> Sun

microsystems

TOOL Reference Manual

Release 3.5 of Forte™ 4GL

Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6674-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte, and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents

Preface
Organizationof ThisManual i, 14
(@00 117 7=Y 111 (o £ 3 15
Command Syntax Conventions, 15
TOOL Code CoNVENtIONS . . v vttt e et e e e e ettt e 15
The Forte Documentation Setiiiiiiiiirinnnrennnns 16
Forte AGL e e 16
Forte EXPress. . .o 16
Forte WebEnterprise and WebEnterprise Designer............... 16
Forte Example Programs.ttt e innannnnns 17
Viewing and Searching PDFFiles. iiinnnn. 18
Overview
Whatis TOOL?.ttt ittt ittt e s nnnnnnnns 20
Object-Oriented Programming.t iiinnnnnnnnnn. 21
Constructing Objects e 21
Writing Methods 22
Invoking Methods 23
Manipulating Attributes 23
Event-Based Programmingciiuiiiriirnnnnnnnnnnnns 24
Events e 24
Respondingto Events i 25
Nested Events.t e 26
The Event QUEUE oottt e e e e e e e e 27
Posting Events i e 28
Multitasking.o i i et 29
WhatisaTask?.o 29
Startinga New Taskt e e 30
CompletingaTasko e 31
Communicating between Tasks. 32
Shared Objectst e 33

Using TaskHandle and TaskDesc Objects. 33

Transactionst i it i e e 34
Transaction TYPeS . . . oo oo e 34
Transactional and Shared Objects. oo, 34
Forte Distributed Transactions. i .. 35
Transactions and Multitasking. 35
Using TransactionHandle Objects 36

Interacting withaDatabase i, 38
Selecting ROWSo oot 38
USING CUISOTS . vttt e e e e e e e e e e et e e 39
Updating the Database 39
Vendor-Specific EXtensions, 40
Forte Transactions and Database Transactions................... 40

Implicit Forte Transactions 41

ExceptionHandling............. i 42
About Exceptions e 43
Handling Exceptions. i e 44

Handling AbortException and CancelException................ 45
Raising Exceptions i 46
Error Handling e e 46

2 Language Elements

TOOL Statements and Commentsc.coviirinrnnrnnnnnns 48
Statements e 48
Statement Blocks e 48

Statement Labels 49
CoOMMENTS . o 50
Single-Line Comments i 50
Block Comments e 50

NameS. . ..t i e e 51
Name Resolution e 52
Qualified Names.o 53
Using Forte NameswithSQL 53

Simple Data TyPeS . . . oot oot et e e 54
String Data Types . . .o v vt e 54

String Constants e 54
CharData Type . . .ot e 55
Boolean Data Type oo vt i 56
Boolean Constants i e 56
Boolean EXpressionst e 56
Comparison EXpressionsot e 57
Logical EXPressionst 57
BooleanData and BooleanNullable Classes. 59
Numeric Data Typesot e e 59
Integer Data Types o 59
Float Data TYPesS . . v oo et e e e 60
NumericConstants i e 60
NUMEriC EXPressions . . .o v vt i e e e e e e 61
Using SQL Statements in Numeric Expressions 63

TOOL Reference Manual

(0 ¢ =T e 3 64
Working with Objects i 64
Using Object Constructors.t 65

ThelnitMethod 66
Referencingan Object. i 67
Objects forWidgets 68
Specifyingan ObjectValue i 68
Comparing Objects.ot 69
The NILConstant i e 69
Using Methods as Object Values 69
Casting . .o 69
Accessing Attributes 71
Setting Attributes. 72
Setting Attributes for Widgets 72
Invoking Methods 73
Parameters 74
Output Parameters. i e 75
Class Parameters.t e 76
Return Value. 76

Array Classes and Array Objectscoiiiiiniinnnnnnnn. 77

Working with Arrays 78
Declaring an Array Variable. i L 78
Constructing the Array Object.o .. 78

Referencing an Array Object.o 79

Specifying Array Object Values. 80
Casting Array Objects. i 81

Working with Array ROWS i 82
Referencing an AttributeinaRow........... 84

Variables i e 85
Declaringa Variable. 85
Referencinga Variable 86
AssigningaVariable 86

Named Constantsiiiiiiiiiii i i an s 87
Declaringa Local Constant 87
Referencinga Named Constant, 87
Using Named Constants in Expressions 88

L T o 89

Service Objectsot e 90

TOOL Statement Reference

Assignment e e 92
SYNTaX . o o e 92
EXample ... e e 92
Description e 92

BegiN ..ot e e 93
SYNTaX . o o e 93
EXample ... e 93
DesCriptioNn . . . 93
Variables in Compound Statements 94

Contents

6]

Begin Transactionottt innnrnnnernnnernns 95
YN aX . ot e e 95
Example. . ..o 95
Descriptiono 95

Transaction TYPe . . . oottt e 96
Transaction StatementBlock 97
Exception Handling 99
Label . .. e 929

- 100
SYNTaX . o e 100
Example. . ..o 100
Descriptiono 100

EXPresSioN . ..o e 100
When Clauseo e 101
StatementBlock 101
Exception Handling i 101
The Label. 101

Constant. oottt e e e 102
S N aX . ot 102
Example. . ..o 102
Descriptiono 102

Constant Name 102
ConstantValue e 102

CoNtiNUE. . ..ot i i e 103
SYNTaX . o e 103
EXample. ... 103
Description e 104

Usingalabel. 104

Declaration. 105
SYNTaX . o e 105
Example. . ..o 105
Descriptiono 105

=T o 106
YN aX . ot 106
Example. . ..o 106
Descriptiono 106

Event Loop Statement 107
Event Case Statement. 107
Preregister Clauset 107
Postregister Clause o i e 108
When Clauseo e 109
Event Specification 109
Declaring Variables for Event Parameters. 109
StatementBlock 110
Exception Handling i 111
Label . .. e 112

TOOL Reference Manual |

EXCePtioN. ...t e e e 113
YN aX . o o e e 113
Example 113
Description 113

When Clause. i e 114
Else Clause.ot 115

EXit . . ot 116
SYNTaX . o o e 116
Example ... e 116
Description e 116

Usingalabel 117

0 118
YN aX . o o e 118
Example 118
Descriptiono 118

USING @N AITay .. oot e e e e 119
Usinga Range. e e 119
Using a Cursor or a Select Statement 120
Exception Handling i 122
Statement Label 122

T e 123
YN aX . o o e 123
Example 123
Descriptiono e 123

Boolean EXpressions. e 124
Statement Blocks 124
Exception Handling i 124

Method Invocationt e 125
SYNTaX . o o e 125
Example ... e 125
Description e 125

Parameters e 125
Output Parameters. e 126
Class Parameters.t e 126

POSt. . .. e i e 127
)1 G 127
Example ... e 127
Description e 127

Specifyingthe Event. 127
Specifying the Parameters. 128

RaISE. ..t e e e e e 129
SYNTaX . o o e 129
Example 129
Descriptiono e 129

Identifying the Exception 130

Raising the Current Exception............. 130

Register . ..o e e 131
YN aX . ot e 131
Example. . ..o 131
Descriptiono 131

Event Handler Reference i 134
Parameter List. 135

RetUrn. ... e 137
SYNTaX . o e 137
EXample. ... 137
Description e e 137

ReturnValue e 137

SQLCIOSE CUISOK . . vt ittt e et e e e e e nsaasanesannnns 138
YN aX . ot e 138
Example. . ..o 138
Descripliono e 138

SQLDElete . ..ot e e e 139
SYNTAX . o e 139
Example. ... 139
Description 139

SQLExecutelmmediateot i i i e 140
YN aX . o e 140
EXample. ... 140
Description e e 140

SQLExecute Procedurec.iiiiiiiiii it e it eennnnnnnn 141
SYNTaX . o e 141
EXample. ... 141
Description e 141

SQLFetch QUIsor oo i e e e s e e e e anns 142
SYNTaX . o e 142
EXample. . ..o 142
Descriptiono e 142

SQLINSErt. . .o e e 143
SYNTaX . o e 143
Example. . ..o 143
Descriptiono 143

SQLOPEN CUISOK . . i ittt sttt ettt e e aaasnannnnnnnssssannnnnnns 144
YN aX . ot e 144
Example. . ..o 144
Descriptiono 144

SQLSEleCt. ..ot i e 145
YN aX . o e 145
Example. . ..o 145
Description e e 145

TOOL Reference Manual |

SQLUpPdatettt e e e e e 146
YN aX . o o e e 146
Example 146
Descriptiono e 146

Start Tasko e e 147
YN aX . o o e 147
Example 147
Description e 147

Invoking the Method, 148
CompletionClause i i 148
Transaction Clause i e e 150

While . ..o e e 151
YN aX . o o e 151
Example 151
Descriptiono 151

EXPresSSION . . e e 151
StatementBlock 152
Exception Handling i 152
Label ... e 152
Exiting the WhileLoop i 152

Project Definition Statements

Beginc, dce,obb. i e e 154
YN aX . o o e 154
Descriptiono e 154

Begin class v ov i e e 155
)= G 155
Example 155
Description 156

Definition List. i 156

Begintoolo e s 157
YN aX . o o e 157
Description e 157

Project Name e 157
Includes Clause oottt e 157
Definition List.o e e 157
Has Property Clauseot 158

L T 159
YN aX . o o e 159
Example 160
Description e 160

Class Name ot e 160
Implements Clause i 160
IsMapped Clauset e e 160
Inherits Clause e 161
Public and Private Definitions 161

Has File Clause e et 161

e

Component Definitions i 161
Attributes e 162
Virtual Attributes e 162
Events ... 163
Methods i e 164
EventHandlers 166
Constants. e 167
Has Property Clause it 167
Has Property Restricted Clause 169
Has Property Extended Clause i, 169

Example Class Definition 170

Constant.ttt ittt e 171

YN aX . o 171

EXample. ... 171

Description e e 171
ConstantName 171
ConstantValue e 171

LT o T 172

YN aX . o 172

Example. . ..o 172

Descriptiono 172
Cursor Name e 172
Placeholders e 172
Cursor Select Statement. 173
ForClauseo e 173

EventHandler ot it i 174

SYNTaX . o e 174

Example. . ..o 174

Description o 175
Classand Handler Name. 175
Parameters 175
Preregister Clauset 175
Postregister Clause it e 176
When Clauseo e e 177
Exception Handling i 179

Interface.o e e 180

YN aX . o e 180

Example. . ..o 180

Descriptiono 180
Interface Name i e 180
Inherits Clause. e e e 180

Component Definitions 181
Virtual Attributes 181
Events ... e 181
Methods 182
EventHandlers 182
Constants. e 182
Has Property Clause it 182

TOOL Reference Manual |

] "

Method i i e et et e 183
YN aX . o o e e 183
Example 183
Description 183

Class and Method Namey 184
Parameters e 184
Return Type. . . . e 184
Statement Block (Method Body). 184
Exception Handler i 184

1] =] T 185
YN aX . o o e 185
Example 185
Description e 185

Name. .. e 185
Class. . ot 185
Service Object Attributes. 186
DBResourceMgr Service Object Attributes................... 187
DBSession Service Object Attributes. 188
Simple Service Object Attributes. 188
A Reserved Words
TOOLReserved Wordsc.vieiiineennninnnnrnnnnnnnnns 190
SQLReserved Words.viei ittt i e i e ae e 191

B Forte TOOL Example Applications

How to Install Forte Example Applications. 194
Overview of Forte TOOL Example Applications. 195
TOOL Exampleso e e 195
Application Descriptions. 196
AUCHION . . e 196
ImageTester 197

IndeXciiiiiiiincennrcannnnnnnnse=199

2 I ——

TOOL Reference Manual |

Preface

The TOOL Reference Manual provides complete information on Forte’s transactional,
object-oriented language called TOOL.

This manual is intended for application developers. We assume that you:
have programming experience
are familiar with your particular window system
are familiar with SQL and your particular database management system

understand the basic concepts of object-oriented programming as described in A Guide
to the Forte 4GL Workshops

have used the Forte Workshops to create classes

14 Organization of This Manual

Organization of This Manual

This manual is organized primarily for reference. We assume that you are using the Forte
workshops to create custom classes, and need information about TOOL in order to write
methods, event handlers, cursors, and virtual attributes.

Note on the TOOL SQL
statements

TOOL Reference Manual

This manual presents a brief overview of the TOOL language, followed by details about the
language elements and statements. It contains the following chapters:

Chapter

Chapter 1, “Overview”

Chapter 2, “Language
Elements”

Chapter 3, “TOOL Statement
Reference”

Chapter 4, “Project Definition
Statements”

Appendix A, “Reserved Words"

Appendix B, “Forte TOOL
Example Applications”

Description

Defines the basic concepts of the language and provides an overview of its
features.

Provides detailed information about the TOOL language elements, including
statements, comments, objects, variables, and so on.

Provides detailed information about the TOOL statements for writing methods.
This chapter is organized alphabetically by statement.

Provides detailed information about the Forte project definition statements for
use with the Fscript utility. This chapter is organized alphabetically by
statement.

Contains a list of reserved words for TOOL and SQL.

Provides a number of example applications that illustrate how to use the
features described in this manual.]

A subset of TOOL statements (the TOOL SQL statements) are described briefly in
Chapter 3, “TOOL Statement Reference.” The manual Accessing Databases is the primary
reference source for this set of statements.

Conventions

Conventions 15

This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions

The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

Format
bold

italics

UPPERCASE
underline

vertical bars |

braces {}

brackets []

ellipsis ...

Description
Bold text is a reserved word; type the word exactly as shown.

Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

Uppercase text represents a constant. Type uppercase text exactly as shown.
Underlined text represents a default value.

Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

TOOL Code Conventions

Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format

parentheses ()

comma ,

colon :

semicolon ;

Description

Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.

Preface

16 The Forte Documentation Set

The Forte Documentation Set

Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help.

Forte 4GL

® A Guide to the Forte 4GL Workshops
m Accessing Databases

® Building International Applications

m Escript and System Agent Reference Manual
m Forte 4GL Java Interoperability Guide
m Forte 4GL Programming Guide

m Forte 4GL System Installation Guide
m Forte 4GL System Management Guide
m Fscript Reference Manual

m Getting Started With Forte 4GL

m Integrating with External Systems

® Programming with System Agents

m TOOL Reference Manual

m Using Forte 4GL for OS/390

Forte Express

® A Guide to Forte Express
m Customizing Forte Express Applications

m Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer

® A Guide to WebEnterprise
m Customizing WebEnterprise Designer Applications
m Getting Started with WebEnterprise Designer

m WebEnterprise Installation Guide

TOOL Reference Manual

Forte Example Programs 17

Forte Example Programs

In this manual, we often include code fragments to illustrate the use of a feature that is
being discussed. If a code fragment has been extracted from a Forte example program, the
name of the example program is given after the code fragment. If a major topic is
illustrated by a Forte example program, reference will be made to the example program in
the text.

These Forte example programs come with the Forte product. They are located in
subdirectories under $FORTE_ROOT/install/examples. The files containing the examples
have a .pex suffix. You can search for TOOL commands or anything of special interest with
operating system commands. The .pex files are text files, so it is safe to edit them, though
you should only change private copies of the files.

The Forte example programs are installed automatically in the Forte development
environment. If they are not there, ask your system administrator to install them. The
procedure for installing the examples is documented in the Forte 4GL System Installation
Guide. You can run the examples in the Project Workshop, experiment with using them, run
them under the Debugger, and make changes to the TOOL code.

The example programs that illustrate the features covered by the TOOL Reference Manual
are described in Appendix B, “Forte TOOL Example Applications.” This appendix describes
the purpose of each example, and how to run it.

Preface

18 Viewing and Searching PDF Files

Viewing and Searching PDF Files

Note

Note

Note

TOOL Reference Manual

You can view and search 4GL PDF files directly from the dcumentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

To
1

To

copy the documentation to a client or server:

Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

To uninstall the documentation, delete the fortedoc directory.

view and search the documentation:

Open the file fortedoc.pdf, located in the fortedoc directory.

Click the Search button at the bottom of the page or select Edit > Search > Query.

Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

Toolbar Button Keyboard Command
Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Chapter 1

Overview

This chapter describes how to use Forte’s programming language, TOOL. It provides an
overview of the language, and discusses the following basic programming concepts:

object-oriented programming
event-based programming
multitasking

transactions

interacting with the database

exception handling

20 What is TOOL?

What is TOOL?

Manipulating objects

Programming statements

Variables

Forte classes

Project definition statements

TOOL Reference Manual

TOOL is an object-oriented programming language, especially designed for programming
in a distributed environment. In Forte, you use TOOL to write methods, which provide the
basic operations for your application. You also use TOOL to write named event handlers,
cursors, and virtual attribute expressions.

Using TOOL, you can manipulate any of the objects in your application. You create the
objects your application needs by using object constructors. You can access and set the
object attributes, and you can invoke methods and post events on the objects. To see a
discussion of TOOL language elements, refer to Chapter 2, “Language Elements.”

TOOL provides programming statements for performing the processing within a method.
These statements, which fall into the following general categories, are documented in
Chapter 3, “TOOL Statement Reference.”

Category Description

Declaration and assignment Declaration and assignment statements declare local variables and assign them
values.

Control flow Standard control statements affect the flow of a program and include the case, for,

if, and while statements.

Event handling The post statement triggers an event. The event statement provides processing in
response to one or more specified events. The register statement includes named
event handlers within the current event statement.

Multitasking The start task statement starts a new task.

Transactions The begin transaction/end transaction block executes the specified code as a
transaction.

Database access SQL Data Manipulation Language statements query and update relational database
tables. The sql execute immediate statement lets you execute any SQL statement
and sql execute procedure lets you execute a database procedure.

Exception handling The exception clause provides exception handling for the current statement block.
The raise statement generates an exception.

Forte variables contain or point to the data that your application manipulates. All
information that you display in windows, accept as input from end users, or retrieve from a
database or other outside source is stored in variables. Variables have either a simple type
(such as integer or string) or a class type. If the variable has a simple data type, the variable
itself contains the data. If the variable has a class type, the variable points to the object that
contains the data.

You must declare a variable in your TOOL code before you can reference it. After you have
declared the variable, you can assign a value to it, reference it, or include it in expressions.

Forte provides many predefined classes in the Forte libraries. The Forte Framework library
provides important functionality, and includes classes that provide special data structures,
classes that provide runtime information about the state of the system, classes for
interacting with database management systems, and classes for using transactions. The
Forte Display library classes allow you to manipulate the user interface for the application,
including the windows, fields, and menus. See the Framework Library online Help and
Display Library online Help manuals for more information.

Normally you create projects interactively in the Project Workshop. However, you can also
use Forte’s Fscript utility (described in Fscript Reference Manual) to declare classes and
other project components in an external file. In Fscript you use TOOL project definition
statements, such as begin, class, constant, cursor, event handler, interface, method, and
service, to define various project components. For reference information regarding these
statements, see Chapter 4, “Project Definition Statements.”

Object-Oriented Programming 21

Object-Oriented Programming

Windows are objects

Object constructors

Variables

Example: object
constructors for variables

In the Project Workshop, you define the custom classes for your application. A vital part of
creating these classes is writing the methods associated with them. In an object-oriented
system, methods are the “procedures” that run the application. The startup method for a
project begins execution of the application by allocating a startup object and then
operating on it. This method not only performs operations on the object, but it invokes
other methods. Each method that it invokes may, in turn, invoke other methods. This
process continues until the startup method completes. When the startup method
completes, the application exits.

Object-oriented programming in TOOL means writing new methods for your custom
classes. Within these new methods, you operate on objects by changing their attributes and
invoking other methods. The methods you invoke can be from prefabricated classes or
from other custom classes.

Forte provides many useful classes and methods that you can use in your own methods. Be
sure to study the classes in the Forte manuals, particularly Framework Library online Help
and Display Library online Help, before you write any custom methods.

Constructing Objects

In Forte, every object is associated with a data item. The data item can be a variable, an
attribute, or a parameter, and it serves as a reference to the object. You use the data item’s
name to reference the object. For example, in Figure 1 the variable “a” refers to an object of
class Artist:

Artist Object

Henri

\

Rousseau

Figure 1 Class Type Variable

Because windows are objects in Forte application, you also use object-oriented
programming techniques to structure the user interface for your application. To
manipulate the windows in an application, you use the methods for the UserWindow class.

Before you can manipulate an object in your method, you must create it by using an object
constructor. An object constructor creates a new object and specifies its initial values. For
more information on object constructors, refer to “Using Object Constructors” on page 65.

For a variable, you can construct the object that the variable points to either while you are
declaring the variable or when you are assigning a value to the variable. The following
example illustrates constructing the object while declaring the variable:

t : TextData = newm(value = ‘Hello Wrld);
a: Artist = newm Nane = Text Data(val ue =
‘Henri Rousseau’),Born = 1844, Died = 1910);

Overview Chapter 1

22 Object-Oriented Programming

Attributes and parameters

For attributes and parameters, you can construct a new object only when you are assigning
a value to it.

sel f.Wndow. Title = TextData(value = ‘New Title');

sel f. Aucti onManager . Del et eBi dFor Pai nti ng (name = new(val ue =
‘rmona’)) ;

See Chapter 2, “Language Elements,” for details about constructing objects.

Writing Methods

Statements and comments

Local variables

Specifying a return value

TOOL Reference Manual

You use the Class Workshop to create (name) a new method, define its parameters and
return value (if any). Then you use the Method Workshop, as described in A Guide to the
Forte 4GL Workshops to write the method using TOOL statements.

The method body consists of TOOL statements and comments. Within an individual
method, you can provide many different kinds of processing, such as handling events,
starting transactions, initiating new tasks, and changing attributes. The TOOL statements
that you use to provide this processing are briefly described in this chapter. Full details are
available in Chapter 3, “TOOL Statement Reference.”

You can declare local variables anywhere in the method body. The scope of a local variable
is from the point you declare it to the end of the method. The following example illustrates
declaring integer and TextData variables:

i : integer;
t : TextData;

If a method has a return type, one element is required. You must use the return statement
to end the method and specify the return value.

In the following example, the return type for the method is defined as an integer. The
return statement in the method specifies a value of 10, which Forte passes back to the
invoking method. The invoking method can then assign this return value to a variable or
use it in any appropriate expression.

return 10;

If a method does not have a return type, you do not use the return statement. When the
method completes, control automatically returns to the invoking method.

Object-Oriented Programming 23

Invoking Methods

Example: invoking methods

Methods are like procedures

To invoke a method, you specify the object to be operated on and the name of the method.
If the method has parameters, you must pass a value for each required parameter (that is,
for each parameter that was not defined with a default value). The following example
illustrates two ways to invoke a method for the TextData class:

t : TextData = new,
-- Using naned paraneters
t. Set Val ue(source = ‘Hello’);

-- Using positional paranmeters
t.SetVal ue(‘Hello);

Invoking a method is the same as calling a procedure or a subroutine. When one method
invokes another method, control passes to the invoked method. When the invoked method
completes, control returns to the invoking method. Unless you use multitasking, methods
are executed synchronously. There is a single flow of control.

For details about referencing objects and invoking methods, see “Referencing an Object”
on page 67 and “Invoking Methods” on page 73.

Manipulating Attributes

Example:
setting attribute value

When you need to report current object values, update object values, or perform
calculations using object values, you work directly with the object’s attributes. Within a
method, you can access or set the value of any of the current object’s attributes.

a: Artist = new

-- Sinple type attribute

a.Born = 1844,

-- nject ref attribute

a. Nane = new(value = ‘Vincent Van CGogh’);

Working with a virtual attribute is exactly the same. You simply access and set its value
without worrying about how it is implemented. For details about accessing and setting
attributes, see “Referencing an Object” on page 67 and “Setting Attributes” on page 72.

Overview Chapter 1

24 Event-Based Programming

Event-Based Programming

Event-based programming means providing code that is executed when a particular event
occurs and using events to signal other windows and processes when something relevant
happens. For example, the Display method for a window can include code that is executed
when the end user selects a menu item, clicks a button, or enters data into a text field.

Forte lets you respond to numerous kinds of events, including events in the distributed
environment and custom events. Forte shared services use events to communicate with
clients and with other services.

At any time, a service can post an event to the rest of the application. This is like
“broadcasting” a signal to the rest of the application that a certain condition or action has
occurred. Any number of clients or services may be “tuned in,” waiting for that particular
signal. If so, when they receive the event, they will respond to it. Events eliminate the
timing problems associated with polling, and reduce the use of system resources.

Forte provides three statements for working with events:

Statement Description

post Produces an event
event Provides processing in response to one or more events.
register Includes a named event handler in an event statement.

Display library events

Other system events

TOOL Reference Manual

An event is a notification that a particular action has occurred. This can be an action such
as the end user selecting a menu item or a node going offline.

Every event is associated with an object. The class for an object defines the types of events
that the object can produce. For example, the TextField class defines an AfterValueChange
event, which is triggered when the end user leaves the field after changing the data in it.

Every event has a name, which you use to identify the event when you want to post it or
respond to it. Some events have parameters, to provide information about the particular
occurrence of the event. For example, the AfterMove event for fields includes two
parameters that indicate the X and Y positions of the field before it was moved. You can use
this information when you respond to the event.

The Display library classes, described in the manual Display Library online Help, define the
events that can be triggered by end user actions in the user interface. For example, the
PushButton class defines a Click event, which is triggered when the end user clicks the
push button. These kinds of events include events on windows, such as closing and
iconizing, as well as events on individual widgets, such as data entry in a text field and
selection of a menu item. Typically, the Display methods for your windows respond to
these kinds of events.

Other Forte system classes define events that occur throughout the distributed
environment. An example is the event RemoteAccessEvent on the Object class, which is
posted when a distributed reference loses contact with the remote object that it references.
If your application is waiting for a particular event on a remote service object in order to
continue processing, the RemoteAccess event would notify you when contact with the
remote service object is lost. In response to this event, your application could recover and
allow the end user to take alternate action.

Custom events

Example:
event loop statement

Event registration

Named event handlers

Event-Based Programming 25

All Forte system events are triggered automatically when the appropriate action occurs. You
can also trigger them using the post statement within a method. See Framework Library
online Help for information on the individual events for the system classes.

The custom classes that you create for an application (or include with supplier plans) may
also have events. Custom events are not triggered automatically. At the appropriate point in
a method, you must trigger the custom event by using the post statement. For example, in
the Auction sample application, the BidUpdated event is defined for the Bid class. Every
time a bid is updated, the application uses the post statement to trigger the BidUpdated
event. This notifies all the end users interested in the same painting that the bid has been
raised.

Once you post a custom event, it is treated exactly like any other event.

Responding to Events

In TOOL code, you define responses to events by using event statements. With the event
statement, you register the event(s) that you want to respond to at this point in the code
and the action to perform when a particular event occurs. For example, the Display method
for a window typically registers to receive events on the various widgets on the window. The
following method uses an event loop statement to process events from a window:

sel f. Open();
-- Open the w ndow
event | oop
when task. Shut down do
exit;
when <save_button>. dick do
sel f. Save();
end event;
sel f.Cl ose();
-- O ose the wi ndow

When the event statement is executed, Forte registers all the events listed in the statement
and then waits to receive an event. Registering an event means notifying the object that will
be posting the event that the current object is prepared to handle the event. This ensures
that the current object will be notified when the event is actually posted.

When one of the registered events is posted and the event statement receives it, Forte then
executes the corresponding when clause. When the event statement completes, the events
are no longer registered. The registered events are the only events that can produce a
response; other events are simply ignored.

Besides listing events directly in the event statement, you can use the register statement to
include a named event handler within the event statement. As described in A Guide to the
Forte 4GL Workshops, a named event handler is a named block of TOOL code that provides
programming to be executed in response to one or more events. The event handler
provides reusable, modular event handling code that you can include in any number of
event statements.

When you include a named event handler in an event statement, Forte registers all the
events specified in the event handler. The following example illustrates the use of the
register statement within the event loop statement.

Overview Chapter 1

26 Event-Based Programming

Example: event | oop
register statement preregi ster
-- Include the Art Object Wndow s event handler in this
-- event | oop.
regi ster artObj ect Wndow. art Qbj ect Handl er
(art Type = ' Performance’);
when task. Shut down do
exit;
See NestedWindow example Project: NestedWindow e Class: SellWindow ¢ Method: Display

To cancel registration of the event handler before the event statement completes
execution, use the DeregisterHandler method on the EventRegistration class.

The event statement has two variations: event loop and event case. Both variations register
any number of events.

event loop statement The event loop statement waits for any number of events and continues responding to
them until you explicitly exit the loop. Event loops are useful for monitoring a continuous
process, and responding to any number of events in whatever order they occur. The typical
example is the event loop for the window, which continues responding to events until the
end user closes the window.

event case statement The event case statement responds to the first event it receives and then automatically
exits the statement. An event case statement is useful for synchronizing with an
independent process, when you need to respond once to whichever event occurs first. For
example, when you start a new task (described under “Multitasking” on page 29), you can
use an event case statement to wait for the event that indicates the task has completed.

Processing the event Both event statements provide a statement block for each registered event, which is the
code that processes the event. The statement block can include any TOOL statements. In
the previous example, the code for the Click event on the Save button invokes a Save
method.

Nested Events

You can nest event statements in two ways. First, the when clause for an event can contain
an event statement. For example, in response to an event, you might use the start task
statement to start a new task and then use the event statement to wait for the return event.

Example 1: when <print_button>. Cick do
nested event statements tsk : TaskDesc:
tsk = start task printer.Printlt()
where conpl eti on = event;
-- Return event
event case
-- Either conplete or cance
when printer.Printlt_conpletion do
nessage for success
when <cancel _button>.Click do
t sk. Set Cancel () ;
-- Cancel the printer task
end event;

TOOL Reference Manual

Example 2:
nested event statements

Queue order

Multitasking and events

Event-Based Programming 27

Second, the code for an event can invoke a method that contains an event statement. This
typically happens when you want to respond to an event by opening a new window and the
Display method for the new window contains an event statement.
when <AddPai nti ngButton>. dick do
add_pai nti ng_wi ndow : AddPai nti ngW ndow = new;
add_pai nti ng_wi ndow. Di spl ay
(auctionMgr = sel f. AuctionMr);

-- Display nethod for the AddPai nti ngW ndow
sel f. Open(i sAppMdal = TRUE);
event | oop
when t ask. Shut down do
exit;
More events. ..
end event;
sel f.C ose();

When you nest event statements, the event queue will contain events registered by more
than one statement. This affects the interactions between the various event statements. See
“Event” on page 106 for information.

The Event Queue

The event queue is a series of registered events that are waiting to be processed by an event
statement. Every time a registered event is posted, Forte adds the event to the end of the
queue. Then each time the event statement is ready to handle an event, it uses the event at
the top of the queue.

The event queue order can not be guaranteed to be the same as the order in which events
are posted. You cannot prioritize events in the queue, nor can you access or manipulate the
event queue, with one exception—you can purge it using the PurgeEvents method on the
Window class.

When you use multitasking, each task has its own event queue. Every time an event is
posted, Forte checks all current tasks to see if the event is registered. If it is, Forte adds the
event to the event queue for the task. This means that more than one task can respond to
the same event. See “Event” on page 106 for information about tasks and event processing.

Overview Chapter 1

28 Event-Based Programming

Posting Events

Within your method, you can explicitly trigger an event by using the post statement. The
post statement allows you to trigger an event of any type and to specify values for the
event’s parameters.

This is especially useful for communicating between tasks (described under “Multitasking”
on page 29) and for synchronizing independent processes. A good example is keeping
concurrent windows up to date. In the following example, the AddBid method in the
AuctionMgr class posts an event indicating that a painting has been added. Executing
windows represented by the PaintingListWindow class monitor the event and add the new
painting to their displayed list:
Example: posting events -- ... in the Aucti onMgr AddBi d nethod ...
b : Bid = new
b. Set Val ues (pai nti ngForBi d = pai nti ngToAdd,
currentBid = startingBid);

sel f. Pai nti ngUnder Bi d. AppendRow(b) ;

-- Add to array

post sel f. Pai nti ngAdded(pai nti ng = pai nti ngToAdd) ;

--... in the PaintingLi st Wndow Di splay nethod ...
event | oop

when sel f. Aucti onMyr. Pai nti ngAdded(addedPai nting =
pai nting) do
-- Arow fromthe array is to be added. Add to end.
sel f. Pai nti ngDat a. AppendRow(obj ect = addedPai nti ng) ;
More events. ..
end event;

One advantage of using an event for communication (rather than invoking a method) is
that the event is simply a signal that something interesting has happened. If the event is
currently registered, the appropriate event statement will respond to it. If the event is not
registered, it is simply ignored. (Of course, the disadvantage of using events is that you
cannot assume that the event has been received.) Another advantage is that a single post
statement notifies the entire application or all the other users of the application that the
event has occurred.

TOOL Reference Manual

Multitasking

Multitasking and
multithreading

Example: opening a
window as a new task

See Auction example

Example:
synchronous methods

Multitasking 29

Normally, the methods in an application are processed synchronously. When one method
invokes another method, control passes to the invoked method. When the invoked method
completes, control returns to the invoking method. Processing continues with the next
statement.

Forte provides the option of asynchronous processing. The start task statement allows you
to invoke a method asynchronously. The asynchronous method (or “task”) executes in
parallel with the method that invoked it. Forte provides one statement for asynchronous
processing:

Statement Description

start task Invokes a method asynchronously, which initiates a new task.

In a distributed system, using multitasking lets you to maximize your resources by
simultaneously executing different methods on different machines. This is also useful for
providing independent windows, where the end user can work on different tasks at the
same time.

An effective way to structure an application is to create a master task that monitors several
other tasks as they process by waiting for events (see “Communicating between Tasks” on
page 32).

In Forte, multitasking is implemented as multithreading whenever possible. If
multithreading is not available on a particular platform, Forte simulates it. In either case,
Forte takes care of the necessary synchronization.

What is a Task?

In Forte, every method runs as part of a task. The starting method for the application starts
the “main” task by creating an object of the starting class type and invoking the starting
method on that object. You can start subsequent tasks using the start task statement.

When you use the start task statement to invoke an asynchronous method, Forte starts a
new task. A task is an individual thread of execution that runs to completion independently
of any other tasks in the application. An asynchronous method does not return to the
method that started it.

In the following example, a new window is opened as a separate task:

-- ... in Display nethod for the ListPainti ngsWndow
when <Vi ewPai nti ngButton>.d ick do

vi ew_w ndow : Vi ewPai nti ngW ndow = new,
start task view w ndow. Di spl ay(pai nti ngNane = nane) ;

Project: Auction e Class: PaintingListWindow e Method: Display

A single task can invoke any number of synchronous methods. These are all considered to
be part of the task. In the previous example, the asynchronous method that is invoked by
the ListPaintingsWindow contains synchronous invocations of a number of methods.

-- ... in the Display nmethod for the ViewPai nti ngW ndow
sel f. User Nane. Set Val ue(user _nane) ;
self.theBid = sel f. Aucti onManager . Get Bi dFor Pai nti ng
(nanme = painting_to_view Naneg,
-- output paraneters
pai ntingForBi d = sel f.thePai ntingForBid,

Overview Chapter 1

30 Multitasking

Task information

Event queue for task

currentBid = self.theCurrentBid,

| ast Bi dTi ne = sel f.thelLast Bi dTi ne,

| ast Bi dder = sel f.thelLast Bi dder,

bi dl nProgress = sel f.theBidlnProgress);

Every task is associated with a TaskHandle object, which provides access to information
about the task. This is described under “Using TaskHandle and TaskDesc Objects” on
page 33.

Each task has its own event queue. Every time an event is triggered, Forte delivers the event
to all tasks that have registered for it by adding the event to the task’s event queue. This
means that more than one task can respond to the same event. This also allows you to use
events to communicate between tasks (see “Communicating between Tasks” on page 32).

Starting a New Task

Example:
start task statement

Tasks and transactions

Return event and
exception event

TOOL Reference Manual

To begin a new task, you use the start task statement, which invokes a method
asynchronously. Use the method’s parameters to pass information to the new task. The
following example shows the Display method for the ListPaintingsWindow starting the
Display method for the AddPaintingWindow as a separate task:

-- ... in the Display nmethod for the ListPaintingsWndow

when <Aucti oneer Onl y. AddPai nti ngButton>. d i ck do
add_pai nti ng_wi ndow : AddPai nti ngW ndow = new;
start task add_pai nti ng_w ndow. Di spl ay
(auctionMgr = self.AuctionMyr);

You can use the start task statement for any method. The method does not have to be
specially designed for asynchronous processing. If the method contains a return
statement, Forte simply terminates the method and the task when it reaches the return
statement.

By default if you use the start task statement within a transaction, the asynchronous
method will not be part of the transaction. However, options for the start task statement
allow you to run the task either as a dependent participant in the transaction that started it
or as an independent transaction. See “Transactions” on page 34 for information on this.

Normally, the method that invokes a new task cannot tell when the asynchronous method
completes. However, if the asynchronous method was defined with return and exception
events (also called completion events), you can request notification when it completes
successfully or terminates due to an exception. When you request notification, the
asynchronous method posts a return event if it completes successfully and an exception
event when it terminates due to an exception.

The return event is useful for synchronizing tasks. A single “parent” task can start several
different “child” tasks, using an event statement to wait for notification that they have all
completed. (This operation is sometimes called a rendezvous.)

Requesting the return and exception events automatically registers the events for the
calling task. When the asynchronous method completes or terminates, Forte adds the
appropriate event to the calling task’s event queue.

This registration is unlike the event registration for the event statement. In the event
statement, the event is registered just before the event statement is ready to process the
event. In the start task statement, the return and exception events are registered when the

Multitasking 31

task is started, even though your application will not begin to wait for those events until
much later. Therefore, only the “parent” task that executes the start task statement is
registered for the completion event of the started task.

See “Completing a Task” on page 31 for information on handling these events.

TaskDesc object Another way you can communicate with the task is through the TaskDesc object. The start
task statement always returns an object of the TaskDesc class. This object lets you access
the task that you have started while it is still executing. For example, you can invoke the
SetCancel method on the TaskDesc object to cancel the new task before it completes. See
“Using TaskHandle and TaskDesc Objects” on page 33 for more information.

Completing a Task

A method that is invoked asynchronously runs independently to completion. When the
method completes, the task terminates. When the application’s “main” task completes, the
application terminates.

Forte executes the method to completion or to the return statement. The only time Forte
terminates the task prematurely is when there is an exception that the task cannot handle
(see “Exception Handling” on page 42 for information on exceptions).

Requesting return Normally, the method invoked by the start task statement does not notify the invoking task

and exception events that it has completed or that it was terminated. However, if the method has been defined
with return and exception events, you can use the completion event option of the start
task statement to request these events.

Return event Forte automatically posts a return event to the invoking task when the started task
completes. The parameters for this event are the input-output and output parameters
defined for the method. These parameters have whatever values are current when the
method completes.

Return parameter If the method has a return type, the last parameter for the return event is a parameter
called “return.” This has the return value specified by the method’s return statement.

Handling the return event When you use the event statement to handle the return event, you can use these
parameters for further processing. In the following example, a modification to the
ViewPaintingWindow Display method shows how a return event would work.

