
Programming with System Agents
Release 3.5 of Forte™ 4GL
Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6673-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte, and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents
Preface
Organization of This Manual . 8

Conventions. 9
Command Syntax Conventions . 9
TOOL Code Conventions . 9

The Forte Documentation Set . 10
Forte 4GL . 10
Forte Express. 10
Forte WebEnterprise and WebEnterprise Designer 10

Forte Example Programs. 11

Viewing and Searching PDF Files . 12

1 Introduction
About Agents and the SystemMonitor Library. 14

Overview of Agents . 14
Agent Commands . 15
Agent Instruments . 15
Agent Hierarchy . 15

Accessing Agent Commands and Instruments 16
Developing Custom Agents . 16

About the SystemMonitor Library . 17
SystemAgent Class . 17
Instrument Subclasses . 18

2 Accessing System Agents Using TOOL Code
About Accessing System Agents . 20

Getting a Reference to the Agent Hierarchy. 21
Referencing the Environment Agent . 21
Referencing an Active Partition Agent. 21

Navigating Around the Agent Hierarchy. 22
Navigating to Parent Agents. 22
Navigating to Subagents . 23

4

Getting Information about an Agent. 24

Invoking Agent Commands . 25
Getting a List of Agent Commands. 25
Invoking Commands on the Current Agent . 25
Invoking Commands on Subagents . 26

Accessing and Updating Instrument Data . 27
Locating the Instrument to Access or Update 27
Referencing an Instrument . 27
Accessing and Updating Configuration Instruments 28
Accessing Average and Counter Instruments . 28

Retrieving Values . 28
Setting Ranges for Values . 29

Accessing a Compound Instrument and its SubInstruments 29
Accessing a SubObject Instrument and its Subobjects 30

3 Developing Custom Agents
About Developing Custom System Agents . 32

Designing the Custom Agent . 34
Selecting the Object to be Managed . 34
Selecting a User Interface . 34
Designing Commands . 34
Designing Instruments . 35
Enhancing the Managed Object’s Class. 35
Testing the Custom Agent . 35

Defining a Class for the Custom Agent . 36
Writing the Init method. 36
Writing the GetMOTypeName method. 37

Defining Commands for the Custom Agent . 38
Writing the InitCmdProcessor Method . 38

Commands in Escript and the Environment Console 40
Writing the ProcessCmdRequest Method . 41

Defining Instruments for the Custom Agent. 43
Forte Instrument Subclasses. 44
Writing the AttachMO Method. 44
Writing the UpdateInstrument Method . 46

Updating Configuration Instruments . 47
Updating Average Instruments . 47
Updating Counter Instruments . 48
Updating Compound Instruments . 49
Updating SubObject Instruments. 51

Writing the InstrumentUpdated Method . 53
Handling an Updated Configuration Instrument 54
Handling an Updated Timer Instrument . 55

Connecting the Custom Agent and its Managed Object 56

Developing Agents for Load-Balanced Service Objects 58
Programming with System Agents

5

A Example Applications
Application Descriptions. 60

AgentAccess . 60
AgentBanking . 61

Index . 63
Contents

6

Programming with System Agents

Preface
Programming with System Agents provides information about customizing and enhancing
the system management facilities provided by Forte.

This manual explains how to develop your own custom agents and how to use the
commands and instruments for agents in your TOOL code.

This manual also contains information about the SystemMonitor library classes.

You should have a copy of the Escript and System Agent Reference Manual readily available
so that you can reference information about Forte-defined agents and their commands and
instruments.

This manual is intended for application developers. We assume that you:

■ are familiar with the system management facilities described in the Forte 4GL System
Management Guide

■ have access to the Escript and System Agent Reference Manual

■ have TOOL programming experience

■ are familiar with your particular window system

■ understand the basic concepts of object-oriented programming as described in A Guide
to the Forte 4GL Workshops

■ have used the Forte Workshops to create classes

Organization of This Manual8
Organization of This Manual
This manual is organized to explain how to use the SystemMonitor library classes, then to
provide reference information about the SystemMonitor library classes.

This manual assumes that you have a copy of Escript and System Agent Reference Manual
available. You will need to reference this book for information about Forte-defined agents.

This manual contains the following chapters:

Chapter Description

Chapter 1, “Introduction” Provides an overview of the SystemMonitor library and its
uses.

Chapter 2, “Accessing System Agents Using
TOOL Code”

Provides detailed information about how you can use the
SystemMonitor library classes in your TOOL code.

Chapter 3, “Developing Custom Agents” Provides detailed information about how you can develop
custom agents for monitoring your system.

Appendix A, “Example Applications” Describes the examples used in this manual.
Programming with System Agents

Conventions 9
Conventions
This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions
The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

TOOL Code Conventions
Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format Description

bold Bold text is a reserved word; type the word exactly as shown.

italics Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

UPPERCASE Uppercase text represents a constant. Type uppercase text exactly as shown.

underline Underlined text represents a default value.

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

braces { } Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

brackets [] Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

Format Description

parentheses () Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

comma , Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

colon : Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

semicolon ; Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.
Preface

The Forte Documentation Set10
The Forte Documentation Set
Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help.

Forte 4GL
■ A Guide to the Forte 4GL Workshops

■ Accessing Databases

■ Building International Applications

■ Escript and System Agent Reference Manual

■ Forte 4GL Java Interoperability Guide

■ Forte 4GL Programming Guide

■ Forte 4GL System Installation Guide

■ Forte 4GL System Management Guide

■ Fscript Reference Manual

■ Getting Started With Forte 4GL

■ Integrating with External Systems

■ Programming with System Agents

■ TOOL Reference Manual

■ Using Forte 4GL for OS/390

Forte Express
■ A Guide to Forte Express

■ Customizing Forte Express Applications

■ Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer
■ A Guide to WebEnterprise

■ Customizing WebEnterprise Designer Applications

■ Getting Started with WebEnterprise Designer

■ WebEnterprise Installation Guide
Programming with System Agents

Forte Example Programs 11
Forte Example Programs
In this manual, we often include code fragments to illustrate the use of a feature that is
being discussed. If a code fragment has been extracted from a Forte example program, the
name of the example program is given after the code fragment. If a major topic is
illustrated by a Forte example program, reference will be made to the example program in
the text.

These Forte example programs come with the Forte product. They are located in
subdirectories under $FORTE_ROOT/install/examples. The files containing the examples
have a .pex suffix. You can search for TOOL commands or anything of special interest with
operating system commands. The .pex files are text files, so it is safe to edit them, though
you should only change private copies of the files.
Preface

Viewing and Searching PDF Files12
Viewing and Searching PDF Files
You can view and search 4GL PDF files directly from the documentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

Note You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

� To copy the documentation to a client or server:

1 Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

2 Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

Note To uninstall the documentation, delete the fortedoc directory.

� To view and search the documentation:

1 Open the file fortedoc.pdf, located in the fortedoc directory.

2 Click the Search button at the bottom of the page or select Edit > Search > Query.

3 Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

Note For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

4 Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5 Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

6 To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

7 To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]
Programming with System Agents

Chapter 1
Introduction
This chapter provides an overview of Forte agents and how to use the Forte SystemMonitor
library classes to write programs that interact with these agents.

This chapter provides an overview of:

■ the purpose of agents in the Forte system

■ how you can write custom agents

■ how you can use agent commands and instruments to monitor your system

■ the SystemMonitor library classes

About Agents and the SystemMonitor Library14
About Agents and the SystemMonitor Library
Agents and managed objects Forte’s system management facilities, the Environment Console and Escript, are built upon

a set of management agents that monitor and control a corresponding set of managed
objects. For each object that you can manage using the Environment Console or Escript,
there is a system management agent that actually monitors and controls that object. For
example, when Forte creates an installed partition object, it also creates a corresponding
Installed Partition agent. The managed object performs its normal functions without
having any knowledge of its agent, and the agent is automatically created and removed
along with its managed object.

Figure 1 Using an Agent to Manage an Object

To enable application developers to access these system agents, as well as define their own
agents, Forte provides the SystemMonitor library. The SystemMonitor library defines
classes that provide a standard interface that you can use to access all system and user-
defined agents. You can also use these classes to define agents of your own that you can
add to the agent hierarchy and access using the Environment Console and Escript.

This guide explains how to program your own agents and your own system management
applications.

You should be familiar with using the Environment Console and Escript. These system
management facilities use the methods, attributes, and events defined for classes in the
SystemMonitor library to programmatically access and interact with the agents for the
managed object. These agents then monitor and control their managed objects as
necessary.

Overview of Agents
This section provides a brief reminder of what agent commands and instruments are and
how the agent hierarchy works. For a thorough explanation about Forte agents and Forte’s
system management facilities, see Forte 4GL System Management Guide and Escript and
System Agent Reference Manual.

Agents define the interface between system management facilities and a managed object.
The agents provide a standard interface of methods, attributes, and events that let you
access their commands and instruments. Forte provides a set of system management
agents, which you can use to manage Forte system objects. You can also define your own
agents to manage objects in your applications.

System management
facilities and agents

The Environment Console and Escript programmatically access and interact with the
agents for the managed object, not the objects themselves. The agent monitors and
controls the object as necessary and provides the interface between managing applications
and the managed object.

Agent
Shutdown (Shuts down object)

Environment Console
Programming with System Agents

About Agents and the SystemMonitor Library 15
Agent Commands
Each agent has a set of commands or operations it can perform on its managed object. For
example, an Installed Partition agent can start an installed partition when you invoke the
agent’s Startup command. Likewise, an Active Partition agent can shut down an active
partition when you invoke that agent’s Shutdown command.

Agent Instruments
Each agent also has a set of instruments, each representing a type of data that can be
obtained from or set on the managed object. An instrument can represent a property or
attribute of the managed object or it can represent more dynamic information. For
example, an Active Partition agent has a ProcessID instrument that represents the
partition’s process ID. Also, a Distributed Object Manager agent has a MethodsSent
instrument that represents the number of messages sent by the distributed object manager
to remote partitions during a specified period of time.

The instruments defined for each agent generally represent data that is useful for
monitoring or controlling the managed object.

Agent Hierarchy
Forte’s system management architecture places each Forte system management agent and
user-defined, or custom, agent within a hierarchical structure of parent agents and
subagents, as shown in Figure 2. This hierarchy is a containment hierarchy, in which the
parent agent—an Application agent, for example—contains its subagents—Partition
agents, for example.

Figure 2 System Management Agent Hierarchy

To navigate around this hierarchy, you can start by getting references to the top of this
hierarchy, to the Environment agent, or near the bottom, to an Active Partition agent. You
can then navigate to any other agents in the hierarchy and get references to those agents.
Once you have these references, you can invoke commands and access instruments on the
agents, or even attach new custom agents into the hierarchy.

. . .Operating System
Agent

User-Defined
Agent

Node
View

Application
Agent

(Logical) Partition
Agent

Node
Agent

Active Partition
Agent

DistObjectMgr
Agent

Installed Partition
Agent

Environment
Agent

NameService
Agent

Application
View
Chapter 1Introduction

About Agents and the SystemMonitor Library16
For more information about how this hierarchy works and about the Forte system
management agents, see Forte 4GL System Management Guide.

Accessing Agent Commands and Instruments
Both the agents defined by Forte and custom agents defined by application developers
provide commands and instruments that can be accessed by TOOL code. These commands
and instruments enable you to write special applications that manage your system.

Forte defines a standard method interface for all system agents. This interface allows you to
write TOOL code that works with all agents, even custom agents. Using this interface,
developers can access the commands, events, and instruments dynamically, even ones that
have been added or removed since the last time the agent was accessed.

