
defined for OLE menu groups. OLE menu groups represent the three groups that Microsoft
defines for submenus: File, View, and Window. You can specify that a TOOL application
submenu belong to one of these groups or be invisible.

When you define the TOOL application that contains the OLE field, you can define the OLE
menu groups in the Menu Workshop.

� To define OLE menu groups in the Menu Workshop:

1 Select a submenu of the TOOL application window.

2 Choose Item > OLE Menu Group, then one of the following submenu list items:

■ Invisible, the default, does not display the submenu when the Windows application is
activated.

■ File Group displays the submenu before the File menu for the Windows application.

■ View Group displays the submenu before the View menu for the Windows application.

■ Window Group displays the submenu before the Window menu for the Windows
application.

The following figure shows how the menus might look when Microsoft Word is activated in
place. The File menu is a TOOL menu, which has an OLE Menu Group setting of File
Group. This TOOL application also has an Edit menu and a Help window, both of which
have OLE Menu Group settings of Invisible, so these menus are not merged into the menus
for Microsoft Word.
Chapter 2Using OLE to Access Windows Applications

Using OLE Automation36
Using OLE Automation
Forte fits the category of an OLE automation controller, which means that Forte
applications can use interfaces provided by Windows applications that are OLE servers.

Forte provides a library called OLE that lets you invoke functions on Windows applications
that are OLE servers from within your TOOL methods. This manual refers to these function
calls as OLE methods. You can invoke OLE methods using either of the following ways:

■ Use a Forte utility, Olegen, to generate a TOOL project that contains methods that map
to OLE methods provided by an OLE Automation interface. This approach is explained
in “Generating TOOL Projects That Access OLE Methods” on page 37.

One advantage of using Olegen to generate a TOOL project is that you can generate a
static interface to the OLE server application. When you import this project, Forte is
aware of the syntax for a particular method call, so the Forte compiler can check for
syntax errors.

Another advantage of this approach is that the Olegen utility uses the names of
functions and parameters provided by the OLE server to generate classes, methods, and
method parameters in the generated TOOL project. Having this information available
within your TOOL development environment can make it easier to locate methods and
define parameters for the OLE functions you want to use.

■ Invoke an OLE method directly using methods provided by Forte. This approach is
explained in “Invoking Methods on OLE Interfaces Using CDispatch” on page 43.

The main advantage of this approach is that you do not need to run the Olegen utility to
create a static interface, nor do you need to import the resulting TOOL project.
Therefore, this approach can save time and resources, particularly if the OLE server has
several extensive interfaces.

For reference information about the classes in the Forte OLE library, see the Forte online
Help.

Forte provides an example called OLESample, which demonstrates how you can use an
OLEField with OLE Automation methods. For information about locating and using this
example, see “OLESample” on page 237.
Integrating with External Systems

Generating TOOL Projects That Access OLE Methods 37
Generating TOOL Projects That Access OLE Methods
This section briefly describes the steps you need to perform to implement a Forte client
application that interacts with Windows server applications.

Forte provides a set of classes that allow Forte applications to interact with Windows
applications using OLE Automation interfaces. A Forte application can therefore be an OLE
client. For example, a Forte inventory application (client) might want to allow the user to
update a certain Excel spreadsheet (server). Using OLE methods in TOOL, you can write a
Forte application that starts Excel and opens a spreadsheet.

� To write a Forte application that uses TOOL methods generated by Olegen:

1 Generate TOOL classes for the OLE application using the Olegen utility, then import the
.pex file into your development repository.

2 Write the Forte application that uses the OLE methods.

3 Partition the Forte application components that use OLE methods on the appropriate
Windows nodes and make a distribution for the Forte application.

4 Install the Forte application.

These steps are described in greater detail in the following sections.

Step 1. Generate TOOL Classes for the OLE Application
Forte provides an Olegen utility that generates a TOOL project definition using the OLE
Automation interface information provided by the specified Windows program. Only
Windows programs that are OLE servers provide this interface information.

Before you can interact with an OLE server application using TOOL methods
corresponding to the OLE application’s interface, you need to have TOOL classes that
correspond to that application in your development repository. If these TOOL classes are
already available in your development repository, you can skip this section and move on to
“Write the Forte Application Using OLE Methods” on page 39.

Running the Olegen Utility
To run the Olegen utility, you must be running on Windows. You can start this utility in the
Windows dialog that you can access by selecting the Run command from the File menu in
Program Manager.

The syntax for starting the Olegen utility is:

Syntax olegen input_specification [output_specifications. . .] [-ai]

input_specification is one of the following:

input_specification Description

 -it type_library type_library is the file name of the type library for the Windows program, if available.

-ip ProgID ProgID is the programmatic identifier of an OLE server class. These identifiers typically have
the syntax application_name.object, for example, “excel.application.”

-ic CLSID CLSID is the unique identifier string for an OLE server class. The CLSID is a string of 32 hex
digits enclosed in braces, for example:
{00021A00-0000-0000-C000-000000000135}.
Chapter 2Using OLE to Access Windows Applications

Generating TOOL Projects That Access OLE Methods38
output_specifications, which are optional, are one or more of the following:

-ai flag The -ai flag (“assume input”), which is optional, specifies how the Olegen utility interprets
method parameters that do not specify a passing mode. By default, Olegen interprets all
method parameters that do not specify a passing mode as input Variant objects. When the
-ai flag is specified, Olegen interprets all parameters that do not specify a passing mode as
input parameters of a Forte data type.

Note Because it is usually easier to work with Forte data types than with Variant objects, we
recommend that you specify the -ai flag. The default is not to assume that parameters are
input parameters to be compatible with earlier releases of Forte.

The Olegen utility automatically maps the OLE Automation interface provided by the
specified Windows program to TOOL method syntax, using whatever information the
Windows program provides. To generate a project definition that maps to the Microsoft
Graph application, you can start the Olegen utility using the following command:

For information about the type library name, the programmatic ID, or the CLSID for a
given Windows application, see the documentation for that application.

For information about how Olegen interprets the information in a type library, see
Appendix B, “Olegen Mapping Conventions.”

Importing the Generated Project Definition .pex File
To import the .pex file generated by the Olegen utility, use either the Import command in
the Repository Workshop, or the ImportPlan command in Fscript. For specific instructions
for importing a project definition, see A Guide to the Forte 4GL Workshops or the Fscript
Reference Manual.

output_specifications Description

-of output_file_name Specifies the file name for the generated .pex file.The default file name is olegen.pex.

-op output_project_name Specifies the name of the generated project. Ignored if type libraries are available.

If Olegen can access a type library, then the project name is the type library name.

If Olegen cannot access a type library, then the default project name is
UnknownProject.

-oc output_class_name Specifies the name of the generated class. Ignored if type libraries are available.

If Olegen can access a type library, the class names are one or more dispatch interface
names.

If Olegen cannot access a type library, the default class name is UnknownInterface.

olegen -it c:\windows\msapps\msgraph5\gren50.olb

-of c:\examples\extsys\ole\msgraph.pex
Integrating with External Systems

Generating TOOL Projects That Access OLE Methods 39
Step 2. Write the Forte Application Using OLE Methods
Once you have imported the project definition, you can use the methods in this project
almost as though they were native TOOL methods.

Using OLE methods with
OLE fields

If you are planning to invoke these methods on an OLE object that has been linked or
embedded in an OLE field, you should consider defining the mapped type of the OLE field
as the generated CDispatch subclass for the OLE object. For more information about using
OLE fields, see “Using Object Linking and Embedding” on page 29.

To write TOOL code that interacts with a Windows server program, for example, Microsoft
Graph, you perform the following steps:

1 Include the OLE library and the generated project that you just imported as suppliers to
the main TOOL project.

2 Within the TOOL code, declare and instantiate the object containing the OLE method
you want to use. This class maps to a particular dispatch interface provided for a
Windows application, and is a subclass of CDispatch.

3 Within the TOOL code, set the ObjectReference attribute of the object. You need to set
the ObjectReference attribute of the dispatch interface before you can call any methods.
The ObjectReference attribute is a pointer that references a dispatch interface
(IDispatch) on an OLE object.

You can set the value of ObjectReference using the OLEObjectReference attribute in an
OLE field, a moniker, a ProgID, a CLSID, or the ObjectReference value of another
CDispatch object. For a detailed description of how to set the ObjectReference attribute,
see the Forte online Help.

The following example shows how you can set the ObjectReference for the graphChart
object using the ObjectReference attribute of the <OurChart> OLE field:

includes OLE;

includes Graph; -- The project that contains the OLE dispatch

--interface class and OLE methods for Microsoft Graph.

includes DisplayProject;

includes Framework;

See OLESample example Project: OLESample

graphChart : Graph.Chart = new;

graphChart.ObjectReference = <OurChart>.OleObjectReference
Chapter 2Using OLE to Access Windows Applications

Generating TOOL Projects That Access OLE Methods40
4 Within the TOOL code, invoke methods on the object referenced by the
ObjectReference attribute. If the methods include parameters with data type Variant,
you need to check the OLE server documentation to ensure that you are passing data of
the correct data type for the OLE method. For more information about these
parameters, see “Mapping Data Types in TOOL” on page 243.

The following example shows how you can define a title on a Microsoft Graph graph:

To pass data to partitions not on a Windows platform, you need to copy data from a
restricted OLE object, such as VariantString, to an object of a non-restricted class, such
as TextData.

For information about handling exceptions raised when you are working with OLE
methods, see “Handle Any Exceptions” on page 46.

Dealing with Variant Objects
If the methods include parameters with data type Variant, you need to check the OLE
server documentation to ensure that you are passing data of the correct data type for the
OLE method.

When you are using a method or attribute that uses a data type of Variant, VariantString, or
other subclasses of Variant, you need to:

■ convert your TOOL objects and data into an object of the Variant class or subclass

■ convert the object of the Variant class or subclass into a TOOL object or data type

These conversions are discussed in the following sections. For information about the
Variant class and its subclasses, see the Forte online help.

Converting Data to a Variant Object

When you pass data to the OLE server using a generated TOOL method or attribute, you
frequently need to pass an object of the Variant class or one of Variant’s subclasses.

You can avoid using Variant objects by using the -ai flag of the olegen command when you
generate the TOOL classes. For more information, see “Generate TOOL Classes for the OLE
Application” on page 37.

In most cases, you will interact with an OLE server using the generated attributes. Many of
these attributes are defined to have Variant objects as attributes.

First, you need to check the documented interface for the OLE server to determine what
data type is expected by the OLE server for that attribute.

For example, a property of the SSTab Dialog control is called TabOrientation. The TOOL
class, SSTab, that corresponds to that control has an attribute that is also called
TabOrientation. This attribute’s value is an object of the Variant class. According to the
documentation available for the SSTab Dialog control, the data expected for this property is
an integer value that can be represented by a constant.

graphChartTitle : Graph.ChartTitle = new;

graphChartTitle.SetDispatchObject(graphChart.ChartTitle);

graphChartTitle.Text = VariantString(value = userTitle);

See OLESample example Project: OLESample • Class: OLEWindowClass • Method: Display
Integrating with External Systems

Generating TOOL Projects That Access OLE Methods 41
To specify an integer value for this attribute, you can write code like the following:

Another common case that occurs when you work with an OLE server application is that
you are dealing with objects contained by other objects. For example, in Microsoft Excel, a
Workbook contains a Worksheet, which contains a Sheet, which contains a ChartObject,
which contains a Chart. Therefore, you need to navigate through this hierarchy to access a
Chart object. Usually container objects have properties or methods that let you access
objects that they contain.

However, in many cases, the methods or attributes that provide access to objects in OLE
server applications provide the objects as Variant objects. Before you can access the
methods or properties of the container objects to get to the contained objects, you need to
get a handle to the CDispatch object (the dispatch interface) for the container object.

� To access objects that are contained in a container object defined as a Variant object:

1 Use the CDispatch.SetDispatchObject method with the container object to get a handle
to the dispatch interface for that object.

2 Use the methods and attributes defined for the container object to access its contained
objects.

currTabDialog : SSTab = new;

-- Define a VariantInteger object and assign it the value for the

-- TabOrientation property.

tabOrientValue : VariantInteger = new;

tabOrientValue.Value = 1;

-- Assign the property value to the corresponding attribute.

currTabDialog.TabOrientation = tabOrientValue;

-- This method copies the specified chart to the clipboard.

-- An Excel Worksheet is already open.

thisChartObject : Excel.ChartObject = new;

thisChart : Excel.Chart = new;

wshtVar : Variant;

currWorksheet : Excel.Worksheet = new;

-- Get a handle to the active worksheet.

wshtVar = self.thisExcel.ActiveSheet;

thisChartObject : Excel.ChartObject = new;

-- Get a handle to the dispatch interface for the worksheet.

currWorksheet.SetDispatchObject(variantRef = wshtVar);

chartNameVar.Value = chartName.Value;

chartNameVar : VariantString = new;

-- Get a handle to the chart object.

chartObjVariant : Variant = currWorksheet.ChartObjects(

index=chartNameVar);

-- Get a handle to the dispatch interface for the chart object.

thisChartObject.SetDispatchObject(variantRef = chartObjVariant);

chartVariant : Variant = thisChartObject.Chart;

thisChart.SetDispatchObject(variantRef = chartVariant);

thisChartObject."Copy"();
Chapter 2Using OLE to Access Windows Applications

Generating TOOL Projects That Access OLE Methods42
Converting a Variant Object to a TOOL Object or Data Type

If you retrieve data from a property or get a return value from a method that is an object of
class Variant or one of its subclasses, you need to convert the value to a TOOL object or
data type before you can use the data in your TOOL code.

For example, if a method returns a Variant object, but you know from the documentation
that the parameter of the method actually returns a string, you need to use the
VariantString class to get the value, then convert the data to a TOOL object.

You can avoid using Variant objects by using the -ai flag of the olegen command when you
generate the TOOL classes. For more information, see “Generate TOOL Classes for the OLE
Application” on page 37.

The following example shows how you can convert a value retrieved from the cell of an
Excel spreadsheet to a TextData object. In this example, the Range class is defined by the
project definition generated by Olegen for Excel.

To pass data to partitions not on a Windows platform, you need to copy data from a
restricted OLE object, such as VariantString, to an object of a non-restricted class, such as
TextData.

Step 3. Partition the TOOL Application and Make a
Distribution

TOOL classes that subclass or instantiate OLE Automation interface classes can only run in
client partitions that have Windows installed. Start the Partition Workshop to examine the
default configuration for your application, and remove these client partitions from nodes
where you do not want these partitions installed.

You can make the distribution just as you would for any regular TOOL application. You can
either make the distribution from the Partition Workshop or from within Fscript. For more
information about using the Partition Workshop or Fscript, see A Guide to the Forte 4GL
Workshops or the Fscript Reference Manual.

Step 4. Install the Client Application
You can install the client application just as you would any other TOOL client application.
For information about installing Forte applications, see Forte 4GL System Management
Guide.

-- Each cell is identified using its row and column.

-- Get a reference to a range.

currRangeVariant : Variant = new;

currRangeVariant = self.ThisExcel.Cells(rowIndex = CellRow,

columnIndex = CellColumn);

-- Get a handle to the dispatch interface for the range.

currRange : Range = new;

currRange.SetDispatchObject(variantRef=currRangeVariant);

-- Assign the value of the cell in the range to a TextData.

-- (Note the cast of the range value to a VariantDouble to get

-- the double data.)

retData : TextData = new;

retData.DoubleValue = (VariantDouble(currRange.Value).Value);
Integrating with External Systems

Invoking Methods on OLE Interfaces Using CDispatch 43
Invoking Methods on OLE Interfaces Using CDispatch
This section discusses how you can use CDispatch to invoke methods on OLE server
applications.

Forte provides a CDispatch class as part of the OLE library. The CDispatch class contains a
pointer to the dispatch interface (IDispatch) for a particular OLE server object. An OLE
server object can be an application, such as Microsoft Excel, or an object associated with
the application, for example, a Range or Charts object in Microsoft Excel.

The methods of the CDispatch class let you:

■ set the CDispatch ObjectReference attribute to reference a particular OLE server object

■ invoke methods provided by that OLE server

Therefore, you can use the CDispatch class to invoke methods on OLE server interfaces
without generating methods for all the available OLE Automation interfaces. The
CDispatch class is fully described in the Forte online Help.

If you want to generate TOOL classes for an OLE server, see “Generating TOOL Projects
That Access OLE Methods” on page 37.

To write TOOL code that invokes methods on the OLE server, perform the following steps:

1 Decide which OLE methods you want to use.

2 Include the OLE library as a supplier plan to the current TOOL project.

3 Instantiate an object of the CDispatch class from the OLE library using the keyword
new.

4 Set the ObjectReference attribute of the CDispatch object.

5 Set the parameters you need to pass to the OLE method.

6 Use the InvokeMethod or InvokeMethodWithResult method on the CDispatch class to
invoke the OLE method.

7 Check the results of the method.

8 Handle any exceptions.

9 Partition the client application on the appropriate Windows nodes. and make a
distribution.

10 Install the client application.

There are no special steps for deploying an application that uses OLE Automation methods.
However, remember that a TOOL component that uses an OLE Automation method can
only be partitioned on a node running Windows.

To pass data to partitions not on a Windows platform, you need to copy data from a
restricted OLE object, such as VariantString, to an object of a non-restricted class, such as
TextData.

Step 1. Decide Which OLE Methods to Invoke
Windows applications that can be OLE servers provide ways for a client application to learn
about the OLE Automation interfaces and methods that are available.

Usually, the application also documents these interfaces and methods, either in the online
help or the documentation provided with the product. For example, Microsoft Excel
documents its OLE Automation interfaces as its means of interfacing with Microsoft Visual
Basic, while Microsoft Word for Windows documents many of its available OLE Automation
interfaces as Word Basic commands.
Chapter 2Using OLE to Access Windows Applications

Invoking Methods on OLE Interfaces Using CDispatch44
You need to refer to the documentation provided for the Windows application to learn the
following:

■ what OLE object the method belongs to

■ the method name

■ the parameters for the method, their purposes, and their data types

Step 2. Include the OLE Library as a Supplier Plan
Your TOOL project contains the following lines to indicate that it includes supplier plans,
which are Framework and the OLE library:

You can also include your OLE library as a supplier plan from within the Project Workshop.
For more information, see A Guide to the Forte 4GL Workshops.

Step 3. Instantiate an Object of the CDispatch Class
Within your TOOL code, you must instantiate an object of the CDispatch class, as shown in
the following example:

Step 4. Set the ObjectReference Attribute
You need to set the ObjectReference attribute of the CDispatch object before you can call
any methods. The ObjectReference attribute is a pointer that references a dispatch
interface (IDispatch) on an OLE object. You can set the value of ObjectReference using:

■ the OLEObjectReference attribute in an OLE field

■ a moniker, a ProgID, or a CLSID

■ the ObjectReference value of another CDispatch object

For more information about setting the ObjectReference attribute, see the Forte online
Help.

Step 5. Set the Parameters You Need
Before you can invoke a method that requires parameters, you need to create an array of
parameters that Forte will pass to the OLE method. You can either specify parameters with
names, or you can specify parameters by position.

To specify parameters with names, you can use an Array of NamedParameter. To specify
parameters by position, you can use Array of Variant. TOOL passes positional parameters
according to their left-to-right order in the method definitions.

The following example shows how you declare and define a list of named parameters:

In this example, the Microsoft Word for Windows method FileOpen requires only one
parameter, so the namedParams Array of NamedParams contains only one object.

includes Framework;

includes OLE;

wordApp : CDispatch = new;

namedParams : array of NamedParameter = new;

namedParams.appendRow(

NamedParameter(Name=’Name’,

Value=VariantString(value=’myfile.doc’));
Integrating with External Systems

Invoking Methods on OLE Interfaces Using CDispatch 45
The following example shows how you declare and define a list of positional parameters:

In this example, the Microsoft Word for Windows method EditReplace has many
parameters. If you had specified the parameters using named parameters, then you could
have defined and passed in an Array of NamedParameter that contains only 4
NamedParameter objects.

For more information about the NamedParameter class and the Variant class, see the Forte
online Help.

Step 6. Use InvokeMethod or InvokeMethodWithResult
to Invoke the OLE Method

To invoke the OLE method, you use a method on your CDispatch object. Each of the
following methods invokes an OLE method with the specified name and a list of
parameters:

The following example shows how you can invoke an OLE method using the InvokeMethod
method of the CDispatch class and a list of named parameters:

In this example, the Microsoft Word for Windows method FileOpen does not return a value,
so we use the InvokeMethod of the CDispatch class instead of InvokeMethodWithResult.

The following example shows how you invoke a method using the
InvokeMethodWithResult method of the CDispatch class and a list of positional
parameters:

In this example, the Microsoft Word for Windows method EditReplace expects a return
value, so we use the InvokeMethodWithResultMethod of the CDispatch class.

unnamedParams : Array of Variant= new;

unnamedParams.appendRow(VariantString(value=’R’)); // Find

unnamedParams.appendRow(VariantString(value=’*’)); // Replace

unnamedParams.appendRow(NIL); // Direction

unnamedParams.appendRow(VariantI2(value=0)); // MatchCase

unnamedParams.appendRow(NIL); // WholeWord

unnamedParams.appendRow(NIL); // PatternMatch

unnamedParams.appendRow(NIL); // SoundsLike

unnamedParams.appendRow(NIL); // FindNext

unnamedParams.appendRow(NIL); // ReplaceOne

unnamedParams.appendRow(VariantBoolean(value=TRUE)); // ReplaceAll

Invoking method Parameter Type Return Value

InvokeMethod
(methodName=string|TextData, params=Array of NamedParameter)

Named none

InvokeMethod
(methodName=string|TextData, params=Array of Variant)

Positional none

InvokeMethodWithResult
(methodName=string|TextData, params=Array of NamedParameter)

Named Variant

InvokeMethodWithResult
(methodName=string|TextData, params=Array of Variant)

Positional Variant

wordApp.InvokeMethod(methodName=’FileOpen’, params=namedParams);

return : Variant = wordApp.InvokeMethodWithResult(

MethodName='EditReplace',

Params=unnamedParams);
Chapter 2Using OLE to Access Windows Applications

Invoking Methods on OLE Interfaces Using CDispatch46
Use double quotation
marks with names that
are TOOL reserved words

When you import the .pex file, Forte removes the quotation marks from the methods.
However, when you use a method whose name or whose parameters’ names are TOOL
reserved words, then you need to specify double quotation marks around the names that
are reserved words. To see the list of TOOL reserved words, see the TOOL Reference Manual.

For more information about the InvokeMethod and InvokeMethodWithResult methods, see
the Forte online Help.

Step 7. Check the Results of the Method
When you try to retrieve data from some OLE methods, and the data does not exist, the
OLE server might return an OLE Variant data type called VT_NULL. In this case, Forte sets
the IsNull attribute of the Variant object returned or passed back to TRUE. You can check
the IsNull attribute to see whether the method passed back any data.

Step 8. Handle Any Exceptions
When you run an application that calls OLE methods, Forte can raise the following
exceptions:

Step 9. Partition the Client Application
TOOL classes that subclass or instantiate OLE Automation interface classes are restricted
classes. These TOOL classes can only run in client partitions running on Windows. Start the
Partition Workshop to examine the default configuration for your application, and remove
the restricted client partitions from nodes where you do not want these partitions installed.

Making the Distribution You can make the distribution just as you would for any regular TOOL project. You can
either make the distribution from the Partition Workshop or from within Fscript. For more
information about using the Partition Workshop or Fscript, see A Guide to the Forte 4GL
Workshops or the Fscript Reference Manual.

Step 10. Install the Forte Application
You can install the Forte application just like you would any other TOOL client application.
For information about installing your Forte application, see Forte 4GL System Management
Guide.

Exception Description

OLEInvokeException Contains information about OLE errors that occur within an invoked OLE method (see the
Forte online Help). OLEInvokeException is a subclass of OLEException.

OLEException Contains information about all OLE errors (see the Forte online Help).

UserException Contains information about errors in the TOOL code (see the Forte online Help).
Integrating with External Systems

Chapter 3
Making a Forte Service
Object an OLE Server
This chapter describes how to make service objects in a Forte application available as OLE
servers on the Windows 95 and Windows NT platforms.

This chapter also briefly describes how to write an OLE client that accesses a Forte service
object.

OLE clients can access Forte OLE servers that are running on the same machine. If DCOM
(Distributed Common Object Model) is available, OLE clients can also access OLE servers
that are running on remote machines.

Forte service objects that are OLE servers run as local servers, not as in-process servers or
in-process handlers. In other words, a Forte OLE server starts in its own process space
(using the ftexec.exe or the executable for the compiled partition) instead of in the OLE
client’s process space.

About Making a Forte Service Object an OLE Server48
About Making a Forte Service Object an OLE Server
Forte lets Windows 95 and Windows NT applications use Microsoft’s OLE Version 2 (OLE 2)
to access data in your Forte application.

OLE clients and servers OLE is based on a set of interfaces provided by many Windows applications. A Windows
program can interact with the objects associated with another Windows application. These
two programs are known, respectively, as the client and the server. An OLE server is a
program that has access to data and that provides functions that might be useful to other
programs. An OLE client is a program that obtains this data or interacts with objects
associated with the server. A client corresponds to an OLE controller.

This chapter explains how to make a Forte service object available to OLE clients as an OLE
server.

By making a Forte service object available to OLE clients, you can take advantage of the
capabilities of the Forte runtime system to handle heavy-duty tasks, such as database
access, computations, transactions, and so forth, on powerful machines dedicated to these
tasks. In fact, these machines can be running non-Windows platforms, such as OpenVMS
or UNIX. Meanwhile, you can provide an interface to this application for OLE client
applications that are running Windows.

To make a service object available as an OLE server, you can specify that Forte generate an
ODL (Object Description Language) file and an interface that OLE clients can use to access
the service object.

Before you can complete the steps described in this chapter, you need to have the
appropriate C++ compiler available on the platforms where you want to compile the shared
libraries that make up the OLE automation interface. For information about the C++
compilers supported for each platform, see the Forte 4GL System Installation Guide.

� To make a Forte service object available to an OLE client:

1 Define the Forte service object that provides functions that you want to make available.

2 Partition the service object to the appropriate nodes.

3 In the Partition Workshop, specify that the service object will be available to an external
OLE application.

4 Make the distribution from Fscript or the Partition Workshop to generate the partition
startup code, an ODL interface definition file, and a C++ wrapper.

5 Compile and link the C++ wrapper code into a shared library (.DLL) for each platform
and compile the ODL file to produce the OLE automation type library. If you can use
Forte’s auto-compile feature, you can perform this step as part of step 4.

6 Install the shared libraries and type library on the appropriate nodes. You can use the
auto-install feature to perform this step as part of step 4.

7 Start the Forte OLE server.

Each step is described in detail starting with “Define a Service Object in a Forte
Application” on page 50.
Integrating with External Systems

About Making a Forte Service Object an OLE Server 49
Examples
This chapter uses two related examples, called OLEBankEV and OLEBankUV, which are
provided in FORTE_ROOT/install/examples/extsys/ole/server.

OLEBankEV demonstrates how to define an environment-visible service that acts as an
OLE server. OLEBankUV demonstrates how to define a user-visible service object that acts
as an OLE server. Both examples show how to write an OLE client application using
Microsoft Visual Basic that accesses the Forte service object.

For more information about these examples, see “OLEBankEV” on page 235 and
“OLEBankUV” on page 236
Chapter 3Making a Forte Service Object an OLE Server

Define a Service Object in a Forte Application50
Step 1. Define a Service Object in a Forte Application
Defining a Forte service object that will be an OLE server is similar to defining any other
service object.

There are two limitation to what elements of the service object’s class are available to an
OLE client.

■ An OLE client application can access any methods provided by that service object’s
class, except for methods that use objects as parameters.

■ OLE clients cannot access attributes of a Forte service object.

This section describes special issues you need to consider when you define this service
object and its class.

Providing an OLE Interface for a Service Object
OLE clients can only pass the following objects and data types as parameters and return
values:

If a Forte service object includes methods that have object parameters or return values
other than CUnknown and CDispatch, these methods are not included as part of the
interface to this OLE server.

Providing Methods to Get and Set Attributes
The service object class must provide methods to retrieve or set the values of any attributes
in the service object. OLE clients cannot assign values to the attributes directly using the
“=” operator as in “BankService.MaxClients = 5.” Instead, you need to define methods that
would set this attribute, as shown:

TOOL data type Maps to OLE data type:

boolean Boolean

CDispatch IDispatch

CUnknown IUnknown

double Double

float Float

integer Long

i2 Integer

string String

ui2 Short

ui4 Long

BankService.SetMaxClients(newValue=1);
Integrating with External Systems

Define a Service Object in a Forte Application 51
Adding Wrapper Methods to a Service Object
If you are developing an application that you intend to make available as an OLE server,
you can define wrapper methods in the service object that accept supported data types as
parameters and return values. Forte can then export these wrapper methods as part of the
OLE interface for this service object.

In the following example, the method invokes a method on the original service object,
which returns a BankAccount object. This method then returns a scalar value from the
BankAccount object to the OLE client.

Defining an OLE Interface in a New Service Object
Depending on the services you want to make available to OLE clients, you might want to
define a service object that specifically defines the interface that you want to show to OLE
clients. This approach is useful when your application has services running on large, non-
Windows machines elsewhere in your environment. You can define methods specifically
for this object that call other services in the Forte environment.

User-visible service objects If you want to let Forte manage communications between your client and server machines,
you can define the service object that defines the OLE interface as a user-visible service
object that resides in a client partition on the Windows 95 or NT machine.

To define a user-visible service object as an OLE server, create a new project containing a
class with a small starting method that accesses the user-visible service object.

This starting method needs to contain an event loop that waits for some indication that the
client partition should shut itself down. Without the event loop, the client partition will
start and end quickly, before the service object can register itself and before the OLE client
application can talk to it. You then need to call this method from your OLE client
application to start the OLE server in its Forte client partition.

-- Return the balance of the specified account.

currAcct : BankAccount;

currAcct = BankServer.GetAcctData(acctNumber = Number);

if currAcct.AcctBalance = 0 then

task.part.logmgr.putline(source =

’No balance was returned.’);

else

task.part.logmgr.put(source =

’The balance for account ’);

task.part.logmgr.put(source = Number);

task.part.logmgr.put(source = ’ is ’);

task.part.logmgr.putline(source = currAcct.AcctBalance);

end if;

return currAcct.AcctBalance;

end method;

See OLEBankUV example Project: OLEBankUV • Class: BankServiceOLEInterface • Method: GetAccountBalance
Chapter 3Making a Forte Service Object an OLE Server

Define a Service Object in a Forte Application52
The following example, from the OLEBankUV.StartupClient.Startup method, starts the
BankServerOLE service object, which is a user-visible service object. This method then goes
into an event loop until it receives a Shutdown event.

You should also provide a mechanism, such as a Shutdown method on the service object,
that tells the client partition to shut itself down, as shown in the following example. This
method posts an event that is caught by the StartupClient event loop, which causes the task
to complete its execution. Because this is a client partition, shutting down the main task
also shuts down the user-visible service object.

The OLE client can call this Shutdown method to shut down a running Forte client, if you
do not want to leave the Forte client partition running after the OLE client completes
running.

Note If you define a service object specifically to act as an OLE interface, you need to thoroughly
test the methods provided by this service object. It is very difficult to debug problems with
your OLE client if this interface is not stable.

Raising Exceptions in the TOOL Code
If you are defining a new service object that interacts with several other Forte service
objects, you should handle any exceptions that might occur under normal conditions and
raise exceptions that contain information that will be useful to the developers of OLE
clients. You could, for each exception, define a subclass to GenericException that assigns a
specific message number to the Message attribute, which the OLE client can use to identify
the error condition.

When a Forte service object that is being used as an OLE server raises an exception, Forte
intercepts the exception. Forte then defines the values of the ExcepInfo object that is
returned to the OLE client. The ExcepInfo object is an OLE structure that contains error
information, as described in the following table:

The Err object in Microsoft Visual Basic corresponds to this ExcepInfo object.

BankServerOLE.Startup();

event loop

when BankServerOLE.ShutdownEvent do

exit;

end;

See OLEBankUV example Project: OLEBankUV • Class: BankServiceOLEInterface • Method: Startup

post ShutdownEvent;

See OLEBankUV example Project: OLEBankUV • Class: BankServiceOLEInterface • Method: Shutdown

ExcepInfo field Value

Code 0

DeferredFillIn NULL

Description ErrorDesc.Message attribute of raised Forte exception

HelpContext 0

HelpFile ‘’

Source Forte OLE Automation Service export_name Method method_name
Integrating with External Systems

Define a Service Object in a Forte Application 53
The following example shows how, in the new service object, you can handle a Forte
exception raised by a server, then raise an exception that is more meaningful to the
developer or user of an OLE client. In this example, the OLEAccountNotFound class is a
subclass of GenericException that defines a message number in its Message attribute that
the OLE client can check:

For information about having an OLE client trap Forte exceptions, see “Handling Forte
Exceptions” on page 72.

Defining the ProgID for the Service Object
As you name the application and service object and set the compatibility level for the
application, you should consider that Forte automatically generates and registers the
progID for the Forte service based on the following rules:

distribution_id.export_name.[cln]

distribution_id is the name of the distribution containing the service object, which is the
first 8 characters of the application name.

export_name is the name that OLE clients will use to identify this service object. This name
can be set in the Service Object Properties dialog or using the Fscript SetServiceEOSInfo
command. If no export name is specified, then this name is the name of the project, an
underscore (_), and the name of the service object. For more information about the
export_name, see “Mark a Service Object as an OLE Server” on page 55.

n is the compatibility level for the application. Forte automatically generates and registers
two ProgID, one with the cln value and one without, so that users can identify the
application without worrying about the release number.

For example, the ProgID for the BankServerOLE user-visible service object in the
OLEBankUV project is olebanku.OLEBankUV_BankServerOLE.

exception

when excep : AccountNotFound do

task.part.logmgr.put(source =

’Account ’);

task.part.logmgr.put(source = Number);

task.part.logmgr.put(source = ’ was not found.’);

oleExc : OLEAccountNotFound = new();

raise oleExc;

See OLEBankUV
or OLEBankEV example

Project: OLEBankUV or OLEBankEV • Class: BankServiceOLEInterface
Method: GetAccountBalance
Chapter 3Making a Forte Service Object an OLE Server

Partition the Application Containing the Service Objects54
Step 2. Partition the Application Containing
the Service Objects

Partitions that contain the service objects that you want to enable as OLE servers must be
deployed on nodes that are defined as running either the Windows NT or Windows 95
platform.

Environment-visible service
objects

When you partition an application containing environment-visible service objects that will
be OLE servers, the application is partitioned as usual, so that environment-visible service
objects are assigned to server partitions.

User-visible service objects Partition user-visible service objects in client partitions. Multiple OLE clients can access an
OLE server running in a client partition. For more information about designing user-visible
service objects as OLE servers, see “Defining an OLE Interface in a New Service Object” on
page 51.

Only assign partitions with
OLE servers on Windows 95
or NT nodes

Forte assigns partitions to all nodes of the correct type (client or server). You need to
remove the assigned partitions containing OLE servers from nodes that do not support
OLE; in other words, remove the assigned partitions containing OLE servers from all nodes
except those running Windows 95 or Windows NT. If you run a partition containing an OLE
server on a node not running Windows 95 or Windows NT, you will get a runtime error.

� To partition your OLE server application:

1 Open the Project Workshop for the main project for your application.

2 In the Project Workshop, choose Run > Partition.

Forte displays the default partitioning for the application in the Partition Workshop.

3 Remove the partition containing the service object that is marked as an OLE server from
any nodes that are not running Windows 95 or Windows NT.

You can also use the Fscript command Partition to partition the application and the Fscript
command UnassignAppComp to remove partitions from nodes that are not running
Windows 95 or Windows NT.

Server application If the service object that is marked as an OLE server is environment-visible, you can
configure your application as a server application in the Project Workshop using the File >
Configure as Server command.

For information about partitioning applications, see A Guide to the Forte 4GL Workshops or
the Fscript Reference Manual.

Remove this client
Integrating with External Systems

Mark a Service Object as an OLE Server 55
Step 3. Mark a Service Object as an OLE Server
To mark a service object as an OLE server, you must set the external type for the service
object as OLE. You can optionally set the name that OLE clients will use to identify this
service object. You can mark the service object using either the Partition Workshop or the
Fscript command SetServiceEOSInfo.

� To mark a service object in the Partition Workshop:

1 Open the Service Object Properties dialog for the service object you want to make
available to OLE clients.

2 Click the Export tab to go the Export page.

3 Set the value of the External Type field as OLE.

4 Set the Export Name field to the name that OLE clients will use to identify this service
object. This value is a text string that has a letter as its first character.

If no export name is specified, then the OLE server name is the project name for the
service object, an underscore character (_), and the service object name. For the exact
syntax of the server entry in the registry, see “Defining the ProgID for the Service
Object” on page 53.

5 Click the OK button.

For more information about specifying service object properties, see A Guide to the Forte
4GL Workshops.

� To mark a service object using the Fscript command SetServiceEOSInfo

1 Start Fscript.

2 Open the repository, make the deployment environment the current environment, and
make the main project for the application containing this service object the current
plan, using a series of Fscript commands like the following:

3 Partition this application using the Partition command.

4 Enter the SetServiceEOSInfo command using the following syntax:

SetServiceEOSInfo service_object_name OLE [export_name]

service_object_name is the name of the service object that you want to make available to
the external object service. If the current project contains the service object, you can
specify just the name of the service object; otherwise, service_object_name should
specify the project name and the service object name, like BankServices.BankServer.

export_name is the name that OLE clients will use to identify this service object. This
value is a text string that has a letter as its first character. The length of the export name
depends on your particular implementations of OLE Automation. If no export name is
specified, then the OLE server name is the project name for the service object, an
underscore character (_), and the service object name. For the exact syntax of the server
entry in the registry, see “Defining the ProgID for the Service Object” on page 53.

fscript> FindEnv MyEnvironment

fscript> FindPlan MainProject
Chapter 3Making a Forte Service Object an OLE Server

Make the Distribution56
The following example shows how you could mark a service object as an OLE server:

In this example, OLEBankUV is the name of the project, and BankServerOLE is the
name of the service object. BankServer is the name that will be registered for this OLE
server.

For more information about Fscript, see Fscript Reference Manual.

5 Use the Partition command again to repartition the application based on the new
settings on the service object.

6 Use the UnassignAppComp command to remove the partition containing the service
object that is an OLE server from nodes that are not running Windows.

Step 4. Make the Distribution
Make a distribution using the Partition Workshop or the Fscript MakeAppDistrib
command.

Using auto-compile and
auto-install features

If your environment is set up for auto-compiling, you can compile, link, and install the
shared libraries and type libraries on the appropriate nodes when you make the
distribution.

Compiling, linking, and
installing without automated
features

If you choose not to use the auto-compile and auto-install features, you can find the steps
for compiling, linking, and installing the shared libraries and type libraries without using
the automated features, in the following sections:

■ “Compile and Link to Produce a Shared Library and Type Libraries” on page 59

■ “Install the Executable” on page 61

Making the Distribution with Auto-Compile and Auto-Install
Your Forte system manager can set up your system so that you can automatically compile
and link the code that was generated into shared libraries.

If you use the auto-compile and auto-install features to compile, link, and install the shared
libraries and type libraries, skip to “Start the Forte Partition” on page 61.

The steps for setting up the system to enable auto-compile and auto-install are explained
in Forte 4GL System Management Guide. In general, your system manager must set up the
following components on your system:

■ one or more code generation servers to generate the code for the distribution

■ a server that manages how and where shared libraries are compiled and linked

■ one auto-compilation server for each platform where the shared libraries and type
libraries will be installed. Each of these servers must have access to the C++ compiler for
that platform.

fscript> SetServiceEOSInfo OLEBankUV.BankServerOLE OLE BankServer
Integrating with External Systems

Make the Distribution 57
If your system manager has set up these components, then you can make the distribution
with the auto-compile feature. This feature performs the following steps automatically, in
addition to the steps that are performed for the TOOL application that contains the service
object:

■ generate an ODL file

■ compile the ODL file into a type library

■ generate C++ wrapper code

■ compile and link the C++ wrapper code into the shared library required for each
platform

■ place the shared libraries, the ODL file, and the type libraries into the appropriate
distribution directories

If you also selected auto-install, making the distribution also installs the shared libraries on
the appropriate nodes in the development environment, according to the configuration
you specified when you partitioned your TOOL application.

� To make a distribution with auto-compile and auto-install:

1 After you have partitioned your Forte application, choose the File > Make Distribution
command.

2 In the Make Distribution dialog, select Partial Make (to update a distribution) or Full
Make (to create a new distribution), then select the toggles for Install In Current
Environment and Auto Compile.

3 Select the Make button.

This step generates the needed files, compiles the files, then copies them to the
appropriate FORTE_ROOT\userapp directories on the nodes where they are assigned.
The files that are most important for the OLE server are ole_#.dll, so#.odl and so#.tlb,
where # is an arbitrary number generated by Forte. The .tlb file is the type library for the
OLE server.

You can also use the MakeAppDistrib command in Fscript to make a distribution with
auto-compile and auto-install, as shown:

For more information about making a distribution, see A Guide to the Forte 4GL
WorkshopsFor information about the Fscript MakeAppDistrib command, see the Fscript
Reference Manual.

At this point, skip to “Start the Forte Partition” on page 61.

fscript> MakeAppDistrib 1 ““ 1 1
Chapter 3Making a Forte Service Object an OLE Server

Make the Distribution58
Making the Distribution without Auto-Compiling
If you are making the distribution without using the auto-compile feature, then this step
generates code for the current configuration of the TOOL application and the ODL file for
each service object being defined as an OLE server. You need to compile the ODL file to
produce the type library for the OLE server, then compile and link the C++ wrapper code to
produce the shared library. Then, you need to place the shared library in the appropriate
distribution directories to enable the Forte system manager to automatically install the
shared library.

Making a distribution produces the following items in the distribution directory in addition
to the usual files for the partition:

.bom file Describes the files to be compiled for the OLE server.

C++ module Contains the generated C++ code that makes the Forte service object
available to an OLE client. Registers the Forte services provided by the service object in the
Windows registry and the COM library.

.odl file Describes a marked service object that is available to OLE clients. Forte exports
only the methods in the service objects that do not contain unsupported types as
parameters or return values. An ODL file is generated for each marked service object. This
ODL file is compiled into a type library when you use the fcompile utility.

For example, the files generated for the OLEBankUV application could be ole_0.bom,
s01.cc, and so1.odl.

After making the distribution, Forte puts these files in the distribution directory:

FORTE_ROOT/appdist/environment_id/distribution_id/cl#/codegen/partition_id

If any of the partitions in your application are compiled partitions, this directory also
contains the .pgf files for these partitions.

For example, if you make a distribution on Windows NT, the files for the OLEBankUV
example would be in the FORTE_ROOT\appdist\centrale\olebanku\cl0\codegen\oleban0
directory.

Directory Name Description

environment_id First 8 characters of the environment name where you want your application to be installed.

distribution_id First 8 characters derived from the name of the main TOOL project for the application
containing this service object.

 cl# Compatibility level for this project, as specified for the main TOOL project for the application
containing this service object.

partition_id The first 6 characters of the application name plus the partition number.
Integrating with External Systems

Compile and Link to Produce a Shared Library and Type Libraries 59
Step 5. Compile and Link to Produce a Shared
Library and Type Libraries

This section describes the steps you need to perform if you are not using Forte’s auto-
compile feature, described in “Making the Distribution with Auto-Compile and Auto-
Install” on page 56.

fcompile command
Forte provides an fcompile command that lets you generate a shared library for the
wrapper code and ODL files on a given platform. This utility compiles the ODL files to
produce the OLE automation type libraries. The fcompile command then compiles and
links the C++ module into a shared library.

If any partitions for your application are compiled partitions, the fcompile command, by
default, also generates code and compiles and links the compiled partitions from their .pgf
files in the codegen/partition_id directory.

The syntax of the fcompile command when you compile parts of an application that
include a service object to be made available as an OLE server is:

Portable syntax
 (all platforms)

fcompile [-c component_generation_file] [-d target_directory]
[-cflags compiler_flags] [-lflags linking_flags]
[-fm = memory_flags] [-fl = logger_flags] [-cleanup]

The following table describes the command line flags for the fcompile command:

Flag Description

-c component_generation_file Specifies the file that Forte compiles. This value includes the path where the file
resides if the file is not in the current directory. By default, Forte compiles all files
in the current directory.

-d target_directory Specifies where the compiled directories will be placed. By default, fcompile
compiles files in the current directory, and places the compiled files in the current
directory.

target_directory is a directory specification in local syntax.