Example: -- ... in the ViewPai nti ngW ndow Di spl ay nethod. ..
handling the return event start task sel f.|mageManager. Get | mage
(name = sel f.thePai nti ngFor Bi d. Nane)
where conpl eti on = event;
event | oop
when sel f. | mageManager. Get | mage_return
(thelmage = return) do
sel f. Pai nti ngl mage = t hel nage;
when sel f. | mageManager . Get | mage_excepti on
(e = exception, errStack = errMgr) do
-- the exception nessage was suppressed
| mageSt at usMessage. Set Val ue(‘ | mage Not Found.’);
<|I mageSt at usMessage>. State = FS_VI S| BLE;

end event;
Exception event Forte automatically posts the exception event to the calling “parent” task when the started
task is terminated due to an exception. For information about exceptions in general, see

“Exception Handling” on page 42. For information about exception event handling, see
“Start Task” on page 147.

Overview Chapter 1

32 Multitasking

Transactions and completion

Distributed task completion

Remote task shutdown
differs from local task
shutdown

Terminating tasks
running remotely

When an asynchronous method completes normally, this is considered successful
completion. However, if the task associated with the method was participating in another
task’s transaction and the method (and task) is terminated through an exception, this is
considered a failure. Failure aborts the transaction in which the task is participating.

The execution of a task moves between partitions whenever a method is invoked on a
reference to a remote object. As with local execution, the method invocation may be
synchronous or asynchronous. If the method invocation is synchronous, the task is blocked
in the calling partition while it executes in the remote partition. If the method invocation is
asynchronous, the invoking task may continue executing while the subtask executes
concurrently in the remote partition.

Forte provides methods to terminate active tasks running locally or remotely. The
PostShutdown and SetCancel methods on the TaskDesc and TaskHandle classes (described
in the manual Framework Library online Help) allow you to asynchronously terminate a
single task and/or its subtasks. Also, the settings of the Window class SystemClosePolicies
(described in the manual Display Library online Help) cause the PostShutdown method to
be invoked on related tasks.

Forte applies task shutdown policies to all local members of a task. If all tasks are running
locally the tasks are notified of the termination request exactly as described above. Because
Forte applies the shutdown policies differently to tasks or subtasks that are executing in a
remote partition, you may need to take additional steps to terminate remote
tasks/subtasks.

For example, if you locally terminate a task that is currently synchronously executing a
method in a remote partition, the remote execution of the task will run to completion
unless you explicitly terminate the task in *that* partition (you may do this by invoking the
PostShutdown or SetCancel methods in the remote partition). In order to terminate remote
subtasks started by asynchronously invoking a method on a remote object, you must
explicitly invoke the PostShutdown or SetCancel method on the TaskDesc or TaskHandle
associated with that task.

Communicating between Tasks

Example:
communicating between tasks

TOOL Reference Manual

The return event enables you to receive notification when an asynchronous method
completes. Tasks can also communicate using the post and event statements to signal an
event’s occurrence and respond to an event. Event parameters also pass information
regarding an event between tasks. Thus, events and event parameters allow you to
synchronize concurrent windows as well as pass status information between tasks.

For example, you may wish to monitor a task while it is executing. You can do this by using
the event statement in one task to wait for events being posted by another task. The task
being monitored can then use the post statement to trigger events when relevant changes
occur on an object. In the following example, the AddBid method of the AuctionMgr class
can notify any tasks that are executing the Display method of the PaintingListWindow class
that a painting has been added:

-- ... in the Aucti onMyr AddBi d nethod ...

b : Bid = new

b. Set Val ues (pai nti ngForBi d = pai nti ngToAdd,
currentBid = startingBid);

sel f. Pai nti ngUnder Bi d. AppendRow(b) ;

-- Add to array

post sel f. Pai nti ngAdded(pai nti ng = pai nti ngToAdd) ;

--... in the PaintingLi st Wndow Di splay net hod ..
event | oop

TaskHandle class

Task key word

TaskDesc class

Multitasking 33

when sel f. Aucti onMyr. Pai nti ngAdded(addedPai nti ng = pai nting) do
-- Arow fromthe array is to be added. Add to end.
sel f. Pai nti ngDat a. AppendRow(obj ect = addedPai nti ng) ;
More events. ..
end event;

Shared Objects

A shared object is an object that will be concurrently accessed by multiple tasks and
requires that this access be regulated. You create a shared object by defining the class as
Shared in the Project Workshop, and setting the object’s IsShared attribute to TRUE
(explicitly, or by setting the default value for the class to TRUE).

TOOL provides a mutex locking mechanism for shared objects to prevent conflicts when
multiple tasks try to access or change the object’s state (this mechanism is described in the
Framework Library online Help manual under the Mutex class). If one task modifies a
shared object’s attribute, TOOL locks the object until the change is complete. If one task
invokes a method on a shared object, TOOL does not allow another task to execute a
method on the object until the first task completes its method. Other tasks attempting to
invoke methods on or access/modify attributes of the same object are “blocked.” Once the
first task completes the method, another task is allowed to continue. Note, however, that
the object is not locked while waiting for an event during the processing of an event
statement.

Multiple tasks should not operate concurrently on non-shared objects (objects whose
IsShared attribute is not set to TRUE). If two tasks do operate on and access the same non-
shared object, the results are unpredictable.

See the Forte 4GL Programming Guide for more information on shared objects.

Using TaskHandle and TaskDesc Objects

Every task is associated with an object of the TaskHandle class. This class provides
information about the current task and provides access to the Forte runtime system. The
ErrorMgr attribute provides access to the error manager for the task and the Part attribute
provides access to the partition for the task. See the TaskHandle class in the Framework
Library online Help for further information about using these attributes and the
TaskHandle class.

To make it easy to reference the current task, TOOL provides a special task key word. Use
the task key word to reference the TaskHandle object associated with the current task. The
following example shows using the task key word to access the current error stack:

-- Cears the error stack after printing
task. Error Myr. ShowErr or s(cl earout = TRUE);

As described above, the start task statement returns an object of the TaskDesc class. This
object provides the calling task with access to the new task that it has started. For example,
the SetCancel method of the TaskDesc class lets you cancel the new task while it is
currently executing. See the TaskDesc class in the Framework Library online Help for
details.

Overview Chapter 1

34 Transactions

Transactions

Start a transaction with
TOOL or a Framework class

Successful transaction

Unsuccessful transaction

A Forte transaction is one or more statements that execute as a single unit of work. A
transaction is either successful or unsuccessful; either all the statements or none of them
take effect. If you are unfamiliar with the basic concepts of transaction management, there
are many texts you can read on this topic.

TOOL provides the following statements for transaction management:
Statement Description
begin transaction Specifies a statement block that is treated as a single transaction.

start task Lets you start a new task as an independent or dependent transaction.

More sophisticated transaction management is available through the Forte
TransactionDesc and TransactionHandle classes described in the Framework Library
online Help.

The begin transaction statement starts a transaction statement block; the end transaction
clause of the statement denotes the end of the transaction. All the statements in the block
and all methods invoked from the block are treated as a single transaction, including SQL
statements participating in a database transaction.

When the statement block executes successfully, Forte automatically commits the
transaction, causing all the statements in the transaction to take effect.

When an exception is raised, Forte aborts the transaction, and control passes either to the
transaction statement’s exception handler or, when an exception is raised that closes the
transaction block, to the closest exception handler. None of the statements in the
transaction take effect. (A notable exception to this is that changes made to variables and
non-transactional objects are not part of the transaction and therefore cannot be rolled
back. See “Transactional and Shared Objects” below for more information.)

The following sections provide more information about using transactions.

Transaction Types

Transactions can be independent, dependent, or nested. These three types determine how
a transaction enclosed in another transaction affects the enclosing transaction. See
“Transaction Type” on page 96 for more information.

Transactional and Shared Objects

Transaction and non-
transactional objects

Transaction locks

TOOL Reference Manual

A transactional object is an object that can participate in a transaction. Changes made to
the object during a transaction are logged so the changes can be rolled back if the
transaction is aborted. Outside the context of a transaction, a transactional object behaves
exactly like any other object. You create a transactional object by defining the class as
Transactional in the Project Workshop, and setting the object's IsTransactional attribute to
TRUE (explicitly or by setting the default value for the class to TRUE).

A non-transactional object is an object that is not affected by the success or failure of a
transaction. Changes made to a non-transactional object during a transaction are not
rolled back. You can make any object non-transactional by setting its IsTransactional
attribute to FALSE, or by setting the default value for the class to FALSE.

A transactional object can also be shared. You indicate that it is shared by setting both its
IsTransactional and IsShared attributes to TRUE. To access or modify a shared

transactional object (either through a public attribute or a method), the transaction must
acquire a transaction lock on the object. The transaction lock is in addition to the normal
mutex lock that regulates concurrent shared object access. Once a transaction acquires a

Committing a successful
distributed transaction

Transactions 35

lock on an object, it holds the lock until the transaction ends (either by aborting or
committing it). When the transaction ends, the lock is released and the next waiting
transaction (if any) is granted access.

See the Forte 4GL Programming Guide for more information on shared and transactional
objects.

Forte Distributed Transactions

Because a Forte application is distributed, an executing transaction is also likely to be
distributed (a transaction can be local, if it never leaves the partition in which it started).
For example, if a method that displays a window is running as a transaction, the work that
displays information on the client is part of the same transaction as the work that gets the
information to be displayed by selecting it from a database located on the server. To
implement distributed transactions, Forte uses a simplified two-phase commit protocol for
all Forte objects.

A distributed transaction can access more than one database or more than one database
resource manager. Forte coordinates all commits and aborts. For example, if a transaction
accesses more than one database resource manager, and one of the resource managers
aborts the transaction, Forte notifies the other resource managers that the transaction is
aborted. Likewise, when the transaction commits, Forte signals all resource managers to
commit.

Refer to the manual Accessing Databases for a more detailed discussion of issues related to
two-phase commit and failure during commit of a distributed transaction.

Transactions and Multitasking

As mentioned under “Multitasking” on page 29, you can start a new task as a transaction.
The new task can either start an independent transaction or it can participate in an existing
transaction.

Because each task can begin its own independent transaction, any number of independent
transactions can execute concurrently. For example, if you have two concurrent windows,
each running as an independent transaction, each transaction may execute work on the
client as well as work on one or more servers.

Multiple tasks can also participate in a single transaction. One task can begin a transaction
and, within that transaction, start multiple tasks as “dependent” participants in the
transaction. You can do this by using the dependent or nested option on the start task
statement or by using the Join method on the TransactionHandle class.

If a dependent participant’s transaction is aborted or the task fails, the caller’s transaction is
also aborted. Likewise, the caller’s transaction cannot be committed until all the dependent
transactions have committed. If the task that originally began the transaction attempts to
commit while other tasks are still participating as dependents of the transaction, the
committing task will wait until the participants have all completed their work.

An extension of the dependent option is the nested option. When you use the start task
statement with the nested option, the new task immediately starts a nested transaction.
This is equivalent to being a dependent participant, except that if the new task fails, it will
only abort the nested transaction without affecting the caller’s transaction.

Note that if you plan to use the same database session in multiple concurrent tasks, all the
tasks must be in the same transaction.

See “Start Task” on page 147 for information about the start task statement. See the
Framework Library online Help for information about the TransactionHandle class.

Overview Chapter 1

36 Transactions

Using TransactionHandle Objects

transaction key word

Example: use of
TransactionHandle object

Be careful combining
statements and methods

TOOL Reference Manual

Every transaction is associated with an object of the TransactionHandle class. This class
provides information about the current transaction and methods for managing it. You can
use the special TOOL key word transaction to reference the current transaction (actually,
the current TransactionHandle object). The following example shows a transaction block
that can abort:

begi n transaction
sqgl insert into ...
sql update ...
if (condition_that_shoul d_abort) then
transaction. Abort (rai seExcepti on = TRUE);

end if;
nore statenents in the transaction
exception

-- The transacti on has been aborted
when e : GCeneri cException do
task. Err Mgr . ShowEr r or s(TRUE) ;
-- Print errors
end transaction;

(A TransactionHandle object is available even when there is no current transaction. In this
case, the handle is considered “idle.”)

As well as duplicating all the functionality of the begin transaction statement, the
TransactionHandle class provides additional methods for managing transactions. These
methods allow you to:

m Start a transaction in one method and end it in another method, or start and end in
different code blocks.

m Make dynamic decisions about the type of transaction used at a certain point.

m Make a dynamic decision as to the extent of the participation of a task in a transaction
(if you are using events to coordinate a transaction participating across tasks). A task
participating in the transaction can abort or commit the transaction at any point.

m Get diagnostic information about a particular transaction.

See the TransactionHandle class in the manual Framework Library online Help for more
information.

Although you can combine the TransactionHandle methods with the begin transaction
statement, it is important to do so carefully. The begin transaction statement itself invokes
TransactionHandle methods, and because these methods are invoked in a particular
sequence, you can disrupt this sequence if you use the methods incorrectly. Some
examples follow:

m Ifyoustart and end a nested transaction with BeginNested and CommitNested methods
within a begin transaction statement block, this will work correctly.

m However, if you include a transaction.Commit method within a begin transaction
statement block to commit the current transaction, this will cause an exception when
Forte reaches the end of the begin transaction statement. This is because Forte will try
to commit the same transaction again.

Transactions 37

m Likewise, if you use the BeginNested method within the begin transaction statement
block without the corresponding CommitNested method, this would cause the
transaction to remain active after reaching the end of the begin transaction statement.

m If you use the variation of the Abort method that raises an exception within the begin
transaction statement block, control will pass correctly to the begin transaction
statement’s exception handler. However, if you use the variation of the Abort method
that does not raise an exception, the application will be in an invalid state because the
remaining statements within the begin transaction block will be executed outside of a
transaction. For example:

begi n transacti on
transacti on. Abort (FALSE); -- No exception

-- At this point you are no longer in a transaction
exception
end transacti on; -- Error: not in transaction

This would also occur if you were to invoke the version of the AbortNested method that
does not raise an exception from within a begin nested transaction. For example:

begi n transacti on
begi n nested transaction
transacti on. Abort Nest ed(FALSE) ; -- No exception

-- At this point you're no longer in a nested transaction
exception

end transacti on; -- commit outer transaction!
-- At this point you are no longer in a transaction
exception

end transacti on; -- error that not in transaction

In both examples, the Abort and AbortNested methods should pass a value of TRUE for
the raiseException parameter in order to keep the runtime state of the transaction
synchronized with the lexical scope of the begin transaction statement.

Overview Chapter 1

38 Interacting with a Database

Interacting with a Database

To interact with a database from a Forte application, you first identify the databases that
you wish to work with and you start one or more database sessions for each database.
Then, in the TOOL SQL statements, you specify which database session to use. The manual
Accessing Databases describes using database sessions.

To manipulate database data, you use the TOOL SQL Data Manipulation Language (DML)
statements and the Forte classes in the library named GenericDBMS.

The following table lists the TOOL SQL statements:

SQL Statement Description

sql select Retrieves a single row from a database table, or, if you are selecting into an array,
retrieves multiple rows.

sgl insert Adds a row to a database table.

sgl delete Removes rows from a database table.

sgl update Replaces values in a database table.

sgl open cursor Selects rows from database tables for use with a cursor.

sql close cursor Closes a cursor.

sql fetch cursor Retrieves a row from a cursor and stores the values in Forte variables.

sgl execute immediate Executes a single SQL statement specified as a literal string, a string variable, or a
TextData variable.

sgl execute procedure Executes a database procedure, which only return output parameters and a single
return value from the procedure.

Using standard SQL guarantees that your application will run on any of the database
management systems that Forte supports. While Forte allows you to use most vendor-
specific extensions to SQL, if you do so, your code may not be portable across different
database management systems.

The Forte GenericDBMS library classes provide the ability to execute dynamic SQL. These
classes provide corresponding methods for all the TOOL SQL statements.

The following sections provide further information about working with the SQL statements.
For information on the database management classes, see the manual Accessing Databases.

Selecting Rows

sql select statement

sql execute procedure
statement

TOOL Reference Manual

You can select a single row or a set of rows from a database by using the sql select
statement. You can select a single row from a database using the sql execute procedure
statement. If you want to step through a set of rows, you must either use a cursor
(described below) or use the for statement (described under “For” on page 118).

The sql select statement allows you to retrieve a row or a set of rows from a database table,
and to store the values in Forte variables or attributes. You specify the conditions that the
row must meet and list the Forte variables and/or attributes to store the result values.

The sql execute procedure statement executes a database procedure using the parameter
values you specify. One way you can use this statement is to execute a procedure that
selects one row from the database. If your DBMS allows it, the output parameters for the
procedure let you return the database values from the procedure to your Forte application.
If not, you can specify a list of Forte variables or attributes to contain the values.

Interacting with a Database 39

Using Cursors

for statement with a cursor

Fetching rows

sql open cursor statement

sql fetch cursor statement

sql close cursor statement

A cursor is a row marker that you can use for working with a set of rows from a database.
Cursors enable you to step through the set of rows one row at a time.

To define a cursor, you must use the Cursor Workshop (see A Guide to the Forte 4GL
Workshops for information about how to do this). Because the cursor definition is
associated with the project as a whole, you can reference it from more than one method.

After defining a cursor, there are two different ways you can use it. You can use the for
statement to repeat a statement block for each row in the result set of the cursor. Or you
can use the sql open cursor, sql fetch cursor, and sql close cursor statements to step
through the cursor’s result set one row at a time. If your particular database system allows
it, you can also use a cursor with the sql update where current of or sql delete where
current of statements to update or delete the row to which the cursor is pointing.

To use the for statement with a cursor, you simply use the cursor name. The for statement
automatically opens the cursor, fetches the rows one at a time as it goes through the loop,
and then closes the cursor.

To use the sql fetch cursor statement, you must begin by opening the cursor with the sql
open cursor statement. You can then use the fetch statement to retrieve one row at a time.
Finish by using the sql close cursor to close the cursor.

The sql open cursor statement executes the select statement associated with the cursor
and positions the cursor before the first row in the result set. At this point, you specify the
values for any placeholders used in the original cursor declaration.

The sql fetch cursor statement lets you move one row at time through the result set of the
cursor’s select statement. This statement does not have to be in the same method as the sql
open cursor statement. After you open the cursor, the cursor is positioned before the first
row in the result set. The first time you use the sql fetch statement, Forte moves the cursor
to the first row in the result set. You can then perform any processing you wish on the
individual row. With each successive sql fetch statement, Forte moves the cursor forward
one row. You can continue using sql fetch to move through the result set until you reach the
last row in the result set.

The sql close cursor statement lets you close the cursor. This statement does not have to be
in the same method as the sql open cursor or sql fetch statements. After the cursor is
closed, it cannot be used again until you use another sql open cursor statement to open it.

Updating the Database

sql insert statement

sql update statement

sql delete statement

TOOL provides three statements for updating database data: sql insert, sql update, and sql
delete.

The sql insert statement adds a new row to the specified table. You can either provide a list
of values to use for the new row or you can use a select statement to get the values from
another table.

The sql update statement replaces the current column values in the selected row or rows
with the new values that you specify. You use the set clause to specify the new values for the
columns. You use the where clause to select the rows that you wish to update. Without the
where clause, the update statement changes the values in all the rows in the table.

The sql delete statement removes the specified rows from a database table. The where
clause identifies the particular rows to be deleted. If you do not include the where clause,
Forte deletes all the rows in the table.

Overview Chapter 1

40 Interacting with a Database

Vendor-Specific Extensions

You can use almost all vendor-specific extensions to the ANSI standard SQL syntax that are
allowed by your database management system. However, if you use vendor-specific
extensions, your code is no longer generic but is valid only for the particular database
systems that support that syntax.

The following examples illustrate using vendor-extensions for three different vendors:

Example: vendor -- SYBASE conput e.

extensions to ANSI SQL sql select type, price fromtitles
where type |ike "% ook"
order by type, price
conmput e sun{price) by type;

-- RDB cast.
sql select * fromalltypes
where cast(col 06 as doubl e precision) > 10.0;

-- ORACLE outer join.
sql select anything(a, character), b, c from aTable, atabl eToo

wher e
aTable.x (+) = :aVariable
and y = :aVariable order by foo asc;

Note Because vendor-specific syntax is passed directly to the DBMS, Forte does not detect syntax
errors in vendor-specific clauses.

Forte Transactions and Database Transactions

This section describes the use of explicit Forte transactions when interacting with a
database. For a more thorough explanation of the interaction between Forte transactions
and database transactions, refer to the manual Accessing Databases.

Use explicit Forte For best performance, you should place every SQL interaction with a database in an

transactions explicit Forte transaction. Typically you start a Forte transaction using the TOOL statement
begin transaction; see “Transactions” on page 34 for information about defining Forte
transactions. Then, you include SQL in a Forte transaction using either TOOL SQL
statements (such as sql select) or the equivalent methods (such as the Select method) on
the DBSession class.

When you include SQL in an explicit Forte transaction, Forte automatically starts a
database transaction. This database transaction must commit in order for the enclosing
Forte transaction to commit. If the database transaction aborts, the enclosing Forte
transaction aborts. Or, if the enclosing Forte transaction aborts, Forte rolls back the
database transaction. If you do not enclose the SQL statements in a Forte transaction, Forte
executes each individual SQL statement as an implicit transaction (described under
“Implicit Forte Transactions” on page 41).

Do not use SQL Because Forte coordinates the entire transaction, you should not use the sql execute

transaction management immediate statement in the Forte transaction to execute any SQL statement that affects the
DBMS transaction (such as rollback, commit, or setautocommit). If you do, your DBSession
object’s transactional state will become out of sync; this will most likely cause an exception
which will cause the Forte transaction to fail.

You must also exclude any SQL statements that your DBMS does not allow within a
transaction (for example, some systems do not allow DDL statements in transactions).

TOOL Reference Manual

Transactions and
multiple database sessions

Multitasking and
database sessions

Explicit transactions
perform better

Use explicit transaction
for queries

Interacting with a Database 41

A single Forte transaction can access more than one database session, more than one
database, or more than one database resource manager. Forte coordinates all commits and
aborts. For example, if a transaction accesses more than one database resource manager
and one of the resource managers aborts the transaction, Forte notifies the other resource
managers that the transaction is aborted. Likewise, when the transaction commits, Forte
signals all DBMS resource managers to commit the transaction.

Refer to the manual Accessing Databases for a more detailed discussion of issues related to
two-phase commit and failure during commit of a distributed transaction.

Note that if you plan to use the same database session in multiple concurrent tasks, all the
tasks must be in the same transaction. You can do this by using the dependent option on
the start task statement or by using the Join method on the TransactionHandle class. See
“Transactions and Multitasking” on page 35 for information on transactions and
multitasking.

Implicit Forte Transactions

If you issue a single SQL statement outside of an explicit Forte transaction, an implicit
Forte transaction begins. This is true for most SQL statements, including sql select, sql
open cursor, and sql execute immediate; it is not true for sql fetch cursor or sql close
cursor. The implicit transaction contains only the SQL statement; it starts before the SQL
statement executes and is committed after the statement completes. No other TOOL
statements are affected.

Although implicit transactions ensure the integrity of your data with respect to the
database, they are slower and consume more memory than explicit transactions. Execution
of multiple SQL statements enclosed in separate transactions is generally slower than if the
statements are executed within a single transaction.

You will get better performance if you put queries (sql select statements and sql open
cursor followed by sql fetch statements) in explicit Forte transactions. For cursors, the
result sets must be buffered, which consumes memory and might cause performance to
deteriorate because Forte retrieves the entire result set before executing the next statement.

Overview Chapter 1

42 Exception Handling

Exception Handling

Forte reports all errors as exceptions and provides statements that you can use to handle
the exceptions in your code. Forte also lets you use the same mechanism for reporting and
handling your own errors.

Exception handling means passing an “exception” to a special exception handler, outside
the current block of code. The exception handler provides the code that handles the
exception.

You use the following TOOL statements for exception handling:
Statement Description
exception Provides exception handing for the current statement block or compound statement.
raise Generates an exception to be handled by an exception handler.

begin Defines a compound statement, which provides local exception handling for a group of statements.

The advantages of using exception handling over traditional error handling are:

m Exception handling isolates your special-case code so that the body of the method is
cleaner and more straightforward. You do not have to check for errors every time you
use a statement.

® Your code cannot ignore errors because unhandled exceptions will terminate the task.
m The error manager for the task makes it easy to print out and work with error messages.

The following example illustrates exception handling:

Example: begi n transaction
exception handling sql insert into ...
sql update ...

if (condition_that_shoul d_abort) then
transacti on. Abort (rai seExcepti on = TRUE);

end if;
nore statenents in the transaction
exception

-- The transaction has been aborted
when e : Abort Exception do
-- Display error but continue
task. Err Mygr . ShowEr r or s(TRUE) ;
when e : Ceneri cException do
-- Get out
rai se;
end transaction;

TOOL Reference Manual

Exception classes

User-defined exceptions

Exception Handling 43

About Exceptions

An exception is a signal that an abnormal condition occurred. Forte provides a special set
of classes for exceptions, the GenericException class and it subclasses. The class of an
exception determines the type of exception. The exception’s attributes contain information
that the exception handler can use when responding to the exception.

The Forte exceptions fall into the following six categories:

Exception

AbortException

ResourceException

CancelException

ArithmeticException

DataTypeException

DefectException

Description

Forte raises this type of exception when it is aborting a transaction. Standard recovery is to
retry the transaction.

Forte raises this type of exception when there is an error from a resource manager, such as a
DBMS, file manager, or lock manager. You can often recover from this type of exception.

Forte raises this type of exception when one task cancels another task.

Forte raises this type of exception when there is overflow, underflow, or divide by zero in an
arithmetic operation.

Forte raises this type of exception when there is an incompatible attempt to convert one
data type to another, such as “abc” to an integer or an invalid null assignment.

Forte raises this type of exception when there is a bug in your software (or in the Forte
software). Examples are a NIL object reference or incorrect usage of a method. In general,
you shouldn‘t try to recover from these exceptions; you should fix the bug.

See the Framework Library online Help for details on the Forte exceptions.

You can also create your own exception classes. In the Project Workshop, you can create a
subclass of the Forte GenericException class. The GenericException class provides the
attributes and methods necessary for working with the exception. However, because you
can raise an object of any class as an exception, the exception classes that you define do
not have to be subclasses of GenericException.

Exceptions are generated in two ways. First, under the appropriate conditions, Forte
generates exceptions. An example is the AbortException, which Forte raises when it aborts
a transaction. Second, you can generate exceptions explicitly by using the raise statement.
You can raise an object of a Forte exception class or one of your own exception classes. This
is described under “Raising Exceptions” on page 46.

When any exception is raised, Forte skips the remaining statements in the block and
executes the closest exception clause. If the clause can handle the exception, Forte
executes the appropriate exception handling code and then ends the statement block.
Control resumes immediately after the exception clause.

If the closest exception clause cannot handle the exception, Forte tries the enclosing
statement blocks until it finds an exception clause that can handle it. If the current method
cannot handle the exception, Forte tries the invoking methods. If the task cannot handle
the exception, the task terminates.

The following section provides more information about handling exceptions.

Overview Chapter 1

44 Exception Handling

Handling Exceptions

Exception handler You always handle exceptions by using an exception clause. This clause is either associated
for statement with a statement or a compound statement. The syntax of a statement shows whether it
has an exception handler.

Because the body of a method is a statement block, each method can have its own
exception handler. In addition, all the individual TOOL statements that contain statement
blocks can also have their own exception handlers.

Exception handler for A compound statement is a subset of statements within a statement block that provides its

compound statement own exception handling. You can use a compound statement anywhere that an individual
statement is allowed. A compound statement starts with a begin statement and concludes
with an end clause.

The following example illustrates checking for an error on connect in a compound
statement:
Example: exception handler for begi n
compound statement -- Check for exception on connect to DB
self.io.Wite(‘Connecting to ‘);
self.io.WiteLine(dbNarne) ;
sel f. Sessi on = dbMgr. Connect DB (resour ceName = dbNane,
user Name = unane, userPassword = upassword);
self.io.WiteLine (‘Connected successfully.’);
exception
when e: CGeneri cException do
task. Err Mgr . ShowEr r or s(TRUE) ;
end;
--Check for exception on connect

The exception clause specifies the exception classes that it is prepared to handle. For each
type of exception, the exception clause provides a statement block (in a when clause) that
is executed when the exception is handled. The else clause specifies code that is executed
for any exceptions that are not individually handled by the statement. See “Exception” on
page 113 for information about multiple when clauses and when each clause is selected.

The statement block for an exception can include any TOOL statements. If you want to
retry the method after handling the exception, you can include the method in a loop
statement. Then, in the statement block for the exception, you can repeat the loop.
Example: repeating i : integer = 5;
loop in exception clause while i > 0 do
aborted : bool ean = FALSE;
begi n transaction
sqgl insert
other statenents in transaction ...
exception
-- For the transaction bl ock
when e : Abort Exception do

i =i - 1;
aborted = TRUE;
exit;
el se
-- Any ot her exceptions
raise;

TOOL Reference Manual

The error manager

Handling unexpected
exceptions

Exception Handling 45

end transaction;
if not aborted then
-- Exit the while block, as transaction is ok.
exit;
end if;
end whil e;
if i <= 0 then
-- The transacti on was aborted too many times.
...print nessage of warning to user...
end if;

Every task is associated with an object of the ErrorMgr class, which provides an error stack
that you can print or query. As errors occur in the runtime system, they are added to the
error stack for the task. When Forte raises exceptions, these are also added to the stack. At
any point while you are handling exceptions, you can print or display the messages in the
stack with the ShowErrors method. In addition, when you request the exception event in
the start task statement, the exception event contains an errMgr parameter. This
parameter is an object of type ErrorMgr, which contains the error manager for the task. See
the Framework Library online Help for information on the ErrorMgr class. See “Start Task”
on page 147 for information about the exception event.

Handling AbortException and CancelException

You must be sure to handle AbortException and CancelException at the appropriate points
in your application. The AbortException is intended to abort a transaction, and should
therefore be handled in the exception clause of the begin transaction statement (not
within its nested code). The CancelException is intended to cancel a task, and should
therefore be handled in by the task’s outermost exception handler (not within its nested
code). See “Exception Handling” on page 99 for information about exception handling for
the begin transaction statement and “Invoking the Method” on page 148 for information
about the invoked method of the start task statement.

In general, it is a good policy not to handle unexpected exceptions. You should only handle
those specific exceptions that you are prepared to handle at the current point in the
application. In particular, you should not handle AbortException and CancelException at
incorrect points in the application. This could happen if you are providing generic code for
unexpected exceptions.

However, there may be cases where you wish to provide general recovery for an unexpected
exception and then raise it again to the enclosing exception handler. See “Else Clause” on
page 115 for information about using the exception handler’s else clause correctly to
handle unexpected exceptions.

Overview Chapter 1

46 Exception Handling

Raising Exceptions

Example: raising an exception

To generate an exception, you use the raise statement. The raise statement specifies one
object to be the exception. You can raise an object of any class.
-- A new User Excepti on subcl ass of Generi cException exists
user Exc : User Excepti on = new,
user Exc. Set Wt hPar ans(severity = SP_ER ERROR,
message = ‘Error with <%> on attenpt nunber <%2>.’,
par aml Text Dat a(val ue = ‘ User Code’),
paranm2 = I ntegerData(value = n));
t ask. Err Mgr . AddEr r or (user Exc) ;
rai se user Exc;

When you raise an exception, it is treated like any other exception. It will be handled by the

closest exception handler that is prepared to handle exceptions of that class (or any of its
superclasses).

If you wish to add exceptions to the Forte error stack, the exceptions you raise must be
subclasses of the GenericException class. You can then use the AddError method of the

ErrorMgr class to add the exception to the error stack for the task. This keeps the stack up
to date.

Error Handling

TOOL Reference Manual

For cases when exception handling is inappropriate, Forte lets you use traditional error
handling. You do this by using the return statement to return an error status to the
invoking method. In the invoking method, you provide processing based on the error
status. A typical solution is to assign the method’s return value to a variable and then use a
conditional statement to determine how to respond to it.

Chapter 2

Language Elements

This chapter describes the basic language elements of TOOL, which include the following:
statements
comments
names
simple data types
objects
array objects
variables
named constants
cursors

service objects

48 TOOL Statements and Comments

TOOL Statements and Comments

Case insensitive

Forte methods are composed of TOOL statements and comments. Figure 2 illustrates
statements and comments:

event | oop COMMENT
preregi ster

-- Include the Art Obj ect Wndow s event handler in this

-- event | oop.

regi ster art Obj ect Wndow. art Cbj ect Handl er

(artType = ' Performance'); — STATEMENT

|-- Thi s wi ndow has Post Shutdown attached to the cl ose box.

when t ask. Shut down do

end eventD— STATEMENT
DELIMITER

COMMENT

Figure 2 Statements and Comments

TOOL is not case sensitive. You can enter statements, comments, and other language
elements in uppercase, lowercase, or any combination of the two.

Statements

Semicolon delimiter

Newline characters
within statements

A TOOL statement must end with a semicolon. You can start TOOL statements anywhere
on a line. Although you can put multiple statements on one line, your code will be more
readable if you begin each statement on a new line.

You can use newline characters (line breaks) almost anywhere in TOOL code, but you
should avoid line breaks in the middle of identifiers, constants, or operators. In fully
qualified names (names that use dot notation), you can use line breaks before or after the
period, as in the following example:

Sql RunSer vi ceCbj ect Ref er ence(SoRef)
. Sql RunTi neSer vi ce
. Sql Support Obj
. Updat eArrayr Tar get Tabl eBRows(t ar get Tabl eArrayB) ;

Statement Blocks

TOOL Reference Manual

Many TOOL statements contain statement blocks, or embedded statements. You can
include any statement in a statement block. The syntax of a statement block is:

statement; [statement; ...]

Statement blocks are significant because they determine the scope for any variables or
constants that are declared. See “Name Resolution” on page 52 for further information
about name scopes. A method always contains one statement block within the statements
begin and end, although these two statements are automatically added by the Forte
workshops, so you may never see them. The method statement block usually contains

TOOL Statements and Comments 49

many more statement blocks. While a statement block is contained by a statement, the
containing statement is not in the same statement block. The following example shows a
method statement block with three statements (two of which include statement blocks).

met hod mycl ass. nynet hod

begi n

-- Afor loop to calculate factori al
1st statement j . integer = 1;
2nd statement for i in1to 10 do

=00
-- Put out a diagnostic nessage. ‘t’ is reinitialized
-- each tinme through.

t : TextData = newm(value = ‘Value is now °);
t. Concat (j);
task. Part. LogMgr. Put Li ne(t);

end for;

-- A transaction bl ock

3rd statement begi n transaction

sqgl insert into ...
sql update ...

end transaction;
end net hod;

Compound statements You can use the begin statement to nest a compound statement within a statement block.
The compound statement determines the scope for any variables and constants that are
declared between the begin and end clauses.

Example: -- Exanpl e of conmpound staterment to read a text file.
compound statement while ...some condition... do
out Text : TextData = new(value = ‘FILE NOT READ.’);
begi n

-- Check for errors on file open
f : File = new
fname : TextData = new,
fnane = ... pronpt user for name ...;
f. Set Local Nane(nane = fnane);
f. Open(accessMbde = SP_AM READ) ;
f. ReadText (target = out Text);
exception
-- Any errors in namng, opening, or reading file.
when e : Fil eResourceException do
t ask. Err Mgr . ShowEr r or s(TRUE) ;
end;
...nore of the while |oop. outText is set...
end whil e;

See “Begin” on page 93 for information about compound statements.

Statement Labels

You can assign statement labels to identify certain TOOL statements. Statement labels
allow you to direct program control to a specific statement. Labels are usually used for
control statements, or statements that can effect the flow of control of a program. Examples

Language Elements Chapter 2

50 TOOL Statements and Comments

Example:
statement label

of control statements are case, event loop/case, if, for, while, continue, exit, and return.
However, not all control statements allow labels, and some non-control statements do
allow labels. Chapter 3, “TOOL Statement Reference,” indicates which statements can have

labels.

Statement labels can be any legal TOOL name (see “Names” on page 51). In the following

example, the label “reprompt” is used with the exit statement to exit both the for loop and
the while loop; if the label were omitted, the exit statement would leave only the for loop,

but not the while loop.

repronpt : while (TRUE) do
for i in1to 10 do
somet hi ng done 10 tinmes ...

if self.Wndow. QuestionDi al og
(‘Go again?’, BS_YESNO BV_YES) = BV_NO then

exit repronpt; -- Leave the while, not just the for
end if;
end for;
...nmore in the while loop ...
end whil e;
Comments

Example:
single-line comments

Example:
block comment

Example:
nested block comment

TOOL Reference Manual

You can include two types of comments in methods: single-line comments and block
comments. Comments are ignored when the code is compiled and executed.

Single-Line Comments

Single-line comments begin with the characters “--” or “//” and end with the end of line
character. The system ignores all characters between these two delimiters.

/'l Here is a coment

-- Here is another style conment.

x = 10; /] Here is one at end of line
j i nt eger; -- Here is another

Block Comments

Block comments begin with “/*” and end with “*/”. The system ignores all characters
between these two delimiters. Block comments can span any number of lines.

/* Here is the start of a long multi-Iline coment that
goes for several lines. The next statement:
X = 10;

is not going to be executed, because it is in the comment */

A block comment can contain a single-line comment or another block comment. This
means that you can nest block comments. For example:

/* Start first bl ock comrent
/* Start second bl ock coment
End second bl ock comment */

End first block coment */

Names

Restrictions

Use double quotes for names
that are reserved words

Names 51

You use names to identify all the Forte system components, including:
® projects

® environments

® named constants
m classes

m interfaces

m service objects

® methods

m attributes

m events

m event handlers

E Ccursors

m variables

® parameters

m labels

A Forte name contains alphanumeric characters and underscores. The first character must
be an alphabetic character or an underscore. Case is not significant. The name can be any
length. When you name a new component in TOOL, the name must be unique for the
current scope (see the next section for a description of scopes).

A Forte name can have no spaces or symbols except the underscore. You cannot use TOOL
reserved words (see Appendix A, “Reserved Words”) and you should avoid using SQL
reserved words (also in Appendix A). Also, Forte’s internal naming scheme imposes the
following restrictions:

= You cannot start any name with “forte”
® You cannot end any name with “proxy”

In most TOOL statements, when you want to reference a component, you simply type its
name. However, when you are using SQL statements, you may need to preface a Forte
name with a colon in order to distinguish it from a column name. See “Using Forte Names
with SQL” on page 53 for more information.

If you need to reference an existing component whose name is the same as a reserved
word, you must enclose the name in double quotes. (This might happen when you import
a .pex file.)

Language Elements Chapter 2

52 Names

Name Resolution

Example:
name resolution

TOOL Reference Manual

Unless you use a qualified name (described under “Qualified Names” on page 53), Forte
does not consider the context in which you use a name. Instead, Forte searches for any
component with that name. After finding the first component with the specified name,
Forte then determines if it is the correct kind. If it is not, Forte generates an error.