Working with
agent commands

Agent commands do not correspond to any classes. Commands belonging to a particular
agent exist only in the runtime system, and are defined in the methods for that agent. Forte
provides methods on the SystemAgent class that return a list of commands that are
available for the agent and that instruct the agent to execute a specific command.

Accessing and
setting instruments

Forte also provides methods on the SystemAgent class that return a list of available
instruments, let you add additional instruments, delete instruments, and find specific
instruments. Forte also provides classes that map to the types of instruments supported by
Forte. These classes provide methods and attributes that let you get and set values for agent
instruments.

For detailed instructions for accessing agents from TOOL code, see Chapter 2, “Accessing
System Agents Using TOOL Code.”

Developing Custom Agents
You can define and add any number of custom agents to the agent hierarchy. For example,
you could develop a custom agent that has instruments that track specific data about a
shared service object in your application. This agent could also define commands that let
you, for example, cancel tasks, display current waiting events, or list the current clients that
are using the service object.

The SystemMonitor library provides a SystemAgent class that represents a generic system
agent. When you define a custom agent, you subclass this SystemAgent class and override
some of the SystemAgent class methods to define and implement commands and
instruments for this new agent. To implement instruments on the new agent, you use
objects of the Instrument class and its subclasses, which are also in the SystemMonitor
library.

When you have implemented an agent using the SystemAgent class, you can access the
agents using Forte’s standard system management facilities, the Environment Console and
Escript, as well as any other applications that interact with agents using their standard
interfaces.

For detailed instructions for developing custom agents, see Chapter 3, “Developing Custom
Agents.”
Programming with System Agents

About the SystemMonitor Library 17
About the SystemMonitor Library
The SystemMonitor library provides classes that let you develop custom agents for
managing the processing and performance of objects in your system. You can also use
certain SystemMonitor library classes to programmatically access the commands, events,
and instruments provided by Forte-defined or custom system agents.

SystemAgent Class
The SystemAgent class is the superclass of all Forte-defined or custom agent classes. This
class, described in detail in the Forte online Help, provides methods and attributes for
defining custom agents and accessing the commands, events, and instruments provided by
an existing agent.

Figure 3 SystemMonitor Library Classes

Subclasses of the
SystemAgent class

The SystemMonitor library also contains classes for many of the Forte-defined agents, such
as ActivePartitionAgent and NodeAgent. However, all of the Forte-defined agents, like the
custom agents, are subclasses of the SystemAgent class. By definition, all agents have the
same methods and attributes as the SystemAgent class. For information about the
commands and instruments implemented for the Forte-defined agents, see Escript and
System Agent Reference Manual.

SystemAgent

Object

Instrument AgentInfo

AverageInstCounterInst

NumericInst CompoundInst ConfigValueInst SubObjectInst TimerInst

ActivePartitionAgent ApplicationAgent CommMgrAgent DistObjectMgrAgent

VolumeAgent

EnvironmentAgent

EventMgrAgent GenericPartitionAgent LoadBalanceRouterAgent MachineAgent

NativeLangMgrAgent NodeAgent OperatingSystemAgent ProcessAgent TaskMgrAgent

TransactionMgrAgent
Chapter 1Introduction

About the SystemMonitor Library18
Instrument Subclasses
Forte provides several subclasses of the abstract Instrument class that map to the
instrument types supported by Forte. You can use these instrument subclasses to define
new instruments for a custom agent or to access an instrument defined for an existing
agent. For information on any of these instrument subclasses, see the Forte online Help.

You cannot subclass any of these Forte subclasses of the Instrument class or the Instrument
class itself.

Instrument Type Instrument Subclass Description

Average AverageInst Read only. Contains an average value.

Compound CompoundInst Contains a static set of instruments. These instruments can be of
different types.

Configuration ConfigValueInst Read/write or read only. Contains a simple value, such as an integer
value or a TextData object.

Counter CounterInst Read only. Contains a value based on counting something.

SubObject SubObjectInst Contains a dynamic set of instruments. All instruments are of the
same type.

Timer TimerInst Read/write. Timer that prompts the agent to do something after a
certain interval or set of intervals.
Programming with System Agents

Chapter 2
Accessing System Agents
Using TOOL Code
This chapter explains how you can use SystemMonitor library classes in your TOOL code to
monitor your system. These classes let you use the commands and instruments provided
by the agents defined by Forte, as well as commands and instruments provided by agents
defined by application developers.

This chapter covers the following topics:

■ getting a reference to an agent

■ navigating to a particular agent in the agent hierarchy

■ getting information about an agent

■ invoking agent commands

■ accessing and updating agent instrument data

About Accessing System Agents20
About Accessing System Agents
This section provides an overview of how you can access Forte-defined and user-defined
agents from within your TOOL code.

This chapter uses examples from the AgentAccess and AgentBanking examples provided
with Forte. For specific information about locating and running these applications, see
Appendix A, “Example Applications.”

Agent objects provide
standard agent interface

All agents that are running in a Forte system have the same attributes and methods that are
defined by the SystemAgent class. All agents are instances of a subclass of the SystemAgent
class. The SystemAgent class defines a standard method and attribute interface that is used
by all agents and by other programs that are accessing the agents.

The methods and attributes of the SystemAgent class are described in the Forte online
Help.

This standard interface to all agents lets you write TOOL code that works with all agents,
even custom agents. If you want to write an application that generically accesses many
different agents, your application does not have to know anything special about any
particular agent. For example, Escript interacts with all agents, even user-defined agents, in
exactly the same way, without needing to know anything about a particular agent.

Within your TOOL code, you can get a reference to the agent hierarchy, navigate to a
particular agent in the agent hierarchy, get information about an agent, and work with an
agent’s commands and instruments.
Programming with System Agents

Getting a Reference to the Agent Hierarchy 21
Getting a Reference to the Agent Hierarchy
The Forte system lets you get references to the following two points in the agent hierarchy:

■ Environment agent

The Environment agent, which lets you interact with the Environment Manager, is the
top of the agent hierarchy.

■ Active Partition agent

The Active Partition agent, which lets you interact with a running partition.

Once you have a reference to either of these agents, you can navigate to any other agent
that you need to, as described in “Navigating Around the Agent Hierarchy” on page 22.

Referencing the Environment Agent
task.Part.GetEnvironmentMgr
method

The Framework Partition class provides a method called GetEnvironmentMgr, which
returns a distributed reference to the currently active Environment agent. The syntax for
this method is:

You can always access the partition on which an application is currently running by using
the Part attribute of the TaskHandle class. You can reference the current task‘s task handle
using the task keyword. The following example shows how you could use the
GetEnvironmentMgr method to get a reference to the Environment agent:

Because the GetEnvironmentMgr method returns a generic object, you need to cast the
returned object as EnvironmentAgent to be able to use the methods and attributes defined
for the Environment agent, including being able to navigate to other agents.

For more information about the task keyword, see TOOL Reference Manual and the Forte
online Help.

Referencing an Active Partition Agent
task.Part.ActPartAgent
attribute

The Framework Partition class has an attribute called ActPartAgent, which contains a
distributed reference to the current partition’s agent.

You can always access the partition on which an application is currently running by using
the Part attribute of the TaskHandle class. You can reference the current task‘s task handle
using the task keyword. The following example shows how you could use the ActPartAgent
attribute to get a reference to an Active Partition agent:

Because the ActPartAgent attribute contains a generic object, you need to cast the returned
object as ActivePartitionAgent (or SystemAgent) to be able to use the methods and
attributes defined for the agent, including being able to navigate to other agents.

For more information about the task keyword, see TOOL Reference Manual and the Forte
online Help.

GetEnvironmentMgr()

Returns Object

-- Connect to currently active environment

self.currActEnv = EnvironmentAgent(task.part.GetEnvironmentMgr());

See AgentAccess example: Project: AgentAccessSvc • Class: AgentLogMgr • Method: Init

partAgent : ActivePartitionAgent;

partAgent = ActivePartitionAgent(task.Part.ActPartAgent);

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init
Chapter 2Accessing System Agents Using TOOL Code

Navigating Around the Agent Hierarchy22
Navigating Around the Agent Hierarchy
After you get a reference to either the Environment agent or an Active Partition agent, you
need to navigate to whatever agent you want to access. The following figure shows how
Forte-defined agents are related to one another in the agent hierarchy.

Figure 4 System Management Agent Hierarchy

To move “up” the hierarchy relative to the agent you are referencing, you need to locate its
parent agent. To move “down” the hierarchy relative to the agent you are referencing, you
need to locate one if its subagents.

Cast custom agents
as SystemAgent

When you navigate to a custom agent, be aware that you should only cast user-defined
agents as SystemAgent (or leave them as SystemAgent). This guarantees that your calling
application can call any custom agent through the generic methods and attributes defined
for the distributed SystemAgent class.

These Forte-defined agents and their commands and instruments are listed in Escript and
System Agent Reference Manual.

Navigating to Parent Agents
SystemAgent.ParentAgent
attribute

Each agent inherits an attribute from SystemAgent called ParentAgent (SystemAgent) that
references the parent agent for the agent. Therefore, you can navigate to this parent agent
using code like the following:

The Environment agent is at the top of the agent hierarchy, so if you try to navigate to the
parent agent of the Environment agent, you will get a NIL value.

The ParentAgent attribute is also described in the Forte online Help.

. . .Operating System
Agent

User-Defined
Agent

Node
View

Application
Agent

Partition Agent

Node
Agent

Active Partition
Agent

DistObjectMgr
Agent

Installed Partition
Agent

Environment
Agent

NameService
Agent

Application
View

-- parentAgent references the agent that is the parent

-- of the partAgent agent.

parentAgent : SystemAgent;

parentAgent = partAgent.ParentAgent;
Programming with System Agents

Navigating Around the Agent Hierarchy 23
Navigating to Subagents
SystemAgent.FindSubAgent
method

The SystemAgent class also has a FindSubAgent method, which returns a SystemAgent
object based on the name of a subagent. For syntax information about this method, see the
Forte online Help.

The following example shows how you can use the FindSubAgent method to assign a
reference to a subagent based on the subagent’s name:

SystemAgent.SubAgents
attribute

Each agent inherits an attribute from SystemAgent called SubAgents (GenericArray of
SystemAgent), which contains the subagents of the current agent. You can use this array to
get a reference to an agent that is a subagent of the current agent, as shown in the following
example:

One reason you might want to navigate to a subagent is if you are writing TOOL code that
starts the server partitions of an application. In the following example, the TOOL code
navigates to the Application agent for an application at compatibility level 0 whose name is
AgentBanking to start the server partitions for the application.

For more information about the SubAgents attribute, see the Forte online Help.

-- Set a reference to the BankServiceAgent.

self.BankAgent = BankServer.CurrentActivePartition.

 FindSubAgent(name= ’BankServiceAgent’);

See AgentBanking example: Project: AgentBanking • Class: AdminWindow • Method: Init

-- Set mySubagent to the third subagent in the SubAgents array.

mySubagent : SystemAgent;

mySubagent : currentAgent.SubAgents[3];

-- Connect to currently active environment

currActEnv : SystemAgent =

 EnvironmentAgent(task.part.GetEnvironmentMgr());

-- Navigate to the Application agent

myApp : SystemAgent =

 currActEnv.FindSubAgent(name = ‘AgentBanking_cl0’);

-- Start all server partitions

myApp.ExecuteCommand(command=’Startup’);
Chapter 2Accessing System Agents Using TOOL Code

Getting Information about an Agent24
Getting Information about an Agent
When you use agents in your TOOL application, you might need some information about
an agent or its subagent to present to the user or to make decisions in the logic of your
application.