If the -c flag is also specified, the -d flag specifies only where the compiled
component files will be placed. Otherwise, the directory specified by the -d flag
specifies both the directory containing the files to be compiled and the directory
where the compiled files will be placed.

-cflags compiler_flags Specifies any C++ compiler options.

-lflags linking_flags Specifies any linking flags.

-fm memory_flags Specifies the space to use for the memory manager. See A Guide to the Forte
4GL Workshops for information.

-fl logger_flags Specifies the logger flags to use for the command.See A Guide to the Forte 4GL
Workshops for information.

-cleanup Deletes all the files except for the newly compiled shared libraries.
Chapter 3Making a Forte Service Object an OLE Server

Compile and Link to Produce a Shared Library and Type Libraries60
Steps for Compiling and Linking
� To compile C++ wrapper code and ODL files:

1 Copy all the files that you generated by making the distribution to a node that has the
platform on which the partition containing the service object will be installed. This
node must have the required C++ compiler and ODL files so that the code can be
compiled and linked.

The files you need to copy are in the directory path described under “Make the
Distribution” on page 56.

2 Use fcompile to generate, compile, and link code into shared libraries.

For example, if you have copied all the files in the codegen directory to the node to be
compiled, then you could just enter the fcompile command with no parameters.

If you only want to compile the partition or just the wrapper code and OLE files, use the
fcompile command with its -c flag. To compile just the partition code, specify the .pgf
file with the -c flag. To compile the OLE file, specify the .bom file with the -c flag.

3 Create the following distribution directories and copy the shared library (.dll) and the
type libraries (.tlb) to this distribution directory:

FORTE_ROOT/appdist/environment_id/distribution_id/cl#/platform/partition_id

For example, assume that the distribution is on Windows NT and you have compiled
files for the OLEBankUV application for Windows NT. You would create a
pc_nt\oleban0\ directory under the cl0 subdirectory shown in “Making the Distribution
without Auto-Compiling” on page 58 and copy all the files there. At the end of this step,
the ole_1.dll, ole_1.lib, ole_1.exp, and so1.tlb should be in the
FORTE_ROOT\appdist\centrale\olebanku\cl0\pc_nt\oleban0\.

Directory Name Description

environment_id First 8 characters of the environment name where you want your application to be
installed.

distribution_id First 8 characters derived from the name of the main TOOL project for the application
containing this service object.

 cl# Compatibility level for this project, as specified for the main TOOL project for the
application containing this service object.

 platform Architecture name for the platform where this shared library will be installed, for example,
PC_WIN.

partition_id The first 6 characters of the application name plus the partition number.
Integrating with External Systems

Install the Executable 61
Step 6. Install the Executable
This section describes the steps you need to perform if you are not using Forte’s auto-
install feature, described in “Making the Distribution with Auto-Compile and Auto-Install”
on page 56.

Using the Environment Console or Escript, install the application containing the Forte
service object using Forte installation procedures.

� To install the Forte application:

1 In the Environment Console, choose File > Load Distribution.

2 In the Load Distribution dialog, select the node on which you made the distribution for
this library, then select the application distribution.

3 Choose View > Application Outline.

4 Select the application distribution that you just loaded, then choose Component >
Install.

You can also use Escript commands to install a Forte application, as shown:

For more information about installing applications in Forte, see Forte 4GL System
Management Guide.

Step 7. Start the Forte Partition
You must start the Forte partition that contains service objects that are OLE servers at least
once so that the partition can register its service objects in the Windows registry. If you
have the registry open when you start this partition, you need to refresh the Registry Editor
window to see the Forte service object.

A Forte partition performing as an OLE server behaves like other Forte partitions. If it is a
server partition, you can start it using the Environment Console or Escript. You can also
autostart Forte server partitions using Forte calls. If this partition is a client partition, it also
behaves like other Forte client partitions, except that they can be autostarted by an OLE
client.

An OLE client can autostart the Forte server partition if the partition has already been
registered as an OLE server in the Windows registry. By default, the interpreted service
partition is autostarted. If you want to have the compiled service partition autostarted, see
“Modifying How a Partition Is Autostarted” on page 65.

If an OLE client tries to access the OLE server before the Forte server partition has
registered the service object in the Windows registry, you will get an error.

escript> LoadDistrib OLEBankUV cl0

escript> Install
Chapter 3Making a Forte Service Object an OLE Server

Start the Forte Partition62
Note When an OLE client invokes a request on a Forte OLE server, the Forte service object waits
for the OLE request to complete processing before it processes any other requests from an
OLE client. However, the Forte service object can continue to process requests from Forte
clients.

Registering the Partition
To have OLE Automation recognize a started partition as an OLE server, start the partition
in one of the following ways:

■ Start the partition using the ftexec command or its compiled executable at a command
prompt, as shown in the following example for a server partition:

■ If the partition is a client partition, start it using the generated icon, which starts the
client partition through the Launch Server using the ftcmd run command

■ Have the OLE client call the OLE server, which makes OLE Automation auto-start the
OLE server.

What actually happens in this case is that OLE Automation invokes an ftexec command
to start the partition as interpreted, or runs the compiled executable, depending on how
you set up the registry. For more information about locating and changing the
command used to auto-start the partition, see “Modifying How a Partition Is
Autostarted” on page 65.

Troubleshooting the OLE Server
This section describes some basic troubleshooting techniques that you can use when an
OLE server does not work properly.

OLE Server Does
Not Advertise Itself

If the OLE server does not register or advertise itself when you start it up, you should check
the log file or the trace window for the partition to make sure that the partition has
registered and advertised itself successfully. The log file should contain messages like the
following if the partition has successfully advertised itself as an OLE server:

If you instead find errors about the .dll not being found, make sure that you have correctly
partitioned and compiled the ole_#.dll file, as described in “Make the Distribution” on
page 56 and “Compile and Link to Produce a Shared Library and Type Libraries” on
page 59.

Make sure node is running
Windows 95 or NT

If you run a partition containing an OLE server on a node not running Windows 95 or
Windows NT, you will get a runtime error.

ftexec -ftsvr 0 -fi bt:c:\forte\userapp\olebanku\cl0\oleban0

OLEBanking_BankServerOLE: Registering service ...

On one line OLEBanking_BankServerOLE: Application ID :
%{FORTE_ROOT}/userapp/oletest/cl0

OLEBanking_BankServerOLE: Partition ID : ole_1

OLEBanking_BankServerOLE: Interface Name : OLEBanking_BankServerOLE

OLE LSTN: Forte partition OLE enabled ...

On one line Successfully completed OLE advertisement for
OLEBanking_BankServerOLE
Integrating with External Systems

Customizing Registry Entries for a Forte OLE Server 63
Customizing Registry Entries for a Forte OLE Server
This section describes how to modify Windows registry entries to:

■ delete obsolete entries from the Windows registry

■ specify how a partition is autostarted

Deleting Obsolete Entries from the Windows Registry
When you uninstall a partition or an application that contains a partition that is an OLE
server, you need to remove the entry for this OLE server from the Windows Registry.
Otherwise, other applications that rely on the information in this registry might mistakenly
assume that this OLE server is still available.

� To remove obsolete entries from the Window Registry:

1 In the HKEY_CLASSES_ROOT section of the registry, find the ProgID entries for the OLE
server. For example, the ProgIDs for a service object could be
olebanke.OLEBanking_BankServerOLE and olebanke.OLEBanking_BankServerOLE.cl0.
Forte always registers the service object with names that do and do not include the
compatibility level, so that a client application can choose a particular release of a
product, but does not need to.

For information about determining the ProgID for an OLE server, see “Defining the
ProgID for the Service Object” on page 53.

2 Double-click on the ProgID entry and the CLSID entry to determine the CLSID for the
OLE server.

Make a note of this CLSID, which is a unique identifier string containing 32 hex digits
enclosed in braces, such as {735F2520-A6E1-11D0-AF93-213AB877AA77}.
Chapter 3Making a Forte Service Object an OLE Server

Customizing Registry Entries for a Forte OLE Server64
3 In the HKEY_CLASSES_ROOT section of the registry, double-click on the CLSID folder,
and locate the folder labeled with the CLSID for the OLE server, for example, {735F2520-
A6E1-11D0-AF93-213AB877AA77}.

4 Delete the CLSID entry.

5 Locate the ProgID entries for the Forte service object again and delete them.

6 Find the file labelled ForteSO. The files in this folder are arranged hierarchically so that
the file names, separated by dots, actually represent a hierarchy of folders containing
other folders. For example, if the ProgID for a service object is
olebanke.OLEBanking_BankServer.cl0, ForteSO contains a folder named olebanke,
which contains a folder called OLEBanking_BankServer, which in turn contains a folder
called cl0.

7 Delete the folders corresponding to the application or partition that contains the OLE
server. For example, if you uninstall the OLEBankEV application, you should delete the
folder olebanke, which also deletes all the folders it contains.
Integrating with External Systems

Customizing Registry Entries for a Forte OLE Server 65
Modifying How a Partition Is Autostarted
An OLE client can autostart the Forte server partition if the partition has already been
registered as an OLE server in the Windows registry. By default, the interpreted service
partition is autostarted with the system defaults. If you want the OLE client to auto-start
the compiled server partition instead or set flags on the ftexec or executable command, you
need to change the entry in the registry, as described in this section.

� To change how a partition is auto-started:

1 In the HKEY_CLASSES_ROOT section of the registry, find the ProgID entries for the OLE
server. For example, the ProgID for a service object could be
olebanke.OLEBanking_BankServerOLE.

For information about determining the ProgIDs for an OLE server, see “Defining the
ProgID for the Service Object” on page 53.

2 Double-click on the ProgID entry and the CLSID entry to determine the CLSID for the
OLE server.

Make a note of this CLSID, which is a unique identifier string containing 32 hex digits
enclosed in braces, such as {735F2520-A6E1-11D0-AF93-213AB877AA77}.

3 In the HKEY_CLASSES_ROOT section of the registry, double-click on the CLSID folder,
and locate the folder labeled with the CLSID for the OLE server, for example, {735F2520-
A6E1-11D0-AF93-213AB877AA77}.

4 Open the Local Server folder for the CLSID entry.

5 Double-click on the key value in the right half of the editor window.

6 Edit the command to contain the command and flags that you want the partition to use
when it auto-starts.

For example, suppose the original key value, which specifies that OLE Automation
should auto-start an interpreted partition looks like the following (all in one line):

To have OLE Automation start a compiled partition with a logger flag, specify a
command like the following:

On one line c:\forte\install\bin\ftexec -ftsvr 0 -fi

bt:c:\forte\userapp\olebanke\cl0\oleban0

c:\forte\userapp\olebanke\cl0\oleban0 -fl ‘err.log(err:user)’
Chapter 3Making a Forte Service Object an OLE Server

Using DCOM with Forte OLE Servers66
Using DCOM with Forte OLE Servers
This section describes how to use the (Distributed Component Object Model) DCOM
feature of Microsoft OLE with your Forte OLE servers. You can use DCOM on Windows NT
and on Windows 95 with DCOM 95.

When you make a Forte service object available as an OLE automation server, you can also
set up the service object to be accessed by remote clients. You need to set up the clients
and the server to enable the clients to access the Forte OLE automation server, as described
in this section.

If you can access your Forte OLE server using COM on a single machine, you should be
able to use DCOM to access your Forte OLE server by following the steps in this section.
You should ensure that you can run your OLE client with the Forte OLE server on the same
machine before you try to run any remote clients with the Forte OLE server.

Windows security and
DCOM configurations

If your server machine permissions, user profiles, and DCOM configurations are not set up
properly, your client applications will not be able to access the Forte OLE server. You
should refer to the Windows NT, Windows 95, and DCOM documentation provided by
Microsoft to ensure that you have set up your user profiles, file sharing, and DCOM
configuration correctly for your server machine and your Forte OLE server.

This section will use the OLEBankUV example to illustrate the various steps.

� To use DCOM with your Forte OLE servers:

1 Deploy your Forte application as a Forte OLE server.

See “About Making a Forte Service Object an OLE Server.”

2 Start the Forte partition.

Start the Forte partition that contains service objects that are OLE servers at least once
so the partition can register its service objects in the Windows registry.

.reg file At this point, Forte also generates a .reg file that contains information needed to register
the identity and location of your Forte OLE server on the clients that will use this OLE
server. See “Customizing Registry Entries for a Forte OLE Server.”

This file has the same name as the service object, and is in the same
FORTE_ROOT\userapp subdirectory as the partition containing the service object.

3 Change the server security settings.

On the machine running the Forte OLE server, you need to change the security settings
to permit remote clients to start or access the Forte OLE server. This step is described in
“Changing Security Settings” on page 67.

4 Register the Forte OLE server on client machines.

You need to register the Forte OLE server on the client machine to enable the client
machines to locate and access the OLE server. You need to perform this step for each
client machine that will access the Forte OLE server. This step is described in
“Registering the Forte OLE Server on Client Machines” on page 70.
Integrating with External Systems

Using DCOM with Forte OLE Servers 67
Changing Security Settings
The Microsoft Distributed COM Configuration Properties utility lets you change the
security settings for all OLE servers on your machine, or for specific OLE servers.

Warning The security settings shown in the section are used to explain what settings you need to be
aware of, and to demonstrate settings that will work with our example. You need to set your
security settings to follow your own security policies.

� To start the Distributed COM Configurations Properties utility:

1 Locate and start the dcomcnfg.exe utility on the machine running the Forte OLE server.

The Distributed COM Configuration Properties dialog opens.
Chapter 3Making a Forte Service Object an OLE Server

Using DCOM with Forte OLE Servers68
� To change the security settings for all OLE servers on your machine:

2 Choose the Default Properties tab page.

3 Change the Default Authentication Level.

For example, you might want to set this field to (None), if you do not want any security-
checking to occur on communications between applications.

You can also choose the Default Security tab page and change the Default Launch
Permissions.
Integrating with External Systems

Using DCOM with Forte OLE Servers 69
� To change the security settings for a specific OLE server:

1 Choose the Applications tab page.

2 Choose the Properties button.

3 In the application properties dialog, choose the Security tab page to customize the
access permissions, custom launch permissions, or configuration permissions.
Chapter 3Making a Forte Service Object an OLE Server

Using DCOM with Forte OLE Servers70
4 You can also choose the Identity tab page to choose the user account that will be
associated with this application.

For example, we chose the interactive user.

Registering the Forte OLE Server on Client Machines
You need to register the Forte OLE server on the client machine to enable the client
machines to locate and access the OLE server. You need to perform this step for each client
machine that will access the Forte OLE server.

� To register the Forte OLE server on a client machine:

1 Copy the .reg file generated for the Forte OLE server onto the client machine, or
remotely mount the drive containing the .reg file and locate it from the client machine.

2 Use the .reg file to register the Forte OLE server in the client machine’s Windows registry.
To perform the registration, you can do one of the following:

■ Double-click the icon for the .reg file. The information in the file is automatically
added to the Windows registry.

■ Start the regedit.exe utility, then import the .reg file using the Registry > Import
Registry File command.
Integrating with External Systems

Writing OLE Clients That Access a Forte Service Object 71
Writing OLE Clients That Access a Forte Service Object
An OLE client that accesses a Forte OLE server can be written using the same approach that
you would use for any other OLE client.

OLE clients can access Forte OLE servers that are running on the same machine. If DCOM
(Distributed Common Object Model) is available, OLE clients can also access OLE servers
that are running on remote machines.

Before you can write an OLE client that accesses a Forte service object, you need the type
library file (.tlb). This file defines what methods on the Forte service object are accessible to
an OLE client through OLE automation. This type library file is the result of compiling the
ODL file that was generated when you made a distribution for the application containing
the service object.

In a product like Microsoft Visual Basic, you can reference the .tlb file to make your OLE
server known to your Visual Basic OLE client.

Forte OLE
server name

The OLE client needs to know the server name of the Forte OLE server. The Forte OLE
server advertises itself using the Windows registry. “Determining the ProgID for the Service
Object” on page 71 describes how you can find the ProgID.

If no export name was specified for the service object, then the Forte OLE server advertises
itself using the project name for the service object, an underscore character (_), and the
service object name. For example, if the project name is Taxes, and the service object is
named Calculations, then the server_name value is Taxes_Calculations.

Exception handling with
Forte OLE servers

Forte OLE servers return ExcepInfo objects to an OLE client. This ExcepInfo object contains
the information described in “Raising Exceptions in the TOOL Code” on page 52.

Determining the ProgID for the Service Object
The progID for the Forte service that you are accessing from an OLE client is:

distribution_id.export_name.[cln]

distribution_id is the name of the distribution containing the service object, which is the
first 8 characters of the application name.

export_name is the name that OLE clients will use to identify this service object. This name
can be set in the Service Object Properties dialog or using the Fscript SetServiceEOSInfo
command. By default, this name is the name of the project, an underscore (_), and the
name of the service object. For more information about the export_name, see “Mark a
Service Object as an OLE Server” on page 55.

n is the compatibility level for the application. For a release independent ProgID, do not
specify the cln extension.

For example, the ProgID for the BankServerOLE user-visible service object in the
OLEBankUV project is olebanku.OLEBankUV_BankServerOLE.
Chapter 3Making a Forte Service Object an OLE Server

Writing OLE Clients That Access a Forte Service Object72
Handling Forte Exceptions
When a Forte service object that is being used as an OLE server raises an exception, Forte
intercepts the exception. Forte then sets the values of the ExcepInfo object that is returned
to the OLE client. The following table shows how the ExcepInfo object values represent a
raised Forte exception:

The Err object in Microsoft Visual Basic corresponds to this ExcepInfo object.

The following example shows how you could trap a Forte exception in Visual Basic:

ExcepInfo field Value

Code 0

DeferredFillIn NULL

Description ErrorDesc.Message attribute of raised Forte exception

HelpContext 0

HelpFile ‘’

Source Forte OLE Automation Service export_name Method method_name

On Error GoTo CheckError

acctNumber = txtAcctNumber.Text

If boolStarted = False Then

Set BankServiceObject =

CreateObject("OLEBanke.OLEBankEV_BankServerOLE")

boolStarted = True

End If

. . .

CheckError:

If Err.Number <> 0 Then

If Err.Description = conAccountNotFound Then

MsgBox "There is no account with account number " _

& acctNumber & ". Valid account numbers are _

1000, 2000, and 3000."

, vbExclamation

ClearFields

ElseIf Err.Description = conGenericException Then

MsgBox "An unexpected Forte Exception occurred: Error " _

& Err.Number & ": " & Err.Description _

& " - " & Err.Source, vbExclamation

Else

MsgBox "Error " & Err.Number & ": " & Err.Description _

& " - " & Err.Source, vbExclamation

End If

End If
Integrating with External Systems

Chapter 4
Using ActiveX Controls
in TOOL Applications
Microsoft defines a specification for ActiveX controls that lets programmers design controls
that can be used in a Windows graphical user interface. These controls are also called OCX
controls or OLE custom controls.

This chapter explains how you can use ActiveX in the graphical user interfaces of your Forte
clients that are running in a Windows NT or Windows 95 environment.

These ActiveX controls are specialized kinds of OLE servers, so many aspects of using
ActiveX controls are similar to the steps for using external OLE applications.

About Using ActiveX Controls in TOOL Applications74
About Using ActiveX Controls in TOOL Applications
This chapter explains how you can use ActiveX controls in the graphical user interfaces of
your Forte clients that are running in a Windows NT or Windows 95 environment.

This chapter assumes that you want to use the default dispatch interface and events, and
that a control defines only one dispatch interface and one event set for the control. If you
do not know whether you are using the default dispatch interface and events or not, you
probably are.

This chapter also assumes that you have documentation available for the control you are
using so that you can determine how to use the control’s methods, properties, and events
as intended.

If you need to use dispatch interfaces that are not the default dispatch interface or non-
default event sets, see Forte Technote 10825.

Overview
You can use ActiveX controls in the windows of your Forte client application. Using
predefined controls can save you the work of developing complex controls yourself.

ActiveXField widget When you use an ActiveX control in your Forte window, you need to use an ActiveXField
widget to contain the ActiveX control. The ActiveX control is actually a mapped type of the
ActiveXField widget.

ActiveX methods, attributes,
and events

Your Forte application is the container for the control. Your application can access the
methods and properties of the control, and the control can send events, using the OLE
event mechanism, to your application. This event mechanism automatically calls methods
defined in the ActiveX interface class that have the same names as the control’s events.

Support for ActiveX Controls
Forte does not support ActiveX controls that can contain other unrelated ActiveX controls,
and therefore have “nested” interfaces. For example, Forte does not support ActiveX
controls that are grid fields or panels which can contain buttons, graphics, and documents,
each with their own interfaces. Forte cannot interact with ActiveX controls within other
ActiveX controls.

This limitation does not affect the complexity of the controls that you can use, as long as
the ActiveX control provides one interface for all its components. For example, you can
interact with calendar or spreadsheet ActiveX controls.

ActiveX field
Integrating with External Systems

About Using ActiveX Controls in TOOL Applications 75
Including ActiveX Controls in TOOL Applications
Your TOOL application can use an ActiveX control in two ways:

■ as though it were another Forte widget, with complete support for methods and events

■ primarily as a display of information, with limited support for methods and no ability to
catch events

Using ActiveX Controls as Widgets
The steps for using ActiveX controls as fully-functional widgets are complex; however, these
steps provide complete support for the functions and events available for the ActiveX
controls.

To most effectively use an ActiveX control in your Forte application, you need to install the
ActiveX control on your system, then use the Olegen utility to generate a .pex file that
defines a TOOL interface to the ActiveX control. You then need to import the generated
.pex file into your workspace. These steps are explained thoroughly starting with
“Producing TOOL Classes For an ActiveX Control” on page 76.

When you use an ActiveX control as a widget, you define an ActiveXField widget and
specify an ActiveX interface class for an ActiveX control as the mapped type for the
ActiveXField widget. You can then invoke methods and access properties of the control.
Your TOOL code can also handle events sent by the ActiveX control. These steps are
described in “Developing a Forte Application that Uses ActiveX Controls” on page 79.

Using ActiveX Controls to Display Information
If you want to include an ActiveX control in a Forte window to display information but not
interact with it, you can simply install the ActiveX control, then insert the ActiveX control in
an ActiveX field in your application. In this case, however, you can only interact with the
control using its CDispatch interface, and you cannot handle events sent by the control.

ActiveX controls are a type of OLE automation server. If you want to use the functions for
the ActiveX control, you need to interact directly with the control’s CDispatch interface
using the OLE library’s CDispatch class. This is the same approach that you can use to
interact with OLE server applications. For information, see “Invoking Methods on OLE
Interfaces Using CDispatch” on page 43.

Examples
The examples used in this chapter are based on the ActiveXDemo sample application
provided in the FORTE_ROOT\install\examples\ole\server directory. This example uses a
simple ActiveX control provided by Forte called FourDir.

For more information about the example, see “ActiveXDemo” on page 227.
Chapter 4Using ActiveX Controls in TOOL Applications

Producing TOOL Classes For an ActiveX Control76
Producing TOOL Classes For an ActiveX Control
This section describes how to use the Olegen utility to generate TOOL classes that let you
interact with ActiveX controls.

To interact with an ActiveX control from your TOOL code, you need to have TOOL classes
that correspond to that control in your development repository.

Olegen generates, at a minimum, the following types of classes for each ActiveX control:

default dispatch class A subclass of the CDispatch class of the OLE library. This class
provides the methods and attributes for the ActiveX control.

ActiveX interface class A subclass of the default dispatch interface class for the control.
The ActiveX interface class inherits the attributes and methods of the default dispatch
interface. In addition, this class defines the events that can be sent by the control and the
methods that handle these events. To see all the methods, attributes, and events available
in the ActiveX interface class, in the Class Workshop, click the View > Inherited command.

Figure 3 fdir Class Methods, Attributes, and Events

If these classes are already available in your development repository, you can skip this
section and move on to “Developing a Forte Application that Uses ActiveX Controls” on
page 79.

To generate these TOOL classes, use the Olegen utility against the type library for the
control to generate a .pex file. This .pex file defines a project containing TOOL classes,
methods, attributes, and events that map to those defined for the control. You need to
import this .pex and include the project as a supplier to your Forte application.

� To produce TOOL classes for a control:

1 Install the ActiveX controls on your system.

2 Run the Olegen utility. This utility generates a .pex file.

3 Import the .pex file that you generated with the Olegen utility into your development
repository.

These steps are described in greater detail in the following sections.

Step 1. Install the ActiveX Control on Your System
When you install an ActiveX control on your system, the installation program registers the
control in the Windows registry. When Forte accesses the properties and methods of this
control, Forte checks the registry to locate the control on your system.

If you choose to run the Olegen utility against the type library explicitly using the -it flag,
you need to know where the file for the control with the extension .ocx resides on your
system. The Olegen utility is discussed in “Run the Olegen utility” on page 77.
Integrating with External Systems

Producing TOOL Classes For an ActiveX Control 77
Step 2. Run the Olegen utility
Forte provides an Olegen utility that generates a TOOL project definition and classes using
the type library provided by the ActiveX control.

To run the Olegen utility, you must be running under Windows NT or Windows 95. You can
start this utility using the Windows Run dialog.

The olegen.exe file is in the FORTE_ROOT\install\bin directory.

The syntax for starting the Olegen utility is:

Syntax olegen input_specification [-of output_file_name] [-ai]

input_specification input_specification is one of the following:

-of flag The -of flag, which is optional, specifies the path and file name for the generated .pex file.
The default file name is olegen.pex, and the default path is the current working directory.

-ai flag The -ai flag (“assume input”), which is optional, specifies how the Olegen utility interprets
method parameters that do not specify a passing mode. By default, Olegen interprets all
method parameters that do not specify a passing mode as input Variant objects. When the
-ai flag is specified, Olegen interprets all parameters that do not specify a passing mode as
input parameters of a Forte data type.

Because it is usually easier to work with Forte data types than with Variant objects, we
recommend that you specify the -ai flag. The default is not to assume that parameters are
input parameters to be compatible with earlier releases of Forte.

Variant classes are OLE-specific classes that require special handling to convert their data
into standard TOOL classes. For more information about using Variant objects, see
“Converting Data to a Variant Object” on page 40 and “Converting a Variant Object to a
TOOL Object or Data Type” on page 42.

For example, to generate a project definition that maps to the Forte example fdir32 ActiveX
control, you can start the Olegen utility using the following command:

For information about the type library name, the programmatic ID, or the CLSID for a
given control, see the documentation for the specific ActiveX control.

For information about how the Olegen utility generates the TOOL classes, see Appendix B,
“Olegen Mapping Conventions.”

input_specification Description

 -it type_library type_library is the file name of the type library for the ActiveX control. The type libraries for
ActiveX controls have the extension .ocx. A type library might contain information for more
than one control. If the type library is in a directory different from the current directory, you
need to specify its path.

-ip ProgID ProgID is the programmatic identifier of ActiveX control. These identifiers typically have the
syntax application_name.object, for example, “excel.application.” You can locate the
programmatic identifiers of ActiveX controls by using the registry editor and looking in the
HKEY_CLASSES_ROOT on the Local Machine window. The documentation for an ActiveX
control should provide its programmatic identifier.

-ic CLSID CLSID is the unique identifier string for an ActiveX control. The CLSID is a string of 32 hex
digits enclosed in braces, for example:
{00021A00-0000-0000-C000-000000000135}.

olegen -it c:\controls\fdir32.ocx

-of fdir32.pex -ai
Chapter 4Using ActiveX Controls in TOOL Applications

Producing TOOL Classes For an ActiveX Control78
Step 3. Import the Generated Project Definition .pex File
Import the .pex file generated by the Olegen utility, using either the Import command in
the Repository Workshop, or the ImportPlan command in Fscript. For specific instructions
for importing a project definition, see A Guide to the Forte 4GL Workshops and the Fscript
Reference Manual.
Integrating with External Systems

Developing a Forte Application that Uses ActiveX Controls 79
Developing a Forte Application that Uses ActiveX Controls
This section explains how to write a Forte application that uses the default dispatch
interface and events of an ActiveX custom control. If you don’t know whether you are using
the default dispatch interface and events or not, you probably are.

If you want to use one of the other dispatch interfaces, see Forte Technote 10825.

If you only want to use the ActiveX control as a display mechanism, or only call a few
functions on the control, but not catch any events on the control, you can follow the
simpler steps described in “Using ActiveX Controls to Display Information” on page 75.

Before You Start
Make sure the ActiveX
control is installed

Before you can include an ActiveX control in your application, you need to have the ActiveX
control installed on your system.

When you install an ActiveX control on your system, the installation program registers the
control in the Windows registry. When Forte accesses the properties and methods of this
control, Forte checks the registry to locate the control on your system. The ActiveX control
file that you need to find is the file with the extension .ocx. This file contains the type
library for the control. If you choose to run the olegen utility against the type library
explicitly using the -it flag, you need to know where this file resides on your system.

Make sure TOOL library is
available for the control

Before you can program your application to catch any ActiveX control events in your TOOL
application, you need to have TOOL classes that correspond to that control in your
development repository. If you do not yet have these TOOL classes available, follow the
steps described in “Producing TOOL Classes For an ActiveX Control” on page 76.

A project that contains classes for an ActiveX control contains the following kinds of
classes:

dispatch interface class A subclass of the CDispatch class of the OLE library. This class
provides the methods and attributes for the ActiveX control. To interact with a control,
create an instance of the ActiveX interface class.

ActiveX interface class A subclass of the default dispatch interface class for the control.
The ActiveX interface class inherits the attributes and methods of the default dispatch
interface. In addition, this class defines the events that can be sent by the control and the
methods that handle these events. To see all the methods, attributes, and events available
in the ActiveX interface class, in the Class Workshop, click the View > Inherited command.

The following figure shows the contents of a project generated by the Olegen utility. _Dfdir
is the dispatch interface class and fdir is the ActiveX interface class.

Figure 4 FDIRLib project generated for the FourDir ActiveX control
Chapter 4Using ActiveX Controls in TOOL Applications

Developing a Forte Application that Uses ActiveX Controls80
Restrictions
Cannot print ActiveX
controls using PrintDocument
class

If you print a window containing an ActiveX control using the PrintDocument class, the
ActiveXField widget will be printed, but not the control itself. However, you can still take a
snapshot of the Forte window, and the ActiveX control will be printed with the rest of the
window.

ActiveX controls are not
inherited with windows
inheritance

If you define a window that contains an ActiveXField widget that maps to an ActiveX
control, and you want to subclass this window, you should define the ActiveX control that
maps to the ActiveXField widget dynamically, as described in “In TOOL Code—Dynamic
Definition” on page 83. Information about the ActiveX controls that are inserted statically,
as described in “In the Window Workshop—Static Definition” on page 81 is not inherited.

Work with ActiveX controls
on a Windows platform

In general, you should only develop applications that use ActiveX controls on platforms
that support the controls (Microsoft Windows NT and Windows 95). You need to have the
ActiveX control installed and registered in Windows before you can statically define an
ActiveX control using the Window Workshop, as described in “In the Window Workshop—
Static Definition” on page 81. You can write TOOL code that dynamically defines ActiveX
fields and ActiveX controls on other platforms; however, you need to test the application on
a platform that supports the ActiveX control.

Overview
When you use an ActiveX control in your Forte window, you need to use an ActiveXField
widget to contain the ActiveX control. The ActiveX control is actually a mapped type of the
ActiveXField widget.

Figure 5 ActiveX Field Containing an ActiveX control

When you use an ActiveX control in your Forte application, you need to perform the
following steps:

1 In projects that use the ActiveX control, specify the project for the ActiveX control
interface as a supplier plan.

2 In the Window Workshop or in your TOOL code, define an ActiveXField widget and its
ActiveX control.

3 Invoke methods and access properties of the control using methods and attributes of
the ActiveX interface class.

4 In your TOOL code, handle events sent by the ActiveX control, for example, Click or
MouseMove.

These steps are explained in detail in the following sections.

ActiveX field
Integrating with External Systems

Developing a Forte Application that Uses ActiveX Controls 81
Step 1. Specify the Supplier Plans
In projects that use the ActiveX control, specify the project for the ActiveX control interface
as a supplier plan. For information about specifying supplier plans, see A Guide to the Forte
4GL Workshops.

Step 2. Define an ActiveXField Widget
This section describes how to do each step using the Window Workshop, and then how to
do similar tasks in TOOL code.

Note You can define ActiveX fields on any platform, however, you can only insert ActiveX
controls, view their properties, and run applications that use ActiveX controls on Windows
machines that have the required ActiveX controls installed.

In general, to define an ActiveX control, you need to create an ActiveX field and specify the
type of control you are putting into the ActiveX field.

Default mapped type is
CDispatch

By default, the mapped type for the ActiveXField widget is CDispatch. Because all the
ActiveX interface classes are subclasses of CDispatch, you could leave the mapped type
CDispatch and cast the mapped type, as appropriate. This approach can be useful if you
plan to use different ActiveX controls in your ActiveXField widget. If you choose to leave the
mapped type CDispatch, you need to make the OLE library a supplier project for your
project.

Specify a specific class as
mapped type

You should specify a specific ActiveX interface class as the mapped type for the
ActiveXField widget, unless you plan to insert different ActiveX controls in the ActiveXField
widget dynamically. Specifying a specific class lets the compiler check data types and
produces useful runtime errors, if necessary.

Work with ActiveX controls
on a Windows platform

In general, you should only develop applications that use ActiveX controls on platforms
that support the controls (Microsoft Windows NT and Windows 95). You need to have the
ActiveX control installed and registered in Windows before you can statically define an
ActiveX control using the Window Workshop, as described in “In the Window Workshop—
Static Definition” on page 81. You can write TOOL code that dynamically defines ActiveX
fields and ActiveX controls on other platforms; however, you need to test the application on
a platform that supports the ActiveX control.

In the Window Workshop—Static Definition
In the Window Workshop, you can define an ActiveXField widget, select the type for the
mapped type, insert the ActiveX control, and set the initial properties for the ActiveX
control.

ActiveXField widget When you use an ActiveX control in your Forte window, you need to use an ActiveX field
widget to contain the ActiveX control. The ActiveX control is actually a mapped attribute of
the ActiveX field. To create the ActiveX field, you use the Widget > New > ActiveXField
command.
Chapter 4Using ActiveX Controls in TOOL Applications

Developing a Forte Application that Uses ActiveX Controls82
The following table describes the properties on the ActiveXField Properties dialog, shown
in the figure below:

Figure 6 ActiveXField Properties dialog

� To define an ActiveXField widget:

1 Choose the Widget > New > ActiveXField command.

2 Draw an ActiveX field of the size you want in the window.

Figure 7 A new ActiveXField widget

� To define the mapped type:

1 Open the ActiveXField Properties dialog by double-clicking on the ActiveXField widget.

2 In the Mapped Type field, enter the name of the ActiveX interface class, or use the
browser button to display a list of available classes, and select the ActiveX interface
class.

For example, if you want to set the mapped type to the class for the FourDir control, set
the Mapped Type field to the FDIRLib.fdir class.

Note If the mapped type is not CDispatch, the specified type must match whatever control is
inserted; otherwise, you will get a runtime error.

Use This Property For This Purpose

Attribute Name Sets an attribute name for the picture field.

Mapped Type Specifies the mapped data type for the OLE field. This value must be CDispatch or a subclass
of CDispatch.

ActiveX Properties
button

Lets you view and set properties of the ActiveX control. This button displays a dialog
containing the properties defined by the ActiveX control.

Insert Control
button

Lets you add an ActiveX control. This button displays a dialog, in which you can define the
type of ActiveX control.

Help Text Opens the Help Text dialog for the field.

Size Policy Opens the SIze Policy dialog for the field.
Integrating with External Systems

Developing a Forte Application that Uses ActiveX Controls 83
� To insert the ActiveX control into the ActiveX field:

1 In the ActiveXField Properties dialog, click the Insert Control button.

2 In the Insert Control dialog, select the ActiveX control that you want to insert into the
ActiveX field.

Figure 8 Insert Control dialog

Note You can only insert ActiveX controls into ActiveX fields on Windows platforms where the
ActiveX controls have been installed and registered.

� To set the initial property values for the ActiveX control:

1 In the ActiveXField Properties dialog, click the ActiveX Properties button.

2 In the tab folders, set the values that are appropriate for the ActiveX control. For specific
information about these properties, see the documentation for the ActiveX control.

Figure 9 ActiveX Control Properties

Note When you change values in this dialog and click either OK or Apply, the values are changed
for the ActiveX control, even if you later cancel out of the ActiveXField Properties dialog. If
you click the Cancel button on this dialog, any changed values are not changed for the
ActiveX control.

In TOOL Code—Dynamic Definition
In TOOL code, you can define an ActiveXField widget and associate it with a particular
ActiveX control with the ActiveX field in the TOOL code.

� To define an ActiveXField widget in your TOOL code:

Put an ActiveXField widget in the window, but leave the Mapped Type field as CDispatch.
Chapter 4Using ActiveX Controls in TOOL Applications

Developing a Forte Application that Uses ActiveX Controls84
� To insert an ActiveX control into the ActiveX field:

1 Create an object of the ActiveX interface class, using code like the following:

In this example, fdirSub is a subclass of FDIRLib.fdir, which is the ActiveX interface class
for the FourDir control.

2 Insert the ActiveX control into the ActiveX field by setting OleObjectValue attribute of
the ActiveXField widget with the new instance of the ActiveX interface class, as shown:

When you define the ActiveX control dynamically, you can later place another control in
the ActiveX field.

Step 3. Invoke Methods and Access Properties of the
Control

In your TOOL code, invoke methods and access properties of the control using methods
and attributes of the ActiveX interface class. To see all the methods, attributes, and events
available in the ActiveX interface class, in the Class Workshop, click the View > Inherited
command.

You should also have whatever documentation is available for the control you are using so
that you can determine what the methods, properties, and events are intended to do or
mean.

Invoke methods and access
properties after Open()

You can only invoke methods and access properties of the ActiveX control after the window
containing the ActiveXField widget has been opened by invoking the Open() method. You
can instantiate the ActiveX interface class using the new() function, but the ActiveX control
itself does not exist until the window has been opened.

Variant objects In some cases, Olegen cannot determine the data type of a property, a parameter, or a
return value. In these cases, you need to use Variant objects to pass the data to and retrieve
data from the ActiveX control. For information about using Variant objects, see “Dealing
with Variant Objects” on page 40.

Use double quotation
marks with names that
are TOOL reserved words

When you import the .pex file generated by the Olegen utility, Forte removes the quotation
marks from the methods. However, when you use a method whose name or whose
parameters’ names are TOOL reserved words, then you need to specify double quotation
marks around the names that are reserved words. To see the list of TOOL reserved words,
see TOOL Reference Manual.

dynamicArrows : fdirSub = new();

self.<DynamicACField>.OleObjectValue = dynamicArrows;
Integrating with External Systems

Developing a Forte Application that Uses ActiveX Controls 85
Step 4. Handle Events Posted by the ActiveX Control
In your TOOL code, you can handle events sent by the ActiveX control, for example, Click
or Change.

When the Olegen utility generates an ActiveX interface class for an ActiveX control, the
utility generates a set of methods that are automatically invoked when the ActiveX control
sends an event. These methods have the same names as the events that can be sent by the
control. One of these methods is automatically invoked synchronously whenever the
ActiveX control posts the corresponding event.

The following figure shows the methods, attributes, and events defined by the ActiveX
interface class for the FourDir ActiveX control. Click is the generated method that is
automatically called when the control posts an event, and _Click is the asynchronous event
that the default generated method automatically posts.

Figure 10 fdir Class Methods, Attributes, and Events

You can also see that a set of Forte events have been generated. The Forte event names
have the same names as the control’s events, except that they start with an underscore
character (_). For example, if the control can send the Click event, the Olegen utility
generates a Forte event called _Click.

For example, the FourDir custom control defines an event called Click. This event maps to
the _Click event and the Click method in the ActiveX interface class.

Asynchronous events In a Forte window, ActiveX controls behave, by default, like Forte widgets. When a control
senses a user action or change in condition, Forte posts an asynchronous event on the
control’s ActiveX interface class. The Forte events defined for each control have the same
name as the control’s events, with a preceding underscore character (_). For example, if the
ActiveX control has an event called Click, the default event that is posted is _Click. In this
case, you can handle the event using an event loop, just as you would for any other Forte
event. Asynchronous events are available for Windows 95 and Windows NT.

The following example from an event loop shows how a Forte application could catch a
_Click event posted by the FourDir ActiveX control:

Synchronous events However, if you want to have your application respond differently to an ActiveX control
event, you can override the default method generated for the event. Because the OLE event
mechanism calls TOOL methods directly to send a control’s events, you can also process
the control’s events synchronously.

when self.DirectionArrows._Click do

self.CurrentDirection = self.DirectionArrows.Value;

self.SetList(dir = self.CurrentDirection);

self.window.UpdateDisplay();

See ActiveXDemo example Project: ActiveXDemo • Class: ActiveXWin • Method: Display
Chapter 4Using ActiveX Controls in TOOL Applications

Developing a Forte Application that Uses ActiveX Controls86
To process events synchronously, subclass the ActiveX interface class to override the
default methods to define some processing that will occur when the control sends its
events. You can override default event methods for applications running on Windows 95
and Windows NT.

� To override the default method generated for an ActiveX event:

1 Subclass the ActiveX interface class for the ActiveX control.

Although Forte does not prevent you from directly editing the methods of the generated
ActiveX interface class, you should change the methods by overriding them in a subclass
to avoid maintenance and support problems.

2 Define a method in this subclass that overrides the default generated method in the
ActiveX interface class.

Note Be careful that the method does not include a time-consuming activity that might make
the control appear extremely slow to the user.

The following example shows how you can subclass the ActiveX interface for the FourDir
control (FDIRLib.fdir) and override the default Click method to select each arrow before
finally selecting the arrow that was clicked:

In this example, the _Click event is not posted.

-- This method moves the selected arrow around the FourDir

-- control clockwise.

task.Part.LogMgr.putLine(source=’Entered fdirSub.Click.’);

-- Define a timer so that the arrow selection moves slowly

-- enough to be seen.

myTimer : Timer = new();

myTimer.TickInterval = 200;

myTimer.IsActive = True;

for x in 1 to 4 do

event loop

when myTimer.Tick do

self.MoveClockWise();

exit;

end event;

end for;

task.Part.LogMgr.putLine(source=’Exiting fdirSub.Click.’);

See ActiveXDemo example Project: ActiveXDemo • Class: fdirSub • Method: Click
Integrating with External Systems

Partitioning the TOOL Application 87
Partitioning the TOOL Application
TOOL classes that subclass or instantiate ActiveX interface classes can only run in client
partitions that have Windows NT or Windows 95 installed.

You should configure your application using the Partition Workshop or Fscript, as
described in A Guide to the Forte 4GL Workshops or the Fscript Reference Manual.

When you configure your application, Forte, by default, puts the client partitions
containing ActiveX controls on all available client nodes. You need to remove the client
partitions that use ActiveX controls from nodes that run non-Windows platforms.
Chapter 4Using ActiveX Controls in TOOL Applications

Making the Distribution and Installing the Application88
Making the Distribution and Installing the Application
You can make the distribution just as you would for any regular TOOL application. You can
either make the distribution from the Partition Workshop or from within Fscript. For more
information about using the Partition Workshop or Fscript, see A Guide to the Forte 4GL
Workshops or the Fscript Reference Manual.

Install ActiveX Controls Where Client Partitions are Installed
You can install the client application just as you would any other TOOL client application,
except that you must ensure that the ActiveX controls used in the application are installed
on the nodes where you are installing the client partitions that use the ActiveX controls.

Assuming that you have taken care of any licensing issues with the ActiveX controls, you
can minimize the work required for installing the controls as part of the Forte application.

Include ActiveX control as
part of the distribution

To have the installation files for the ActiveX controls automatically downloaded with the
client partition files, place the files for the control in the following application distribution
directory path:

FORTE_ROOT/appdist/environment_ID/distribution_ID/cl#/platform_ID/component_ID

platform_ID is PC_NT for Windows 95 and Windows NT.

component_ID is the partition_ID for the client partition (ending in 0).

Run the ActiveX installation
program

After the files for the ActiveX control and the client partition are on the client nodes, run
the installation program for the ActiveX control, which places the files in the appropriate
place on the system and registers the ActiveX control in the Windows Registry.