Forte searches for the name starting in the current scope and moving out to the enclosing
scopes. The order of scopes that Forte uses to resolve a name is shown in the following
table.

Scope Search Order for Forte Name Resolution
Order Component Checked Named Items Checked
1 Current statement block local variables, statement labels, named constants

2 Current method or local variables, statement labels, named constants, parameters
current event handler

B Current class attributes, methods, events, event handlers
4 Current project classes, interfaces, project constants, cursors, service objects, supplier projects
5 Supplier plans classes, interfaces, project constants, cursors, service objects

A name from a supplier plan must be unique. If the same name refers to
components in different supplier plans, you must use the plan name to qualify
the name.

Because TOOL searches for a name starting at the current statement block and searching
through the enclosing scopes, a name in an inner scope can “hide” a name in an outer
scope. In the following example, the programmer declares a variable that has the same
name as an existing class. When Forte executes the statements after the variable
declaration, the class name is not recognized. Once outside the statement block that
contains the variable declaration, the class name is again recognized.

-- ... Aclass naned Artist is defined
for
artist : Artist = new,
-- ‘artist’ is declared as a variable name for an object
-- of Artist class.
artist.Born = 1844,
painter : Artist;
-- ERROR ARTIST IS NOT A CLASSNAME HERE
end for;
-- Now the name Artist is a class again.
painter : Artist;

Names 53

Qualified Names

Class name

Project name

You can use dot notation to qualify a class element with a class name and/or plan name.
Using fully qualified names allows you to explicitly identify a unique element. Fully
qualified names are useful when the same name is used by multiple elements, and are
helpful for code maintenance. Also, when you use a fully qualified name, TOOL searches in
the specified project or library only, ignoring the default search order for the supplier plans.

To identify which class an element belongs to, you can use the following syntax:
class_name.class_element_name

Use the following syntax to identify the project or library to which a component belongs:
project_name.project_component_name

For class components in supplier plans, you can specify both the plan name and the class
name, using the syntax:

plan_name.class_name.class_element_name

Using Forte Names with SQL

Use colons for Forte names

Example:
Forte names with SQL

If the Forte name is the
same as a SQL reserved word

TOOL SQL statements reference database tables and columns as well as Forte names.
Therefore, in almost all TOOL SQL statements you must prefix Forte variable names with
colons to distinguish them from database names.

year _born : integer = 1800;
sql select ptr_nane into :name from painter_table
where birth < :year_born;

In some cases you need not use colons before Forte names. The descriptions of the
individual statements in Chapter 3, “TOOL Statement Reference,” indicate when colons are
not needed.

While you should avoid using Forte names that are the same as SQL reserved words, it may
be necessary occasionally. If a Forte name is the same as a SQL reserved word, and you are
not using a colon to identify it as a Forte name, then you must enclose it in double
quotation marks. For a list of SQL reserved words, see Appendix A, “Reserved Words.”

Language Elements Chapter 2

54 Simple Data Types

Simple Data Types

Advantages of classes over
simple data types

You use the Forte simple data types, described in the next few sections, for handling string,
boolean, and numeric data. You can use simple data types to declare variables, attributes,
and parameters. The numeric data types are discussed together because they can be
combined in numeric expressions.

Forte provides an “object” version of each simple data type. The advantage of using an
object to store data is that the class provides methods for manipulating the data. Forte also
provides classes specifically for storing and manipulating dates and times, time spans, and
images. See the Framework Library online Help for general information about using the
class data types and reference information on the subclasses of the DataValue and
DataFormat classes.

Forte provides additional numeric data types and data structures for methods that
integrate with external systems, such as methods for C, DCE, or CORBA classes. The data
structures are:

® pointer

® enum

m fixed-size array
® struct

® union

For information about the external data types and data structures, see Integrating with
External Systems.

String Data Types

string data type

Example:
string constants

TOOL Reference Manual

The string data type stores a character string. This data type is very simple. You use a string
constant to specify a string value, but there are no string expressions. Although you can
compare strings in boolean expressions (see “Boolean Data Type” on page 56), you cannot
manipulate strings. It is usually preferable to use the TextData class, which provides many
text handling methods and an unlimited text string.

To declare a data item with the string data type, use the string key word. For example:
s : string;

nane : string = ‘Jones’;

The default value of a string data item is NIL, which means that it contains no string.

Also see the “Char Data Type” on page 55.

String Constants

A string constant is any series of characters enclosed by single quotes.
s : string;
s = ‘Jones’;
if s="'Smth then
W |l not execute ...
end if;

Example: converting a string
constant to char data

Example: converting
char to integer

Simple Data Types 55

To specify an empty string, use two single quotes with no characters between them. The
following table specifies how to enter special characters within a string:

Special Character How to Enter It

v

\ \
new line \n
carriage return \r
tab \t
alert (bell) \a
backspace \b
formfeed \f
vertical tab \v
octal value \000, where 0 is 0-7

hexadecimal value \xhh, where h is 0-9, A-F, or a-f (the character with the hex value)

Char Data Type

The char data type exactly matches the C char data type and contains a single byte of data.
TOOL provides this data type so that you can pass data to C procedures using the same
data type that C requires for a character string—an array of char data items.

Because TOOL does not actually support a char constant, you can convert a string constant
that contains one byte to type char. Remember that a string constant can also contain
sequences, which can also be converted to a char data value if the string contains only one
byte. The following example shows this conversion:

myChar Val ue : char;

-- ‘a string constant in TOOL not char constant, as in C
-- but TOOL converts the string constant to char data
myChar Val ue = ‘a’;

-- myCharValue = “ab’ invalid because ‘ab’ contains two bytes
myChar EscapeSequence : char;

-- ‘\n’ is new |line escape sequence in single-byte constant

myChar EscapeSequence = ‘\n’;

TOOL also automatically converts char data to integer data when the char value is assigned
to an integer type variable. The reverse is also true, as shown in the following example:

c : char;

i : integer;

-- 'a is a char constant

c ='a;

-- Convert char to integer value 97 (ASCI| equivalent of ‘a’)
i = c;

-- Convert integer to char value ‘a (ASCI| equival ent of 97)
c =i;

Unlike C, TOOL does not allow you to assign string constants larger than one byte (more
than one character) to integer values.

Language Elements Chapter 2

56 Simple Data Types

If you are writing a multilingual application that must support multiple-byte character sets,
remember that you cannot use char to contain a multiple-byte character. For more
information about using char data in multilingual applications, see the Forte 4GL
Programming Guide.

Boolean Data Type

TOOL Reference Manual

The boolean data type contains two logical values, TRUE and FALSE. Use the boolean data
type when a data item has only two values (such as true and false, yes and no, or on and
off). To declare a data item with the boolean data type, use the boolean key word, as in the
following example:

test : bool ean;
test = FALSE;
test2 : bool ean = TRUE;

The default value for a boolean data item is FALSE.

Boolean Constants

The boolean constants are the key words TRUE and FALSE. These can be in upper or lower
case. The following example shows setting two variables to TRUE.

test : bool ean;
test2 : bool ean;
test = TRUE; test2 = true;

Boolean Expressions

Boolean expressions are expressions that resolve to a logical value of TRUE or FALSE. You
use boolean expressions to specify the conditions for several TOOL programming
statements.

The following types of boolean expressions are described in the next sections:

Comparison expression Uses a comparison operator to compare two values (numeric,
string, pointer, or object) and produce a value of TRUE or FALSE.

Logical expression Uses a logical operator to compare one or two boolean values and
return a value of TRUE or FALSE.

In addition to using Boolean expressions, you can use the following classes to reference
boolean values in TOOL code:

BooleanData and BooleanNullable Objects of the BooleanData class have a value of
TRUE or FALSE. Objects of the BooleanNullable class have a value of TRUE, FALSE, or
NULL.

Example:
comparison expressions

Simple Data Types 57

Comparison Expressions

A comparison expression compares two numeric, two string, or two object values with a

comparison operator to produce a value of TRUE or FALSE. The numeric or string values
can be constants, variables, attributes, named constants, expressions, and methods that

return an appropriate value. The following table describes the comparison operators.

Operator Meaning Description

= Equals Result is TRUE if left side is equal to right side. Defined for numeric data
types, strings, pointers, and objects. Two pointer values are equal if they
contain the same address. Two object values are equal if they reference the
same object.

<> Not equals Result is TRUE if left side is not equal to the right side. Defined for numeric
data types, strings, pointers, and objects.

< Less than Result is TRUE if left side is less than the right side. Defined for numeric
data types and strings.

> Greater than Result is TRUE if left side is greater than right side. Defined for numeric data
types and strings.

<= Less than or equal to Result is TRUE if left side is less than or equal to right side. Defined for
numeric data types and strings.

>= Greater than or equal to Result is TRUE if left side is greater than or equal to right side. Defined for
numeric data types and strings.

The following code fragment uses comparison expressions:

X : integer = 10;

if x < 100 then

-- conparison expression in if
this will be executed

end if;

-- Also, it can be a bool ean val ue

test : bool ean;

test = x < 100;

if test then

-- the sane results as above
this will be executed

end if;

Logical Expressions

A logical expression compares two boolean values with a logical operator to produce one
boolean value, TRUE or FALSE. The boolean values you can use in the expression include
comparison expressions, logical expressions, boolean constants, boolean variables,
boolean attributes, and methods that return a boolean value. You can also compare two
objects of the BooleanData or BooleanNullable class (see the Framework Library online
Help for information on these classes). The following table describes the logical operators.

Operator Description

not Negates one boolean value. If the value is TRUE, not produces FALSE. If the value is FALSE, not
produces TRUE.

and Result is TRUE if both values are TRUE. If one or both values are FALSE, the result of the expression is
FALSE.

or Result is TRUE if either value is TRUE. The expression is FALSE only if both values are FALSE.

For BooleanNullable objects, a value of NULL is equivalent to FALSE.

Language Elements Chapter 2

58 Simple Data Types

The following code fragment uses logical expressions:

Example: if not x > 10 then

logical expressions .
end if;
if (x >10) or (x < 0) then
end if;

if (x > 10) and (y < 100) then
end if;

The “and” and “or” operators only evaluate both operands if necessary. In the following
example, if obj is NIL, then obj.method1() will not be evaluated:

if obj <> NIL and obj . met hod1()

Operator precedence The logical expression is evaluated with the following operator precedence (see “Numeric
Expressions” on page 61):

Precedence Operator

1 arithmetic and address operators

2 comparison operators

3 bitwise operators (see “Numeric Expressions” on page 61)
4 not

5 and

6 or

The following sample code shows operator precedence:

Example: X @ integer = 1,
operator precedence y . integer = O
if x+y >y - xor not x>y then
...sane as...
if ((1+0) > (0-1)) or (not (1>0)) then
...oor ...
if (1 >-1) or (not (TRUE)) then
...oor ...
if (TRUE) or (FALSE) then
...oor ...
i f TRUE then
Parentheses in expressions Use parentheses to guarantee the order of evaluation. TOOL evaluates the expressions in

the innermost parentheses first.

Example: parentheses if (((x >y) or (y <2)) and (x > 2)) then
in an expression

end if;
You can also use parentheses with the not operator. This negates the entire expression

within the parentheses. The following example illustrates:

Example: if not (((x >y) or (y <2)) and (x > 2)) then
parentheses with not

end if;

TOOL Reference Manual

Example:
use of BooleanData
and BooleanNullable

Simple Data Types 59

BooleanData and BooleanNullable Classes

You can use a reference to a BooleanData or BooleanNullable object as a boolean
expression in a TOOL statement. If the value of the object is TRUE, the expression is TRUE.
Otherwise, the expression is FALSE. An object of the BooleanData class has a value of TRUE
or FALSE. An object of the BooleanNullable class has a value of TRUE, FALSE, or NULL.

Using a reference to one of these objects is useful when you want to use the result of a
method as the boolean expression in a control statement. A number of methods in the
DataValue classes return BooleanNullable as a result.

b : Bool eanData = new(val ue = TRUE);

if b then
will be executed ...
end if;
t : TextData = new (value = ‘hello’);

-- |IsEqual returns a Bool eanNul | abl e
if t.IsEqual (‘hello’) then

will be executed ...
end if;

See “Objects” on page 64 for information about using an object reference in a TOOL
statement. See the Framework Library online Help for information on the BooleanData and
BooleanNullable classes.

Numeric Data Types

The numeric data types allow you to store integers and floating point numbers of different
sizes. This section describes the integer and float data types, and provides general
information on numeric constants and numeric expressions.

Integer Data Types

Of the integer data types, only some are guaranteed to be portable because they have the
same range on every platform. The non-portable types use different representations on
different machines. Keep this in mind when you declare integer data items. The following
table lists the integer data types and indicates whether or not they are portable:

Key Word Description Portable
int At least -32,768 to +32,767. no
long At least -2,147,483,648 to +2,147,483,647. no
short At least -32,768 to +32,767. no
i2 Signed two byte integer. Exactly -32,768 to +32,767 all platforms. yes
ui2 Unsigned two byte integer, 0 to +65,535. yes
integer or i4 Signed four byte integer. Exactly -2,147,483,648 to +2,147,483,647 on all yes
platforms.
ui4 Unsigned four byte integer, 0 to +4,294,967,295. yes
i Signed one byte integer, -128 to +127. yes
uil Unsigned one byte integer, 0 to +255. yes

To declare a data item of an integer data type, use the appropriate key word. For example:
i : integer;
j : short = 32;

Language Elements Chapter 2

60 Simple Data Types

ulnt and ulong data types

Example: float types

Integer constants

Hexadecimal and
octal integers

TOOL Reference Manual

The default value for an integer data item is 0.

Forte provides two additional data types specifically for methods that integrate with
external systems, such as methods for C, DCE, or ObjectBroker classes: ulnt for unsigned
integer and uLong for unsigned long integer. For more information about these data types,
see Integrating with External Systems.

Float Data Types

Forte supports two float data types; the exact precision of the float data type depends on
your particular machine. The float data types are:

Key Word Description
float Approximately 10E-38 to 10E+38, with about 7 digits of decimal precision.
double Approximately 10E-308 to 10+308, with about 15 digits of decimal precision.

If you want to ensure that your code is completely portable, you should only use the
precision that is available on all the machines you plan to use. For precise decimal
behavior, you can use the DecimalData class (see the Framework Library online Help for
information).

To declare a data item with the float data type, use the appropriate key word.
i : float;

j : double = 10;

pi : double = 3.14159268;

The default value for a float data item is 0.0.

Numeric Constants

An integer constant is a sequence of digits between 0-9. No other characters are allowed. To
indicate a negative number, use a minus sign. A number without a sign is considered
positive but you can use a plus sign if you wish. The syntax is:

[+|-1digits
X : integer;
X = 10;
X = -23;
X = +43;

You can use hexadecimal or octal constants to specify an integer. The syntax for
hexadecimal integers is:

Oxhexdigit
where hexdigit is:
0-9, A-E or a-f (the character with the hex value)

The syntax for octal integers is:

Ooctaldigit

where octaldigit is any digit from 0-7. The first non-octal digit terminates the number.
X = 0x20;

X = Oxffo04;

X: integer = 011; -- returns a value of 9

X: integer = 08; -- returns a value of O

Simple Data Types 61

Float or double constant A float constant is a sequence of digits 0-9 with a single decimal point (.). You can also
include an exponent. To indicate a negative number, use a minus sign. A number without a
sign is considered positive but you can use a plus sign if you wish. The syntax is:

[+|-1digits.digits[e|E[+|-] integer]

Example: y : doubl e;
numeric constants y = 10;
y = -123. 456;
y = -1.3e+12;

Numeric Expressions

A numeric expression combines two numeric values with an arithmetic operator to
produce one numeric value. The numeric values can be numeric constants, numeric
variables, numeric attributes, methods that return a numeric value, SQL statements that
return numeric values, and numeric expressions.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (integer results are truncated, not rounded)
- (unary) Negative

+ (unary) Positive

% Mod

& bitwise and

| bitwise or

A bitwise exclusive or

~ bitwise (unary)

Order of evaluation Numeric expressions are evaluated from left to right, with the following operator
precedence (from highest to lowest):

Precedence Operator

1 [1->

2 * (pointer dereference) & (address of)
3 - (unary) + (unary) ~
4 */ %

5 + -

6 <> =>= <= <>
7 & (bitwise)

8 A (bitwise xor)

9 | (bitwise or)

10 not

11 and

12 or

Language Elements Chapter 2

62 Simple Data Types

Example: evaluation
of numeric expression

Example: parentheses
in numeric expression

Expression data type

Casting numeric types

TOOL Reference Manual

The following example illustrates the order of evaluation in a numeric expression:

X i nteger = 1;

y : integer = 2;

Z . integer;

Z =X +y*y; -- Evaluates to 5

Use parentheses to guarantee the order of evaluation. TOOL evaluates the expressions in
the innermost parentheses first.

X i nteger = 1;
y . integer = 2;
z integer = (x +vy) *vy;

-- Evaluates to 6

The data type of a numeric expression’s result is determined by the data type of both
operands (left and right). The following table shows the data type for each possible pair of
operands. Since the table is symmetric, the rows and columns can correspond to either the
left or right operand:

double float ui4 long integer/i4 int i2 i ui2 ui4

double double double double double double double double double double double
float double float float float float float float float float float
ui4 double float ui4 ui4 ui4 ui4 ui4 ui4 ui4 ui4
long double float uid long long long long long long long
integer/i4 double float uid long integer integer integer integer integer integer
int double float ui4 long integer integer integer integer integer integer
i2 double float uid long integer integer integer integer integer integer
i1 double float uid long integer integer integer integer integer integer
ui2 double float ui4 long integer integer integer integer integer integer
uil double float ui4 long integer integer integer integer integer integer

Forte automatically converts the value whose data type is different than the result type.
This takes effect before the operation is executed.

Because Forte automatically performs conversions for the numeric values in expressions,
you normally do not need to cast numeric types. However, for special cases, you can use
the same syntax for casting numeric types as you do for casting objects. The syntax is:

numeric_type (expression);
or
(numeric_type) (expression);

For information on casting objects, see “Casting” on page 69.

Example: SQL statement
in numeric expression

Simple Data Types 63

Using SQL Statements in Numeric Expressions

You can use SQL statements that return an integer to specify an integer expression in any
TOOL statement.The following SQL statements return integer values:

m sql delete

m sqlinsert

m sql fetch cursor

m sql select

m sql update

m sql execute immediate
m sql execute procedure

To use a SQL statement as a numeric expression, you must enclose the entire SQL
statement within parentheses. The following example shows assigning the return value of a
sql fetch statement to an integer expression:
c : DefinedCursor;
sql open cursor ¢ on session db_session;
while ((sql fetch cursor ¢ into x, y, z) > 0) do
anot her row was fetched ...
end whil e;
sql cl ose cursor c;

Language Elements Chapter 2

64 Objects

Objects

By using a class name, you can define any variable, attribute, or parameter to have a data
type of “object.” This means that the data item serves as a reference to an object. Both
Figure 3 and the following line of code illustrate this.

a: Artist = new (nane='Henri Rousseau’);

Artist Object

Henri

> Rousseau

Figure 3 Relationship between Data Item and Object

More than one data item can point to the same object. The following example illustrates
two data items pointing to the same object:

Example: two data items t Text Data = new(value="abc’); -- TextData is a class
pointing to same object s : TextData:
s =t; -- s nowpoints to the same object as t
s. Set Val ue(‘def’); -- Change object value to ‘def’
-- sand t are still pointing to the sane object.
task. Part.LogMgr. PutLine(s); -- will be ‘def’
task. Part.LogWgr. PutLine(t); -- will be ‘def’
NIL A data item can also have a value of NIL, which means “no object.” See “The NIL Constant”

on page 69 for more information about NIL.

Working with Objects

In TOOL, you can manipulate an object as a whole or you can work with its individual
attributes. For example, when you specify an object reference for a parameter, you are
passing a reference to the entire object. When you set the value of an attribute, you are
working with just one of the object’s attributes. The following table summarizes the syntax
for working with an object and its components.

To: Use this syntax:

Construct an object {variable | attribute}= {new [(attribute = value [, attribute = value]...]) |
object_class ([attribute = value [, attribute = value]...)]}

Reference an object {variable | attribute | method_invocation | array_row|n] | service_object}

Specify an object value {NIL | object_constructor | object_reference}

Reference an attribute object_reference.attribute

Assign a value to an attribute object_reference.attribute = expression

Cast an object class (object_reference)

This section first describes how to work with entire objects in TOOL. It then describes how
to work with two class components: attributes and methods.

TOOL Reference Manual

new keyword

Setting variable values

Setting attribute values

Example:
setting attribute values

Shared and
transactional objects

Objects 65

Using Object Constructors

To create an object, you use an object constructor. Object constructors create new objects
that you can then manipulate with TOOL code. Since the default value of an attribute,
variable, or parameter with a class type is NIL, you must also create the objects they
reference.

The object constructor syntax is:

{variable | attribute } = {new [(attribute = value |, attribute = value]...]) |
object_class (lattribute = value |, attribute = valuel...)1}

The simplest way to create an object is to use the new key word. This creates a new object,
using default values for the attributes. The following example creates a new object, called
painter, of the Artist class:

painter: Artist = new,

However, you cannot use the new keyword to create an object in the following cases:
®m when creating a new object as a value for a parameter

m when creating a object nested in another constructor (see example below)

In these two cases, you must use the syntax that specifies the object class.

You can use an object constructor when you are assigning a value to a variable or an
attribute of a class type.

For variables, you can construct the object when you declare the variable or when you are
assigning a value to the variable.

For attributes, you construct the object when you assign a value to an attribute. To specify
values for attributes, you can enter a list, enclosed in parentheses, of attribute/value
assignments. The value for an attribute can be any expression that is compatible with the
data type of the attribute (including an object constructor). Forte sets the values in the
order specified. Any attributes for which you do not specify a value are set to default values.

painter : Artist;

pai nter = new
Name = TextData(value = ‘Henri Rousseau’),
Country = TextData(value = ‘France’),
Born = 1844, Died = 1910,

School = TextData(value = ‘Primtive’),
Conment s = Text Dat a(val ue =
‘He was ... ponpous and absurd.’));

Every class specifies whether objects of that class can be shared and/or transactional, and
whether these settings can be overridden. If the settings can be overridden, you can set the
object’s IsShared and IsTransactional attributes in the object constructor to override the
default setting. (You can also set these attributes at any point after constructing the object.)
See the Framework Library online Help for information about these attributes.

The following code sample illustrates setting the IsTransactional attribute:

Example: setting IsTransactional t : TextData = new(val ue =

attribute

‘Hell o', IsTransactional = TRUE);
X : TextData = new(val ue = ‘ Goodbye’);

-- Set after construction
X. | sTransacti onal = TRUE;

Language Elements Chapter 2

66 Objects

Declared type
and runtime type

Setting parameter values

Example: object
constructor as expression

Example: Init method

TOOL Reference Manual

When you declare a variable, attribute, or parameter of a class type, the class for the data
item is its declared type. However, the object that the data item points to can either be of
the same class as or a subclass of the declared type. For example, you could declare a
variable of class FieldWidget, and then assign it to reference an object which is actually of
type TextField, a subclass of class FieldWidget (assigning object values is described under
“Specifying an Object Value” on page 68). The class of the actual object is called the
runtime type.

The optional “object class” in the object constructor allows you to declare an object with a
different runtime type than the declared type of the variable. This can be any subclass of
the variable’s class. The following example illustrates:

n Nuner i cDat a;
n = Doubl eDat a(val ue = 123. 45);

The advantage of making the declared type of a data item a higher level than its runtime
type is that your code is reusable. A single data item can point to many different classes of
objects. See “Casting” on page 69 for further information about declared and runtime

types.
If you want to use an object constructor as an expression, for example, to set the value of a

parameter, you must include the object class. You must include the class because in this
context Forte needs to know the object’s type.

-- ... fromthe AuctionMyr OpenNewlLi st nmethod ...
-- The AddBi d net hod takes Painting and Deci mal Dat a
-- paraneters. self refers to the current object.
sel f. AddBi d (pai nti ngToAdd = t_pai nting,
startingBid = Deci nmal Dat a(val ue = 2000000. 00)) ;

The Init Method

Whenever you construct a new object, Forte performs the following (in order):

1 Creates an empty object of the given class, using zero for numeric values, empty for
string values, and NIL for object values.

2 Invokes the Init method on the object.

Every class inherits the Init method from the Object class. You can override this method
for your own class. The Init method you write will then automatically be invoked every
time you construct an object of that class. If you do override the Init method, be sure to
invoke super.Init as the first statement of the Init method body.

3 Sets the values of the attributes that you have specified in the attribute/value list. Forte
performs these assignments in the order in which you specify them.

The following code sample illustrates an Init method:

-- The Artist Init nethod

super.lnit();

-- Al ways execute Super’s Init.

-- Create enpty TextData objects, as Transactional too.
sel f. Nane = new(| sTransacti onal = TRUE);

sel f. School = new(lsTransactional = TRUE);

sel f.Country = new(|IsTransactional = TRUE);

sel f. Comments = new(|sTransacti onal = TRUE);

sel f.Born = O; self.Died = O;

Example:
referencing an object

Dot notation

Strings are pointers to
objects

Objects 67

Referencing an Object

The term “object reference” can refer to any one of several means of identifying an object.

To reference an object as a whole, you use the name of a data item that points to the object.
In the following example, “t” and “s” are two variables that point to the same TextData
object:

t TextData = new(value = ‘Hello');
s . TextData = NIL; -- References no object.
s =t; -- Nowboth ‘s’ and ‘t’ reference sane object.

TOOL provides five special key words for referencing special objects:

Key Word Description

application Refers to the current application (used to reference the message catalog for the current application—
see Forte 4GL Programming Guide for information).

self Refers to the current object, that is, the object on which the current method was invoked.

super This key word is only used in the format “super.methodname” to refer to an inherited method
(more specifically, a method for which you have written an overriding method). See “Invoking
Methods” on page 73.

task Refers to the current TaskHandle object for the current task.

transaction Refers to the current TransactionHandle object for the current transaction.

The following example illustrates using the transaction key word:

-- ... Abort the current transaction for the task ...
transacti on. Abort (true);

You can use an expression to identify the object. For example, if a method has an object as
its return value, you can invoke the method to provide an object reference. See “Invoking
Methods” on page 73 for more information.

To reference an object that is an attribute of another object, you use dot notation. The
syntax is:
object_reference.object_referencel.object reference...]

For example:

-- ... in a UserWndow cl ass, change the title...
self.Wndow. Title = new(value = ‘This is a title');

If an object reference is long and you need to continue a command on a new line, you can
use a return character before or after any period in the object reference. For example:

--... in a UserWndow cl ass, change the title...
sel f

. W ndow.

Title = new(value = ‘“This is a title');

If you assign a TextData object to a string, the string becomes a pointer to the value
attribute of the TextData object. If the value of the TextData object subsequently changes,
the value of the string also changes accordingly, as the string is merely a pointer to the
TextData object's value attribute.

Language Elements Chapter 2

68 Objects

Array row reference

Example: referencing
an object in an array

Example:
widget reference

Child fields

To reference an object that is an attribute of an array, you must use a special notation to
reference the array row. See “Array Classes and Array Objects” on page 77 for information
about referencing the individual objects in an array.

a : Array of Bid;
if a[1].BidlnProgress
-- TRUE if bidding active on this one

end if;

Objects for Widgets

A Guide to the Forte 4GL Workshops describes how certain widgets are associated with two
attributes: the attribute that contains the data for the widget and the attribute that points
to the widget object. The widget object contains information about the behavior and
appearance of the widget.

Because both of these attributes share the same name, it is impossible to reference both
attributes by simply using the attribute’s name. In order to distinguish between the two
related attributes, you refer to the attribute containing the widget data using the attribute
name by itself. You refer to the attribute containing the widget object using the attribute
name in angle brackets as follows:

<widget_attribute>

The following code sample references both the widget object itself (<BidStatusMessage>)
and the widgetdata (BidStatusMessage):

-- ... fromthe Display method for ViewPainti ngW ndow. ..
-- The nessage field

<Bi dSt at usMessage>. State = FS_| NVI S| BLE;

-- The nessage data

Bi dSt at usMessage. SetVal ue(*Bid in Progress.’);

If a widget is a child of a named compound widget that is mapped to a class, you need to
use the parent’s name in order to identify it. Use dot notation as follows:

<parent_widget_attribute.child_widget_attribute>

Specifying an Object Value

Example: object values

Object value for class type

Object value for interface
type

TOOL Reference Manual

To specify a value for a variable, parameter, or attribute of a class or interface type, you
must use a reference to an existing object, an object constructor, or the special NIL
constant. For example:

t TextData = new(value = ‘Hello’);
s : TextData = N L;
s = t,;

If the data item has a class type, the object value must be the same class or a subclass of the

data item’s declared type. In other words, the class for the object value on the right of the
assignment must be the same class as or a subclass of the one on the left.

If the data item has an interface type, the object value must be of a class that implements
the interface (or a subclass of a class that implements the interface). The implementing
class is the data item’s runtime type.

Object constructors

Simple data types

Class data types

Example: NIL data item

Example: using
method as object value

Objects 69

When you are specifying an object value for a variable, parameter, or attribute, you can use
an object constructor (described under “Using Object Constructors” on page 65) to create a
new object. The following example illustrates:

t Text Dat a;
t = new(value = ‘Hello’, IsTransactional = TRUE);
Comparing Objects

If the individual variables a and b are assigned to simple data types, each assignment is an
assignment to a value. And, a test of equality or inequality (a =b or a <> b) is a comparison
of values when a and b are simple types.

In contrast, if the variables c and d are assigned to class types, each assignment is a
reference to an object. A test of equality or inequality is a comparison of references to
objects.

Thus, when dealing with objects, only if two variables refer to the same object will a
comparison of equality return TRUE. If two variables refer to two objects that are identical
(same class and same values), but not the same object, a comparison of equality returns
FALSE. In this case, the two objects are “identical” but they are not equal.

The NIL Constant

The NIL constant is a special object value that means “no object.” You can assign the NIL
value to a data item of any class. When no data item is left that points to an object, Forte
automatically frees the memory used by the object; there is no explicit “free” operation.
When a data item has a value of NIL, you cannot perform any operations on it. If you try to
invoke a method on the object, set one of its attributes, or use it in an expression, you will
get an exception.

t : TextData = N L;

if t.IsEqual (‘Hello') then

-- ERROR: WLL GET EXCEPTION'!!

Using Methods as Object Values

When a method returns an object, you can invoke the method to specify an object value.

t : TextData = newm(value = ‘a’);
t.Concat (‘b).Concat(‘c’).Concat('d);
-- ‘t’ contains ‘abcd’

If you are assigning the return value of the method to a data item, it must be the same class
or a subclass of the data item’s class.

(See “Invoking Methods” on page 73 for information about return values for methods.)

Casting

As described under “Specifying an Object Value” on page 68, when you assign an object
value to a data item, the object can be a subclass of the data item’s declared type. For
example, when you use a class parameter for a method, the object value you assign to the
parameter can be a subclass of the parameter’s class. This allows you to use the parameter
to pass objects that belong to any of its subclasses.

Language Elements Chapter 2

70 Objects

Example: parameter value
that is a subclass

Example: casting

TOOL Reference Manual

For example, the TextData class has a ReplaceParameters method with a parameterl
parameter with a type of DataValue. When you invoke the ReplaceParameters method, you
can use the parameterl parameter to pass an object of the DataValue class or any of its
subclasses, including TextData or IntegerData, as follows:

t : TextData = new,

nane : TextData = new(val ue = ‘nona’);

t . Repl acePar anet er s
(source = “AMRS: <%> Return status is <9%®@>.',
paraneterl = nane,
paranmeter2 = | ntegerData(value = 2));

The advantage of making the declared type of a data item a higher level than its runtime
type is that your code is reusable. A single data item can point to many different classes of
objects.

Other cases when the object value might be a subclass of the data item’s declared type are:
m the object value for an event parameter
m the object value for a method return value

The result of this assignment is that the declared type of the data item is different than its
runtime type (the class of the object that the data item is pointing to). In the previous
example, assigning the name object value to the parameterl parameter means that the
declared type of the parameter is DataValue while its runtime type is TextData.

When you reference a data item, the compiler recognizes only the declared type. Therefore,
you will get an error if you try to set attributes, invoke methods, or post events defined only
for the object’s runtime class. In order to manipulate the object, you must specify the actual
class of the object.

To access attributes, methods or events defined only for the runtime class, you must cast
the object. Casting simply means identifying the class of a particular object. First you
specify the class name and then you specify the specific object you wish to cast. The syntax
is:
class_name (object_reference) or (class_name) (object_reference)
In the following example we cast object dv from a Datavalue to either a DateTimeData or
an IntegerData, based on the results of the IsA method:
-- ... fromthe DisplayData nmethod of the Isql class ...
td : TextDat a;
dv : DataVal ue = row. GetValue (position = col nunj;
Il ength = sel f. Cal cDat aLength (data = dv, columm = c);
i f dv.|sA(DateTi neData) then

-- For DateTineData, use FornatDate, using Cast.

td = self.dateFnt. For mat Dat e(Dat eTi neDat a(dv)) ;
el seif dv.IsA(IntegerData) then

-- For IntegerData, use Format Nuneric, using Cast.

td = self.intFnt.Format Nuneric(l ntegerData(dv));

end if;

Example:
casting compile-time error

Example:
casting and assigning

Interfaces and casting

Example:
referencing attributes

Virtual attributes

No object reference
is the same as self

Objects 71

When you cast an object, the compiler checks to see whether the cast has any chance of
succeeding at runtime. It does this by checking that the casting type is actually the same
class or a subclass of the data item’s declared type. For example, the following is illegal and
produces a compile-time error because TextData is not a subclass of IntegerData:

i : IntegerData
-- Illegal casting
... TextData(i)...;

You must be sure that the object you are casting really belongs to the class to which you are
casting it. If it does not, the program will get a runtime exception.

Casting does not change the declared type of the data item. You must cast the object each
time you reference it. Therefore, it is a good idea to cast the object once and assign it to a
variable whose declared class is the same as the object’s class, as in the following example:

-- ... get the data fromthe clipboard, only if text
0 : object;
o = sel f.Wndow. W ndowSyst em CopyFronCl i pboard();
if o.lsa(TextData) then

-- Must be text.

t : TextData = TextData(o);

--... now mani pul ate text fromclipboard as ‘t’.
end if;

Casting should be needed infrequently. If you find that you are casting often, you should
check your class hierarchy. You can move some of your methods to a higher level in the
hierarchy. Or you can override the methods so casting will be unnecessary (when you use
overriding, Forte uses the runtime type of the object to determine which method to use).

For specific information on casting arrays, see “Array Classes and Array Objects” on
page 77.

Because the interface is the declared type of a data item, the only operations available for
the object are those defined by the interface. To access operations that are defined for the
class but are not defined for the interface, you must first cast the object to its runtime type.
Casting an object from an interface to a class is exactly the same as casting an object from
a superclass to a subclass.

Accessing Attributes

To reference an individual attribute of an object, use the following dot notation:
object_reference.attribute

The object reference identifies the object. The attribute is any attribute defined for the
object’s class or inherited from its superclasses.

painter : Artist = new,

pai nter.Born = 1843;

pai nt er. Name Text Dat a(‘ Vi ncent Van Gogh’);

You reference a virtual attribute using the same syntax. You do not need to be concerned
about how the attribute is implemented.

Note that if the attribute you are referencing is in the current object, you do not need to
include the object reference. (By “current object,” we mean the object on which the current
method is operating.) When you specify an attribute name by itself, TOOL assumes the
current object.

Language Elements Chapter 2

72 Objects

Example: current object

Object and array attributes

Example:
object and array attributes

Virtual attributes

TOOL Reference Manual

The following two examples have the same effect. The first example uses the self variable to
reference the current object. The second example uses an attribute name without an object
reference to reference the current object.

-- ... inthe Init nmethod for Arti st

super.lnit();

sel f. Name = TextDat a(l sTransacti onal = TRUE);

self.Born = 0;

-- ... is the same as ...

super.lnit();

Name = TextDat a(l sTransacti onal = TRUE);
Born = O;

The individual attributes of an object can themselves be objects or arrays. If the attribute
you are referencing is an object, you can use the same dot notation to access any of its
attributes.

-- ... Inthe Bid class ...

b : Bid = new,

b. Pai nti ngForBi d = new,

b. Pai nti ngFor Bi d. Born 1844;

b. Pai nti ngFor Bi d. Namre = Text Data(‘ Henri Rousseau’);

If the attribute you are referencing is an array object, you need to use a special notation to
reference an individual row in the array. See “Working with Array Rows” on page 82 for
information.

Setting Attributes

To set the value of an attribute, use an assignment statement to assign a new value to the
attribute.The syntax is:

object_reference.attribute = value

The object reference identifies the object. The attribute is any attribute defined for the
object’s class. The value is any expression that has a data type compatible with that of the
attribute. If the attribute is a class type, the value can be a reference to an existing object or
an object constructor.

You set virtual attribute’s value using the same syntax. You do not need to be concerned
about how the attribute is implemented.

In many cases, setting an attribute means more than just updating some data. The new
value you specify may actually change the appearance or behavior of the object. For
example, changing the FillColor attribute of field causes it to change color on the user’s
screen. Sometimes this may even cause side effects for other objects.

Setting Attributes for Widgets

As described under “Objects for Widgets” on page 68, you use angle brackets to reference a
widget object. Therefore, to set the value of a widget object’s attribute, you must use angle
brackets in the assignment statement. The syntax is:

<widget_attribute>.attribute = value

Object reference

Example:
invoking a method

No object reference
is the same as self

Method name

Overloaded methods

Overridden methods

Use super to invoke
an overridden method

Example: use of super

Objects 73

Invoking Methods

To invoke a method, use an object reference to identify the object and then use dot
notation to specify the method name. You must also specify a value for any required input
parameters. If the method has a return value, you can use the method to specify a value in
any TOOL statement.

The syntax is:
object_reference.method|(parameter_list)]

The object reference identifies the object on which you wish to invoke the method. The
method will perform its operations on this object.

-- ... invoke Concat on a TextData object
t : TextData = new,
t. Concat (‘ xyz');

To invoke a method on a widget object, use the angle bracket syntax to identify the object.
The following example illustrates:

-- Set the selection area in the <Conmments> TextField ...
<Comment s>. Set Sel ecti onRange(1, 30);

Note that if the method is for the current object, you do not need to include the object
reference. (By “current object” we mean the object on which the current method is
operating.) If you specify a method name by itself, TOOL assumes the current object.

The method name identifies the particular method to invoke. This can be any method
defined or inherited by the object’s class. If there is more than one method with the same
name, Forte checks for method overloading at compile time. At runtime, Forte checks for
method overriding.

At compile time, if there is more than one method with the same name for the declared
class of the object, Forte uses the parameter data types to determine which method to use
(see “Parameters” on page 74 for information on method parameters). If there is no exact
match between the data types of the parameter you specify and the declared parameters
for the method, Forte uses the method with the best match. If there is no best match, you
will receive a compile time error message.