SystemAgent.GetInfo
method

Each agent inherits a GetInfo method from SystemAgent (described in the Forte online
Help), which returns an AgentInfo object. AgentInfo, a SystemMonitor library class,
contains information about this agent, such as the agent’s name, the type of the managed
object, and the agent’s state. For a full description of the AgentInfo class, see the Forte
online Help. The following example shows how you could use information from the
AgentInfo class:

SystemAgent.SubAgentInfo
attribute

The SystemAgent class has a SubAgentInfo attribute (GenericArray of AgentInfo), which
you can use to get information about subagents of the current agent. The following
example shows how you can print information about the subagents of the current agent to
a log file:

This example from the AgentAccess example program produces output like the following:

SystemAgent.
FindSubAgentInfo method

Each agent inherits a FindSubAgentInfo method from SystemAgent, which returns an
AgentInfo object that contains information about a specified subagent. The syntax for this
method is described in the Forte online Help.

You can then access the attributes of the AgentInfo object (described in the Forte online
Help) to get information about the agent, such as its name, the type of its managed object,
and its state.

-- Print the name of the current agent to the log.

agentStuff : AgentInfo;

agentStuff = currentAgent.GetInfo();

agentName : string = agentStuff.AgentName;

task.Part.LogMgr.Put(‘Agent’s name is ‘);

task.Part.LogMgr.PutLine(agentName);

textString.SetValue(source='SubAgents of Environment agent:');

self.logFile.WriteLine(source=textString);

for subag in currActEnv.SubAgentInfo do

textString.Concat(source=' ');

textString.Concat(source=subag.AgentName);

textString.Concat(source=' agent manages ');

textString.Concat(source=subag.MOTypeName);

textString.Concat(source=' object. It is ');

textString.Concat(source=subag.StateName);

textString.Concat(source='.');

self.logFile.WriteLine(source=textString);

end for;

See AgentAccess example: Project: AgentAccessSvc • Class: AgentLogMgr • Method: LogAgentInfo

SubAgents of Environment agent:

 PC-Windows agent manages Model Node object. It is OFFLINE.

 Mac-client agent manages Model Node object. It is OFFLINE.

 NameService agent manages Name Service object. It is ONLINE.

 hillary agent manages Node object. It is ONLINE.

 AgentBanking_cl0 agent manages Application object. It is ONLINE.

 AgentAccess_cl0 agent manages Application object. It is IN-PROGRESS.
Programming with System Agents

Invoking Agent Commands 25
Invoking Agent Commands
Each agent has a set of commands, which are defined for the agent’s class. You can invoke
these commands within your TOOL code by using methods defined for the SystemAgent
class.

Do not rely on command
output

The output for commands are not considered a programmatic interface. The printed
output for a command is not documented, so you should not rely on any particular format
or content of the command output in your application. Forte does not guarantee that the
command output will remain the same between releases or for different international
locales.

For a list of agent commands provided by Forte-defined agents that can be used in TOOL
code, see Escript and System Agent Reference Manual.

Getting a List of Agent Commands
SystemAgent.
GetCommands method

Unlike methods, commands exist only at runtime, so the only way to determine what
commands are available for a specific agent at runtime (besides looking at the agent’s
source code or documentation) is to use a method inherited from the SystemAgent class
called GetCommands. The syntax for this method is described in the Forte online Help.

The GetCommands method returns a GenericArray of CommandDesc. The CommandDesc
class is a part of the Framework library, and is described in the Forte online Help. This class
has attributes that contain information about the command, such as command name,
attributes, help, and so forth.

You can derive information from the array of CommandDesc objects to generate command
requests to the agent that owns these commands.

Invoking Commands on the Current Agent
SystemAgent.
ExecuteCommand method

Each agent inherits an ExecuteCommand method from SystemAgent, which lets you
invoke any command supported for a given agent. The syntax for this method is described
in the Forte online Help.

The following TOOL code shows how you can submit a command string and a string
argument as the command parameter. i.ClientID is the name of an active client.

The following TOOL code shows how you can submit a command string as the command
parameter and have any command output placed in the location specified for the
outStream parameter:

cmdString : TextData = new(value=’CancelClient ’);

cmdString.concat(source=i.ClientID);

self.BankAgent.ExecuteCommand(command=cmdString);

See AgentBanking example: Project: AgentBanking • Class: AdminWindow • Method: Display

cmdString : TextData = new(value=’ListAllAccounts’);

outPutStream : MemoryStream = new;

outPutStream.IsAnchored=TRUE;

outPutStream.Open(accessMode=SP_AM_WRITE);

self.BankAgent.ExecuteCommand(command=cmdString, objList=NIL,

outStream=outPutStream);

outPutStream.Close();

See AgentBanking example: Project: AgentBanking • Class: AdminWindow • Method: Display
Chapter 2Accessing System Agents Using TOOL Code

Invoking Agent Commands26
Invoking Commands on Subagents
SystemAgent.
ExecCmdOnSubAgents
method

Each agent inherits an ExecCmdOnSubAgents method from SystemAgent, which invokes
the specified command on all of a given agent’s subagents. This command is useful when
all the subagents are the same kind of agent, and therefore support the same commands.
For example, you could invoke a ModLogger command on the subagents of an Installed
Partition agent to modify the logger flags on all of its Active Partition agents.

For a complete description of this method, see the Forte online Help.
Programming with System Agents

Accessing and Updating Instrument Data 27
Accessing and Updating Instrument Data
Agents can have six different types of instruments, each of which maps to a SystemMonitor
library class, as shown in the following table.

For more information about each type of instrument, see the class for that instrument in
the Forte online Help

Each agent can have any number of instruments, and instruments that are Compound or
SubObject instruments can have any number of subinstruments.

For a list of the agent instruments provided by Forte-defined agents, see Escript and System
Agent Reference Manual.

Locating the Instrument to Access or Update
SystemAgent.
Instrumentation
attribute

As with commands, agent instruments exist only at runtime. Therefore, the only way to
determine what instruments are available for a specific agent at runtime (besides looking
at the agent’s source code or documentation) is to use an attribute inherited from
SystemAgent called Instrumentation (GenericArray of Instrument), which contains a list of
the instruments attached to the agent. This attribute is also described in the Forte online
Help.

Each object of the Instrument class contains information about the instrument, such as its
name, the agent that owns it, any instruments that contain this instrument, and so forth.

Referencing an Instrument
SystemAgent.
FindInstrument method

Each agent inherits an overloaded method from SystemAgent called FindInstrument. This
method returns an instrument based on either the instrument’s ID or its name. Each time
you invoke this method, the Forte system updates the instrument’s values.

Syntax FindInstrument(instId = integer) : Instrument

Syntax FindInstrument(name = string | TextData) : Instrument

For a complete description of this method, see the Forte online Help.

The following example shows how you can get a reference to an instrument using its name:

Instrument Type Instrument Subclass Description

Average AverageInst Read only. Contains an average value.

Compound CompoundInst Contains a static set of instruments. These instruments can be of
different types.

Configuration ConfigValueInst Read/write or read only. Contains a simple value, such as an integer
value or a TextData object.

Counter CounterInst Read only. Contains a value based on counting something.

SubObject SubObjectInst Contains a dynamic set of instruments. All instruments are of the
same type.

Timer TimerInst Read/write. Timer that prompts the agent to do something after a
certain interval or set of intervals.

tmpInst1 = ConfigValueInst(self.BankAgent.

 FindInstrument(name=’MaxClientSessionLength’));

See AgentBanking example: Project: AgentBanking • Class: AdminWindow • Method: Display
Chapter 2Accessing System Agents Using TOOL Code

Accessing and Updating Instrument Data28
Accessing and Updating Configuration Instruments
Configuration instruments are the only instruments that can contain data values and yet be
updated by users. When you get a reference to a Configuration instrument that is defined
as an Instrument object, you need to cast the object to the ConfigValueInst class.

ConfigValueInst.GetData
method

To access the value of a Configuration instrument, use the GetData method provided by the
ConfigValueInst class.

Syntax GetData() : DataValue

For a complete description of this method, see the Forte online Help.

The following example shows how you could use the GetData method to get instrument
data to include in a text string:

ConfigValueInst.
UpdateData method

To update the value of a Configuration instrument, use the UpdateData method provided
by the ConfigValueInst class.

Syntax UpdateData(data = DataValue)

For a complete description of this method, see the Forte online Help.

The following example shows how you could use the UpdateData method to change the
data value of a Configuration instrument that contains an integer value:

Accessing Average and Counter Instruments
Because Average and Counter instruments contain only read-only numeric values, you can
access their values using attributes. When you get a reference to an Average or Counter
instrument that is defined as an Instrument object, you need to cast the object to the
appropriate AverageInst or CounterInst class.

Retrieving Values
NumericInst.RealValue
and NumericInst.Value
attributes

Both the AverageInst and CounterInst classes inherit two attributes from the NumericInst
class for accessing the current value of the instrument:

For complete information about these attributes, see the Forte online Help.

The following TOOL code from the AgentAccess example program shows how you can use
the RealValue attribute to retrieve data from an Average or Counter instrument and log it:

textString.Concat(source=instrument.Name);

textString.Concat(source=’ = ’);

textString.Concat(source=ConfigValueInst(instrument).GetData());

intData : IntegerData = new(value=self.MaxClientNumber);

tmpInst2.UpdateData(Data = intData);

See AgentBanking example: Project: AgentBanking • Class: MaxUpdateWin • Method: Display

Attribute Data Type Description

RealValue double Represents the value as a double.

Value i4 Represents the value as an integer.

-- Log the Average (AverageInst) or Counter (CounterInst)

-- instrument value.

textString : TextData = new;

textString.Concat(source=instrument.Name);

textString.Concat(source=’ = ’);
Programming with System Agents

Accessing and Updating Instrument Data 29
Setting Ranges for Values
NumericInst.LowerLimit and
NumericInst.UpperLimit
attributes

You can set maximum and minimum values for an Average instrument or a Counter
instrument using the LowerLimit (i4) and UpperLimit (i4) attributes that the AverageInst
and CounterInst classes inherit from the NumericInst class. These attributes are described
in the Forte online Help.

If the instrument’s value goes above or below the range defined by these attributes, then
the instrument’s agent posts an InstrumentAlert event, described in the Forte online Help.

Accessing a Compound Instrument
and its SubInstruments

A Compound instrument is different than other instruments in that it contains a variety of
other instruments, much the way a C struct contains a variety of other data types. When
you get a reference to a Compound instrument that is defined as an Instrument object, you
need to cast the object to the CompoundInst class.

CompoundInst.
SubInstruments attribute

To access the instruments contained by the Compound instrument, you need to use the
SubInstruments attribute (GenericArray of Instrument) provided by the CompoundInst
class. This attribute, which is described in the Forte online Help, contains a list of the
instruments contained by the Compound instrument. You can interact with each
subinstrument as you would with any instrument of that type that is not a subinstrument.