All the downloaded files for the application are placed in the following directory on the
client node:

FORTE_ROOT\userapp\distribution_id\cl#\

For detailed information about installing Forte applications, see Forte 4GL System
Management Guide.
Integrating with External Systems

Troubleshooting 89
Troubleshooting
If Forte cannot locate the control at runtime, you should make sure that:

■ the control is registered in the Windows registry

■ the control has not been deleted

■ the registry entry for the control is up-to-date, especially if you have deleted and
reinstalled the control

If the control is correctly registered, you should also check that the control works in a
Microsoft application like Microsoft Visual Basic. If the control does not work in Microsoft
Visual Basic, it will probably also not work in Forte.
Chapter 4Using ActiveX Controls in TOOL Applications

Troubleshooting90
Integrating with External Systems

Chapter 5
Using Dynamic Data Exchange
This chapter discusses how to enable Forte applications to communicate with Windows
applications using Dynamic Data Exchange (DDE). For details on the class reference for the
classes in the DDEProject library see the Forte online Help.

Topics covered in this chapter include:

■ establishing a Forte application as a DDE client or DDE server

■ defining applications and topics

■ initiating a conversation

■ executing a command

■ setting a link

■ terminating a session

This information is contained in the individual class and method reference sections.

For more information specific to DDE, refer to Microsoft’s documentation.

About Dynamic Data Exchange92
About Dynamic Data Exchange
Dynamic Data Exchange is a mechanism for interprocess communication supported in
Windows applications.

Clients and servers DDE is based on the messaging system built into Windows. Two Window programs can
carry on a DDE conversation by posting messages to each other. These two programs are
known as the server and the client. A DDE server is the program that has access to data that
might be useful to other programs. A DDE client is the program that obtains this data from
the server.

A single application can be both a client to one program and a server to another, but this
situation requires two different DDE conversations. A server can deliver data to multiple
clients, and a client can access data from multiple servers, again using multiple
conversations.

The programs involved in a DDE conversation need not be specifically coded to work with
each other. A writer of a DDE server publicly documents how the data is identified. A user
of a program acting as a DDE client can use this information to establish a DDE
conversation between the two programs.

Forte Integration with DDE
Forte provides a set of classes that let Forte applications participate in DDE conversations
with Windows products. A Forte application can be a client or a server. For example, a Forte
inventory application (client) might need data that is tracked in an Excel spreadsheet
(server). With DDE, you can establish links to the spreadsheet which update the inventory
application with the current data each time the spreadsheet is changed. Likewise, a
Microsoft Word user might need database information that is managed by a Forte server
application. Using DDE, data can be extracted from the server directly into the word
document.

Forte’s DDE Classes
The Forte library named DDEProject provides the following classes to implement the
Forte/DDE integration:

Forte Class Description

DDEClient Holds the name of the client application for identification purposes if more than one
conversation is established with the same server. A DDEClient is created each time a client
application initiates a conversation with a Forte server. The DDEClient object simply holds the
name of the client application for identification purposes if more than one conversation is
established with the same server.

DDEConversation Used by a Forte client application to establish the connection to a DDE server. All requests for
data are invoked by this object.

DDEObject Abstract superclass to all other DDE classes.

DDEServer Used by a Forte server application to respond to requests from a DDE client application.
Integrating with External Systems

About Dynamic Data Exchange 93
Using Methods and Events
The classes you will use most often in your DDE integration are DDEConversation and
DDEServer objects. Each of the DDE classes has a set of methods and events. You must
understand the relationship between these methods and events in the context of a server
application and a client application before you can effectively use these classes.

Forte as a DDE Client When a Forte application is the DDE client, it initiates requests.
The requests are initiated through the DDEConversation methods. Most of the
DDEConversation methods use return events to signal the completion of a request and to
pass back data from the server.

Forte as a DDE Server When a Forte application is the DDE server, this application
responds to requests for data from a client DDE application. Therefore, this DDE server
application responds to posted events by invoking a method to fulfill the request.

The table below displays the paired methods and events of the DDEConversation and
DDEServer classes. Note that DDEConversation methods post events, while DDEServer
events initiate methods:

DDEConversation DDEServer

method event event method

InitiateConnection none CommandRequest CommandResponse

RequestExec ExecComplete Connected StartServer

RequestGetItem GetItemComplete Disconnected EndServer

RequestLinkEnd LinkStatus GetItemRequest GetItemResponse

RequestLinkStart LinkStatus LinkedItemRequest UpdateItem

RequestPutItem PutItemComplete LinkEndRequest none

TerminateConnection Disconnected LinkStartRequest LinkStartResponse

PutItemRequest PutItemResponse
Chapter 5Using Dynamic Data Exchange

About Dynamic Data Exchange94
Integrating with External Systems

Part II
Using External C Functions
Part II of Integrating with External Systems provides complete information about the C data
types you can define in TOOL when you are integrating with external systems. It also
provides complete information about integrating with C.

Part II contains the following chapters:

■ Chapter 6, “Encapsulating External C Functions” on page 97

■ Chapter 7, “Making C Functions Available to Forte Applications” on page 103

■ Chapter 8, “Writing TOOL Code That Uses C Functions” on page 117

■ Chapter 9, “TOOL Statements for Defining C Projects” on page 123

■ Chapter 10, “Using C Data Types in TOOL” on page 129

96
Integrating with External Systems

Chapter 6
Encapsulating
External C Functions
Many development organizations use existing C libraries as an important part of their
application development processes. In fact, your organization might require standardized
data types and operations as a part of every application. You also might find that your
application can perform specialized processing more efficiently in languages or systems
external to Forte.

Forte lets you create classes whose methods are implemented with C functions. These
classes are stored in the repository as C projects, and you can use these methods in your
TOOL applications just like any other method.

This chapter discusses the following topics:

■ rules and restrictions for C projects

■ creating C projects and linking them to the external functions

■ installing C projects

■ writing TOOL methods that invoke C functions

■ reference information about the TOOL statements for creating C projects, classes, and
methods

About Encapsulating External C Functions98
About Encapsulating External C Functions
Object modules This discussion of integrating Forte applications with external C functions assumes that

you have a set of compiled object modules that you want to integrate. Depending on your
environment, you may refer to these modules as object libraries or archives, shared images,
shared libraries, or DLLs.

C functions This chapter uses the term C functions to refer to any external routines that can be invoked
using C calls.

This section provides an overview of creating projects, classes, and methods for integrating
external C object modules with Forte applications. Also discussed is the concept of
restricted projects and their impact on installation.

Terminology Used in Part II
The following list defines terms used in this chapter that might have synonyms on different
platforms:

Forte linked executable Result of statically linking Forte with the user object modules.

Forte object module File for the C++ wrapper code that you compiled. Forte generates
this C++ wrapper code when you make a distribution.

Shared library Result of dynamically linking Forte object modules with user object
modules. On some systems, this is referred to as a shared library (UNIX), or a DLL (PC).

User object module Compiled C functions. On some systems, these are referred to as
object libraries, object archives, shared images, shared libraries, or DLLs.

Accessing C Functions from within Forte Applications
This section provides an overview of creating projects, classes, and methods for using C
functions in Forte applications. For detailed instructions, see “About Making C Functions
Available to Forte Applications” on page 104.

Using Forte, you can write applications that access any C functions available in your
installation. To make these C functions available to a Forte application, you create a Forte
project, referred to as a C project.

C projects A C project contains classes whose methods are named the same as the C functions. In C
project classes, each method directly corresponds to a C function. When you invoke the
method, Forte calls the associated C function.

When you create and change C projects, you must work in a text file, the project definition
file, then import this file into the repository to create or change the C project in the
repository. You cannot use the Project Workshop to create or modify C projects.
Integrating with External Systems

About Encapsulating External C Functions 99
C++ wrapper code After you import the C project, you partition the project, then make a distribution to
generate C++ wrapper code. This wrapper code implements the Forte methods by calling
the associated C function. The wrapper code must be compiled with a C++ compiler and
then linked with the C shared library. For every platform, the compiler you use to compile
the C++ code must be the same compiler used by Forte. The compiling and linking steps
can be automated if your Forte system manager sets up your environment appropriately.

Finally, within Environment Console or Escript, you or your Forte system manager loads
and installs the distribution onto the appropriate nodes. Again, this step can be automated
if the Forte system manager sets up your environment appropriately.

You can use a C project class in TOOL code like any other class. You can create objects of a
C class type, and you can use the parameters, belonging to that class type. To call a C
function, you create an object of the class type and then invoke on that object the method
associated with the C function.

Restricted C projects A C project is restricted if it can run on only a subset of nodes in your environment. If a
TOOL project uses a class that creates an instance of a restricted C class, then that TOOL
class must also be restricted. See the TOOL Reference Manual for more information about
the restricted project property.

TOOL Statements for Defining C projects
Forte provides special versions of some TOOL statements to let you define C projects: begin
c and class. The complete syntax for these statements is included in “begin c” on page 124
and “class” on page 128.
Chapter 6Encapsulating External C Functions

Prepare to Wrap C Functions100
Prepare to Wrap C Functions
This section describes some considerations and setup tasks to perform before you wrap C
functions.

Set up the Auto-Compile Application
If your environment is set up for auto-compiling, you can compile, link, and install the
shared libraries on the appropriate nodes when you make the distribution.

You can only use the auto-compile application on server partitions or platforms running
Windows 95. For information about setting up the environment for auto-compiling, see the
Forte 4GL System Management Guide.

Can or Should the C Project Be Multithreaded?
By default, the multiThreaded property of the C project is TRUE, which means Forte will
attempt to run multiple threads through the wrapped object module. On Windows NT, you
must leave the multiThreaded property as TRUE, which means that you must always be
sure to link with a version of the standard C library that is thread-safe.

You should considering the following issues to determine whether you can safely run the C
project multithreaded:

■ If you are deploying the C project on UNIX or VMS, the wrapped object module must be
interrupt safe.

In Forte, thread-switching is scheduled using a periodic interrupt such as a UNIX signal
or VMS AST. These asynchronous notifications might interrupt certain system calls
started by a TOOL application that is using the wrapped object module. The wrapped
object module should wrap each system call in a loop that will retry the call if that call is
interrupted. Here is an example:

Because Forte uses native NT threads on Windows NT, interrupts of system calls are
handled by the Windows NT threading system.

■ The wrapped object module must be re-entrant, in that the wrapped object module
should not let different threads change the same data structures at the same time.

If the wrapped object module does not prevent this unintended sharing, you need to set
the multiThreaded property to FALSE, or use a Framework Mutex object to prevent the
TOOL code from starting multiple threads in the wrapped object module.

If you are using this wrapped object module on a Windows NT node, then you must
make the wrapped object module re-entrant to use it on Windows NT.

do

{

sysret = recv(...);

} while (sysret < 0 && errno == EINTR);
Integrating with External Systems

Prepare to Wrap C Functions 101
■ If the standard C library is not thread-safe, then the wrapped object module must not
use the standard C library functions.

If the wrapped object module makes input and output or other standard C library calls
that allocate memory or utilize shared data, you must set the multiThreaded property
for the C project "multiThreaded = FALSE". Many standard C libraries are not thread
safe, so it is not safe for the wrapped object module to enter them when another thread
inside the Forte runtime might already be using the same function or memory in the
standard C library.

■ If you are deploying the C project on UNIX or VMS, the wrapped object module should
avoid making system calls that block, especially when the project is marked
"multiThreaded = FALSE".

A system call that blocks when it performs input or output or accesses other system
resources will block the entire server partition if the system call needs to wait to
complete. If the blocking system calls are made interrupt safe, as described above, and
the project is marked “multiThreaded=TRUE,” you can use blocking system calls. In this
case, a TOOL invocation of a wrapper method blocks because of an interrupted system
call until the Forte runtime system switches threads. When the Forte runtime system
switches back to this thread, the loop surrounding the system call should retry the
system call, as described above.

One way to prevent a C project with “multiThreaded=FALSE” set from blocking the
entire application is to define a service object with methods that invoke methods on
this C project. By placing this service object in its own partition, you can cause only this
partition to block when necessary, allowing the partition that provides most of the
application’s services to proceed normally.

Turning off multithreading for a C project:

■ Disables thread-switching by the Forte runtime system for tasks that use methods
defined in the C project.

■ Automatically locks a mutex upon entry into the C project and unlocks the mutex on
exit.

■ Coordinates single-threaded access to the standard C library with the rest of the Forte
runtime system.

Make Sure the Proper C++ Compiler Is Installed
For information about the C++ compiler that you should have installed for each platform,
see the Forte 4GL System Installation Guide.
Chapter 6Encapsulating External C Functions

Prepare to Wrap C Functions102
Integrating with External Systems

Chapter 7
Making C Functions Available to
Forte Applications
This chapter explains how you define a C project whose methods map to your C functions.

Topics covered include:

■ making C functions available to Forte applications

■ making the distribution with auto-compile and auto-install

■ updating C projects

■ making installed C projects known to other repositories

About Making C Functions Available to Forte Applications104
About Making C Functions Available to Forte Applications
After you have defined and imported this C project, you can write TOOL applications that
use the C functions.

This chapter assumes that the C functions are installed, tested, running, and available to
Forte.

� To integrate a Forte application with external C functions:

1 Make the C object modules available.

2 Create a C project using a subset of TOOL project definition statements.

3 Import the C project definition into your repository.

4 Partition the C project.

5 Make the distribution to generate the C++ wrapper.

6 Compile and link the shared libraries.

7 Install in appropriate platforms.

If your environment is set up for auto-compiling and installation, you can combine steps 5,
6 and 7 to compile, link, and install the shared libraries on the appropriate nodes when you
make the distribution (see “Making the Distribution with Auto-Compile and Auto-Install”
on page 110).

Each step is described in detail in this section.

Static Loading Platforms
Sequentplatform Certain versions of the Sequent operating system do not support dynamic linking. On this

platform you must execute commands to link complete Forte executables containing your
C projects. After you make the distribution and compile the C++ wrapper code, you will
need to link one or more Forte executables instead of linking a single shared library. For
example, if you want to run your C project from Fscript, then you must link an Fscript
script that includes your C project. You cannot automatically link, compile, and install C
project shared libraries on these platforms.

Call your Forte Technical Support representative for instructions.

Examples
The examples in this section are based on the sample program DMathTm. DMathTm shows
how you can write a C project definition that makes some ANSI C standard library
functions available to TOOL programs.
Integrating with External Systems

Have the Object Modules for the C Functions 105
Step 1. Have the Object Modules for the C Functions
Any C functions you want to integrate with Forte applications need to meet certain
requirements:

■ Some platforms require C object modules to be shared libraries, which are position-
independent. Check the following table to determine whether position-independent
code is required for your platform.

■ Forte assumes that the C functions are defined with prototypes, as in ANSI C.

If the C functions were not defined using prototypes, you cannot use the auto-compile
feature when making a distribution, because an additional flag is required at compile
time. For more details see “Compile and Link Shared Libraries” on page 112.

■ If you plan to use the auto-compile feature when making a distribution, you need to
specify a directory in your C project definition extended external properties and copy
the C object modules to this directory. Forte can then automatically include this
directory as a linking option when it compiles and links the Forte object modules into
shared libraries.

For more information about the extended external properties, see “Defining Properties”
on page 108 and “Extended External Properties” on page 126.

Step 2. Create the C Project Definition File
The project definition file is a text file in which you define the C project that will integrate
your C functions. Like all TOOL projects, the definitions for a C project can be contained in
a single file or within several files. Within a C project you can specify constants, classes,
service objects, and the definitions of derived data types. Within a class, you can create
constants and methods, and set the properties of the class.

C Project Class Restrictions
The following restrictions apply to C project classes:

■ You cannot subclass C classes.

■ C classes cannot contain attributes or events.

■ The data types of class method parameters and method return values cannot be object
classes.

Platform Rules for compiling C functions

Data General The C functions that you integrate must be compiled with the following flags:
cc -c -K PIC *.c

Digital UNIX The C functions that you integrate must be compiled position-independent. By default, the
DEC Digital Unix C compiler compiles position-independent code.

HP 9000 The C functions that you integrate must be compiled position-independent. The flag to “cc”
that produces position-independent code is the “+z” or “+Z” flag. The standard C compiler
does not support this flag. You must get the optional C compiler that supports the generation
of position-independent code.

RS6000 The C functions that you integrate should be compiled with the -qchars=signed flag if you
want TOOL il values to be signed.

Sparc The C functions that you integrate must be compiled position-independent. The flag to “cc”
that produces position-independent code is the “-PIC” flag.

VMS By default, the DEC C compiler compiles position-independent code.

Windows The C functions must be compiled for use within a DLL using the large memory model.
Chapter 7Making C Functions Available to Forte Applications

Create the C Project Definition File106
Defining a Project

begin C statement
You must create a C project using a begin C statement in a TOOL file. You cannot use the
Project Workshop to create or edit C projects, because C projects are imported into the
repository as read-only projects. To define the project components, you use the class
statement and constant statement. The C project class statement is a subset of the class
statement defined in the TOOL Reference Manual. The syntax for the begin c and class
statements specific to C project classes can be found in the following sections:

■ “begin c” on page 124

■ “class” on page 128

There are no rules about the ratio of C functions to classes. Each function can have its own
class, or all functions can be placed in one class. Generally, you’ll probably want to collect a
set of common operations and place them in one class. A project can have any number of
classes.

Service Objects
You can use the service statement to declare a service object within your C project
definition using a class in the C project. Defining a service object using a C class means that
the C functions mapped to that class are available to multiple users. This type of service
object is particularly useful if your C project is not restricted and the C functions associated
with the C class use only simple data types as their parameters.

For more information about the service statement, see the TOOL Reference Manual.

Supplier C projects
You can use the includes clause to specify a C project that is a supplier project for this C
project. You can specify one or more includes statements. Only C projects can be supplier
projects for a C project.

For more information about the includes clause in a C project definition, see “begin c” on
page 124.

Derived data types You can also define derived C data type definitions in your project, including enums,
structs, typedefs, and unions. For more information about these data types, see “Using C
Data Types in TOOL Methods” on page 130.

Example: C Project File
---------- Dmathtm.pex ---------------------

begin C DistMathAndTimeProject;

has property restricted = TRUE;

-- This TOOL struct matches the struct tm in the standard header

-- file time.h.

 struct tmstruct

 tm_sec : int;

 tm_min : int;

 tm_hour : int;

 tm_mday : int;

 tm_mon : int;

 tm_year : int;

 tm_wday : int;
Integrating with External Systems

Create the C Project Definition File 107
In this example, the project is called DistMathAndTimeProject, and it contains two
classes—timeFunctions and mathFunctions. The timeFunctions class has the methods
time, localtime, and asctime. The mathFunctions class has the methods exp and pow.

libraryname specifies
a unique name

In the above example, the libraryname value for the project is “dmathtm.” If specified, the
libraryname property defines the name of the Forte object module for this project. The
value for libraryname must be different than the file names used for the user object
modules.

specify external files The above example contains two extended properties:

The ExternalSharedLibs property specifies a library and the ExternalObjectFiles property
specifies an object file that will be included as linking flags when the shared library for this
project is linked.

For more information about the extended properties, see “Extended External Properties”
on page 126. For more information about linking flags, see “Compile and Link Shared
Libraries” on page 112.

 tm_yday : int;

 tm_isdist : int;

 end;

typedef time_t : int;

class timeFunctions

OurTime() : time_t;

OurLocalTime(input a : pointer to time_t) : pointer to tmstruct;

OurAscTime(input a : pointer to tmstruct) : string;

end;

class mathFunctions

OurExponent(input a : double) : double;

OurPower(input x : double, y : double) : double;

end;

has property

LibraryName = ’dmathtm’;

Extended = (ExternalSharedLibs = ’/usr/shlib/libc’,

ExternalObjectFiles = ’%{FORTE_ROOT}/tmp/examples/dmathtm’);

UUID = ’EAEE2938-F769-11CE-B998-7842A7C4AA77’;

end DistMathAndTimeProject;

See DMathTm example File: dmathtm.pex • Project: DistMathAndTimeProject

Extended = (ExternalSharedLibs = ‘/usr/shlib/libc’,

ExternalObjectFiles = ‘%{FORTE_ROOT}/tmp/examples/dmathtm’);
Chapter 7Making C Functions Available to Forte Applications

Create the C Project Definition File108
Defining Properties
In C projects, you can specify the following properties:

For more information about these properties, see “Has Property Clause” on page 125.

Defining a Method
 The following are the rules for mapping a C function to a TOOL method:

■ Name the mapping method exactly the same as the C function—be sure to match the
case.

Each method definition you create for your C project must map directly to a C function.
The name of the function must match exactly the name of the method; method naming
is case-sensitive.

If you have two C functions with the same name, differing only in the case used in the
name, for example, myfunction and MYFunction, TOOL treats them as the same name.
In this case, you must write a wrapper C function that calls one of the functions, and use
the name of this wrapper function in the C project.

■ C mapping method names must be unique within the application. If you have ProjectA
and ProjectB, both of which are C projects, you must not use the same method name in
both C projects. All methods must have unique names. (On some platforms, duplicate
names produce a link error when compiling; on other platforms, one of the methods is
selected at runtime based on the linking order.)

■ Name the TOOL method parameters and define their data types based on the C
parameter types (see Chapter 10, “Using C Data Types in TOOL”).

■ Specify the return type.

Let’s examine the localtime C function to illustrate how it maps to a TOOL method. The
localtime C function has the following function header:

The corresponding TOOL method is defined as follows:

The mapping is fairly straightforward:

■ The method is named “localtime”, exactly like the C function.

■ The C function parameter “const time_t *tp” maps to “a : pointer to time_t” in TOOL.

Property Description

restricted TRUE specifies that the C project can be partitioned only on certain nodes in the
development environment. FALSE means that the C project can be partitioned on
all nodes.

multithreaded Specifies whether your project is thread-safe and signal-tolerant.

compatibilitylevel Specifies the compatibility level for the project.

extended external properties Specify files to be included as linking options or header files when the compiled
shared libraries are linked. If you plan to use the autocompile feature when you
make the distribution, you need to specify the directories that will contain the C
object modules.

libraryname Specifies the name of the Forte object module and the component ID.

struct tm *localtime(const time_t *tp)

localtime(input a : pointer to time_t) : pointer to tmstruct;
Integrating with External Systems

Import the C Project Definition File 109
■ The TOOL method parameter is an input parameter, because the C function returns its
output using the return value, not with the parameter.

■ The return type “struct tm *” maps as “pointer to tmstruct”, where tmstruct is the TOOL
data structure that maps to tm.

For more information about mapping C function parameters to TOOL method parameters,
see Chapter 10, “Using C Data Types in TOOL.”

Step 3. Import the C Project Definition File
Once you complete the project definition, you import the file using the Fscript ImportPlan
command or the Import command in the Repository Workshop.

Importing the C project creates a project in your Forte repository that contains the classes
and methods you defined in the C project definition.

For more information about using the Repository Workshop, see A Guide to the Forte 4GL
Workshops.For more information about Fscript, see the Fscript Reference Manual.

Step 4. Partition the C Project
The Forte system knows that the C project is a shared library, and represents it with a
library icon in the Repository Workshop. If this C project is a restricted project, you should
assign this library only to nodes where the C functions are installed and running.

� To partition your C project as a library:

1 Open the Project Workshop for the C project.

2 In the Project Workshop, choose the File > Configure As Library command .

Forte displays the default partitioning for the library in the Partition Workshop.

3 You should remove the library from nodes that do not have the C functions installed
and running.

You can also use the Fscript command Partition. You can remove the project from nodes
where you do not want this library installed.

For more information about partitioning libraries, see A Guide to the Forte 4GL Workshops.

Step 5. Make the Distribution
Next, you need to make a distribution to generate the files you need for the configuration
you specified. You can make the distribution by issuing the MakeAppDistrib command in
Fscript or by making the distribution from the Partition Workshop. For more information
about Fscript, see the Fscript Reference Manual. For more information about the Partition
Workshop, see A Guide to the Forte 4GL Workshops.

Using auto-compile and
auto-install features

If your environment is set up for auto-compiling, you can compile, link, and install the
shared libraries on the appropriate nodes when you make the distribution.

Compiling, linking, and
installing without automated
features

If you choose not to use the auto-compile and auto-install features, you can find the steps
for compiling, linking, and installing the shared libraries without using the automated
features, in the following sections:

■ “Compile and Link Shared Libraries” on page 112

■ “Install C Project Shared Libraries” on page 114
Chapter 7Making C Functions Available to Forte Applications

Make the Distribution110
Making the Distribution with Auto-Compile and Auto-Install
Your Forte system manager can set up your system so that you can automatically compile
and link the C project into shared libraries (step 6) as part of “Make the Distribution” on
page 109.

Note If your C functions are defined without prototypes, you cannot auto-compile and install
when making a distribution, because you need to specify special flags on the fcompile
command. For more information about compiling and linking for C functions that do not
have prototypes, see “C functions without prototypes” on page 113.

The steps for setting up the system for auto-compile and auto-install are explained in the
Forte 4GL System Management Guide. In general, your system manager must set up the
following components on your system:

■ one or more code generation servers to generate the code for the distribution

■ a server that manages how and where shared libraries are compiled and linked

■ one auto-compilation server for each platform where the shared libraries for the C
projects will be installed. Each of these servers must have access to the C++ compiler for
that platform.

If your system manager has set ups these components, then you can make the distribution
with the auto-compile feature to perform the following steps automatically:

■ Create a distribution directory structure for the current configuration of the current C
project.

■ Generate C++ wrapper code.

■ Compile and link the C++ wrapper code into the shared library required for each
platform.

■ Place the shared libraries into the appropriate distribution directories, as described in
“Make the Distribution” on page 109.

If you also selected auto-install, making the distribution also installs the shared libraries on
the appropriate nodes in the development environment, according to the configuration
you specified when you partitioned the C project.

� To make a distribution with auto-compile and auto-install:

1 After you have partitioned your C project as a library, choose the File > Make
Distribution command.

2 In the Make Distribution dialog, select Partial Make (to update a distribution) or Full
Make (to create a new distribution), then select the toggles for Install In Current
Environment and Auto Compile.

3 Select the Make button.

You can also use the MakeAppDistrib command in Fscript to make a distribution with
auto-compile and auto-install, as shown:

fscript> MakeAppDistrib 1 ““ 1 1
Integrating with External Systems

Make the Distribution 111
For more information about making a distribution, see A Guide to the Forte 4GL Workshops,
and for information about the Fscript MakeAppDistrib command, see Fscript Reference
Manual.

You can now skip the rest of this section and start writing TOOL clients, as described in
Chapter 8, “Writing TOOL Code That Uses C Functions.”

Making the Distribution without Auto-Compiling
If you are making the distribution without using the auto-compile feature, then making the
distribution simply generates the code you need to produce shared libraries for the current
configuration of this C project. You need to use additional Forte utilities to compile and
link the generated C++ wrapper code files to produce the shared libraries. Then, you need
to place these shared libraries in the appropriate distribution directories to enable the
Forte system manager to automatically install these shared libraries in the right places in
your environment.

When you make a distribution without auto-compile and auto-install, the distribution
places files in the following directories:

Distribution directories FORTE_ROOT/appdist/environment_id/distribution_id/cl#/codegen/component_id

FORTE_ROOT/appdist/environment_id/distribution_id/cl#/generic/component_id

The Forte system places the following files in the codegen/component_id directory:

■ Two C++ wrapper code files that must be compiled and then linked with the C functions
to produce the shared library. The names of these files are based on the libraryname
value for the project and have the extensions .cc and .cdf. For example, if the library
name is dmathtm, then the files are “dmathtm.cc” and “dmathtm.cdf.” If libraryname is
not specified, the file names are the first 8 characters of the project name.

■ A file listing all the files needed to compile this component, which has an extension of
.bom.

■ If you make the distribution on VMS or MS-Window platforms, you must be aware of
two files in addition to the.cc and.cdf files:

In the generic/component_id directory, the Forte system places a .pex file that you can use
to import the C library into a repository that does not contain the library source code.
When you install this library, this .pex file is copied to the directory where the library
distribution is installed: FORTE_ROOT/userapp/distribution_id/cl#.

Directory name Description

environment_id First 8 characters of the environment name where you want your C project to be installed.

distribution_id 8 character name derived from the C project name.

 cl# Compatibility level for this project, as specified as the value of property compatibilitylevel in
the C project definition.

component_id Value of the property libraryname in the C project definition, or the first 8 characters of the
project name if libraryname is not specified.

Platform File extensions Examples

VMS .mar
.opt

“dmathtm.mar”
“dmathtm.opt”

Windows .def
.exp

“dmathtm.def”
“dmathtm.exp”
Chapter 7Making C Functions Available to Forte Applications

Compile and Link Shared Libraries112
Step 6. Compile and Link Shared Libraries
After you make a distribution for the C project, you must create a shared library for each
platform where the C project shared library will be installed. This shared library is later
dynamically loaded into the Forte system where it is used to access the C functions.

You need to compile and link the shared libraries for each platform where this project’s
shared library is installed.

� To compile and link the shared libraries:

1 Copy the generated distribution files to a node with the same platform as one or more
of the nodes where the C project shared library will be installed. This node must have
the required C++ compiler so that the code can be compiled and linked.

The files you need to copy are in the directory path described under “Make the
Distribution” on page 109.

2 Use fcompile to compile and link the generated code and libraries into a shared library.

The syntax of the fcompile command when you compile a C project library is:

Portable syntax
 (all platforms)

fcompile [-c component_generation_file] [-d target_directory]
[-cflags compiler_flags] [-lflags linking_flags]
[-fm = memory_flags] [-fl = logger_flags] [-cleanup]

OpenVMS syntax VFORTE FCOMPILE
[/COMPONENT = component_generation_file]
[/DIRECTORY = target_directory]
[/COMPILER = compiler_flags]
[/LINKING = linking_flags]
[/MEMORY = memory_flags]
[/LOGGER = logger_flags]
[/CLEANUP]

The following table describes the command line flags for the fcompile command:

Flag Description

-c component_generation_file
/COMPONENT =
component_generation_file

Specifies the file that Forte compiles. This value includes the path where
the file resides if the file is not in the current directory. By default, Forte
compiles all files in the current directory.

The component_generation_file value for a C project has a file name that
is either the value of the property libraryname in the C project definition
or the first 8 characters of the project name, if libraryname is not
specified. This file has the extension.bom.

-d target_directory
/DIRECTORY = target_directory

Specifies where the compiled directories will be placed. By default,
fcompile compiles files in the current directory, and places the compiled
files in the current directory.

target_directory is a directory specification in local syntax.

If the -c (/COMPONENT) flag is also specified, the -d flag specifies where
the compiled component files will be placed. Otherwise, the directory
specified by the -d (/DIRECTORY) flag specifies both the directory
containing the files to be compiled and the directory where the compiled
files will be placed.
Integrating with External Systems

Compile and Link Shared Libraries 113
C functions
without prototypes

If the C functions are defined without prototypes, you need to include a special flag on
the fcompile command. In this case, the you must add the following flag to define the
#define constant FORTE_NO_PROTOTYPES:

By defining this constant, the C++ wrapper code is compiled conditionally so that it will
call the C functions correctly when they are not defined with prototypes.

For example, if you want to integrate a C function named “square” that takes an integer
argument and returns an integer, you have to know whether the function is defined with
or without prototypes, as shown in the following table:

3 Copy the shared library, which you generated using fcompile, to the appropriate
distribution directory in the following path:

FORTE_ROOT/appdist/environment_id/distribution_id/cl#/platform/component_id

-cflags compiler_flags
/COMPILER = compiler_flags

Specifies any C++ compiler options. Any header file specifications included
here are used before the specifications included in the C project definition.
For more information about these options, see “Extended External
Properties” on page 126.

-lflags linking_flags
/LINKING = linking_flags

Specifies any linking flags. Any files included here are linked before files
specified in the extended properties of the C project definition. For more
information about specifying linking flags in the C project, see “Extended
External Properties” on page 126.

-fm memory_flags
/MEMORY = memory_flags

Specifies the space to use for the memory manager. See A Guide to the
Forte 4GL Workshops for information.

-fl logger_flags
/LOGGER = logger_flags

Specifies the logger flags to use for the command. See A Guide to the
Forte 4GL Workshops for information.

-cleanup
/CLEANUP

Deletes all the files except for the newly compiled shared libraries.

Flag Description

-cflags ‘-DFORTE_NO_PROTOTYPES’

C function with prototype (ANSI C) C function without prototype

int square(int a) int square(a)

{ int a;

return a * a; {

} return a * a;

}

Directory name Description

environment_id First 8 characters of the environment name where you want your C project shared library
to be installed.

distribution_id 8 character name derived from the C project name.

 cl# Compatibility level for this project, as specified in the C project definition.

platform Architecture name for the platform where this shared library will be installed, for example
VAX_VMS.

component_id The libraryname value in the C project definition or the first 8 characters of the project
name, if libraryname is not specified.
Chapter 7Making C Functions Available to Forte Applications

Install C Project Shared Libraries114
Step 7. Install C Project Shared Libraries
Using the Environment Console or Escript, install the C project library distribution.

� To install the C project library distribution:

1 In the Environment Console, choose the File > Load Distribution.

2 In the Load Distribution dialog, select the node on which you made the distribution for
this library, then select the library distribution.

3 Choose the View > Application Outline command.

4 Select the library distribution that you just loaded, then choose the Component >
Install.

You can also use Escript commands to install a C project library, as shown:

Forte takes the shared libraries from the distribution library and installs the shared libraries
on the appropriate nodes, according to the configuration you specified when you
partitioned the C project.

For more information about installing libraries in Forte, see Forte 4GL System Management
Guide.

escript> LoadDistrib myCLibrary cl0

escript> Install
Integrating with External Systems

Updating C Projects 115
Updating C Projects
� To update an existing C project:

1 Update the C project definition in a file.

2 Check out all the components for this project using Fscript commands or the Project
Workshop (see Fscript Reference Manualor A Guide to the Forte 4GL Workshops).

3 Import the new or updated C project definition using Fscript commands or the Project
Workshop (see Fscript Reference Manualor A Guide to the Forte 4GL Workshops).

4 Check in the C project components by integrating your workspace using Fscript
commands or the Project Workshop (see Fscript Reference Manualor A Guide to the
Forte 4GL Workshops).

5 Make a distribution, then compile, link, and install the project shared library, as
described in this chapter.

6 If the Forte partition that loads the C project shared library is running, shut it down and
restart it to ensure that it loads the new C project shared library.
Chapter 7Making C Functions Available to Forte Applications

Making Installed C Projects Known to Other Repositories116
Making Installed C Projects Known to Other Repositories
After the shared libraries for your C project are installed in your environment, you can use
the C project within your TOOL code to access the C functions.

If you also want other repositories to use this C project with its installed shared libraries,
you must import the .pex file that was produced when the distribution was made. You can
find this file on the nodes where the C project shared library was installed, in the same
directory as the C project shared library. You can also find this file in the original
distribution directory where the generated files were placed while making the distribution.
Integrating with External Systems

Chapter 8
Writing TOOL Code That
Uses C Functions
This chapter explains how to include C functions in your TOOL application.

About Writing TOOL Code That Uses C Functions118
About Writing TOOL Code That Uses C Functions
Before you can write TOOL applications that use C functions, your repository must contain
C projects that map to the C functions you want to use. These C projects must be installed
and available as shared libraries on the appropriate nodes. These steps are explained in
“About Making C Functions Available to Forte Applications” on page 104.

� To call a C function from within a TOOL application:

1 Add the C project for the C functions as a supplier project to your TOOL project.

2 For a distributed application, define a service object that will reside on the same node
as the C function.

3 Write the TOOL application that uses the C functions.

4 Test your application.

5 Partition your application.

6 Deploy your application.

The remainder of this chapter describes these steps in details.

Examples
The examples in this section are based on the sample program DMathTm. DMathTm shows
how you can write a C project definition that makes some ANSI C standard library
functions available to TOOL programs.

For information about DMathTm, see Appendix A, “Forte Example Applications.”
Integrating with External Systems

Add the C Project as the Supplier Project 119
Step 1. Add the C Project as the Supplier Project
For example, the following lines indicate the supplier classes for a TOOL project that uses
the C project, which are FrameWork and the C project DistMathAndTimeProject:

You can also include your C project as a supplier project from within the Project Workshop.
For more information about using the Project Workshop, see A Guide to the Forte 4GL
Workshops.

Step 2. For a Distributed Application, Define a Service Object
Forte has restrictions that affect how you should write an application that interacts with C
functions:

■ Forte does not pass structs and unions across partitions.

In your application, you can define a service object that resides on the same partition as
the C functions. Within this service object, you can invoke all the C functions that use
data structures, unions, and enums.

This service object can receive objects from other partitions that contain data to be
passed to the C functions. This service object can then copy the data from the objects
into enums, structs, and unions and pass this data to the C functions.

The service object can also copy information from the enums, structs, and unions
passed back by the C functions into attributes of TOOL objects. Then, you can pass this
information to other partitions using these objects.

■ If a TOOL project uses a class that creates an instance of a restricted C class, then that
TOOL class must also be restricted and reside on the same nodes as the restricted C
class.

Within a service object, you can copy the information from an object of a restricted C
class to an object of a non-restricted TOOL class. You can then pass the non-restricted
TOOL object to partitions that do not reside on the nodes where the restricted C class
must reside, for example, a client partition.

■ If a Forte client partition makes a direct call to a C function, using a method in a C
project, the client partition freezes while it waits for the C function to finish processing.

You can limit the effects of these restrictions by invoking the C functions within a service
object that resides on the same partition as the C functions.

If your C functions are not restricted and they use only simple data types in their
parameters, you can declare service objects of your C classes within your C project and
access the C functions directly through these service objects. For more information about
declaring service objects in C projects, see “Service Objects” on page 106.

The following example shows how you can define a service object of the
AccessToMathAndTimeClass called accessToMathAndTime:

includes FrameWork;

includes DistMathAndTimeProject;

See DMathTm example Project: TestDistMathAndTimeProject

service accessToMathAndTime : AccessToMathAndTimeClass;

See DMathTm example Project: TestDistMathAndTimeProject
Chapter 8Writing TOOL Code That Uses C Functions

Write the TOOL Application120
Step 3. Write the TOOL Application
Now you can write the TOOL application that uses features provided by the C functions.

Instantiate an Object for the C Class You Want to Use
Within your application code, you must instantiate the C class that has the methods for the
C functions before you can invoke these methods.

The following example shows how to instantiate the C class TimeFunctions:

Use the Methods of the C Class
After you have instantiated the C class, you can invoke methods on the object of that class.
These methods invoke the underlying C functions.

The following example shows how to invoke the C functions time and localtime using the
time and localtime methods provided by the C project:

Map C Function Parameters to TOOL Method Parameters
When the C function receives or returns a value, the TOOL method must be able to
correctly interpret this data. You might need to refer to documentation for the original C
functions to understand exactly what data your TOOL method needs to provide or expect.

For more information about mapping C function parameters to TOOL method parameters,
see “Mapping C Function Parameters in TOOL Methods” on page 159.

Include Error Handling
Most C functions return a return value when the function ends and passes control back to
the TOOL application. What the return value means depends on how the C function
defines it. Each C function should provide information describing how it returns error
information to applications that invoke the function.

tf : timeFunctions = new;

See DMathTm example Project: TestDistMathAndTimeProject • Class: AccessToMathAndTimeClass • Method: Test

-- Instantiate the timeFunctions class in the C project

tf : timeFunctions = new;

-- Declare variables

time_struct_ptr : pointer to tmstruct;

t : time_t;

-- Get the current calendar time

t = tf.time(nil);

-- Convert current calendar time to local time

time_struct_ptr = tf.localtime(&t);

See DMathTm example Project: TestDistMathAndTimeProject • Class: AccessToMathAndTimeClass • Method: Test
Integrating with External Systems

Test Your Application 121
Step 4. Test Your Application
You can test your TOOL application in the Project Workshop using the Run Distributed
command. However, the shared libraries for your C projects that your application uses
must be installed and available on the appropriate nodes. These steps are explained in
“About Making C Functions Available to Forte Applications” on page 104.

For information about using the Project Workshop, see A Guide to the Forte 4GL Workshops.

Troubleshooting
This section includes a few tips that can help you troubleshoot Forte applications that use
functions provided by external C libraries.

Unexpected Failures
Increase stack size You should at some point deploy your application to test it is so that you can determine

whether the default runtime stack size is sufficient for your application. If the external C
library uses recursion, a large amount of local data in functions, or has a deep call graph,
you should consider changing the FORTE_STACK_SIZE environment variable to at least
100000, and perhaps more, depending on the results of testing. If a partition of your
application fails for no obvious reason, try increasing the FORTE_STACK_SIZE.

Forte 4GL System Management Guide describes FORTE_STACK_SIZE more fully.

Unable to Locate the 3GL Supplier Library
Import the Generated C
Project .pex File

Forte automatically generates a C project .pex file when it makes a library distribution. This
.pex file contains information about the distribution id and path where the library
distribution will be installed. This information is also automatically stored as part of the C
project in the repository from which you made the library distribution.

You might need to import the generated .pex file in the following situations:

■ You want to use the wrappered C library as a supplier project in a repository other than
the original repository from which you made the distribution. In this case, you need to
import the .pex file into the second repository.

■ The distribution information stored in the C project in the original repository was lost.
For example, someone might have reimported the original hand-written C project file
after the library distribution for the C project was made.

Step 5. Partition Your Application
� To partition your DCE client application:

1 Open the Project Workshop for the main project for your application.

2 In the Project Workshop, choose Run > Partition.

Forte displays the default partitioning for the library in the Partition Workshop.

You can also use the Fscript command Partition.

For information about partitioning your application, see A Guide to the Forte 4GL
Workshops.
Chapter 8Writing TOOL Code That Uses C Functions

Deploy the Application122
Step 6. Deploy the Application
The steps for making a distribution, compiling and linking shared libraries and installing
your application are the same as for other TOOL applications.

For detailed information about performing these steps for TOOL applications, see A Guide
to the Forte 4GL Workshops.

Special step for VMS In VMS, if the Forte partition that invokes methods in the C shared library is also compiled,
then you must define a logical that indicates the location of the installed C shared library.
The following example shows how to define a logical for a C shared library named
MYLIB.EXE:

The version_number is the currently installed release of Forte, for example V30E0.

On one line define /TABLE = FORTE_GBLTABLE_version_number mylib
FORTE_ROOT:[USERAPP.MYLIB.CL0]MYLIB.EXE
Integrating with External Systems

Chapter 9
TOOL Statements for
Defining C Projects
Forte provides special versions of some TOOL statements to let you define C projects:

■ begin c statement

■ class statement

The syntax for these statements and usage information for these statements are included in
the following pages. These sections also include restrictions for these statements.

begin c124
begin c
The begin c statement defines a C project.

Syntax
begin c project_name;

[includes supplier_project_name;] . . .
 has property restricted = {TRUE | FALSE}
 definition_list
 [has property {project_property;}...]
 definition_list
end [project_name];

project_property is:

[compatibilitylevel = integer_constant]
[multithreaded = {TRUE | FALSE}]
[libraryname = string_constant]
[extended = ([, externalincludedirectories=’directories’]

[, externalincludefiles = ’include_files’]
[, externalobjectfiles = ‘object_files’]
[, externalstaticlibs = ‘static_libraries’]
[, externalsharedlibs = ‘shared_libraries’])]

Description
The begin c statement lets you define a C project in a file. To import the project definition
from the file into your development repository, you can use the ImportPlan command in
Fscript or the Import command in the Repository Workshop.

You can have more than one begin c statement for the same project. These can be in the
same file or in different files. If the project already exists, Forte simply adds the new
definitions to the existing project.

If there is more than one definition for the same project component (for example, more
than one definition for the same class name), Forte uses the last definition.

Project Name
The value of project_name can be any legal Forte name. If the name is unique, Forte creates
a new project. If the name already exists, it must be for a C project (not a TOOL project).
When you specify an existing C project name, Forte adds the definitions in the begin c
statement to the existing project.

Includes Clause
The includes clause lets you provide a list of a supplier projects for the C project you are
defining. Only a C project can be a supplier project for another C project. If your project
needs to access definitions or services defined in another C project, you must add an
includes clause that specifies that C project as a supplier project.

Name scope in a C project If you include a C project as a supplier project to a main C project, you must make sure that
all the names, including those of defined unions and structs, are unique within the scope of
the main C project and all its supplier C projects. Because C is case-sensitive, you can have
names that are unique only in the way they are capitalized defined in different C projects.
However, you cannot define names that differ only by case within a C project, because
TOOL itself is not case-sensitive, and will not recognize the difference between the two
names.
Integrating with External Systems

begin c 125
Definition List
The definition list is comprised of class statements and constant statements. For
information about class statements, see “class” on page 128. For information about
constant statements, see TOOL Reference Manual.

Has Property Clause
The has property clause lets you specify the C project properties. This section provides a
brief description of each of the C project properties.

You can have more than one has property clause within the begin c statement. If you set
the same property more than once, Forte uses the last setting.