At runtime, Forte checks the runtime type of the object to see if the method has been
overridden. If the declared class and the runtime class both have methods with the same
name and parameter data types, Forte uses the method defined in the object’s runtime
class.

When you override a method, you replace an inherited method with a new method with
the same name. If you need to invoke the inherited method, simply use the super key word
before the method name to specify the overridden method rather than the overriding
method:

-- ... inthe Init nmethod for the Artist class ...
super.lnit();
sel f. Nane = new,

This is particularly useful when you are writing a new method that adds functionality to an
inherited method.

Language Elements Chapter 2

74 Objects

Example:
method parameters

Strings and
TextData parameters

Required parameters

Example:
using parameter names

TOOL Reference Manual

Parameters

When you create a method in the Class Workshop, you define each method parameter in
the Method Properties dialog. You define each parameter as for input only, output only, or
for both input/output. You also define a type for each parameter, specifying either a simple
data type or a class.

When you invoke a method, the values that you specify for the method’s parameters must
correspond one to one with the parameters in the method definition. For input parameters,
you can specify any value that is compatible with the parameter’s data type. For output or
input-output parameters, you can specify any attribute or variable that is compatible with
the parameter’s data type.

-- ... The CopyRange nethod defined on TextData ...
t Text Data = new(val ue = ‘abcdefg’);

s : TextDat a;

s = t. CopyRange(startOfset = 0, endOfset = 3);

-- WIIl be *abc’

If the method was defined with a TextData parameter, you can specify a simple string as the
value when you invoke the method. Forte automatically creates the TextData object, using
the string for its TextValue attribute.

Methods have required parameters, optional parameters, or a combination of optional and
required parameters.

A parameter is required if the definition for the parameter does not specify an initial value.
If the method has required parameters, you must specify values for all the required
parameters when you invoke the method.

To indicate how the values and parameters correspond, you can use the parameter names,
the parameter positions, or both. The syntax is:

[name =] value {, [name =] value}

To use the parameter names, enter the parameter name followed by the value. These can
be in any order. We recommend using parameter names rather than positions because it
makes your code easier to maintain.

-- ... The CopyRange nethod defined on TextData ...
t Text Data = new(val ue = ‘abcdefg’);
s : Text Dat a;
s

= t. CopyRange(startOffset = 0, endOffset = 3);
-- WII be ‘abc’
-- ... is exactly the same as ...
s = t. CopyRange(endOf fset = 3, startOfset = 0);

-- WIIl be ‘abc’

Example:
using parameter positions

Example:
optional parameters

Objects 75

To specify the parameters by position, enter the values in the same order as the
corresponding parameters in the method definition. This order must be identical to the
parameters in the original definition.

-- ... The CopyRange nethod defined on TextData ...
t Text Data = new(val ue = ‘abcdefg’);

s : Text Dat a;

s = t. CopyRange(0, 3);

-- WIIl be *abc’

To use a combination of the two techniques, you must first enter the values by position.
You can then use parameter names for the remaining values in any order.

An input parameter is optional if the definition for the parameter specifies an initial value.
If the method has optional input parameters, you can use or ignore any of the optional
parameters. If you decide to ignore all the input parameters and there are no required
parameters, you can omit the parentheses when you invoke the method.

If you are using parameter names, you can leave out any of the optional parameters. If you
are using parameter positions, you can only leave out optional parameters that are at the
end of the series.

-- ... The CopyRange nethod defined on TextData ...
t Text Data = new(val ue = ‘abcdefg’);

s : TextDat a;

s = t. CopyRange(startOfset = 3);

-- WIIl be ‘defg

-- ... is exactly the same as ...

s = t. CopyRange(3);

-- WIIl be ‘defg

Output Parameters

The value for any output parameter (either input-output or output only) must either be a
variable or an attribute. Because the method that you are invoking will be assigning the
output value to the output parameter, the input value you specify must be a data item that
can be on the left side of an assignment statement.

Note that Forte passes output parameters by value result. This means that the value of the
parameter is not changed until after the method returns.

Language Elements Chapter 2

76 Objects

Note

Example:
using return value

TOOL Reference Manual

Class Parameters

If a parameter whose type is a class is for input only, you can pass a reference to an object
of the same class or a subclass of the parameter’s declared class. (Note that when the
declared class of the parameter is different than its runtime class, you may need to cast it
before you reference it within the method. See “Casting” on page 69).

However, if a parameter whose type is a class is for input-output or for output only, you
must pass a reference to an object of the same class as the parameter’s declared class.
Anything else is illegal.

Because you are passing a reference to an object, not the object itself, even if a parameter is
for input only, if the method makes changes to the object, these changes are reflected when
you return from the method. This is because both the invoking method and the invoked
method are referencing the same object.

If the parameter was defined using the copy option, TOOL passes a reference to a copy of
the object (see A Guide to the Forte 4GL Workshops for information about using the copy
option when defining method parameters.)

Return Value

When a method produces a return value, you can invoke the method to specify a value in
any TOOL statement. The only restriction is that the return value’s data type must meet the
requirements of the expression. (The return type is specified in the original method
definition.)

In the following example, the programmer assigns the method’s return value to a variable.
This allows the programmer to reference the value through the rest of the current method.

-- In TextData, copy part of the string to another object
t Text Data = new(val ue = ‘abcdefg’);

s : TextDat a;

-- Note that the CopyRange met hod on the TextData cl ass
-- is defined to return a TextData obj ect:

-- CopyRange(...parnms...) : TextData;

s = t. CopyRange(0, 3);

-- WIIl be ‘abc’
s. Concat (‘ cbha’);
-- Now will be ‘abccba’

This variable can be any previously declared local variable with an appropriate data type
for the return value.

When the return value is an object, the object’s runtime class may be a subclass of the
declared return type. When this is true, you must cast the return value before you can
manipulate it in the current method (see “Casting” on page 69).

Array Classes and Array Objects 77

Array Classes and Array Objects

Array data

Array object

This section provides conceptual background on the Forte array classes, and provides
information about working with array objects in your TOOL code. For information about
C-style arrays, see Integrating with External Systems.

A Forte array class is a special class for storing and manipulating a collection of objects.
The objects in an array are either of the same class or they share the same superclass. The
data for an array is stored in the collection of objects. Figure 4 illustrates a collection of
objects of the Artist class.

Henri

Rousseau

Figure 4 Array Data

You can think of an array as a table of data. Each object is like a row in the array or table,
and each attribute is like a column. Figure 5 illustrates the array data:

Leonardo da Vinci Italy 1452 1519 Renaissance
Henri Rousseau France 1844 1910 Primitive
Edgar Degas France 1834 1917 Realist

Figure 5 Array Data as a Table

Because an array is a single object that contains pointers to all of the array data, you can
use the array to reference the set of objects as a unit. Or you can manipulate the individual
objects. The array provides methods for manipulating the set of objects, such as methods
for inserting rows and deleting rows. Figure 6 illustrates the array object and the array data:

Artists Array Object

Figure 6 Array Object and Array Data

When you declare a variable, attribute, or parameter as an array, you are defining a pointer
to the array object.

Language Elements Chapter 2

78 Array Classes and Array Objects

=

Artists Array Object

Artists ’ -

Figure 7 Array Variable, Array Object, and Array Data

You will use three Forte array classes: Array, LargeArray, and GenericArray. This section
provides information about using TOOL to construct array objects, assign values to arrays,
and reference array components. For information on the attributes and methods available
for the classes, see the Framework Library online Help.

Working with Arrays

Array and LargeArray classes

Class for array

Declared type for array

TOOL Reference Manual

In TOOL, you can work with an array as a whole or you can work with its individual
components. For example when you assign a value to an array parameter, you are passing a
reference to the entire array. When you assign the value of one of the objects in the array,
you are working with one of the array’s individual components.

This section first describes how to work with entire arrays in TOOL. It then describes how
to work with array components, rows, and attributes.

Declaring an Array Variable

You will use three different kinds of arrays: Array, LargeArray, and GenericArray. The Array
class is most efficient for smaller arrays, while LargeArray class is optimized for larger
arrays (a rule of thumb is to consider over 255 rows as “large”). GenericArray is the
superclass for Array and LargeArray, and is useful when you do not know what the runtime
type of the array will be. Use whichever class is appropriate for the particular variable you
are declaring. The syntax for declaring an array variable is:

name : {Array | LargeArray | GenericArray} of class;

The class for the array specifies the class for the objects (or “rows”) that will be stored in the
array. This can be any Forte class or custom class.

Like any object, an array has both a declared type and a runtime type. The declared type of
the array is a type made up of two classes, the array type (Array, LargeArray, or
GenericArray) and the row type (any class).

See “Variables” on page 85 for information about declaring variables.

Constructing the Array Object

Before you can use an array you must construct the array object. You can construct the
array object when you declare an array variable, or when you assign a value to an array
variable, attribute, or parameter. If you do not use the array object constructor when you
declare the data item, the value of the data item is NIL (that is, no array is initialized).

Adding array rows

Example:
adding array rows

Array Classes and Array Objects 79

The syntax for the array object constructor is:
= new;

or

(array_class of row_class) ();

The following example shows two examples of using an array object constructor in a
variable declaration:

pai nti ngsFor Bi d
pai nti ngsFor Bi d

Array of Painting = new;
LargeArray of Painting = new,

After you construct the array object, you must add the rows to the array. You can do this
either by using the AppendRow or InsertRow methods, or by assigning an object value to a
nonexistent row. The following example illustrates adding an array row through assigning
an object constructor to a nonexistent row:

-- Create and popul ate an array of TextData objects
txt_array : Array of TextData = new;

txt_array[1l] = TextData(value = ‘first row);
txt_array[2] = new(value = ‘second row);

-- ‘new sane as ‘TextData’

See “Working with Array Rows” on page 82 for more information about adding rows to the
array by assigning an object to a nonexistent row. See the Array and LargeArray classes in
the Framework Library online Help for information on the AppendRow and InsertRow
methods.

Referencing an Array Object

Example:
referencing an array object

Example:
using dot notation

To reference an array object as a whole, you assign an attribute or variable name to point to
the array object.

-- ... Test to see if array is enpty ...
txt_array : Array of TextData = new;
txt_array[1l] = newm(value = ‘first row);
if txt_array.ltens > 0 then
-- WIIl be 1 here

process ...
end if;

You can also use an expression to identify the array. For example, if a method has an array
as its return value, you can invoke the method as an object reference.

If the array object that you want to reference is an attribute of another object, use dot
notation to reference the array.

a_ngr : AuctionMgr = new;
a_ngr. Pai nti ngsUnderBi d = new;
-- Create enpty bids
a_ngr. Pai nti ngsUnder Bi d[1] = new;
-- Enter a new bid in array
if a_ngr.PaintingsUnderBid.ltens > 0 then
-- WIIl be 1
process ...
end if;

Language Elements Chapter 2

80 Array Classes and Array Objects

If the array that you want to reference is an attribute of another array, you must specify the
row number for individual attribute (see “Referencing an Attribute in a Row” on page 84).

Specifying Array Object Values

To specify a value for an array variable, attribute, or parameter, you can use an array object
reference, an array object constructor, or the NIL constant.

Example: txt_array : Array of TextData = N L;

specifying array values if txt_array.ltens > 0 then
-- ERROR. EXCEPTI ON AT RUNTI MVE!

txt_array = new;
is the sane as ...
txt_array = (Array of TextData) ();

other_array : Array of TextData = N L;
other_array = txt_array;
-- Both refer to sanme array

Runtime type for array object The array object must be the same class or a subclass of the declared type of the array
variable, attribute, or parameter. That is, the array type (Array, LargeArray, or GenericArray)
must be the same class or a subclass of the declared array type, and the row type must be
the same class or a subclass of the declared row type.

Example: declared vl : Array of TextDat a;
and runtime array type v2 : GenericArray of DataVal ue;
v3 : LargeArray of IntegerData;
v4 : LargeArray of Text Dat a;
-- ml is a nethod that returns an Array of TextData

v2 = vl;

-- legal because declared type of vl is Array of TextData
-- and decl ared type of v2 is GenericArray of DataVal ue
-- Array is a subclass of GenericArray and | ntegerData

-- is a subclass of DataVval ue

v2 = v3;
-- legal because LargeArray is a subclass of GenericArray
-- and IntegerData is a subcl ass of DataVal ue

v2 = soneCbj . nml();
-- The declared type of mL is the same as the decl ared
-- type of v2

vl = v3;
-- | LLEGAL because LargeArray is not a subclass of Array

v4 = v3;

-- | LLEGAL because IntegerData is not a subcl ass of
-- TextDat a

TOOL Reference Manual

Example: using
superclass of GenericArray

Array object constructor

NIL

Casting the row type

DefaultClass attribute

Example:
casting the row type

Array Classes and Array Objects 81

Note that an array value on the right side of an assignment statement can function as an
object as well because the array is an object. The following example illustrates this, using
the same variables declared in the previous example.

ol : bject;

02 : Array;

03 : GenericArray;
04 : LargeArray;

ol = vi;
-- legal because the declared type of vl is treated
-- as Array, and Array is a subclass of Object

If the runtime type is not an array type, you can cast it to an appropriate type. (See “Casting
Array Objects” on page 81 for information on this.)

When you are specifying an array value for a variable, parameter, or attribute, you can use
an array object constructor (described under “Constructing the Array Object” on page 78)
to create a new array.

The NIL constant is a special object value that is equal to “no object.” You can assign this
value to a data item to remove the pointer to the current array object. When an array data
item has a value of NIL, you cannot perform any operations on it. If you try to invoke a
method on the array object or use it in an expression, you will get an error.

Casting Array Objects

As described earlier in this chapter, the declared type of an array object is a type made up
of two classes, the array type (Array, LargeArray, or GenericArray) and the row type (any
class). Forte allows you the cast the row type, the array type, or both. The syntax is:

(array_type of subclass) (data_item)

array_type is:

Array
LargeArray
GenericArray

Casting an array row is useful when you have defined a parameter or variable that is an
array of a general class to maximize reusability, and in some specific case you know that the
array is actually made up only of elements of a known subclass.

The DefaultClass attribute of the array object contains the row type of the elements of the
array. You can use this DefaultClass attribute to determine the runtime type of the array
elements. The following example illustrates this.

at : array of TextData;
get data for *at
ad: array of DataVal ue;
ad = at;
i f ad.DefaultCl ass = TextData then
-- WII be processed. Miust cast ad to array of TextData
atmp : Array of TextData = (Array of TextData) (ad);
at mp[1] . Concat (‘ nore’)
end if;

When Forte casts the row type, it checks the DefaultClass attribute to verify that the casting
type is the same class as or a subclass of the DefaultClass type.

Language Elements Chapter 2

82 Array Classes and Array Objects

Casting the array type

Casting both
row and array type

If the DefaultClass attribute is not set because the declared type does not specify the row
type (for example, 1 : LargeArray), the compiler automatically passes the cast. Therefore,
you must be careful to cast the rows to their actual runtime type.

You must be sure that the rows you are casting really belong to the class to which you are
casting them. If they do not, the program will get a runtime exception.

Although it is not often necessary, you can cast the array type to any appropriate array type
(one that is a subclass of the declared type). Array type casting might be useful if you are
working with a generic object that you know is actually an array. The following example
shows how to cast the array type:

0: bject;

...(CenericArray of TextData) (0)...
If both the row type and array type need casting, you can use the same syntax to cast both
at the same time. Forte first performs the cast on the array type. If this passes, it performs
the cast on the row type.

sanpl e : GenericArray of DataVal ue;
...(LargeArray of TextData) (sanple)...

Working with Array Rows

Row numbers

Referencing a row

Example: referencing
array rows

TOOL Reference Manual

The objects in the array can be considered numbered rows, starting with 1. The last row has
the same number as the number of items in the array (the Items attribute of the array
object contains the total number of rows in the array).

To reference a single object in the array, specify the row number in square brackets.
array_reference(n]
The following code sample illustrates referencing arrays:
painters : Array of Artist = new,
pai nt er s[1] new,
pai nters[2] = newborn = 1844, died = 1901,
nane = TextData(value = ‘Vincent Van Gogh’));

one_painter : Artist;
one_painter = painters[2];

An array row reference
is an object reference

Example: referencing
an array that is an attribute

Specifying row values

Adding new array rows

Processing array rows

Example:
processing array rows

Example: using
for statement with array

Array Classes and Array Objects 83

Because each array row is an object, you can use a reference to an array row anywhere you
can use an object reference. For example, you could invoke a method on an array row or
assign a new object to it.

Use this same syntax if the individual row you want to reference is an attribute of an object
or an attribute of an array row.

a_ngr : AuctionMgr = new;

a_ngr. Pai nti ngsUnderBi d = new;

a_ngr. Pai nti ngsUnder Bi d[1] = new;

-- This is a Bid object

a_nygr . Pai nti ngsUnder Bi d[1] . Bi dl nProgress = FALSE;

To assign a value to a row, you must use an object reference for an object that is the same
class or is a subclass of the row’s class. The following example illustrates referencing an
attribute in an array:

txt_array = Array of TextData = new;
txt_item: TextData = new(value = ‘“abc’);
txt_array[1l] = txt_item

TOOL allows you to add a new row to the array by specifying an object value for a
nonexistent row number. You can assign a value to any nonexistent row number. For
example, if the last row in the array is 4, you might add a new row 5 or 100 or 999. You can
specify an existing object or an object constructor for the object value. If you do not specify
the next row in the array (as in the 5th row for the array above), then Forte automatically
adds intervening rows to the array, each with a value of NIL.

To process the rows in an array, you can use TOOL looping statements. In the following
example, the while statement expression uses the Items attribute for the array object to get
the total number of rows in the array:.

txt_array : Array of TextData = new;
add rows to txt_array ...
i : integer = 1;
while i < txt_array.ltens do
txt_array[i].Concat('extra’);
i =i + 1;
end whil e;

The for statement provides a special syntax for working with an array. In the following
example, “txt_array” is an array and the for statement repeats the processing statements for
each row in the array. “t” is a variable that contains the current array row that is being
processed.

txt_array : Array of TextData = new;
add rows to txt_array ...
for t in txt_array do
-- ‘t’ is automatically declared as TextData
t.Concat (‘extra’);
end for;

Language Elements Chapter 2

84 Array Classes and Array Objects

Example: referencing
an attribute in an array

An attribute in an array
row is like any attribute

Assigning a value to
an attribute in an array

Example:
assigning values

TOOL Reference Manual

Referencing an Attribute in a Row

To reference an individual attribute in an array row, you must specify both the row number
and the attribute name.

array_referencelnl.attribute
The following examples illustrate this:

painters : Array of Artist = new,

pai nters[1] = new,

pai nters[1] . Born = 1844;

pai nters[1] . Nane new(val ue = ‘Vincent Van Gogh’);

Note that a reference to an attribute in an array row is like any other reference to an
attribute. You can use this syntax anywhere you can use an array reference. For example,
you could set the value of an attribute in an array row or use in it an expression.

Use this same syntax if the row that the attribute belongs to is itself an attribute of an object
or an attribute of array row. For example:

-- .. nonsense exanple, but it illustrates the point
a_ngrs : Array of AuctionMr= new,

a _nmgrs[1l] = new,

a_ngrs[1]. PaintingsUnderBid = new,

-- Allocate array

a_ngrs[1]. Pai nti ngsUnder Bi d[1] = new;

a_ngrs[1]. Pai nti ngsUnder Bi d[1] . Bi dl nPr ogr ess = FALSE;

To assign a value to a single attribute in the row, you can specify any value that is
appropriate for the data type of the attribute. For example:

painters : Array of Artist = new,

pai nters[1] = new,

pai nters[1].Born = 1844;

nane : TextData = new (value = ‘Vincent Van CGogh’);

pai nters[1] . Nane = nane;

There is no way to assign a value to an entire column in an array. You must assign values to
the individual attributes in the column.

Variables 85

Variables

A Forte variable is a name used in TOOL code to refer to a single data item. Every variable
has a data type. It can have a simple data type or a class type. If the variable has a numeric,
boolean, or string data type, the variable itself contains the data. If the variable has a class
type, the variable points to the object or objects that contain the data. Figure 8 illustrates
the equivalent of the following code, which assigns a simple string to variable “b” and a
class type of Artist to variable “a.”

b : string = ‘buzzard’;
a: Artist = new (value = ‘Henri Rousseau’);

b="buzzard' Artist Object

> Rousseau

)

Figure 8 Simple Variable and Class Type Variable

You must declare a variable in your TOOL code before you can reference it. After you have
declared the variable, you can assign a value to it, reference it, or include it in expressions.

Declaring a Variable

You can declare a variable anywhere within your TOOL code. You must specify the variable

name and type. Optionally, you can specify an expression that sets the initial value of the
variable.

variable_name |, variable_namel... : type [= expression]

The scope of the variable is from the point where you declare it until the end of the current
statement block. If you declare it at the start of a method, its scope is for the entire method.

Variable name The variable name identifies the variable for use within the current statement block. It can
be any legal TOOL name and must be unique for the current block. If the variable name is
the same as the name of a variable declared in an enclosing statement block, the new
variable will “hide” the existing variable. The following example illustrates:

Example: name scoping for i : integer = 10;
variables for j in1to 5 do
i : TextData = new(value = ‘start’);
i.Concat(‘nore’);
process ...
end for;
i =i + 5;

Language Elements Chapter 2

86 Variables

You can declare multiple variables in a single definition; simply specify more than one
variable name. TOOL creates a separate variable for each name, using the same type and
initial value. For example:

Example: i, j : integer = 0;
declaring two variables -- Three new obj ects
t, u, v : TextData = newm(value = ‘x’);
Variable type The variable type can be any simple type, any class (or interface), or any array. When

selecting the class for a variable, keep in mind the advantage of having the declared type of
a variable at the highest level of the class hierarchy as possible. This makes your code more
reusable because a single variable can point to many different classes of objects.

Initial value The expression is the initial value for the variable. This can be any value that is compatible
with the data type of the variable. For a variable of a class type, you can use an object or
array constructor to specify the initial values for the object or array.

If the variable is a simple data type and you do not specify the initial value, it has the
default value for the data type. If the variable is a class type and you do not specify the
initial value, it has a default value of NIL.

Referencing a Variable

To reference a variable, use the variable name. The following example illustrates:

Example: referencing a variable i : integer = O;
j : integer = 10;
=0 o+

You can use a variable to specify a value anywhere in TOOL, as long as the data type meets
the requirements of the expression.

Assigning a Variable

To assign a value to a variable, use the following syntax:
variable = expression

The expression can be any value that is compatible with the data type of the variable. The
following example illustrates:

Example: assigning i : integer = O;
a value to a variable j : integer = 10;

o= oty

TOOL Reference Manual

Named Constants 87

Named Constants

Project constants

Class constants

Local constants

Constant name

Constant value

Example: referencing
a named constant

A named constant is a literal string or numeric value that has a name. To declare a named
constant, you specify a constant name and a value. You can then use the name in place of
the value in your TOOL code. Forte uses three kinds of named constants: project constants,
class constants, and local constants.

A project constant is a named constant that can be accessed by any component in the
project. You declare project constants using the Project Workshop (see A Guide to the Forte
4GL Workshops); you can also use any project constants defined in your supplier plans.

A class constant is a named constant that can be accessed by any element in the class. You
declare class constants using the Class Workshop (see A Guide to the Forte 4GL Workshops).
After declaring the class constant, you can use it in your TOOL code.

A local constant is a named constant that can be accessed only within the current
statement block. You must declare a local constant in your TOOL code before you can

reference it. After you have declared the local constant, you use it in the current statement
block.

Declaring a Local Constant

You can declare a local constant anywhere in your TOOL code with the constant statement.
You must specify the constant name and value. The syntax is:

constant constant_name = value

The scope of the constant is from the point where you declare it until the end of the current
statement block. If you declare it at the start of your method, its scope is for the entire
method. The following example illustrates declaring a local constant:

constant pi = 3.14159268;
constant SECONDS PER HOUR = 3600;

The constant name identifies the constant for use within the current statement block. It
can be any legal TOOL name and must be unique for the current block. If the constant
name is the same as the name of a global constant, global variable, or a data item declared
in an enclosing statement block, the new named constant will “hide” the existing data
item.

You declare either a numeric or string value for the named constant. The data type of the
value determines the data type of the constant. Once you specify the value for a constant,
you cannot change it.

Referencing a Named Constant

To reference a named constant, use the constant name. For example:

perinmeter, radius : doubl e;
radi us = 2.0;

constant Pl = 3.14159268;
perinmeter = 2 * pi * radius;

You can use a named constant to specify a value anywhere in the TOOL, as long as the data
type meets the requirements of the expression.

If the named constant is a class constant that is not in the current class, other classes must
reference the constant with the following syntax:

class_name.constant_name

Language Elements Chapter 2

88 Named Constants

Using Named Constants in Expressions

Example: named constants in
expressions

TOOL Reference Manual

Because named constants represent literal values, you can use them in any expression
where a literal value is appropriate.

However, because named constants are read-only values, you cannot assign a value to
them. This means you cannot pass a named constant as an output parameter or use it on
the left side of any assignment statement.

The following example illustrates the use of named constants in an expression:

perineter, radius : double;

radi us = 2.0;

constant Pl = 3.14159268;

perimeter = 2 * pi * radius;

-- following line is ERROR CANNOT ASS|I GN CONSTANT.
Pl = 3.14159268;

Cursors

Use variable to reference a
cursor, not cursor name

Cursors 89

A cursor is a row marker used to work with a set of rows retrieved from a database table.
You declare cursors for a project using the Cursor Workshop.

In the Cursor Workshop, you define the cursor and give it a name. In order to reference the
cursor in your TOOL SQL statements, you must first declare a cursor reference variable
using the following format:

variable_name : cursor_name

From then on, you must use the variable name to reference the cursor, not the cursor
name. The syntax diagrams in Chapter 3, “TOOL Statement Reference,” use the term
“cursor reference” to indicate that you must use the variable name, not the cursor name.

The exception to this is the for statement, where you must use the cursor name, not the
cursor reference.

Language Elements Chapter 2

90 Service Objects

Service Objects

Example: referencing
a service object

Restrictions

TOOL Reference Manual

A service object is an object that you reference directly by name. Because the service object
is associated with the project as a whole, the scope of the service object’s name is the entire
project. (See A Guide to the Forte 4GL Workshops for information about the purpose of
service objects and how to create them.)

You create service objects in the Project Workshop. In your TOOL code, you treat a service
object as you would treat any other existing object. Use the service object’s name to
reference the object.

-- Assune AuctionService and | mageServi ce are defined
a_ngr : AuctionMgr = AuctionService;
i _nmgr : I mageMgr = | mageServi ce;

Because Forte cannot predict the order in which service objects will be initialized, there are
some restrictions when referencing service objects:

1 You cannot reference a service object in the Init method of a class being used as the type
for any service object.

2 You cannot reference a service object in a virtual attribute expression of a class being
used as the type for any service object.

Because the service object name refers directly to an existing object, you cannot reassign
the object associated with the name. However, you can change its attributes. The special
service object attributes can be set only in the service object definition, so you cannot
change these attributes in your TOOL code. However, you can change any of the attributes
defined by the service object’s class.

Chapter 3

TOOL Statement Reference

This chapter describes the TOOL statements that you use to write a method, named event
handler, or cursor. Statements appear in alphabetical order.

92 Assignment

Assignment

The assignment statement sets of the value of a variable or attribute.

Syntax

data_item = expression;

Example

custonmer = 543682;
t xt _obj ect = other_txt_object;
txt _object = new(value = ‘hello there’);

Description

Use the assignment statement to set the value of a data item.
The data item can be a reference to a variable, attribute, parameter, or array row.

The expression specifies the value for the data item. The expression must evaluate to a
value that is compatible with the type of the data item.

If the data item has a class type, the expression can be the same class as or a subclass of the
data item'’s declared class. You can either reference an existing object or use an object
constructor to create a new object as the value.

If the data item has an interface type, the expression must be a class that implements the
interface (or a subclass of a class that implements the interface).

TOOL Reference Manual

Begin 93

Begin

The begin statement defines a compound statement, which provides local exception
handling for a group of statements within a statement block.

Syntax

begin
[statement;]...
exception
[when variable_name : class do statement_block]...
[else [do] statement_block]
end;

Example

begi n
| mageSt at usMessage. Set Val ue(* Requesting | mage.’);
Pai nti ngl mage = sel f. | mageManager. Get | mage
(name = sel f.thePai nti ngForBi d. Nane) ;
exception
when e : Ceneri cException do
| mageSt at usMessage. Set Val ue(‘ | mage not avail able.’);
task. ErrorMr. d ear();
end;

Description

A compound statement is a set of statements within a statement block that provides its
own exception handling. You can use a compound statement anywhere an individual
statement is allowed. The begin and end key words define the compound statement. The
exception clause provides the exception handling for the compound statement.

If you use a compound statement within a statement block, you can handle an exception
without exiting the statement block. A compound statement can contain any TOOL
statements, including other compound statements.

Example: begi n

nesting begin statements total chars : IntegerNullable (isNull = TRUE);
count : integer = 0;
begi n

f : File = file_in_param
-- File from paraneter
f. Open(SP_AM READ) ;
t : TextData = new;
whi | e TRUE do
chars_in_line : integer = f.ReadLi ne(t, FALSE);
if chars_in line < 0 then
exit;
end if;
total chars. Add(ret, chars_in_line);
count = count + 1,
end whil e;

TOOL Statement Reference Chapter 3

94 Begin

f.d ose();
exception
when e : Fil eResourceException do
sel f. Error Mgr. Showkr r or s(TRUE) ;

total _chars.lsNull = TRUE;
f.d ose();
end;
total chars = total _chars / count;
exception

when e : Arithneti cException do
task. ErrorMr. d ear();
total _chars.lsNull = TRUE;
end;

You cannot use the exit statement within a compound statement to exit the compound
statement. If you do include exit in a compound statement, Forte exits from the closest

enclosing control statement. If there is no enclosing control statement, this produces an
error.

For information on defining the exception handlers for the compound statement, see
“Exception” on page 113.

Variables in Compound Statements

A compound statement defines the scope for the variables that you declare within it. A

variable that is declared within the compound statement exists from the point it is declared
to the end of the compound statement.

The following example illustrates:

Example: variable i : integer = O;
in compound statement begi n
-- 1 is an integer here
i : float = 10. 2;
-- i is a float here.
end;

-- i is an integer again.
i =i + 10;
The compound statement also defines the scope for the constants that you declare within

it. See “Name Resolution” on page 52 for information about the scopes for variables and
constants.

TOOL Reference Manual

Begin Transaction 95

Begin Transaction

Transactional and
non-transactional objects

Scalar variables
are not transactional

The begin transaction ... end transaction statement starts a statement block that is
executed as a Forte transaction.

Syntax

[label :] begin [dependent | independent | nested] transaction
[do] statement _block
lexception_handler]

end [transaction];

Example

begi n transaction do
sqgl insert into nytab (a) values (10) on session db_s1;
sqgl insert into othertab (b) values (12)
on session db_s2;
exception
when e : Abort Exception do
task. Error Mgr. ShowEr r or s(TRUE) ;
end transaction;

Description

The begin transaction... end transaction statement defines a Forte transaction. All the
statements within the statement block (and all methods invoked from the statement block)
are treated as a single unit of work, and either succeed or fail together.

The only exception to this is that new tasks started by the start task statement are not part
of the transaction unless you use the start task statement’s dependent or nested option.
See “Transaction Clause” on page 150.

Forte automatically commits the transaction when the statement block is executed

successfully (that is, when control leaves the statement block without raising an exception).
Forte aborts the transaction if an exception is raised that is caught by the exception section
for the transaction block or the exception passes through the begin transaction statement.

There is no abort statement. To abort the transaction, use the Abort or AbortNested
method on the TransactionHandle object referenced by the transaction key word. See the
Framework Library online Help for information on the TransactionHandle class.

A transactional object is an object that can participate in a Forte transaction. Changes
made to the object during a transaction will be logged so that they can be rolled back if the
transaction is aborted. Outside the context of a transaction, a transactional object behaves
exactly like any other object. You create a transactional object by defining the class as
Transactional in the Class Workshop, and by setting the object's IsTransactional attribute to
TRUE (explicitly or by setting the default value of the class to TRUE).

A non-transactional object does not have the IsTransactional attribute set and changes
made to that object during a transaction are not rolled back.

Local scalar variables (such as integer or string) in a method are never transactional. If you
change the value of a scalar variable during a transaction and the transaction is aborted,
the value of the variable is not rolled back.

TOOL Statement Reference Chapter 3

96 Begin Transaction

Example: local
variables in a transaction

Transactional, shared objects

TOOL Reference Manual

Variables are not transactional; their values are never rolled back. The object that a variable
points to may be rolled back, but the value of the variable, that is, which object the variable
points to, is never rolled back. For example:

ol: TextData = new;
02: TextData = new,
begi n transaction

02 = o01;

rai se an exception here

exception

exception handling code

end transaction
-- 02 still points to ol. It was not rolled back

A transactional object may also be shared, that is, both its IsTransactional and IsShared
attributes are set to TRUE. In order to access or modify a shared transactional object (either
through a public attribute or a method), a transaction acquires a transaction lock on the
object in addition to the normal mutex lock that regulates concurrent shared object access.
The transaction holds the lock until the transaction ends (either by aborting or
committing). When the transaction ends, the lock is released and the next waiting
transaction (if any) is granted access.

See the Framework Library online Help manual for more information on the Mutex class,
and the Forte 4GL Programming Guide for more information on shared and transactional
objects.

Transaction Type

When you start a transaction, you should consider how the method that starts the
transaction will be invoked. In particular, will the method be invoked from another
transaction? If it can be invoked from another transaction, you should decide what effect
aborting the current transaction will have on the enclosing transaction. Should aborting
the current transaction also abort the enclosing transaction? Or should aborting the
current transaction have no effect on the enclosing transaction?

Multitasking and
nested transactions

Using SQL
statements in transactions

Restrictions on SQL
statements

Begin Transaction 97

A transaction can be one of three types:

Transaction Type Description

independent The method that contains the transaction is not invoked from another transaction, and
aborting or committing the work in the independent transaction has no effect on any other
transactions. Use the keyword independent to make a transaction independent. This type is
the default if the transaction is not enclosed in another transaction.

You will get an error if the method containing the independent transaction is invoked from
another transaction. Although you cannot start more than one independent transaction in a
single task, when you are multitasking, you can execute concurrent independent transactions
in separate tasks.

dependent If the method that contains the dependent transaction is invoked from another transaction,
the dependent transaction becomes part of the enclosing transaction. Both transactions must
succeed together or both will fail. Aborting the dependent transaction automatically aborts
the enclosing transaction. Successful work in the dependent transaction is not committed
until the enclosing transaction commits. This type is the default for a transaction that is
enclosed in another transaction.

If the method that contains the dependent transaction is not invoked from an enclosing
transaction, the transaction behaves as an independent transaction.

nested If the method that contains the nested transaction is invoked from another transaction, the
enclosing transaction can succeed even if the nested transaction fails. Aborting the work in a
nested transaction does not abort the enclosing transaction. However, successful work is not
committed until the enclosing transaction commits.

Do not use nested transactions when executing SQL statements in database sessions;
databases do not support nested transactions.

There is one restriction on using multitasking with nested transactions. A task that is
running as a nested transaction cannot use the start task statement to start a task with the
dependent or nested option. See “Start Task” on page 147 for information on the
dependent and nested options.

Transaction Statement Block

The statement block for a transaction can include any TOOL statements. However, you
must be very careful how you combine methods from the TransactionHandle class with the
begin transaction statement. The begin transaction statement itself invokes
TransactionHandle methods, and because these methods are invoked in a particular
sequence, you can disrupt this sequence if you use the methods incorrectly. See “Using
TransactionHandle Objects” on page 36 for information on this.

If you include SQL statements (or the equivalent methods) in a Forte transaction, Forte
automatically starts a database transaction, creating the equivalent of a dependent
transaction. Both transactions (the enclosing Forte transaction and the dependent
database transaction) must succeed for either transaction to be committed. If either
transaction aborts, both transactions abort.

There are a few restrictions on which SQL statements you can include in a transaction:

m Because database vendors do not support nested database transactions, you should not
put SQL statements (or methods) in nested transactions.

= You should not use any SQL statements to explicitly control the database transaction
(such as rollback, commit, or setautocommit). You can, however, use the Forte Abort
method to abort both the Forte and DBMS transactions.

= You should also exclude any SQL statements that your database does not allow within
transactions (for example, some systems do not allow DDL statements in transactions).

TOOL Statement Reference Chapter 3

98 Begin Transaction

Forte coordinates

distributed transactions

Committing a transaction

Aborting a transaction

Compound statements
in a transaction block

AbortException exception

End transaction
and multitasking

TOOL Reference Manual

A distributed transaction can access more than one database, more than one database
session, or more than one database resource manager. Forte coordinates all commits and
aborts. For example, if a transaction accesses more than one database resource manager,
and one of the resource managers aborts the transaction, Forte notifies the other resource
managers that the transaction is aborted. Likewise, when the transaction commits, Forte
signals all resource managers to commit.

Refer to the manual Accessing Databases for a more detailed discussion of issues related to
two-phase commit and failure during commit of a distributed transaction.

To end a transaction, you can use the exit statement to end the statement block, use the
return statement to return from the method containing the statement block, or simply
finish the last TOOL statement within the begin transaction statement block. In all three
cases, the transaction will be committed.

To abort a transaction, invoke the Abort or AbortNested method on the TransactionHandle
object using the transaction key word (see the Framework Library online Help for
information on the TransactionHandle class). Also, if any unhandled exceptions reach the
transaction block, the transaction is automatically aborted.

You can use compound statements within the transaction statement block. However, if you
raise an exception within the compound statement and it is caught by the compound
statement’s exception handler and is not passed on, the transaction will not be aborted. In
order to abort the transaction from within a compound statement, you must ensure that
the exception reaches the begin transaction statement’s exception handler.

If the transaction cannot succeed, Forte aborts the transaction and raises an
AbortException object (see the Framework Library online Help for information on the
AbortException class). If you do not explicitly handle the AbortException exception within
the begin transaction statement block, Forte automatically handles it for you.

Problems that raise an AbortException object include:
m shared transactional object deadlock

m distributed access exception occurring as a result of a remote message executed as part
of the transaction

= some SQL transaction failures that are reported to the Forte transaction manager
® a task participating as a dependent in a transaction is aborted

® an invocation of the Abort method on the TransactionHandle class with the
raisedException parameter set to TRUE

Forte allows multiple tasks to participate in a single transaction (see “Start Task” on

page 147). If the task that began the transaction tries to commit the transaction while other
tasks are still participating, the beginning task will block, waiting for the other tasks to
complete their work. This can occur when the task that began the transaction reaches the
end transaction clause, tries to return from the method that contains the begin transaction
statement, or tries to exit from the begin transaction statement. A task participating as a
dependent in a transaction typically completes its work when the task terminates
successfully or invokes the transaction.

Handling the
AbortException exception

Begin Transaction 99

Exception Handling

The exception handler for the begin transaction statement provides exception handling for
the statement as a whole. See “Exception” on page 113 for details about using exception
handlers.