The following TOOL code shows how you can determine the types of the subinstruments of
a Compound instrument and pass the instruments to the appropriate user-defined
routines for further processing:

textString.Concat(source=NumericInst(instrument).RealValue);

self.logFile.WriteLine(source=textString);

-- Determine what kind of instruments are subinstruments

-- of this compound instrument.

for i in CompoundInst(instrument).SubInstruments do

if i.IsA(AverageInst) then

self.LogNumInst(i, currIndentLevel);

elseif i.IsA(CompoundInst) then

self.LogCompoundInst(i, currIndentLevel);

elseif i.IsA(ConfigValueInst) then

self.LogConfigVInst(i, currIndentLevel);

elseif i.IsA(CounterInst) then

self.LogNumInst(i, currIndentLevel);

elseif i.IsA(SubObjectInst) then

self.LogSubObjInst(i, currIndentLevel);

elseif i.IsA(TimerInst) then

self.LogTimerInst(i, currIndentLevel);

else

task.part.logmgr.putline(’Unidentifiable classtype here.’);

end if;

end for;

AgentLogMgr.LogCompoundInst

See AgentAccess example: Project: AgentAccessSvc • Class: AgentLogMgr • Method: LogCompoundInst
Chapter 2Accessing System Agents Using TOOL Code

Accessing and Updating Instrument Data30
After you determine the kind of instrument that the Compound instrument contains, you
can interact with the instrument just as you would if it was not part of a Compound
instrument.

Accessing a SubObject Instrument and its Subobjects
A SubObject instrument contains a group of instruments, typically of the same type, that
represent information about objects in the system that are transient. For example, a typical
way to use a SubObject instrument is to store information about currently running tasks.
When you get a reference to a SubObject instrument that is defined as an Instrument
object, you need to cast the object to the SubObjectInst class.

SubObjectInst.
ActiveObjects attribute

To access the instruments contained in the SubObject instrument, you need to use the
ActiveObjects attribute (GenericArray of Instrument) of the SubObjectInst class. This
attribute contains a list of the instruments that represent currently available objects of the
type being monitored by this SubObject instrument, and is described in the Forte online
Help.

In the following TOOL code from the AgentBanking example program, the SubObject
instrument contains an array of Compound instruments containing information about
currently logged-in clients:

Accessing historical data A SubObject instrument can also contain historical data about subobjects that no longer
exist in the system. You can use the HistoricalData attribute of the SubObjectInst class to
access historical data in a SubObject instrument:

For more information about the HistoricalData attribute, see the Forte online Help.

clientList : SubObjectInst;

clientList =

SubObjectInst(self.BankAgent.FindInstrument(

name=’ActiveClients’));

for i in clientList.ActiveObjects do -- For each Compound instrument

tempClassSession : ClientSession = new;

for j in CompoundInst(i).SubInstruments do -- For each instrument

if ConfigValueInst(j).Name.Value = ’ActiveClientName’ then

tempClassSession.ClientID =

 TextData(ConfigValueInst(j).GetData());

else if ConfigValueInst(j).Name.Value =

 ’ActiveClientSessionLength’ then

tempClassSession.SessionLength =

 (IntegerData(ConfigValueInst(j).GetData())).Value;

else do

task.part.logmgr.putline(

 ’There is a problem in AdminWindow.Init.’);

end if;

end if;

end for;

self.ClientSessions.AppendRow(object=tempClassSession);

end for;

See AgentBanking example: Project: AgentBanking • Class: AdminWindow • Method: GetClientList
Programming with System Agents

Chapter 3
Developing Custom Agents
This chapter explains how to use SystemMonitor library classes to develop custom agents
for monitoring a Forte system.

This chapter describes the steps involved in developing an agent, including how to:

■ define commands on the agent

■ define instruments for the agent

About Developing Custom System Agents32
About Developing Custom System Agents
Forte provides an architecture for creating custom agents that you can use to manage your
system. Typically, custom agents are subagents of an Active Partition agent. By using the
steps and methods described in this chapter, you can develop custom agents that you can
access and interact with using standard Forte system management facilities, such as the
Environment Console and Escript.

You can design a custom agent to manage any object in the system. For example, you could
develop a custom agent that tracks specific data about a shared service object in your
application, which can help you tune the performance of your service object. You can
define the data to be tracked by defining instruments. You can also define commands for
your agent that let you perform tasks such as cancelling tasks, displaying current waiting
events, or listing the current clients using the service object.

When you define a custom agent for a managed object, the agent must know about its
managed object. The agent must be able to give data to and receive data from the managed
object, as well as implement commands that affect the agent. However, the managed
object, for the most part, knows nothing about its agent.

Testing an agent After you develop an agent, you can test that agent by deploying and installing your
application in your development environment. You cannot test an agent using any of the
Forte workshops.

This section provides an overview of the steps required to develop custom system agents.
The rest of this chapter leads you step-by-step through the process of developing a custom
system agent. The code for the system agent used in this chapter is provided as an example
called AgentBanking. For details about locating and using this example, see Appendix A,
“Example Applications.”

Forte defines a standard interface of methods and attributes to all agents, including custom
agents. These methods and attributes are defined on the SystemAgent class, and inherited
by all the agent subclasses provided by Forte or defined by application developers.

Forte also defines a set of methods of the SystemAgent class which you can override in the
custom agent subclass to define the commands and instruments for your custom agent.

To define a custom system agent, you define a subclass of the SystemAgent class and
override these SystemAgent class methods to define and implement commands and
instruments for this new agent.
Programming with System Agents

About Developing Custom System Agents 33
The SystemAgent methods that you override for all new agents are:

The SystemAgent methods that you override to define the commands for a new agent are:

The SystemAgent methods that you override to define instruments that can be set and
accessed are:

To define a new instrument, use the following classes:

■ AverageInst

■ CompoundInst

■ ConfigValueInst

■ CounterInst

■ SubObjectInst

■ TimerInst

These classes are all subclasses of the abstract class Instrument, and are described in the
Forte online Help.

You should not subclass these instrument classes, because the Forte system management
facilities, the Environment Console and Escript, only recognize these instrument classes.

Method Description

Init Contains processing that is executed when this agent object is initialized.

GetMOTypeName Returns a string that contains the name of the type of object managed by this agent.

Method Description

InitCmdProcessor Initializes the command processor and defines the call syntax and indexes of agent
commands.

ProcessCmdRequest Implements the commands defined in the InitCmdProcessor method.

Method Description

AttachMO Attaches the managed object to the agent and defines the name and instrument IDs of
agent instruments.

UpdateInstrument Obtains values from the agent’s managed object and updates the specified instrument.

InstrumentUpdated Provides a new value in the instrument to the managed object.
Chapter 3Developing Custom Agents

Designing the Custom Agent34
Designing the Custom Agent
Before you start defining a custom agent, you need to determine what commands and
instruments you want your agent to provide for managing this object. You also need to
decide how your system manager will access this agent.

Selecting the Object to be Managed
You can design a custom agent to manage any object in the system. What object you want
to develop an agent for depends on what kind of objects are available in the application
and how the objects are partitioned and deployed. You should also consider how you plan
to interact with the agent and what kinds of monitoring or managing you want to perform
on the object.

Selecting a User Interface
Typically, your system manager will use the Environment Console or Escript to access the
custom agent, but if she will use another system management tool or a customized user
interface, you need to consider how these alternative interfaces will interact with the agent.
For more information about accessing agents, see Chapter 2, “Accessing System Agents
Using TOOL Code.”

The AgentBanking example provides a customized user interface to the BankServiceAgent
agent that it also defines.

Designing Commands
You need to determine which commands the system manager needs to use with the
managed object. The SystemAgent class automatically provides the DumpStatus and
Shutdown commands. However, you can decide what other commands are appropriate for
the managed object.

For example, if the managed object is a shared service that manages data storage and
retrieval, you might want to provide agent commands that list the tasks that are currently
running or cancel a database task that is taking too long
Programming with System Agents

Designing the Custom Agent 35
Designing Instruments
You also need to determine which instruments the system manager needs to use to set
values in the managed object and retrieve values from the managed object. Forte provides
several Instrument subclasses that support different kinds of instruments, which are
described in “Defining Instruments for the Custom Agent” on page 43.

For example, if the managed object is a shared service that manages data storage and
retrieval, you might want to provide agent instruments that retrieve and set the maximum
number of clients running at one time, retrieve the current database name, and retrieve the
number of running queries.

Enhancing the Managed Object’s Class
Although you implement commands within methods on the agent’s class, you need to
make sure that the managed object’s class provides sufficient access to itself. You might
need to add methods and attributes to the managed object’s class so that you can
implement the commands and instruments that you want the agent to provide.

For example, you might need to make some private methods of the managed object’s class
public so that the agent’s methods can use those methods to access data in the managed
object.

Testing the Custom Agent
You cannot test an agent using any of the Forte workshops. To test your agent, you need to
deploy and install your application in your development environment.
Chapter 3Developing Custom Agents

Defining a Class for the Custom Agent36
Defining a Class for the Custom Agent
The first step for defining a class for the system agent is to create a new class that is a
subclass of the SystemAgent class in the SystemMonitor library. You will usually define this
agent in the project that contains the class for this agent’s managed object.

You must include the SystemMonitor library as a supplier plan for the project in which you
are defining an agent.

Define the class for the new agent as a nonwindow class, with SystemAgent class as its
Superclass.

Within this new agent class, you need to define the following methods that override
methods defined in the SystemAgent class:

■ AttachMO

■ GetMOTypeName

■ Init

■ InitCmdProcessor

■ InstrumentUpdated

■ ProcessCmdRequest

■ UpdateInstrument

For information about defining commands, see “Defining Commands for the Custom
Agent” on page 38. For information about defining instruments, see “Defining Instruments
for the Custom Agent” on page 43. For information about writing code to initialize an agent
and connect it to its managed object, see “Connecting the Custom Agent and its Managed
Object” on page 56.

Writing the Init method
The Init method contains processing that is executed when the agent object is initialized.

Syntax Init()

Set the managed object type:
SystemAgent.SetMOType
method

You can add TOOL code within this Init method to initialize an agent object as you would
any other class. You can also use the SetMOType method to define the type of managed
object that this agent should be connected to. Setting the type of managed object allows
the system to check that you have connected an appropriate object to the agent. The
SetMOType method is described in the Forte online Help.

For example, if you are creating an agent for the BankService service object in the
AgentBanking example, you can use the following code in the Init method to define the
kind of managed object expected for this agent object:

Forte invokes this Init method when this agent is initialized by the managed object, as
explained in “Connecting the Custom Agent and its Managed Object” on page 56.

super.Init();

self.SetMOType(MOType=BankService);

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: Init
Programming with System Agents

Defining a Class for the Custom Agent 37
Writing the GetMOTypeName method
SystemAgent.
GetMOTypeName method

The GetMOTypeName method returns a string that contains the name of the type of object
managed by this agent.

Syntax GetMOTypeName(): string

The only processing you need to do in this method is to return the appropriate object type
name to the calling method. For example, certain Forte system applications, such as the
Environment Console and Escript, use this method to get the name of the type of the
managed object. The GetMOTypeName method is also described in the Forte online Help.

You can define this method by simply including a return statement, as shown in the
following example:

Of course, you can add additional code if you want this method to include more
processing.

return ’BankServer’;

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: GetMOTypeName
Chapter 3Developing Custom Agents

Defining Commands for the Custom Agent38
Defining Commands for the Custom Agent
To define commands for your new custom agent, you need to override two methods in your
new agent class:

In the InitCmdProcessor method, you need to define the command name, syntax, and
index, and register this information with the command processor.

In the ProcessCmdRequest method, you provide a case statement that uses the command
index to identify the command to be processed. The when statement for each index
contains the TOOL code that implements each command.

Forte automatically calls the InitCmdProcessor method as part of the SystemAgent.Init
method.