You can use the following properties with the has property clause:

■ restricted property

■ compatibilitylevel property

■ multithreaded property

■ libraryname property

■ extended external properties

These properties are described in detail in this section.

restricted Property
The restricted property specifies whether or not your project is restricted. A project is
defined as restricted if it can run only on particular hardware or software. The default is
restricted=FALSE, which means that the product can run everywhere in your environment.

compatibilitylevel Property
The compatibilitylevel property lets you specify the compatibility level for the project. In
general, if you plan to release a new version of your project, you should raise its
compatibility level. Raising the compatibility level allows you to install and run the new
release of the project in the same environments where older versions of the project are
installed. The default is compatibilitylevel=0.

If you only change the implementation of the C functions themselves, you do not have to
alter the compatibility level. For information about when you need to change the
compatibility level of a C project, see A Guide to the Forte 4GL Workshops.

multithreaded Property
The multithreaded property specifies whether your project is thread-safe. If multithreaded
is set to FALSE, all other tasks are suspended when a task accesses a method in a C project
until that function finishes. Thus, if your C functions cannot be executed simultaneously,
you can still use them in a multi-tasking environment.

If you want your C functions to be executed simultaneously (multithreaded=TRUE), then
you need to ensure that one or more instances of all the C functions defined in this project
can run simultaneously without overwriting common memory. Also, your C functions must
be signal tolerant, which means that signals generated by a running C function should not
affect or be affected by signals generated by other tasks.

The default is multithreaded=TRUE.
Chapter 9TOOL Statements for Defining C Projects

begin c126
libraryname property
The libraryname property specifies the name of the Forte object module. The libraryname
value must be unique and up to 8 characters long. This name must be unique so that once
compiled, the shared library file will not conflict with the user object module file. If you
omit this property, the default is the first 8 letters of the project name.

Extended External Properties
Forte supports three extended external properties for C projects:

directories, include_files, object_files, static_libraries, and shared_libraries are all quoted
string values. directories contains a list of directories separated by spaces. include_files,
object_files, static_libraries, and shared_libraries contain a list of file paths and names
separated by spaces. When you specify these values, follow these rules:

■ Specify directories and file names in Forte portable form and use absolute paths.

■ Do not specify file extensions.

■ You can use environment variables in the directory paths. These variables are resolved
on the machine where the project’s shared library is built. If the environment variables
contain a path specification, use the “%” form of variable expansion.

For example:

You must specify the externalincludedirectories and externalincludefiles properties to
define where Forte should look for the header files it needs when it compiles the C++
wrapper code. If you do not set externalincludedirectories in the project definition file, you
need to specify this information on the fcompile command with the -cflags or /COMPILER
flags, usually using the -I C++ compiler flag. However, in this case, you cannot use the auto-
compile feature when making a distribution.

Extended Properties Description

externalincludedirectories=’directories’ Specifies the directories containing header files to be included.

externalincludefiles=’include_files’ Specifies the header files to be included.

externalobjectfiles = ‘object_files’ Specifies object files to be linked into the project's shared library.

externalstaticlibs = ‘static_libraries’ Specifies static libraries (archives) to be linked into the project's shared
library.

externalsharedlibs = ‘shared_libraries’ Specifies shared libraries to be linked into the project's shared library.

externalsharedlibs = ’%{FORTE_ROOT}/mylibs/mylib
%{USRLIB}/libsocket’
Integrating with External Systems

begin c 127
The externalobjectfiles, externalstaticlibs, and externalsharedlibs properties specify the
files that will be included as linking options when the compiled shared libraries are linked,
as explained in “Compile and Link Shared Libraries” on page 112. Forte links the specified
files automatically and adds the files specified on these properties to the linking flags (-
lflags or /LINKING) of the fcompile command in the following order:

If you explicitly specify some linking options on the fcompile command, Forte adds the
linking options from these extended properties to the end of the list of linking options.

For example, you might specify the following extended properties for your C project:

You might then specify the following linking options on the fcompile command:

Forte links the compiled shared libraries as though you had specified the following linking
options on the fcompile command:

If you are using the auto-compile option when making a distribution, then Forte uses the
files specified here as the linking options when Forte compiles and links the shared
libraries, as described in “Making the Distribution with Auto-Compile and Auto-Install” on
page 110.

For information about the fcompile command, see “Compile and Link Shared Libraries” on
page 112.

Linking Order Linked Files

1 Object files. Object files are linked in the order they are specified for the externalobjectfiles
property.

2 Static libraries, which are sometimes archive files. Static libraries are linked in the order they are
specified for the externalstaticlibs property.

3 Shared libraries. Shared libraries are linked in the order they are specified for the
externalsharedlibs property.

externalsharedlibs = ’standard math’

fcompile -l ‘%{TMP}/time %{WORKING}/private_lib’

fcompile -l ‘%{TMP}/time %{WORKING}/private_lib standard math’
Chapter 9TOOL Statements for Defining C Projects

class128
class
Use the class statement to create a C class. The form of the class statement used in a C
project is a restricted version of the statement found in the TOOL Reference Manual.

Syntax
class class_name
[component_definitions]...
[has property [distributed = (allow = {on|off} [, override = {on|off}]

[, default = {on|off});]...]

Description
You can define the following components for a class:

■ methods

■ constants

Methods
The syntax for including a method in a C project class definition is the same as for any
other method in TOOL. Refer to TOOL Reference Manual for the syntax of defining
methods.

Mapping C function
parameters to TOOL
method parameters

You need to map the parameters and return values for the C functions to equivalent TOOL
data types. For more information about this mapping, see “Mapping Simple C Data Types
to TOOL Data Types” on page 131 and “Mapping Derived C Data Types to TOOL Data
Types” on page 133.
Integrating with External Systems

Chapter 10
Using C Data Types in TOOL
With Forte, you can write applications that interact using several industry-standard
products and protocols, as described in this manual, Integrating with External Systems.

In Forte, you can use several standard C data types to pass parameters between Forte TOOL
methods and certain types of external applications.

This chapter discusses the following topics:

■ using C data types in TOOL methods

■ dynamically allocating and deallocating storage for C data types in TOOL

■ mapping C function parameters to TOOL method parameters

Using C Data Types in TOOL Methods130
Using C Data Types in TOOL Methods
This chapter describes how C data types map to Forte TOOL data types, and how to use
these data types. This chapter also explains how to manage dynamic memory allocation
and deallocation for C data types.

You can write TOOL applications that interact with several external object services that
provide C language application program interfaces (APIs), including ObjectBroker, DCE,
OLE 2, and C functions. This chapter uses the term C functions to refer to both C language
APIs and C functions.

Derived data types To write these TOOL applications, you must first describe each C function to Forte by
writing a project definition in a file. This project definition maps the C functions and data
types to TOOL methods and data types. Fortunately, TOOL supports data types that map
directly to most of the data types used by these services. However, you cannot pass objects
to C functions. Therefore, TOOL provides simple data types and derived C data types that
you can use to transfer an object’s data to and from a C function. Derived data types are
data types that are defined using other data types, like enums and structs. These mappings
are explained in “Mapping Derived C Data Types to TOOL Data Types” on page 133.

As in C, when you declare variables with derived data types, you need to consider whether
you want to use local variables on the runtime stack, or whether you want to allocate
memory dynamically. In general, you can use local variables if you do not need the data
held by the variable beyond the end of the method. However, if you want to reference the
variable outside of the current method, then you need to dynamically allocate the memory,
then later free the memory when your application no longer needs the variable. Using
dynamic memory allocation is explained in “Managing Memory for C-style Arrays and Data
Structures” on page 154.

To determine how to map the C function parameters to the parameters of the
corresponding TOOL method, you must understand exactly what the C function intends to
pass and why, and whether the calling method will later want to reference the value of a
parameter. This topic is discussed in detail in “Mapping C Function Parameters in TOOL
Methods” on page 159.

For examples of executable code that demonstrates using C data types in TOOL, see the
example programs in the following files:

■ AllCTypes.pex

■ MathTime.pex

These examples are described in Appendix A, “Forte Example Applications.”

General Guidelines
The TOOL implementations of C data types generally behave like the corresponding data
types in ANSI C. These data types also generally follow the same syntax rules as for other
TOOL data types. Be aware of the following guidelines:

■ Declare variables of these data types as you do for TOOL, using the following syntax:

variable_name : data_type;

■ Do not instantiate any variables for C data types with the new keyword.

■ Casting for most C data types works the same for C data types as for simple data types in
TOOL. For information about casting in TOOL, see the TOOL Reference Manual. Any
differences for the derived data types are documented in the description for the specific
data type.
Integrating with External Systems

Mapping Simple C Data Types to TOOL Data Types 131
Mapping Simple C Data Types to TOOL Data Types
The parameter types for the C functions and their corresponding TOOL types are shown in
the table below:

The numeric TOOL data types directly correspond to the listed C data types; therefore, the
ranges of these data types depends on the machine you are using at runtime.

uint and ulong Forte provides uint to map to C’s unsigned int and ulong to map to C’s unsigned long int.
The following table describes these data types:

For descriptions of the other TOOL simple data types, see the TOOL Reference Manual.

char*: string or
pointer to char?

In general, to map a char * variable to a TOOL variable, use a pointer to char. You can use a
string to map to a char * C parameter only in the following situations:

■ the location of the data is not important

TOOL string variables are declared on the runtime stack for a method in memory
managed by TOOL. If you call a C function and pass a string parameter, the string data
remains in the same location while the C function is running. However, the string data
might move between C function calls.

If you choose to use pass a string parameter to a C function, the C function should not
store the address of a string in global memory or in dynamically allocated memory for
later use by another C function. The address of the string might change when Forte
reorganizes its managed memory between the exit of the first C function and the
invocation of the second C function.

■ the char * is not part of an enum, struct, or union

TOOL does not allow string variables to be members of enums, structs, or unions.

C Data Type TOOL Data Type

int int

long long

short short

float float

double double

unsigned int uint

unsigned long int ulong

unsigned short int ushort

char char

char i1

char * pointer to char

char * string (limited usage, see description below)

unsigned char ui1

TOOL Data Type Description

uint 0 to at least +65535

ulong 0 to at least +4,294,967,295
Chapter 10Using C Data Types in TOOL

Mapping Simple C Data Types to TOOL Data Types132
Use non-portable data types Although you normally want to use portable data types in your TOOL code, you should use
the non-portable types recommended in the table above to map TOOL method parameters
to the parameters of your C functions. Otherwise, your TOOL application might use a
different data type than your C function. For example, if your C function runs on a PC, then
an integer parameter defined in the C function with the int key word is 2 bytes long.
However, if you map this parameter in a TOOL method using the integer key word, then
TOOL will try to pass a 4-byte integer to this C function.

The following TOOL types do not correspond directly to C types in a machine-independent
way: ui2, ui4, i2, i4, and integer. Avoid using these types when you call a method that maps
to a C function.
Integrating with External Systems

Mapping Derived C Data Types to TOOL Data Types 133
Mapping Derived C Data Types to TOOL Data Types
Derived C data types are constructed data types that you can define using simple data
types. Variables declared using derived data types identify areas of memory.

Derived C data types and their corresponding TOOL data types are shown in the table
below:

The following sections explain how to declare these TOOL data types. For information
about how to map TOOL data types for supported C functions, see the specific chapter for
that interface.

Restrictions
You cannot pass derived data types, except enums:

■ when passing data between partitions

Forte does not support passing derived data types, except enums, between Forte
partitions.

■ as parameters of events

Although you cannot pass derived data types, other than enums, as parameters of
events, you can pass pointers that reference dynamically-allocated C-style arrays or
structs as parameters of events, as well as pointers to other dynamically-allocated data
types. This dynamically-allocated data must still exist by the time a registered event
handler tries to handle the event.

Note, however, that you cannot pass events that have pointers as parameters between
partitions. In other words, if you post an event with a pointer as a parameter and try to
register for and handle the event in another partition, you get an error.

For more information about dynamically allocating memory for these C-style arrays and
structs, see “Managing Memory for C-style Arrays and Data Structures” on page 154.

■ as parameters of methods that are started using a START TASK statement

You cannot pass derived data types, other than enums, as parameters of methods that
are started using a START TASK statement. You can, however, pass pointers that
reference dynamically allocated C-style arrays or structs as parameters for these
methods. For more information about dynamically allocating memory for these data
types, see “Managing Memory for C-style Arrays and Data Structures” on page 154.

All derived data types, except pointers and C-style arrays, can only be defined at the project
level. You cannot define enum, struct, typedef, or union data types within methods.

C Data Type TOOL Data Type Description

array C-style array A set of a predefined size that contains related values of the same data
type.

enum enum A finite set of integers that declares identifiers for each value defined for
the set.

* (pointer) pointer to data_type Pointer to a specific type of data.

void * (pointer) pointer Generic pointer

struct struct A defined set of C variables of various data types.

typedef typedef An identifier associated with a specific data type

union union A set of variables whose values can be stored in the exact same memory
space; only one of these variables can be stored at a time.
Chapter 10Using C Data Types in TOOL

C-style Arrays134
C-style Arrays
A C-style array is a set of a predefined size that contains related values of the same data
type. A C-style array is similar to arrays used in ANSI C.

Restrictions You cannot pass C-style arrays between partitions, as parameters of events, or as
parameters of methods that are started using a START TASK statement.

Differences Between Array Objects and C-style Arrays
TOOL objects of the Array and LargeArray classes are fundamentally different from C-style
arrays. The following table compares them.

Declaring Arrays on the Runtime Stack
The following table shows the syntax for mapping an array for a C function to a TOOL C-
style array. Forte supports two variations of the syntax for declaring a C-style array.

This table shows a simplified syntax diagram, which includes all possible elements of the
array syntax. The brackets “[“ and “]” represent characters that are part of the syntax.

In the C syntax:

■ data_type is the name of the data type for all the elements of the array

■ name is the variable name for the array

■ size is the number of elements in the array

In the TOOL syntax:

■ name is the variable name for the array

■ lower and upper define the lower and upper bounds of the array, and their values must
be integer constants

A value for the lower bound is not required, but if you specify it, the value must be lower
than the value of the corresponding upper bound.

■ data_type is the name of the data type for all the elements of the C-style array

Array or LargeArray Object C-style Array

Description An object that stores and manipulates a
collection of objects using methods of the
array class.

A group of data storage locations that have the
same name and are distinguished from each
other by an index.

What it contains Objects. It cannot contain simple or derived
data types.

Simple and derived data types. It cannot
contain objects.

How to allocate
storage for it

Instantiate it using the new keyword to
allocate memory.

Declare a C-style array on the runtime stack, or
dynamically allocate memory for a C-style array
using calloc or malloc.

Can be the
return value for
a TOOL method

Yes. No.

C Syntax TOOL Syntax

data_type name [size] [size]... name : array [lower..upper] [lower..upper]... of data_type;

name : array [lower..upper , lower..upper ...] of data_type;
Integrating with External Systems

C-style Arrays 135
The following example illustrates declaring C-style arrays in TOOL using the syntax
variations:

Rules for Declaring
C-style Arrays

Unless you specify the lower bound of the C-style array, the numbering of these array
elements starts at 0, as in C.

If you specify a lower bound for the TOOL C-style array and pass this array to a C function,
the C function still indexes this array starting at 0. The following example shows how the
TOOL C-style array maps to an array in the C function:

Specifying empty brackets
for a parameter

You can specify empty brackets, “[]”, for a C-style array that is a parameter of a C function
to indicate that this C-style array is of unknown size. TOOL manages this array as a pointer
to the data type that the array contains. Therefore, certain error messages involving this C-
style array might refer to a pointer instead of an array.

The following example shows how you can map an array in C to both variations of the C-
style array syntax in TOOL:

Using the first variation of the syntax, you can specify arrays as shown in the following
examples:

Using the second variation of the syntax, you can specify a multi-dimensional array as
shown in the following example:

C Example TOOL Example

int myArray[5][3]; myArray : array[5][3] of int;

C Example TOOL Example

int myArray[5]; myArray : array[5..10] of int;

C Example TOOL Examples

int myArray[5][3]; myArray : array[5][3] of int;

myArray : array[5, 3] of int;

Example: C-style Arrays -- Declare a one-dimensional array with 10 integer elements numbered

-- 0 to 9

myarray1 : array [10] of int;

-- Declare a one-dimensional array with 10 char elements numbered

-- 1 to 10

myarray2 : array [1..10] of char;

-- Declare a two-dimensional array containing 5 arrays that contain

-- 8 float elements numbered 3 to 10

myarray3 : array [5][3..10] of float;

Example: C-style Arrays -- Declare a two-dimensional array containing 6 arrays of 8

-- integer elements

myarraya : array [6, 8] of int

-- Declare a two-dimensional array containing 5 arrays that contain

-- 8 elements that are numbered 3 to 10

myarrayb : array [5, 3..10] of float
Chapter 10Using C Data Types in TOOL

C-style Arrays136
Declaring C-style Arrays Dynamically
When your application needs a C-style array to exist after the current method exits, you
must dynamically allocate the memory for the array. To dynamically allocate the array, you
declare a pointer to a C-style array, then allocate the needed storage for the array using the
C functions malloc or calloc. For more information about dynamically allocating storage,
see “Managing Memory for C-style Arrays and Data Structures” on page 154.

Converting C-style Arrays of Char to TextData Objects
Forte TextData objects have many methods that are useful for working with strings, so you
may want to convert C-style arrays of char to TextData objects.

To convert a C-style array of char to a TextData object, use the Concat method of the
TextData class. The following example shows how you can convert a null-terminated string
stored in a C-style array of char into a TextData object:

The following example shows how you can convert a value stored in a C-style array of char
without a terminating ‘\0’ value into a TextData object:

Example:
Converting C-style Arrays to
TextData Objects

-- myCharPointer is a pointer to char that references a null-

-- terminated string. TOOL stores this string as a

-- C-style array[23] of char, with 22 characters and 1 NULL.

-- Declare and instantiate a TextData object, then copy the

-- C-style array of char into the TextData object.

OurTextObject : TextData = new;

-- Concat reads characters until it reaches the null terminator ‘\0’

-- and copies the characters as the value of StringObject.Value

OurTextObject.Concat(myCharPointer);

Example:
Copying a C-style array
to a TextData object

-- Set up an array of char, and initialize with some characters

MyArray : array[100] of char;

-- Put 15 characters of data into the first 15 positions of the

-- C-style array with no null characters

...

-- Copy the C-style array of char into the TextData object

NewTextObject : TextData = new;

NewTextObject.Concat(MyArray, 15);
Integrating with External Systems

C-style Arrays 137
Converting TextData Objects to C-style Array of Char
You cannot pass Forte objects to C functions. Therefore, to pass the value of a TextData
object as an input parameter to a C function, you can pass the string value of the Value
attribute of the TextData object. However, if you want to pass a string to a C function and
reference any changes that the C function might have made to the string, you need to load
the Value attribute into a C-style array of char.

To load the characters in the Value attribute of a TextData object into a C-style array of char,
use the ExtBytes method of the TextData class, as shown in the following example:

Converting TOOL Strings to C-style Arrays of Char
You might need to convert TOOL string values to C-style arrays when:

■ the location of the data is important to your application, because TOOL might move the
string values when it reorganizes its managed memory

■ you need to assign the string value as part of a struct or union

■ you want the data to exist beyond the end of the current method

To convert a TOOL string to an array of char, use the strdup C function to allocate a space
outside of the memory managed by the Forte runtime system and copy the string value to
this area of memory. For more information about strdup, see “strdup” on page 156.

When your program finishes using the converted array of char value, you need to explicitly
free the memory referenced by the pointer. If you do not, you will reduce the amount of
available memory. The following example shows you how to copy a string value to memory
not managed by the Forte runtime system, then free the pointer:

Example:
Converting a TextData object
value to a C-style array of char

-- Declare an array[20] of char

MyArray : array[20] of char;

-- Declare and instantiate a TextData object that contains a

-- string value

myString : TextData = new(value = ‘String of sample text.’);

-- Copy the first 19 characters in MyString into MyArray

myString.ExtBytes(MyArray, 19);

Example:
Converting strings to
C-style arrays of char

-- Declare a pointer to char

myCharPointer : pointer to char;

-- Convert string value to a C-style array of char values

myCharPointer = strdup(‘This is a string.’);

-- Use the values

...

-- Explicitly free the memory used by the array of char values

free(myCharPointer);
Chapter 10Using C Data Types in TOOL

Enumeration Data Types (enums)138
Enumeration Data Types (enums)
Enumeration data types (enums) let you define a set of integer values with identifiers as
elements of the set. Enums are useful for ensuring that the value assigned to a variable falls
into an appropriate set of values.

Restrictions You can define enums within projects, classes, and structs. However, you cannot define
enums within methods.

The following table shows how you can map an enum data type declaration between a C
function and a corresponding TOOL method.

The name enum_name becomes a data type name in the current name scope. The
enumeration data type, enum_name, contains the names of the items, so you must
reference the items using dot notation, as shown:

enum_name.item_name

Each named item has an integer value associated with it. By default, each item is numbered
sequentially starting with zero, unless you explicitly define a value for one or more of the
items. Two or more items can have the same value.

Note Forte does not automatically convert integers to enum values, so you must explicitly cast
an integer to an enumeration data type in your TOOL code. Forte does not perform
runtime checking to ensure that the integer value is legal for the data type.

The following example shows how you could map a C enum data type declaration to a
TOOL enum data type declaration:

C Syntax TOOL Syntax

enum enum_name enum enum_name

{item_name = constant , item_name [= constant],

item_name = constant ...}; [item_name [= constant], ...]

end [enum];

Example:
Enumeration data type

-- In the project, declare an enumeration data type that contains

-- three colorful identifiers numbered 0 to 2

enum color

 red,

 yellow,

 blue

end enum;

-- In a method, use the enum identifiers.

i: int;

i = color.yellow -- i = 1

-- Declare a variable of enumeration data type color

rainbow : color;

-- Set rainbow to red using an integer value (color.red = 0)

MyInteger : int = 0;

-- Need to cast the integer value to color enum data type

rainbow = (color)(MyInteger);
Integrating with External Systems

Enumeration Data Types (enums) 139
The items in the color data type can only be accessed as color.red, color.yellow, and
color.blue. For example, in the color data type, the value of color.red is 0, the value of
color.yellow is 1, and the value of color.blue is 2.

The following example shows you how to assign specific integer values to the items of the
enumeration data type:

Notice that type myEnum can have several items with the same value.

Example:
Enumeration data types

-- In the project, declare a enumeration data type and assign some

-- specific integer values

enum myEnum

 firstItem = 25,

 secondItem = 24,

 thirdItem,

 fifthItem = -6,

 sixthItem,

 seventhItem = 24

end;

-- In a method, assign the value of an enum identifier to another

-- variable.

MyInt1, MyInt2 : integer;

-- secondItem = 24; the value of thirdItem is one greater than

-- secondItem, so it is 25.

MyInt1 = myEnum.thirdItem; -- MyInt1 = 25

-- fifthItem = -6; sixthItem is one greater than

-- fifthItem, or -5

MyInt2 = myEnum.sixthItem; -- MyInt2 = -5

-- Declare a variable of enumeration data type myEnum

MyEnumData : myEnum;
Chapter 10Using C Data Types in TOOL

Pointers140
Pointers
Forte provides two kinds of pointers: generic pointers and pointers to specific data types.
Forte does not support pointers to functions.

This section describes how to declare and cast pointers that can be passed to C functions.
For information about using pointers when passing parameters, see “Mapping C Function
Parameters in TOOL Methods” on page 159.

Restrictions You cannot pass pointers between partitions or as parameters of methods that are started
using a START TASK statement.

Pointers passed with events
or asynchronous processing

You can pass pointers that reference dynamically allocated memory as parameters in
situations that use asynchronous processing, such as posted events, multitasking, or calling
external routines. However, you must ensure that the application frees the memory for
these parameters only after all the event receivers and all the tasks are finished using the
parameter values. You cannot pass these pointers between partitions.

Generic Pointers
Generic pointers store an address retrieved from a C function. This pointer is equivalent to
a void * pointer in C.

The following table shows how you can map a C pointer to a generic TOOL pointer.

You can use this type of pointer to store the addresses retrieved from C functions. Later, you
can assign this value to the pointer parameter for another C function. This is particularly
useful with C interfaces that pass opaque pointers.

Caution If you use a generic pointer in Forte, Forte cannot check that the value referenced by the
pointer has the correct data type. Therefore, you must make sure that the data type of the
value you assign to the generic pointer in your application is appropriate.

The following example shows how you can:

■ retrieve values from a C function called GetStatHandle in a C function library
(StatisticsLibrary class) by using a pointer

■ pass the pointer to another C function associated with the method ReadStatHandle

c_stat_package is the name of a class that has GetStatHandle and ReadStatHandle as
methods.

C Syntax TOOL Syntax

void * pointer_name; pointer_name : pointer;

Example:
Pointer Data Type

c_stat_package : StatisticsLibrary = new;

-- C interface

c_handle : pointer;

-- Call a C function, which returns a C pointer, and pass to

-- another C function. The TOOL program never uses c_handle

-- directly.

c_handle = c_stat_package.GetStatHandle();

c_stat_package.ReadStatHandle(c_handle, "open");
Integrating with External Systems

Pointers 141
Pointers to Specific Data Types
TOOL lets you define a pointer that references a specific data type. You can use pointers
like these to ensure that the pointer references a data item of the correct type.

The following table shows how you can map a C pointer to a specific data type to a TOOL
pointer.

pointer_name is the pointer variable name. data_type is the data type that the pointer
references.

The following example shows how the TOOL pointer declaration syntax maps to C pointer
syntax:

Dereferencing Pointers
To dereference a pointer to a specific data type, you can use the * and -> operators, as in C.

* notation *variable_name refers to the beginning of the simple data type, C-style array, or data
structure that variable_name references.

Arrow notation pointer_variable_name->member_name refers to an element (member_name) of the data
structure or union pointed to by pointer_variable_name. You can use the -> operator only
when the pointer refers to a struct or union data type.

The following example shows how you can use pointers to pass a C-style array of integers
to a C function called GetStatistics in the C function library (StatisticsLibrary class) and
retrieve the results:

C Syntax TOOL Syntax

data_type * pointer_name; pointer_name : pointer to data_type;

C Example TOOL Example

int * myPointer1; myPointer1 : pointer to int;

float * * myPointer2; myPointer2 : pointer to pointer to float;

Example: Pointer Data Type -- Call a C function that performs statistical analysis of the data,

-- returning the average, median, and so on. The input parameter is

-- an array of integers; this function returns a

-- pointer to a C data structure with following definition:

-- struct stat_results

-- average : float;

-- median : float;

-- end struct;

-- Instantiate the class with the C methods

c_stat_package : StatisticsLibrary = new;

-- Declare variables that pass values to and retrieve values from
the C

-- functions

c_values : array [10] of int;

c_stats : pointer to stat_results;

-- Declare and assign values to the array pointed to by c_values

...

-- Invoke the C function
Chapter 10Using C Data Types in TOOL

Pointers142
Address Operator (&)
Forte provides an address operator (&) that determines the address in memory of the
variable it precedes, just like in C. For example, &MyVariable indicates the address of the
memory where the variable MyVariable is stored.

You can use the address operator to access the address of an existing value. You can then
pass this address to method parameters that require a pointer value.

The following example shows how you can use the address operator (&) to pass the address
of a value to a C function:

To see this code fragment in context, see the Forte example program dmathtm.pex.

You can pass the addresses of the following items as parameters:

■ variables

■ the beginnings of C-style arrays

■ members of structs and unions

■ attributes of objects

To pass the address of an attribute as a parameter, the class of the object must have the
following properties set as shown:

c_stats = c_stat_package.GetStatistics(c_values);

-- Dereference the returned pointer value to get the calculated
values

ave, median : float;

ave = c_stats->average;

median = c_stats->median;

Example:
Using address operator

tf : timeFunctions = new;

time_struct_ptr : pointer to tmstruct;

t : int;

-- If you pass the C Library routine time() a NIL pointer,

-- it returns an int.

t = tf.time(nil);

-- You can then pass localtime() the address of this int.

time_struct_ptr = tf.localtime(&t);

distributed = (allow = off, override = off);

transactional = (allow = off, override = off);

monitored = (allow = off, override = off);

shared = (allow = off, override = off);
Integrating with External Systems

Pointers 143
Duration of addresses The address of a TOOL variable is only valid for the period of a single C call; therefore, you
cannot store the address of a TOOL variable in a C structure and later use the address.

Addresses that
cannot be passed

You cannot use the address of any of the following data types:

■ virtual attribute

■ a row of a dynamic array

■ an attribute of an object that has the possibility of being shared, distributed,
transactional, or monitored

Pointer Constants
The only constant available for the pointer type is NIL. To assign a value to a pointer data
item, you must specify another pointer of the same pointer type or invoke a method with a
return value of the pointer type (see the TOOL Reference Manual for information on
invoking methods).

Casting Pointers
TOOL automatically casts any pointer type to a generic pointer type. However, you must
explicitly cast a pointer value when you assign it to another pointer type. The following
example shows how you can cast pointers:

Example:
Casting pointer data type

-- Define a generic pointer and a pointer to a specific type

myGenericPtr : pointer;

myIntPtr : pointer to integer;

-- The pointer to integer (myIntPtr) is automatically cast to

-- the generic pointer type

myGenericPtr = myIntPtr;

-- You must explicitly cast the generic pointer (myGenericPtr)

-- to the pointer to integer data type

myIntPtr = (pointer to integer)(myGenericPtr);
Chapter 10Using C Data Types in TOOL

Struct Data Types144
Struct Data Types
You can use the struct keyword to declare a data structure that contains one or more
members. You can define structs within projects; however, you cannot define structs within
methods.

Restrictions You cannot pass structs between partitions, as parameters of events, or as parameters of
methods that are started using a START TASK statement.

The members in a structure can be of different data types, including C-style arrays and
other data structures. However, the members in a structure cannot be strings or objects.

The following table shows how you can map a data structure declaration between a C
function and a TOOL method:

structure_name becomes a data type name in the current name scope. member_name is
the name of a variable within the data structure. data_type is the data type for a variable in
the data structure.

The statement has property opaque=TRUE indicates that a structure by this name is
defined in a header file specified using the extended external attributes
externalincludefiles and externalincludedirectories. For information about using opaque
C data structures, see “Defining Opaque Structs” on page 147.

You cannot assign the values of members in a structure within the struct syntax. Instead,
you must use individual assignment statements to assign the initial value for each member.

Data structures cannot contain TOOL string values. To store a string of character data in a
structure, you must use an array of char or a pointer to char. For information about
converting a string value to an array of char values, see “Converting TOOL Strings to C-style
Arrays of Char” on page 137.

The following example shows how you could declare a struct data type named customer in
both C and TOOL:

A variable declared for a given struct data type actually contains the values of the data
structure, not a pointer to the data structure.

C Syntax TOOL Syntax

struct structure_name { struct structure_name

data_type member_name;]... [member_name : data_type;]...

}; [has property opaque=TRUE;]

end [struct];

C Example TOOL Example

struct customer { struct customer

 char LastName[20]; LastName : array[20] of char;

 int IDNumber; IDNumber : int;

 char gender; gender : char;

}; end struct;
Integrating with External Systems

Struct Data Types 145
Accessing Values in a Data Structure
Dot notation To access the values in a data structure, use dot notation, as shown the following syntax:

structure_variable_name.member_name

structure_variable_name identifies a variable of a struct data type, and member_name is the
name of a member in this data structure.

The following example shows how you would access the value of a member IDNumber in a
data structure of data type customer declared in the previous example:

Arrow notation If you reference a data structure using a pointer, you can use arrow notation to dereference
the value of a member in the data structure. To dereference the values in this structure
using arrow notation, use the following syntax:

pointer_to_structure_name -> member_name

pointer_to_structure_name identifies a pointer to a data structure, and member_name is the
name of a member in this data structure.

The following example shows how you would access the value of a member IDNumber in a
data structure of data type customer declared in the previous example:

Example: Referencing members
of a data structure with dot
notation

-- Declare a variable of the customer struct data type.

MyStruct : customer;

...

-- Assign values to the members of MyStruct.

...

x : int;

-- Reference the value of the IDNumber member using dot notation.

x = MyStruct.IDNumber;

Example: Using
arrow notation

-- Declare a data structure of type customer.

MyStruct : customer;

-- Declare MyPointer and assign MyPointer the address of MyStruct

MyPointer : pointer to customer;

MyPointer = &MyStruct;

-- Assign values to the members of MyStruct

...

x : int;

-- Reference the value of the IDNumber member using arrow notation.

x = MyPointer->IDNumber;
Chapter 10Using C Data Types in TOOL

Struct Data Types146
Alignment of Structs
The Forte system assumes that structs defined by C applications use the default alignment
defined by the C++ compilers supported by Forte for each platform. In general, this default
is to align the members of a struct at the natural boundary for the data type on that
machine. However, for PC Windows, the default alignment uses a byte boundary.

If you intend to access a struct in a C application that is aligned differently than the default
alignment expected by the Forte system, you need to define Forte structs to compensate for
this difference between what Forte expects and what the C structure provides. However, be
aware that this mapping can be complex and is machine-dependent.

Defining Structs within Structs
To define a struct as part of another struct, you can declare structs within structs using the
following syntax.

struct outer_struct
 [list_of_members]
 member_name : struct inner_struct
 [list_of_members]
 end [struct];
 [additional_members]
end [struct];

Structs that are declared as members within another data type exist only as part of the
outer data type. You cannot reference that data type except within data structures of the
outer data type.

The following example shows how you can define a struct data type containing structs as
members:

Alternatively, you can also define a struct for a project, then use this struct to define a
member of another struct, as in the syntax shown here:

struct inner_struct
 [list_of_members]
end [struct];

struct outer_struct
 [list_of_members]
 member_name : inner_struct;
 [additional_members]
end [struct];

Example: A struct data type
within another struct

-- Define a struct data type containing two other struct data types

struct s1

s1_a1 : int;

s1_a2 : struct s2

s2_a1 : float;

s2_a2 : struct s3

s3_a1 : float;

s3_a2 : array[10] of int;

end;

end;

end;
Integrating with External Systems

Struct Data Types 147
Defining Opaque Structs
Forte can use the definition of a struct that is defined in a C header file to generate the
necessary C++ wrapper code. Forte defines the struct as an opaque struct, which means
that you can use TOOL to allocate storage for the structure and define pointers for this
structure, but you cannot reference specific members of the structure unless you have
defined them explicitly in the TOOL struct definition.

You might want to define opaque structs in the following cases:

■ a struct is defined as opaque in an API, for example the LDIR type struct that is used
but not defined in <dirent.h> for functions such as opendir

■ the definition of a struct is system dependent, for example, the FILE type struct that is
defined in <stdio.h>

■ a struct is very complicated, and you only need to pass a variable of this struct type to a
C function, but you will never examine the members of the struct

You can use the following syntax to define an opaque struct:

struct struct_name
 [member_name : data_type;]
 has property opaque = TRUE;
end [struct];

struct_name must exactly match, including case, the name of the struct in the C header file.
struct_name becomes a data type name in the current name scope. The struct name must
be unique within the scope of the C project.

member_name is the name of a variable within the data structure. member_name must
exactly match, including case, the name of a member in the struct in the C header file. You
only need to include member names if you want to access the members in your TOOL
code.

data_type is the data type for a variable in the data structure, and must map to the data
type of the associated member in the C header file, as described in this chapter.

Within your external project definition file, you must specify extended properties,
externalincludefiles and externalincludedirectories, that identify the names and locations
of the C header files that contain the structs defined in this project definition file. Each
header file must be self-contained, that is, each header file must define or include all
definitions required for that header file.

The following table shows how you can map a struct definition in a C header file as an
opaque struct in an external project definition file. The definition of the struct in the C
header file is shown here to illustrate the mapping to TOOL; however, in many cases,
documentation about the definition of the struct might not be available.

C Header File Example (MyFile.h) TOOL Example

struct MyCStruct struct MyCStruct

{ int member1; has property opaque=TRUE;

char *Member2; end;

long member3;

short *MEMBER4; has property

}; extended=(externalincludefiles=’MyFile.h’,

externalincludedirectories=

‘%{MY_HEADER_FILES}’);
Chapter 10Using C Data Types in TOOL

Struct Data Types148
This example shows how you can use the MyCStruct struct defined in the MyFile.h C
header file to define a struct that you can use in TOOL. In this case, the contents of the
struct MyCStruct is unknown to TOOL.

You must define the name and location of the header file containing this structure using
two extended external properties of the project definition: externalincludefiles and
externalincludedirectories.

You can declare a variable of this struct type on the runtime stack, allocate storage for a
struct of this type, and define a pointer of this struct type. However, because this struct is
opaque to TOOL, the only thing you can do with the variable of this struct type is pass this
struct to a mapping method for a C function that requires this struct type as input.

If you want to define an opaque structure that has some members visible to TOOL, you can
define a struct as shown in the following example:

This example shows how you can use the MyCStruct struct defined in the MyFile.h C
header file to define a struct that you can use in TOOL. In this case, you have also explicitly
specified two members of the struct, member1 and Member2, in your project definition
file; you can access these members using your TOOL code.

You must define the name and location of the header file containing this structure using
two extended external properties of the project definition: externalincludefiles and
externalincludedirectories.

If you do not set externalincludedirectories in the project definition file, you need to
specify this information on the fcompile command with the -cflags or /COMPILER flags,
usually using the -I C++ compiler flag. However, in this case, you cannot use the auto-
compile feature when making a distribution.

For information about defining the externalincludefiles and externalincludedirectories
extended attributes in your project definition and about the syntax of the fcompile
command, see the information for the specific external system.

C Header File Example (MyFile.h) TOOL Example

struct MyCStruct struct MyCStruct

{ int member1; member1 : int;

char *Member2; Member2 : pointer to char;

long member3; has property opaque=TRUE;

short *MEMBER4; end;

};

has property

extended=(externalincludefiles=’MyFile.h’,

externalincludedirectories=

‘%{MY_HEADER_FILES}’);
Integrating with External Systems

Struct Data Types 149
Determining the Name Scope of Structs
When you define a derived data type, TOOL adds the type name to the current scope, so
that the current scope contains the type declaration.

For example, if a struct data type definition in a project, then the name of the struct data
type becomes a type name within that project. Similarly, if a struct data type definition is
part of another struct data type definition, as in the following example, then the name of
the inner structure is part of the outer structure’s name scope:

In this example, innerStruct is considered a component of outerStruct. To refer to
innerStruct you must fully qualify it as outerStruct.innerStruct.

For more information about name scope in TOOL, see TOOL Reference Manual.

Example: Scope of
data type names
within data types

-- Define a struct data type

struct outerstruct

-- Declare another struct data type within outerstruct

 a : struct innerStruct

 b : integer;

 end struct;

end struct;
Chapter 10Using C Data Types in TOOL

Typedef Data Types150
Typedef Data Types
The typedef key word lets you define synonyms for specific data types, just like you can in
C.

Restrictions You cannot pass typedefs between partitions, as parameters of events, or as parameters of
methods that are started using a START TASK statement.

You can only declare typedef data types in projects. You cannot declare typedefs within
methods.

The following table shows how you can map a typedef declaration between a C function
and a corresponding TOOL method.

type_name is the name that can be used as the name of a data type within the current
name scope. data_type is the actual data type or data type definition.

The following example shows how you can map a typedef declaration between C and
TOOL:

The following example shows how using the typedef data type can simplify declaring
variables of certain types:

Typedefs are replaced
by the data type itself

Typedefs exist in TOOL code only until you compile the code. Compiling the TOOL code
includes compiling a TOOL project or importing a project definition for an external project.
When you compile your TOOL code, any variables or derived data types that you defined
with typedefs are redefined using the actual data type.

After you compile your project:

■ Variables defined in your methods using typedef data types are now defined using the
actual data type definition.

■ Error messages refer to the actual data type, not to the typedef name.

■ Log file information refers to the actual data type, not to the typedef name.

■ When you debug your project, the data types of your variables will always be the actual
data type, not the to typedef name.

C Syntax TOOL Syntax

typedef data_type type_name; typedef type_name : data_type ;

C Example TOOL Example

typedef char LastName[15]; typedef LastName : array[15] of char;

Example: Typedef
data types

-- Define a data type for an integer array

typedef intArray : array [1..10] of integer;

myFirstArray : intArray;
Integrating with External Systems

Typedef Data Types 151
Union Data Types
Unions are data types that define a set of alternative values, or members, that can be stored
in the same space in memory. Only one member can be assigned a valid value at a time.
TOOL supports only non–discriminated unions, like those in C.

Restrictions You can define unions within projects; however, you cannot define unions within methods.

You cannot pass unions between partitions, as parameters of events, or as parameters of
methods that are started using a START TASK statement.

You can assign a value to only one of the members of a union data type at any one time.
When you assign a value to a union data type member, remember that you can only
reference the last member assigned. If you try to reference one of the other members, the
results of that reference will be unpredictable.

The following table shows how you can map a union declaration between a C function and
a corresponding TOOL method.

union_name is the name of the union data type within the current name scope.
member_name is the name for each member defined for the union data type. The names of
these members must be unique within the union data type. data_type is the data type for a
member in the union.

You cannot assign an initial value for a union within the union syntax. Instead, you must
use an assignment statement to assign the initial value.

The following example shows how you can map a C union data type declaration to a TOOL
union declaration:

Dot notation After you assign the value of a union, you can refer to the member currently containing a
value using this notation:

union_variable_name.member_name

union_variable_name is the name of a variable of the union data type, and member_name
is the name of the member that has currently a value.

Arrow notation If you reference a union using a pointer, you can use arrow notation to dereference the
value of a member of the union. To dereference the values in this union using arrow
notation, use the following syntax:

pointer_to_structure_name -> member_name

pointer_to_structure_name identifies a pointer to a data union, and member_name is the
name of a member in this union.

C Syntax TOOL Syntax

union union_name { union union_name

 data_type member_name; . . . [member_name : data_type;] . . .

}; end [union];

C Example TOOL Example

union PrimaryID { union PrimaryID

 char LastName[20]; LastName : array[20] of char;

 int SerialNumber; SerialNumber : int;

}; end union;
Chapter 10Using C Data Types in TOOL

Typedef Data Types152
The following example shows how you can define a union data type that can contain a
value for time represented as:

■ a float value specifying the number of hours in the day so far

■ an array of characters that contains values like “twelve twenty-two” for 12:22

■ a struct value containing two integer variables: hours and minutes

This example shows how you can assign values of different data types in the same area of
storage, and that you should only reference the last variant assigned.

Caution The TOOL runtime system does not check whether a reference to a union variable variant
is valid given the current value of the union variable. You are responsible for making sure
that your code references the last variant assigned for the variable.

Example: Union data types -- Define a union data type for time values

union myUnion

 timeHours : float; -- Time in hours; decimal

 timeWords : pointer to char; -- Time as text

 timeStruct : struct Inner -- Time stored as hours and minutes

 hours : integer;

 minutes : integer;

 end;

end;

-- Declare a union variable

myVar : myUnion;

-- Assign a value to myVar

myVar.timeHours = 10.5;

...

-- Assign a different value to myVar

myVar.timeStruct.hours = 10;

myVar.timeStruct.minutes = 30;

...

-- Assign yet a different value to myVar

myVar.timeWords = strdup(‘ten thirty’);

...

-- The following statement is not legal because the variant

-- currently assigned for myVar is myVar.timeWords

if myVar.timeStruct.hours > 12 then

 ... -- These statements will not execute correctly
Integrating with External Systems

Operator Precedence and Associativity 153
Operator Precedence and Associativity
The following table summarizes the rules of precedence and associativity for all TOOL
operators. The order of precedence indicates the order in which the operators are
evaluated. For example, if you have all the operators in the table in a single TOOL
statement, then the -> and [] operators are evaluated first, followed by * and &, and so on.

This table includes the dereferencing operators, which are specific to C data types:

Precedence Operators Associativity

1 -> [] left to right

2 * (pointer dereference) & (address) right to left

3 - (unary minus) + (unary plus) right to left

4 * (multiplication) / % left to right

5 + - left to right

6 < > = <= >= != <> left to right

7 & left to right

8 ^ left to right

9 | left to right

10 NOT right to left

11 AND left to right

12 OR left to right
Chapter 10Using C Data Types in TOOL

Managing Memory for C-style Arrays and Data Structures154
Managing Memory for C-style Arrays and Data Structures
This section explains how you can dynamically allocate storage for C-style arrays and data
structures in memory that is not managed by Forte.

Forte provides two ways for you to declare and use C-style arrays and data structures
(structs):

■ Declare the C-style array or data structure as a local variable on the runtime stack.

Use this approach when your application does not need this variable beyond the end of
the current method. Forte’s memory management will automatically free the memory
for this variable when the method ends. This approach is identical to the way other
TOOL variables are allocated, as well as identical to the way that local or automatic
variables are allocated in C.

■ Declare a pointer to the C-style array or data structure, then dynamically allocate the
storage using the C functions calloc or malloc.