Whenever control enters the exception handler for the begin transaction statement, the
transaction has already been aborted. Therefore, any exception handling you do at this
point should be for handling the abort.

When the transaction cannot succeed, Forte aborts the transaction and raises the
AbortException exception. We recommend that you provide a when clause to handle this
system-generated exception in the exception clause of the begin transaction statement.
Remember, if you do not explicitly handle the AbortException exception, it will be passed
on to the enclosing exception handler like any other exception.

The AbortException should always be handled in the main exception handler for the begin
transaction statement. If you handle the AbortException exception within any of the code
nested within the begin transaction statement, you should also use the raise statement to
ensure that the AbortException reaches the begin transaction statement’s exception
clause. This ensures that the transaction is correctly aborted.

Label

The optional label identifies the begin transaction statement for use with the exit
statement. When you are nesting control statements, you can use the exit statement with a
begin transaction statement label in a statement block, to pass control to the next
statement after the statement block. The label name must be unique for the current block
(label names share the same name scope as variables and other components). Note that
the exit statement will commit the transaction.

TOOL Statement Reference Chapter 3

100 Case

Case
The case statement selects one statement block from a set of alternatives based on the
value of an integer expression, and executes the selected statement block.
Syntax
[label:] case integer_expression [is]
[when value do statement_block]...
[else [do] statement_block]
lexception_handler]
end [case];
Example
t . TextData = new,
line_size : integer = file_fromabove. ReadLi ne(t, FALSE)
case line_size is
when -1 do
task. Part.LogWgr.Putline(‘Past end of file.’);
when 0 do
task. Part.LogMgr.Putline(‘Enpty line.”);
el se do
task. Part.LogWgr.Putline(‘Line with characters.’);
end case;
Description
Forte begins execution by evaluating the case expression. Next, it checks each when clause
to see if there is a value that is equal to the case expression. If there is a match, Forte
executes the corresponding statement block and then exits the case statement. If there is
no match, Forte checks for an else clause. If there is an else clause, Forte executes the else
statement block and exits from the case statement. If there is no else clause, Forte simply
exits from the case statement.
Expression
The case expression must be an integer expression. The data type of the corresponding
values in the when clauses (described below) must also be an integer.
Example: case expression t : TextData = new,

line_size : integer = file_fromabove. ReadLi ne(t, FALSE);
case line size is

-- line_size nmust evaluate to an integer
when 1 do

end case;

TOOL Reference Manual

Example: use of exit
statement with case

Case 101

When Clause

The when clause specifies one integer value that is a possible result of the expression and
provides a statement block to be executed for that particular value. The value for each
when clause must be an integer constant.

If you specify the same value in more than one when clause, you will get a compile time
error.

Statement Block

The statement block for a when clause can include any TOOL statements. You can use an
exit statement within the statement block to exit from the case statement.

case ...
when 1 do
if ...condition... then
exit;
-- Exits case statenent.
end if;
when 2 do
end case;

You cannot use the continue statement to repeat the case statement. If you do include a
continue statement in the event block, Forte repeats the closest enclosing loop statement
(for, while, or event loop). If there is no enclosing loop statement, this produces an error.

Exception Handling

The exception clause of the case statement provides an exception handler for the case
statement as a whole. If you wish to provide exception handling for an individual when or
else clause, you must use the begin statement within its statement block to define a
compound statement. The compound statement can have its own exception handler. See
“Begin” on page 93 for information about compound statements.

The Label

The optional label identifies the case statement for use with the exit statement. When you
are nesting control statements, you can use the exit statement with a case statement label
within a statement block to pass control to the next statement after that statement block.
The label name must be unique for the current block (label names share the same name
scope as variables and constants within the current name scope).

TOOL Statement Reference Chapter 3

102 Constant

Constant

The constant statement declares a named constant, whose scope is from the point you
declare it to the end of the block.

Syntax

constant name = value;

Example

constant Pl = 3.14159268;
constant seconds_per _hour = 3600;
constant COWVPANY_NAME = ‘Forte Software Inc.’;

Description

TOOL Reference Manual

The constant statement declares a named constant within a statement block. The scope of
the constant is from the point where you declare it until the end of the current statement
block.

Constant Name

The constant name can be any legal Forte name and must be unique for the current
statement block. Because constants share the same name scope as several other
components, if the constant has the same name as a component in an enclosing scope, the
new named constant will “hide” the existing component. See “Name Resolution” on

page 52 for information on name resolution.

Constant Value

The constant value can be any numeric or string value. The data type of the value
determines the data type of the constant.

Once you specify the value for a constant, you cannot change it.

Continue

103

The continue statement is used with the while, for, or event loop statements to repeat a

loop.

Syntax

continue [labell;

Example

event | oop
when <print_button>. Cdick do

if self.Wndow. Fil eSaveDi al og(. .. parns..

t hen
conti nue;
end if;
begi n
file_to_print.Open(...);
file_to print.WiteText(...);
end;
when <quit_button>. dick do

end event;

-)

BV_CANCEL

Chapter 3

104 Continue

Description

When the continue statement is executed, Forte transfers control to the beginning of the
loop. If you do not use a label, the continue statement repeats the current loop. If you use a
label, the continue statement transfers control to the loop statement with the specified
label. The following example illustrates:

Example: ev_|l oop : event |oop
continue with a label when <save button>. dick do
whi | e TRUE do
begi n transacti on
save work ...
exception
when e : Abort Exception do
if self.Wndow QuestionDialog(‘Try Again?') =
BV_YES t hen
exit;
-- Exits transaction block and retries.
el se
conti nue ev_| oop;
end if;
end transacti on;
end whil e;
when . ..

end event;
The continue statement was designed for use with the while, for, and event loop
statements. If you use continue in a non-looping statement, Forte transfers control to the

closest enclosing loop statement. If there is no enclosing loop statement, this produces an
€error.

You cannot use the continue statement in the exception section of the while, for, or event
loop statements. When control passes to the exception section, you cannot repeat the loop.
To leave the exception section early, you must use the exit statement.

Using a Label

When you are nesting loop statements, you can use the continue statement with a label to
transfer control to a labeled loop statement. Forte forces another iteration of the loop.

TOOL Reference Manual

Declaration

Variable name

Variable type

Initial value

Declaration 105

The declaration statement creates a variable of any type, whose scope is from the point it is
declared to the end of the block.

Syntax

variable_name |, variable_namel... : type [= expression];

Example

i : integer;

a, b, ¢ : double = 10.0;

X : Text Dat a;

t TextData = new (value = ‘hello’, |sTransactional = TRUE);

Description

You can declare a variable anywhere in TOOL code. You must specify the variable name
and type. Optionally, you can use an expression to specify an initial value for the variable.

The scope of the variable is from the point where you declare it until the end of the current
statement block.

The variable name identifies the variable for use within the current statement block. It can
be any legal TOOL name and must be unique for the current block. If the variable name is
the same as the name of a variable declared in an enclosing statement block, the new
variable will “hide” the existing variable.

To declare multiple variables with a single definition, specify multiple variable names.
TOOL creates a separate variable for each name, using the same type and initial value.

The variable type can be any simple type, any class, or any interface. See “Simple Data
Types” on page 54 for information on the simple data types. The Forte classes are described
throughout the Forte documentation set.

The expression is the initial value for the variable and can be any value that is compatible
with the data type of the variable. For a variable whose type is a class, use an object
constructor (or array constructor for the Array or LargeArray classes) to specify the initial
value. See Chapter 2, “Language Elements,” for information on object and array
constructors.

If the variable is a simple data type and you do not specify the initial value, it has the
default value for the data type (zero for numeric types and NIL for the string type). If the
variable is a class or interface and you do not specify the initial value, it has a default value
of NIL. Note that the DataValue subclasses, including TextData, also have a default value of
NIL.

TOOL Statement Reference Chapter 3

106 Event

Event

The event statement responds to one or more events and has two forms:

= An event loop statement waits for any number of events and continues responding to
them until you explicitly exit the loop.

= An event case statement responds to the first event it receives and then automatically
exits the statement.

Syntax

[label:] event loop [is]
[preregister statement_list]
[[postregister] statement_list]
[when event_specification do statement_block]...
lexception_handler]
end [event];

[label:] event case [is]
[preregister statement_list]
[[postregister] statement_list]
[when event_specification do statement_block]...
[exception_handler]
end [event];

event_specification is:

[object_valuel.event [(variable [: type] [= event_parameter]
[, variable [= event_parameter]]... |, variable = return | exception])]

Example

event | oop
when <save button>.dick do
sel f. SaveDat a() ;
when <quit_button>. dick do
exit;
when t ask. Shut down do
exit;
end event;

Description

TOOL Reference Manual

The event statement provides two different ways for you to respond to events.

The event loop statement responds to any number of events and then exits the statement
in response to one of the events. It continues waiting for events until the loop ends.

The event case statement responds to one, and only one, event and then automatically
exits the statement.

The register statement (see “Register” on page 131) lets you include a named event handler
in either version of the event statement.

The following two sections provide more information about the event loop and the event
case statements.

Example:
event case statement

Event 107

Event Loop Statement

For the event loop statement, Forte begins execution by:

1 Executing the preregister clause (if provided).

2 Evaluating the event specifications and registering all these events with the current task.
3 Executing the postregister clause (if provided).

Forte then waits to receive an event. When one of the events for which the statement has
registered enters the task’s event queue, Forte executes the statement block for that
particular event. After completing the statement block, the event loop statement checks
the event queue for the next event. If there is more than one event on the queue that the
statement has registered for, it uses the one closest to the top of the queue. If there are no
events, Forte waits.

Because the event loop continues to wait for events, you must explicitly end the loop with
one of the following:

B an exit statement

® areturn statement to exit from the method that contains the event loop
® alabeled continue statement to continue an enclosing loop

® araise statement to generate an exception

At least one of the events in the loop should contain one of these statements in its
statement block.

Event Case Statement

For the event case statement, Forte begins execution by:

1 Executing the preregister clause (if provided).

2 Evaluating the event specifications and registering all these events with the current task.
3 Executing the postregister clause (if provided).

Forte then waits to receive an event. When one of the events for which the statement has
registered enters the task’s event queue, Forte executes the statement block for that
particular event. After completing the statement block, Forte exits the event case
statement.

tsk_desc : TaskDesc;
tsk_desc = start tasko.neth() where conpl etion = event;
other work while task is executing
event case
when o.meth_return(x = return) do
return value is in x
when o. met h_exception(e = exception, f = errs);
an exception occurred in it
end event;

Preregister Clause

The optional preregister clause provides a list of statements to be executed before Forte
registers the events in the when clause list. The preregister clause can include any TOOL
statements.

TOOL Statement Reference Chapter 3

108 Event

register statement The preregister clause is especially useful for including named event handlers in the event
loop. Using the register statement in the preregister clause is the primary mechanism for
including an event handler’s code within one or more event statements. For example:

event | oop
preregister
-- Include the Art Object Wndow s event handler in this
-- event | oop.
regi ster artObj ect Wndow. art Obj ect Handl er
(art Type = ' Performance’);
-- This wi ndow has Post Shutdown attached to the cl ose box.
when task. Shut down do
exit;

end event;

See “Register” on page 131 for further information about using the register statement
within an event statement.

Forte registers the events from event handlers in the preregister clause before registering
the events in when clauses of the event statement. Therefore, if the same event is registered
by an event handler in the preregister clause and a when clause, the when clause
supersedes the preregister clause and the event handling code in the preregister clause
becomes inactive.

Scoping for variables The statement list for the preregister clause determines the scope for any variables or
constants that are declared within it. Variables and constants that you declare within the
statement list are available within the preregister clause only and cannot be accessed by
the rest of the event statement.

Exception handling The statement list in the preregister clause does not allow an exception handler;
exceptions that occur in the preregister clause are handled by the exception clause for the
event statement. See “Exception Handling” on page 122 for information about exception
handling for the event statement. (Of course, the statement list in the preregister clause
can include a begin/end statement with its own exception handler.)

Postregister Clause

The optional postregister clause provides a list of statements to be executed after Forte
registers the events in the when clause list, but before the events are handled by the event
statement. The postregister clause can include any TOOL statements.

The postregister clause is useful for ensuring that the code that posts an event is always
executed after the event statement has registered for that event (and so is ready to receive
it). The following example shows how you can use the postregister clause to synchronize
two tasks:

event | oop
begi n
postregi ster
-- StartSal e posts an event when it’s ready for input.
start task sel f. TheSal e. Start Sal e();
-- Wien StartSal e has posted the event, do sonething.
when sel f. The Sal e. Readyf or | nput do
...start another task related to input...
end event;

TOOL Reference Manual

register statement

Scoping for variables

Exception handling

postregister key word

Example: event specification

Event restrictions

Event 109

You can use the register statement in the postregister clause to include named event
handlers in the event statement. Forte registers the events in the postregister clause after
registering the events in the when clauses of the event statement. Therefore, if the same
event is registered by the postregister clause and a when clause, the postregister clause
will supersede the when clause. The event handling code in the when clause will become
inactive. See “Register” on page 131 for further information about using the register
statement within an event statement.

The statement list for the postregister clause determines the scope for any variables or
constants that are declared within it. Variables and constants that you declare within the
statement list are available within the postregister clause only and cannot be accessed by
the rest of the event statement.

The statement list in the postregister clause does not allow an exception handler;
exceptions that occur in the postregister clause are handled by the exception clause for the
event statement. See “Exception Handling” on page 111 for information about exception
handling for the event statement. (Of course, the statement list in the postregister clause
can include a begin/end statement with its own exception handler.)

The postregister key word is optional when you do not include a preregister clause.
However, if you include both the postregister clause and the preregister clause in the same
event statement, you must use the postregister key word.

When Clause

The when clause identifies the event that you wish to respond to and provides the
corresponding code for that particular event. First, you must specify which event you wish
to receive. Second, you can declare a series of variables to receive the parameters that will
be passed with the event. Finally, you must provide the statement block to be executed
when the event is triggered.

Event Specification

If the event is for the current object, you need only specify the event name. (The “current
object” is the object on which the current method, or event handler, is operating.)
Otherwise, you must reference the object that will produce the event and specify the event
name using dot notation. The event can be any event defined for the object’s class or one of
its superclasses.

event | oop
when <save button>.dick do

when sel f.<quit_button>. Cick do
end event;
You can only register for the method return and exception events from a service object with

message dialog duration.

Declaring Variables for Event Parameters

To declare variables to store an event’s parameters, you must enter a variable name for
each parameter that you wish to receive. You do not need to specify a data type. Forte
automatically uses the data type of the corresponding parameter as it was declared in the
original event definition. These variables are always local to the individual when clause.
You cannot use existing variables in this list. If an event parameter has the same name as
an existing variable, the event parameter hides the variable.

To indicate how the variables and parameters correspond, you can use parameter names,
parameter positions, or both.

TOOL Statement Reference Chapter 3

110 Event

Parameter names To use parameter names, enter each variable name followed by the corresponding
parameter name. These can be in any order and you can exclude any parameters you wish.

Example: declaring event | oop

variables for event parameters when <picture_field_for_drop>. CbjectDrop(dat =

sourceDat a, dtype = SourceDat aType) do

if dtype = SD | MAGE t hen
-- Must cast because type of ‘dat’ is Object
picture field for_drop = | mageDat a(dat);

end if;

end event;

Parameter positions To use parameter positions, enter the variable names in the same order as the parameters
in the event definition. This order must be identical to the order in the original definition
and you cannot exclude any parameters unless they are at the end of the series.

To use a combination of the two techniques, you must first enter the variable names by
position. You can then use parameter names for the remaining variables in any order.
Example: parameters event | oop
by name and position when sel f. W ndow. For m Af t er Mar kLi ne
(sx, sy, ey = EndY, ex = EndX) do
-- ‘sx’ and ‘sy’ are starting coordinates of the |line
-- ‘ex’ and ‘ey’ are the ending.

end event;
Class parameters Remember that for a parameter whose type is a class, the variable is a reference to the

object, not a copy of the object. Therefore, if you change the object within the event
statement, the changes are visible to any other data items that reference the same object.

Statement Block

The statement block provides the code that is executed when the event statement receives
the specified event. This can include any TOOL statements. Variables that you declare
within the statement block are local to the block.

Nesting event statements You can nest an event statement in your statement block either by using another event
statement or by invoking a method that contains an event statement.

TOOL Reference Manual

Event 111

A typical example is when you want to open a new window and the Display method for the
window contains an event loop. Another example is using the start task statement to start
a new task and then use the event statement to wait for the return or exception events.

Example: event | oop
exit;

when <start_task>. Cick do
tsk_desc : TaskDesc
tsk_desc = start task o.nmeth() where conpletion =
event ;
event | oop
when o.meth_return(x = return) do

when o. met h_exception(e = exception, f = errs);

when <cancel _button>.Click do
t sk_desc. Set Cancel () ;
end event;
when <cancel button>. dick do
exit;
end event;

For each task, Forte registers the events for all event statements that have not yet
completed. Therefore, when you nest event statements, the event queue may contain
events for more than one event statement. When a given event statement is ready to
process an event, it checks the event queue for any event that it is prepared to handle. If
there is more than one, it uses the event nearest the top of the queue. Any remaining events
stay in the queue until the appropriate event statement can handle them.

If more than one event statement is registered for the same event, the event statement that
is currently executing when the event reaches the top of the queue is the one that handles
the event. Once the event has been handled, it is removed from the queue. Therefore, an
event is never handled more than once.

Exception Handling

The exception clause of the event statement provides an exception handler for the event
statement as a whole. Once an exception is processed, Forte exits the event statement
(even if it is an event loop statement).

As a result, if an exception occurs in a when clause, even if the when clause is in an event
loop, Forte will exit the loop. One solution is to provide exception handling for an
individual when clause by enclosing the statement block in a begin/end statement. The
compound statement can have its own exception handler. See “Begin” on page 93 for
information about compound statements. Another solution is to put the when clauses into
a separate event handler, and to then use the exception clause for that event handler to
handle their exceptions.

TOOL Statement Reference Chapter 3

112 Event

The following example illustrates how to include an exception handler in a when clause:

event | oop
-- Standard shut down sequence.

when t ask. shut down do
exit;

-- Create the tables and popul ate them
when <nmake_t abl es_button>.d i ck do

begi n
status_line = 'Making tables...’;
Arti st Service. MakeTabl es();
status_line = 'Tables created.’;
exception

when e : DBResourceException do
task. Error Mgr . ShowEr r or s(TRUE) ;
when e : AbortException do
task. Error Mgr . ShowEr r or s(TRUE) ;

end;

--/ Create the tables and popul ate them
when <drop_tables_button>.dick do

begi n
status_line = 'Dropping tables...’;
Arti st Service. DropTabl es();
status_line = 'Tabl es dropped.’;
exception

when e : DBResourceException do
task. Error Mgr . ShowEr r or s(TRUE) ;
when e : AbortException do
task. Error Mgr . Showkr r or s(TRUE) ;

end;

end event;
See WIinDB example Project: WinDB e Class: DataWindow e Method: Display

Label

The optional label identifies the event statement for use with the continue and exit
statements. You can use continue or exit to transfer control to a labeled event loop
statement. You can use exit to end a labeled event case statement. The label name must be
unique for the statement block (label names share the same name scope as variables and

other components).

TOOL Reference Manual

Exception 113

Exception

The exception clause provides exception handling for a method, a compound statement, or
the begin transaction, case, event, event handler, for, if, and while statements.

Syntax

exception
[when variable _name:class do statement_block]...
[else [do] statement_block]

Example

begi n transaction

exception
when e : Fil eResourceException do
clean up frombad file...
when e : Abort Exception do
transacti on was aborted ...
el se do
raise;
-- Pass these on up.
end transaction;

Description

Forte executes the exception clause only when there is an exception for the current
statement. An exception for the current statement occurs in the following circumstances:

m the system generates an exception in a method invoked by the current statement block.

(Refer to Forte class reference documentation to see which exceptions are raised by
methods for a given class.)

® araise statement in the current statement block generates the exception

m the current statement block encloses a statement block that did not handle the
exception

m the current statement block invokes a method that did not handle the exception

TOOL Statement Reference Chapter 3

114 Exception

When the exception clause receives an exception, Forte compares the class of the
exception to the classes of the variables declared by the when clauses. There are several
possible outcomes of this comparison:

m If there is one when clause variable with a compatible class, Forte executes the
corresponding statement block. After the when clause is executed, control passes to the
statement immediately following the end of the current statement block.

Example: x : array of doubl edat a;
use of exception clause ... x gets filledin ...
begi n
count : integer = 0;

total : double = 0;
for y in x do

count = count + 1;
total = total + y.val ue;
end for;
total = total / count;
exception

when a : Arithmeti cException do
t ask. Error Mgr . ShowEr r or s(TRUE) ;
total = 0O;
end;

m If there is more than one variable with a compatible class, Forte uses the one that is
closest to the exception’s class, that is, the lowest down in the class hierarchy.

m If there is no variable with a compatible class and there is an else clause, Forte executes
the statement block in the else clause. This provides general-purpose exception
handling for exceptions not specified in a when clause. After the else clause is executed,
Forte closes the current statement block and control passes to the first statement
following the statement block.

m If there is no variable with a compatible class and there is no else clause, Forte closes
the current statement block and delivers the exception to the exception handler in the
closest enclosing statement. If there is no enclosing statement with an exception
handler, Forte delivers the exception to the invoking method. If no method in the
current task handles the exception, Forte terminates the task.

Fatal errors If the WorstSeverity attribute of the current task's error manager is SP_ER_FATAL, then a
fatal exception was raised by this task and the partition is about to terminate. An exception
block can catch fatal exceptions and execute some cleanup or recovery step, but the fatal
exception will automatically be raised again when control leaves the exception clause.

Remember that if a task terminates with an exception and the method that started the task
was defined with an exception event, the exception event will be automatically posted so
the starting method is notified that the task exited abnormally.

When Clause

The when clause declares a new variable to receive the exception and provides a statement
block to be executed when the exception is caught.

when variable_name : class
do statement_block

TOOL Reference Manual

Variable name and class

Statement block

Using raise in
when or else clause

Do not handle
unexpected exceptions

Example: incorrect use of else
clause

Example: correct use of else
clause

Exception 115

The variable name specifies the name of the variable to store the object that was raised.
The class specifies the type for the variable. The variable type must be the same class or a
superclass of the exceptions that you wish to catch. Forte uses the runtime type of the
exception to determine which when clause to use to handle it. Do not include more than
one when clause for the same class.

The statement block provides the exception handling code that is executed when the when
clause catches the exception. This code can include any TOOL statements.

Note that you cannot use the continue statement in the exception handler to repeat a
looping statement. Once control is passed to the exception handler, you cannot continue
the loop. To leave the exception handler, you can use one of the following:

® an exit statement to pass control to the next statement
® areturn statement to return from the method
® alabeled continue statement to continue an enclosing loop statement

Remember that the exception is a reference to an object, not an object itself. Therefore, if
you make changes to the object with the when clause, these changes are visible to any
other data items that reference the object.

Else Clause

The else cause provides a statement block to be executed when there is no when clause to
handle the exception. This allows you to provide cleanup processing before the statement
block or method is closed. The statement block can contain any TOOL statements.

You can use the raise statement without a value, to pass the current exception to the
enclosing statement block or invoking method. This is useful when you want to provide
local cleanup processing, but still want the enclosing statement block or invoking method
to handle the exception. (See “Raise” on page 129 for an example.)

You should not use the else clause to provide generic exception handling for unexpected
exceptions. In particular, the AbortException and CancelException exceptions should only
be handled at the appropriate points in your application, otherwise they will not abort the
transaction or cancel the task as they are intended to. The AbortException should be
handled in the exception clause of the begin transaction statement and the
CancelException should be handled in the exception handler of the task’s starting method.

The following example shows incorrect use of the else clause. This code handles all
exceptions, including the AbortException and CancelException, so that no exceptions are
passed to the invoking method.

exception
el se
task. Error Mgr. ShowEr rors();
end;

If it is appropriate to provide recovery for unexpected exceptions, you should raise the
exceptions again after handling. The following code fragment illustrates:

exception
el se
recovery code
raise; -- This re-raises the exception.
end;

TOOL Statement Reference Chapter 3

116 Exit

Exit

The exit statement is used with the case, event loop, event case, for, begin transaction, and
while statements to close a statement block and pass control either to the statement that
follows the block or, if you specify a label, that follows the labeled statement.

Syntax

exit [labell;

Example

exit;

Description

When the exit statement is executed, Forte closes the current statement block. If you do not
specify a label, Forte transfers control to the statement that follows the current block. If you
do specify a label, Forte closes the identified statement and passes control to the statement
that follows the end of the labeled statement. The exit statement allows you to end loops
and complete processing within TOOL control statements. The following example

illustrates this:
event | oop
when <quit_button>.Cick do
if self.Wndow. QuestionDi al og(‘ Are you sure?’) = BV._K
t hen
exit;
end if;
when ...
end event;
The exit statement was designed to exit from the case, event loop, event case, for,
transaction, and while statements. If you use exit within other statements (such as the if
statement or a begin statement), Forte exits from the closest enclosing case, event loop,
event case, for, transaction, or while statement. If none of these statements are enclosing

the exit statement, this produces an error. In the case of the begin transaction statement,
the exit statement will commit the transaction.

TOOL Reference Manual

Example: exit with
labeled event loop

Exit 117

Using a Label

When you are nesting control statements, you can use a label with the exit statement to
end a labeled control statement. Forte transfers control to the next statement immediately

following the labeled statement. For example:

ev_|l oop : event |oop
when <save_button>. dick do
whi | e TRUE do
begi n transacti on
save work ...

exception
when e : Abort Exception do
if self.Wndow QuestionDial og(‘Try Again?’)

= BV.X
t hen
exit;
-- Exits transaction block and retries.
el se
exit ev_|l oop;
end if;
end transacti on;
end whil e;
when ...
end event;

The label must identify a case, event loop, event case, for, begin transaction, or while
statement, and the exit statement must be physically nested within the labeled statement.

TOOL Statement Reference Chapter 3

118 For

For

The for statement repeats a statement block for each object in an array, each value within a
range, each row in a cursor, or each row in the result set of a select statement.

Syntax

Objects in an array [label :] for variable_name in array_reference
do statement_block
lexception_handler]
end [for];

Values in a range [label :] for variable_name in first_value to second_value
[by step_expression]
do statement_block
lexception_handler]
end [for];

Rows in a cursor or result set [label :] for (storage_reference_list) in
{cursor cursor_name [(placeholder_settings)] | sql_select_statement}
do statement_block
lexception_handler]
end [for];

Example
j : integer =1;
for i in1to 10 do
=10 *i;
end for;

Description

The for statement loops through the statement block a set number of times. Different
variations of the for statement allow you to repeat a statement block based upon the
following:

m for each object in the specified array — this is useful for processing the rows in the array.

m for each value within the specified range—this is useful for looping a fixed number of
times, such as 1 to 10.

m for each row in the result set of a cursor or a select statement—this is useful for
processing information that you retrieve from a database table.

At the start of each loop iteration, Forte sets the variable or storage reference list to the
current object, current value in the range, or the current row in the result set. When there
are no objects left in the array, values in the range, or rows in the result set, Forte exits the
statement.

The following sections describe how to use the variations of the for statement. This is
followed by general information about exception handling.

TOOL Reference Manual

Declaring the variable

The array reference

The statement block

Example: using an array

Check for NIL rows

Declaring the variable

step_expression

The statement block

For 119

Using an Array

To use an array, you specify a variable name to hold the object being processed. This can be
any legal Forte name. Forte automatically declares a new variable, which has a scope of the
entire for statement. (You cannot use an existing variable.) The variable’s type is
automatically set to the class of the objects in the array.

The array reference can be any expression that references an existing array. (If the array
expression evaluates to NIL, the loop will not execute.)

The statement block can include any TOOL statements. Use the exit statement to transfer
control to the statement after the end for. Use the continue statement to transfer control to
the first statement of the statement block and force a new iteration of the statement block.
The variable will be assigned the next object in the array.

The following example illustrates using an array in the for statement:

vals : Array of TextData = new,

fill in vals sonmehow. ..
for v in vals do
-- Tacks on ‘ value’ to each entry in vals.
v. Concat (* val ue’);
end for;

When execution begins, Forte assigns the first object in the array to the iteration variable
and then executes the statement block. Then, after each execution of the statement block,
Forte assigns the next object in the array to the variable. As long as there are still objects in
the array, Forte executes the statement block again. When there are no more objects left,
Forte exits the for statement.

If the array contains rows with a value of NIL, they will be assigned to the iteration variable.
Therefore, if your array contains NIL rows, you must check for them.

You should not insert or delete rows in the array while it is being used by the for statement.
You cannot be sure whether the for statement will process the inserted or deleted rows.

Using a Range

To use a range, you specify a variable name to hold the value being processed. This can be
any legal Forte name. Forte automatically declares a new variable, which has a scope for
the entire for statement. (You cannot use an existing variable.) The variable’s type is
automatically set to the same type as the range type.

To specify a range, you must enter a first value and a second value, using either integers or
floating point numbers. The optional by clause allows you to specify a step value to be used
for calculating the values within the range. If you do not specify a step value, it defaults to
1. The step value can be a positive or negative number. If the step value is positive, the first
value must be lower than the second value. If the step value is negative, the first value must
be higher than the second value.

The statement block can include any TOOL statements. Use the exit statement to transfer
control to the statement after the end for. Use the continue statement to transfer control to
the first statement of the statement block and force a new iteration of the statement block.
The variable will be assigned the next value in the range.

TOOL Statement Reference Chapter 3

120 For

Example: using a range

Implicit transactions

Storage reference list

Declaring simple variables

TOOL Reference Manual

The following example illustrates using a range in the for statement:

a : Array of TextData = new;
for i in1to 10 do

a[i] = new();

end for;

When execution begins, Forte tests the first value to make sure it is within the range. If it is,
Forte assigns the first value to the variable and executes the statement block. Then, after
each execution of the statement block, Forte adds the step value to the variable (1 is the
default) and compares the variable’s new value with the second value. If the step is positive,
as long as the variable is less than or equal to the second value, Forte executes the
statement block again. When the variable is greater than the second value, Forte exits the
for statement. If the step is negative, as long as the variable is greater than or equal to the
second value, Forte executes the statement block again. When the variable is less than the
second value, Forte exits the for statement.

Using a Cursor or a Select Statement

You can use the for statement with a result set that was returned by either a cursor or a
select statement.

To use a cursor, use the cursor option and specify the cursor name as defined in the
project. The for statement automatically opens the cursor, fetches the rows one at a time as
it goes through the loop, and, when finished, closes the cursor.

To use a select statement, use the sql option and specify a select statement. Do not use the
into clause in the select statement. Using the search criteria in the select statement, the for
statement creates a temporary cursor and opens the cursor before the loop starts. The for
statement fetches a single row for each loop iteration, and, when finished, closes the
temporary cursor.

When execution begins, Forte assigns the column values from the first row in the result set
to the storage reference list and then executes the statement block. Then, each time after it
executes the statement block, Forte assigns the next row in the result set to the storage
reference list. As long as there are still rows in the result set, Forte executes the statement
block again. When no more rows are left, Forte exits the for statement and closes the
cursor.

When you use a for loop with a cursor name or sql select statement, Forte performs an
open cursor as part of the initialization of the for loop. If no explicit Forte transaction is in
effect, this open cursor is enclosed in an implicit transaction, causing the result set to be
buffered (the effect of using cursors in implicit transactions is described in Accessing
Databases). However, the body of the for loop is not part of the transaction.

The storage reference list for the for statement declares a list of variables (simple variables
or a series of objects) to hold the column values for the row that is being processed. The
storage reference list allows you to access the row’s values while you go through the loop.
These variables also takes the place of the into clause of the select statement, so you must
not use the into clause in the select statement. Forte automatically declares new variables,
which have a scope for the entire for statement. (You cannot use existing variables.)

If you declare a storage reference list of simple variables, the variables must correspond by
position with the columns in the target list of the select statement. Simply enter each
variable name followed by a simple data type. The name can be any Forte name. The type
can be any simple data type that is compatible with the data type of the column (see
Accessing Databases for information on data type compatibility). The syntax is:

name : simple_type [, name : simple_type]...

Declaring a class variable

Using DataValue objects

cursor_name

Example: using a cursor

Specifying a
select statement

Caution

For 121

If you declare a storage reference list using a class, the attributes in the object must
correspond by name with the columns in the target list of the select statement. To declare a
class variable, simply enter a variable name followed by a class. Forte automatically creates
a new object of that class for each row in the result set. The variable name can be any Forte
name and the data types of the attributes must be compatible with the corresponding
column data types (see Accessing Databases for information on data type compatibility).
The syntax is:

(name : class)

If you declare a list of variables of the DataValue subclasses (for example, TextData,
DateTimeData, and IntegerNullable) in the storage reference list, Forte automatically
allocates objects on each iteration of the loop. NULL values fetched from the database will
set the IsNull attribute of the corresponding object. This is the only way to get null values
from the database. If you do not specify a nullable type and the database returns a null
value, you will get a runtime error.

To specify a cursor, enter the name of any cursor that has been defined but not opened.
(Note that this is really the cursor’s name, not a cursor reference as described under
“Cursors” on page 89.) Use the optional placeholder list to specify values for placeholders
used in the cursor declaration. This list of values must match the placeholder originally
defined for the cursor by position.

-- Cursor is declared

cursor alltypes_cursor (inttest : integer)
begi n
sel ect intcol, floatcol fromalltypes
where intcol <= :inttest;
end;

-- The follow ng code runs the cursor

io : Basiclo = new,

dbsess : DBSession = ... get a session ...

for (i : IntegerNullable, f : DoubleNullable)

in cursor alltypes_cursor (3) on session dbsess do

-- Anew ‘i’ and ‘f’ object are allocated each tinme through
io.WiteLine(‘Start a newrow.');
io.WiteLine(i);
io.WiteLine(f);

end for;

To specify a select statement, use the sql option with the following syntax for the select
statement.

select [all | distinct] {* | column_list} from table_name |, table_name]...
[where search_expression]
[order by column [asc | desc] [, column [asc | desc]]...]
[group by column_name [, column_namel...
[having search_expression]
[on session {session_object_reference | default}];
Do not use an into clause in the select statement; the storage reference list performs this
function.

The select statement in the for statement accepts vendor-specific extensions, although
none appear in the syntax diagram. See the manual Accessing Databases for further
information about the sql select statement and for information about using vendor-
specific clauses in SQL statements.

TOOL Statement Reference Chapter 3

122 For

The statement block

Example: using an
sql select statement

TOOL Reference Manual

The statement block can include any TOOL statements. Use the exit statement to transfer
control to the statement after the end for. Use the continue statement to transfer control to
the first statement of the statement block and force a new iteration of the statement block.
The variables will be assigned the values from the next row in the result set.

When execution begins, Forte assigns the column values from the first row in the result set
to the storage reference list and then executes the statement block. Then, after each
execution of the statement block, Forte assigns the next row in the result set to the storage
reference variables. If you have included objects in the storage reference list, Forte
automatically allocates a new object at each iteration. As long as there are still rows in the
result set, Forte executes the statement block again. When no rows are left, Forte exits the

for statement.

painters : Array of Artist = new,
for (a : Artist) in sql select * fromartist_table on
sessi on dbsess do
-- A new Artist object is allocated each tinme through.
pai nt ers. AppendRow(a) ;
end for;

for x in painters do
X. WiteToLog();
end for;

Exception Handling

The exception clause of the for statement provides an exception handler for the statement
block in the for statement. See “Exception” on page 113 for information about using an
exception handler.

Statement Label

The optional label identifies the statement for use with the continue and exit statements. If
you are nesting control statements, you can use continue or exit to transfer control to a
labeled for statement. The label name must be unique for the current statement block
(label names share the same name scope as variables and other components).

If

If 123

The if statement executes a statement block when the specified boolean condition is true.

Syntax

if boolean_expression then
statement_block

[elseif boolean_expression then
statement_block]...

[else [do]
statement_block]

[exception_handler]

end [if];

Example

io : BasiclO = new,
cnd_l ength : integer;
t : TextData = new,
cnd_l| ength = f. ReadLi ne(t, TRUE);
if cmd_length < 0 then
io.WiteLine(‘Past end of line.’);
el seif cnd_Ilength = 0 then
io.WiteLine(‘Empty line.”);
el se
io.WiteLine(‘Line is enpty.’);
end if;

Description

Example: simple if statement

Forte begins execution of the if statement by evaluating the first boolean expression. If the
first expression is true, Forte executes the first statement block and then exits the if
statement. If the first expression is false, Forte evaluates the elseif expressions one at a time
until it finds one that is true. Forte then executes the corresponding statement block and
exits the if statement.

If none of the elseif expressions are true or if there are no elseif expressions, Forte checks
for an else statement block. If one is present, Forte executes the else statement block and
then exits the if statement. If there is no else statement block, Forte simply exits the if
statement. (Please notice that there is no space in the elseif keyword!)

The simplest version of the if statement specifies one condition to be tested and one
statement block to execute if the expression is true. For example:
i : integer = 10;
if i >5 then
io.WiteLine('Passed successfully.’);
end if;

More complex versions of the if statement specify a series of conditions to be tested, one
after the other (as in the example at the beginning of this section).

The else clause specifies a statement block to be executed when all the conditions are false.
This is also illustrated in the example at the beginning of this section.

TOOL Statement Reference Chapter 3

124 If

Example: boolean expression

TOOL Reference Manual

Boolean Expressions

The expressions in the if statement must be boolean expressions (described under
“Boolean Expressions” on page 56). These can include boolean variables, constants,

attributes, and methods that produce a boolean return value.

if ((i >10) and (i < 100)) or not (j > 4) then
end if;

txt : TextData = new(value = ‘abc’);
if txt.lsEqual (‘abc’) then

-- ...w |l happen, because Bool eanNullable will pass test...

end if;

if transaction.|sActive then
-- ... in an active transaction ...
end if;

Statement Blocks

The statement blocks in an if statement can include any TOOL statements. Note, however,
that you cannot use the exit or continue within an if statement to close or repeat the if
statement blocks. If you do include exit or continue in an if statement block, control passes
to the closest enclosing control statement. If there is none, this produces an error.

Exception Handling

The exception clause of the if statement provides an exception handler for the if statement
as a whole. If you wish to provide exception handling for an individual then, elseif, or else
clause, you must use the begin statement within its statement block to define a compound
statement. The compound statement can have its own exception handler. See “Begin” on

page 93 for information about compound statements.

Method Invocation 125

Method Invocation

Object reference

Method name

Required parameters

Parameter names

Parameter positions

Optional parameters

Invoking a method executes the method using the values you specify for the parameters.

Syntax

object_reference.method|([name =] expr [, [name =] expr]...)];
Example
t : TextData = newvalue = ‘abc’);
t. Concat (source = ‘def’);
or

t.Concat (‘ def’);

Description

To invoke a method, use an object reference to identify the object and then use dot
notation to specify the method name. You must also specify a value for each required input
parameter.