When a client of this agent uses one of these agent commands, the client uses the
ExecuteCommand method on this agent to pass the command syntax, as defined in the
InitCmdProcessor method. The ExecuteCommand method then parses the command and
passes the parameters to this agent’s version of the ProcessCmdRequest method.

The following sections explain how you can define commands for your agents.

Writing the InitCmdProcessor Method
The InitCmdProcessor method initializes the command processor and defines the call
syntax and indexes of agent commands.

Syntax InitCmdProcessor()

In this method, you define a set of commands that the processor can recognize and parse
for this custom agent. For more information about the CommandProcessor class, see the
Forte online Help.

Forte automatically initializes a CommandProcessor object and associates it with this agent
during the SystemAgent.Init method.

Because this agent inherits commands from the SystemAgent class, and might inherit
commands from another custom agent, you must always call the super.InitCmdProcessor
method at the beginning of your InitCmdProcessor method.

DumpStatus and
Shutdown commands

All agents automatically inherit two commands defined in the SystemAgent superclass:

Method Description

InitCmdProcessor Initializes the command processor and defines the call syntax and indexes of agent
commands.

ProcessCmdRequest Implements the commands defined in the InitCmdProcessor method.

Command Name Command Index

DumpStatus SystemAgent.CommandIndexValues.SM_DUMPSTATUS

Shutdown SystemAgent.CommandIndexValues.SM_SHUTDOWN
Programming with System Agents

Defining Commands for the Custom Agent 39
These commands have no predefined function. If you want your agent to perform some
processing when these commands are executed on the agent, you need to identify and
implement these commands in the ProcessCmdRequest method, as described in “Writing
the ProcessCmdRequest Method” on page 41.

CommandProcessor.
AddCommand method

To add command definitions, you need to use the AddCommand method of the
CommandProcessor class. The syntax for this method is described in the Forte online Help.

Uniqueness of
command indexes

For each command that you define using the AddCommand method, you need to define a
name and a command index that are both unique within the current branch of subclasses
of the SystemAgent class. For example, if this custom agent is a subclass of another custom
agent class, all the command indexes and command names must be unique between the
two classes.

Range of command
index values

Forte defines some commands on the SystemAgent class itself, and the number of the
highest index value used for these system-defined commands is stored as an integer in
SystemAgent.CommandIndexValues.AGENT_CMD_LASTVALUE. You can use this value to
determine what values are available for your own agent commands. The command index
numbers and instrument ID numbers are independent of each other, and can overlap.

In the following TOOL code, the command uses the CANCELCLIENT_CMD constant
defined at the project level plus the value of the highest index used by Forte to define its
command index value:

The command defined in this example is named CancelClient and has one required string
argument with the name clientName. When you use the Help command in Escript, you can
see the help text defined by the helpText parameter. This command appears in the
Environment Console in the BankServer menu as a menu item named Cancel Client.

For information about defining command syntax using the AddCommand method of the
CommandProcessor class, see the Forte online Help.

super.InitCmdProcessor();

systemindex : integer =

 SystemAgent.CommandIndexValues.AGENT_CMD_LASTVALUE;

self.CommandProcessor.AddCommand(cmdName = ’CancelClient’,

argDesc = ’s’,

cmdIndex = systemindex + CANCELCLIENT_CMD,

helpText =

 ’Syntax: CancelClient <client_name>.\nCancels the specified
client.’,

argNames = ’clientName’, groupName = ’BankServer’,

 menuString = ’Cancel Client’);

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: InitCmdProcessor
Chapter 3Developing Custom Agents

Defining Commands for the Custom Agent40
Commands in Escript and the Environment Console
Parameters of the
CommandProcessor.
AddCommand method

Escript and the Environment Console automatically let you navigate to your agent and its
commands and instruments where they are attached into the agent hierarchy. How your
agent commands appear and behave depends on how you define certain parameters of the
CommandProcessor.AddCommand method.

Figure 5 User-defined Agent Commands in the Environment Console

Note that the Cancel Client command is automatically followed by “…” in the menu
because this list item opens a dialog, where you enter the argument required by this
command, as shown in the following figure:

Figure 6 User-defined Agent Command in its Execute Command Dialog

For a complete description of the AddCommand parameters, see the Forte online Help.

Parameter Description

cmdName Defines the name of the command that is used in Escript.

helpText Defines help text that can be accessed using the Escript Help command.

argDesc and
argNames

Define the arguments for this command. The Environment Console displays these
arguments’ names in the Execute Command Dialog dialog, which prompts for the
arguments’ values. If a command specifies a return value, the command cannot be accessed
by Escript or the Environment Console.

groupName Defines the Environment Console menu under which the command is displayed. By default,
the Environment Console displays user-defined commands under the Utility menu. In
Figure 5, the Cancel Client command has been added to the BankServer menu.

menuString Defines the string that the Environment Console displays on a menu. This string represents
the command in the Environment Console. If a command has any arguments, the
Environment Console automatically adds “…” to the end of the command, as shown for
the Cancel Client command in Figure 6.
Programming with System Agents

Defining Commands for the Custom Agent 41
Writing the ProcessCmdRequest Method
The ProcessCmdRequest method implements the commands defined in the
InitCmdProcessor method.

Syntax ProcessCmdRequest(cmdIndex=ui2,
parameters=GenericArray of Object, outStream=Stream): Object

This ProcessCmdRequest method actually provides the implementation for commands
defined in the InitCmdProcessor method, as described in “Writing the InitCmdProcessor
Method” on page 38.

An application, such as Escript or the Environment Console, invokes an agent’s command
within TOOL code using the ExecuteCommand method. The Forte system then uses
methods on the command processor to parse the command before passing the parameters
to the agent’s version of the ProcessCmdRequest method.

In this method, use a TOOL case statement, with a set of when clauses that check for the
command index. In the else clause, you should include the overridden ProcessCmdRequest
method.

The following example shows the structure for the ProcessCmdRequest method. The
command indexes were defined by adding constants to the
SystemAgent.CommandIndexValues.AGENT_CMD_LASTVALUE when each command was
defined in the InitCmdProcessor method, as explained in “Writing the InitCmdProcessor
Method” on page 38.

outStream parameter
and command output

The outStream parameter of the ProcessCmdRequest method specifies where the output of
the command should go. For Escript and the Environment Console, command output is
printed to standard output (stdout). Because the outStream parameter is a stream, you can
use the Stream.WriteText method within the ProcessCmdRequest method to print output
to the output stream.

systemindex : integer =

 SystemAgent.CommandIndexValues.AGENT_CMD_LASTVALUE;

return_value : object = NIL;

case (cmdIndex - systemindex)

when 100 do

-- Processing for the command with an index of 100 + systemindex.

...

when 200 do

-- Processing for the command with an index of 200 + systemindex.

...

else do

return_value =

 super.ProcessCmdRequest(cmdIndex, parameters, outStream);

end case;

return return_value;
Chapter 3Developing Custom Agents

Defining Commands for the Custom Agent42
The following TOOL code shows the command implementation for a command named
ListAllAccounts:

You might need to reference attributes of the managed object using the ManagedObject
attribute of the agent. Because the value of the ManagedObject attribute for this agent is of
class Object, you need to cast the ManagedObject to the class of the managed object to
access the attributes and methods of that class. The following line from the above example
demonstrates casting the object as ManagedObject:

DumpStatus and
Shutdown commands

All agents inherit the following two commands defined in the SystemAgent superclass:

These commands have no predefined function. If you want your agent to perform some
processing when these commands are executed on the agent, you need to identify these
commands in when clauses of the case statement in the ProcessCmdRequest method.

If your agent is the subagent of any Forte-defined agent other than an Active Partition
agent, the DumpStatus or Shutdown command on your agent is invoked automatically
when its parent agent executes a DumpStatus or Shutdown command. The Active Partition
agent does not automatically propagate the DumpStatus or Shutdown command to its
subagents.

when LISTALLACCOUNTS_CMD do

outStream.WriteText(source=’Current accounts:\n’);

task.part.logmgr.putline(source=’Current accounts:’);

for i in BankServer.AcctList do

outtext : TextData = new;

outtext.Concat(i.AcctNumber);

outtext.Concat(’ ’);

outtext.Concat(i.AcctName);

outtext.Concat(’ ’);

tmpDoubleData : DoubleData = new;

tmpDoubleData.SetValue(source=i.AcctBalance);

tmpNumFormat : NumericFormat = new;

tmpTemplate : TextData = new(value=’$#,##0.00’);

tmpNumFormat.Template = tmpTemplate;

outtext.Concat(tmpNumFormat.

 FormatNumeric(source=tmpDoubleData));

outtext.Concat(’\n’);

outStream.WriteText(source=outtext);

task.part.logmgr.putline(outtext);

end for;

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: ProcessCmdRequest

task.lgr.put(BankService(self.ManagedObject).MaxClients);

Command Name Command Index

DumpStatus SystemAgent.CommandIndexValues.SM_DUMPSTATUS

Shutdown SystemAgent.CommandIndexValues.SM_SHUTDOWN
Programming with System Agents

Defining Instruments for the Custom Agent 43
Defining Instruments for the Custom Agent
To define instruments for your new custom agent, you need to override two or three
methods in your new agent class:

■ AttachMO

This method attaches the managed object to the agent and defines the name and
instrument IDs of agent instruments.

“Writing the AttachMO Method” on page 44 describes how to write this method. This
method instantiates the instruments for this agent, defines its name and instrument ID,
and adds the instrument to the agent.

The AttachMO method is called by the Init method of the class of the managed object,
to attach the managed object to the agent. The code you need to add to this Init method
is explained in “Connecting the Custom Agent and its Managed Object” on page 56.

■ UpdateInstrument

This method obtains values from the agent’s managed object and updates the specified
instrument.

“Writing the UpdateInstrument Method” on page 46 describes how to write this
method. This method provides a case statement that uses the instrument ID to identify
the instrument to be updated. The when clause for each instrument ID contains the
TOOL code that retrieves data from the managed object and updates the identified
instrument.

When a client of this agent, such as Escript or the Environment Console, requests an
instrument value, the system automatically calls the UpdateInstrument method, which
obtains current data from the managed object, and updates the instrument value before
returning this value to the client.

■ InstrumentUpdated

This method provides appropriate processing when an instrument is assigned a new
value or when a Timer instrument ticks.

“Writing the InstrumentUpdated Method” on page 53 describes how to write this
method. This method provides a case statement that uses the instrument ID to identify
the instrument whose value has been updated. The when clause for each index contains
the TOOL code that transfers this new instrument value to the managed object.

When a client of this agent, such as Escript or the Environment Console, updates one of
its instruments, Forte automatically calls the InstrumentUpdated method, which
updates the changed values in the managed object, as appropriate.

The following sections demonstrate how you can define instruments for your agents.
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent44
Forte Instrument Subclasses
Forte provides an abstract Instrument class, and also defines several subclasses of
Instruments, which you use to define the instruments for your custom agent. You
instantiate one of the following classes to define a new instrument:

You cannot subclass any of these Forte subclasses of the Instrument class or the Instrument
class itself. For more information, see the Forte online Help.

Writing the AttachMO Method
The AttachMO method attaches the managed object to the agent and defines the name and
instrument IDs of agent instruments.

Syntax AttachMO(managedObject=Object)

SystemAgent.AddInstrument
method

In the AttachMO method, you instantiate the instruments for this agent, define each
instrument’s name and instrument ID, and add the instrument to the agent. You use the
AddInstrument method of the SystemAgent class to add the instrument to the agent.