Use this approach when your application needs this data beyond the end of the current
method. The memory allocated for this variable will remain allocated until some part of
the application uses the C function free to explicitly free the memory. This approach is
identical to the convention for allocating memory in C language programs.

Use this approach only when necessary to retain a C-style array or data structure
variable beyond the scope of the current method.

The following example shows how TOOL allocates memory for different kinds of data:

In this example, TOOL defines the variables myNumber, firstStruct, and secondPtr as local
variables on the runtime stack each time myMethod is invoked. Note that TOOL allocates
secondPtr with only enough memory for the pointer itself, not the data structure.

Example:
Declaring variables

-- Define a struct data type

struct myStruct

 myInt : integer;

 myFloat : float;

end;

. . .

-- Define a method that declares variables

method myClass.myMethod()

begin

-- The following variables are allocated in the TOOL-managed storage

-- area

 myNumber : integer;

 firstStruct : myStruct;

 secondPtr : pointer to myStruct;

 secondPtr = &firstStruct;

end method;
Integrating with External Systems

Managing Memory for C-style Arrays and Data Structures 155
 Dynamically Managing Memory
You should dynamically allocate memory for derived data types in your application only
when the application needs to retain a C-style array or data structure variable beyond the
scope of the method in which the variable is declared.

You can use the calloc or malloc functions to allocate the memory needed by a variable of
a derived data type. The memory allocated for this variable will remain allocated until
some part of the application uses the C function free to explicitly free the memory. This
approach is identical to the convention for allocating memory in C language programs.

TOOL provides four C function calls for dynamically managing memory:

calloc allocates a contiguous space for a C-style array, initializes the members to zero,
and returns a pointer.

free deallocates the space pointed to by a specified pointer.

malloc allocates a memory space for a value of a specified size and returns a pointer. The
storage is not initialized.

strdup allocates a memory space, then copies a source string into that space and returns
a pointer to char.

TOOL also provides a sizeof function that returns the size of a given data type.

These C functions are described in detail in the following sections.

These TOOL C functions use the corresponding C runtime library functions available for
the partition where the TOOL method is running.

You can allocate and deallocate memory dynamically using these C functions either within
your TOOL code or within your C application. For example, you can allocate a space using
the malloc function in a TOOL method, then later deallocate the same space using the free
function in a called C function.

calloc
The C function calloc allocates a contiguous space for a C-style array, whose members
have been initialized to zero, and returns a generic pointer. The syntax for calloc is:

calloc(count=integer, size=integer) : pointer;

count=integer specifies the number of array members that you want to allocate and
initialize. size=integer specifies the size, in bytes, that you want each member of the array to
be. calloc returns a generic pointer to the area of initialized memory, which means that you
usually need to cast the pointer to the appropriate pointer type.

Note that in this example, you need to cast the generic pointer returned by the calloc C
function before assigning the pointer value to myPointer.

Example: Using calloc() -- Declare a pointer to an array

myPointer : pointer to array[5] of int;

-- Allocate memory for the array of 5 integers

myPointer = (pointer to array[5] of int) (calloc(5,

sizeof(array[5] of int)));
Chapter 10Using C Data Types in TOOL

Managing Memory for C-style Arrays and Data Structures156
free
The C function free deallocates the space pointed to by a specified generic pointer. The
syntax for free is:

free(mem=pointer);

mem=pointer indicates a generic pointer that references the space that you want to
deallocate.

malloc
The C function malloc allocates a space in memory of a specified size and returns a generic
pointer, but does not initialize the storage. The syntax for malloc is:

malloc(size=integer) : pointer;

size=integer is the size, in bytes, that you want the allocated space to be. malloc returns a
generic pointer, which you usually need to cast to the appropriate pointer type.

The area of memory that is referenced by the returned pointer is not initialized, which
means it might contain garbage. Do not use the value of this area of memory until you have
initialized it with your own data.

Note that in this example, you need to cast the generic pointer returned by calloc before
you assign the pointer value to myPointer.

strdup
The C function strdup allocates space in memory, copies a string value into this space, and
returns a pointer to char. The syntax for strdup is:

strdup(source=string) : pointer to char;

source=string specifies the string value that you want to have copied into the allocated
space. strdup automatically allocates a space of the correct size to hold the string value.

Example: Using free () -- Declare a pointer to an int

myPointer : pointer to int;

-- Allocate memory for the int

myPointer = (pointer to int) (malloc(sizeof(int)));

-- Do some stuff with the pointer.

...

-- When you know you don’t need it anymore, free it.

free(mem = myPointer);

Example: Using malloc () -- Declare a pointer to an int

myPointer : pointer to int;

-- Allocate memory for the int

myPointer = (pointer to int) (malloc(sizeof(int)));

Example: Using strdup () -- myCharPointer is a pointer to char that references a null-

-- terminated string. TOOL stores this string as a

-- C-style array[23] of char, with 22 characters and 1 NULL.

myCharPointer : pointer to char;

myCharPointer = strdup(‘String of sample text.’);
Integrating with External Systems

Managing Memory for C-style Arrays and Data Structures 157
sizeof
You can determine the size of a given data type using the sizeof compiler function. The
syntax of the sizeof function is the same as in C:

sizeof(data_type): integer;

data_type is the name of the data type that you want to allocate memory for.

Casting Pointers Returned by C Functions
The malloc and calloc C functions return a generic pointer value that points to the space
allocated. To assign the generic pointer to a specific data type, you must cast the generic
pointer to the appropriate type of pointer. The following example shows how you could
cast a pointer:

Managing Memory in Exception Handling
When you code the exception handlers within a method, you need to consider whether you
should free allocated memory.

Generally, if a method allocates and deallocates a given area of memory, you should
include in the exception handlers steps to deallocate memory:

� To deallocate allocated memory in an exception handler:

1 Check whether the pointer to the C-style array or data structure is NIL.

If the pointer is NIL, then the application has already deallocated the storage, and the
exception handler does not need to do Step 2.

2 Use the free C function to deallocate the memory referenced by the pointer.

Managing Memory for Asynchronous Processing
To pass a C-style array or data structure as a parameter for events and methods that are
started using start task, you must dynamically allocate the memory for the C-style array or
data structure. Then, you can use a pointer to pass the address of the memory containing
the C-style array or pointer.

Caution Make sure that your application frees the memory for these parameters only after all of the
event receivers and tasks are finished using the parameter values.

For example, if you pass a pointer to a data structure as the parameter of an event, you
need to make sure that the data structure exists until all possible event handlers have used
the data structure.

Example: Using sizeof() -- Declare a pointer to an array

myPointer : pointer to array[5] of int;

-- Allocate memory for the array of 5 integers

myPointer = (pointer to array[5] of int) (malloc(

sizeof(array[5] of int)));

Example: Allocating memory
for pointers

-- Allocate a pointer to a structure

myPointer : pointer to myStruct;

-- Allocate memory for the structure itself

myPointer = (pointer to myStruct)(malloc(sizeof(myStruct)));
Chapter 10Using C Data Types in TOOL

Managing Memory for C-style Arrays and Data Structures158
Managing Memory Using ExternalRef Subclasses
Forte provides a class called ExternalRef that allows the Forte system to automatically
manage when external resources are deallocated, based on when TOOL code no longer
references the external resources.

The ExternalRef class is part of the Framework library. This class is an abstract class that
you can use in your TOOL code to reference external resources, such as files and data
structures. You must subclass the ExternalRef class to define the kind of resources being
managed. An instance of a subclass of ExternalRef represents an external resource.

When a TOOL object wants to reference an external resource represented by an instance of
an ExternalRef subclass, the TOOL object is bound to that ExternalRef subclass instance.
When all the bound TOOL objects have been released by Forte memory management
because they are no longer required, the Forte system invokes the Release method of the
instance of the ExternalRef subclass. The Release method releases the external resource.
After the Release method completes, the Forte system releases the instance of the
ExternalRef subclass.

The XRefTime example demonstrates how you could use an ExternalRef subclass to
reference external resources.

For complete information about defining and using ExternalRef subclasses, see the Forte
online Help.
Integrating with External Systems

Mapping C Function Parameters in TOOL Methods 159
Mapping C Function Parameters in TOOL Methods
This section describes how to map the ways that TOOL passes parameters to your external
programs.

Mapping method When you write a project definition, such as a C project, in a file, you need to map the C
function parameters to the parameters of the corresponding TOOL method. For this
discussion, we will call the TOOL method that maps to the C function the mapping method.

You can use three TOOL options on the mapping method parameters: input, output, and
input output. These options specify how data is passed between TOOL and the C function.
Because C passes and returns all parameters as values, you need to decide which TOOL
options to specify based on what values you actually want to pass, and in which direction.
The input, output, and input output options are described in “Specifying TOOL Parameter
Options” on page 163.

Calling method You must understand exactly what the C function intends to pass and why. You must also
understand whether the calling method, the method that calls the C function using the
mapping method, will later use this parameter.

The following table shows you how you can map C function parameters to parameters in
TOOL mapping methods. When a C function header can be mapped in more than one way,
then you might need to consider how you would call this function using C to determine
which mapping to use. These mappings are explained later in this section.

C Function
Parameter
Type

C Function
Header Example

How C
Function is
Called TOOL Mapping Method See:

Simple data
type

CFn(int MyParm) CFn(IntValue) CFn(input MyParm:int); page 160

Pointer to a
simple data
type

CFn(int *MyParm) CFn(PtrInt)

CFn(PtrInt)

CFn(&IntValue)

CFn(input MyParm: pointer to int);

CFn(output MyParm: int);

CFn(input output MyParm: int);

page 160

Data structure CFn(struct sType MyParm);

CFn(struct sType *MyParm);

CFn(struct sType *MyParm);

CFn(struct sType *MyParm);

CFn(MyStruct)

CFn(PtrStruct)

CFn(PtrStruct)

CFn(&MyStruct)

CFn(input MyParm: sType);

CFn(input MyParm: pointer to sType);

CFn(output MyParm : sType);

CFn(input output MyParm: sType);

page 161

Array CFn(char *PtrArray);

CFn(char MyArray[10]);

CFn(int MyArray[]);

CFn(char **PtrArray);

CFn(PtrArray)

CFn(MyArray)

CFn(MyArray)

CFn(*PtrArray)

CFn(input PtrArray : pointer to char);

CFn(input MyArray[10] of char);

CFn(input MyArray[] of int);

CFn(output PtrArray: pointer to
char);

page 162
Chapter 10Using C Data Types in TOOL

Mapping C Function Parameters in TOOL Methods160
Mapping Simple C Data Type Parameters
In general, if the C parameter is a simple data type, like int or char, then the TOOL
parameter is an input parameter of the corresponding TOOL type.

The following example shows how a C function with a parameter of a simple data type
would be defined as a TOOL method:

Mapping Pointer Parameters
C functions use pointers as parameters to:

■ pass data by reference

■ pass addresses that can be changed

■ pass output values back to the calling application

You need to know how the C function uses the parameters to decide whether the TOOL
parameter that maps to the pointer should be a input or output pointer parameter or an
input output parameter.

You can frequently determine which option to use based on the value you would pass to
this C function from another C function.

The examples in this section work with the following function header:

Passing an Input Value with the Pointer
In C, if you would normally pass an input pointer value when you invoke the C function,
then for the TOOL mapping method, you should use the input option and define the
mapping method parameter as a pointer.

In this case the C function pointer maps to an input pointer parameter in the mapping
method, as shown:

In this example, MyFunction either uses a copy of the value referenced by the pointer, or
dereferences the pointer and changes the value referenced by the pointer.

C Function TOOL Method

void op1(int firstParm); op1(input firstParm : int);

void MyFunction(int *MyParm);

C Function TOOL Equivalent

void MyFunction(int *MyParm); MyFunction(input MyParm : pointer to
int);
Integrating with External Systems

Mapping C Function Parameters in TOOL Methods 161
Getting an Output Value using the Pointer
In C, if you would normally pass the address of an int variable (&MyParm) to the C function
to retrieve a value produced by the C function, then you should use the output option. You
do not need to specify the pointer in this case, because the output option makes TOOL
implicitly pass the address of the variable.

In this case the C function pointer parameter maps to an output parameter in the mapping
method, as shown:

In this example, MyFunction generates a result and passes the address of the result back to
the calling application using the pointer parameter.

Passing an Input Value That Will Change
In C, if you would normally pass an address (&variable) as an input parameter when you
invoke the C function, then you should specify the input output option with the name of
the variable. You do not need to specify the pointer in this case, because the input output
option makes TOOL implicitly pass the address of the variable.

In this case the C function pointer would map to an input output parameter with one less
level of indirection in the mapping method, as shown:

In this example, MyFunction accepts an address as an input value, changes the address or
value at the address, then passes back the final value of the address to the calling
application.

Mapping Data Structure Parameters
The following examples show how you can map C function parameters involving data
structures to TOOL method parameters. These examples omit the return value.

C Function TOOL Equivalent

void MyFunction(int *MyParm); MyFunction(output MyParm : int);

C Function TOOL Equivalent

void MyFunction(int *MyParm); MyFunction(input output MyParm : int);

How the C Function Uses
the Struct Parameter C Function Header TOOL Mapping Method

Needs a copy of the data structure CFn(struct stype MyParm); CFn (input MyParm : sType);

Dereferences and changes the data
structure

CFn(struct stype *MyParm); CFn (input MyParm : pointer to sType);

Produces an output data structure CFn(struct sType *MyParm); CFn (output MyParm : sType);

Changes and passes back the data
structure

CFn(struct sType *MyParm); CFn (input output MyParm : sType);
Chapter 10Using C Data Types in TOOL

Mapping C Function Parameters in TOOL Methods162
Mapping C-Style Array Parameters
TOOL methods pass C-style arrays by reference. The TOOL syntax for passing a C-style
array is functionally equivalent to passing a pointer to the first element of the array.
However, you probably want to map the syntax of your TOOL mapping method as closely
as possible to the C function header.

You can only pass C-style arrays as input parameters. If you need to retrieve an array from
a C function (an output or input output parameter), you must pass a pointer to an array.

Mapping a string to a
 char ** parameter

If you are retrieving an array of characters from a C function, you can pass a string;
however, in this case the value is stored in memory managed by Forte, so you cannot rely
on the address of the string value remaining constant after the C function returns. It is
better to pass a pointer to char instead of string, because the memory address for the array
of char remains constant until the memory is deallocated.

The following examples shows the mapping of the C function to their closest TOOL
equivalents:

Mapping Return Values
When you map a C function header to a TOOL mapping method, you must also map the
return value of the C function as a return value for the mapping method. The following
table shows how to map the return values of the C function to the TOOL mapping method.

return_type is the data type of the return value.

C Function TOOL Equivalent

Pointer to an array of char CFunction(char *PtrToArray); CFunction(

 input PtrToArray : pointer to char);

Array of char CFunction(char MyArray[10]); CFunction(

 input MyArray : array[10] of char);

Retrieving a pointer to char CFn(char **PtrTCharArray); CFn(

output PtrCharArray:pointer to char);

Retrieving a string CFn(char **PtrTCharArray); CFn(

 output PtrToCharArray : string);

C Function Header Syntax TOOL Mapping Method Syntax

return_type function_name (function_name (

 [data_type parameter,] . . . [parameter : data_type;] . . .

);) [: return_type] ;
Integrating with External Systems

Mapping C Function Parameters in TOOL Methods 163
The following example shows how you would map the return value of a C function header
to the return value for a TOOL mapping method:

In this example, the return value in both cases is a pointer to a tm struct.

In general, you follow the same rules for mapping C data types to TOOL data types for the
return values as for function parameters. For more information, see “Mapping Simple C
Data Types to TOOL Data Types” on page 131 or “Mapping Derived C Data Types to TOOL
Data Types” on page 133.

Specifying TOOL Parameter Options
You can use three TOOL options on the mapping method parameters to set the TOOL
mechanism for passing parameters: input, output, and input output. These options
specify how data is passed between TOOL and the C function. Because C passes and
returns all parameters as values, you need to decide which TOOL options to specify based
on what values you actually want to pass, and in which direction. The following sections
describe how these mechanisms work with C functions.

Input Mechanism
By default, parameters in TOOL methods are input parameters. When a parameter in the
mapping method has the input option, TOOL passes a copy of the value to the C function.
Generally, changing the value of the parameter in the C function does not affect the value
in the calling method. However, if you pass a pointer to a derived data type as an input
parameter, you can dereference the pointer and change values in the derived data type.
The calling method can later reference the same pointer to see the changed values.

The following examples show how you can use input parameters and how they work. In
these examples, v2 is an object of the class that contains the methods shown.

C Function Header Example TOOL Mapping Method Example

struct tm *localtime(localtime(

 const time_t *tp) input a: pointer to time_t

) : pointer to tm

Example: input parameter
that will not change

-- In C, the C function header for inputInt() is:

-- char *inputInt(int a1)

-- Declare the mapping method:

inputInt(a : int) : string;

-- Call this method with TOOL code:

intVal : int = 20;

v2.inputInt(intVal);

-- Whatever happens to intVal in inputInt is not

-- reflected here in the calling method.

Example: input parameter
that will change

-- In C, the C function header for inputPointer() is:

-- char *inputPointer(void *a1)

-- Declare the mapping method:

inputPointer(a : pointer) : string;

-- Call this method with TOOL code:
Chapter 10Using C Data Types in TOOL

Mapping C Function Parameters in TOOL Methods164
You can use the Forte example program AllCType as a reference for how to define mapping
methods for parameters of all data types and levels of indirection.

Output Mechanism
When a parameter in the mapping method has the output option, TOOL retrieves a value
from the C function when the C function completes. The calling method does not provide
an input value for this parameter when it invokes the C function.

In C, a C function can only pass back the value of a parameter when the parameter is a
pointer. Therefore, you can only pass back values by reference, using the value of this
pointer.

However, in TOOL, the output option tells TOOL to expect the address of the parameter.
When the C function passes back the address of the parameter, TOOL automatically
dereferences this address and passes the parameter itself to the calling method.

The output option automatically passes an address value to the C function. Therefore, you
must remove one level of indirection when you map a pointer parameter in the C function
to a TOOL mapping method.

The following examples show how you can use output parameters and how they work. In
these examples, v2 is an object of the class that contains the methods shown.

intVal : int = 20;

ourPtr : pointer to int;

ourPtr = &intVal;

-- Now call the inputPointer method with this pointer.

v2.inputPointer(ourPtr);

-- We can’t assume that intVal is still 20 after this call.

Example: scalar
output parameter

-- In C, the C function header for outputInt() is:

-- char *outputInt(int *a1)

-- because output parameters are passed by reference.

-- Declare the mapping method:

outputInt(OUTPUT a : int) : string;

-- Call this method with TOOL code:

intVal : int;

v2.outputInt(intVal);

-- intVal is assigned a value in outputInt().
Integrating with External Systems

Mapping C Function Parameters in TOOL Methods 165
You can use the Forte example program AllCType as a reference for how to define mapping
methods for parameters of all data types and levels of indirection.

Input Output Mechanism
When a parameter of the mapping method is specified using the input output option, the
calling method passes an input value to the C function. The calling method expects the C
function to change the value of this parameter. When the C function returns control to the
calling method, TOOL assigns the value of the parameter in the C function to the value
passed as the parameter in the calling method.

In TOOL, the input output option tells TOOL to pass the address of some copy of the
specified parameter to the C function. When the C function passes back the address of the
final value of the parameter, TOOL automatically dereferences this address and assigns the
final value to the parameter in the calling method.

The input output option automatically passes an address value to the C function.
Therefore, you can remove one level of indirection when you map a pointer parameter in
the C function to a TOOL mapping method.

The following examples show how you can use input output parameters and how they
work. In these examples, v2 is an object of the class that contains the methods shown.

Example: pointer type
output parameter

-- In C, the C function header for outputPointer() is:

-- char *outputPointer(int **a1)

-- because all output parameters are passed by reference,

-- including pointers.

-- Declare the mapping method:

outputPointer(OUTPUT a : pointer to int) : string;

-- Call this method with TOOL code:

ourPtr : pointer to int; -- the value of this pointer is NIL

v2.outputPointer(ourPtr);

-- ourPtr is assigned a value in outputPointer().

Example: scalar input
output parameter.

-- The C function outputInt() is defined like this:

-- char *ioInt(int *a1)

-- because input output parameters are passed by reference.

-- Declare the mapping method like this:

ioInt(INPUT OUTPUT a : int) : string;

-- Note that you remove one level of indirection for the parameter

-- Call this method with TOOL code like this:

intVal : int;

v2.ioInt(intVal);

-- intVal now has whatever value it was assigned in ioInt().
Chapter 10Using C Data Types in TOOL

Mapping C Function Parameters in TOOL Methods166
You can use the Forte example program AllCType as a reference for how to define mapping
methods for parameters of all data types and levels of indirection.

Example: pointer type input
output parameter

-- The C function ioPointer() is defined like this:

-- char *ioPointer(int **a1)

-- because all output parameters are passed by reference,

-- including pointers!

-- Declare the mapping method like this:

ioPointer(INPUT OUTPUT a : pointer to int) : string;

-- Note that you remove one level of indirection for the parameter

-- Call this method with TOOL code like this:

ourPtr : pointer to int;

v2.ioPointer(ourPtr);

-- ourPtr has whatever value it was assigned in ioPointer().
Integrating with External Systems

Part III
Writing C++ Client Applications
Part III of Integrating with External Systems provides complete information about
integrating with C++.

Part III contains the following chapters:

■ Chapter 11, “Accessing Forte Using C++” on page 169

■ Chapter 12, “C++ API Reference Information” on page 191

168
Integrating with External Systems

Chapter 11
Accessing Forte Using C++
This chapter explains how you can generate a C++ API that lets you access your Forte
application using C++ calls.

This chapter includes the following topics:

■ designing an application to be accessed by C++

■ generating a C++ API for a Forte application

■ writing a C++ client application that accesses a Forte application

■ writing a C++ client application that accesses the Forte runtime system

About Accessing Forte Using C++170
About Accessing Forte Using C++
This chapter explains how to produce and use a C++ API (application program interface)
that provides access to a Forte application and how to access the runtime library using the
C++ libraries provided as part of the Forte product.

Forte lets you develop C++ client applications that interact with both Forte applications
and the Forte runtime system itself. Forte provides a C++ API to all the classes, attributes,
and methods defined by the Forte libraries, except for the Display library. You can easily
generate a C++ API for any Forte application that has a client partition. Forte cannot
generate C++ APIs for server applications (applications with no client partitions) or directly
for service objects.

C++ applications cannot access objects of the Display library classes or their subclasses,
such as windows or widgets.

Note You cannot access C++ client applications or functions from within Forte.

Using the C++ APIs, you can write C++ code that interacts with the Forte classes to
implement servers, database access applications, and so forth. We strongly recommend
that you take advantage of the features provided by Forte to implement these kinds of
applications, then write C++ client applications that access these Forte services.

C++ client application
controls flow

The C++ client application starts the Forte client partition and controls the flow of the
application. This C++ client application then instantiates classes and invokes methods in
the Forte application and the Forte runtime system.

Figure 11 Using a C++ API

To generate a C++ API for a client application, you set a property on the client partition and
compile the generated C++ code.

For detailed instructions about how to generate a C++ API for an application, see
“Generating a C++ API for a Forte Application” on page 174.

Client

User-
Written

C++
Application

Forte
TOOL

Objects

Forte
Generated

C++
Library

Server Partition
Integrating with External Systems

About Accessing Forte Using C++ 171
Use handle classes The C++ API header file that is generated contains definitions of handle classes that are
implemented in the C++ API. The handle classes represent the classes in the main project
of the application and the classes in the supplier plans that are used by the application.

As a C++ programmer, you create or reference objects using these handle classes. You can
then interact with the Forte TOOL objects using these handle classes.

Functions provide handles to
service objects

Any service objects that are defined in the main project of the Forte client application or
that are accessible in the supplier plans are accessible using global functions defined in the
C++ API header file.

Access attributes using
methods

You cannot directly access the attributes of Forte objects using a generated C++ API.
Instead, Forte generates get and set member functions that you can use to retrieve values
and set attributes for methods. You cannot access virtual attributes using the C++ API.

No C++ API for events C++ client applications cannot directly register for events that are posted by Forte or user
applications. C++ clients also cannot directly post events. However, you can define TOOL
methods that post events and register for events, then generate C++ APIs for these
methods. This approach is described in “Events” on page 199.

Terminology Used in Part 3
This section contains terms that this manual uses to describe how you can access Forte
services using C++.

C++ API An application program interface that lets a C++ client application access
services and use runtime functions provided by a Forte application.

C++ client application A C++ application that uses the C++ API for a Forte client
application.

Handle class A class that provides external applications a safe API to a regular Forte class.

Handle object An instance of the handle class that represents an object in the Forte
client application.

Task handle A reference to a task running in the Forte client application.
Chapter 11Accessing Forte Using C++

Designing an Application to be Accessed by C++172
Designing an Application to be Accessed by C++
Any Forte application that you want to access using C++ must have a client partition. Your
C++ client application interacts with the Forte client partition, and Forte manages
communication with other Forte services. Forte uses the start class and method for the
Forte client partition to determine what handle classes and global functions to generate.

Although you can choose to generate a C++ API directly from an existing client partition in
your application, in most cases, it is useful to define a client partition specifically for
generating a C++ API.

Restrictions when Generating and Using a C++ API
This section describes some restrictions you should consider before producing a C++ API.

C++ API Uses Case Defined in TOOL
Although TOOL is not case sensitive, C++ is, and the C++ API that is generated based on
your Forte application keeps the same case that you used in your TOOL code.

No Virtual Attributes
Forte does not include virtual attributes or their methods in the generated C++ handle
classes.

Cannot Use Subclasses of Display Library Classes
You can generate a C++ API for a partition that uses classes and subclasses from the Display
library; however, you can not access classes that are classes and subclasses of the Display
library.

No C++ API for Events
Forte does not generate C++ APIs for registering for Forte events or for posting Forte events.
If you want a C++ client application to be able to respond to Forte events, you should
define a TOOL method that contains an event loop that registers for the event. This
approach is described in “Events” on page 199.

Supplier Libraries Must Be Compiled and Have Handle
Classes
If the C++ client application uses supplier TOOL libraries, these TOOL libraries must have
their handle classes available and be compiled libraries. If the supplier libraries are not
compiled and do not have these handle classes available, applications that use the C++ API
will have unpredictable runtime behavior.

If the supplier TOOL libraries have not been compiled and do not have their handle classes
available, you need to make a new compiled distribution for these libraries while running
Fscript or the Partition Workshop with the cg:13:1 configuration flag set.
Integrating with External Systems

Designing an Application to be Accessed by C++ 173
Defining a Client Partition for the C++ API
In many cases, the existing client partition for your client application will not produce an
appropriate set of C++ class definitions. The client partition might produce too many
classes in its API, or you might not want C++ client applications to be able to interact with
certain classes or service objects using certain methods. You can define a client partition
specifically for C++ clients to make the generated C++ classes more usable for C++
programmers and limit access to certain services in your application.

To generate a C++ API that accesses a server application (an application containing only
server partitions), define a client partition for the application. You can also create a custom
Forte client for an existing client application, so that you can customize the C++ API that
gets generated.

For example, suppose the existing client partition for an application contains several
windows and only accesses a few of the services that you want a C++ client application to
access. In this case, you can create a new main project that defines the new client partition.
In this project, you can define the plans for several unrelated services as suppliers to this
main project and simply invoke the Init methods on the service objects from the various
supplier plans.

The example used in this section generates classes and global functions for the services
provided by the BankServices project.

� To define a new client partition:

1 Create a new project.

In the example, create a project called CppBank, which does not include the Display or
GenericDBMS libraries.

2 Include the supplier projects that define the service objects that you want to make
available to C++ client applications.

In the example, add a supplier project called BankServices.

3 Define a nonwindow class.

In the example, define a class called CppAPI.

4 Define a method.

In this method, instantiate each class that you want to include from the supplier classes
and invoke a method on each service object that you want to access from C++.

In the example, the BankingAccess has a method that references the BankServer service
object to ensure that handle classes are generated for the classes and methods used by
this service object.

5 Define this method as the start method for the project.

6 Configure a client application using this project as the main project.

super.Init();

s1 : BankService = BankServer;

See CppBanking example Project: CppBanking • Class: BankingAccess • Method: Init
Chapter 11Accessing Forte Using C++

Generating a C++ API for a Forte Application174
Generating a C++ API for a Forte Application
You need to generate a C++ API for each platform on which you intend to have a C++ client
application interact with the Forte application.

The steps you need to perform depend on whether you use the auto-compile feature. You
generate the C++ API for a client partition at the same time Forte would generate code for a
compiled client partition. The auto-compile feature generates and compiles the files for the
C++ API when you make a distribution. If you do not use the auto-compile feature, the
fcompile command generates and compiles the files for the C++ API.

When you make a distribution using the auto-compile and auto-install features, the files
that are generated and installed include the usual image repositories or executables for the
client partition, as well as the files that enable the C++ API.

These files are installed in the same FORTE_ROOT/userapp subdirectory in which the
client partition files are installed. For example, if the application is called CppBanking with
a release of cl0, and then the C++ API files and the client partition files are in
FORTE_ROOT/userapp/cppbanki/cl0/.

The files that are generated and installed for the C++ API are described in “Files Generated
as Part of a C++ API” on page 192.

The following sections describe how to generate a C++ API using the Forte workshops or
Fscript commands.

Step 1. Partition the Application
Assign the client partition wherever you want to generate a C++ API.

� In the Forte Workshops:

1 Click the File > Partition command to partition the application and open the Partition
Workshop.

2 In the Partition Workshop, assign the client partition wherever you want to generate a
C++ API.

� In Fscript:

1 Enter the following series of Fscript commands:

For more information about these commands, see the Fscript Reference Manual.

fscript> FindPlan plan_name # Name of main project.

fscript> FindActEnv

fscript> Partition 3 # Replace any current configuration.

fscript> AssignAppComp node_name component_name
Integrating with External Systems

Generating a C++ API for a Forte Application 175
Step 2. Set the Compiled and Client Partition Options
On the application’s client partition, set the properties that indicate that a C++ API is to be
generated and compiled. You need to set these property for each assigned client partition
where you want a C++ API generated and compiled.

� In the Forte Workshops:

1 On each client node for which you want a C++ API generated, open the properties
dialog.

2 Toggle the Compiled and Generate C++ API toggles on, then click OK to close the dialog.

� In Fscript:

1 Enter the following series of Fscript commands:

For information about Fscript and the SetAppCompCompiled command, see the Fscript
Reference Manual.

Step 3. Make the Distribution
The steps you need to perform depend on whether or not you use the auto-compile
feature.

Note If you intend to deploy both a compiled Forte client partition and a C++ API based on the
same partition on the same platform, you need to make two distributions, then install, as
described in Technote 11129.

Using the Auto-compile and Auto-install Feature
If you use the auto-compile and auto-install features, this step also generates the files for
the C++ API, as well as the C++ code for any compiled partitions. Forte next compiles the
C++ API and any compiled partitions, then installs the application in the appropriate place
in the FORTE_ROOT/userapp directory.

If you use the auto-compile and auto-install features, you do not need to perform Step 4.

To use the auto-compile feature, your system manager must have installed the
CodeGenerationSvc and AutoCompileSvc applications appropriately in your environment.
For information about installing these applications, see the Forte 4GL System Management
Guide.

fscript>SetAppCompCompiled node_name 1 component_name 1

fscript> Partition
Chapter 11Accessing Forte Using C++

Generating a C++ API for a Forte Application176
� In the Forte Workshops:

1 Click the File > Make Distribution command. When the Make Distribution dialog
appears, select the location for the application distribution.

2 To use the auto-compile and auto-install features, toggle the Auto-Compile and Install
in Current Environment toggles to on.

3 Click OK.

Forte makes the application distribution.

� In Fscript:

1 To use the auto-compile and auto-install features, enter Fscript commands as shown

2 To make a distribution without the auto-compile and auto-install features, enter Fscript
commands as shown:

Step 4. Compile and Install
(If Auto-compile and Auto-install Are Not Used)

You need to perform these steps only when you do not use the auto-compile and auto-
install features when you make the distribution.

You perform these steps outside Fscript and the Forte workshops, and the steps are the
same regardless of which method you used to make the distribution.

� To compile and install a C++ API:

1 For each platform on which you want the C++ API available, copy the .pgf file to a node
on which you have Forte and the appropriate compiler installed.

2 Use the fcompile command, as described in “Using the fcompile Command to Generate
the C++ API” on page 177, to generate the files for the C++ API, as well as the C++ code
for any compiled partitions. Forte then compiles the C++ API and any compiled
partitions.

3 Copy the generated and compiled files from the node where you used the fcompile
command back to the appropriate subdirectory under FORTE_ROOT/appdist:

FORTE_ROOT/appdist/environmentID/distributionID/cl#/platformID/

For example if the CppBanking example is compiled for the Windows NT platform in an
environment called CentralEnv, then the directory is
FORTE_ROOT/appdist/centrale/CppBanki/cl0/pc_nt.

4 Using the Environment Console or the Escript utility, load the distribution and install
the application.

With the Environment Console, use the File > Load Distribution command, then in the
Application View, select application and use the Utility > Install command.

fscript> MakeAppDistrib 1 node_name 1 1

fscript> MakeAppDistrib 1 node_name 0 0
Integrating with External Systems

Generating a C++ API for a Forte Application 177
Using the Escript utility, enter a sequence of commands like the following:

Using the fcompile Command to Generate the C++ API
The fcompile command has the following syntax when used for compiling C++ libraries
and compiled partitions:

Portable syntax
 (all platforms)

fcompile [-c component_generation_file] [-d target_directory]

[-cflags compiler_flags] [-lflags linking_flags]
[-fm = memory_flags] [-fl = logger_flags] [-cleanup]

OpenVMS syntax VFORTE FCOMPILE
[/COMPONENT = component_generation_file]
[/DIRECTORY = target_directory]
[/COMPILER = compiler_flags]
[/LINKING = linking_flags]
[/MEMORY = memory_flags]
[/LOGGER = logger_flags]
[/CLEANUP]

The following table describes the command line flags for the fcompile command:

escript> ShowAgent

escript> ListDistribs

escript> LoadDistrib application_name compatibility_level

escript> Install

Flag Description

-c component_generation_file
/COMPONENT =
component_generation_file

Specifies the file that Forte compiles. This value includes the path where
the file resides if the file is not in the current directory. By default, Forte
compiles all files in the current directory.

-d target_directory
/DIRECTORY = target_directory

Specifies where the compiled directories will be placed. By default,
fcompile compiles files in the current directory, and places the compiled
files in the current directory.

target_directory is a directory specification in local syntax.

If the -c (/COMPONENT) flag is also specified, the -d flag specifies where
the compiled component files will be placed. Otherwise, the directory
specified by the -d (/DIRECTORY) flag specifies both the directory
containing the files to be compiled and the directory where the compiled
files will be placed.

-cflags compiler_flags
/COMPILER = compiler_flags

Specifies any C++ compiler options.

-lflags linking_flags
/LINKING = linking_flags

Specifies any linking flags.

-fm memory_flags
/MEMORY = memory_flags

Specifies the space to use for the memory manager. See A Guide to the
Forte 4GL Workshops for information.

-fl logger_flags
/LOGGER = logger_flags

Specifies the logger flags to use for the command. See A Guide to the
Forte 4GL Workshops for information.

-cleanup
/CLEANUP

Deletes all the files except for the newly compiled shared libraries.
Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application178
Writing a C++ Client Application That
Accesses a Forte Application

This section summarizes the steps for writing, compiling, linking, and editing a C++ client
application that accesses a Forte application. These steps will be slightly different for each
platform.

This section also outlines the capabilities and restrictions that you need to be aware of to
write a C++ client application that accesses a Forte application.

Handle classes Handle classes and their member functions allow you to write C++ client applications that
interact with Forte objects and runtime processes without having to worry about the
internals of how Forte manages objects. For example, the handle classes ensure that you
can write C++ code that interacts with Forte objects without needing to know:

■ where a distributed object is located

■ how and when memory is allocated and deallocated when you create and destroy Forte
objects

■ where objects are stored when Forte reclaims memory using its memory reclamation
(garbage collection) facilities

Although TOOL is not case sensitive, C++ is, and the C++ API that is generated based on
your Forte application keeps the same case that you used in your TOOL code.

Start Forte interaction The first action your C++ code must perform is to define an instance of the handle class for
a task handle, qqhTaskHandle, which represents the main task accessible in the client
partition. Next, you start Forte using the global function ForteStartup, which starts a Forte
task associated with this C++ process, and initializes the client partition. This step is
described in detail in “Start Forte Interaction” on page 184.

Using handle classes and
methods

When you write a C++ client application that uses the C++ APIs for the Forte applications or
runtime system, you can use the handle classes defined in the header file to create and
destroy instances of Forte objects. After you have created or assigned a Forte object to a
new variable of a given handle classes, you can call member functions on this object, just
as you would call the methods if you were using TOOL. This step is described in detail in
“Using Handle Classes and Methods” on page 186.

Interacting with service
objects

The C++ API header file contains global functions that return handles to service objects.
These global functions have the same names as the service objects. This step is described
in detail in “Interacting with Service Objects” on page 185.

Multithreading your
interactions with Forte

In your C++ client application, you can create multiple threads and associate each thread
with a Forte task so that each thread can interact with Forte.

Interacting with the Forte
runtime system

Forte provides handle classes for all classes that are used by the Forte client partition,
including classes in supplier plans to the main project. This step is described in detail in
“Interacting with the Forte Runtime System” on page 187.

Forte provides handle classes and member functions in the
FORTE_ROOT/install/inc/handles/ directory for all the classes in the Framework library,
including classes that enable you to interact with the Forte runtime system.

Shutting down the Forte
client partition

When your C++ client application has finished using Forte, you can use the ForteShutdown
global function to shut down the client partition. The ForteShutdown global function does
not automatically shut down running server partitions. This step is described in detail in
“Shutting Down the Forte Client Partition” on page 187.

Understanding the C++ API
Forte generates the following files, which are all critical for understanding the C++ API:
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 179
client_component_id.txt A road map explaining how to find particular handle class
definitions, global functions for service objects, and so forth.

client_component_id.h The main header file for the C++ API. This file includes all other
needed header files except for those containing handle class definitions for the C++ API
(.cdf files). This file also contains the global functions that access service objects.

c1.cdf, c2.cdf, and so forth Files containing class definitions for the handle classes that
are part of the C++ API.

The following sections explain how to use these files to understand the Forte service
objects, classes, attributes, and methods are available through the C++ API.

Getting an Overview: client_component_id.txt
The following example shows the client_component_id.txt file that would be generated for
the CPPBanking C++ API:

You can use the client_component_id.txt file to understand what handle classes (and
corresponding TOOL classes) can be accessed by C++ clients. The names of handle classes
start with “qqh” and end with the name of the corresponding TOOL class. For example, the
handle class called qqhBankAccount corresponds to a TOOL BankAccount class.

c#.cdf files not included in
client_component_id.txt file

Some of the c#.cdf files are used only by Forte, and are therefore not listed in the
client_component_id.txt file for this C++ API. Do not use classes defined in files not listed in
the client_component_id.txt file.

Readme for C++ API for partition: cppban0

This file describes the files and classes that

have been generated for using this C++ API

Project: BankServices

TOOL Class File Name Handle Class Forte Internal C++ Class

AccountNotFound c5.cdf qqhAccountNotFound AccountNotFound_c5

BankAccount c4.cdf qqhBankAccount BankAccount_c4

BankService c3.cdf qqhBankService BankService_c3

Project: CPPBanking

TOOL Class File Name Handle Class Forte Internal C++ Class

BankingAccess c6.cdf qqhBankingAccess BankingAccess_c6

Service Objects

Name Class Function to retrieve service object

BankServer qqhBankService BankServer();
Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application180
Locating Global Functions: client_component_id.h
Global functions for service
objects

This file contains global functions that return handles to Forte service objects that the C++
API can access.

For example, the following example shows the global function defined for the
BankServices.BankServer service object:

The client_component_id.h file is the main header file for the C++ API. This file includes all
the header files that this API requires, except for the c#.cdf files that are described in the
client_component_id.txt file. You need to include each c#.cdf file separately, as described in
“Locating Class Definitions: c#.cdf” on page 180.

qqEXPORTFUNCTION indicates that this function is available to other applications, such
as a C++ client application. Before you use this function in your C++ code, you need to
declare the function using the extern keyword, as shown in the following example:

You need to include this file (#include) in your C++ client application, as shown in the
following example:

Locating Class Definitions: c#.cdf
The c#.cdf files contain the class definitions for the handle classes and C++ classes that
represent the TOOL classes. One .cdf file is generated for each TOOL class. (.cdf stands for
class definition file.) Check the client_component_id.txt file to determine which .cdf
contains the class definition for the handle class you want.

The class definition for the handle class is usually in the second half of the file. The class
statement for the handle class contains “class qqEXPORTCLASS qqhclassname”.

You need to include each c#.cdf file that contains the class definition for a handle class you
are using in your C++ client application, as shown in the following example:

The following example shows the class definition for a handle class in a c#.cdf file:

qqEXPORTFUNCTION(qqhBankService) BankServer();

extern qqhBankService BankServer();

#include CppBank.h

#include c4.cdf

class qqEXPORTCLASS qqhBankService : public qqhObject

{

public:

qqhBankService();

qqhBankService(const qqhBankService& other);

qqhBankService(BankService_c5*);

~qqhBankService();

qqhBankService& operator=(const qqhBankService& other);

operator BankService_c5*() const;

void New(const qqhTaskHandle& task);
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 181
qqEXPORTCLASS indicates that this class is available to other applications, such as a C++
client application.

Do not use c#.cdf files not
included in
client_component_id.txt

Some of the c#.cdf files are used only by Forte, and are therefore not listed in the
client_component_id.txt file for this C++ API. Do not use classes defined in files not listed in
the client_component_id.txt file.

Setting up Your System and Compiler to Use the C++ API
There are a few steps you should take to ensure that all the correct Forte and C++ API files
can be located by the compiler and linker when you compile and build your C++ client
application:

� To set up your system and compiler:

1 Edit your library search path to specify the directory containing the shared library file
for the C++ API.

For example, the shared library file for the C++ API for the CPPBanking application is
installed in FORTE_ROOT/userapp/cppbanki/cl0, so you should include this directory
in your library search path.

2 Set your include path to specify the following directories, which contain header files for
Forte runtime and library classes:

■ FORTE_ROOT/install/inc/cmn

■ FORTE_ROOT/install/inc/ds

■ FORTE_ROOT/install/inc/handles

■ FORTE_ROOT/install/inc/os

■ the directory containing the .h and .cdf files, which is the FORTE_ROOT/userapp
subdirectory containing the files for your client partition

For example, the .h and .cdf files for the C++ API for the CPPBanking application are
installed in FORTE_ROOT/userapp/cppbanki/cl0, so you must include this directory in
your include path.

3 Using an environment variable or the make file, specify the libraries needed for linking.

// Attribute Get/Set pairs

qqhArray AcctList(const qqhTaskHandle& task);

void AcctList(const qqhTaskHandle& task, const qqhArray& value);

// Methods

void Init(const qqhTaskHandle& task);

double UpdateAcct(

const qqhTaskHandle& task, qqos_i4 acctNumber,

double transactionAmt);

qqhBankAccount GetAcctData(const qqhTaskHandle& task,

qqos_i4 AcctNumber);

qqhArray GetAcctNumList(const qqhTaskHandle& task);

};
Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application182
Windows NT
and Windows 95

On Windows NT and Windows 95, the libpath contains a list of .lib files, and you need to
specify the following:

■ FORTE_ROOT\install\lib\qqhd.lib

■ FORTE_ROOT\install\lib\qqsm.lib

■ FORTE_ROOT\install\lib\qqfo.lib

■ FORTE_ROOT\install\lib\qqdo.lib

■ FORTE_ROOT\install\lib\qqsh.lib

■ FORTE_ROOT\install\lib\qqcm.lib

■ FORTE_ROOT\install\lib\qqkn.lib

■ the directory containing the .lib file, which is installed in the FORTE_ROOT\userapp
subdirectory containing the files for your client partition

For example, the .lib file for the C++ API for the CPPBanking application is
FORTE_ROOT\userapp\cppbanki\cl0\cppban0.lib, so you must include this file in your
libpath.