The object reference identifies the object on which you wish to invoke the method and on
which the method will operate. If the method is for the current object, you do not need to
include the object reference. (The “current object” is the object on which the current
method is operating.) If you specify a method name by itself, TOOL assumes the current
object.

The method name identifies the particular method to invoke. This can be any method
defined or inherited by the object’s class. If there is more than one method with the same
name, Forte checks for method overloading at compile time. Then, at runtime, Forte checks
for method overriding. See “Invoking Methods” on page 73 for more information on this.

Parameters

The parameters for a method can be defined for input only, for input-output, or for output
only. A method may have no input parameters, or it may have required parameters,
optional parameters, or a combination of both.

A parameter is required if the parameter definition does not specify an initial value. If the
method has required parameters, you must specify values for all the required parameters
when you invoke the method.

To indicate how the values and parameters correspond, you can use the parameter names,
the parameter positions, or both.

To use the parameter names, enter each parameter name followed by the value. These can
be in any order. Using parameter names rather than positions makes code easier to
maintain.

To specify the parameters by position, enter the values in the same order as the
corresponding parameters in the method definition. This order must be identical to the
parameters in the original definition.

To use a combination of the two techniques, you must first enter the values by position.
You can then use parameter names for the remaining values in any order.

A parameter is optional if the parameter definition specifies an initial value. If the method
has optional parameters, you can use or ignore any of the optional parameters. If you
decide to ignore all the parameters and there are no required parameters, you can omit the
parentheses when you invoke the method.

TOOL Statement Reference Chapter 3

126 Method Invocation

Parameter values

Strings and
TextData parameters

Note

TOOL Reference Manual

If you use parameter names, you can omit any of the optional parameters. If you use
parameter positions, you can only omit optional parameters that are at the end of the
series.

The value for an input parameter can be any expression that is compatible with the
parameter’s data type. The value for an output or input-output parameter must be an
attribute or variable of the appropriate type.

If the method is defined with a TextData parameter, you can specify a simple string as the
value when you invoke the method. Forte automatically creates the TextData object, using
the string for its TextValue attribute.

Output Parameters

A method may have no output or input/output parameters, or one or more. The value for
any output parameter (either input-output or output only) must either be a variable or an
attribute. Because the method assigns the output value to the output parameter, the input
value you specify must be a variable or attribute that can be on the left side of an
assignment statement.

Note that Forte passes output parameters by value result. This means that the value of the
parameter is not changed until after the method returns.

Class Parameters

If a parameter whose type is a class is for input only, you can pass a reference to an object
of the same class or a subclass of the parameter’s declared class. (Note that when the
declared class of the parameter is different than its runtime class, you may need to cast it
before you reference it within the method. See “Casting” on page 69).

However, if a parameter whose type is a class is for input-output or for output only, you
must pass a reference to an object of the same class as the parameter’s declared class.
Anything else is illegal.

Because you are passing a reference to an object, not the object itself, even if a parameter is
for input only, if the method makes changes to the object, these changes are reflected when
you return from the method. This is because both the invoking method and the invoked
method are referencing the same object.

If the parameter was defined using the copy option, TOOL passes a reference to a copy of
the object (see A Guide to the Forte 4GL Workshops for information about using the copy
option when defining method parameters.)

Post

Example: post statement
with event loop

Post 127

The post statement triggers an event. Forte automatically notifies all the currently
executing tasks that have registered for the event that the event was posted.

Syntax

post [object_referencel.event [([parameter_name =] expression
[, [parameter_name =] expression]...) |;

Example
post sel f. Pai nti ngAdded (pai nting = painti ngToAdd);

Description

The post statement triggers an event of any type and optionally, specifies values for the
event’s parameters. When an event is posted, Forte notifies all tasks and programs
registered to receive that event. Each task then queues the event so the relevant event
statement can respond to it.

The following example shows the posting of the event PaintingAdded, with one event
parameter that tells which painting was added.

-- In method AddBid on Aucti onMyr
begi n

post sel f. Pai nti ngAdded (pai nting = pai nti ngToAdd) ;
end net hod;

-- (then define service object AuctionService on AuctionMyr cl ass)

-- In method Display for PaintingListBatch
begi n
event | oop

when Aucti onServi ce. Pai nti ngAdded (addedPai nting =
pai nting) do
sel f. Pai nti ngDat a. AppendRow(addedPai nti ng) ;
sel f. Current Row = sel f. PaintingDat a. |t ens;

end event;
end net hod;

Specifying the Event

To identify the event to be posted, reference the object that is producing the event and
specify the event name using dot notation. The event can be any event defined for the
object’s class.

If no object reference is used, Forte posts the event for the current object.

TOOL Statement Reference Chapter 3

128 Post

Example:
using parameter names

Example:
using parameter positions

Strings and
TextData parameters

No derived C data types

TOOL Reference Manual

Specifying the Parameters

When you post an event, the values you specify for the event’s parameters must correspond
one to one with the parameters defined for the event. For each parameter, you can specify
any value that is compatible with the parameter’s data type.

To indicate how the values and parameters correspond, you can use the parameter names,
the parameter positions, or both.

To use the parameter names, enter each parameter name followed by the value. These
name and value pairs can be in any order and you can omit any optional parameters.

nane : TextData = new(value = ‘Christy’);
post sel f.Bi dConpl et ed (newval ue =
Deci mal Dat a(val ue = 123. 45),
timeOBid = DateTi nebData(), whoBid = nane);

To specify the parameters by position, enter the values in the same order as the
corresponding parameters in the event definition. This order must be identical to the
parameters in the original definition and you cannot exclude any optional parameters
unless they come at the end of the series.

nane : TextData = new(value = ‘Christy’);
post sel f.Bi dConpl et ed (Deci mal Dat a(val ue = 123. 45),
Dat eTi neDat a(), nane);

To use a combination of the two techniques, you must first enter the values by position.
You can then use parameter names for the remaining values in any order.

If the event was defined with a TextData parameter, you can specify a simple string as the
value for the parameter when you post the event. Forte automatically creates the TextData
object, using the string for its TextValue attribute.

Note that event parameters cannot be derived C data types, such as structs or C-style
arrays. See Integrating with External Systems for information about the C data types.

Raise 129

Raise

The raise statement generates an exception to be handled by an exception clause. The
exception is an object of any class.

Syntax

raise [exception_object_referencel;

Example

ex : GenericException = new,

ex. Set Wt hParans(DB_ER_ERROR, ‘Bad val ue %. ",
Text Dat a(val ue = ‘ xxx'));

t ask. Error Myr . AddEr r or (ex) ;

rai se ex;

Description

When the raise statement is executed, Forte delivers the exception to the closest exception
handler. The following example illustrates:

Example: raise statement begi n
and exception handler o
if ... unusual condition ... then
-- Assunme MyExcept C ass a subcl ass of Ceneri cException
m : M/Except d ass = new,
raise m
end if;

exception
when m: MExcept d ass do
-- This block will be executed from‘raise ni above.
exit;
el se
task. Error Mgr. ShowEr r or s(TRUE) ;
end;

Forte starts by checking the current statement (or current compound statement) for an
exception handler. If there is no exception handler or if the exception handler cannot
handle the exception, Forte searches through the enclosing statements for an exception
handler that is prepared to handle it. If the current method cannot handle the exception,
Forte delivers the exception to the invoking method.

Example: exception delivered -- Decl are two net hods
to invoking method nycl ass. met hl
begi n
sel f. met h2();
exception
when m: MExceptC ass do
-- This block will be executed fromthe ‘raise m in
nmet h2.
exit;

TOOL Statement Reference Chapter 3

130 Raise

Caution

Example: raising
the current exception

TOOL Reference Manual

el se
task. Error Mgr. ShowEr r or s(TRUE) ;
end net hod;
mycl ass. net h2
begi n
if ... unusual condition ... then
-- Assune MyExceptC ass is declared as subcl ass of
Ceneri cExcepti on
m : M/ExceptC ass = new,
raise m
end if;

end net hod

You should ensure that every exception you raise will be handled by the appropriate
exception handler. If the exception is not handled by any of the executing methods in the
current task, Forte terminates the task.

Identifying the Exception

Unless you are raising the current exception from an exception clause (described below),
you must identify the exception you wish to raise. The exception is a reference to an object
of any Forte exception class or custom exception class. For your own exceptions, you can
define a subclass of the UserException class (see the Framework Library online Help for
information on this), or use any class.

Note that the exception you raise is a reference to an object, not the object itself. Therefore,
if the exception handler that handles the exception changes the object, the changes are
visible to any other data item that references the object.

Raising the Current Exception

After handling an exception in an exception clause, you may wish to pass the exception on
to an enclosing statement or to the invoking method. This is useful if you want to catch the
exception and perform local cleanup processing, but you also want the enclosing
statement or invoking method to handle the exception. (This is used most often in the else
clause of the exception clause.) In this case, you can use the raise statement without an
exception reference because Forte assumes the current exception.

begi n

f : File=... file fromsomewhere ...
f. Open(SP_AM READ) ;

...other file activity ...

exception
when e : Ceneri cException do
f.d ose();
-- Close the file, but pass exception on.
rai se;
end;

The only time the object reference is optional with the raise statement is when you use it
within the when or else clause of the exception handler.

Register 131

Register

The register statement includes a named event handler in the current event statement.

Syntax

[data_item =] register event_handler_reference [(parameter_list)];

Example

event | oop

preregister
-- Include the Art Object Wndow s event handler in this
-- event | oop.
regi ster art Qbj ect Wndow. art Qbj ect Handl er
(art Type = ' Performance’);

-- This wi ndow has Post Shutdown attached to the cl ose box.
when t ask. Shut down do
exit;

end event;
Description

The register statement includes an event handler at any point within an event statement
or another event handler. The only way to add event handler code within a method is to
use the register statement inside an event statement.

The register statement is useful in:
m the preregistration clause of the event statement or event handler definition
m the postregistration clause of the event statement or event handler definition

m the statement block of a when clause in an event statement or an event handler
definition

® a method invoked from within an event statement or event handler definition

You must use the register statement within an event statement. If no event statement is
active when the register statement is executed, you will get a runtime error.

When the register statement is executed, Forte registers all the events specified in the event
handler. Registering an event means notifying the object that will be posting the event that
the current object is prepared to handle the event. This ensures that the current object will
be notified when the event is actually posted.

After the events are registered, the event handler waits, as part of the event statement that
contains it, to receive an event. When one of the events for which the event handler has
registered enters the task’s event queue, Forte executes the statement block that the event
handler has provided for that particular event. For example:

event | oop

preregister
-- Include the Art Object Wndow s event handler in this

TOOL Statement Reference Chapter 3

132 Register

-- event | oop.
regi ster art Qbj ect Wndow. art Qbj ect Handl er
(art Type = ' Performance’);

-- This wi ndow has Post Shutdown attached to the cl ose box.
when t ask. Shut down do
exit;

end event;

-- This is the event handler that was registered in the
-- above event |oop. Its when clauses now act as if
-- they are part of the above event | oop.
event handl er Art Obj ect W ndow. Art Obj ect Handl er

(input artType: string)
begi n

preregister

art obj ect _dat a. obj ect _t ype. Set Val ue(art Type) ;

-- Validate the object_type field.
when <artobj ect _dat a. obj ect _t ype>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateType();
if retval '= NL then
-- Error in validation. Print nessage and get rid
-- of pending events.
sel f. W ndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;
-- Validate the whol e thing.
when <artobj ect _dat a>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateAll();
if retval '= NL then
-- Error in validation. Print nessage and get rid
-- of pending events.
sel f. W ndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;
end event;
See NestedWindow example Project: NestedWindow e Class: ClassArtObjectWindow e Method: Event Handler

After the event statement that contains the register statement completes execution, the
event handlers that were registered within the event statement are automatically
unregistered. If you wish to cancel registration of an event handler before the event
statement completes execution, you can do so using the EventRegistration object.

TOOL Reference Manual

Register 133

EventRegistration object The register statement returns an object of type EventRegistration, which identifies the
event handler registration that was just performed. You can use the EventRegistration
object to cancel the registration of the event handler before the event statement completes
execution. To cancel registration, invoke the DeregisterHandler method on the
EventRegistration object. For example:

Example: using the -- This method fragnent shows how to use the
EventRegistration object -- EventRegistration object to register and unregister
-- events. In this exanple, two nested wi ndows are being
-- swapped in and out of a single parent w ndow.
evReg : EventRegi stration = NIL;
arti stWndow : Arti st Wndow = new;
art obj ect Wndow : Art Qbj ect Wndow = new;

sel f. Open();

event | oop
-- Start with an Artist Wndow
arti st Wndow. Wndow. Row = 3;
arti st Wndow. Wndow. Col um = 1;
arti st Wndow. Wndow. Parent = <mai n_gri d>;
arti st Wndow. Wndow. Fr aneWei ght = W NONE;

evReg = register artistWndow. arti st Handl er;

when t ask. Shut down do
exit;

-- Launch an ArtistWndow, with a new object.
when <start_artistw ndow button>.Cick do

evReg. DeRegi st er Handl er;

art bj ect wi ndow. cl ose;

art Qbj ect wi ndow. wi ndow. Par ent =ni | ;

-- First set up the inner wi ndow and it’s data.

arti st Wndow = new;

arti st Wndow. Wndow. Row = 3;

evReg = Regi ster artistWndow. arti st Handl er;
-- Launch an Art Cbj ect W ndow.
when <start_artobj ectwi ndow _button>. dick do
artistw ndow. cl ose;
arti stwi ndow. Wndow. parent = nil;
evReg. DeRegi st er Handl er;
-- First set up the inner wi ndow and it’s data.

art obj ect Wndow = new,
art obj ect W ndow. W ndow. Row = 3;

TOOL Statement Reference Chapter 3

134 Register

Event registration stack

Note

Object reference

Current object for
register statement

TOOL Reference Manual

evReg = Regi ster artObj ect Wndow. Art Cbj ect Handl er;

end event;
sel f.Cl ose();

Because you can have more than one register statement within the same event statement
or event handler, it is possible to register the same event more than once. When there is
more than one registration for the same event, the event registrations are added to a stack,
and the most recent registration supersedes the others. Only the top-most registration in
the stack is active; all other registrations are inactive and are ignored when the event is
handled.

If the DeregisterHandler method cancels the most recent registration in the stack, the next
registration in the stack becomes active. See the Framework Library online Help for
information about the EventRegistration class, the DeregisterHandler method, and the
event registration stack.

Unless you explicitly unregister it, the event handler stays registered for the duration of the
event statement. After the event statement completes execution, the event handler is
automatically unregistered.

The register statement must be executed on the same partition as the event statement that
contains it. If the register statement is on a remote partition, you will get a runtime error.
This situation could occur, for example, if an event statement invokes a remote method
that contains a register statement.

Event Handler Reference

You can register any event handler defined for or inherited by the current object’s class.
(The “current object” is the object on which the current method, or event handler, is
operating.) To reference an event handler for the current object, simply specify the event
handler name. For example:

regi ster artObj ectHandl er (art Type = ' Performance’);

You can also register any public event handler on any other local object. Specify the object
reference with the event handler name using dot notation. The object reference identifies
the object for which you wish to register the event handler. The event handler will handle
events registered by that handler. For example:

-- Before registering the handler, instantiate the object.
art bj ect Wndow : Art Qbj ect Wndow = new,
-- ...later, in the event |oop...

regi ster art Qbj ect Wndow. art Qbj ect Handl er

(art Type = ' Performance’);

The object on which you register the event handler must be located on the same partition
as the enclosing event statement. If it is not, you will get a runtime error.

Like invoking a method on an object, registering an event handler on an object changes the
“current object.” When you register an event handler on an object, that object becomes the
current object as long as the event handler executes. Thus, any references to the current
object (or “self”) within the event handler refer to the object on which the register
statement was executed.

Use super to register
an overridden event handler

Example: Overriding an event
handler

See InheritedWindow example

Event handler parameters

Example: event handler
parameters

Strings and
TextData parameters

Required parameters

Register 135

When you override an event handler, you replace an inherited event handler with a new
event handler with the same name. If you need to register the inherited event handler (that
you are overriding) in the newer event handler, simply use the super key word before the
method name to specify the inherited event handler rather than the current event handler.

- Registering handlers fromboth self and super in an event | oop.
event | oop
preregi ster

regi ster self.ArtistHandl er();

regi ster sel f.ResetHandl er();

-- Use the inherited event handl er to handle exit button
events.

regi ster super. ExitHandl er();
end event;
Project: InheritedWindow e Class: ArtistDataEntryWindow e Method: Display

To see this example in context, see the Forte example program InheritedWindow.

Registering an inherited event handler is particularly useful when you are writing a new
event handler that adds functionality to an inherited event handler. By registering the
superclass’s event handler, you include all its functionality within the current event
handler. This is similar to invoking “super.method” in a method that is overriding an
inherited method.

Parameter List

If the event handler has parameters, you must pass the event handler the information that
it requires. The values that you specify when you register the event handler must
correspond one to one with the parameters in the event handler definition. You can specify
any value that is compatible with the parameter’s data type.

regi ster art Qbj ect Wndow. art Qbj ect Handl er
(art Type = ' Performance’);
-- anot her exanpl e
regi ster artistWndow. arti st Handl er
(artistName = nanme, artistCountry = country);

Scalar parameters you specify with the register statement are copied to the event handler
when the register statement is executed. If any changes are made to a simple variable after
it is passed as a parameter to an event handler, the changes are not reflected in the event
handler. However, for class parameters, Forte passes a reference to an object, not the object
itself. Therefore, if any changes are made to an object after the reference to it is passed as a
parameter to the event handler, the changes are reflected in the event handler.

If the event handler was defined with a TextData parameter, you can specify a simple string
as the value when you register the event handler. Forte automatically creates the TextData
object, using the string for its TextValue attribute.

Like methods, event handlers have required parameters, optional parameters, or a
combination of optional and required parameters.

A parameter is required if the parameter definition does not specify an initial value. If the
event handler has required parameters, you must specify values for all the required
parameters when you register the event handler.

To indicate how the values and parameters correspond, you can use the parameter names,
the parameter positions, or both. The syntax is:

[name =] value [, [name =] value. . .]

TOOL Statement Reference Chapter 3

136 Register

Parameter names

Example:
using parameter positions

Optional parameters

Class parameters

Note

TOOL Reference Manual

To use the parameter names, enter each parameter name followed by the value. These can
be in any order. We recommend using parameter names rather than positions because it
makes your code easier to maintain.

To specify the parameters by position, enter the values in the same order as the
corresponding parameters in the event handler definition. This order must be identical to
the parameters in the original definition.

regi ster artistWndow. arti st Handl er (nanme, country);

-- The correspondi ng event handl er definition:
event handler ArtistW ndow Arti stHandl er
(input artistName = string,
input artistCountry = string)

To use a combination of the two techniques, you must first enter the values by position.
You can then use parameter names for the remaining values in any order.

A parameter is optional if the parameter definition specifies an initial value. If the event
handler has optional parameters, you can use or ignore any of the optional parameters. If
you decide to ignore all the parameters and there are no required parameters, you can omit
the parentheses when you register the event handler.

If you use parameter names, you can leave out any of the optional parameters. If you use
parameter positions, you can only leave out optional parameters that are at the end of the
series.

Because an event handler’s class parameter is for input only, you can pass a reference to an
object of the same class or a subclass of the parameter’s declared class. (Note that when the
declared class of the parameter is different than its runtime class, you may need to cast it
before you reference it within the event handling code. See “Casting” on page 69.)

Because you are passing a reference to an object, not the object itself, even if a parameter is
for input only, if the method makes changes to the object, these changes are reflected when
you return from the method. This is because both the invoking method and the invoked
method reference the same object.

If the parameter was defined using the copy option, TOOL passes a reference to the copy of
the object (see A Guide to the Forte 4GL Workshops for information about the copy option
for event handler parameters).

Return

Return in
asynchronous methods

Return required for
method with return type

Example: return value

Return 137

The return statement returns control from the current method to the invoking method. If
the current method is defined with a return type, the return statement also returns the
return value.

Syntax

return [valuel;

Example

return;
return 10;

Description

When the return statement is executed, Forte returns control to the invoking method,
immediately following the point where the current method was invoked. You can use the
return statement anywhere in your TOOL code to end the current statement block and exit
from the method. A return statement in the start method for the application exits the
application.

Forte ignores any statements in the current statement block that follow the return
statement. Therefore, the return statement should be the last statement in the block.

If the return statement appears in a method that is invoked asynchronously with the start
task statement, Forte terminates the task and posts the return event if the start task
statement requested one. This is because a task cannot return to the method that invoked
it. If you started an independent transaction with the start task statement, the return
statement ends the transaction successfully.

Return Value

If a method is defined as having a return type, you must include the return statement and
specify a return value. This value must be compatible with the method’s return type. If you
do not specify a return value, this produces a compile time error. See “Writing Methods” on
page 22 for information on writing a method.

For example:
mycl ass. nynmeth : Text Data
begi n
t : TextData = new(val ue="return val ue’');

return t;
end net hod;

TOOL Statement Reference Chapter 3

138 sQLCloseCursor

SQL Close Cursor

The sql close cursor statement closes a cursor that was opened with the sql open cursor
statement.

Syntax

sql close cursor cursor_reference;

Example

sqgl cl ose cursor dbcursor;

Description

For a complete description of the sql close cursor statement, refer to the manual Accessing
Databases.

TOOL Reference Manual |

S sQLDelete 139

SQL Delete

The sql delete statement removes rows from a table.

Syntax

sql delete from table_name
[where {search_condition | current of cursor_reference}]
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_delete_statement);

Example

sql delete fromartist_table where born < 1500;

Description

For a complete description of the sql delete statement, refer to the manual Accessing
Databases.

 TooLstatementReference Chapter3

140 SQL Execute Immediate

SQL Execute Immediate

The sql execute immediate statement executes one SQL statement.

Syntax

sql execute immediate {string literal | string variable |attribute |
TextData_reference} [on session {session_reference | default}];

or

{numeric_attribute | numeric_variable} =
(sgl_execute_immediate_statement);

Example

sql execute immediate ‘create table xyz (col int)’
on session dbsess;

Description

For a complete description of the sql execute immediate statement, refer to the manual
Accessing Databases.

TOOL Reference Manual

SQL Execute Procedure

SQL Execute Procedure

The sql execute procedure statement executes a database procedure.

Syntax

sql execute procedure procedure_name
[([input | output |[input output] parameter = expression
[, [input | output |input output] parameter = expression]...)]
[on session {session_object_reference | default}];

or

DataValue_reference = (sql _execute_procedure_statement);

Example

enpid : integer = 12345;

sal aryl ncrenent : integer = 15000;

-- Passing parameters by position.

sql execute procedure updateSal ary(enpid, sal arylncrenent);

-- Passing paraneters by namne.

141

sql execute procedure updateSal ary(AddToSal ary = sal aryl ncrenent,

Id = enpid);

Description

For a complete description of the sql execute procedure statement, refer to the manual

Accessing Databases.

TOOL Statement Reference

Chapter 3

142 SQLFetchCursor

SQL Fetch Cursor

The sql fetch cursor statement allows you to fetch the next row, the next n rows, or the
entire result set.

Syntax
sql fetch [[next {integer_constant | :integer_varName}] from]

Cursor cursor_reference
[into {:object_reference | simple_list | array_reference}l;

or

{numeric_variable | numeric_attribute} = (sql_fetch_cursor_statement);
Example

sqgl fetch cursor dbcursor into :a;

Description

For a complete description of the sql fetch cursor statement, refer to the manual Accessing
Databases.

TOOL Reference Manual |

SQL Insert

SQL Insert

The sql insert statement adds a new row to a database table.

Syntax

sql insert into table_name [(column [, column]...)]
{values ({object_reference | simple_list}) | select_statement}
[on session {session_object_reference | default }];

or

{numeric_attribute | numeric_variable} = (sql_insert_statement);

Example

a: Atist =new... fill in data...;
sql insert into artist_table

(nane, country)

val ues (:a.nanme, :a.country)

on session dbsess;

Description

143

For a complete description of the sql execute insert statement, refer to the manual

Accessing Databases.

TOOL Statement Reference

Chapter 3

144 sQLopemCusor

SQL Open Cursor

The sql open cursor statement selects rows from a database table to be used with a
database cursor.

Syntax

sql open cursor cursor_reference
[(expression [, expression]...) |
[on session {session_object_reference | default}];

Example

dbcursor : enpcursor;
enpid : integer;
sqgl open cursor dbcursor (enpid) on session dbsess;

Description

For a complete description of the sql open cursor statement, refer to the manual Accessing
Databases.

TOOL Reference Manual |

SQL Select 145

SQL Select

The sql select statement retrieves one or more rows from one or more database tables.

Syntax

sql select [all | distinct] {* | column_list}
linto {object_reference | simple_list}]
[(from table_name |, table_namel]...]
[where search_expression]
[group by column_name [, column_namel...]
having search_expression]
[order by column [asc | desc] [, column [asc | desc]]...]
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_select_statement);

Example
sql select * into :artist_object fromartist_table
where nanme = :vnane
on sessi on dbsess;
i : integer;

vnanme, vcountry : TextData = new,
i = (sql select nane, country into :vnane, :vcountry from
artist_table on session dbsess);

Description

For a complete description of the sql select statement, refer to the manual Accessing
Databases.

TOOL Statement Reference Chapter 3

146 SQL Update

SQL Update

The sql update statement changes values in one or more rows from a database table.

Syntax

sql update table_name set column = expr [, column = expr]...
[where {search_expression | current of cursor_reference} |
[on session {session_object_reference | default}];

or

{numeric_attribute | numeric_variable} = (sql_update_statement);

Example
sql update artist_table set born = :vborn
where nanme = :vname on session dbsess;
Description

For a complete description of the sql update statement, refer to the manual Accessing
Databases.

TOOL Reference Manual

Start Task

Return value
for start task statement

Accessing shared objects

Start Task 147

The start task statement begins a new task by invoking an asynchronous method.

Syntax

[data_item =] start task [object_reference.lmethod [(parameter_list)]
[where setting [, settingl...];

setting is:

completion = {event | ignore} |
transaction = {dependent |independent | nested | none} |

Example

start task self.theBid. StartBid
(bi dder Name = sel f.t heUser Nane)
where conpl eti on = event, transaction = dependent;

Description

The start task statement starts a new task by invoking the specified method
asynchronously. Normally, when you invoke a method, the invoking method waits until the
invoked method completes. However, when you invoke a method using the start task
statement, both methods are executed in parallel.

The start task statement optionally returns an object of the TaskDesc class. You can use this
object to get access to the new task while it executes. For example, you can use the
SetCancel method of the TaskDesc class to cancel the new task any time during its
execution. See the Framework Library online Help for information on the TaskDesc class.

By default, the method invoked by the start task statement does not notify the invoking
task when it has completed or that it was terminated. However, if the method has been
defined with return and exception events (see “Completion Clause” on page 148), you can
use the completion option of the start task statement to request these events.

Multiple tasks can share the same data by using shared objects. A shared object is an object
that regulates concurrent access by multiple tasks. You create a shared object by defining
the class as Shared in the Class Workshop, and by setting the object's IsShared attribute to
TRUE (explicitly or by setting the default value for the class to TRUE).

TOOL provides a shared object with the locking mechanism necessary to prevent conflicts
when multiple tasks try to access or change the object's state. If one task modifies a shared
object's attribute, TOOL locks the object until the change is complete. If one task invokes a
method on a shared object, TOOL does not allow another task to invoke a method on the
object until the first task completes its method. Other tasks attempting to invoke methods
on or access/modify attributes of the same object are “blocked.” Once the first task
completes the method, another task is allowed to continue.

Multiple tasks should not operate concurrently on non-shared objects (objects whose
IsShared attribute is not set to TRUE). If two tasks do operate on and access the same non-
shared object, the results are unpredictable.

See the Forte 4GL Programming Guide for more information on shared objects.

TOOL Statement Reference Chapter 3

148 Start Task

Tasks and transactions

Exception handler for
invoked method

completion ignore option

completion event option

TOOL Reference Manual

Normally if a task is in a transaction when it starts a new task, the new task is not part of the
transaction. Any transactions that begin within the new task are independent of the calling
task. You can use the transaction clause to specify that the new task is a participant in the
enclosing transaction (a dependent or nested transaction) or that it begins an independent
transaction. For more information on the differences between these transaction types, refer
to “Transaction Type” on page 96.

Invoking the Method

To start the new task, you must specify the object to be manipulated and the method to be
invoked on the object. To specify the object, enter any object reference. The method can be
any method defined for the object’s class as long as the method does not have parameters
with derived C data types. (The start task statement cannot use parameters with derived C
data types, such as structs or C-style arrays. See Integrating with External Systems for
information about the C data types.) You can invoke any method; the method does not
have to be designed especially for asynchronous processing.

You specify the values for the method parameters just as when you invoke a method
synchronously. Note that even though the start task statement does not change output
parameters, you must provide a legal value for each output parameter.

The following example illustrates starting a window as a concurrent task:

vi ew_w ndow : Vi ewPai nti ngW ndow = new
(Aucti onManager = sel f. Aucti onManager) ;
start task vi ew wi ndow. Di spl ay
(painting _to_view = sel f.PaintingDatalcurrent_row],
i mge_server = sel f. | mageManager,
auction_server = self. Aucti onManager,
user_nanme = sel f.User Nane) ;

The exception handler for the method invoked by the start task statement should always
handle the CancelException. This is because the CancelException exception is intended to
cancel the task. Any methods invoked by the task’s starting method should either not
handle the CancelException, or should handle it and then raise it again. This ensures that
the task’s starting method will receive the CancelException and can return from the
asynchronously invoked method.

Completion Clause

The completion ignore option specifies that the method does not post the return or
exception events.

You can use the completion event option if the method was originally defined with return
and exception events. When you use this option, the task automatically posts a return
event when it completes successfully and an exception event when it terminates due to an
exception.

Requesting the return and exception events automatically registers the events for the
calling task. When the asynchronous method completes or terminates, Forte adds the
appropriate event to the calling task’s event queue.

This registration is unlike the event registration for the event statement. In the event
statement, the event is registered just before the event statement is ready to process the
event. In the start task statement, the return and exception events are registered when the
task is started, even though it can be much later on that your application is prepared to
wait for those events. Therefore, only the “parent” task that executes the start task
statement is registered for the completion event of the started task.

Start Task 149

Return event The return event is automatically posted to the “parent” task when the started task
completes.

The return event uses the output and input-output parameters defined for the method.
These parameters have whatever value is current when the task completes.

Note that if the parameter is a reference to an object and another data item is pointing to
that object, the values in the object may be changed between the time that the task
completes and the time that the event statement handles the return event. If this is a
problem, you can use the copy option for the method’s parameters (see A Guide to the Forte
4GL Workshops).

Return parameter If the method is defined as having a return type, the last parameter for the return event is a
return value called “return.” This has the return value that is specified by the return
statement.

Exception event The exception event is automatically posted to the calling “parent” task when the started

task is terminated due to an exception.

The exception event has two parameters, the exception parameter of type
GenericException, which contains the exception that terminated the task, and the errMgr
parameter, of type ErrorMgr, which contains the error manager for the task. These
parameters let you find out why the task was terminated.

The following code illustrates using the start task statement with a completion event
option to request the return and exception events and then using an event statement to
respond to them.

Example: use of -- Notice output paraneters are given, even though they
completion event option -- are received only on the return event.
begi n transaction do
start task self.theBid.StartBid(
bi dder Name = sel f.theUser Nane,
pai nti ngForBid = ptg, bidValue = self.theBidVal ue,
| ast Bi dTi ne = sel f.thelLastBi dTi ne,
bi dl nProgress = sel f.theBi dl nProgress)
where conpl eti on = event, transaction = dependent;
event | oop

Example of return event when self.theBid. StartBid_return (
nptg = paintingForBi d, nval ue = bi dVal ue,
ntime = | astBidTi ne, nprogress = bidl nProgress,

nname = return) do
-- Qutput val ues have updated data in nptg, nval ue
-- The return value is in nnane.
Example of exception event when sel f.theBid. StartBi d_exception
(e = exception, em= errMyr) do
-- Add error manager stack to this task and re-raise
-- Type of e is ' Object’
t ask. Error Myr . AddErr or (err Myr =em ;
rai se e;
when <cancel _button>.Click do
-- Abort the transaction. This will cancel the task.
transacti on. Abort (TRUE) ;
end event;
exception
when e: CGeneri cException do

TOOL Statement Reference Chapter 3

150 Start Task

See Auction example

Committing and
aborting the transaction

AbortException exception
and task’s dependent
transactions

Restrictions on nested
transactions

Database sessions
and multitasking

TOOL Reference Manual

unexpect ed. . .
when e: AbortTransacti on do
expect ed. . .
end transaction;
Project: Auction e Class: BidWindow e Method: Display

Transaction Clause

The transaction clause lets you specify whether the new task begins an independent
transaction, is part of the calling task’s transaction, or is not part of any transaction. You
can specify any of the following types:

Transaction Type Description

None The new task does not begin a transaction and is not part of the enclosing transaction (this is
the default).

Independent The new task begins as an independent transaction.

Dependent If the caller is in a transaction, the new task begins a transaction that is dependent on the
enclosing transaction. Both transactions must succeed together, or both will fail.
If the caller is not in a transaction, this transaction type is equivalent to independent.

Nested If the caller is in a transaction, the new task begins a transaction that is nested in the
enclosing transaction. If the nested transaction fails, the enclosing transaction may still

succeed. If the nested transaction succeeds, it is not committed until the enclosing
transaction is committed.

If the caller is not in a transaction, this transaction type is equivalent to independent.

For further information on transaction types, see “Begin Transaction” on page 95.

When the start task statement begins a transaction, the method it invokes is equivalent to
the statement block in the begin transaction statement. You commit the transaction by
completing the task (this is equivalent to the end transaction clause). However, there is no
equivalent to the statement block’s exception handler. To abort the transaction, you must
raise an exception that cannot be handled by the method and therefore terminates the
task. You can then use the exception event if you need to be notified that the transaction
was aborted. Another alternative is to use the Abort method on the TransactionHandle
class (see the Framework Library online Help). If you raise an exception in the method that
is handled by the method’s exception handler, the transaction will not be aborted.

Unlike the transaction started by a begin transaction statement, the transaction started by
a task does not have an automatic exception handler for the AbortException exception.
Therefore, if Forte raises an AbortException exception and you do not explicitly handle it in
the asynchronous method, Forte terminates the task.

In some circumstances you should not use nested transactions. You should not use nested
transactions for TOOL SQL statements. Nor should you start a task with the dependent or
nested options from a task that is itself running as a dependent transaction. In this case,
this (second) task is a dependent participant in a first task’s transaction. If the second task
then starts a third task by using the dependent option, the third task is a dependent
participant of the transaction begun by the first task, even though the third task was started
by the second task.

If you plan to use the same database session in multiple concurrent tasks, all the tasks must
be in the same transaction. You can ensure that they are by using the dependent option of
the start task statement.

While

While 151

The while statement loops through the specified statement block as long as the boolean
expression is true.

Syntax

[label :] while boolean_expression
do statement_block

[exception_handler]

end [while];

Example

i = 1;
while i < 10 do

i =i + 1;

end whil e;
Description

Example: boolean expression

When the while statement is executed, Forte begins by evaluating the expression. If the
expression is true, Forte executes the statement block. After completing the statement
block, it returns to the beginning of the loop to test the expression again. Forte repeats this
process until the expression is false.

You must use a boolean condition that will eventually be false, use an exit statement to exit
the loop, or use the return statement to exit the method. If you do not, the while statement
will loop infinitely. See “Exiting the While Loop” on page 152 for further information.

Expression

The boolean expression specifies a logical condition that has a value of TRUE or FALSE. It
can include boolean variables, constants, attributes, and methods that return boolean
values. See “Boolean Expressions” on page 56 for information on boolean expressions. Here
is an example:

while ((i < 10) and (j > 4)) and not (k = 3) do

end whil e;

TOOL Statement Reference Chapter 3

152 While

Statement Block

The statement block can include any TOOL statements. You can use the continue
statement to return to the first statement of the statement block and force another iteration
of the loop. You can use the exit statement to pass control to the statement following the
end while.

Example: exit and whi |l e TRUE do
continue in statement block ...processing. ..
if self.Wndow QuestionDi al og(‘ Continue?’) = BV_OK then
conti nue;
el se
exit;
end if;
end whil e;

Exception Handling

The exception clause of the while statement provides an exception handler for the
expression and the statement block in the while statement. See “Exception” on page 113
for information on using an exception handler.

Label

The label identifies the while statement for use with the continue and exit statements.
When you are nesting control statements, you can use the continue and exit statements to
transfer control to a labeled while statement. The label name must be unique for the
statement block (label names share the same name scope as variables and other
components).

Exiting the While Loop

To exit the while loop, you can use the exit statement to exit the while statement or use the
return statement to end the method. If you do not use either of these statements, you must
ensure that the boolean condition will become false, otherwise the while statement will
loop infinitely. The following example illustrates this:

Example: exiting while loop f : File = new,
set up file nane, etc...
f. Open(SP_AM READ) ;
t : TextData = new,
whil e f.ReadLi ne(t, TRUE) >= 0 do
process data in t...
end whil e;

If you are using a boolean condition to loop through a range of numbers, be sure to
increment or decrement your counter.

Example: using a counter x = array of TextData = new;
fill inx ...
i : integer = 1;
while i <= x.ltens do
...process x[i]...
i =i + 1
end whil e;

TOOL Reference Manual

Chapter 4

Project Definition Statements

This chapter describes the statements you use to define a project and its components when
writing a .pex or .cex file that you will import using the Forte workshops or the Fscript
utility.

If you use the Forte workshops to define project components, Forte automatically
generates these statements for you; you do not use these statements in the workshops.
However, if you then export a project, you can see the statements that Forte generated if
you view the resulting file. You only use these statements when you create or edit files that
you will import.

To import the file into your development repository, you can use the Compile or Import
command in Fscript or the Import command in the Project Workshop.

154 Begin ¢, dce, obb

Begin ¢, dce, obb

The begin c, dce, or obb statement defines a C, DCE, or ObjectBroker project.

Syntax

begin {c | dce | obb} project_name;
definition_list
(has property {project_property;}...]
definition_list

end [project_namel;

project_property is:

compatibilitylevel = integer_constant

restricted = {TRUE | FALSE}

multithreaded = {TRUE | FALSE}

libraryname = string_constant

extended = name = string_constant [name = string_constant]...

Description

You can use the begin statement to define a C, DCE, or ObjectBroker project. For complete
information on this statement, and on creating and using C, DCE, and OBB projects in
Forte, see Integrating with External Systems.

TOOL Reference Manual

Begin class 155

Begin class

The begin class statement surrounds one or more TOOL class definitions.