Because this agent could inherit instruments from the SystemAgent class, and might
inherit instruments from another custom agent, you must always call the overridden
AttachMO method at the beginning of your AttachMO method.

Uniqueness of instrument IDs For each instrument that you define in the AttachMO method, you need to define a name
and an instrument ID that are both unique within the current branch of subclasses of the
SystemAgent class. For example, if this custom agent is a subclass of another custom agent
class, all the instrument IDs and instrument names must be unique between the two
classes. The instrument ID numbers and command index numbers are independent of
each other, and can overlap.

The value of the highest instrument ID used by Forte for system-defined commands is
stored as an integer in SystemAgent.InstrumentID.Values.AGENT_IID_LASTVALUE. You
can use this value to determine what values are available for your own agent instruments.

Instrument Type Instrument Subclass Description

Average AverageInst Read only. Contains an average value.

Compound CompoundInst Contains a static set of instruments. These instruments can be of
different types.

Configuration ConfigValueInst Read/write or read only. Contains a simple value, such as an integer
value or a TextData object.

Counter CounterInst Read only. Contains a value based on counting something.

SubObject SubObjectInst Contains a dynamic set of instruments. All instruments are of the
same type.

Timer TimerInst Read/write. Timer that prompts the agent to do something after a
certain interval or set of intervals.
Programming with System Agents

Defining Instruments for the Custom Agent 45
In the following TOOL code, the instrument IDs are defined as constants at the project
level.

Note In this example, although the SubObject instrument will contain Compound instruments
and their subinstruments, these instruments are not defined in the AttachMO method.
These instruments are defined, instantiated, and added to the SubObject instrument in the
UpdateInstrument method.

super.AttachMO(managedObject);

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

-- Add instrument that gets and sets the maximum clients.

MaxActiveClients : ConfigValueInst = new;

MaxActiveClients.Name.SetValue(’MaxActiveClients’);

MaxActiveClients.InstrumentID=(systemID + MAXACTIVECLIENTS_INST);

self.AddInstrument(MaxActiveClients);

...

-- Add SubObjectInst instrument that displays a dynamic array

-- of client info.

ActiveClients : SubObjectInst = new;

ActiveClients.Name.SetValue(’ActiveClients’);

ActiveClients.InstrumentID=(systemID + ACTIVECLIENTS_INST);

self.AddInstrument(ActiveClients);

...

-- Add CounterInst instrument to count transactions that have

-- occurred.

TransactionCount : CounterInst = new;

TransactionCount.Name.SetValue(’TransactionCount’);

TransactionCount.InstrumentID=(systemID + TRANSACTIONCOUNT_INST);

self.AddInstrument(TransactionCount);

-- Add AverageInst instrument to get average length of client

-- sessions.

self.AddInstrument(TransactionCount);

AverageSessionLength : AverageInst = new;

AverageSessionLength.Name.SetValue(’AverageSessionLength’);

AverageSessionLength.InstrumentID=

(systemID + AVERAGESESSIONLENGTH_INST);

self.AddInstrument(AverageSessionLength);

-- Add TimerInst instrument to check for clients that have been

-- logged on too long.

CheckSessionLengths : TimerInst = new;

CheckSessionLengths.Name.SetValue(’CheckSessionLengths’);

CheckSessionLengths.InstrumentID=

(systemID + CHECKSESSIONLENGTHS_INST);

self.AddInstrument(CheckSessionLengths);

CheckSessionLengths.TickInterval=60000;

CheckSessionLengths.IsActive=TRUE;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: AttachMO
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent46
� To define a Timer instrument and its attributes, follow these steps:

1 Attach the instrument to the agent using the AddInstrument method.

2 Define the TimerInst.TickInterval attribute.

3 Make the Timer instrument active by setting the TimerInst.IsActive attribute to TRUE.

Writing the UpdateInstrument Method
The UpdateInstrument method obtains values from the agent’s managed object and
updates the specified instrument.

Syntax UpdateInstrument(inst=Instrument)

In the UpdateInstrument method, you implement how the instrument obtains data from
the managed object and is updated.

When an application, such as Escript or the Environment Console, requests an instrument
value, the system automatically calls the UpdateInstrument method. This method obtains
current data from the managed object and updates the instrument value before returning
this value to the client application.

In the UpdateInstrument method, you provide a case statement that uses the instrument
ID to identify the instrument to be updated. The when clause for each instrument ID
contains the TOOL code that retrieves data from the managed object and updates its
instrument. In the else clause, you should include the overridden UpdateInstrument
method.

The following example shows the structure for this method. This example assumes that the
instrument IDs were ensured to be unique by adding constants to the
SystemAgent.InstrumentID.Values.AGENT_IID_LASTVALUE when each instrument was
defined in the AttachMO method, as explained in “Writing the AttachMO Method” on
page 44.

Each of the subclasses of Instrument that you can use to define instruments has specific
methods for changing the instrument values.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

when 100 do

-- Processing to update the instrument with an ID of 100 +
systemID.

...

when 200 do

-- Processing to update the instrument with an ID of 200 +
systemID.

...

else do

super.UpdateInstrument(inst);

end case;
Programming with System Agents

Defining Instruments for the Custom Agent 47
Updating Configuration Instruments
ConfigValueInst.IsReadOnly
attribute

The Configuration instrument is the only instrument that can be read only or read-write.
The ConfigValueInst class provides an IsReadOnly attribute (boolean) that lets you change
whether the Configuration instrument is read only (TRUE) or not (FALSE). Note that if you
want to update your read-only Configuration instrument in the UpdateInstrument method,
you need to set the IsReadOnly attribute to FALSE, update the value, then set the
IsReadOnly attribute to TRUE. For more information about this attribute and the
ConfigValueInst class, see the Forte online Help.

ConfigValueInst.UpdateData
method

To update the value of the Configuration instrument, use the UpdateData method of the
ConfigValueInst class. To use this method, the IsReadOnly attribute must be set to FALSE.
For a complete description of this method, see the Forte online Help. The UpdateData
method requires an input parameter of the DataValue class or of a DataValue subclass
defined by Forte.

Note You should update the Configuration instrument using a Forte DataValue subclass to
contain the new value. If you update a Configuration instrument value using a user-defined
DataValue subclass, the Environment Console and Escript cannot access this value.

The following example shows how you could update the value of the MaxActiveClients
instrument defined in the AttachMO method, as shown in “Writing the AttachMO Method”
on page 44:

Updating Average Instruments
The Average instrument is a read-only instrument that contains the running average of one
or more values that are included in the average using the RecordValue method.

AverageInst.ClearValue and
AverageInst.RecordValue
attributes

The AverageInst class has two methods you can use to change the value contained by this
instrument:

The Average instrument automatically recalculates the average of the values that have been
included when you invoke the RecordValue method or access the RealValue and Value
attributes of the AverageInst class.

For more information about these methods and the AverageInst class, see the Forte online
Help.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

when MAXACTIVECLIENTS_INST do

tmp : integerdata = new;

tmp.value = BankService(self.ManagedObject).MaxClients;

ConfigValueInst(Inst).UpdateData(tmp);

...

end case;

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument

Method Description

ClearValue Sets the value of the instrument to zero.

RecordValue Recalculates the running average to include the specified value.
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent48
The following TOOL code shows how you can update the value of an Average instrument
using the ClearValue and RecordValue methods. In this example, the value of the
instrument AverageSessionLength is the average of the session length of all the current
clients and all terminated client sessions:

Updating Counter Instruments
The Counter instrument is a read-only instrument that counts integer values.

CounterInst.ClearValue,
CounterInst.Increment, and
CounterInst.Decrement

The CounterInst class has three methods that you can use to update the Counter
instrument value:

For more information about these methods and the CounterInst class, see the Forte online
Help.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

...

when AVERAGESESSIONLENGTH_INST do

(AverageInst(inst)).ClearValue();

task.part.logmgr.putline(

 ’Adding values to AverageSessionLength instrument’);

task.part.logmgr.putline(’Active client sessions:’);

if (BankServer.ActiveClients.Items = 0) and

 (BankServer.TerminatedSessionLengths.Items = 0) then

(AverageInst(inst)).RecordValue(value=0);

else do

for i in BankServer.ActiveClients do

(AverageInst(inst)).RecordValue(value=i.GetLengthOfSession());

task.part.logmgr.putline(i.GetLengthOfSession);

end for;

task.part.logmgr.putline(’Terminated client sessions:’);

for i in BankServer.TerminatedSessionLengths do

(AverageInst(inst)).RecordValue(value=i.IntegerValue);

task.part.logmgr.putline(i.IntegerValue);

end for;

end if;

else do

super.UpdateInstrument(inst);

...

end case;

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument

Method Description

ClearValue Sets the value of the instrument to zero by clearing the list of values being averaged.

Increment Increases the value of the instrument by a specified amount.

Decrement Decreases the value of the instrument by a specified amount.
Programming with System Agents

Defining Instruments for the Custom Agent 49
The following TOOL code shows how you can update the value of an Counter instrument
using the Increment method. In this example, the UpdateInstrument method uses the data
stored in the BankServer.TransactionCount attribute to determine the amount by which the
value of TransactionCount instrument should be incremented:

Updating Compound Instruments
CompoundInst class methods The Compound instrument is a container for other related instruments. You could think of

a Compound instrument as a struct of instruments. The CompoundInst class provides two
methods for adding and removing instruments from the Compound instrument:

For more information about these methods and the CompoundInst class, see the Forte
online Help.

A Compound instrument is not usually initialized until the first time the Forte system calls
the UpdateInstrument method. In the UpdateInstrument method, you include the TOOL
code that defines the Compound instrument’s subinstruments, initializes them, and adds
them to the Compound instrument’s set of subinstruments.

Instruments that are subinstruments of a Compound instrument are individually updated
the same way they would be if they were not subinstruments.

The following TOOL code shows how you can update a Compound instrument. In this
example, the Compound instrument is a subobject of a SubObject instrument, and the
UpdateInstrument method calls the RefreshActiveClientInst method to update the
SubObject instrument:

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

...

when TRANSACTIONCOUNT_INST do

(CounterInst(inst)).Increment(amount=BankServer.TransactionCount);

BankServer.TransactionCount=0;

else do

super.UpdateInstrument(inst);

...

end case;

See AgentBanking example: Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument

Method Description

AddSubInstrument Adds an instrument to the Compound instrument’s set of instruments.

DeleteSubInstrument Removes an instrument from the Compound instrument’s set of instruments.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

...

when ACTIVECLIENTS_INST do

tmp : SubObjectInst = SubObjectInst(inst);

self.RefreshActiveClientInst(activeClientInst=tmp);

...

end case;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent50
The following TOOL code shows how the Compound instrument is updated within the
RefreshActiveClientInst method, which has the following header:

The RefreshActiveClientInst method derives the values of the ActiveClientName and
ActiveClientSessionLength instruments from the attributes of the ClientInfo objects in the
BankServer.ActiveClients array:

RefreshActiveClientInst(

input output activeClientInst:SubObjectInst)

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

...

for i in BankServer.ActiveClients do

ActiveClientInfo : CompoundInst = new;

ActiveClientInfo.Name.SetValue(’ActiveClientInfo’);

ActiveClientInfo.InstrumentID=(systemID + ACTIVECLIENTINFO_INST + i);

-- For each ActiveClientInfo instrument, instantiate and evaluate

-- an ActiveClientName and ActiveClientSessionLength, and add to the

-- ActiveClientInfo instrument as subinstruments.