UNIX and VMS On UNIX platforms, the path that specifies libraries for linking contains a list of shared
library files, and you need to include the following shared libraries:

■ FORTE_ROOT\install\lib\qqhd.xxx

■ FORTE_ROOT\install\lib\qqsm.xxx

■ FORTE_ROOT\install\lib\qqfo.xxx

■ FORTE_ROOT\install\lib\qqdo.xxx

■ FORTE_ROOT\install\lib\qqsh.xxx (not on some UNIX platforms)

■ FORTE_ROOT\install\lib\qqcm.xxx

■ FORTE_ROOT\install\lib\qqkn.xxx (named qqknpthrd on some UNIX platforms)

■ the directory containing the shared library file for the C++ API (.so or .a file, depending
on the platform), which is installed in the FORTE_ROOT/userapp subdirectory
containing the files for your client partition

xxx stands for different extensions, depending on the platform, as shown:

Platform Shared Library Extension

Alpha OpenVMS .exe

Alpha OSF/1 .so

AViion DG/UX .so

HP 9000 HP/UX .sl

RS/6000 AIX .a

Sequent DYNIX/ptx .so

VAX OpenVMS .exe
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 183
Writing a C++ Client Application
This section describes how you can write a C++ client application using the generated C++
handle classes for the Forte runtime system and your Forte client partition.

In general, your C++ client application can perform functions independently, then start a
Forte client partition in the same process, interact with the Forte application using
generated handle classes and methods, then stop the Forte client partition when the C++
client application has finished with it.

Because Forte can take considerable resources to start up and shut down, we recommend
that you start the Forte client partition once and leave it running as long as your C++ client
application needs it.

The C++ application can also use multiple threads and have these threads interact with
Forte tasks independently.

How to Use qqhTaskHandle
When you invoke a method on a handle class, you need to pass the reference to a running
Forte task as the first parameter of all methods and function calls except a few global
functions. The reference to a running Forte task is a qqhTaskHandle object, which is
returned by the ForteStartup() global function when you start a Forte task, as described in
the next section. The following example shows a typical method call, where gTask1 is a
qqhTaskhandle object:

How to Use Forte Data Types
Certain methods generated as part of the C++ API specify some of their parameters or
return values using Forte data types.

The following table explains these data types:

The TOOL data types are described in the TOOL Reference Manual.

If you are writing a C++ application intended for a single platform, you can use the
platform’s equivalent data type in your C++ code. For example, use a long in place of
qqos_i4.

However, if you intend to have your C++ application run on multiple platforms, we
recommend that you use the data types defined by Forte, which are portable across the
platforms supported by Forte.

currAccount = BankServerSO.GetAcctData(gTask, acctNumber);

Type in C++ API TOOL type C++ equivalent

qqos_bool boolean unsigned char

qqos_double double double

qqos_float float float

qqos_i1 char char (1-byte integer)

qqos_i2 i2 short (2-byte integer)

qqos_i4 i4 long int (4-byte integer)

qqos_pointer pointer void *

qqos_ui1 char unsigned char (1-byte integer)

qqos_ui2 ui2 unsigned short (2-byte integer)

qqos_ui4 ui4 unsigned long (4-byte integer)
Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application184
TextDatas are not just strings In TOOL, if a parameter is defined as a TextData object, you can usually substitute a string
value. This automatic conversion does not work for the C++ API. If a member function of
the C++ API requires a qqhTextData object as a parameter, you must use a qqhTextData
object.

If you receive a qqhTextData object, and wish to use the value of the object as a string, use
the AsCharPtr member function of qqhTextData to convert the value to a string.

Start Forte Interaction
The first action your C++ code must perform is to define an instance of the handle class for
a task handle, qqhTaskHandle. The next step is to use the global function ForteStartup to
start a Forte client partition that runs in the same process as the C++ client application.
ForteStartup starts a Forte task associated with this C++ process and returns a handle to
that task. This task handle represents the main task accessible in the Forte client partition.

The following example shows how to define a task handle and start a task in a Forte client
partition:

For more information about the ForteStartup global function, see “ForteStartup Function”
on page 201. For more information about task handles, see the Forte online Help.

Passing Startup Parameters to Forte
You can pass start-up parameters to Forte by passing the parameters using the ForteStartup
function.

The ForteStartup function has the following signatures:

Syntax qqEXPORTFUNCTION (qqhTaskhandle) ForteStartup();

Syntax qqEXPORTFUNCTION (qqhTaskHandle) ForteStartup(int argc, char* argv[]);

You can use the first signature of the ForteStartup function if you do not want to specify
any Forte startup parameters.

You can use the second signature of the ForteStartup function to specify Forte start-up
parameters.

The argc and argv parameters are similar to those for the C++ main(int argc, char *argv[])
function.

argc parameter The argc parameter specifies the number of parameters in the array of strings passed by the
argv parameter.

argv parameter The argv parameter specifies an array of strings that each contain a word of the string of
start-up parameters you want Forte to use when your C++ application starts a Forte client.

extern qqhTaskHandle ForteStartup();

qqhTaskHandle gTask;

...

int main(int argc, char** argv)

{

printf(

"Starting the C++ client to the BankServer service object!\n");

gTask = ForteStartup();

...

}

See CPPBanking example File: cppbancl.cpp
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 185
For example, suppose you want to specify start-up flags for the Forte client partition. If you
were specifying the ftexec command-line equivalent, you would write:

Similarly, you could specify these start-up parameters as the ForteStartup parameters, as
shown:

Note The first element of the argv array (at argv[0]) should be the name of the executable for
your C++ client application, which is cppbancl for the CppBanking example.

Logging Information for Forte Client Partitions
The logging information for the Forte client partition is written to a file in the
FORTE_ROOT/log directory. The name of the file is:

application_ID_process_ID.log

An example log file name is cppbanki_382.log.

Interacting with Service Objects
The C++ API header file contains global functions that return handles to service objects.
These global functions have the same names as the service objects.

Because service objects are usually accessed by several methods, you should define a C++
global variable to reference the service object. To define a global variable, define the
variable for the handle to the service object outside any functions.

If you reference a service object in a partition that is not yet running, Forte auto-starts the
partition.

The following example shows how you can get a reference to a service object, then invoke
methods on the service object:

ftexec -fl %stdout(trc:user err:user) -fns mimi:5000

qqhTaskHandle gTask;

int num_parms = 5;

char* parms [] = {"cppbancl", "-fl","%stdout(trc:user err:user)",

"-fm", "(n:2000,x:5000");

gTask = ForteStartup(num_parms, parms);

extern qqhTaskHandle ForteStartup();

qqhBankService gBankServer;

qqhTaskHandle gTask;

qqhBankService BankServerSO;

...

int main(int argc, char** argv)

{

gTask = ForteStartup();

// Use a global function defined in the .h file to get a reference

// to the service object.

gBankServer = BankServer();

...

}

See CPPBanking example File: cppbancl.cpp
Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application186
Using Handle Classes and Methods
When you write a C++ client application that uses the C++ APIs for the Forte applications or
runtime system, you can use the handle classes defined in the header files to create and
destroy instances of Forte objects.

For a detailed description of how Forte classes, methods, attributes, and service objects are
defined in the C++ API, see “Elements of the C++ API to a Client Application” on page 195.

Creating new
Forte objects: New()

To create an instance of the handle class and its corresponding Forte object, you need to
use the New() member function, which is defined on the qqhObject handle class and
inherited by all handle classes, as shown in the following example:

Alternatively, you can assign the handle object to the reference for an existing Forte object.

Note If you try to invoke a function call on the handle object before invoking the New member
function on the handle object or assigning the handle object the reference to an existing
Forte object, you will get a NIL object runtime error.

For more information about the New() member function, see “New() Member Function”
on page 203.

Calling methods using
member functions

After you have created or assigned a Forte object to a new variable of a given handle
classes, you can call member functions on this object, just as you would call the methods if
you were using TOOL.

Setting attributes Forte translates class attributes to a pair of get and set member functions, as shown in the
following example. These member functions let you get and set the AcctBalance attribute
on the BankAccount object:

Deleting references to Forte
objects: Delete()

The Delete() member function deletes the reference to the Forte object held by the handle
object. You usually do not need to delete this reference explicitly, because these references
are automatically deallocated when they go out of scope in the C++ function.

To delete a reference to a Forte object, use the Delete member function, which is defined
on the qqhObject handle class and is inherited by all handle classes.

The Delete member function does not release the memory for the Forte object itself or for
the handle object. This member function is the equivalent of setting a Forte object
reference to NIL so that the Forte memory reclamation function (garbage collection)
releases the memory for the Forte object. The handle class object itself is deallocated when
the object goes out of scope. The qqhObject.Delete member function is also described in
“Delete() Member Function” on page 202.

The following example shows how you can invoke a method on the BankServerSO service
object to get a BankAccount object, then retrieve an attribute of that BankAccount object
and set another attribute of that object.:

qqhBankAccount currAccount;

currAccount.New(gTask1);

double AcctBalance(const qqhTaskHandle& task);

void AcctBalance(const qqhTaskHandle& task, const double & value);

...

int main(int argc, char** argv)

{

...

qqhBankAccount currAccount;

// Get the account based on the account number.

currAccount = BankServerSO.GetAcctData(gTask1, acctNumber);

double currBalance;
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 187
Interacting with the Forte Runtime System
Forte provides handle classes for all supplier plans to the main project for the Forte client
application. Therefore, Forte generates handle classes and member functions for all the
classes in the Framework library, including classes that enable you to interact with the
Forte runtime system.

“Interacting with the Forte Runtime System” on page 190 discusses these concepts in more
detail.

Shutting Down the Forte Client Partition
When your C++ client application has finished using Forte, you can use the ForteShutdown
global function to shut down the Forte client partition.

When you shut down the Forte client partition, all transient data used by the partition is
deallocated.

Forte server partitions that have been started by the C++ client application stay running
after the ForteShutdown member function runs, just as they would after any other Forte
client partition shuts down. For more information about the ForteShutdown global
function, see “ForteShutdown Function” on page 201.

The ForteShutdown() member function automatically dereferences the Forte task, so that
the memory for the client partition will be released.

The following example shows how you should shutdown the Forte client partition after
your C++ client application has finished using Forte:

// Get the account balance.

currBalance = currAccount.AcctBalance(gTask1);

// Change the name of the owner on the account.

qqhTextData acctOwner;

qqhTextData acctOwner.new(gTask1);

acctOwner.SetValue(‘Greta Garbo’);

currAccount.AcctName(gTask1, acctOwner);

...

}

See CPPBanking example File: cppbancl.cpp

int StopForte()

{

// Perform clean up functions.

...

ForteShutdown(gTask1);

}

Chapter 11Accessing Forte Using C++

Writing a C++ Client Application That Accesses a Forte Application188
Handling Forte Exceptions
Forte provides the following macros, which you can use in your C++ client application to
catch Forte exceptions:

qqhTRY(task) starts a try block

qqhCATCH(task, class, var) starts a catch block, which catches Forte exceptions of the
specified handle class

qqhELSE_CATCH(task, class, var) statement in a catch block that catches Forte
exceptions of the specified handle class

qqhELSE(task) statement in a catch block that catches unexpected Forte exceptions of
the specified handle class

qqhELSE_ONLY(task) catches all Forte exceptions, without being part of a catch block

qqhEND_TRY(task) ends a try block

The following example shows the general structure for the try and catch statements:

You can use the qqhELSE_ONLY macro to catch any Forte exceptions, without first defining
a catch block, as shown:

These macros are discussed in more detail in “Exceptions” on page 197.

qqhTRY(task)

... code interacting with the Forte application or runtime system

qqhCATCH(task, class, var)

... code handling the exception of the specified class

qqhELSE_CATCH(task, class, var)

... code handling the exception of the specified class

qqhELSE_CATCH(task, class, var)

... code handling the exception of the specified class

... any other qqhELSE_CATCH statements

qqhELSE(task)

... code handling any other Forte exceptions

qqhEND_TRY(task)

qqhTRY(task)

... code interacting with the Forte application or runtime system

qqhELSE_ONLY(task)

... code handling any raised Forte exceptions

qqhEND_TRY(task)
Integrating with External Systems

Writing a C++ Client Application That Accesses a Forte Application 189
The following example, shows how you could use the qqhTRY, qqhCATCH, and
qqhELSE_CATCH macros provided by Forte to catch Forte exceptions:

Handling Forte and C++
exceptions

You can nest Forte qqhTRY blocks within C++ TRY blocks; however, you cannot overlap the
qqhTRY blocks and TRY blocks, and you cannot nest C++ TRY blocks within Forte qqhTRY
blocks.

Compiling the C++ Client Application
For information about specific compiling and linking options for each platform, see Forte
Technote 10947.

Deploying the C++ Client Application
To deploy the C++ client application on client machines, you need to install the following:

■ Forte runtime system

■ shared library file for the C++ API (.dll, .so, or .a file, depending on the platform)

■ .exe file for the C++ client application

void AccountLoop()

{

printf("Enter an account number (or ’0’ to quit): ");

qqos_i4 selAcct;

int result = scanf("%ld", &selAcct);

if(selAcct == 0)

return;

qqhTRY(gTask)

{

gCurrentAccount = gBankServer.GetAcctData(gTask, selAcct);

}

qqhCATCH(qqhAccountNotFound, unknownExcept)

{

printf("An qqhAccountNotFound occurred in AccountLoop().\n");

}

qqhELSE_CATCH(qqhGenericException, unknownExcept)

}

qqhEND_TRY;

// Go to transaction menu for the account.

...

}

}

}

See CPPBanking example File: cppbancl.cpp
Chapter 11Accessing Forte Using C++

Interacting with the Forte Runtime System190
Interacting with the Forte Runtime System
This section explains the steps for writing a C++ client application that interacts with the
Forte runtime system. These steps will be slightly different for each platform.

This section also outlines the capabilities and restrictions that you need to be aware of to
write a C++ client application that interacts with the Forte runtime system.

C++ API for Forte libraries:
index.txt file

Forte automatically provides C++ APIs—header files and shared libraries—for all the
classes and runtime objects defined as Forte libraries. You can locate the definitions for this
C++ API by looking at the .txt files in the FORTE_ROOT/install/inc/handles directory. These
files describe what .hdg files in that directory contain the class definitions for the handle
classes that represent Forte classes. For more information about these C++ APIs, see “The
C++ API to the Forte Runtime System” on page 204.

Working with Forte Classes
Forte automatically provides a C++ API—header files and shared libraries—for all the
classes and runtime objects defined as Forte libraries, except the Display library.

You can locate the definitions for this C++ API by looking at the .txt files in the
FORTE_ROOT/install/inc/handles directory. This file describes what .hdg files in that
directory contain the class definitions for the handle classes that represent Forte classes
and maps the Forte classes to the files that contain their C++ handle class definitions.

Note The C++ class definitions for the handle classes can include classes, methods, or attributes
that are not part of the documented and supported Forte libraries. You should not use
undocumented classes, methods, or attributes in the handle classes.

Working with Forte Runtime Objects
Using the handle classes provided for the Forte classes, you can access Forte runtime
objects, such as the object location manager, the distributed object manager, and the log
manager.

To access these runtime objects, start with a task handle. For example, to access the log
manager for a partition, you first need to get a handle for the partition, then a handle to the
log manager, as shown in the following example:

qqhTaskHandle task;

task = ForteStartup();

qqhPartition part;

part = task.Part();

qqhLogMgr logmgr = part.LogMgr();

logmgr.PutLine(source = ‘Found the log manager.’);
Integrating with External Systems

Chapter 12
C++ API Reference Information
This chapter describes the handle classes that are generated by Forte when you have Forte
generate a C++ API for a client partition.

This chapter contains information about the following topics:

■ the files that make up the C++ API

■ the standard format of the generated handle classes, handle methods, and the global
functions that access service objects

■ additional methods that are added to handle classes that represent Forte classes

■ guidelines for how to use the handle classes, handle methods, and global functions that
represent service objects in TOOL

Files Generated as Part of a C++ API192
Files Generated as Part of a C++ API
Forte generates the following files as part of the C++ API. These files are all critical for using
the C++ API:

■ client_component_id.txt

■ client_component_id.h

■ client_component_id.xxx (shared libraries)

■ client_component_id.lib (Windows NT and Windows 95 only)

■ c1.cdf, c2.cdf, and so forth

■ p1.h, p2.h, and so forth

The steps for generating these files for the C++ API are described in “Generating a C++ API
for a Forte Application” on page 174.

client_component_id.txt
The client_component_id.txt file generated for the C++ API contains information about:

■ TOOL classes that are accessible using the API

■ handle classes that you use to interact with the TOOL classes

■ files that contain the class definitions for the handle classes (c#.cdf files)

■ names for the C++ classes that directly represent the TOOL classes

■ service objects accessible using the C++ API

Classes subclassed from the
Display library are not
included

You can generate a C++ API for a partition that uses classes and subclasses from the Display
library; however, you can only access classes that are not classes and subclasses of the
Display library. Therefore, these classes are not included in the client_component_id.txt file.

The following example shows a generated client_component_id.txt file:

Readme for C++ API for partition: cppban0

This file describes the files and classes that

have been generated for using this C++ API.

Project: BankServices

TOOL Class File Name Handle Class C++ Class Name

AccountNotFound c3.cdf qqhAccountNotFound AccountNotFound_c3

BankAccount c4.cdf qqhBankAccount BankAccount_c4

BankService c5.cdf qqhBankService BankService_c5

Project: CppBanking

TOOL Class File Name Handle Class C++ Class Name
Integrating with External Systems

Files Generated as Part of a C++ API 193
You can use the client_component_id.txt file to understand what handle classes (and
corresponding TOOL classes) can be accessed by C++ clients.

c#.cdf files not included in
client_component_id.txt file

Some of the c#.cdf files are used only by Forte, and are therefore not listed in the
client_component_id.txt file for this C++ API. Do not use classes defined in files not listed in
the client_component_id.txt file.

client_component_id.h
The client_component_id.h file is the main header file for the C++ API. This file includes all
the header files that this API requires, except for the c#.cdf files that are described in the
client_component_id.txt file.

You need to include this file (#include) in your C++ client application, as shown in the
following example:

Global functions for service
objects

This file also contains global functions that return handles to Forte service objects that the
C++ API can access.

For example, the following example shows the global function defined for the
BankServices.BankServer service object:

client_component_id.xxx (shared library)
This file is the compiled shared library file for the C++ API, and the extension, indicated
above as xxx, depends on the platform, as shown:

The handle classes and member functions provided by this shared library are described in
the client_component_id.txt file.

This file needs to be in a directory specified by the library search path on your system. On
UNIX and the Macintosh platforms, you need this shared library file when you build your
C++ client application . On all platforms, this .dll file is part of the deployment for your C++
client application.

CppAPI c6.cdf qqhCppAPI CppAPI_c6

Service Objects Class Function to retrieve service
object

BankServer qqhBankService BankServer();

#include Bankin0.h

qqEXPORTFUNCTION(qqhBankService) BankServer();

Platform Shared Library Extension

Alpha OpenVMS .exe

Alpha OSF/1 .so

AViion DG/UX .so

HP 9000 HP/UX .sl

RS/6000 AIX .a

Sequent DYNIX/ptx .so

VAX OpenVMS .exe

Windows 95 .dll and .lib

Windows NT .dll and .lib
Chapter 12C++ API Reference Information

Files Generated as Part of a C++ API194
client_component_id.lib
This file is generated on Windows NT and Windows 95 only. This file describes the contents
of the corresponding .dll file.

On Windows NT and Windows 95, you need to specify this file when you link your
application. You do not need this file at runtime.

c#.cdf
The c#.cdf files contain the class definitions for the handle classes and C++ classes that
represent the TOOL classes. One .cdf file is generated for each TOOL class. (.cdf stands for
class definition file.)

The class definition for the handle class is usually in the second half of the file. The class
statement for the handle class contains “class qqEXPORTCLASS qqhclassname”.

The following example shows the class definition for a handle class in a c#.cdf file:

You need to include each c#.cdf file that contains the class definition for a handle class you
are using in your C++ client application.

c#.cdf files not included in
client_component_id.txt file

Some of the c#.cdf files are used only by Forte, and are therefore not listed in the
client_component_id.txt file for this C++ API. Do not use classes defined in files not listed in
the client_component_id.txt file; the behavior of these classes is undefined.

p#.h
The p#.h files are used only by Forte, and are therefore not listed in the
client_component_id.txt file for this C++ API. These files are included in the
application_name.h file and need to be in the include directory when you build your C++
client application.

class qqEXPORTCLASS qqhBankService : public qqhObject
{
public:
qqhBankService();
qqhBankService(const qqhBankService& other);
qqhBankService(BankService_c5*);

~qqhBankService();
qqhBankService& operator=(const qqhBankService& other);
operator BankService_c5*() const;
void New(const qqhTaskHandle& task);

// Attribute Get/Set pairs

qqhArray AcctList(const qqhTaskHandle& task);
void AcctList(const qqhTaskHandle& task, const qqhArray& value);

// Methods

void Init(const qqhTaskHandle& task);
double UpdateAcct(
const qqhTaskHandle& task, qqos_i4 p1, double p2);

qqhBankAccount GetAcctData(const qqhTaskHandle& task, qqos_i4 p1);
qqhArray GetAcctNumList(const qqhTaskHandle& task);

};
Integrating with External Systems

Elements of the C++ API to a Client Application 195
Elements of the C++ API to a Client Application
This section describes the structure and conventions that Forte uses to generate a C++ API
interface from the client partition of a Forte application. This section describes how Forte
translates the following elements defined in TOOL when it generates the interface header
file for C++:

■ classes

■ methods

■ attributes

■ service objects

■ exceptions

■ events

Handle Classes
For each class defined in the main project of a client application and in its supplier plans,
Forte produces a handle class. These handle classes represent the classes defined in the
project that was the main project of the application, and all classes from the supplier plans
that are used by the application.

The handle classes generated as part of the C++ API use the following naming convention:

qqh[plan_]class

plan is the name of the Forte plan (project, library, or model) that defines the class
corresponding to the handle class. This part is only used if the class name is not unique
within the Forte client application.

class is the name of the Forte class corresponding to the handle class.

For example, a handle class corresponding to the Branches class in the BankServices
project would be named qqhBranches. However, if two different supplier projects,
Accounting and Personnel, define classes named Record, then the handle classes for these
classes would be qqhAccounting_Record and qqhPersonnel_Record.

These handle classes and their methods allow you to write C++ applications that interact
with Forte objects and runtime processes without having to worry about the internals of
how Forte manages objects. For example, the handle classes ensure that you can write C++
code that interacts with Forte objects without needing to know:

■ where a distributed object is located

■ how and when memory is allocated and deallocated when you create and destroy Forte
objects

■ where objects are stored when Forte reclaims memory using its garbage collection
facilities

These handle classes and their methods manage these kinds of issues as part of interacting
with the TOOL methods that they represent.
Chapter 12C++ API Reference Information

Elements of the C++ API to a Client Application196
C++ Classes—for Type Conversion
Forte generates a C++ class that represents the same class as the handle class. This class,
however, is only to be used to cast an object to a subclass. This class is shown in the C++
Class Name column of the .txt file for the C++ API. The name of this class has the format:

TOOL_class_name_c#

For example, the C++ class name for the BankAccount class is BankAccount_c4. If you
needed to cast a qqhObject object to an BankAccount object, you would need to use the
following syntax:

Methods
Within each handle class, Forte generates a member function corresponding to each
method in the TOOL class represented by the handle class.

These member functions have the same name as the original method. For example, the
Framework library class DateTimeData has a method named SetCurrent. The
corresponding member function in the qqhDateTimeData class is also named SetCurrent.

Task is first parameter of
member functions

The member function has the same name as its Forte counterpart and its signature is the
C++ equivalent of the signature for the TOOL method. All member function signatures
define the first parameter as the handle for the Forte task under which this method is
invoked. The following examples compare a TOOL method signature with the signature for
its counterpart C++ member function:

The parameters of the TOOL methods are translated to their C++ equivalents as shown in
the following table:

// qqhArray.FindObjectForRow returns qqhObjects, which we need to

// convert to qqhBankAccount objects.

qqhBankAccount* currAcct = new

qqhBankAccount((BankAccount_c4*)((qqlo_Object*)curObj));

// Print out the account information.

PrintAccountInfo(*currAcct);

See CPPBanking example File: cppbancl.cpp

Tool method BankService.GetAcctData(input AcctNumber: Framework.integer):

 copy BankServices.BankAccount

C++ member function qqhBankAccount GetAcctData(const qqhTaskHandle& task,

qqos_i4 AcctNumber);

TOOL C++ Description

input const type& No change to the value of the reference. The contents of the referenced
object might change.

output type& Expect the reference to a new object to be returned.

input output type& Expect the referenced object to change.

copy input const type& No change to the value of the reference and no change to the referenced
object.

copy output type& Expect the reference to a copy of a new object to be returned.

copy input output type& Expect the input object to be copied and changed, and a reference to a copy
of the changed object to be returned.
Integrating with External Systems

Elements of the C++ API to a Client Application 197
Attributes
Within each handle class, Forte generates two member functions that correspond to each
attribute, one that returns the value of the attribute, and another that sets the value of the
attribute.

No virtual attributes Forte does not include virtual attributes or their methods in the generated C++ handle
classes.

For example, the Framework library class DateTimeData has an attribute called
HoursFromGMT. Forte generates two member functions for the qqhDateTimeData class
that have the following signatures:

Service Objects
Any service objects that are defined in the main project of the Forte client application or
that are accessed by the Forte client application in its supplier plans can be initialized by
using a generated global function.

In the main C++ API header file, Forte generates a function like the following for each
defined service object:

The name of the function corresponds to the name of the service object. The function
returns a service object.

qqEXPORTFUNCTION indicates that this function is available to other applications, such
as a C++ client application. Before you use this function in your C++ code, you need to
declare the function using the extern keyword, as shown in the following example:

To initialize this service object, you need to write C++ code like the following:

Exceptions
You can handle exceptions that have been raised by the Forte methods that are called by
your C++ application by using the following macros that are provided by Forte:

//Attribute Get/Set pairs

int HoursFromGMT(const qqhTaskHandle& task);

void HoursFromGMT(const qqhTaskHandle& task, const int& value);

qqEXPORTFUNCTION(qqhClock) ClockService();

extern qqhBankService BankServer();

qqhClock ClockService = ClockService();

Macro Description

qqhTRY(task) Opens an exception handler (try) block.

qqhCATCH(class, var) Defines a block for handling all exceptions of a specific type.

qqhELSE_CATCH(class, var) Adds a handler for an additional exception type.

qqhELSE() Defines a block for handling an exception of an unexpected type.

qqhELSE_ONLY() Define a block that catches all exceptions. Does not need to follow a
qqhCATCH statement.

qqhEND_TRY() Closes an exception handler block.
Chapter 12C++ API Reference Information

Elements of the C++ API to a Client Application198
Parameters These macros specify the following parameters:

qqhCATCH and
qqhELSE_CATCH

When a qqhCATCH or qqhELSE_CATCH statement catches a Forte exception, the macro
creates an instance of the handle class specified in the class parameter with the name
specified in the var parameter. You can then use this reference to get information from the
attributes of the raised Forte exception.

We recommend that you include a try block around all calls to Forte methods, as shown in
the following example, which shows how you can catch exceptions much the way you
would in TOOL. This example also demonstrates how you can re-throw the Forte exception
as a C++ exception:

Parameter Description

task Reference to task handle for the Forte task that might raise the specified exception.

class Name of handle class corresponding to the Forte exception class that this statement can catch.

var Variable that will be the name of the handle object that references the Forte exception, when the
exception is raised and caught.

qqhTRY(gTask)

{

// Update the account balance.

acctBalance =

gBankServer.UpdateAcct(gTask, acctNum, transAmt);

}

qqhCATCH(qqhAccountNotFound, noAccountFound)

{

printf("No account with number %ld was found.\n\n", acctNum);

}

qqhELSE_CATCH(qqhGenericException, unknownExcept)

{

printf("A GenericException occurred in AccountLoop().\n");

// Rethrow the exception as a C++ exception.

throw(Forte_UnexpectedException(

"A GenericException occurred in UpdateAccount()."));

}

qqhEND_TRY;

See CPPBanking example: File: cppbancl.cpp

In 3.F qqhTextData msgTextData = unknownExcept.GetMessage(gTask);
Integrating with External Systems

Elements of the C++ API to a Client Application 199
Alternatively, you can use the qqhELSE_ONLY macro to catch any raised exception, as
shown in the following example:

Events
Forte does not provide any way for C++ code to either explicitly post events or to register
for events when they are posted by the Forte application.

If a method on a handle class posts an event, you can call that method within your C++
application and thereby post an event.

If you want your C++ application to respond to Forte events that are posted by the
application or the Forte runtime system, you should define an event loop in a TOOL
method that waits for that event. You can then have a thread of your C++ application start
a task that calls that method and waits in that event loop until the event is posted. The
method can then return a value or an object to the C++ application to supply information
about the posted event.

If you like, you can define an event loop in a method that runs in the C++ client partition
for which the C++ API is generated. The C++ client application can then invoke the method
on the client partition to indirectly register and wait for an event.

You can also define a class with an attribute that indicates that an event has occurred. You
can then start an event loop to listen for a specific event. When the loop catches the event,
the TOOL code then changes the value of the attribute on the object. In the meantime, you
can define a C++ listener task, which checks the attribute of the service object at intervals
to see whether the attribute value has changed.

Special Handling for Array and Pointer to Char Parameters
Certain Forte data types produce the same C++ declarations because Forte is a more
strongly typed language than C++. For example, in Forte, an Array of TextData, an Array of
Object, and an Array of DateTimeData are considered different data types. However, these
types all map to the qqhArray handle class. Similarly, a pointer to char data type and the
Forte String data type are both mapped to char*. These mappings would cause problems in
the case of overloaded Forte methods, because the methods would have identical
parameter lists when translated into C++ methods.

To ensure that method signatures are unique in C++, Forte generates an additional dummy
parameter at the end of the parameter list for Array data types and pointer to char data
types.

// The task is the current qqhTaskHandle.

qqhTRY(task)

{

int result = gCustomerMgr.RemoveDuplicates(task);

printf(“%d Duplicate customer records removed.\n”, result);

}

qqhELSE_ONLY(task)

{

printf(

 “Forte exception thrown by gCustomerMgr.RemoveDuplicates.\n”);

}

Chapter 12C++ API Reference Information

Elements of the C++ API to a Client Application200
The dummy parameter data type is defined as “___M_ccc_mmm *”, where:

See the .cdf file for the handle class for the exact name of the parameter type.

When you invoke a method that has a dummy parameter, you must assign a NULL value
cast to the data type for the dummy parameter, as shown in the following example, where
___M_6_3 * is the data type of the dummy parameter:

Arrays For example, suppose your Forte application defines the following method signatures to
overload the getData method with different types of Arrays as parameters:

Forte generates the following C++ signatures for these methods:

pointer to char Similarly, suppose your Forte application defines the following method signatures to
overload the setData method with a string and a pointer to char as the different
parameters:

Forte generates the following C++ signatures for these methods:

Part Description

___M Three underscores and a capital M

ccc and mmm Two numbers uniquely identifying the method

myObject.getData(gTask, currArray, (___M_6_3 *) NULL);

getData(input output data : Array of TextData)

getData(input output data : Array of Object)

void getData (const qqhTaskHandle& task, qqhArray& data, ___M_6_3
*p2)

void getData (const qqhTaskHandle& task, qqhArray& data, ___M_6_4
*p2)

myClass.setData(data : string)

myClass.setData(data : pointer to char)

void setData (const qqhTaskHandle& task, char *data)

void setData (const qqhTaskHandle& task, char *data, ___M_7_9 *p2)
Integrating with External Systems

Utility Global Functions and Member Functions 201
Utility Global Functions and Member Functions
This section describes the global functions and member functions that enable you to write
C++ applications that interact with Forte objects and the runtime system.

Forte generates functions for starting and shutting down the Forte runtime system. Forte
also generates additional member functions for the handle classes that correspond to the
Object and TaskHandle classes belonging to the Framework library.

Functions that Start and Stop the Forte Runtime System
Forte automatically generates the following functions as part of the C++ API, which let you
start and shut down the Forte runtime system:

ForteStartup Starts up the Forte runtime system for the C++ API.

ForteShutdown Shuts down the Forte runtime system for the C++ API.

ForteStartup Function
This function starts up the Forte runtime system for the C++ API. When this function
completes, it sets its qqhTaskHandle object to reference the task handle for the Forte
runtime system.

This function has the following signature:

Syntax qqEXPORTFUNCTION(qqhTaskHandle) ForteStartup();

You must explicitly declare that the prototype for ForteStartup() is defined elsewhere, by
specifying the function prototype with the extern keyword as a global name in your C++
application.

The following example shows how you can start a Forte client partition within your C++
code:

To shut down the runtime system for the C++ API, use the ForteShutdown function,
described in the following section.

ForteShutdown Function
This function shuts down the Forte runtime system for the C++ API. You typically use this
function in the cleanup code when shutting down an application.

Syntax void ForteShutdown(qqhTaskHandle&);

The ForteShutdown() member function automatically dereferences the Forte task, so that
the memory for the client partition will be released.

extern qqhTaskHandle ForteStartup();

qqhTaskHandle gTask;

...

int main(int argc, char** argv)

{

gTask = ForteStartup();

...

}

Chapter 12C++ API Reference Information

Utility Global Functions and Member Functions202
The following example shows how you can shut down the Forte runtime system for the C++
API within your C++ code:

To start the runtime system for the C++ API, use the ForteStartup function, described in
“ForteStartup Function” on page 201.

qqhObject Handle Class
The qqhObject class is the handle class for the Object class in the Framework library, and is
the root class of the handle class hierarchy. Forte generates member functions for
qqhObject that represent all the methods documented for the TOOL Object class in the
Forte online Help.

Forte generates four extra public member functions for the qqhObject handle class:

Delete() Deletes the reference to the Forte object but does not delete either the handle
object or the Forte object itself.

IsNil() Checks whether the reference to the Forte object is NIL.

New() Instantiates the handle object and the Forte object, then assigns the reference to
the Forte object to the handle object.

SetObject(0) Sets the reference to the Forte object to NIL.

Because all handle classes are derived from the qqhObject class, these public member
functions are inherited by all handle classes.

Delete() Member Function
This member function deletes the reference to the Forte object held by the handle object.
This member function has the following signature:

void Delete(qqhTaskHandle& task);

Deletes a reference to a Forte
object

The Delete() member function deletes the reference to the Forte object held by the handle
object. You usually do not need to delete this reference explicitly, because these references
are automatically deallocated when they go out of scope in the C++ function.

The Delete member function does not release the memory for the Forte object itself or for
the handle object. This member function is the equivalent of setting a Forte object
reference to NIL so that the Forte memory reclamation function (garbage collection)
releases the memory for the Forte object. The handle class object itself is deallocated when
the object goes out of scope.

The following example shows how you can delete a Forte object within your C++ code:

int ShutDown()

{

ForteShutdown(gTask);

...

}

// Delete a BankAccount object.

currAccount.Delete(gtask);
Integrating with External Systems

Utility Global Functions and Member Functions 203
IsNil() Member Function
This member function checks whether the reference to the Forte object is NIL. This
member function has the following signature:

int IsNil();

Checks whether a reference
to a Forte object is NIL

This member function returns 1 if the reference to the Forte object is NIL, and 0 if it is not
NIL.

New() Member Function
This member function creates a new Forte object and makes it available to a C++
application. Alternatively, you can assign the handle object to the reference for an existing
Forte object.

This member function has the following signature:

void New(qqhTaskHandle& task);

The following example shows how you can create and access a Forte object within your C++
code:

Note If you try to invoke a function call on the handle object before invoking the New member
function on the handle object or assigning the handle object the reference to an existing
Forte object, you will get a NIL object runtime error.

SetObject() Member Function
Sets a reference to a Forte
object to NIL

This member function sets the reference to the Forte object to NIL. This member function
has the following signature:

void SetObject(0);

You can only use this member function with a parameter of 0.

// Create a new BankAccount object and change values on it.

qqhBankAccount currAccount;

// Create the Forte object.

currAccount.New(gtask);

currAccount.Name(gtask, ‘Greta Garbo’);
Chapter 12C++ API Reference Information

The C++ API to the Forte Runtime System204
The C++ API to the Forte Runtime System
Forte provides access to the Forte runtime system by providing C++ header files and shared
library files that can be used when you write C++ client applications that interact with Forte
applications. You can interact with the Forte runtime system by using handle classes
defined and provided by Forte and by using the classes and functions discussed in “Utility
Global Functions and Member Functions” on page 201.

No C++ API for the Display
library

The C++ API is provided for all Forte class libraries except the Display library.

Aside from the restrictions described in Chapter 11, “Accessing Forte Using C++,” you can
use the handle classes to the TOOL classes to use the functions provided by these classes in
TOOL. For information about how to use these classes, see the appropriate Forte
documentation:

The following table lists the Forte libraries for which Forte provides C++ APIs, along with
the files that map the C++ handle classes to TOOL classes. For more information, see the
Forte online Help.

.hdg files Each .hdg file contains the class definitions for a C++ handle class that
represents a TOOL library class. These files are installed in the
FORTE_ROOT/install/inc/handles directory.

shared library files These files are used when linking the C++ client application. For a
detailed list of these files, see “Setting up Your System and Compiler to Use the C++ API” on
page 181. These files are installed in FORTE_ROOT/install/lib.

Forte Library File in FORTE_ROOT/install/inc/handlesdirectory

DDEProject ddeproje.txt

Framework framewor.txt

GenericDBMS genericd.txt

OLE ole2.txt

SystemMonitor systemmo.txt
Integrating with External Systems

Part IV
Using Network and Operating
System Features
Part IV of Integrating with External Systems describes how you can use system activities
and network sockets to enable your application to communicate with a Forte applications.

Chapter 13, “Using System Activities and Network Connections” explains how to:

■ use the ActivityManager, SystemActivity, and Rendezvous classes to use system
activities to communicate between external applications and Forte applications.

■ use the ExternalConnections class to use network sockets to communicate between
external applications and Forte applications

206
Integrating with External Systems

Chapter 13
Using System Activities
and Network Connections
This chapter discusses how to interact with other applications using system activities and
network connections.

For reference information about the TOOL classes that implement these features, see the
Forte online Help.

About Using System Activities and Network Connections208
About Using System Activities and Network Connections
Forte provides several classes that let you interact with external applications by
coordinating system activities or by communicating using network features.

About System Activities
The Rendezvous, SystemActivity, and ActivityManager classes allow a Forte application,
C++ client applications, or wrapped C code to register for certain low-level operating
system events, referred to as system activities. Your application can then wait for
notification that an activity has completed, or occurred. The SystemActivity and
ActivityManager classes do not support activities on Microsoft operating systems.

Detailed information about integrating using system activities is in “Using System
Activities” on page 209.

About the ExternalConnection Class
The purpose of the ExternalConnection class is to facilitate network communications
between two points (peer to peer or client to server) when one of the points is a Forte
application. Using the ExternalConnection class, a Forte application can communicate
with an external process or program that is running locally or on another host. For
example, a Forte application can exchange data with a Web browser, Java, C, or BASIC
program, telnet, HTTP, and so on.

Detailed information about integrating using the ExternalConnection class and network
sockets is in “Using the ExternalConnection Class” on page 215.
Integrating with External Systems

Using System Activities 209
Using System Activities
Forte Release 3 includes classes that increase ways for Forte applications to integrate with
external systems. The Rendezvous, SystemActivity, and ActivityManager classes allow a
Forte application, C++ client applications, or wrapped C code to register for certain low-
level operating system events, referred to as system activities. Your application can then
wait for notification that an activity has completed, or occurred.

Supported System Activities
A program can register for the following system activities:

■ user-defined activities

■ interval timers (accessible from C and C++)

■ UNIX signals

■ UNIX file description events posted by the network or file system (data available, input
channel available, exceptional data available)

■ VMS asynchronous trap (AST) notifications for I/O or user data notifications

■ VMS event flags

Note The SystemActivity and ActivityManager classes do not support activities on Microsoft
operating systems. On Microsoft Windows 95 and Windows NT, you can write routines
similar to those shown in this section by starting a thread and invoking Win32 API calls.

User-defined activities You can define TOOL methods, or C or C++ functions that define and post activities. For
example, you could use these user-defined activities to notify Forte when a series of
activities outside the Forte runtime system have occurred. You could also write a C function
that posts a user-defined activity to return data to your Forte application after it receives
the data from another application. For more information about posting user-defined
activities, see “Setting Up User-Defined Activities” on page 214.

Working with System Activities
This section discusses how to use the ActivityManager, Rendezvous, and SystemActivity
classes to work with system activities.

Registering for Notification about System Activities
In TOOL code, you have a task register for Forte events by writing an event loop, and
including the events in a list of when clauses in the event loop. If your application does not
register for an event, it does not receive the event, even when the event is posted.
Chapter 13Using System Activities and Network Connections

Using System Activities210
Registering for a system
activity

Similarly, your application needs to register to receive notification about a system activity.
You can use the RegisterSystemActivity methods on the ActivityManager class to register for
particular system activities. The following example how you can register for a system
activity:

The RegisterSystemActivity method returns a SystemActivity object, which represents a
particular system activity for which a task has registered. The Forte then notifies the
Rendezvous object specified in the RegisterSystemActivity method when the system
activity occurs.

Note If a task registers for the same system activity multiple times, the Rendezvous object will
receive multiple notifications when the activity occurs.

In C++, you can register using the RegisterSystemActivity methods on the
qqhActivityManager handle class.

In C, you can register for these system activities using the functions described in the Forte
online Help.

Registering for an interval
timer tick activity in C or
C++

If you want your C or C++ code to use an interval timer, you can register to be notified
about interval timer ticks in your C or C++ code. This interval timer is provided by Forte to
C and C++ clients, without requiring any Forte Timer objects to be instantiated. In TOOL,
you can instantiate a Timer object and register for the Timer.Tick event.

To register for an interval timer tick, you need to specify the tick interval as the systemID
parameter value and use the SH_SA_TIMER constant (qqSH_SA_TIMER in C) for the
activityType parameter. The following example shows how you can register for an interval
timer tick activity in C:

In this example, me is a pointer to a struct, and rend is a pointer to a Rendezvous object.

Each time you register for an interval timer tick, Forte starts a new interval timer, so you
should deregister for these events as soon as you no longer need them.

Waiting for Activity Completion
When a registered system activity occurs, the Rendezvous object is notified, and the system
activity is added to a queue of system activities that can be accessed using the
Rendezvous.GetSystemActivity method. Each invocation of the GetSystemActivity method
returns a system activity from the Rendezvous object’s queue, and removes that system
activity from the queue.

Tasks can find out about completed system activities in the following ways:

Waiting for an event (TOOL only) The task registers for the
Rendezvous.SystemActivityCompletion event in an event loop. This task can then wait for
the SystemActivityCompletion event and any other events for which it has registered.

sysActivity : SystemActivity =

task.Part.OperatingSystem.ActivityManager.RegisterSystemActivity(

systemId = fileId, activityType = SH_SA_FD_WRITE,

userContext = pContext, rendezvous = myRendezvous);

me->SysAct = qqsh_RegisterSystemActivity((void *) interval,

(long) qqSH_SA_TIMER, (void *) me, rend);
Integrating with External Systems

Using System Activities 211
After the task catches the SystemActivityCompletion event, the task should invoke the
Rendezvous.GetSystemActivity method to retrieve the system activity from the queue, as
described in the next section, asshown in Figure 12:

Figure 12 Notification of a System Activity in TOOL with the SystemActivityCompletion event

Checking for system activities (TOOL, C++, and C) The task invokes the
GetSystemActivity method on the Rendezvous object associated with a particular system
activity, as shown in Figure 13:

Figure 13 Checking for System Activities Using the GetSystemActivity Method

If there are system activities in the Rendezvous object’s queue, the method returns
information about the oldest system activity in the queue, which is then removed from the
queue.

Main Application Task Event Loop

Rendezvous.GetSystemActivity

Rendezvous.SystemActivityCompletion

System Activity Rendezvous

Main Application Task

System Activity Rendezvous

Event Loop

userContext

Rendezvous.G
et

Sy
st

em
A

ct
iv

it
y(

)

Chapter 13Using System Activities and Network Connections

Using System Activities212
If there are no system activities in the queue, the GetSystemActivity does one of the
following, depending on the mode setting of the Rendezvous object:

■ Poll

If there are no system activities in the queue of the Rendezvous object, the
GetSystemActivity method returns the value -1. After a user-defined interval, the task
can invoke GetSystemActivity method again to check for system activities.

Polling is the default mode, and is set for each Rendezvous object using the
Rendezvous.SetMode method, which is described in the Forte online Help.

■ Block

If there are no system activities in the queue of the Rendezvous object, the task waits in
the method for a system activity to be added to the queue in the Rendezvous object. The
method does not return until it has found a system activity.

To set the Rendezvous object’s mode to block, use the Rendezvous.SetMode method,
described in the Forte online Help.