Syntax
begin class;

definition_list
end [class];

Example
begi n CLASS;
cl ass ADefaultC ass inherits from Framewor k. Obj ect
has public nmethod Init;
has property
shar ed=(al | on=0f f, overri de=on);
transactional =(al | ow=of f, overri de=on);
nmoni t or ed=(al | on=of f, overri de=on);
di stri buted=(al | ow=0ff, override=on);
end cl ass;
met hod ADef aul tC ass. I nit
begi n
super.Init;

end net hod;

end CLASS;

Project Definition Statements Chapter 4

156 Begin class

Description

Forward registration
of class names

TOOL Reference Manual

The begin class statement allows you to define one or more TOOL classes in a .cex file. It
provides the same support for forward referencing as the begin tool statement and is the
first statement in the .cex file that is created when you export a class. You can have only one
begin class statement per file.

To import a class definition from the file into your current project, you can use the Compile
command in Fscript or the Import Class command in the Project Workshop. Forte imports
only the classes you specify into the current project.

If there is more than one definition for the same class or component name, Forte uses the
last definition.

Definition List

The definition list for the begin class statement can include any number of class,
interface, constant, cursor, and service statements to define components for the current
project.

Note that TOOL allows you to include more than one definition for the same class,
interface, constant, cursor, or service object within the definition list. The last definition in
the list is the definition that Forte uses for the project. The advantage of being able to
include more than one definition for the same component is that you can forward register
class names in the definition list. This way, one class definition can reference another class
before that class has been completely defined.

Begin tool

Forward registration
of class names

Begin tool 157

The begin tool statement defines a TOOL project.

Syntax

begin [tool] project_name;
[includes project_name;]...
[has property restricted = {TRUE|FALSE};]
definition_list
(has property {project_property;}...]
end [project_namel;

project_property is:

startingmethod = (class = class_name, method = method_name)
compatibilitylevel = integer_constant
libraryname = library_name

Description

The begin tool statement allows you to define a TOOL project in a .pex file. To import the
project definition from the file into your development repository, you can use the
ImportPlan command in Fscript or the Import command in the Repository Workshop.

You can have more than one begin tool statement for the same project. These statements
can be in the same file or in different files. If the project already exists, Forte simply adds
the new definitions to the existing project.

If there is more than one definition for the same project component (for example, more
than one definition for the same class name), Forte uses the last definition.

Project Name

The project name can be any legal Forte name. If the name is unique, Forte creates a new
project. You can use an existing project name, which will add new definitions to the
existing project, but the existing name must be for a TOOL project (not an external project).
When you specify an existing TOOL project name, Forte adds the definitions in the begin
tool statement to the existing project.

Includes Clause

The includes clause specifies a supplier plan for the project you are defining. A supplier
plan can be any project or library. If your project needs to access definitions or services
defined in another project or in a library, you must include that supplier plan as part of
your project definition. Repeat the includes clause any number of times to specify each of
the supplier plans for the project.

Definition List

The definition list for a project can include any number of class, constant, cursor,
interface, and service statements (described in this chapter).

Note that TOOL allows you to include more than one definition for the same class,
constant, cursor, interface, or service object within the definition list. The last definition in
the list is the definition that Forte uses for the project. The advantage of being able to
include more than one definition for the same component is that you can forward register
class names in the definition list. This way one class definition can reference another class
before it has been completely defined.

Project Definition Statements Chapter 4

158 Begin tool

startingmethod option

compatibilitylevel option

restricted option

library name option

TOOL Reference Manual

Has Property Clause

The has property clause lets you specify the project properties. These are the same
properties you can set for a project in the Project Workshop.

You can have more than one has property clause within the begin tool statement. If you
set the same property more than once, Forte uses the last setting.

The startingmethod option lets you specify the startup class and method for the project.
The class clause specifies the class of the startup object for the application. You can specify
any class defined in the project. The method clause specifies the method that will be
invoked on the startup object. You can specify any method defined for the class.

The compatibilitylevel option lets you specify the compatibility level for the project.
Normally, if you plan to deploy a new release of your application, you should raise its
compatibility level. This lets you install and run the new release of the application in the
same environments where older releases of the application are installed. You must raise the
compatibility level of the project if you make any changes to the project except the
following:

m change method source code (but not method parameters)
®m add new classes

A project is defined as having restricted availability because it can run only on particular
hardware or software. If your project includes any restricted projects (either external or
TOOL) or libraries, you can use the service objects provided by those plans but you cannot
create objects using their classes. This is because the necessary hardware or software
required by the restricted plan may not be available.

However, under some unusual circumstances, your project may need to run the restricted
plan’s code in the client partition (that is, it needs to create objects from its classes). In this
case, you can declare your TOOL project as also being restricted by setting the restricted
option to TRUE. If you declare your project as restricted, Forte allows you to use the classes
of all the restricted supplier plans. However, this has serious repercussions on how you can
partition the project.

Note that you must set the restricted property before the definition list. This is true only for
the restricted property. Other properties can be set before and after the definition list.

A library name is used when the project is configured as a library or included within a
library distribution. When there is more than one library within a library configuration, all
the library names must be unique. The library name can be any length, however, on
platforms where there is an eight-character limit for file names, the library name will be
truncated to eight characters.

Class 159

Class

The class statement creates a custom class.

Syntax

class class_name [is mapped] inherits [from] superclass
[implements interface, [interfacel...]

[(has public | has private] component_definitions]...

[has property [property]...

[has file filename;]

end [class];

property is one of:

shared= (allow = {on|off} [, override = {on|off}]
[, default = {on|off}]);

transactional= (allow = {on|off} [, override = {on|off}]
[, default = {on|off}]);

monitored = (allow = {on|off} [, override = {on|off}]
[, default = {on|off}]);

distributed= (allow = {on|off} [, override = {on|off}]
[, default = {on|off}]);

restricted = (TRUE|FALSE);

extended = (name=valuel,name=valuel...);

Project Definition Statements Chapter 4

160 Class

Example
class Artist inherits from bject
has public
-- Attributes

Nanme : string;

Country : string;

Born : integer;

Died : integer;

School : string;

Comments : Text Dat a;

-- Methods

met hod FilllnData(i oObject : BasiclO);

met hod WiteTolLog();

met hod Init();

-- Properties

has property
shared = (allow = of f);
transactional = (allow = on, default = on);

end cl ass;

Description

Use for window classes

TOOL Reference Manual

Typically, you create classes using the Class Workshop. However, the class statement allows
you to define custom classes in a file. To import the class definition from the file into your
development repository, you can use the Compile command in Fscript or the Import
command in the Project Workshop.

Class Name

The class name provides a name for the new class. If a class by that name already exists,
your new definition replaces the existing definition.

We recommend that you adopt a naming convention to distinguish your custom classes
from the Forte system classes.

Implements Clause

The implements clause specifies one or more interfaces that the new class will implement.
The class can implement any interface that was previously defined or forward registered.

To implement an interface, the class must define all methods, events, and event handlers
included in the interface. If the class does not define all these components, you will get a
compile error.

Is Mapped Clause

If the class you are defining is a window, that is, a subclass of the UserWindow class, you
must include the is mapped clause in the class statement. This indicates that the class is a
user window class, and that the has file clause (described below) specifies the window
definition file. Forte compiles both the class definition and window definition file, mapping
the class attributes to the corresponding window widgets by name.

Specifying the superclass

Window definition file

Mapping widgets
to class attributes

Class 161

Inherits Clause

The inherits clause specifies one superclass from which the new class will inherit
attributes, methods, events, event handlers, and constants. This can be any custom class or
any system class identified as “Superclass for Custom Class” in the documentation. This is
required.

Public and Private Definitions

The has public clause defines public attributes, methods, events, event handlers, and
constants for the class. “Defining Class Components” describes how to define these
individual components. You can use this clause any number of times within the class
statement and in any combination with the has private clause. If the has public clause is
the first clause in the class definition, the has public key words are optional. Otherwise, you
must include the key words with the component definitions.

The has private clause defines private attributes, methods, event handlers, and events for
the class. “Component Definitions” on page 161 describes how to define these individual
components. You can use this clause any number of times within the class statement and
in any combination with the has public clause.

Has File Clause

If the class you are defining is a window, that is, a subclass of the UserWindow class, you
must use the has file clause to specify the window definition file for the class. This is
required if you use the is mapped clause. The window definition file must be a file that you
created using the Forte Window Workshop. To specify the file name in the has file clause,
you must enclose the file name in single quotes.

In order for the widgets in the window definition to map to the data attributes in the class,
they must have the same name and a compatible data type (see A Guide to the Forte 4GL
Workshops for information on mapping data types). If there is no matching name, the
widget will be included in the class but you will not be able to display data in it. If the type
is incompatible, you will get an error.

Component Definitions

The components you can define for a class include:

attributes

m virtual attributes
m events

= methods

m event handlers

B constants

Project Definition Statements Chapter 4

162 Class

Get expression

Example: virtual attribute

TOOL Reference Manual

Attributes

To define an attribute, you must specify the name and type. The syntax is:

[attribute] attribute_name : type
[has property [extended = (name=valuel,name=valuel...)11;

The attribute name is any legal Forte name. It must be unique for the class. The attribute
type can be any simple type or any class.

The following example shows attribute definitions:

Pai nti ngForBid : Painting;
Bi dval ue : Deci nal Dat a;

Virtual Attributes

To define a virtual attribute, you must specify the attribute name, the attribute type, and
two expressions that determine the value of the attribute when it accessed or assigned. The
syntax is:

virtual [attribute] attribute_name : type = (get = expression,
[set = expression])
[has property [extended = (name=valuel,name=value]...)]];

The attribute name is any legal Forte name. It must be unique for the class. The attribute
type is any simple data type or any class.

The get parameter provides an expression to be executed when the program accesses the
value of the attribute. The value of the expression is the value of the virtual attribute. This
can be any expression with a data type that is compatible with the attribute’s data type.

For a private virtual attribute, the expression can reference any components defined in the
current class and its superclasses, or any global components. For a public virtual attribute,
the expression can reference only public attributes, methods, event handlers, events, and
constants.

Since a class definition cannot point to an object, Forte assumes that all references to
attributes, methods, and so on are for the current object.

The following example illustrates using the return value of a method as the value of the
virtual attribute:

cl ass weat her inherits from bject

has public
-- Method sets lowf attribute with input in centigrade
met hod setctenp (tenp_in_centigrade : integer);
-- Attribute lowf is tenperature in fahrenheit

| owf : integer;
-- Virtual attribute shows tenp in centigrade.
virtual low : integer =

(get = (5.0/9.0) * (lowf - 32),
set = Set Ctenp(lowe));

end cl ass;
nmet hod weat her. setctenp(tenp_i n_centigrade : integer)
begi n

self.lowf = (9.0/5.0) * tenp_in_centigrade + 32;
end;

Set expression

Example: event definition

No derived C data types

Class 163

In the get expression, you can use the virtual attribute name as an input-output or output
parameter for a method. Forte uses this “return” value as the value for the virtual attribute.
Any other use of the virtual attribute name is illegal.

The set parameter provides an expression to be evaluated when the program assigns a
value to the attribute. This expression usually invokes a method to update some data. This
expression is optional. If you do not specify it, the virtual attribute will be read only.

For a private virtual attribute, the expression can reference any components defined in the
current class and its superclasses, or any global components. For a public virtual attribute,
the expression can reference only public attributes, methods, event handlers, events, and
constants. Forte assumes that all references to attributes, methods, and so on are for the
current object.

In the set expression, you can use the virtual attribute name to represent the value that the
user assigned to the attribute. Typically, the expression contains a method that uses the
virtual attribute name as one of its parameters. (Note that you cannot update the value of
an attribute by setting its value directly to the value of the virtual attribute; instead, you
must invoke a method to update it.)

If the set expression produces a value, such as a return value from a method, Forte ignores
it.

Events

You define an event by specifying an event name and an optional list of parameters. The
syntax is:

event event_name [(name: type [= value] [, name: type [= valuel]...)]
[has property [extended = (name=valuel,name=value]...)]1;

The event name is the name you will use to identify the event in the post and event
statements. This can be any legal Forte name. It must be unique for the class.

The parameter list defines one or more parameters for the event. When you use the post
statement to generate the event, you can pass one value for each parameter that you define
here. For each parameter, you must specify a name and a data type. The data type can be
any simple type or any class.The optional value for the parameter specifies a default value
to be used when the event is posted without specifying a value for the parameter.

event Bi dConpl eted (newBi d : Deci mal Dat a,
timeOfBid @ DateTi neDat a,
whoBi d : Text Dat a) ;

event Bi dCancel |l ed;

Note that event parameters cannot have derived C data types, such as structs or C-style
arrays. See Integrating with External Systems for information about the C data types.

Project Definition Statements Chapter 4

164 Class

Use of method key word

Method name

Overriding

Overloading

Method parameters

TOOL Reference Manual

Methods

To include a method in a class definition, you must specify the method name, the method
parameters, and the method return type. If you want to create return and exception events
to be used with the start task statement, you must specify names for these events. You
provide the code for method body separately, using the method statement. The syntax is:

[method] method_ name [(parameter_list)] [: [copy] return_typel
[where completion = (event_setting [, event_setting])
[has property [extended = (name=valuel,name=value]...)]];

parameter _list is:

([copy] [input | output | input output] name : type [= valuel
[, [copy] [input | output | input output] name : type [= valuel]...)

event_setting is:
return = event_name | exception = event_name

When you use the method statement to write the body of the method, you must again
specify the method name, parameters, and return type for the method. These must match
exactly with those you specify in the class definition, including the type and default values.

Note that the method key word is only optional when the method has a parameter list. If
the method does not have a parameter list, you must include the method key word.

The method name specifies the name that you must use to invoke the method. This name
must be unique for the class unless you wish to override or overload the method.

If you use a unique name, Forte creates a new method for the class with a new method
name.

If you use the name of an inherited method name and specify the same parameters used in
that method (see below), Forte “overrides” the inherited method for the current class. This
allows you to create a different variation of the method that will be invoked with the same
method name. When you invoke a method on the object, Forte uses the method you
defined specifically for the class rather than the inherited method. (You must provide code
for the new method using the method statement for this class.)

If you use the name of an existing method for the class but you specify different data types
for the parameters (see below), Forte “overloads” the method. This allows you to create two
similar method with the same name. In this case, when the method is invoked for the
object, Forte uses the parameter data types as well as the method name to determine
which method to use. (You must provide code for overloaded method using the method
statement.) See A Guide to the Forte 4GL Workshops for information about overriding and
overloading methods.

The following example defines a method with a method name of WriteToLog with no
parameters and no return type.

met hod Artist. WiteTolLog()

The parameter list defines one or more parameters for the method. For each parameter,
you must specify a name and data type. The data type can be any simple data type or any
class. The following example illustrates:

nmet hod Del et eBi dFor Pai nti ng (name : TextData) : bool ean;

If you want to “overload” the method (described above), be sure to specify different
parameter data types than those for the method with the same name. When you invoke a
method and the object has more than one method with the same name, Forte uses the
parameter data types (not the parameter names) to distinguish between them.

Restrictions for overloading

input, output,
and input output options

Example: input and
output parameters

Class parameters

copy option

Default value

Method return type

Example: return types

Class 165

There are two restrictions for overloading methods. First, you cannot define two methods
where the only difference is that one has a portable integer parameter and the other has a
non-portable integer parameter. Second, you cannot define two methods where the only
difference is that one has a boolean parameter and the other has any unsigned integer
parameter. Both of these conditions will cause compiler errors. See “Integer Data Types” on
page 59 for information on portable and non-portable integers.

The default for a method parameter is input only. You can use the output or input output
options to specify that the parameter is for output only or for both input and output.

met hod StartBi d(i nput bi dder Nane : Text Dat a,
out put paintingForBid : Painting,
out put bi dval ue : Deci mal Dat a,
out put | astBi dTi ne : DateTi neDat a,
out put bi dlnProgress : bool ean) : Text Dat a;

When a parameter has a class for its type, Forte passes a reference to the object, not the
object itself. This means that even if the parameter is for input only, if the method makes
changes to the object, these changes are reflected when you return from the method. This
is because both the invoking method and the invoked method are referencing the same
object.

The copy option allows you to prevent the invoking method and invoked method from
referencing the same object. When you specify copy for a class parameter, Forte makes a
copy of the object and passes a reference to that copy as the parameter. For an output
parameter, Forte returns a reference to the copy. The copy option is also useful for
improving the efficiency of distributed applications. If the invoking method and the
invoked method are going to be on separate partitions, using a copy of the object rather
than sharing a single object may reduce communication costs. In most cases, Forte will try
to use the most efficient communication that is possible.

Input and copy-input parameters have an optional default value. The optional value for the
parameter specifies the default value to be used when the programmer invokes the method
without assigning a value to the parameter. Providing a default value for the parameter
makes the parameter optional (the programmer does not have to assign a value to it when
invoking the method). Parameters that do not have default values are required (the
programmer must assign a value to it when invoking the method).

For simple parameters, the default value can be any constant that is compatible with the
data type of the parameter. For class parameters, the default value must be the NIL
constant.

Note that you can use a named constant as a default value, but only the current value of the
named constant at that point in time is used. If the named constant later changes its value,
the parameter’s default value is not changed unless the code gets recompiled.

The method’s return type specifies the data type of the value that you can pass back from
the method with the return statement. The return value can be any simple data type or any
class. If you do not specify a return type, you cannot use the return statement to pass a
value back to the invoking method.

nmet hod Fi ndBi dFor Pai nting (name : TextData) : Bid;
met hod Get Pai ntingList () : Array of Painting;
met hod OpenNewLi st () ;

The optional copy option for the method’s return type lets you request a reference to a copy
of the object, rather than a reference to the original object. This is exactly like the copy
option for parameters (described above).

Project Definition Statements Chapter 4

166 Class

where completion option

return option

exception option

Handler name

Overriding

No overloading

TOOL Reference Manual

If you are planning to invoke the method asynchronously using the start task statement,
you may wish to request an event to be posted when the task completes successfully or is
terminated due to an unhandled exception. In order to request these events to be posted,
you must first define them for the method. Note that you cannot specify completion events
on a method that is overriding another method. This is because the overriding method
inherits the completion events from the original method.

The return option declares a return event with the name you specify. Forte posts this event
when the task completes successfully (if you used the completion event option in the start
task statement to request the event). The return event has the output and input-output
parameters defined for the method. These parameters have whatever value is current when
the task completes. In addition, if the method is defined as having a return type, the last
parameter for the return event is a return value called “return.” This has the return value
that is specified by the return statement.

The exception option declares an exception event with the name you specify. Forte posts
this event when the task is terminated due to an unhandled exception (if you used the
completion event option in the start task statement to request the event). This event has
two parameters, the exception parameter of type Object, which contains the exception that
terminated the task, and the errMgr parameter of type ErrorMgr, which contains the error
manager for the task.

See “Completion Clause” on page 148 for more information about completion events.

Event Handlers

To include a named event handler in a class definition, you must specify the event handler
name and the event handler parameters. You provide the code for event handler separately,
using the event handler statement. The syntax is:

event handler handler_ name [(parameter_list)]
[has property [extended = (name=valuel,name=value]...)]];

parameter _list is:

([copyl] [input] name : type [= value]
[, [copy] [input] name : type [= valuel]...)

Note that when you use the event handler statement to write the event handler, you must
again specify the handler name and parameters. These must match exactly with those you
specify in the class definition.

The handler name specifies the name that you must use to identify the event handler. This
name must be unique for the class unless you wish to override an inherited event handler.

If you use a unique name, Forte creates a new event handler for the class with a new event
handler name.

If you use the name of an inherited event handler, Forte “overrides” the inherited event
handler for the current class. This allows you to create a different variation of the event
handler that can be registered using the same event handler name. When you register an
event handler for the current class, Forte uses the event handler you defined specifically for
the class rather than the inherited event handler. (You must provide code for the new
variation of the event handler using the event handler statement for this class.)

Forte does not allow you to overload event handlers. There can only be one event handler
with a given name in the class.

Handler parameters

input option

Class parameters

copy option

Default value

Class 167

The parameter list defines one or more parameters for the event handler. When you
register the event handler with the register statement, you can pass one value to the event
handler for each parameter that you define here. For each parameter, you must specify a
name and data type. The data type can be any simple data type, any class, or any array
type. The following example illustrates:

event handl er Art Obj ect Wndow. Art Obj ect Handl er
(input artType: string)

Event handler parameters are always for input only. If desired, you can use the input key
word in your event handler definition for clarity. See A Guide to the Forte 4GL Workshops
for information about parameters for event handlers.

When a parameter has a class for its type, Forte passes a reference to the object, not the
object itself. This means that even though an event handler parameter is for input only, if
the event handler makes changes to the object, these changes are reflected outside the
event handler. This is because both the method that registers the event handler and the
event handler itself are referencing the same object.

The copy option allows you to prevent the method and the event handler from referencing
the same object. When you specify copy for a class parameter, Forte makes a copy of the
object and passes a reference to that copy as the method handler parameter.

Event handler parameters have an optional default value. The optional value for the
parameter specifies the default value to be used if the programmer registers the event
handler without assigning a value to the parameter. Providing a default value for the
parameter makes the parameter optional (the programmer does not have to assign a value
to it when registering the event handler). Parameters that do not have default values are
required (the programmer must assign a value to it when registering the event handler).

For simple parameters, the default value can be any constant that is compatible with the
data type of the parameter. For parameters whose type is a class, the default value must be
the NIL constant.

Note that you can use a named constant as a default value, but only the current value of the
named constant at that point in time is used. If the named constant later changes its value,
the parameter’s default value is not changed unless the class gets re-imported.

Constants

To define a class-level constant, use the constant statement within the definition list. See
“Constant” on page 171 for information.

Has Property Clause

The has property clause allows you to specify whether objects of the specified class can be
distributed, shared, transactional and/or monitored. These class properties add certain
runtime behavior to objects that are instances of the class. Briefly the properties are:

Property Description
Distributed Allows an object of this class to be sent to a remote partition.

Shared Lets you create shared objects, which allow multiple tasks to access and reliably change the
object’s data concurrently.

Transactional Lets you create transactional objects which can participate in a transaction.

Monitored Indicates that objects of this class may be displayed and mapped to a window widget.

Project Definition Statements Chapter 4

168 Class

Each of these properties is associated with an attribute of the Object class. The following
table describes the Object attribute for each class property:
Class Property Object Attribute Description

Distributed IsAnchored Setting IsAnchored to TRUE anchors the object to the partition in which it
was created. An attempt to send such an object to a remote partition
confirms that the object’s class definition included the Distributed property.

Shared IsShared Setting IsShared to TRUE uses locking to synchronize access from multiple
concurrent tasks. By default IsShared also sets IsAnchored.

Transactional IsTransactional Setting IsTransactional to TRUE marks the object as transactional. TOOL logs
such objects before they're updated in a transaction.

Monitored none No associated Object attribute.

See the Framework Library online Help for information on the IsAnchored, IsShared and
IsTransactional attributes of the Object class.

allow parameter Setting the allow parameter to ON indicates that objects of the class may set the associated
Object attribute to TRUE. If you set allow to OFE then the associated attribute cannot be
set to TRUE.

override parameter The override parameter determines if subclasses inherit the settings for the allow and
default parameters and specifies whether the subclass can change the settings of these
parameters.

The ON setting specifies that subclasses do not inherit the settings, but can change their
values. The subclass is initially set to the default values for the property, but can then set
the value as appropriate. The default value for the override parameter is ON.

The OFF setting specifies that subclasses inherit their superclass’ values and the subclass
cannot change them. If you change a superclass with existing subclasses from override ON
to override OFF all its subclasses will be changed to the use the same values as the
superclass default parameter.

The default parameter provides an initial setting of the associated Object attribute. The
default parameter can only be set to ON if allow is also set to ON. Normally, the initial
setting for the associated attribute is FALSE. To change this initial value, set the default
parameter to ON.

In the following example, all object instances of the Artist class will automatically be
transactional, but only those explicitly set will be shared:

Example: default parameters class Artist inherits from Qbject

has property

shared = (allow = on); -- no default
transactional = (allow = on, default = on);
end cl ass;
al : Artist = new, -- Transactional (default)
a2 : Artist = new(lsShared = TRUE); -- Transactional and shared

The default parameter is not applied to objects created with the Clone method. You can
safeguard against this by setting the associated attribute in an Init method.

TOOL Reference Manual

Class 169

Default settings and When you create a class, it is given default settings values for each of the class properties.
performance considerations The default property settings are briefly described in the table below:

Class Property Default Values Description

Distributed allow = off The object cannot be sent to a remote partition.
override = on
default = off
Shared allow = off Access to the object’s attributes and methods is not regulated in a
override = off multitasking environment.
default = off
Transactional allow = off The object will not participate in a transaction.
override = off
default = off
Monitored allow = on The system may map the object’s values to a window widget.
override = on
default = off

In order to improve the runtime performance of a class, in both a client and server, all
properties should be explicitly turned off. For example:

distributed = (allow = off, override = off);
shared = (allow = off, override = off);
transactional = (allow = off, override = off);
moni tored = (allow = of f, override = off);

Whenever possible, you should turn off as many of the properties as you can without
impacting the runtime behavior of your application. See the Forte 4GL Programming Guide
for more information on distributed, shared, transactional and monitored objects.

Has Property Restricted Clause

If the current project has a supplier project or library that is restricted and the class you are
creating in the current project references components in the restricted plan, you can
declare the class as “restricted.” When the class itself is restricted, this allows you to create
objects from the class, not just service objects.v

Has Property Extended Clause

The has property extended clause for a class allows you to set any number of extended
properties for a class or any of its elements. Extended properties are simply user-defined
name-value pairs.You can assign arbitrary name-value pairs to the class or its components
for any purpose. For example, you can use extended properties for comments.

Project Definition Statements Chapter 4

170 Class

Example Class Definition

The following example illustrates a complete class definition.

class Bid inherits from Qbject
has private
Pai nti ngForBi d : Painting;
Bi dVal ue : Deci nal Dat a;
Last Bi dTi me : DateTi neDat a;
Last Bi dder : Text Dat a;
Bi dl nProgress : bool ean;
has public
met hod Init();
met hod Conpl eteBid (bid : Decinmal Dat a) ;
met hod Get Val ues (
out put paintingForBid : Painting,
out put bi dval ue : Deci nal Dat a,
out put | astBi dTi ne : DateTi neDat a,
out put bi dl nProgress : bool ean);
met hod Set Val ues (
pai ntingForBid : Painting = NIL,
bi dval ue : Decimal Data = N L,
| ast BidTine : DateTi neData = N L,
| ast Bi dder : TextData = NI L,
bi dl nProgress : bool ean = FALSE);
met hod Start Bi d(
i nput bi dder Nane : Text Dat a,
out put paintingForBid : Painting,
out put bi dval ue : Deci nal Dat a,
out put | astBi dTi ne : DateTi neDat a,
out put bi dl nProgress : bool ean) : TextData
where conpletion = (return = StartBi d_return,
exception = StartBi d_exception);
... nmore methods. ..
event Bi dConpl eted (newBid : Deci mal Dat a,
timeOBid : DateTi neData, whoBid : TextData);
event BidCancell ed;
event BidStarted (who : TextData);
has property
transactional = (allow = on, default = on);
shared = (allow = on, default = on);
distributed = (all ow = on);
end cl ass;

See AuctionServerProject

Project: AuctionServerProject Class: BidWindow e Method: Display
example

TOOL Reference Manual

Constant 171

Constant

The constant statement declares a named constant.

Syntax

constant name = value;

Example

constant seconds_per_hour = 3600;
constant Pl = 3.14159268;
constant ConpNane = ‘Forte Software Inc.’;

Description

The constant statement allows you to define a constant in a file using the Forte Fscript
utility. You can use the constant statement to declare a named constant as part of a project
definition or as part of a class definition.

If you declare a constant as a project component, its scope is the entire project. Any other
component in the project can reference the constant. See “Begin tool” on page 157 for
information about defining projects and their components.

If you declare a constant as a class component, its scope is limited to that class. In order to
reference the constant from outside the current class, you must use a qualified name. See
“Qualified Names” on page 53 for information about qualified names. See “Class” on

page 159 for information about defining classes and their components.

Constant Name

The constant name can be any legal Forte name and must be unique for the current
statement block. Because constants share the same name scope as several other
components, if the constant has the same name as a component in an enclosing scope, the
new named constant will “hide” the existing component. See “Name Resolution” on

page 52 for information on name resolution.

Constant Value

The constant value can be any numeric or string value. The data type of the value
determines the data type of the constant. See Chapter 2, “Language Elements,” for
information about how to specify a numeric or string constant.

Once you specify the value for a constant, you can change it only by recompiling the
constant statement, or through the Project Workshop (for project constants) or the Class
Workshop (for class constants).

Project Definition Statements Chapter 4

172 Cursor

Cursor
The cursor statement declares a database cursor.
Syntax
cursor name [(name: type [= value] |, name : type [= valuel]...)]
begin
select_statement
[for {read only| update [of column [, column]...]}];
end;
Example
cursor artist_cursor (name : string)
begi n
sel ect nanme, country, born, died, school, coments
fromartist_table
where nane LI KE : nane;
end;
Description
The cursor statement allows you to define cursors in a file using the Forte Fscript utility.
You can use the cursor statement to declare a cursor for use with the project. The example
above illustrates this.
Cursor Name
The cursor name can be any legal Forte name and must be unique for the project.
Placeholders
When you declare the cursor, you have the option of declaring one or more placeholders.
These are names that represent values that will be supplied at runtime. After you declare
placeholders, you use them in the where and having clauses of the select statement in the
cursor definition. Then, when you open the cursor, you set the values of the placeholders as
part of the open cursor statement.
Name and type Each placeholder has a name, a type, and an optional default value. The name can be any
legal Forte name. The type can be any Forte simple data type or any DataValue subclass.
Default values The optional default value is used when you do not specify the value for the placeholder in
the open cursor statement. This can be any value that is compatible with the data type of
the placeholder.

TOOL Reference Manual

Using placeholders

Read only cursor

Update cursor

Cursor 173

Cursor Select Statement

The select statement for the cursor selects the database rows for processing. Forte executes
this select statement when you use the open cursor statement to open the cursor. You can
use the fetch cursor statement to move the cursor through the result set.

The syntax for the select statement associated with a cursor is:

select [all | distinct] (* | column_list) from table_name [, table_name]...
[where search_expression]
[order by column [asc | desc] [, column [asc | desc]]...]
[group by column_name [, column_namel]...]
(having search_expression];

See Accessing Databases for descriptions of the individual clauses for the SQL select
statement.

In the where and having clauses, you can use the placeholders you declared in the
placeholder list. Because the placeholders are Forte names, you must preface them with
colons to distinguish them from column names.

For Clause

By default, a cursor can be used for reading only. The for update clause lets you allow
updating as well as reading. You can either allow updating for all columns or limit updating
to a specified list of columns.

The read only option limits the cursor to reading only, which is the default. When you use
the sql fetch statement with a read only cursor, you can access the values in the row but
you cannot update or delete it. Using a read only cursor keeps the data available to others
while you are working with the rows. Note that your particular DBMS may not support read
only cursors.

The update option allows the cursor to be used for updating. This provides a lock on the
data to prevent inconsistencies during the update. When you open a cursor that has been
declared for updating, other users will not be able to access the result set (and possibly
other data) until you close the cursor. Although it is not required, we recommend that you
use the of clause to specify the particular columns that can be updated. This allows Forte to
optimize the code and prevents updating of columns that should not be changed. Any
columns that you do not include in the of clause are available for reading only.

Project Definition Statements Chapter 4

174 Event Handler

Event Handler

The event handler statement defines an event handler for a class.

Syntax

event handler class.handler_name [(parameter_list)]
begin
[preregister statement_list]...
[[postregister] statement_list]
[when event_specification do statement_block]...
lexception_handler]
end [event];

Example

event handl er Art Obj ect W ndow. Art Obj ect Handl er
(input artType: string)
begi n
preregister
-- Use the parameter passed to the handler to set the
-- initial value of the object _type w dget’s mapped
-- attribute.
art obj ect _dat a. obj ect _type. Set Val ue(art Type) ;

-- Validate the object_type field.
when <artobj ect _dat a. obj ect _t ype>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateType();
if retval '= NL then
-- Error in validation. Print nessage and get rid
-- of pending events.
sel f. W ndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;
-- Validate the whol e thing.
when <artobj ect _dat a>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateAll();
if retval '= NL then
-- Error in validation. Print nessage and get rid
-- of pending events.
sel f. W ndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;
end event;

TOOL Reference Manual

Event Handler 175

Description

See InheritedWindow example

The event handler statement provides the source code for the event handler you create in a
class statement. This is the code that provides the event handler’s functionality.

When you use the event handler statement, you must specify the handler name and
parameters. These must match the event handler name and parameters you specified for
the event handler in the class statement.

Class and Handler Name

You must specify the class to which the event handler belongs. Because you can override
inherited event handlers, Forte uses the class name to assign the event handler to the class.

The handler name is the name you must use to identify the event handler. This must be the
same as the name you specified for the event handler in the class definition.

Note that you can override an event handler, but you cannot overload it. There can only be
one event handler with a given name in the class.

Parameters

The handler parameters provide the mechanism for passing values to the event handler.
This clause must match exactly with the handler’s parameter list you specified in the class
statement. The syntax is:

([copy] [input] name : type [= value]
[, [copy] [input] name: type [= valuel]...)

See “Event Handlers” on page 166 for information about the handler’s parameter list.

Preregister Clause

The optional preregister clause provides a list of statements to be executed before Forte
registers the events in the when clause list. You can use any TOOL statements in the
preregister clause except the return and exit statements.

The preregister clause is especially useful for including other named event handlers in the
current event handler. Using the register statement in the preregister clause is the primary
mechanism for including one event handler’s code within another event handler. For
example:

-- Registering handlers fromboth self and super in an event | oop.
event | oop
preregi ster
regi ster self.ArtistHandl er();
regi ster sel f.ResetHandl er();

-- Use the inherited event handler to handl e exit button
events.

regi ster super. ExitHandl er();
end event;
Project: InheritedWindow e Class: ArtistDataEntryWindow e Method: Display

See “Register” on page 131 for further information about using the register statement.

Forte registers the events in the preregister clause before registering the events in the
when clauses of the event handler. Therefore, if the same event is registered by the
preregister clause and a when clause, the when clause will supercede the preregister
clause. The event handling code in the preregister clause will become inactive.

Project Definition Statements Chapter 4

176 Event Handler

Scoping for variables

Exception handling

TOOL Reference Manual

The preregister clause is also useful for creating the objects that will be posting the events
you are registering for. For example, you can include the start task statement that will
create the TaskDesc object on which return events will be posted. The following example
illustrates this:

event handl er ArtSeller.ArtSellerHandl er ()
begi n
preregister
start task sel f. TheSal e. Start Sal e()
where conpl eti on = event;
-- Wien the sale has started, display a nessage.
when sel f. The Sale. StartSal e return do
sel f. Wndow. MessageDi al og(nmessageText = ‘Sale has started.’);
end event;

The statement list for the preregister clause determines the scope for any variables or
constants that are declared within it. Variables and constants that you declare within the
statement list are available within the preregister clause only and cannot be accessed by
the rest of the event handler.

The statement list in the preregister clause does not provide an exception handler. If
exceptions are raised within the preregister clause, they are handled by the event
statement that registers the event handler. See “Event” on page 106 for information about
exception handling for the event statement.

Of course, you can include a begin/end statement block in the preregister clause, and use
the exception handler within the begin/end statement to handle the exceptions raised
within the begin/end block. This way, the exceptions raised within the begin/end block
can be handled within the block, rather than by the enclosing event statement.

Postregister Clause

The optional postregister clause provides a list of statements to be executed after Forte
registers the events in the when clause list, but before the events are handled by the event
handler. You can use any TOOL statements in the postregister clause except the return and
exit statements.

The postregister clause is useful for ensuring that the code that posts an event is always
executed after the event statement has registered for that event (and so is ready to receive
it). For example:

event handl er ArtSeller.ArtSellerHandl er()
begi n
postregi ster
-- StartSal e posts an event when it’'s ready for input.
start task sel f.TheSal e. Start Sal e();
-- Wien StartSal e has posted the event, do sonething.
when sel f. The Sal e. Readyf or | nput do
...start another task related to input...
end event;

You can use the register statement in the postregister clause to include named event
handlers in the current event handler.

Scoping for variables

Exception handling

postregister key word

Event specification

Example: event specification

Event Handler 177

Forte registers the events in the postregister clause after registering the events in the when
clauses of the event handler. Therefore, if the same event is registered by the postregister
clause and a when clause, the postregister clause will supersede the when clause. The
event handling code in the when clause will become inactive. See “Register” on page 131
for further information about using the register statement.

The statement list for the postregister clause determines the scope for any variables or
constants that are declared within it. Variables and constants that you declare within the
statement list are available within the postregister clause only and cannot be accessed by
the rest of the event handler.

The statement list in the postregister clause does not provide an exception handler. If
exceptions are raised within the postregister clause, they are handled by the event
statement that registers the event handler. See “Event” on page 106 for information about
exception handling for the event statement.

Of course, you can include a begin/end statement block in the preregister clause, and use
the exception handler within the begin/end statement to handle the exceptions raised
within the begin/end block. This way, the exceptions raised within the begin/end block
can be handled within the block, rather than by the enclosing event statement.

Note that if you include both the postregister clause and the preregister clause in the same
event handler, you must use the postregister key word.

When Clause

The when clause identifies the event that you wish to handle and provides the
corresponding code for that particular event. First you must specify which event you wish
to handle. Second you declare a series of variables to receive the parameters that will be
passed with the event. Finally, you must provide the statement block to be executed when
the event is posted.

If the event is for the current object, you need only specify the event name. Otherwise, you
must reference the object that will produce the event and specify the event name using dot
notation. The event can be any event defined for the object’s class or one of its
superclasses.

-- Validate the object_type field.
when <artobj ect _dat a. obj ect _t ype>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateType();
if retval '= NL then
---- Error in validation. Print nmessage and get rid
-- of pending events.
sel f. Wndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;
-- Validate the whol e thing.
when <artobj ect_dat a>. Aft er Val ueChange do
retval : TextData = self.artobject_data. ValidateAll();
if retval '= NL then
-- Error in validation. Print nessage and get rid
-- of pending events.
sel f. W ndow. MessageDi al og(nessageText = retval);
sel f. W ndow. Pur geEvent s() ;
end if;

Project Definition Statements Chapter 4

178 Event Handler

Declaring variables for
event parameters

Parameter names

Example: declaring
variables for event parameters

Parameter positions

Example: parameters
by name and position

Class parameters

Statement block

exit statement

continue statement

Scoping for variables

TOOL Reference Manual

To declare the variables to store the event’s parameters, you must enter a variable name for
each parameter that you wish to receive. You do not need to specify a data type. Forte
automatically uses the data type of the corresponding parameter as you declared it in the
original event definition. These variables are always local to the individual when clause.
You cannot use existing variables in this list. If an event parameter has the same name as
an existing variable, the event parameter hides the variable.

To indicate how the variables and parameters correspond, you can use the parameter
names, the parameter positions, or both.

To use the parameter names, enter each variable name followed by the corresponding
parameter name. These can be in any order and you can exclude any parameters you wish.