ActiveClientName : ConfigValueInst = new;

ActiveClientName.Name.SetValue(’ActiveClientName’);

ActiveClientName.InstrumentID=(systemID + ACTIVECLIENTNAME_INST + i);

ActiveClientName.UpdateData(data=i.ClientName);

ActiveClientName.IsReadOnly = TRUE;

ActiveClientInfo.AddSubInstrument(subInst=ActiveClientName);

ActiveClientSessionLength : ConfigValueInst = new;

ActiveClientSessionLength.Name.SetValue(’ActiveClientSessionLength’);

ActiveClientSessionLength.InstrumentID=(systemID +

ACTIVECLIENTSESSIONLENGTH_INST+ i);

tempdata : IntegerData = new(Value = i.GetLengthOfSession());

ActiveClientSessionLength.UpdateData(data=tempdata);

ActiveClientSessionLength.IsReadOnly = TRUE;

ActiveClientInfo.AddSubInstrument(subInst=ActiveClientSessionLength);

...

end for;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument
Programming with System Agents

Defining Instruments for the Custom Agent 51
Updating SubObject Instruments
The SubObject instrument is a container for a set of instruments of the same type, much
like an array of instruments. You can define a SubObject instrument that contains, for
example, a set of Compound instruments, each containing information about a running
task.

SubObjectInst class methods The SubObjectInst class provides methods for adding and removing instruments from the
SubObject instrument:

For more information about these methods and the SubObjectInst class, see the Forte
online Help.

A SubObject instrument is not usually initialized until the first time the Forte system calls
the UpdateInstrument method. In the UpdateInstrument method, you include the TOOL
code that defines the SubObject instrument’s subobjects, initializes them, and adds them
to the SubObject instrument’s set of active objects.

Instruments that are subobjects of a SubObject instrument are individually updated the
same way as they would be if they were not subobjects.

The following TOOL code from the AgentBanking example program shows how you can
update a SubObject instrument. In this example, the SubObject instrument contains a set
of Compound instruments, and the UpdateInstrument method calls the
RefreshActiveClientInst method to update the SubObject instrument and its subobjects:

The following TOOL code shows how the ActiveClients SubObject instrument is updated
within the RefreshActiveClientInst method, which has the following header:

Method Description

AddActiveObject Adds an instrument to the SubObject instrument’s set of instruments.

DeleteActiveObject Removes an instrument from the SubObject instrument’s set of instruments.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

...

when ACTIVECLIENTS_INST do

tmp : SubObjectInst = SubObjectInst(inst);

RefreshActiveClientInst(activeClientInst=tmp);

...

end case;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument

RefreshActiveClientInst(

input output activeClientInst:SubObjectInst)
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent52
The RefreshActiveClientInst method creates the Compound instruments, as shown in
“Updating Compound Instruments” on page 49, then adds each Compound instrument to
the SubObject instrument, as shown:

Maintaining historical data A SubObject instrument can also contain historical data about subobjects that no longer
exist in the system. You can use the following attributes and methods of the SubObjectInst
class to maintain historical data in a SubObject instrument:

For more information about this attribute and these methods, see the Forte online Help.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

-- Clear ActiveClients SubObjectInst instrument array

activeClientInst.ActiveObjects.Clear();

for i in BankServer.ActiveClients do

...

-- For each registered client, create an ActiveClientInfo

-- instrument and add them to the ActiveClients instrument array.

...

-- Add the new ActiveClientInfo compound instrument to the
 ActiveClients

-- instrument array.

activeClientInst.AddActiveObject(objInst=ActiveClientInfo);

end for;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: UpdateInstrument

Attribute/Method Description

CollectionType attribute Indicates the type of historical data being collected.

AddHistoricalObject method Adds an instrument containing some collected historical data.

ClearHistory method Clears any collected historical data.
Programming with System Agents

Defining Instruments for the Custom Agent 53
Writing the InstrumentUpdated Method
The InstrumentUpdated method provides the appropriate processing when an instrument
is assigned a new value or when a Timer instrument ticks.

Syntax InstrumentUpdated(inst=Instrument)

In the InstrumentUpdated method, you implement how Forte transfers the changed
instrument value to the managed object.

When a client of this agent updates one of its instruments, Forte automatically calls the
InstrumentUpdated method, which updates the changed values in the managed object, as
appropriate. Of the Forte-defined instrument types, only Timer and Configuration
instruments have attributes can be updated from outside the agent.

In the InstrumentUpdated method, you provide a case statement that uses the instrument
ID to identify the instrument whose value has been updated. The when clause for each
index contains the TOOL code that transfers this new instrument value to the managed
object. In the else clause, you should include the overridden UpdateInstrument method.

The following example shows the structure for the InstrumentUpdated method. The
instrument IDs were ensured to be unique by adding constants to the
SystemAgent.InstrumentID.Values.AGENT_IID_LASTVALUE when each instrument was
defined in the AttachMO method, as explained in “Writing the AttachMO Method” on
page 44.

All of the subclasses of Instrument that you can use to define instruments have specific
methods for obtaining the instrument values.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

when 100 do

-- Processing to retrieve the new value if the instrument

-- has an ID of 100 + systemID and to perform processing

-- triggered by this new value.

...

when 200 do

-- Processing to retrieve the new value if the instrument

-- has an ID of 200 + systemID and to perform processing

-- triggered by this new value.

...

else do

super.InstrumentUpdated(inst);

end case;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: InstrumentUpdated
Chapter 3Developing Custom Agents

Defining Instruments for the Custom Agent54
Handling an Updated Configuration Instrument
To update a value in the managed object that maps to an updated Configuration
instrument, you need to write a routine for a when clause of the case statement in the
InstrumentUpdated method that identifies an instrument that has been updated.

ConfigValueInst.GetData
method

Within this routine, you need use the GetData method provided by the ConfigValueInst
class to access the updated value of the Configuration instrument.

Syntax GetData() : DataValue

For a complete description of the GetData method, see the Forte online Help.

The following TOOL code shows how you could use the GetData method to get the updated
instrument value. This method then sets the BankServer.MaxClients attribute to the new
value:

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

when MAXACTIVECLIENTS_INST do

tmp : DataValue = ConfigValueInst(inst).GetData();

BankServer.MaxClients = tmp.TextValue.IntegerValue;

...

else do

super.UpdateInstrument(inst);

end case;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: InstrumentUpdated
Programming with System Agents

Defining Instruments for the Custom Agent 55
Handling an Updated Timer Instrument
If you are writing a routine for a when clause that identifies a Timer instrument, be aware
that the Forte system calls the InstrumentUpdated method only when the Timer
instrument ticks. The Forte system automatically handles changes to the TickInterval and
IsActive attributes of a Timer instrument. Therefore, in your routine, you only need to write
the TOOL code that performs the tasks that you want to occur when the timer ticks.

The following TOOL code shows the processing that the BankServerAgent performs when
the CheckSessionLengths Timer instrument ticks. In this example, the agent posts the
SessionTooLong event if an active client session has be active longer than the defined
maximum session length.

systemID : integer =

 SystemAgent.InstrumentIDValues.AGENT_IID_LASTVALUE;

case (inst.InstrumentID - systemID)

...

-- When the CheckSessionLengths timer ticks, check whether

-- any agents have exceeded the maximum.

when CHECKSESSIONLENGTHS_INST do

for i in BankServer.ActiveClients do

if i.GetLengthOfSession() > BankServer.MaxClientTimeMin then

post self.SessionTooLong(i.ClientName);

task.part.logmgr.put(’Client ’);

task.part.logmgr.put(i.ClientName);

task.part.logmgr.put(’ has been logged on for more than ’);

task.part.logmgr.put(BankServer.MaxClientTimeMin);

task.part.logmgr.putline(’ minutes (maximum).’);

end if;

end for;

else do

super.UpdateInstrument(inst);

end case;

See AgentBanking example Project: AgentBankServices • Class: BankServerAgent • Method: InstrumentUpdated
Chapter 3Developing Custom Agents

Connecting the Custom Agent and its Managed Object56
Connecting the Custom Agent and its Managed Object
After you have defined your custom agent class, you can instantiate an agent of this type
and attach any object type that is compatible with the value you set with the SetMOType
method, as described in “Writing the Init method” on page 36.

To connect a custom agent and its managed object, you must add TOOL code to the Init
method belonging to the class of the managed object. This TOOL code must perform the
following steps in the following order.

Testing a custom agent If you want to test your agent, you need to deploy and install your application in your
development environment. You cannot test agents within the Forte Workshops.

� To connect a custom agent and its managed object, add code to the Init method
belonging to the class of the managed object:

1 Instantiate the custom agent class, as shown in the following example:

2 Set the name of the agent by setting its Name attribute, as shown:

You could also set the name of the agent in the Init method of the custom agent class, or
in the AttachMO method of the custom agent class.

3 Attach the object to which this Init method belongs to the newly-instantiated agent as
the agent’s managed object, using the overridden AttachMO method of this agent’s
class, as shown:

For information about the AttachMO method of the SystemAgent class, see the Forte
online Help.

4 Set the state of this agent to online, using a Forte constant, as shown:

For information about the SystemAgent.State attribute, see the Forte online Help.

5 Get a reference to an agent that you want to define as the parent agent of your custom
agent.

In the following example, the parent agent is the Active Partition agent, as shown:

For information about navigating around the agent hierarchy, see “Navigating Around
the Agent Hierarchy” on page 22.

BankingServAgent : BankServerAgent = new;

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init

BankingServAgent.Name.SetValue(’BankServiceAgent’);

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init

BankingServAgent.AttachMO(self);

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init

BankingServAgent.State = SM_ONLINE;

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init

partAgent : ActivePartitionAgent;

partAgent = ActivePartitionAgent(task.Part.ActPartAgent);

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init
Programming with System Agents

Connecting the Custom Agent and its Managed Object 57
6 Set the agent defined in Step 5 as the parent agent of this custom agent, using the
SetParentAgent method of the SystemAgent class on the custom agent, as shown:

For information about the SystemAgent.SetParentAgent method, see the Forte online
Help.

7 Define this custom agent as the subagent of the parent agent, using the AddSubAgent
method of the SystemAgent class on the parent agent, as shown:

For information about the SystemAgent.AddSubAgent method, see the Forte online
Help.

BankingServAgent.SetParentAgent(parentAgent = partAgent,

name = partAgent.Name);

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init

partAgent.AddSubAgent(subAgent = BankingServAgent,

subAgentInfo = BankingServAgent.GetInfo());

See AgentBanking example: Project: AgentBankServices • Class: BankService • Method: Init
Chapter 3Developing Custom Agents

Developing Agents for Load-Balanced Service Objects58
Developing Agents for Load-Balanced Service Objects
If you have a service object that is load balanced, you might want to develop a custom
agent that provides more statistical information about the status and load for a load-
balanced service object than the Load Balance Router agent provides.

In this case, you should define another environment-visible service object that will be the
managed object of the custom agent. The custom agent attaches itself to this service object
as though it is managing this service object. The managed object contains statistical
information about the load-balanced service object. For example, the service object could
contain a list of the currently active replicates and information about their loads over a
given period of time. The load-balanced service object would contain code that calls
methods on the managed object to register information about itself. Each replicate of the
load-balanced service object could then report its data to this managed object.

When you implement the agent, you can implement agent instruments that retrieve
information from the managed object, which reflects information from the load-balanced
service object. In this case, you should only implement commands that manage the
statistical information stored in the managed object. You cannot implement instruments
for this agent that change data known in the load balanced service object.