If blocking, register for the
event first

If a task will block while waiting for the SystemActivityCompletion event, the task
should register for the SystemActivityCompletion event before invoking the
RegisterSystemActivity method. Because Forte events in an event loop are registered
before any TOOL code within the event loop is executed, you can simply invoke the
RegisterSystemActivity within the event loop, as shown in the following example:

When the Activity Completes
When your application is notified about a completed system activity, either by retrieving
information using the GetSystemActivity method or by the SystemActivityCompletion
event, the task can proceed to do any other application specific tasks. For example, the
application can perform UNIX I/O on the registered file descriptor or update data after
signal or asynchronous trap (AST) notification.

Note When an AST or signal completes, the running process is no longer at interrupt or AST level
on the operating system.

sysActivity : SystemActivity;

myRendezvous : Rendezvous = new();

myRendezvous.SetMode(mode = CM_CM_BLOCK);

event loop

sysActivity =

task.Part.OperatingSystem.ActivityManager.

RegisterSystemActivity(systemId = fileId,

activityType = SH_SA_FD_WRITE,

userContext = pContext, rendezvous = myRendezvous);

when myRendezvous.SystemActivityCompletion do

-- Execute TOOL code

end event;
Integrating with External Systems

Using System Activities 213
General Design Suggestions
In your application, you can start tasks specifically for handling system activities. This set
of tasks can retrieve system activity information from the Rendezvous object, then take
appropriate action based on the system activity.

Each invocation of the Rendezvous.GetSystemActivity method retrieves the first system
activity from the queue of system activities that the Rendezvous object has received.
Coordinating when different system activities are retrieved by different tasks from the same
Rendezvous object can become a complex task if many tasks and system activities are
involved.

We recommend the following guidelines to simplify the interaction among tasks and
Rendezvous objects:

■ Define one event loop for each Rendezvous object, so that tasks in only one event loop
can retrieve system activities from a particular Rendezvous object.

■ Define one Rendezvous object for each system activity for which the task registers. This
approach prevents a task from retrieving a system activity of the wrong type.

■ Define a means of dealing with the situation of a task not receiving an expected system
activity. For example, your TOOL application should deal with the situation of receiving
a Rendezvous.SystemActivityCompletion event, but not finding any system activities in
the queue of the Rendezvous object.

Available Interfaces
You can take different approaches to waiting for system activities, depending on whether
you use the Forte classes, the C++ handle classes, or the C interfaces provided for the
ActivityManager and Rendezvous classes.

Forte applications Forte applications can register and wait for notification as described for the
ActivityManager, Rendezvous, and SystemActivity classes.

C++ client applications C++ client applications can use the C++ handle classes, as described in Chapter 11,
“Accessing Forte Using C++,” to use the ActivityManager, Rendezvous, and SystemActivity
classes. C++ client applications cannot receive Forte events, so they must either poll or
block to be notified about a system activity. If the C++ client application is single-threaded,
then the Rendezvous object should be in polling mode.

C functions Because many Forte application integration programs are written in C, Forte also provides
a C language interface so C programs can access the Forte wait mechanism directly with
better performance. C programs can use the C interfaces described for the ActivityManager
and Rendezvous classes to register for system activities and then either poll to check or
block to wait for notification that a system activity has occurred. The C interfaces work
essentially the same as their counterparts in TOOL, except that identifiers are returned to
represent the underlying objects.

If the C function is single-threaded, then the Rendezvous object should be in polling mode.

You need to include the header file for these functions, sysact.h, in your C code. This file is
located in FORTE_ROOT/install/inc/cmn.

You must wrap these C functions, as described in Integrating with External Systems, so that
the Forte runtime system can link in these libraries and the C functions and the Forte
runtime system can talk to each other.

For syntax descriptions of the C interfaces, refer to the Forte online Help.
Chapter 13Using System Activities and Network Connections

Using System Activities214
Setting Up User-Defined Activities
You can create and post your own activities that can be used as callbacks to a Forte
application from a C, C++, or TOOL application. In particular, an external C client can
notify Forte about an external happening and pass data to Forte using the userContext
parameter of the ActivityManager.PostSystemActivity method (or its C and C++ equivalents,
as described below.)

To set up and use a user-defined activity, you need to select a systemID for the activity. The
systemID value is a completely arbitrary integer value.

� To post a user-defined activity:

1 In the application that is waiting for the activity, register for the activity using the
ActivityManager.RegisterSystemActivity method (qqsh_ASTRegisterSystemActivity or
qqsh_RegisterSystemActivity function).

2 Pass the SystemActivity object returned in step 1 to the application that will post the
activity.

3 Post the user-defined activity using one of the following based on the language you are
using:

In TOOL, use the ActivityManager.PostSystemActivity method, described in the Forte
online Help.

In C++, use the qqhActivityManager.PostSystemActivity method. See the Forte online
Help for information.

In C, use the qqsh_PostSystemActivity function call, described in the Forte online Help.

The notificationID parameter is the SystemActivity object passed to the posting
application in step 2 above. The systemID parameter is the value selected by the user for
this activity. You can choose whether to specify the userContext parameter, depending
on the purpose of the activity.

The PostSystemActivity method (or its C or C++ equivalent) notify the Rendezvous
object associated with the registration that the user-defined activity has occurred.
Integrating with External Systems

Using the ExternalConnection Class 215
Using the ExternalConnection Class
The purpose of the ExternalConnection class is to facilitate network communications
between two points (peer to peer or client to server) when one of the points is a Forte
application. Using the ExternalConnection class, a Forte application can communicate
with an external process or program that is running locally or on another host. For
example, a Forte application can exchange data with a Web browser, Java, C, or BASIC
program, telnet, HTTP, and so on.

Reference information for the methods of the ExternalConnections class is in the Forte
online Help.

You can use the ExternalConnection class to initiate outbound connections (using the
Open method) or to listen for and accept inbound connections (using the StartListening
method). Connections can occur over the following transport protocols:

■ TCP (Sockets, TLI, Winsock)

■ DECnet

■ UNIX Domain Sockets

Advantages of using the
ExternalConnection class

The ExternalConnection class offers a high-performance, generic means of integrating with
Forte, by enabling connections to software programs on any hardware platform, using
proprietary as well as standard Internet protocols. You can use wrapping C functions as an
alternative to the ExternalConnection class, as described in the Forte manual Integrating
with External Systems. However, the ExternalConnection class offers several benefits
compared to wrapping C functions:

The ExternalConnection class can improve performance. Whereas wrapper code
typically uses synchronous processing, the ExternalConnection class supports fully
asynchronous processing (non-blocking) in both clients and servers.

It is easier to use. The ExternalConnection class offers a standard, yet flexible, way to
open connections. Wrapping C functions tend to be complex and unique to each situation.

It transparently handles network protocol details. The ExternalConnection class sets
up non-blocking communication, coordinates polling, and asynchronous I/O completion.
Additionally, it converts a number of protocol-specific error codes to a few standard Forte
exceptions.

Note that ExternalConnection is non-blocking when used in conjunction with Forte’s
tasking model. The use of Forte tasks is required to achieve multi-threaded operation with
ExternalConnection.

This class can be used to include higher-level protocols such as SNMP, HTTP, FTP and other
proprietary messaging systems in TOOL code. Examples of how you can use the
ExternalConnection class include:

■ on the client side, communications between client applications written in any language
and a Forte business service object

■ on the server side, communications between a Forte business service object and
proprietary hardware or complex C processes

■ on either the client or the server side, building an SNMP interface to Forte applications
to report to a proprietary system management utility

Forte sample programs Forte provides two sample Forte programs (InboundExternalConnection and
OutboundExternalConnection) to demonstrate the use of the ExternalConnection class
and a sample C program, extcon.c, that connects with both Forte programs. For
information about these sample programs, see “InboundExternalConnection” on page 233
and “OutboundExternalConnection” on page 238.
Chapter 13Using System Activities and Network Connections

Using the ExternalConnection Class216
Types of Connections
The ExternalConnection class supports network communications over multiple transport
protocols. The following table shows the network transport protocols supported by the
ExternalConnection class; note that one advantage of using ExternalConnection is that the
protocol details are transparent on the Forte side of the connection.

ExternalConnection objects are fully asynchronous in both preemptive and non-
preemptive tasking environments. The task/thread blocking that supports asynchronous
behavior is fully integrated into the Forte task manager.

Basic Concepts
Some new terminology is introduced with the ExternalConnection class. Additionally, some
terms can be ambiguous without context, since they may refer to either end of a network
connection. We use the following terminology throughout this section and a number of the
elements are shown in Figure 14 on page 217.

External endpoint The external endpoint is the end of a network connection that is not running Forte, but that
must interact with a Forte application. This endpoint can be a proprietary or standard
software program or hardware component. The external program can be written in any
language that supports an interface to the protocols shown in the table above, such as C or
Basic.

Forte endpoint The Forte endpoint is the end of a connection where Forte is running. A Forte endpoint can
be a partition containing a service object or a client partition.

Both endpoints can send data, receive data, or both. Similarly, either endpoint can initiate
a connection. From the Forte endpoint’s perspective, a connection can be considered
either inbound or outbound.

Network connection A network connection is maintained by the underlying network protocol such as TCP. A
network connection supports data flowing in both directions simultaneously, such that
both endpoints can be simultaneously reading and/or writing.

Listener The listener is a task that is listening for incoming connections. A listener may accept
connections on behalf of Forte or on behalf of a program running external to Forte.

Forte listener A Forte listener is a task currently listening for incoming connections. Typically the listener
is started as a separate listener task dedicated to listening, although the listener can run in
any Forte task. The Forte listener blocks while waiting for new incoming connections.

Type of Connection From To

TCP/IP Sockets (BSD or Winsock) Windows

NT

Digital Unix (Alpha OSF)

HP/UX

AIX

DG/UX

any reliable TCP/IP entity

TCP/IP TLI Endpoint (System V) Dynix PTX

Solaris

any reliable TCP/IP entity

UnixDomainSockets (UDS) Digital Unix

HP/UX

AIX

DG/UX

any other process, running on the same
machine, that can read and write UDS

DECnet Windows (Pathworks)

VMS

any DECnet entity
Integrating with External Systems

Using the ExternalConnection Class 217
External listener The external listener is a process at the external endpoint to which the Forte application
(for example, a business service object) sends a connection request.

Processing task A processing task is a Forte task started by the listener to set up the network connection and
exchange data. When the listener starts the processing task it passes an
ExternalConnection object for the new network connection. The final network connection
is between the external endpoint and the processing task at its own port number.

Accepting Inbound Connections
A Forte application might need to accept connections or requests that are initiated by
external processes, such as C programs, management consoles, and so on. In your Forte
program, use the StartListening method (see the Forte online Help) to start a listener task
that can accept inbound connections.

In a typical Forte application, a listener is created as a separate Forte task, to avoid blocking
the main task, as shown in Figure 14. The listener task blocks while it waits for new
connection requests. When a connection request arrives, the listener task starts a new Forte
processing task for each new connection.

Figure 14 Forte Listener Task Accepting Inbound Connections

An ExternalConnection object manages the underlying network connection. When using
an ExternalConnection object, each read or write (or listen) method call blocks the task
that issued it. Thus, you need multiple tasks whenever you want to have multiple
operations outstanding.

The following code fragment shows a loop in which the listener starts listening and starts a
task whenever it receives a new connection request:

Main Application task

Start Listener task

Incoming Connection 1

Start Task1 for

Incoming Connection2
Start Task2 for

(Listener task waits
 for connections) from Endpoint1

from Endpoint 2

Connection1

Connection2

Forte Application (Forte Endpoint)

External Endpoint 2

External Endpoint 1

 Application (Forte Endpoint)

newConn : ExternalConnection;

listener : ExternalConnection = new;

while TRUE do

newConn = listener.StartListening(port);

if (newConn != nil) then

Start Task self.ProcessConnection(newConn);

else

exit;

end if;

end while;

See InboundExternal-
Connection example

Project: InboundExternalConnection • Class: Connector • Method: Listen
Chapter 13Using System Activities and Network Connections

Using the ExternalConnection Class218
The following example shows how to start a listener task:

The following example shows how to subsequently start a processing task whenever a new
connection arrives:

Processing tasks In most cases it is preferable start a separate processing task to respond to each incoming
connection. If you do not start separate processing tasks and the listener handles every
incoming request, the listener will block while processing each request, severely impacting
performance. By using processing tasks, the listener can accept incoming requests as
quickly as they come in. For additional information on the start task TOOL statement and
multitasking, see the TOOL Reference Manual.

In the interval between the time the listener accepts the connection and generates the new
ExternalConnection object to pass to the processing task, the underlying network protocol
buffers any data being sent, so data is not lost.

Because processing tasks are asynchronous, no task blocks waiting for another to
complete.

The listener task On most platforms and protocols, a listener can accept as many connection requests as
arrive, even “simultaneously.” However, it is possible that more requests may arrive than
can be serviced by a port number that has a limit. On many machines this limit is 5. If this
situation occurs, the requestor should get an error and can retry. This problem can occur
with some implementations of BSD sockets.

The listener will listen as long as the service object that started it is running, the listener
task has not been closed, and the partition has not exited. The listener is closed if the
partition exits or if the task that created the ExternalConnection object dies, or a Close is
invoked on the listener. The listener task dies if Close is invoked on the ExternalConnection
object.

This dependency may affect which service object you use to start the listener task. You can
use one of the following approaches to start a listener task:

■ You can use an existing business service object (the one that will either send or receive
the data through external connection) to start the listener task.

This approach is somewhat simpler to implement and is usually sufficient. It is also the
approach taken in the sample program InboundExternalConnection.

■ You can create a new service object specifically for the purpose of starting the listener
task.

If you need a listener to listen when the business service object cannot be guaranteed to
be running, then you should either use a different service object, or create a new service
object specifically to start the listener task. This allows you to explicitly control when
that service object (and hence, the listener) starts and stops.

Data transfer After the two endpoints establish a connection, they can exchange data. At the Forte
endpoint, each processing task uses an ExternalConnection object for one connection, and
the Forte application writes and reads from the object as required by the business needs.
The ExternalConnection object sends data to and receives data from the network using a
MemoryStream object as an intermediate buffer. For example, if the Forte endpoint is
sending data to an external endpoint, it first writes data to the MemoryStream buffer and
then uses the Write method of ExternalConnection to send the data from the buffer over
the network to the endpoint.

Start Task ConnectSvr.Listen(port);

See InboundExternal-
Connection example

Project: InboundExternalConnection • Class: RunAll • Method: Runit

Start task self.ProcessConnection(newConn);

See InboundExternal-
Connection example

Project: InboundExternalConnection • Class: Connector • Method: Listen
Integrating with External Systems

Using the ExternalConnection Class 219
Using the data at the
endpoints

At the external endpoint, a program receives the data that is sent by the Forte endpoint, or
sends data to the Forte endpoint. Before Forte sends object data to an external endpoint,
the Forte program must convert object data into scalar data, so the data can be used by the
endpoint program. Conversely, when an external endpoint sends data to Forte, the scalar
data may need to be converted into objects. Both endpoints can then manipulate or
display the data as desired.

Closing the connection When the connection is no longer required and all information has been passed, the
connection should be closed. Use the Close method (see the Forte online Help) to close an
ExternalConnection object. Although Forte automatically invokes Close under some
circumstances, it is good practice to explicitly invoke Close.

Making Outbound Connections
You might require your Forte application to initiate calls to an external system to pass or
request data. To initiate a connection from a Forte application, use the Open method (see
the Forte online Help).

For each connection you must identify a host and a network endpoint:

■ To identify a host, specify a name in the current domain, a fully qualified domain name,
or an IP address.

■ To identify a network endpoint, specify a port number, path name, or DECnet object
name.

Data transfer during an outbound connection is the same as for an inbound connection.

Using MemoryStream Buffers
To read data from and write data to an ExternalConnection object, you use the Read and
Write methods. Both Read and Write use MemoryStream objects as data buffers, with a
parameter called readLength or writeLength.

Use UseData method to set
buffer size

For more efficient code, use the UseData method on MemoryStream to preallocate
contiguous buffers in the desired size for the data to be transferred. Set the size to the
largest typical size of data to be transferred. (Note that data buffers may be temporarily
broken up during transmission over the network.) If you do not use the UseData method,
buffers are allocated as necessary, but performance may be degraded

The following code fragment shows the use of UseData. Note that the markers <EOW> and
<EOS> are specifically used by the Forte examples to indicate the end of a word or string;
these markers are not automatically used or supported by the ExternalConnection class.

Other recommendations include:

■ Open the buffer with the appropriate access mode (read, write, or read/write).

■ Reuse data buffers as much as possible to avoid allocation and memory management
overhead.

feedData.SetValue(’Tire<EOW1>65psi<EOW2>Inflated<EOW3><EOS>’);

length = feedData.ActualSize;

-- If you have a large amount of data, it’s more efficient to

-- use UseData() than any of the write methods on MemoryStream.

buf.UseData(data = (pointer to char)(feedData.Value),

 length = length);

conn.Write(buf, length);

See OutboundExternal-
Connection example

Project: OutboundExternalConnection • Class: Connector • Method: Connect
Chapter 13Using System Activities and Network Connections

Using the ExternalConnection Class220
■ Have a read posted on each I/O connection when you are expecting data to arrive, to
increase throughput and response.

The following example invokes the Read method within the ProcessConnection method
immediately after opening the MemoryStream buffer, as follows (ellipses denote
missing comments, not actual code lines):

For more information on using MemoryStream, refer to the section on MemoryStream in
the Framework Library manual.

Data Sharing Issues
When a Forte application and an external program share or exchange data, consider the
following issues:

Map objects to scalar data. You must provide mappings that convert object data (such
as TextData or IntegerNullable) to scalar data (such as string or int). Data that is passed
from a Forte application must be converted before transmission into data types that can be
handled by the external program.

Use same high-level protocol. The programs at both endpoints must write and read
data using the same high-level protocol (for example, HTTP, FTP, Telnet, and so on). While
the lower-level transport protocol details are made transparent by using the
ExternalConnection class, the Forte application and the external program will probably use
some higher-level protocol to exchange and interpret data.

For example, if you are sending Forte objects to be displayed on a Web server using the
HTTP protocol, then you must embed the necessary HTTP information when sending the
data, so that the data can be interpreted properly by HTTP at the endpoint.

Map data to Forte objects. If data is being passed to the Forte application, you may
need to define one or more new classes and attributes to which the data will be mapped.
However, you need not map all data to objects; for example, you might also pass data
values to be used for local variables.

buf : MemoryStream = new;

length : integer;

...

readComplete : boolean;

...

buf.Open(SP_AM_READ_WRITE);

while TRUE do

length = MAXLEN;

 . . .

 while not readComplete do

 . . .

 newConn.Read(buf, length);

 buf.ReadText(target = tempTD, length = length);

end while;

end while;

See InboundExternal-
Connection example

Project: InboundExternalConnection • Class: Connector • Method: ProcessConnection
Integrating with External Systems

Using the ExternalConnection Class 221
Take special care with binary data. If you are passing binary data, remember to allow
for byte-swapping when passing data between platforms that use different byte-ordering
format for binary data. For example, the VMS, NT, Intel, and Sequent platforms use one
byte-ordering format, that differs from that used by Sun, HP, Mac, and AIX. Also, when
passing binary data, make sure that the sizes of the datatypes are compatible; for example,
on some platforms an int datatype is 4 bytes, while on other platforms it is 2 bytes.

Scaling Issues
An application might have multiple listeners waiting to accept connections. The following
scenarios are valid possibilities and are described in more detail below:

■ The main partition task can start listeners on different port numbers. This might be
useful to allow incoming connections to access different service objects. Each service
object would have a corresponding listener at a unique port number, for example.

■ Different tasks within the same application can start parallel listener tasks, to accept
connections that will be serviced by different service objects. Or, one task can start
several listener tasks that all call the same service object.

■ The main partition task can start multiple listener tasks, one for each underlying
network protocol. For example, it could start two listener tasks: one for TCP sockets and
one for DECnet. In this case, incoming connections could access the same service
object but use different underlying transport protocols.

Using multiple listeners You can start multiple listeners for a variety of reasons. If external connections may require
access to multiple service objects, you can set up listeners at different locations (ports or
DECnet objects) for each service object. One advantage of this is that the connections can
be processed in parallel.

Using multiple transport
protocols concurrently

You can design your application to communicate over multiple transport protocols (for
example, DECnet and TCP sockets) simultaneously. To use multiple protocols you must
define one listener for each protocol (for inbound connections) or open individual
connections for each protocol (for outbound connections).

Using Multiple Tasks for a Single Connection
We recommend that you use only one Forte task to read or write on an ExternalConnection
object. This has the advantage of being far simpler to code and easier to manage. However,
it is possible to start multiple tasks to read or write to the same ExternalConnection object.

For example, you might prefer to start multiple tasks to handle a connection, to quickly
transfer large or complex data. For example, an external endpoint might require (or send) a
continuous feed of data and images. In such situations, you may decide to start separate
tasks to read or write portions of the data.

Although using multiple tasks can be desirable for performance reasons, it requires more
complex code than using only one buffer, or than always processing buffers in the same
order (as from a single task). If you use multiple tasks to process multiple buffers, consider
the following issues:

Synchronize buffer access. If the tasks are asynchronous, the buffers are processed in
parallel and you must synchronize the processing. Your code must synchronize and lock
the data from the multiple buffers. Since you cannot predict in what order the tasks will
complete, your code must be sure to construct (or interpret) the buffers correctly, no
matter what order the buffers are sent (or received). (If the tasks are not asynchronous,
then, while the coding of the multiple tasks is simpler, you lose any potential benefit due to
using multiple tasks.)
Chapter 13Using System Activities and Network Connections

Using the ExternalConnection Class222
Minimize object contention. The primary reason to use multiple tasks for one
connection is to improve performance. However, by using multiple tasks for one
ExternalConnection object you increase contention on that object; depending upon the
situation and the code, you may or may not realize a performance improvement by using
multiple tasks instead of a single task.

Using Task-Level Asynchronous Reads
Because ExternalConnection I/O is asynchronous to the partition, tasks not involved in the
I/O are free to perform other work and multiple requests can be processed in parallel. This
model is sufficient for many types of applications including servicing of HTTP requests.
However, this model does not scale well for a subset of applications, in particular, those
that have long-lived sessions.

Standard ExternalConnection
I/O

In the standard ExternalConnection I/O model, a task blocks while waiting for a read to
complete. If there is significant think time in the client, and connections or sessions last
longer than an I/O, then these blocked tasks can consume a large amount of memory on
the server. (Note that HTTP connections are not subject to this problem, since the
connection only lasts one I/O.)

Task-level
ExternalConnection I/O

An alternative model for applications that have long-lived sessions uses task-level
asynchronous reads with ExternalConnection objects. In this model, a task that does a read
never blocks waiting for the I/O to complete. Once the I/O has completed it is delivered to
an object known as a rendezvous. When using asynchronous reads with a rendezvous, you
can have a pool of tasks that wait on the Rendezvous object for reads to complete
asynchronously. In this way, tens of tasks can service thousands of session connections
reducing memory overhead.

Figure 15 Using Asynchronous Reads with a Rendezvous Object

You can create as many Rendezvous objects as you require for an application; using
multiple Rendezvous objects can be a convenient way to arrange work in an application.

To enable asynchronous reads, first create a Rendezvous object and then call the
SetIORendezvous method on the ExternalConnection object. At that point a normal read
will return immediately with a length of 0. For example:

ExtConn

Rendezvous

Task1 calls read

and returns

Task2 registers

Read arrives over network

Event is delivered

Task2 invokes

Process the data

GetCompletion

Example: creating a rendezvous -- Mark the I/O async

rendezvous : Rendezvous = new;

Connection.SetIORendezvous(self.Rendezvous);

-- do the I/O

buf.Seek(SP_RP_START, 0);

length = 50;

Connection.Read(buf, length);

-- length is 0 now.

-- perform other work
Integrating with External Systems

Using the ExternalConnection Class 223
The same task or another “completion” task can then wait for the I/O to complete:

The completion task can either poll or wait for the I/O.

Waiting for I/O To wait for the I/O, the task enters an event loop registered for a Rendezvous.IOCompletion
event.

Polling for I/O To poll for a read completion, the task periodically calls the method
Rendezvous.GetCompletion.

To turn off asynchronous reads, invoke the ClearIORendezvous method.

There may be only one read posted to a connection at a time; the first read is accepted and
subsequent reads are ignored.

Error Handling
A number of situations are automatically handled by the ExternalConnection class. For
example, if a partition in which the listener task is running is shut down, then Forte
automatically closes any outstanding connections and reallocates the resources.

Network connections may experience problems due to the underlying transport protocol.
RemoteAccessException errors are raised when a connection cannot be established, a
current connection fails, or when network addresses cannot be resolved. The individual
method descriptions list the exceptions that each method may raise.

Under some circumstances the Forte side of a connection may close before the external
connection has received all of the data. This may occur, for example, on a fast machine that
closes a socket after having sent the data but before the data traverses the network. The
Close method includes a slight delay to catch network problems at this point. If desired,
you can also add a pause, using the Timer class, before the socket closes. You may want to
experiment some to determine the optimal value for the pause; values less than 50
milliseconds are effectively a task-yield, since the operating system does not have the
granularity to measure times that small.

Example: waiting for I/O to
complete

event loop

 when rendezvous.IOCompletion do

 length = Rendezvous.GetCompletion(retConn, retStrm);

 if length = -1

 then

 -- No completion found.

 exit;

 end;

 if length = 0

 then

 -- close seen.

 return;

 end;

 task.Part.Stdout.Put(’ read got back ’);

 retStr.Replace(length);

 task.Part.Stdout.Put(retStr.AsCharPtr());

 task.Part.Stdout.Put(’ bytes\n’);

end event;
Chapter 13Using System Activities and Network Connections

Using the ExternalConnection Class224
The following code contains error handling code that checks for three types of exceptions
and explicitly closes the connection in the event of a RemoteAccessException:

Diagnostics for ExternalConnection
When debugging and tracing multiple connections, you can use the SetName method to
assign a unique name to each connection, and the method GetName at appropriate
intervals in your code to verify which connection is current.

You can also use the CommMgr agent in the Environment Console to track the reads,
writes, bytes sent and received, and opens and closes. The CommMgr agent manages the
communications service for an active partition. For example, the CommMgr agent has
instruments that represent reads, writes, and bytes sent or read (using the corresponding
instruments Recvs, Sends, BytesSent, and BytesReceived).

For more information on the CommMgr agent and its instruments, see the Escript and
System Agent Reference Manual.

exception

 when ue : UsageException do

 task.Part.LogMgr.Put(

’UsageException caught in ProcessConnection\n’);

 when sre : SystemResourceException do

 task.Part.LogMgr.Put(

’SystemResourceException caught in ProcessConnection\n’);

 when rae : RemoteAccessException do

-- This exception means the connection was lost. We

-- explicitly close our connection to avoid any timing issues

-- in the cleanup. If you don’t explicitly Close the

-- connection, it will get cleaned up at the end of the

-- next garbage collection.

 task.Part.LogMgr.Put(

’RemoteAccessException caught in ProcessConnection\n’);

 task.ErrorMgr.Remove(1);

 newConn.Close();

-- Post Event so main task knows to shut down.

 post self.ConnectionClosed;

See InboundExternal-
Connection example

Project: InboundExternalConnection • Class: Connector • Method: ProcessConnection
Integrating with External Systems

Appendix A
Forte Example Applications
This appendix contains the following information for example applications used in this
book:

■ a brief description of each example

■ how to install the examples

■ requirements for running examples

■ instructions for running the examples

You can run an example application and examine it in the various Forte Workshops to see
how it is implemented. You can also modify the examples to use them as starting points for
your own applications.

Overview of Forte Example Applications226
Overview of Forte Example Applications
This section provides an overview of the Forte example applications, organized by general
topic. The following tables list the example applications under the particular part of the
Forte system they demonstrate.

The margin note for each of the following tables shows the name of the subdirectory under
FORTE_ROOT/install/examples where you can find the .pex files for the examples. For the
complete description of an individual application, see “Application Descriptions” on
page 227, which lists the applications in alphabetical order.

ActiveX Examples

C

C++

DDE Examples

ExternalConnection

OLE Examples

Example Description

extsys/ole/client ActiveXDemo Uses the Forte FourDir ActiveX control in a Forte window.

Example Description

extsys/c/ AllCType Maps TOOL C data types to variables in C functions. All C data types are covered.

DMathTm Shows how to integrate TOOL code with C functions in a distributed application.

MathTime Shows how to integrate TOOL code with C functions.

XRefTime Shows how to free external resources based on TOOL memory reclamation.

Example Description

extsys/cpp/server CppBanking Shows how to provide a C++ API to external C++ client applications.

Example Description

extsys/dde/ DDEClient Illustrates the use of the DDE Conversation class; Forte is the client.

DDEServer Lets a Forte application act as Microsoft Windows DDE server application.

Example Description

extcon InboundExternalConnection Illustrates how to use the ExternalConnection class to listen for a connection.

extcon OutboundExternalConnection Illustrates how to use the ExternalConnection class to initiate a connection.

Example Description

extsys/ole/server OLEBankEV Creates an environment-visible service object and an OLE client that can interact
with the service object.

OLEBankUV Creates an user-visible service object and an OLE client that can interact with the
service object.

extsys/ole/client OLESample Illustrates the use of OLEField, Olegen, and Forte’s OLE Automation.
Integrating with External Systems

Application Descriptions 227
Application Descriptions
This section lists the example applications in alphabetical order. Each example has five
sections describing it.

The Description section defines the purpose of the example, what problem it solves, and
what TOOL features and Forte classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported projects.
The examples are in subdirectories under the FORTE_ROOT/install/examples directory.
You can import example applications individually if you wish. When multiple .pex files are
listed, there are supplier projects in addition to the main project. You will need to import all
the files listed to run the application. Import them in the order given so that dependencies
will be satisfied.

The Mode section indicates whether the application can be run in either standalone or
distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database connection, an
external file, or any other special setup.

Finally, the To Use section tells you how to step through the application’s functions.

See the Forte 4GL System Management Guide if you need directions to set up a Forte server.
See Accessing Databases if you need information on how to make a connection to a
database. The database examples run against either Sybase or Oracle.

ActiveXDemo
Description ActiveXDemo shows how to use ActiveXField widgets to display and interact
with ActiveX controls. To use this example, you need the following files:

■ actxsamp.pex, which contains a project that uses ActiveX fields to interact with the
ActiveX controls

■ FourDir ActiveX control file, which is one of the following, depending on the platform:

Pex File extsys\ole\client\actxsamp.pex.

Mode Standalone.

Special Requirements Windows 95 or Windows NT.

� To use ActiveXDemo:

1 Copy the .ocx file for the FourDir ActiveX control to another location on your system. If
you wish, you can copy olegen.exe from FORTE_ROOT\install\bin directory to the same
location.

2 Register the FourDir ActiveX control in the Windows registry. The following table shows
how to register the ActiveX control for each platform:

Platform File name for FourDir ActiveX control file

Windows 95 fdir32.ocx

Windows NT fdir32.ocx

Windows NT on Alpha fdirant.ocx

Platform Command to Register the Control

Windows 95 regsvr32 fdir32.ocx

Windows NT regsvr32 fdir32.ocx

Windows NT on Alpha regsvr32 fdirant.ocx
Appendix AForte Example Applications

Application Descriptions228
The regsvr.exe and regsvr32.exe are distributed with Forte in the
FORTE_ROOT\install\bin directory.

For example, in Windows 95 or Windows NT, use the following command on the
command prompt in the directory that contains the .ocx file for the control:

3 Use the Olegen utility to generate a pex file based on the .ocx file using a command like
the following:

This command generates a .pex file called fdir32.pex.

4 Import the generated .pex file into your repository.

5 Import the actxsamp.pex file into your repository.

6 Test run the ActiveXDemo application.

The window in the ActiveXDemo application is shown in the following figure:

Figure 16 ActiveXDemo window

The four arrows in this window belong to the FourDir ActiveX control in an ActiveX field.
The direction indicated by the selected arrow is reflected in the Direction droplist, and
vice-versa. Another ActiveX field is defined in the lower right hand corner, but invisible.

The functions provided by the buttons are described below:

regsvr32 fdir32.ocx

olegen -it fdir32.ocx -of fdir32.pex -ai

Button Description

More Arrows Sets the state of the invisible ActiveX field to update, then creates a new instance of
the fdir class (the ActiveX interface class for the FourDir ActiveX control) and inserts it
into the ActiveX field. When you click one of the arrows in this control, the selected
arrow moves clockwise until it returns to the arrow you selected.

Move Clockwise Makes the selected arrow the next one in a clockwise direction.

Move Counterclockwise Makes the selected arrow the next one in a clockwise direction.

Quit Shuts down this application.

Remove Arrows Removes the FourDir ActiveX control added by the More Arrows button. When the
More Arrows button is clicked, this button replaces it.

Reverse Direction Makes the selected arrow the one pointing in the opposite direction from the arrow
currently selected.
Integrating with External Systems

Application Descriptions 229
FourDir ActiveX Control
The FourDir ActiveX control is a sample ActiveX control provided by Forte to demonstrate
how you can use ActiveX controls in your Forte applications.

Figure 17 The FourDir ActiveX Control

The FourDir ActiveX control is provided as an .ocx file, as described in “ActiveXDemo” on
page 227. This section also describes how to install the FourDir ActiveX control.

The following table outlines the methods, properties, and events defined for the FourDir
ActiveX control:

AllCType
Description AllCType shows how to map TOOL C data types to variables in C functions.
The “mapping methods” in this example are the methods defined in a TOOL C project
which enable TOOL methods to access C functions. The methods and functions in this
example perform extremely simple operations. Their purpose is to show how to define
input, output, and input output parameters, and return values in the mapping methods,
and how to call those methods from TOOL, and how to de-reference the parameters in the
C functions. Also see the MathTime and DMathTm examples for a simple, practical
example of how to use mapping methods. DMathTm is the distributed version of
MathTime.

Pex Files extsys/c/allctype.pex.

Mode Distributed only.

Special Requirements Access to a C++ Compiler, creation of a working directory,
autocompile must be turned on.

Element Name Description

Property Value String. Sets the initial direction for the selected arrow. Valid values are N
(north), S (south), E (east), or W (west). By default, the initial value is N.

Method MoveClockwise No arguments and no return value. Changes the selected arrow to the next
arrow in the clockwise direction.

MoveCounterClockwise No arguments and no return value. Changes the selected arrow to the next
arrow in the counterclockwise direction.

MoveOpposite No arguments and no return value. Changes the selected arrow to the
arrow in the opposite direction.

Event Click Posted when someone clicks an arrow in the control.
Appendix AForte Example Applications

Application Descriptions230
� To use AllCType:

1 Create a working directory where you have read and write permission. Copy the
following three files from $FORTE_ROOT/install/examples/extsys/c to your working
directory: allctype.pex, allctype.fsc, allctype.c. Set the environment variable
FORTE_EP_WRKDIR to your working directory.

2 Compile the file allctype.c into an object file called allctype.o. Under the directory
$FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there already. Copy the file
allctype.o to the $FORTE_ROOT/tmp/examples directory.

3 Before completing this step, make sure autocompile is available on your system. If
autocompile is not set up, ask your System Administrator to set it up for you. Now run
Fscript and enter the following commands:

4 The allctype.fsc script will import, distribute, compile, install, and run the AllCType
example. You may want to examine this script to understand the steps involved in
linking TOOL code with external C routines.

CPPBanking
Description CPPBanking shows how to create a Forte service object for which you can
generate a C++ API. This example also shows how to generate a C++ API and how to write a
C++ client that uses the API.

■ cppbank.pex contains the TOOL project CPPBanking, which contains a simple class and
starting method that references the BankServer service object in the BankServices
project.

■ cppbancl.cpp is the C++ client application that uses the generated C++ API to access a
Forte client partition.

BankServer is a simple bank account service object. That lets clients query and update
bank accounts.

Pex Files frame/banksvc.pex, extsys/cpp/server/cppbank.pex.

Mode Distributed only.

Special Requirements Have access to a C++ compiler, set up auto-compile, set up your
environment and C++ compiler and linker, as described in “Setting up Your System and
Compiler to Use the C++ API” on page 181.

� To use CPPBanking:

1 Import the banksvc.pex (BankServices project) and cppbank.pex (CPPBanking project)
files into your repository.

2 Partition the CPPBanking project.

3 Open the properties dialog for the client partition for the CPPBanking application.

4 Mark the Compile and Generate C++ API toggles and click the OK button.

5 Make a distribution for this application using auto-compile and auto-install.

6 Compile the cppbancl.cpp file using the compiler and linking options described in
“Compiling the C++ Client Application” on page 189.

7 Start the executable created by compiling and linking cppbankcl.cpp.

UsePortable

SetPath %{FORTE_EP_WRKDIR}

Include allctype.fsc
Integrating with External Systems

Application Descriptions 231
DDEClient
Description DDEClient uses the DDEConversation class, which lets a Forte application
access a Microsoft Windows Dynamic Data Exchange (DDE) server application on a
PC/Windows platform. It allows you to establish a connection with Excel and move data to
an Excel spreadsheet.

Pex Files extsys/dde/ddecli.pex.

Mode Standalone or Distributed.

Special Requirements PC client running Excel, access to extsys/dde/ddecli.xls.

� To use DDEClient:

1 Before trying to run this application, check the location of your Excel executable.

If it is not in C:\EXCEL, edit the Display method in the DDEClientWindow class to point
to the right directory. Enter the full path name to your Excel spreadsheet and click on
the Connect button. If Excel is not running, it will be started and Already Running will
be checked.

2 Place the windows so that both the DDEclient and Excel are visible. You can retrieve
data from a particular cell of the spreadsheet by specifying the cell name and clicking
the Get button. Similarly, you can place data by entering the Cell Value and clicking the
Set button.

3 You can also change data in the Excel spreadsheet, click on the HotLink and WarmLink
buttons, and note the status line at the bottom of the application. A hot link changes the
data in the client display, while a warm link only notifies you of a change.

DDEServer
Description DDEServer uses the DDEServer and DDEClient classes, which let a Forte
application act as a Microsoft Windows Dynamic Data Exchange (DDE) server application
on a PC/Windows platform. It is a simple utility for servicing a DDE client application.

Pex Files extsys/dde/ddeserv.pex.

Mode Standalone or Distributed.

Special Requirements PC client running Excel, access to extsys/dde/ddeserv1.xls and
ddeserv2.xls.

� To use DDEServer:

1 Start the application, then bring up Excel and open the example Excel files: ddeserv1.xls
and ddeserv2.xls.

2 Select the StartTimer button. You should see the changing numbers in the Forte server
reflected in your example spreadsheets.

3 You can also use the appropriate menu items in Excel to retrieve data from the
DDEserver application and place in the Excel spreadsheet, or to export data from the
spreadsheet and place it in the DDEserver application.
Appendix AForte Example Applications

Application Descriptions232
DMathTm
Description DMathTm is the distributed version of MathTime. Both DMathTm and
MathTime are examples of a TOOL C project, along with a TOOL project that calls the
TOOL C project. They are both useful for seeing how to integrate TOOL code with C
functions. DMathTm shows how to use a service object to restrict access to the C project.
This is a realistic approach to accessing C functions in a distributed environment, since
pointers cannot be passed across partitions. The example program allctype is a reference
for how to define and call TOOL C methods with parameters of all C data types at assorted
levels of indirection.

Pex Files extsys/c/dmathtm.pex.

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++ Compiler,
creation of a working directory, autocompile must be turned on.

� To use DMathTm:

1 Create a working directory where you have read and write permission. Copy the
following three files from $FORTE_ROOT/install/examples/extsys/c to your working
directory: dmathtm.pex, dmathtm.fsc, dmathtm.c. Set the environment variable
FORTE_EP_WRKDIR to your working directory.

2 The file dmathtm.pex contains the C project DistMathAndTimeProject and the TOOL
project TestDistMathAndTimeProject. They assume you have access to the standard C
runtime libraries. Make sure you know where these are located and what they are called
on your system.

3 Edit your copy of dmathtm.pex so that its ExternalSharedLibs extended property points
to the standard C shared library. Search the file for the string ‘/usr/shlib/libc’. Change
this string to the correct path and library name for your system.

4 Compile the file dmathtm.c into an object file called dmathtm.o. Under the directory
$FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there already. Copy the file
dmathtm.o to the $FORTE_ROOT/tmp/examples directory.

5 Before completing this step, make sure autocompile is available on your system. If
autocompile is not set up, ask your System Administrator to set it up for you. Now run
Fscript and enter the following commands:

The dmathtm.fsc script will import, distribute, compile, install, and run the DMathTm
example. You may want to examine this script to understand the steps involved in linking
TOOL code with external C routines.

fscript> UsePortable

fscript> SetPath %{FORTE_EP_WRKDIR}

fscript> Include dmathtm.fsc
Integrating with External Systems

Application Descriptions 233
InboundExternalConnection
Description InboundExternalConnection illustrates how to use the ExternalConnection
class to listen for a connection. The Forte program waits for a new connection, then starts
a task to handle each new connection. The C program extcon will initiate the connection
this example is waiting for. Once the connection is established, data is read and written. For
the read, the Forte program checks for an end of string marker to make sure all the data is
received.

Pex Files inbound.pex.

Mode Distributed.

Special Requirements C compiler; C portion of this example will run on NT and Unix
platforms; it will not run on Mac, Windows, or VMS.

� To use InboundExternalConnection:

1 Decide which platform you want to run the C program on, and which platform you
want to run the Forte program on. Compile the C program extcon.c into the executable
extcon on the desired platform.

On most Unix systems, simply use the following command:

This will work on the following platforms:

■ AlphaOSF

■ RS6000

■ Solaris

■ Data General

On Sequent, use the following command:

On HP, use the following command:

On NT, if you use Visual C to compile extcon.c, make sure to include wsock32.lib with
your standard Object/Library modules. Also, make sure the application is defined as a
console application, not a windows application.

2 Both the Forte program and the C program will use a default port number for the
listener, unless you supply it as an environment variable. The default port number is
6867. If you need to use another port number, set the environment variable
FORTE_EP_REG_PORT_1 to the desired port number in both the environment where
you will run the Forte program and the environment where you will run the C program.

3 If you want to establish an external connection between the Forte program and the C
program running on the same Unix machine, you do not need to set an environment
variable for the node name. If you want to connect between different machines, or if
you want to make the connection on the same NT machine, you will need to set an
environment variable. Set the environment variable FORTE_EP_NODENAME_1 in the
environment where you are running the C program. Set it to the name of the machine
where the Forte program is running.

cc extcon.c -o extcon

cc extcon.c -o extcon -lsocket -linet -lnsl

cc +Z extcon.c -o extcon
Appendix AForte Example Applications

Application Descriptions234
4 Use the file inbound.scr to supply the necessary commands to fscript. Inbound.scr will
import the pex file inbound.pex, find the project, run it, and remove the project after the
run is complete. Inbound.pex must be in the same directory as inbound.scr. Use
fscript’s -i flag to input inbound.scr to fscript:

Wait for fscript to import the project, load it, partition the service object, and return the
client partition. The Forte program is now waiting to accept an inbound connection.

5 On the machine where you compiled extcon, run it with the m command line option:

When you use the m option, extcon attempts to make a connection.

6 Observe the output of both processes. On the Forte side, you should see the following
results:

From the C program, you should see the following lines:

MathTime
Description MathTime is an example of a TOOL C project, along with a TOOL project that
calls the TOOL C project. It is useful for seeing how to integrate TOOL code with C
functions. The example program DMathTm is the distributed version of MathTime. The
example program AllCType is a reference for how to define and call TOOL C methods with
parameters of all C data types at assorted levels of indirection.

Pex Files extsys/c/mathtime.pex.

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++ Compiler,
creation of a working directory, autocompile must be turned on.

fscript -i inbound.scr

extcon m

Waiting to connect on port 6867

Waiting to connect on port 6867

Inbound Connection: server read got back 34 bytes

Lab<EOW1>50<EOW2>Stable<EOW3><EOS>

Inbound Connection: server wrote 35 bytes

Inbound Connection: server read got back 46 bytes

Storage Shed<EOW1>90<EOW2>Emergency<EOW3><EOS>

Inbound Connection: server wrote 35 bytes

Inbound Connection: server read got back 38 bytes

Vat<EOW1>200<EOW2>Red Alert<EOW3><EOS>

Inbound Connection: server wrote 35 bytes

Inbound Connection: RemoteAccessException caught in
ProcessConnection

Connection closed. All done.

Attempting to initiate connection on port 6867.

Attempting to initiate connection on the current machine.

Thank you for the information.

Thank you for the information.

Thank you for the information.
Integrating with External Systems

Application Descriptions 235
� To use MathTime:

1 Create a working directory where you have read and write permission. Copy the
following three files from $FORTE_ROOT/install/examples/extsys/c to your working
directory: mathtime.pex, mathtime.fsc, mathtime.c. Set the environment variable
FORTE_EP_WRKDIR to your working directory.