When you partition the application containing the load-balanced service object and the
agent and its managed object, you should place the environment-visible service object that
is the managed object for the custom agent and the router for the load-balanced service
object in the same partition. For more information about partitioning this kind of
application, see A Guide to the Forte 4GL Workshops.

For example, if you knew that the BankServer service object was going to be load-balanced,
you could define a service object that stores information about the load-balancing, such as
the number of messages processed by each replicate. You could then add code to the
BankServer service object to call a method on the new service object to update the number
of messages processed by the BankServer service object at a specific timed interval. Each
replicate would then update the data in the new service object regularly.

You could then define an agent that uses this new service object as its managed object. This
new agent defines an instrument that contains a count of the messages for each replicate of
the load balanced partition, and retrieves this information from its managed object in its
implementation of the UpdateInstrument method.
Programming with System Agents

Appendix A
Example Applications
This appendix provides instructions on how to install the examples that are used in this
book to explain how to write and access system agents. Typically, you run an example
application, then examine it in the various Forte Workshops to see how it is implemented.
You can modify the examples if you wish.

Application Descriptions60
Application Descriptions
This section lists the example applications in alphabetical order. Each example has five
sections describing it.

The Description section defines the purpose of the example, what problem it solves, and
what TOOL features and Forte classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported projects.
The examples are in subdirectories under the FORTE_ROOT/install/examples directory.
You can import example applications individually if you wish. When multiple .pex files are
listed, there are supplier projects in addition to the main project. You will need to import all
the files listed to run the application. Import them in the order given so that dependencies
will be satisfied.

The Mode section indicates whether the application can be run in either standalone or
distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database connection, an
external file, or any other special setup.

Finally, the To Use section tells you how to step through the application’s functions.

See the Forte 4GL System Management Guide if you need directions for setting up a Forte
server.

AgentAccess
Description AgentAccess shows how to retrieve information from one or more system-
management agents and log this data into a file.

Pex Files sysmon/agentasv.pex, sysmon/agentacc.pex.

Mode Standalone or Distributed.

Special Requirements You need to use Escript or the Environment Console to set up
agent instruments to be logged by this application at regular intervals.

� To use AgentAccess:

1 Select instruments that will be logged by this application, and set them to be logged
using the Environment Console or Escript. Set instruments for logging by first locating
the agent that owns the instruments, then by setting each instrument’s isLogged
property to TRUE. For example, to log instrument data from the DistObjectMgr agent,
you can use a series of Escript commands, like the following:

escript> ShowAgent

escript> FindSubAgent <node_name>

escript> showag

escript> findsub Forte_Executor

escript> showag

escript> findsub <partition_identifier>

escript> showag

escript> findsub DistObjectMgr

escript> showag

escript> SetInstrumentLogging MethodsReceived TRUE

escript> SetInstrumentLogging MethodsSent TRUE
Programming with System Agents

Application Descriptions 61
This series of commands assumes that you have just started Escript, or are at the
Environment Agent before you issue these commands. The ShowAgent command,
abbreviated as showag, displays information about the current agent, including a list of
instruments and subagents. The FindSubAgent command, abbreviated as findsub,
moves to a subagent of the current agent, based on the name of the subagent.

To use this series of commands, you need to substitute the name of a node that has a
running standard partition for <node_name>. You need to substitute the hexadecimal
active partition identifier for <partition_identifier>. You can see the list of available
active partitions in the listing provided by the previous showag command. For example,
if the active partition name is Forte_Executor_0x14d, you can substitute 0x14d for
<partition_identifer>.

For information about setting instruments for logging using Escript or the Environment
Console, see Forte 4GL System Management Guide.

2 Set the LogTimer for the Active Partition agent where the ActivePartition or one of its
subagents contains the instrument. Starting from the ending point in the above
example, you can use a series of Escript commands like the following to set a LogTimer
to tick every 30 seconds:

In this series of commands, the FindParent command (abbreviated as findpar) moves
to the parent agent of the DistObjectMgr agent, which is the Active Partition agent. The
LogTimer instrument has a property that determines whether it is ticking or not; the
TRUE value enables the LogTimer. The value 30000 means that the LogTimer will tick
every 30 seconds (30000 milliseconds).

For more information about setting the LogTimer for an Active Partition agent in
Escript, see Escript and System Agent Reference Manual. For instructions for setting the
LogTimer in the Environment Console, see Forte 4GL System Management Guide.

3 When you start AgentAccess, you should define the Log File name. If a file by the
specified name already exists, the logged data is appended to the file. The default log file
name is agent.log, and the file is always stored in FORTE_ROOT/log on the partition
where the AgentLogSvc service object resides.

4 Select the Start button to start logging instrument data to your log file.

AgentBanking
Description AgentBanking shows how to implement an agent for the service object of a
simple banking application. This application also provides a simple administrator’s
window that lets the user manage the AgentBanking application using instruments and
commands provided by the service object’s agent.

Pex Files sysmon/agentbsv.pex, sysmon/agentb.pex.

Mode Distributed only.

Special Requirements You need to install this application to be able to see that the agent
is working. This application is designed to run with several clients in a distributed
environment. While it will work with a single client, some features do not make sense
with only one client running.

escript> FindPar

escript> UpdateInstrument LogTimer “TRUE 30000”
Appendix AExample Applications

Application Descriptions62
� To use AgentBanking:

1 Partition the AgentBanking application with the AgentBanking project as the main
project, using either the Partition command in the Repository Workshop or the
Partition command in Fscript.

2 Make a distribution of the application and auto-install the application in your
environment, using either the Make Distribution command in the Partition Workshop
or the MakeAppDistrib command (with the arguments 1 ““ ““ 1) in Fscript.

3 Start the application using either the application icon (Windows), or a command like
the following:

For more information about starting client partitions, see Forte 4GL System
Management Guide.

4 In the Banking: Welcome! window, enter any numeric value for the user ID. (Note that
each time you log in, you should enter a different user ID.) Select either the User or
Administrator buttons, then select the Start button.

If you login as a user, you can select an account to work with, then add or subtract
amounts of money from the selected account.

If you login as an administrator, you can perform actions that affect the running
banking application by invoking commands and reading and updating instruments on
the BankServiceAgent agent for the service object of the banking application.

5 You can also monitor the BankServiceAgent agent by using the Environment Console or
Escript at the same time as this application and looking at the instrument values of the
BankServiceAgent. This agent is a subagent of the Active Partition agent for the server
partition of the banking application. For information about using the Environment
Console or Escript, see Forte 4GL System Management Guide and Escript and System
Agent Reference Manual.

ftexec -fi ct:$FORTE_ROOT/userapp/agentban/cl0/agentb0
Programming with System Agents

Index
A
Active Partition agent, locating 21

AGENT_CMD_LASTVALUE constant 39

AGENT_IID_LASTVALUE constant 44

AgentAccess sample application 60

AgentBanking sample application 61

Agent commands. See Commands

Agent hierarchy
navigating 22
referencing agents in 21

Agent instruments. See Instruments

Agents
custom 34
getting information about 24
invoking commands on 25
locating instruments 27
user-defined 34

AttachMO method
overriding 44

Average instruments
accessing values 28
setting ranges 29
updating values 47

C
Child agents. See Subagents

Command index, defining 39

Commands
defining 38
defining indexes 39
in Environment Console 40
in Escript 40
getting a list of 25

implementing 41
invoking on current agent 25
invoking on subagents 26

command syntax conventions 9

Compound instruments
accessing subinstruments 29
updating values 49

Configuration instruments
accessing 28
handling user updates 54
updating 28
updating values 47

Counter instruments
accessing values 28
setting ranges 29
updating values 48

Custom agents
connecting with managed object 56
defining commands 38
defining instruments 43
designing 34
for load-balanced service object 58
setting the managed object type 36

E
Environment agent, locating 21

Environment Console, agent commands 40

Escript, agent commands 40

G
GetMOTypeName method

overriding 37

64 Section H
H
Historical data

accessing in a SubObject instrument 30
maintaining in a SubObject instrument 52

I
InitCmdProcessor method

overriding 38

Init method
overriding 36

Instrument ID, uniqueness of 44

Instruments
Average instruments 28
Compound instrument 29
Configuration instrument 28
Counter instrument 28
defining 43
defining in AttachMO method 44
defining instrument IDs 44
handling user updates 53
locating 27
referencing 27
SubObject instrument 30
Timer instrument 46
updating values 46

InstrumentUpdated method
overriding 53

L
Load-balanced service objects 58

M
Managed objects

connecting to agent 56
selecting 34
setting the type for the agent 36

P
Parent agents, navigating to 22

PDF files, viewing and searching 12

ProcessCmdRequest method
overriding 41

S
Sample applications

AgentAccess 60
AgentBanking 61

Subagents
invoking commands on 26
navigating to 23

SubObject instruments
accessing historical data 30
accessing subobjects 30
maintaining historical data 52
updating values 51

T
Timer instruments

defining 46
handling user updates 55

TOOL code conventions 9

U
UpdateInstrument method

overriding 46

User-defined agent. See Custom agent
Programming with System Agents

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	1 Introduction
	About Agents and the SystemMonitor Library
	Overview of Agents
	Agent Commands
	Agent Instruments
	Agent Hierarchy

	Accessing Agent Commands and Instruments
	Developing Custom Agents

	About the SystemMonitor Library
	SystemAgent Class
	Instrument Subclasses

	2 Accessing System Agents Using TOOL Code
	About Accessing System Agents
	Getting a Reference to the Agent Hierarchy
	Referencing the Environment Agent
	Referencing an Active Partition Agent

	Navigating Around the Agent Hierarchy
	Navigating to Parent Agents
	Navigating to Subagents

	Getting Information about an Agent
	Invoking Agent Commands
	Getting a List of Agent Commands
	Invoking Commands on the Current Agent
	Invoking Commands on Subagents

	Accessing and Updating Instrument Data
	Locating the Instrument to Access or Update
	Referencing an Instrument
	Accessing and Updating Configuration Instruments
	Accessing Average and Counter Instruments
	Retrieving Values
	Setting Ranges for Values

	Accessing a Compound Instrument and�its�SubInstruments
	Accessing a SubObject Instrument and its Subobjects

	3 Developing Custom Agents
	About Developing Custom System Agents
	Designing the Custom Agent
	Selecting the Object to be Managed
	Selecting a User Interface
	Designing Commands
	Designing Instruments
	Enhancing the Managed Object’s Class
	Testing the Custom Agent

	Defining a Class for the Custom Agent
	Writing the Init method
	Writing the GetMOTypeName method

	Defining Commands for the Custom Agent
	Writing the InitCmdProcessor Method
	Commands in Escript and the Environment Console

	Writing the ProcessCmdRequest Method

	Defining Instruments for the Custom Agent
	Forte Instrument Subclasses
	Writing the AttachMO Method
	Writing the UpdateInstrument Method
	Updating Configuration Instruments
	Updating Average Instruments
	Updating Counter Instruments
	Updating Compound Instruments
	Updating SubObject Instruments

	Writing the InstrumentUpdated Method
	Handling an Updated Configuration Instrument
	Handling an Updated Timer Instrument

	Connecting the Custom Agent and its Managed Object
	Developing Agents for Load-Balanced Service Objects

	A Example Applications
	Application Descriptions
	AgentAccess
	AgentBanking

	Index
	A
	C
	E
	G
	H
	I
	L
	M
	P
	S
	T
	U