2 The file mathtime.pex contains the C project MathAndTimeProject and the TOOL
project TestMathAndTimeProject. They assume you have access to the standard C
runtime libraries. Make sure you know where these are located and what they are called
on your system.

3 Edit your copy of mathtime.pex so that its ExternalSharedLibs extended property points
to the standard C shared library. Search the file for the string ‘/usr/shlib/libc’. Change
this string to the correct path and library name for your system.

4 Compile the file mathtime.c into an object file called mathtime.o. Under the directory
$FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there already. Copy the file
mathtime.o to the $FORTE_ROOT/tmp/examples directory.

5 Before completing this step, make sure autocompile is available on your system. If
autocompile is not set up, ask your System Administrator to set it up for you. Now run
Fscript and enter the following commands:

6 The mathtime.fsc script will import, distribute, compile, install, and run the MathTime
example. You may want to examine this script to understand the steps involved in
linking TOOL code with external C routines.

OLEBankEV
Description OLEBankEV shows how to create an environment-visible service object that
provides wrapper methods to the methods on other Forte service objects. This example
then provides a Visual Basic client that shows how an OLE client application could interact
with the environment-visible service object to use the services provided by the
BankServices.BankServer service object.

■ olebanev.pex contains the OLEBankEV project, which defines a class named
BankServiceOLEInterface, which defines wrapper methods that in turn invoke methods
on the BankServices.BankServer service object. This project also defines an
environment-visible service object called BankServerOLE.

■ All the other files are part of the Visual Basic OLE client.

Pex Files frame/banksvc.pex, extsys/ole/server/olebanev.pex.

Mode Distributed only.

Special Requirements This example runs only on a Windows NT server node. You need
to have Microsoft Visual Basic installed on the Windows NT server node and a C++
compiler. You should have autocompile set up.

The Visual Basic clients were written to use Visual Basic Version 4.0. If you are using later
versions of Visual Basic, you might need to upgrade the provided Visual Basic components,
adjust the following instructions.

fscript> UsePortable

fscript> SetPath %{FORTE_EP_WRKDIR}

fscript> Include mathtime.fsc
Appendix AForte Example Applications

Application Descriptions236
� To use OLEBankEV:

1 Import the .pex files, listed above.

2 Configure the OLEBankEV project as a server application.

3 Mark the BankServerOLE service object as an OLE server, as described in “Mark a
Service Object as an OLE Server” on page 55.

4 Remove the server partition from all nodes that are not running Windows NT.

5 Make a distribution using autocompile and autoinstall.

6 Start the Forte server partition, as described in “Start the Forte Partition” on page 61.

7 Using Visual Basic, open the OLEBankEV.vbp file.

8 Make sure that the OLEBankEV project can find the BankEV.frm file by using the Visual
Basic File > Add File command.

9 In Visual Basic, use the TOOL > References command to tell the OLE client application
the location of the Forte service object .tlb file, which is in the
FORTE_ROOT\userapp\olebanke\cl0\ directory.

10 Run the Visual Basic OLE client example. Valid account numbers are 1000, 2000, and
3000.

OLEBankUV
Description OLEBankUV shows how to create a user-visible service object that provides
wrapper methods to the methods on other Forte service objects. This example then
provides a Visual Basic client that shows how an OLE client application could interact with
the user-visible service object to use the services provided by the BankServices.BankServer
service object.

■ olebanuv.pex contains the OLEBankUV project, which defines a class named
BankServiceOLEInterface, which defines wrapper methods that in turn invoke methods
on the BankServices.BankServer service object. This project also defines a user-visible
service object called BankServerOLE.

■ All the other files are part of the Visual Basic OLE client.

Pex Files frame/banksvc.pex, extsys/ole/server/olebanuv.pex.

Mode Distributed only.

Special Requirements This example runs only on a node running Windows 95 and
Windows NT. You need to have Microsoft Visual Basic installed on the Windows NT or
Windows 95 node and a C++ compiler. You should have autocompile set up.

The Visual Basic clients were written to use Visual Basic Version 4.0. If you are using later
versions of Visual Basic, you might need to upgrade the provided Visual Basic components,
adjust the following instructions.

� To use OLEBankUV:

1 Import the .pex files, listed above.

2 Configure the OLEBankUV project as a client application, with the BankServerOLE
service object in the client partition.

3 Mark the BankServerOLE service object as an OLE server, as described in “Mark a
Service Object as an OLE Server” on page 55.

4 Remove the client partition containing the BankServerOLE service object from all nodes
that are not running Windows 95 or Windows NT.

5 Make a distribution using autocompile and autoinstall.
Integrating with External Systems

Application Descriptions 237
6 Start the Forte client partition, as described in “Start the Forte Partition” on page 61.

7 Using Visual Basic, open the OLEBankUV.vbp file.

8 Make sure that the OLEBankUV project can find the BankUV.frm file by using the Visual
Basic File > Add File command.

9 In Visual Basic, use the TOOL > References command to tell the OLE client application
the location of the Forte service object .tlb file, which is in the
FORTE_ROOT\userapp\olebanku\cl0\ directory

10 Run the Visual Basic OLE client example. Valid account numbers are 1000, 2000, and
3000.

OLESample
Description OLESample uses OLEField, Olegen, and Forte’s implementation of OLE
Automation. It uses a Microsoft Chart application (part of Microsoft Graph5.0). The chart is
embedded in an OLEField. Olegen has been run to create a Graph project. OLE Automation
methods are used to access and manipulate objects in the chart.

Pex Files extsys/ole/msgraph.pex, extsys/ole/olesam.pex.

Mode Standalone or Distributed.

Special Requirements MSWindows3.1 or NT environment, MSGraph5.0.

� To use OLESample:

1 The OLESample .pex files are not imported automatically by the tstapps.fsc script, so
you must first import them in the order given above. msgraph.pex was generated by
invoking Olegen. The following command line was used:

You can generate your own msgraph.pex, to see olegen in operation, or you can use the
msgraph.pex provided in the examples directory.

2 Start the application. Click on the New Graph button. The embedded OLE field will
activate a generic Microsoft Graph Chart application.

3 Click on the Forte window to deactivate the field.

4 Double-click in the OLE chart field to activate it. Choose Insert and Titles from the
Microsoft Graph Chart menu. Choose Chart Title and click the OK button. Change the
title if you wish.

5 Click in the Forte window to deactivate Microsoft Graph Chart.

6 Click the Rotate Chart button as many times as you like.

7 Click the Change Title button and provide a title of your choice.

8 When you exit the example, the graph with your changes will be saved in the file
olesam.out in $FORTE_ROOT/tmp.

9 Start the application again. This time the Load Saved Graph button will be activated.
Click it. The chart it loads will reflect the changes you just made after creating a new
chart. You can change the title and rotate the graph again. These changes will be saved
when you exit the application.

-- If you run this, use paths appropriate for your environment.

olegen -it c:\windows\msapps\msgraph5\gren50.olb

-of c:\examples\extsys\ole\msgraph.pex
Appendix AForte Example Applications

Application Descriptions238
OutboundExternalConnection
Description OutboundExternalConnection illustrates how to use the ExternalConnection
class to initiate a connection. The C program extcon waits for a new connection.
OutboundExternalConnection will initiate the connection extcon is waiting for. Once the
connection is established, data is read and written. For the read, the Forte program makes
sure the anticipated number of bytes have been received. For the write, the Forte program
uses the UseData method on MemoryStream to improve efficiency.

Pex Files outbound.pex.

Mode Distributed.

Special Requirements C compiler; C portion of this example will run on NT and Unix
platforms; it will not run on Mac, Windows, or VMS.

� To use OutboundExternalConnection:

1 Decide which platform you want to run the C program on, and which platform you
want to run the Forte program on. Compile the C program extcon.c into the executable
extcon on the desired platform.

On most Unix systems, simply use the following command:

This will work on the following platforms:

■ AlphaOSF

■ RS6000

■ Solaris

■ Data General

On Sequent, use the following command:

On HP, use the following command:

On NT, if you use Visual C to compile extcon.c, make sure to include wsock32.lib with
your standard Object/Library modules. Also, make sure the application is defined as a
console application, not a windows application.

2 Both the Forte program and the C program will use a default port number for the
listener, unless you supply it as an environment variable. The default port number is
6868. If you need to use another port number, set the environment variable
FORTE_EP_REG_PORT_2 to the desired port number in both the environment where
you will run the Forte program and the environment where you will run the C program.

3 If you want to establish an external connection between the Forte program and the C
program running on the same machine, you do not need to set an environment variable
for the node name. If you want to connect between different machines, you will need to
set an environment variable. Set the environment variable FORTE_EP_NODENAME_2
in the environment where you are running the Forte program. Set it to the name of the
machine where the C program is running.

cc extcon.c -o extcon

cc extcon.c -o extcon -lsocket -linet -lnsl

cc +Z extcon.c -o extcon
Integrating with External Systems

Application Descriptions 239
4 On the machine where you compiled extcon, run it with the w command line option, so
that it will wait for a connection:

Extcon will time out after three minutes. If you need more than three minutes to start
the Forte part of this example, edit extcon.c. Increase the value of
DEFAULT_REG_UPTIME and recompile extcon.c

5 Use the file outbound.scr to supply the necessary commands to fscript. Outbound.scr
will import the pex file outbound.pex, find the project, run it, and remove the project
after the run is complete. Outbound.pex must be in the same directory as outbound.scr.
Use fscript’s -i flag to input outbound.scr to fscript:

6 Observe the output of both processes. On the Forte side, you should see the following
results:

From the C program, you should see the following lines:

XRefTime
Description XRefTime is an example of a TOOL C project, along with a TOOL project that
calls the TOOL C project. It is useful for seeing how to use the ExternalRef class to free
memory associated with Forte objects after those objects have been reclaimed by memory
management. The example program MathTime shows how to write C projects. The
example program DMathTm is the distributed version of MathTime. The example program
AllCType is a reference for how to define and call TOOL C methods with parameters of all C
data types at assorted levels of indirection.

Pex Files extsys/c/xreftime.pex.

Mode Distributed only.

Special Requirements Access to standard C Runtime Libraries and a C++ Compiler,
creation of a working directory, autocompile must be turned on.

� To use XRefTime:

1 Create a working directory where you have read and write permission. Copy the
following three files from $FORTE_ROOT/install/examples/extsys/c to your working
directory: xreftime.pex, xreftime.fsc, xreftime.c. Set the environment variable
FORTE_EP_WRKDIR to your working directory.

2 The file xreftime.pex contains the C project XRefTimeProject and the TOOL project
TestXRefTimeProject. They assume you have access to the standard C runtime libraries.
Make sure you know where these are located and what they are called on your system.

extcon w

fscript -i outbound.scr

Attempting to make a connection on port 6868.

Attempting to make a connection on canis.

OutboundConnection: server read got back 14 bytes

Data received.

Outbound connection: close done

Waiting to connect on port 6868.

QString = Tire<EOW1>65psi<EOW2>Inflated<EOW3>
Appendix AForte Example Applications

Application Descriptions240
3 Edit your copy of xreftime.pex so that its ExternalSharedLibs extended property points
to the standard C shared library. Search the file for the string ‘/usr/shlib/libc’. Change
this string to the correct path and library name for your system.

4 Compile the file mathtime.c into an object file called xreftime.o. Under the directory
$FORTE_ROOT/tmp, create the directory ‘examples’, if it isn’t there already. Copy the file
xreftime.o to the $FORTE_ROOT/tmp/examples directory.

5 Before completing this step, make sure autocompile is available on your system. If
autocompile is not set up, ask your System Administrator to set it up for you. Now run
Fscript and enter the following commands:

6 The xreftime.fsc script will import, distribute, compile, install, and run the XRefTime
example. You may want to examine this script to understand the steps involved in
linking TOOL code with external C routines.

UsePortable

SetPath %{FORTE_EP_WRKDIR}

Include xreftime.fsc
Integrating with External Systems

Appendix B
Olegen Mapping Conventions
This appendix describes how the Olegen utility interprets the interfaces provided by OLE
servers and ActiveX controls.

Olegen Mapping Conventions242
Olegen Mapping Conventions
The Olegen utility expects the OLE server or ActiveX control to provide type libraries, either
in a file outside the application, or as output when the type libraries are requested from the
application.

ActiveX controls are a special type of OLE automation server, so information presented in
this section applies to the interfaces for either an OLE server application or an ActiveX
control, unless otherwise indicated.

These type libraries are usually generated by compiling a file containing Object Description
Language (ODL) statements, which describe the dispatch interfaces available for an OLE
server. The Olegen utility uses the ITypeLib and ITypeInfo interfaces provided by each type
library to access the data type information for each OLE method provided for an OLE
server application.

The following sections describe the conventions that the Olegen utility uses when mapping
OLE automation methods to TOOL methods.

Mapping OLE Automation Interfaces to TOOL Classes
The Olegen utility uses the type library or dispatch interface provided by the OLE server to
determine how to map the OLE automation interfaces for a Windows application to TOOL
classes. If the OLE server provides:

A type library, either as a file or at runtime The Olegen utility defines the project
name as the name of the type library. The Olegen utility maps each dispatch interface
defined in the type library to a TOOL class.

Information for only one dispatch interface Olegen generates one class for the OLE
methods whose interface definitions are provided by the single dispatch interface. The
Olegen utility might not be able to access information about all OLE methods provided for
an OLE server.

No type library The Olegen utility generates one class for the OLE methods whose
interface definitions are provided by the OLE server. In this case, Olegen might not be able
to access information about all OLE methods provided for an OLE server.

No type information Olegen cannot generate any TOOL classes.

Mapping ActiveX Interfaces to TOOL Classes
The following sections describe the conventions that the Olegen utility uses when mapping
ActiveX control methods to TOOL methods.

The Olegen utility uses the type library or dispatch interface provided by the ActiveX
control to determine how to map the OLE automation interfaces for a Windows application
to TOOL classes. The ActiveX control provides:

A type library, either as an .ocx file or at runtime The Olegen utility defines the
project name as the name of the type library. The Olegen utility maps each dispatch
interface defined in the type library to a TOOL class.

Type library with information for only one dispatch interface Olegen generates one
class for the OLE methods whose interface definitions are provided by the single dispatch
interface.
Integrating with External Systems

Olegen Mapping Conventions 243
No type library The Olegen utility gets information directly from the ActiveX control and
generates one class for all the methods provided by the ActiveX control.

No type information Olegen cannot generate any TOOL classes.

The Olegen utility expects the ActiveX control to provide type libraries in one of the
following ways:

■ in a file outside the control, usually in a file with an .ocx extension

■ as output when the type libraries are requested from the control

Mapping Data Types in TOOL
The OLE interfaces provided by some Windows programs sometimes do not provide
enough data type information to strongly type data the way TOOL requires. Therefore, the
Olegen utility uses an Object subclass called Variant, and its subclasses, to permit the data
type of a parameter to remain unspecified until run time. The Variant class and its
subclasses are defined in the OLE library. For more information about the Variant class and
its subclasses, see the Forte online Help.

When the Olegen utility can determine the mechanism for the parameter, but not the
specific data type, the Olegen utility uses the Variant class. The Olegen utility also sets an
attribute of the Variant class called Mechanism to define the usage intended by the
parameter. Parameters that are variant objects in the OLE server’s methods are mapped as
input parameters of the Variant class or its subclasses. Olegen then sets the Mechanism
attribute of the Variant class to VARIANT_IN, VARIANT_OUT, VARIANT_INOUT, or
VARIANT_RESULT to define the usage intended by the parameter, as described in the Forte
online Help.

If the Olegen utility can determine the data type and usage for a required parameter, it
maps the data type to a TOOL data type, as shown in the following example:

If the Olegen utility cannot determine the data type or usage for a parameter, or if the
parameter is optional, then Olegen maps the parameter using the Variant class or one of its
subclasses, as shown in the following example for an input parameter:

If the Olegen utility cannot determine the data type or the usage of the parameter, as in the
preceding two cases, and declares the parameters using the Variant class, you must be able
to determine the required data type from the documentation for the interface for the
Windows application.

To invoke a method with parameters of an unknown type or usage, you must instantiate an
object of the Variant subclass for the correct data type, for example, VariantI2, and set the
Mechanism attribute of the object to the correct usage, for example, VARIANT_INOUT. The
following example shows these steps:

At runtime, when your TOOL application invokes this method in the OLE server, the OLE
server checks the parameter type to ensure that it matches the required data type. If the
parameter does not match the required data type, the OLE server returns error
information, and Forte raises an OLEInvokeException. For more information about
OLEInvokeException, see the Forte online Help.

input “param1” : Framework.integer;

input "Index" : Variant = NIL,

-- Create a VariantI2 object that is an input output parameter

ParmValue : VariantI2 = new(Mechanism = VARIANT_INOUT, Value = 17);
Appendix BOlegen Mapping Conventions

Olegen Mapping Conventions244
Mapping Return Values of Methods
OLE methods can be overloaded so that the only differences among methods is the data
type of the return value. However, TOOL differentiates methods only based on the
parameters declared within the parameter list, not on the return value.

Therefore, the Olegen utility generates an extra parameter, called _result, in all the TOOL
methods. _result represents a return value from the mapped OLE server method. The
following example shows how the Olegen utility includes the _result parameter in the
parameter list when it generates the .pex file:

In the above example, the _result parameter is optional and of the Variant class. The
following example shows another method also called “ApplyDataLabels” that always
returns an integer value. Forte can recognize the difference between the two methods
because the return value is included in the parameter list as the _result parameter.

Mapping Optional Parameters in Methods
When the Olegen utility generates a TOOL method from an OLE method that has optional
parameters, the optional parameters are assigned NIL values, as shown in the following
example:

method "ApplyDataLabels" // function 1

(

input "Type" : OLE.Variant = NIL,

input "LegendKey" : OLE.Variant = NIL,

input _result : OLE.Variant = NIL

) : OLE.Variant;

method "ApplyDataLabels" // function 1

(

input "Type" : OLE.Variant = NIL,

input "LegendKey" : OLE.Variant = NIL,

input _result : integer

) : OLE.Variant;

InputParameter : VariantInteger = NIL;
Integrating with External Systems

Olegen Mapping Conventions 245
Mapping Names That Are Forte Reserved Words
Using quotation marks to
indicate OLE interface names

When the Olegen utility maps OLE interface methods to TOOL methods, the Olegen utility
surrounds the names used in the OLE interface method with double quotation marks, as
shown in the following example:

Use double quotation
marks with names that
are TOOL reserved words

When you import the .pex file, Forte removes the quotation marks from the methods.
However, when you use a method whose name or whose parameters’ names are TOOL
reserved words, then you need to specify double quotation marks around the names that
are reserved words. To see the list of TOOL reserved words, see TOOL Reference Manual.

The following example shows how you use a method that uses TOOL reserved words as
names:

After you import the .pex file containing this method definition, you can use the method in
your code, as shown in the following example:

OLE interface method TOOL method

object.dialogs [(index)] method "Dialogs"

 (

 input "Index" : Variant = NIL,

 input _result : OLE2Interfaces.Variant = NIL

) : OLE2Interfaces.Variant;

method "Input"

(

input "param1" : Framework.i2,

input "param2" : Framework.i2,

input _result : OLE2Interfaces.VariantString = NIL

) : Framework.string;

OLEobject : OLEclass = new;

OLEobject.CreateUsingProgID(‘Word.Basic’);

RetrievedString : string;

RetrievedString = OLEobject.”Input”(param1=1, param2=3);
Appendix BOlegen Mapping Conventions

Olegen Mapping Conventions246
Mapping ActiveX Control Events to Forte Events
The Forte event names have the same names as the control’s events, except that they start
with an underscore character (_). For example, if the control can send the Click event, the
Olegen utility generates a Forte event called _Click. Similarly, if a control’s event has the
name _Click, then the corresponding Forte event’s name is __Click (two underscores).

The generated Forte event has the same signature as the control’s event, except that all
parameters are input parameters, even when some of the parameters of the control’s event
are output or input output.

The Olegen utility also generates a method for each method that maps to ActiveX control
events. The name of the method is exactly the same as the name of the event for the
custom control.

For example, the FourDir custom control defines an event called Click. This event maps to
the _Click event and the Click method in the ActiveX interface class.
Integrating with External Systems

Index
Symbols
& (address operator) 142

* operator
dereferencing pointers 141
mapping to a TOOL pointer 160

.bom file 58

.cdf file (C++ API)
locating and reading 180
reference information 194

.h file (C++ API)
locating global functions 180
p#.h file 194
reference information 193

.lib file (C++ API) 194

.odl file 58

.tlb file 71

.txt file (C++ API)
overview of the C++ API 179
reference information 192

-> operator
data structure values 145
dereferencing pointers 141
union values 151

Numerics
3GL. See C project

A
Accessing

data structure values 145
union values 151

ActiveX control
about 74–75
CDispatch 81
defining 81
deploying with the application 88
developing applications using 79
events, handling 85
information, displaying with 75
installing 76
making the distribution 88
methods, invoking 84
methods, overriding 85
partitioning the application 87
properties, accessing 84
TOOL classes, generating 76
troubleshooting 89
as widget 75
in window 80

ActiveXDemo example program 227

ActiveX field 81–84
See also ActiveXField class
defining 81
defining dynamically 83
defining in Window Workshop 81
properties 82
widget 74

ActiveX installation program 79, 88

ActiveX interface class 79

Address operator (&) 142

AllCType sample application 229

Allocating memory
calloc 155
malloc 156
strdup 156

Array, see C-style array

array key word 134

248 Section B
Arrow notation (->)
data structure values 145
union values 151

Associativity (C data types) 153

Asynchronous
ActiveX control events 85

Asynchronous processing with C pointers 140

Asynchronous reads with ExternalConnection
class 222

Auto-compile
C++ API 175

auto-compile and auto-install
C projects 110

auto-compile and auto-install, OLE server 56

B
begin c statement

description 106
includes clause 124
project name 124
syntax 124

Binary data, passing over network using
ExternalConnection class 221

C
c#.cdf file 180, 194

C++
unique method signatures 199

C++ API
about 178
attributes 197
auto-compiling and auto-installing 175
c#.cdf file 180, 194
client_component_id.dll file 193
client_component_id.h 180
client_component_id.h file 193
client_component_id.lib file 194
client_component_id.txt file 179, 192
Delete member function 202
designing client partition 173
designing server application 172
elements of 195
events 199
exceptions 197
fcompile command 177
files generated for 192
for Forte classes 190

ForteShutdown function 201
ForteStartup function 201
Generate C++ API property 175
generating 174
global functions 201
handle class 171
handle classes 195
interacting with Forte 190
locating class definitions 180
locating global functions 180
member functions 201
methods 196
New member function 203
p#.h file 194
qqhObject handle class 202
service objects 197
SetObject member function 203
setting up compiler 181
setting up system 181
supplier libraries 172
terminology 171
type conversion 196
writing client application 178

C++API
writing client application 183

C++ client application
compiling 189
deploying 189
terminology 171
writing 183

Cache files
definition 29
for embedded objects 32

Calling method 159

calloc C function 155

Casting pointers 143

C call out. See C project

C data type
C-style array 134
enum 138
guidelines 130
mapping derived 133
mapping simple 131
mapping to TOOL types 131
pointer 140
struct 144
typedef 150
uint 131
ulong 131
union 151
using in TOOL 129
Integrating with External Systems

249Section D
CDispatch class 43
about 81
for ActiveX controls 75
dispatch interface class 79
invoking OLE methods 43
ObjectReference attribute, setting 44

C function
calling from a TOOL service object 119
calling from TOOL code 117
making a C project 103
managing memory dynamically 155
mapping in a C project 108
mapping parameters 159
object modules 105
without prototypes 113

class statement
for C projects 128

client 192

client_component_id.h 193

client_component_id.h file 193

client_component_id.lib file 194

Client applications
DDE, with Forte server 93
Forte, with DDE server 93
Forte, with OLE servers 28
OLE clients to Forte servers 71

CLSID
OLE server 65

command syntax conventions 16

CommMgr agent 224

compatibilitylevel property
begin c statement 125
C project 108

Compiling and linking libraries
C projects 112

Compiling and linking libraries, OLE servers 59

Configuration flag for handle classes 172

Connection, network (ExternalConnection class) 216
closing 219
error handling 223
inbound 217
multiple tasks for 221
outbound 219

Copying a string 156

CPPBanking sample application 230

C project
auto-compile and auto-install 110
begin c statement 106
class restrictions 105

class statement 128
compiling and linking libraries 112
compiling project definition 109
compiling without prototypes 113
creating the C project definition file 105
defining C class methods 108
defining properties 108
distribution directory 111
importing project definition file 109
installing 114
making the distribution 109
mapping data types 131
name scope 124
partitioning 109
properties 125
supplier projects 106
supplier projects for 124
terminology 98
updating 115
using in other repositories 116
using in TOOL code 117

C-style array
converting array of char to TextData object 136
converting strings to array of char 137
converting TextData to array of char 137
declaring dynamically 136
declaring on runtime stack 134
differences between Array object and 134
key word 134
mapping parameters 162

D
Data structure 144

data type
C-style array 134
enum 138
pointer 140
struct 144
typedef 150
uint 131
ulong 131
union 151

DCOM (Distributed Common Object Model) 47, 71

DDE (Dynamic Data Exchange) 92
Forte as client 93
Forte as server 93

DDE classes 92
Forte as client 93
Forte as server 93
relationships between methods and events 93
Index

250 Section E
DDEClient example application 231

DDEClient sample application 231

DDEConversation class
using 93

DDEProject library 92

DDEServer class
using 93

DDEServer example program 231

Deallocating memory 156

Delete member function 202

Dereferencing pointers 141

Derived C data type
dynamic memory allocation 155
name scope 154
restrictions 133

Dispatch interface class, default 76

Distributed Common Object Model (DCOM) 47, 71

Distribution directory
for C projects 111

dll file for C++ API 193

DMathTm sample application 232

Dot notation (.)
data structure values 145
union values 151

Dynamic Data Exchange (DDE) 92

Dynamic memory allocation
managing 155
pointers 140

E
Embedding an OLE object 32

Encapsulating C functions 103

enum 138

Enumeration data type (enum) 138

Errors
from Forte OLE servers 72

Events for ActiveX controls
asynchronous 85
and Forte 85
synchronous 85

Example programs
ActiveXDemo 227
DDEClient 231
DDEServer 231
OLEBankEV 235
OLEBankUV 236
OLESample 237

ExcepInfo objects and TOOL exceptions 52, 72

Exception handling
freeing allocated memory 157

Exceptions
handling OLE exceptions 46
raising in an OLE server 52

extended external property
begin c statement 126
C project 108

ExternalConnection object
asynchronous reads 222
closing 219
reading and writing 219

externalincludedirectories extended property
begin c statement 126

externalincludefiles extended property
begin c statement 126

externalobjectfiles extended property
begin c statement 126

externalsharedlibs extended property
begin c statement 126

externalstaticlibs extended property
begin c statement 126

External type, OLE server 55

F
fcompile command

compiling C projects 112
generating C++ API 177

fcompile command, compiling OLE servers 59

Fixed array, see C-style array

FORTE_STACK_SIZE and external C libraries 121

Forte client partitions, logging information for 185

Forte partition, specifying start-up parameters 184

ForteShutdown function 201

ForteStartup function 184, 201

FourDir ActiveX control 229

free C function 156

Freeing memory 156

FTP protocol, using with ExternalConnection
class 220

G
Generate C++ API property 175

Generic pointer 140

Global functions (C++ API) 201
Integrating with External Systems

251Section H
H
Handle class

about 171
C++ API 195
defined 171
qqhObject 202

handle classes
TOOL libraries 190

Handle classes (C++ API)
generating for supplier libraries 172

Has property clause
begin c statement 125

HTTP protocol, using with ExternalConnection
class 220

I
ImageTester sample application 233, 238

index.txt file 190

In-place activation 29

Input output parameter mechanism 165

Input parameter mechanism 163

Installing
C projects 114

InvokeMethod method
invoking an OLE method 45

InvokeMethodWithResult method
invoking an OLE method 45

IP address, using with ExternalConnection class
for network connection 219

L
libraryname property

begin c statement 126
C project 108

Linked executable 98

Linking C projects
Macintosh 104
Sequent 104

Linking to an OLE object 31

M
Macintosh, linking C projects 104

malloc C function 156

Mapped Type field 30

Mapping method 159

Mapping parameters
C-style arrays 162
from C functions 159
pointers 160
structs 161

MathTime sample application 234

multithreaded property
begin c statement 125
C project 108

N
NamedParameter class

specifying a list of named parameters 44

Name scope
C project 124
derived data types 154
in structs 149

New 203

New member function 203

O
Object linking and embedding

definition 25
in an OLE field 29

Object module 98

Object modules for C functions 105

ObjectReference attribute
setting for CDispatch 44

ODL files
definition 48
generating and compiling 57

ODL statements 242

OLE 39
data types 50
embedding objects 29
linking objects 29

OLE Automation
definition 25
mapped type, specifying for OLEField 30
methods, generating with Olegen 37
methods, invoking with CDispatch 43
overview 36

OLE automation controllers 25, 36

OLE automation servers 25

OLEBankEV example program 235
Index

252 Section P
OLEBankUV example program 236

OLE clients
definition 25
Forte application as 27
Forte OLE servers, accessing 71
names, getting for Forte OLE servers 71

OLE controllers 24

OLE embedding 25

OLEField class
properties dialog 30

OLE fields
cache files 29
mapped type 30
OLE object, embedding 32
OLE object, linking to 31
properties dialog 30
setting CDispatch interface 30
in TOOL 34
in the Window Workshop 29

olegen command
with ActiveX controls 77
with OLE servers 37

Olegen utility
ActiveX control class 79
ActiveX control events, mapping 246
data types, mapping 243
dispatch interface class 79
mapping conventions 241
optional parameters, mapping 244
.pex file, importing 78
return values, mapping 244
TOOL classes, generating for ActiveX 76
TOOL classes, generating for OLE servers 37
TOOL reserved words, mapping 245
with ActiveX controls 77
with OLE servers 37

OLE library
definition 25
as supplier 39

OLE linking 25

OLE menu groups 35

OLE method, specifying parameters 44

OLE methods
handling exceptions 46
invoking 45
in TOOL 39

OLE objects 25

OLESample example program 237

OLE servers
definition 24
Forte clients 27

OLE servers, Forte applications as
advertising server names 71
auto-compile and auto-install 56
compiling and linking libraries 59
data types 50
installing 61
making distributions 56
OLE client, writing for 71
partitioning 54
service object, defining for 50
service object, marking as 55
starting 61
troubleshooting 62
Windows registry, editing entries 63
Windows registry, registering 62

Opaque pointer 140

Operator precedence (C data types) 153

Order of operations (C data types) 153

Output parameter mechanism 164

P
p#.h file 194

Parameter mapping
C-style arrays 162
from C function 159
pointers 160
structs 161

Parameter mechanism
input 163
input output 165
output 164

Parameters, OLE
setting named 44
setting positional 45

Pointer
casting 143
defining 140
dereferencing 141
dynamically allocated memory 140
generic 140
mapping parameters 160
to a data type 141

Pointer constant 143

Q
qqhObject handle class 202
Integrating with External Systems

253Section R
R
Releasing memory 156

Rendezvous object
with asynchronous reads 222

restricted property
begin c statement 125
C project 108

Return value, mapping from C 162

S
Sample applications

ActiveXDemo 227
AllCType 229
CPPBanking 230
DDEClient 231
DDEServer 231
DMathTm 232
ImageTester 233, 238
MathTime 234
OLEBankEV 235
OLEBankUV 236
OLESample 237
XRefTime 239

Sequent, linking C projects 104

Server applications
ActiveX controls as 73
DDE, accessing 93
DDE, with Forte client 93
Forte as OLE server 48
OLE 27

Service objects
environment-visible for OLE server 54
OLE server, marking as 55
progID 53
user-visible for OLE server 51

SetObject member function 203

SetServiceEOSInfo Fscript command 55

Shared library (C functions) 98

sizeof compiler function 157

Static loading platforms 104

strdup C function 156

String
mapping to a char ** parameter 162
mapping to a char * parameter 131

struct
alignment of 146
defined within another struct 146
defining 144

key word 144
mapping parameters 161
nested 146
packed 146

Synchronous
ActiveX control events 85

System activities 209

T
Terminology

C projects 98

TOOL code conventions 16

Type conversion (C++) 196

typedef
defining 150
key word 150

U
uint data type 131

ulong data type 131

union
defining 151
key word 151

V
Variant objects

converting data to 40
converting to TOOL object 42

W
Windows applications

calling Forte applications 48
used by Forte applications 27

Windows registry
entries, modifying 63
service objects in 61

X
XRefTime sample application 239
Index

254 Section X
Integrating with External Systems

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	Part I Integration with Microsoft Windows Applications
	1 Overview
	About OLE, ActiveX, and DDE
	About OLE
	Object Linking and Embedding
	Using Windows Applications
	Defining Service Objects as OLE Servers

	ActiveX Controls
	Terminology used in this Part

	2 Using OLE to Access Windows Applications
	About Using OLE to Access Windows Applications
	Using Object Linking and Embedding
	Defining an OLE Field in the Window Workshop
	Creating an OLE Field
	OLEField Properties Dialog
	Linking to an OLE Object
	Embedding a Read-Only OLE Object
	Embedding an Editable OLE Object

	Defining an OLE Field in TOOL
	OLE Menu Groups

	Using OLE Automation
	Generating TOOL Projects That Access OLE Methods
	Step�1. Generate TOOL Classes for the OLE Application
	Running the Olegen Utility
	Importing the Generated Project Definition .pex File

	Step�2. Write the Forte Application Using OLE Methods
	Dealing with Variant Objects

	Step�3. Partition the TOOL Application and Make a Distribution
	Step�4. Install the Client Application

	Invoking Methods on OLE Interfaces Using CDispatch
	Step�1. Decide Which OLE Methods to Invoke
	Step�2. Include the OLE Library as a Supplier Plan
	Step�3. Instantiate an Object of the CDispatch Class
	Step�4. Set the ObjectReference Attribute
	Step�5. Set the Parameters You Need
	Step�6. Use InvokeMethod or InvokeMethodWithResult to Invoke the OLE Method
	Step�7. Check the Results of the Method
	Step�8. Handle Any Exceptions
	Step�9. Partition the Client Application
	Step�10. Install the Forte Application

	3 Making a Forte Service Object an OLE Server
	About Making a Forte Service Object an OLE Server
	Examples

	Step�1. Define a Service Object in a Forte Application
	Providing an OLE Interface for a Service Object
	Providing Methods to Get and Set Attributes
	Adding Wrapper Methods to a Service Object
	Defining an OLE Interface in a New Service Object
	Raising Exceptions in the TOOL Code

	Defining the ProgID for the Service Object

	Step�2. Partition the Application Containing the Service Objects
	Step�3. Mark a Service Object as an OLE Server
	Step�4. Make the Distribution
	Making the Distribution with Auto-Compile and Auto-Install
	Making the Distribution without Auto-Compiling

	Step�5. Compile and Link to Produce a Shared Library and Type Libraries
	fcompile command
	Steps for Compiling and Linking

	Step�6. Install the Executable
	Step�7. Start the Forte Partition
	Registering the Partition
	Troubleshooting the OLE Server

	Customizing Registry Entries for a Forte OLE Server
	Deleting Obsolete Entries from the Windows Registry
	Modifying How a Partition Is Autostarted

	Using DCOM with Forte OLE Servers
	Changing Security Settings
	Registering the Forte OLE Server on Client Machines

	Writing OLE Clients That Access a Forte Service Object
	Determining the ProgID for the Service Object
	Handling Forte Exceptions

	4 Using ActiveX Controls in TOOL Applications
	About Using ActiveX Controls in TOOL Applications
	Overview
	Support for ActiveX Controls

	Including ActiveX Controls in TOOL Applications
	Using ActiveX Controls as Widgets
	Using ActiveX Controls to Display Information

	Examples

	Producing TOOL Classes For an ActiveX Control
	Step�1. Install the ActiveX Control on Your System
	Step�2. Run the Olegen utility
	Step�3. Import the Generated Project Definition .pex File

	Developing a Forte Application that Uses ActiveX Controls
	Before You Start
	Restrictions
	Overview
	Step�1. Specify the Supplier Plans
	Step�2. Define an ActiveXField Widget
	In the Window Workshop—Static Definition
	In TOOL Code—Dynamic Definition

	Step�3. Invoke Methods and Access Properties of the Control
	Step�4. Handle Events Posted by the ActiveX Control

	Partitioning the TOOL Application
	Making the Distribution and Installing the Application
	Install ActiveX Controls Where Client Partitions are Installed

	Troubleshooting

	5 Using Dynamic Data Exchange
	About Dynamic Data Exchange
	Forte Integration with DDE
	Forte’s DDE Classes
	Using Methods and Events

	Part II Using External C Functions
	6 Encapsulating External C Functions
	About Encapsulating External C Functions
	Terminology Used in Part�II
	Accessing C Functions from within Forte Applications
	TOOL Statements for Defining C projects

	Prepare to Wrap C Functions
	Set up the Auto-Compile Application
	Can or Should the C Project Be Multithreaded?
	Make Sure the Proper C++ Compiler Is Installed

	7 Making C Functions Available to Forte Applications
	About Making C Functions Available to Forte Applications
	Static Loading Platforms
	Examples

	Step�1. Have the Object Modules for the C Functions
	Step�2. Create the C Project Definition File
	C Project Class Restrictions
	Defining a Project
	begin C statement
	Service Objects
	Supplier C projects
	Example: C Project File

	Defining Properties
	Defining a Method

	Step�3. Import the C Project Definition File
	Step�4. Partition the C Project
	Step�5. Make the Distribution
	Making the Distribution with Auto-Compile and Auto-Install
	Making the Distribution without Auto-Compiling

	Step�6. Compile and Link Shared Libraries
	Step�7. Install C Project Shared Libraries
	Updating C Projects
	Making Installed C Projects Known to Other Repositories

	8 Writing TOOL Code That Uses C Functions
	About Writing TOOL Code That Uses C Functions
	Examples

	Step�1. Add the C Project as the Supplier Project
	Step�2. For a Distributed Application, Define a Service Object
	Step�3. Write the TOOL Application
	Instantiate an Object for the C Class You Want to Use
	Use the Methods of the C Class
	Map C Function Parameters to TOOL Method Parameters
	Include Error Handling

	Step�4. Test Your Application
	Troubleshooting
	Unexpected Failures
	Unable to Locate the 3GL Supplier Library

	Step�5. Partition Your Application
	Step�6. Deploy the Application

	9 TOOL Statements for Defining C Projects
	begin c
	Syntax
	Description
	Project Name
	Includes Clause
	Definition List
	Has Property Clause
	restricted Property
	compatibilitylevel Property
	multithreaded Property
	libraryname property
	Extended External Properties

	class
	Syntax
	Description
	Methods

	10 Using C Data Types in TOOL
	Using C Data Types in TOOL Methods
	General Guidelines

	Mapping Simple C Data Types to TOOL Data Types
	Mapping Derived C Data Types to TOOL Data Types
	Restrictions

	C-style Arrays
	Differences Between Array Objects and C-style Arrays
	Declaring Arrays on the Runtime Stack
	Declaring C-style Arrays Dynamically
	Converting C-style Arrays of Char to TextData Objects
	Converting TextData Objects to C-style Array of Char
	Converting TOOL Strings to C-style Arrays of Char

	Enumeration Data Types (enums)
	Pointers
	Generic Pointers
	Pointers to Specific Data Types
	Dereferencing Pointers
	Address Operator (&)
	Pointer Constants
	Casting Pointers

	Struct Data Types
	Accessing Values in a Data Structure
	Alignment of Structs
	Defining Structs within Structs
	Defining Opaque Structs
	Determining the Name Scope of Structs

	Typedef Data Types
	Union Data Types

	Operator Precedence and Associativity
	Managing Memory for C-style Arrays and Data Structures
	Dynamically Managing Memory
	calloc
	free
	malloc
	strdup
	sizeof

	Casting Pointers Returned by C Functions
	Managing Memory in Exception Handling
	Managing Memory for Asynchronous Processing
	Managing Memory Using ExternalRef Subclasses

	Mapping C Function Parameters in TOOL Methods
	Mapping Simple C Data Type Parameters
	Mapping Pointer Parameters
	Passing an Input Value with the Pointer
	Getting an Output Value using the Pointer
	Passing an Input Value That Will Change

	Mapping Data Structure Parameters
	Mapping C-Style Array Parameters
	Mapping Return Values
	Specifying TOOL Parameter Options
	Input Mechanism
	Output Mechanism
	Input Output Mechanism

	Part III Writing C++ Client Applications
	11 Accessing Forte Using C++
	About Accessing Forte Using C++
	Terminology Used in Part 3

	Designing an Application to be Accessed by C++
	Restrictions when Generating and Using a C++ API
	C++ API Uses Case Defined in TOOL
	No Virtual Attributes
	Cannot Use Subclasses of Display Library Classes
	No C++ API for Events
	Supplier Libraries Must Be Compiled and Have Handle Classes

	Defining a Client Partition for the C++ API

	Generating a C++ API for a Forte Application
	Step�1. Partition the Application
	Step�2. Set the Compiled and Client Partition Options
	Step�3. Make the Distribution
	Using the Auto-compile and Auto-install Feature

	Step�4. Compile and Install (If�Auto�compile�and�Auto�install�Are�Not Used)
	Using the fcompile Command to Generate the C++ API

	Writing a C++ Client Application That Accesses a Forte Application
	Understanding the C++ API
	Getting an Overview: client_component_id.txt
	Locating Global Functions: client_component_id.h
	Locating Class Definitions: c#.cdf

	Setting up Your System and Compiler to Use the C++ API
	Writing a C++ Client Application
	How to Use qqhTaskHandle
	How to Use Forte Data Types
	Start Forte Interaction
	Passing Startup Parameters to Forte
	Logging Information for Forte Client Partitions
	Interacting with Service Objects
	Using Handle Classes and Methods
	Interacting with the Forte Runtime System
	Shutting Down the Forte Client Partition

	Handling Forte Exceptions
	Compiling the C++ Client Application
	Deploying the C++ Client Application

	Interacting with the Forte Runtime System
	Working with Forte Classes
	Working with Forte Runtime Objects

	12 C++ API Reference Information
	Files Generated as Part of a C++ API
	client_component_id.txt
	client_component_id.h
	client_component_id.xxx (shared library)
	client_component_id.lib
	c#.cdf
	p#.h

	Elements of the C++ API to a Client Application
	Handle Classes
	C++ Classes—for Type Conversion
	Methods
	Attributes
	Service Objects
	Exceptions
	Events
	Special Handling for Array and Pointer to Char Parameters

	Utility Global Functions and Member Functions
	Functions that Start and Stop the Forte Runtime System
	ForteStartup Function
	ForteShutdown Function

	qqhObject Handle Class
	Delete(�) Member Function
	IsNil(�) Member Function
	New(�) Member Function
	SetObject(�) Member Function

	The C++ API to the Forte Runtime System

	Part IV Using Network and Operating System Features
	13 Using System Activities and Network Connections
	About Using System Activities and Network Connections
	About System Activities
	About the ExternalConnection Class

	Using System Activities
	Supported System Activities
	Working with System Activities
	Registering for Notification about System Activities
	Waiting for Activity Completion
	When the Activity Completes

	General Design Suggestions
	Available Interfaces
	Setting Up User-Defined Activities

	Using the ExternalConnection Class
	Types of Connections
	Basic Concepts
	Accepting Inbound Connections
	Making Outbound Connections
	Using MemoryStream Buffers
	Data Sharing Issues
	Scaling Issues
	Using Multiple Tasks for a Single Connection
	Using Task-Level Asynchronous Reads
	Error Handling
	Diagnostics for ExternalConnection

	Appendixes
	A Forte Example Applications
	Overview of Forte Example Applications
	ActiveX Examples
	C
	C++
	DDE Examples
	ExternalConnection
	OLE Examples

	Application Descriptions
	ActiveXDemo
	FourDir ActiveX Control

	AllCType
	CPPBanking
	DDEClient
	DDEServer
	DMathTm
	InboundExternalConnection
	MathTime
	OLEBankEV
	OLEBankUV
	OLESample
	OutboundExternalConnection
	XRefTime

	B Olegen Mapping Conventions
	Olegen Mapping Conventions
	Mapping OLE Automation Interfaces to TOOL Classes
	Mapping ActiveX Interfaces to TOOL Classes
	Mapping Data Types in TOOL
	Mapping Return Values of Methods
	Mapping Optional Parameters in Methods
	Mapping Names That Are Forte Reserved Words
	Mapping ActiveX Control Events to Forte Events

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