-- Using paranmeter names in an event handl er’s when cl ause
when <picture_field_for_drop>. Qbject Drop(
dat = sourceData, dtype = SourceDat aType) do
if dtype = SD | MAGE t hen
-- Must cast because type of ‘dat’ is Object
picture_field for_drop = | mageDat a(dat);
end if;

To use the parameter positions, simply enter the variable names in the same order as the
parameters in the event definition. This order must be identical to the order in the original
definition and you cannot exclude any parameters unless they are at the end of the series.

To use a combination of the two techniques, you must first enter the variable names by
position. You can then use parameter names for the remaining variables in any order.

-- Using paraneters in an event handl er’s when cl ause
when sel f. Wndow. For m Aft er Mar kLi ne
(sx, sy, ey = EndY, ex = EndX) do
-- '‘sx’ and ‘sy’ are starting coordinates of the |line

-- ‘ex’ and ‘ey’ are the ending.

Remember that for class parameters the variable is a reference to the object not the object
itself. Therefore, if you make changes to the object within the event handler, these will be
visible to any other data items that reference the object.

The statement block provides the code that is executed when the event handler receives
the specified event. This can include any TOOL statements except the return statement.

You can use the exit statement within the when clause. If there is an enclosing loop
statement, the exit statement exits from the loop statement. If there is no enclosing loop
statement, the exit statement exits from the event statement that registers the event
handler, not just from the when clause.

The continue statement in the when clause transfers control to the enclosing loop
statement. If there is no enclosing loop statement in the event handler, the continue
statement transfers control to the event loop statement that registers the event handler.

The statement block for the when clause determines the scope for any variables or
constants that are declared within it. Variables and constants that you declare within the
statement list are available within the when clause only and cannot be accessed by the rest
of the event handler.

Exceptions in
preregister clause

Exceptions in postregister
clause and when clause

Event Handler 179

Exception Handling

The exception handler for the event handler statement provides exception handling for the
event handler as a whole. See “Exception” on page 113 for details about using exception
handlers.

Because the event handler is a separate block of code, any exceptions handled by its
exception clause affect only the event handler statement and do not affect the calling
method or event statement. If an exception occurs while the event handler is being
executed, the exception clause of the event handler catches that exception. The calling
event statement or method will therefore not see that exception and will continue
executing.

One thing you need to consider is which part of the event handler is being executed when
the event handler catches the exception. This effects whether or not the events in the event
handler are registered.

If an exception occurs while the preregister clause is being executed, the exception clause
of the event handler catches that exception before the events in the event handler have
been registered. Therefore, the events will not be registered in the enclosing event loop.
However, the enclosing event loop will still be active and all of its events will still be
registered.

If an exception occurs while a when clause or the postregister clause is being executed, the
events in the event handler have already been registered, and so will still be registered in
the enclosing event loop. The enclosing event loop will still be active and all of its events
will also still be registered.

If an exception occurs in any of the event handler clauses, and the exception clause of the
event handler does not handle the exception, the exception is passed to the caller. The
caller will then handle the exception or pass it on to its own caller. This is the standard
exception handling behavior for TOOL. If the caller is in an event statement, the event
statement will exit and deregister all of its events.

Another issue to consider is whether the caller of the event handler is an event statement
or a method. This may affect whether or not the unhandled exception causes the enclosing
event statement to exit. While a when clause of the event handler is being executed, the
caller of the event handler is always the enclosing event loop or event case statement.
However, the register statement can be called from a method that is separate from the
loop. Therefore, while the preregister or postregister clause of an event handler is being
executed, the caller of the event handler could be a method. If the caller is a method and
the exception is not handled by the event handler, the exception could be handled by the
calling method. And, if the exception is handled by the calling method, the exception will
not force the enclosing event loop to exit.

When the caller is the event case statement, an exception in the when clause of an event
handler will always cause the event case statement to exit. This is true even if the event
handler handles the exception, because an event case statement always exits after
processing one event, even if that processing happens to get an exception.

Project Definition Statements Chapter 4

180 Interface

Interface

The interface statement creates an interface.

Syntax

interface interface_name [inherits [from | super-interface |
[[has public | component_definitions|...

[has property [extended = (name=valuel,name=valuel]...)]...
end [interface |;

Example

i nterface TaxCal cul ati onl Face

has public event TaxCal cul at ed(i nput theTax: double);

has public nethod Cal cul ateTax(i nput theSal e: AAlnterfaces. Sal e)
doubl e;

end interface;

Description

Specifying the super-
interface

TOOL Reference Manual

Typically, you create interfaces using the Interface Workshop. However, the interface
statement allows you to define interfaces in a file. To import the interface definition from
the file into your development repository, you can use the Compile or Import Class
commands in Fscript or the Import command in the Project Workshop.

Interface Name

The interface name provides a name for the new interface. If an interface by that name
already exists, your new definition replaces the existing definition.

We recommend that you adopt a naming convention to distinguish your interfaces from
the Forte system classes.

Inherits Clause

The inherits clause specifies one interface from which this interface will inherit virtual
attributes, methods, events, event handlers, and constants. You can specify any interface,
or none; if you specify no interface then this interface inherits no components.

Interface 181

Component Definitions

The components you can define for an interface include:
m virtual attributes

® events

® methods

event handlers

B constants

Virtual Attributes

The syntax for defining a virtual attribute in an interface is the same as the syntax for
defining a virtual attribute in a class.

To define a virtual attribute, you must specify the attribute name, the attribute type, and
two expressions that determine the value of the attribute when it accessed or assigned. The
syntax is:

virtual [attribute] attribute_name : type = (get = expression,
[set = expression]) [has property [extended = (name=valuel[,name=valuel...)]];

See “Virtual Attributes” on page 162 for more information about defining a virtual
attribute.

Events

The syntax for defining an event in an interface is the same as the syntax for defining an
event in a class.

You define an event by specifying an event name and an optional list of parameters. The
syntax is:

event event_name [(name : type [= value] [, name: type [= valuel]...) |
[has property [extended = (name=valuel,name=value]...)]];

See “Events” on page 163 for more information about defining an event.

Project Definition Statements Chapter 4

182 Interface

TOOL Reference Manual

Methods

The syntax for defining a method in an interface is the same as the syntax for defining a
method in a class.

To include a method in an interface, you must specify the method name, the method
parameters, and the method return type. If you want to create return and exception events
to be used with the start task statement, you must specify names for these events. The
syntax is:

[method] method_ name [(parameter_list)] [: [copy] return_type]
[where completion = (event_setting [, event_setting])
[has property [extended = (name=valuel,name=valuel...)]];

parameter _list is:

([copyl] [input | output | input output] name : type [= valuel
[, [copy] [input | output | input output] name : type [= valuel]...)

event_setting is:
return = event_name | exception = event_name

Note that you can overload a method in an interface, but you cannot override a method.
Because the interface provides only the method signatures, overriding an inherited method
in an interface has no significance.

Event Handlers

The syntax for defining an event handler in an interface is the same as the syntax for
defining an event handler in a class.

To include a named event handler in an interface you must specify the event handler name
and the event handler parameters. You provide the code for event handler separately, in
each class that implements the interface. The syntax is:

event handler handler_ name [(parameter_list)]
[has property [extended = (name=valuel,name=valuel...)11;

parameter _list is:
([copy] [input] name : type [= value]

[, [copy] [input] name : type [= valuel]...)

Constants

To define an interface-level constant, use the constant statement within the definition list.
See “Constant” on page 171 for information.

Has Property Clause

The has property clause for an interface allows you to set any number of extended
properties for the interface or any of its elements, just as you can for a class (see “Has
Property Extended Clause” on page 169). You can assign arbitrary name-value pairs to the
interface for whatever purpose you choose. For example, you might wish to use them for
comments.

Method 183

Method

The method statement defines a method for a class.

Syntax

method class.method_name [(parameter_list)] [: [copy] typel
begin

statement_block

lexception_handler]
end [method];

Example

nmet hod Bid. StartBid (
i nput bi dder Nane : Text Dat a,
out put paintingForBid : Painting,
out put bi dval ue : Deci mal Dat a,
out put | astBidTine : DateTi neDat a,
out put bi dlnProgress : bool ean) : TextData
begi n
sel f. Bi dl nProgress = TRUE;
sel f. Last Bi dder. Set Val ue(bi dder Nane) ;
post self.BidStarted (who = bi dder Nane) ;
pai ntingForBi d = sel f. Pai ntingForBi d;
bi dVal ue = sel f. bi dval ue;
| ast Bi dTi ne = sel f. Last Bi dTi ne;
bi dl nProgress = sel f. bi dl nProgress;
return bi dder Nane;
end net hod;

Description

The method statement provides the body of a method that you create in a class statement.
This is the code that provides the method’s functionality.

When you use the method statement, you must specify the method name, parameters, and
return type. These must match the method name, parameters, and return type you
specified for the method in the class statement.

Project Definition Statements Chapter 4

184 Method

TOOL Reference Manual

Class and Method Name

You must specify the class to which the method belongs. Because you can have any
number of methods with the same name, Forte uses the class name to assign the method to
the class.

The method name is the name you must use to invoke the method. This must be the same
as the name you specified for the method in the class definition.

Parameters

The method parameters provide the mechanism for passing values to and from the
method. This clause must match exactly with the method’s parameter list you specified in
the class statement. The syntax is:

([copy] [input | output | input output] name : type [= value]
[, [copy] [input | output | input output] name : type [= valuel]...)

See “Methods” on page 164 for information about the method’s parameter list.

Return Type

If a method returns a value, you must specify the type of the returned value. The type for
the method specifies the data type of the return value. This clause must match exactly with
the return type you specified for the method in the class statement. If you specified a
return type in the class statement, you must also specify it here. See “Class” on page 159 for
information about the method’s return type.

Statement Block (Method Body)

The statement block is the body of the method. This is where you provide code that
operates on the object, invokes methods on other objects, and so on. The statement block
can include any TOOL statements.

Note that when the method has a return type, you must use the return statement to exit
from the method and return a value to the invoking method.

Exception Handler

The optional exception handler provides exception handling for the method as a whole.
See “Exception” on page 113 for information about this.

Service

Service 185

The service statement declares a service object.

Syntax

service name : class [= ([attribute = value |, attribute = value]... 1)]

Example

servi ce MySybase : DBResourceMyr;

service I nmageService : | mageMyr =
(visibility = user);

service AuctionService : AuctionMyr =
(visibility = environment);

Description

Only certain classes allowed

Normally you create service objects using the Project Workshop. The service statement
allows you to define service objects in a file using the Forte Fscript utility.

You can create three types of service objects:

m service objects based on the DBResourceMgr class
m service objects based on the DBSession class

m simple service objects

Each type of service object has its own special set of attributes that you can set when you
declare the service object. See below for a description of the attributes that are common to
all service objects. This is followed by information on the attributes that are only for
specific service objects.

Name

The service object name can be any legal Forte name. It must be unique for the project.

Class

You can create service objects using custom classes, or some Forte classes. You can use any
custom class that has the distributed property set to “allow=on.” However, you can only use
certain Forte classes for service objects. Refer to the reference section for any given class,

checking the first summary table, to see whether the class can be used for a service object.

To create a DBResourceMgr service object, you use the DBResourceMgr class for the service
object’s base class. To define a DBSession service object, you use the DBSession class for
the base class. See the manual Accessing Databases for information about these classes and
creating these types of service objects.

Project Definition Statements Chapter 4

186 Service

Visibility attribute

DialogDuration attribute

DialogDuration attribute
for Session service objects

Failover attribute

LoadBalance attribute

TOOL Reference Manual

Service Object Attributes

The attributes you can set for any service object are:

Visibility = {environment | user}

DialogDuration = {message | transaction | session}
Failover = {TRUE | FALSE}

LoadBalance = {TRUE | FALSE}

SearchPath = string

All of these attributes are optional.

The Visibility attribute determines whether the service object is shared between multiple
users of the application or whether each user has its own copy of the object. By default, the
visibility for a service object is environment. You can use the Visibility attribute to set the
visibility to either of the following:

Visibility Description
environment The service object is shared between all users in the environment.

user The service object is not shared. Each user has a separate copy of the object. (User-visible service
objects cannot be replicated for load balancing or failover.)

When you partition your project in the Partition Workshop, you can request replication of
your service object to provide fault tolerance or parallel processing (see Forte 4GL
Programming Guide for information on this). If you plan to do this, you need to specify the
interval over which the service object retains state information for its callers. Forte uses this
information to determine when to switch to a backup service object (for fault tolerance) or
how to route messages (for parallel processing).

The DialogDuration attribute specifies the length of this interval. You can specify the
following values:

Value Definition
message Does not retain state information.
transaction Retains state information for the duration of a transaction.

session Retains state information for the entire session. This is the default value of the DialogDuration
attribute.

You must specify the behavior that the creator of the class has implemented for that class.
In other words, if the service object will retain state information on behalf of the user for
longer than a message, you cannot specify message duration. If the service object will
retain state information for longer than a transaction, you must specify session duration.

For session service objects, the dialog duration must be greater than or equal to the dialog
duration you specified for the resource manager that the session is associated with.

The Failover attribute specifies whether or not the service object will be replicated to
provide fault tolerance. When you partition the project, you specify the actual number of
startup replicates to be provided for failover.

The LoadBalance attribute specifies whether or not the service object will be replicated for
parallel processing. When you partition the project, you specify the actual number of
startup replicates to be provided for load balancing. The LoadBalance attribute can be set
to TRUE only if the DialogDuration attribute is set to message or transaction.

SearchPath attribute

ExternalManager attribute

Service 187

The environment search path for the service object specifies the connected environments
in which Forte searches for failover service objects and for service objects in reference
partitions. This is the default search path for the service object.You can override the default
search path for a service object in the Partition Workshop by specifying a search list for the
service object within a particular configuration (see A Guide to the Forte 4GL Workshops for
information).

To specify the environment search path, enter a string that includes one or more
environment paths. Forte searches for the service object in the same order as the paths in
the string.

The syntax of the search list string is:
path [(a)] [: path [(a)]...

path is:

(% | %oenvironment_name)

A special (a) option allows you to specify that the service object identified by a specific path
should automatically be started if necessary.

You can use an environment variable to specify an environment name. The value for the
environment variable is set on first access to the service object, using the value of the
environment variable as set on the service object’s partition. The syntax is:

${environment_variable_name}
Be sure to include the braces!

The following example illustrates a search list that looks first in the current environment,
second in the “la” environment, and last in the “sf” environment:

% % a: %sf

DBResourceMgr Service Object Attributes

The attributes you can set for a DBResourceMgr service object are:

Visibility = {environment | user}
DialogDuration = session
Failover = {TRUE | FALSE}
LoadBalance = {TRUE | FALSE}
SearchPath = string
ExternalManager = string

All of these attributes are optional, except the ExternalManager attribute, which is required.

For a DBResourceMgr service object, you must specify the external resource manager
associated with the service object. Forte uses this resource manager for the service object
unless you override this setting for a particular configuration.You can specify the name of
any database resource manager that is defined in your environment. For more information
on resource managers, refer to the manual Accessing Databases.

Project Definition Statements Chapter 4

188 Service

ExternalManager attribute

ResourceName attribute

UserName and UserPassword
attributes

Setting initial values

TOOL Reference Manual

DBSession Service Object Attributes

The attributes you can set for a DBSession service object are:

Visibility = {environment | user}
DialogDuration = {transaction | session}
Failover = {TRUE | FALSE}

LoadBalance = {TRUE | FALSE}
SearchPath = string

ExternalManager= string
ResourceName-= string

UserName = string

UserPassword = string

The ExternalManager, ResourceName, UserName, and UserPassword attributes are
required. All other attributes are optional.

For a DBSession service object, you must specify the external resource manager associated
with the service object. Forte uses this resource manager for the service object unless you
override this setting for a particular configuration. You can specify the name of any
database resource manager that is defined in your environment. For more information on
resource managers, refer to the manual Accessing Databases.

The ResourceName attribute specifies the name of the specific database that you wish to
access.

The UserName and UserPassword attributes specify the user name and password for the
particular database session. These are the same as the corresponding parameters on the
Connect method of the DBSession class. See Accessing Databases for information.

Simple Service Object Attributes

The attributes you can set for a simple service object are:

Visibility = {environment | user}

DialogDuration = {message | transaction | session}
Failover = {TRUE | FALSE}

LoadBalance = {TRUE | FALSE}

SearchPath = string

public_attribute = value [, public_attribute = valuel]...

All of these attributes are optional.

For simple service objects, you can specify initial values for any of the public attributes in
the object. To specify the values, enter a list of attribute/value assignments. The value for
an attribute can be any constant that is compatible with the data type of the attribute. If the
attribute has a class as its type, use an object constructor to specify values for one or more
of its attributes. You can use named constants to specify the attribute values (if they are
defined as part of the project), but you cannot use variables or attributes.

Any public attributes for which you do not specify a value will be set to the default value for
their datatype.

Appendix A

Reserved Words

This appendix contains two lists:
TOOL reserved words
SQL reserved words

You should avoid using SQL reserved words for attribute and variable names.

190 TOOL Reserved Words

TOOL Reserved Words

and method
attribute new
begin nil

case not
changed of

class of
constant output
continue post
copy postregister
cursor preregister
do private
else property
elseif public
end raise
enum register
event return
exception service
exit sl

false start

for struct
forward super
from task
handler then

has to

if transaction
implements true

in typedef
includes union
inherits virtual
input when
interface ‘where
is while
loop

The TOOL key word “application” is not reserved. You can use it for projects, classes,
attributes, methods, and so on; however, if you do, you will also need to use dot notation to
access the object normally accessed by the key word application.

For example, you would have to type Framework.application instead of just “application” if
the current class had an attribute or method with the name application.

TOOL Reference Manual

. soLResenedWords 191

SQL Reserved Words

all

any

as

asc
between
by
close
connect
current
default
delete
desc
distinct
escape
execute
exists
extend
extent
fetch
fragment
from

grant

group
having
immediate
insert

into

like

minus

null

on

open
order
procedure
raise
revoke
select
session
set

some
unique
update
values

where

192 SQLReservedWords

TOOL Reference Manual |

Appendix B

Forte TOOL Example Applications

Forte provides a number of example applications that illustrate how to use the features
described in this manual. This appendix provides instructions on how to install the
examples, a brief overview of the applications to help you locate relevant examples, and a
section describing each example in detail. Typically, you run an example application, then
examine it in the various Forte Workshops to see how it is implemented. You can modify
the examples if you wish.

194 How to Install Forte Example Applications

How to Install Forte Example Applications

TOOL Reference Manual

You can access the Forte example applications only if they have been installed into your
central repository or into a private local repository during installation of Forte, or if you
have imported them into your repository.

The examples are located in subdirectories under the FORTE_ROOQOT/install/examples
directory. The example applications are stored as .pex files. If they are not already installed
in your repository, import them by including the tstapps.fsc script in Fscript. The
tstapps.fsc script is located in the FORTE_ROOT/install/examples/install directory. Bring
up Fscript in standalone mode and issue the following command:

fscript> UsePortabl e
fscript> SetPath % FORTE ROOT}/install/exanpl es/install
fscript> Include tstapps.fsc

This will import most of the example applications and quit Fscript. Note that certain highly
specialized examples are not automatically imported by tstapps.fsc.

To run an application, select it in the Repository Workshop’s plan browser and then click on
the Run button.

If you want to remove all the examples from your workspace, you can do so by including
the remprj.fsc script in Fscript. Bring up Fscript in standalone mode and issue the
following commands:

fscript> UsePortabl e

fscript> SetPath 9% FORTE ROOT}/install/exanpl es/install

fscript> Include renprj.fsc

This will exclude all the example applications and quit Fscript.

Overview of Forte TOOL Example Applications 195

Overview of Forte TOOL Example Applications

This section provides an overview of the Forte TOOL example applications. For a complete
list of the Forte example applications, see A Guide to the Forte 4GL Workshops.

The margin note for each of the following tables shows the name of the subdirectory under
FORTE_ROOT/install/examples where you can find the .pex files for the examples. For the
complete description of an individual application, see “Application Descriptions” on

page 196, which lists the applications in alphabetical order.

TOOL Examples

Example Description

tool/ Auction Illustrates prominent features of a Forte distributed application.
AuctionServerProject Acts as server to the Auction project.
ImageProject Provides images for the Auction project.

ImageTester Retrieves an image using the ImageProject service.

Forte TOOL Example Applications Appendix B

196 Application Descriptions

Application Descriptions

This section lists the example applications in alphabetical order. Each example has five
sections describing it.

The Description section defines the purpose of the example, what problem it solves, and
what TOOL features and Forte classes it illustrates.

The Pex Files section gives you the subdirectory and file names of the exported projects.
The examples are in subdirectories under the FORTE_ROOT/install/examples directory.
You can import example applications individually if you wish. When multiple .pex files are
listed, there are supplier projects in addition to the main project. You will need to import all
the files listed to run the application. Import them in the order given so that dependencies
will be satisfied.

The Mode section indicates whether the application can be run in either standalone or
distributed mode, or whether it must be run in distributed mode.

The Special Requirements section identifies whether you need a database connection, an
external file, or any other special setup.

Finally, the To Use section tells you how to step through the application’s functions.

See the Forte 4GL System Management Guide if you need directions to set up a Forte server.
See Accessing Databases if you need information on how to make a connection to a
database. The database examples run against either Sybase or Oracle.

Auction

TOOL Reference Manual

Description Auction illustrates prominent features and capabilities of a Forte distributed
application: GUI independence, distributed processing, event handling, multitasking, and
image handling. The application allows a number of bidders located at their respective
computers to bid on a set of paintings being offered by an auctioneer located at some other
computer. The Art Auction application provides a list of paintings available for bidding and
notifies interested bidders when a price changes.

Pex Files frame/utility.pex, tool/imageprj.pex, tool/aucserv.pex, tool/auction.pex.
Mode Standalone or Distributed.

Special Requirements The image files used by this application must be located in
$FORTE_ROOT/install/examples/images.

To use Auction:

1 Start up the auction by clicking the Be Auctioneer option in the radio list, then clicking
the Start Auction button.

2 Assume the role of a bidder by clicking the Be Bidder option in the radio list. You should
click on a painting in the array, then click the View Painting button.

From the painting window, you can double-click on the image to see it enlarged. You
can also click the Bid button to set a bid.

3 Another bidder can view available paintings being offered and then join the bidding
process.

Both bidders become involved in bidding on the same painting. In the standalone use
of this application, you can simulate a second bidder on the same screen by opening a
second bidding window.

Application Descriptions 197

ImageTester

Description ImageTester retrieves an image using the ImageProject service. It is normally
used to start up the ImageProject service in conjunction with a demonstration of the
Auction application. It can also be used to set up a reference partition in conjunction with
Auction.

Pex Files frame/utility.pex, tool/imageprj.pex, tool/imagetst.pex.
Mode Standalone or Distributed.

Special Requirements The image files used by this application must be located in
$FORTE_ROOT/install/examples/images.

To use ImageTester:
1 Enter a bitmap graphic file name in the Name field and click on the GetImage button.

Graphic files, for example mona.fso, can be found in
FORTE_ROOT/install/examples/images. The .fso suffix is automatically appended.
Enter the filename without the suffix. For example, enter ‘mona’.

Forte TOOL Example Applications Appendix B

198 Application Descriptions

TOOL Reference Manual |

Index

A

AbortException 43
Addition operator 61

Alert (bell)
entering 55

Apostrophe
entering 55

AppendRow method 79
Application (key word) 67
ArithmeticException 43

Arithmetic operator
symbols 61

Array
adding rows 79
class for 78
declaring variable 78
definition 77
for statement with 119

Array attribute 72

Array class 77-84
compared to LargeArray 78
using Array or LargeArray 78

Array object 77-84
adding rows 83
assigning a row 83
casting 81
constructing 78
constructor 81
declared type 78
DefaultClass attribute 81
definition 77
processing rows 83
referencing 79
referencing a row 82

referencing attribute in arow 84

row numbers 82
rows 82
runtime type 80
specifying values for 80
using 78

Array object constructor 78

Array row
assigning 83
attribute in 84
referencing 82
Assignment statement 92
syntax 92
Attribute
array 72
defining 162
in array rows 84
object 72
referencing 71
referencing in an array row 84
referencing virtual 71
setting 72
setting virtual 72
setting widget value 72

Auction sample application 196

Backslash character
entering 55

Backspace character
entering 55

Begin class statement 155
Begin c statement 154
Begin dce statement 154
Begin obb statement 154

200 Section C

Begin statement 93-94
in a method 48
syntax 93
variablesin 94

Begin tool statement 157-158
compatibilitylevel option 158
definition list 157
has property clause 158
includes clause 157
project name 157
restricted option 158
startingmethod option 158
syntax for 157

Begin transaction statement 95-99
exception handler 99
label 99
scalar variables 95
statement block 97
syntax 95
transactional, shared objects 96
transactional objects 95
transaction type 96

Bitwise (unary) operator 61
Bitwise and operator 61
Bitwise exclusive or operator 61
Bitwise or operator 61

Block comment 50

Boolean constant 56
BooleanData class 59

Boolean data type 56

Boolean expression 56, 124

C

CancelException 43
start task statement 148

Carriage return
entering 55

Case statement 100-101
expression 100
label 101
syntax 100
when clause 101

Casting 69-71
array objects 81
definition 70
numeric types 62
object 69
syntax 70

TOOL Reference Manual

Character
entering special 55

Char data type 55
Child field 68
Class constant 87

Class statement 159
attribute definition 162
class name 160
component definitions 161
constant definition 167
distributed property 168
event definition 163
event handler definition 166
example 170
has file clause 161
has private clause 161
has property clause 167, 182
has public clause 161
inherit clause 161, 180
is mapped clause 160
method definition 164, 182
monitored property 168
shared property 168
syntax for 159
transactional property 168
virtual attribute definition 162

command syntax conventions 15

Comment

block 50

definition 50

single-line 50
Comparison expression 57
Comparison operators 57

Compatibility level
Begin TOOL statement 158

Completion event
start task statement 148, 166

Compound statement
begin statement 93
definition 49
exception handler for 44

Constant
boolean 56
double 61
float 61
integer 60
named 87
naming 87
NIL 69
numeric 60
string 54

Constant statement (class or project) 167171
name 171
syntax 171
value 171

Constant statement (interface) 182

Constant statement (local) 102
name 102
syntax 102
value 102

Constructor
array object 81
object 65

Continue statement 103-104
label 104
syntax 103

Control statement 49
definition 20
C project
defining 154
Cursor 39, 89
cursor reference 89
definition 89
for statement with 120
sql close cursor statement 138
sql fetch cursor statement 142
sql open cursor statement 144

Cursor statement 172-173
for clause 173
name 172
placeholders 172
read only option 173
select statement 173
syntax 172
update option 173

D

Database
interacting with 38
retrieving null values 121
transaction control 40
updating 39

Database session
multiple 41
multitasking 41

Data type
boolean 56
char 55
expressions 62
float 60

Section D

integer 59
numeric 54, 59
string 54

DataTypeException 43
dce project 154

Declaration statement 105
array variables 78
initial value 105
syntax 105
variable name 105
variable type 105

Declared type
array object 78
object 66

DefaultClass attribute 81
DefectException 43

Dependent transaction 97
DeregisterHandler method 133, 134

Dialog duration
Message 109

Distributed property (class) 168
Distributed transaction 35
Division operator 61

Dot notation 71

Double data type 60

Equals operator 57
Error handling 46
Error manager 45
ErrorMgr object 45

Evaluation
order of 58

Event
completion 109
definition 24
event registration stack 134
nested 26
posting 28
registration 25
responding to 25
return and exception 109

Event-based programming 24-28
definition 24

Event case statement 26, 107

201

Index

202 Section F

Event definition 163
interface statement 181

Event handler
definition 166
definition for interface 182
optional parameters 136
parameters 135
parameters by name 136
parameters by position 136
required parameters 135

Event handler statement
class name 175
event specification 177
exception handler 179
handler name 175
parameters 175
postregister clause 176
preregister clause 175
syntax 174
when clause 177

Event loop statement 26, 107

Event queue 27
multitasking and 27
order of 27

EventRegistration object 132
Event registration stack 134

Event statement 106-112
event case 107
event loop 107
event specification 109
exception handler 111
includes clause 107
label 112
on Message Dialog object 109
postregister clause 108
statement block 110, 178
syntax 106
variables for parameters 109, 178
when clause 109

Exception
definition 43
fatal 114
handling 44
types 43
user-defined 43

Exception event 166
definition 30
with start task 149

Exception event (method) 109

TOOL Reference Manual

Exception handling 42-46
ErrorMgr object and 45
exception clause 44
exception definition 43
raising exceptions 46

Exception statement 113-115
else clause 115
event handler and 179
raise statement and 115
raise statementin 130
syntax 113
transactions 99
when clause 114

Exit statement 116-117
label 117
syntax 116

Expression
boolean 56
comparison 57
data types 62
evaluation order 58
logical 57
named constants in 88
numeric 61
parentheses 58

Extended properties
class 169
interface 169, 182

E

Float constant 61

Float data type 60
default value 60

Formfeed character
entering 55

For statement 39118-122
array version 119
cursor version 120
exception handler 122
label 122
range version 119
select statement version 120
syntax 118

Forward registration
class names 156

S setionG 203

G

GenericArray class
when to use 78
GenericDBMS library 38

Greater than operator 57

Hexadecimal value
entering 55

i1 data type 59
i2 data type 59
i4 data type 59

If statement 123-124
boolean expressions 124
exception handler 124
statement blocks 124
syntax 123

ImageTester sample application 197

Implicit transaction 41
for statement 120

Independent transaction 97

Inherits clause
Class statement 161
Interface statement 180

Init method 66
InsertRow method 79
Int data type 59
Integer constant 60

Integer data type 59
default value 60

Interface
casting and 71
object value for 68

Interface statement
component definitions 181
constant definition 182
event definition 181
event handler definition 182
example 183
interface name 180
syntax for 180
virtual attribute definition 181

Invoking methods 73
IsAnchored attribute 168
IsShared attribute 168
IsTransactional attribute 168

K

Key words
list of 67

L

Labels 49
case statement 101

LargeArray class 78
compared to Array 78

Less than operator 57

Local constant 87
declaring 87

Locks
transaction and mutex 34

Logical expression 57
Logical operators 57
Long data type 59

Message catalog
application key word 67

Message dialog duration
event registration and 109

Method
class type parameters 76
invoking 73
method invocation statement 125
optional parameters 75
output parameters 75
overloaded 73
overridden 73
parameters by name 74
parameters by position 75
parameters for 74
required parameters 74
return value 76
using as object value 69
writing 22

T ndex

204 Section N

Method definition 164, 182
completion event 148
exception event 166
parameters 164, 167
return event 166
return type 165
TOOL code for 184
where completion option 166

Method invocation statement 125-126

class parameters 126
output parameters 126
parameters 125
syntax 125

Method statement 183-184
class name 184
method name 184
parameters 184
return type 184
statement block 184
syntax 183

Mod operator 61
Monitored property (class) 167
Multiplication operator 61

Multitasking 29-33
communicating between tasks
definition 29
event queue 27
multithreading 29
shared objects 33
start task statement 147
transactions and 35

Multithreading 29
Mutex class 33

Mutex lock 33
and transaction lock 34

Named constant 87-88
class 87
declaring local 87
local 87
project 87
referencing 87
using in expressions 88
value for 87

Named event handler 25

TOOL Reference Manual

32

Names 51
project 53
resolution 52
SQL key words and 53
using with SQL 53
Negative operator 61
Nested events 26
Nested transactions 97

New (key word) 65

New line
characters 48
entering 55

NIL (constant) 64, 69
as array object value 81
performing operations on 69

Nontransactional object 34
Not equals operator 57
NullBoolean class 59

Null values
selecting 121

Numeric constants 60
Numeric data types 54, 59

Numeric expression 61
data type of 62
evaluation order 61
parentheses 62
SQL statements in 63

Numeric operators 61

o

obb project 154

Object 64-76
array 77
casting 69
declared type 66
Init method for 66
IsShared attribute 65
IsTransaction attribute 65
method as value for 69
NIL 64
referencing 67
runtime type 66
self (key word) 71, 73
shared 65
specifying value for 68
widgets 67
widgets and 68

Object constructor 21, 65, 69
in expressions 66
setting attribute values 65
syntax 65

Object-oriented programming 21-23
writing methods 22

Object reference
definition 67
line breaks in 67

Octal value
entering 55

Operator
symbols 61

Output parameters 125
Overloaded methods 73
Overloading methods 164
Overridden methods 73
Overriding methods 164, 166

P

Parameters (for event handlers) 167

Parameters (for methods) 74
copy 76, 126
object constructor as 66
optional 75
output 75, 126
required 74
types of 125
with a type of a class 126

Parentheses
logical expressions and 58
numeric expressions 62
PDF files, viewing and searching 18
Positive operator 61

Postregister clause
event handler statement 176
event statement 108

PostShutdown method 32
Post statement 127-128
event 127
parameters for event 128
syntax 127
Precedence, order of 61
Preregister clause
event handler statement 175
event statement 107, 131

Section P

Private class components
has private clause 161

Project
creating 157
identifying 53
Project constant 87

Public class components
has public clause 161

PurgeEvents method 27

Raise statement 129-130
current exception 130
exception 130
exception statement and 115
syntax 129

Raising exceptions 46

Register statement 131-136
event registration stack 134
parameter list 135
syntax 131

ResourceException 43

Restricted option
project 158

Return event 31
asynchronous task 148
definition 30
handling 31
return parameter 31, 149
specifying 166

Return event (method) 109

Return statement 137
in start method 137
return type 137
return value 137
syntax 137
use for error handling 46

Return type for methods 184
Return value for methods 76, 165

Row
number 82
referencing 82

Runtime type
array object 80
object 66

205

Index

206 Section S

S

Sample applications
Auction 196
ImageTester 197
InheritedWindow 135

Scope
for name 52
variable or constant 48

Select statement
cursor version 173
Self (key word) 67, 72, 73
Service object 90
defining 185
Service statement 185-188
class 185
DialogDuration attribute 186
ExternalManager attribute 187
Failover attribute 186
LoadBalance attribute 186
name 185
public attributes 188
ResourceName attribute 188
SearchPath attribute 187
syntax 185
UserName attribute 188
UserPassword attribute 188
UserRole attribute 188
Visibility attribute 186
SetCancel method 32

Shared object
definition 33

Shared property (class) 168
Short data type 59
Single-line comments 50

Special characters
entering 55

Specifying 83
sQL
transactions 40
using in numeric expressions 63

Sql close cursor statement 138
syntax 138

SQL commit command 40

Sql delete statement 139
syntax 139

Sql execute immediate statement 140
syntax 140

TOOL Reference Manual

Sql execute procedure statement
syntax 141

Sql fetch cursor statement 142
syntax 142

Sql insert statement 143
syntax 143

Sql open cursor statement 144
syntax 144

SQL rollback command 40

Sql select statement 145
syntax 145

SQL setautocommit command 40

SQL statements
close cursor 39
delete 39
execute procedures 38
fetch cursor 39
insert 39
open cursor 39
select 38
transactions 97
update 39

update statement 146
syntax 146

Start method
Begin TOOL statement 158
return statement in 137

Start task statement 147-150
CancelException 148
completion clause 148
dependent transaction 150
exception event 149
independent transaction 150
invoking method 148
nested transaction 150
return event 149
return value 147
shared objects 147
syntax 147
transaction clause 150
transactions and 148

Statement
blocks 48
compound 49, 94
exception handler for 44
labels 49

Statement block
definition 48
syntax 48

Sq

141

String constants 54
String data type 54
String data types 54
Subtraction operator 61

Super (key word) 67
for overriding event handlers 135
for overriding methods 73

Supplier plan
specifying for project 157

Symbols, arithmetic operator 61

Syntax 48, 92, 154
case insensitivity 48
statements 48

T

Tab character

entering 55
entering vertical 55
Task

cancelling 147

communicating between tasks 32
completing 31

definition 29

error manager for 45

event queue for 30

exception event 30, 31
information about 30

local and remote shutdown 32
requesting completion events 31
return event 30

return parameter 31

starting 30

synchronizing multiple 30
TaskDesc object 31, 147
TaskHandle object 33
transactions and 30

Task (key word) 33, 67
TaskHandle object 33

TaskDesc object 31, 33
TaskHandle object 30, 33

TOOL
definition 20
overview of 20

TOOL code conventions 15

Section T

TOOL project

compatibility level 158
defining 157

defining components for 157
name for 157

restricted availability 158
setting properties for 158
starting method for 158
supplier plans for 157

Transaction 34-37, 41

AbortException exception 98
aborting 98

begin transaction statement 95
committing 98

compound statements within block 98
dependent 97

distributed 35

ending and multitasking 98
exception handling 99
implicit 41

independent 97

label name 97

lock 34

multiple database sessions 41
multitasking and 35
multitasking and nested 97
nested 97

nontransactional object 34
SQL statements in 97

start task statement with 150
statement block 97
transactional object 34
TransactionHandle object 36
types 34, 96

Transaction (key word) 36, 67
TransactionalHandle object 36
Transactional object 34
Transactional property (class) 168
Transaction lock 34

and mutex lock 34
Begin transaction statement 96

Two-phase commit 41, 98

U

Uil data type 59
Ui2 data type 59
Ui4 data type 59
ulnt data type 60
ULong data type 60

207

Index

208 sectionV.

\'J W

Variable 85-86 When clause

assigning 86

compound statements 94
declaration statement 105
declaring 85

definition 85

initial value 86

name 85

referencing 86

scope for 85

type 86

Virtual attribute

referencing 71

setting 72

Virtual attribute definition 162
interface statement 181

TOOL Reference Manual |1

case statement 101
nesting 101

While statement 151-152
exception handler 152
exiting while loop 152
expression 151
label 152
statement block 152
syntax 151

Widget
objects for 68
setting attribute value 72
syntax for 68

WorstSeverity attribute 114

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	1 Overview
	What is TOOL?
	Object-Oriented Programming
	Constructing Objects
	Writing Methods
	Invoking Methods
	Manipulating Attributes

	Event-Based Programming
	Events
	Responding to Events
	Nested Events
	The Event Queue
	Posting Events

	Multitasking
	What is a Task?
	Starting a New Task
	Completing a Task
	Communicating between Tasks
	Shared Objects
	Using TaskHandle and TaskDesc Objects

	Transactions
	Transaction Types
	Transactional and Shared Objects
	Forte Distributed Transactions
	Transactions and Multitasking
	Using TransactionHandle Objects

	Interacting with a Database
	Selecting Rows
	Using Cursors
	Updating the Database
	Vendor-Specific Extensions
	Forte Transactions and Database Transactions
	Implicit Forte Transactions

	Exception Handling
	About Exceptions
	Handling Exceptions
	Handling AbortException and CancelException

	Raising Exceptions
	Error Handling

	2 Language Elements
	TOOL Statements and Comments
	Statements
	Statement Blocks
	Statement Labels

	Comments
	Single-Line Comments
	Block Comments

	Names
	Name Resolution
	Qualified Names
	Using Forte Names with SQL

	Simple Data Types
	String Data Types
	String Constants
	Char Data Type

	Boolean Data Type
	Boolean Constants
	Boolean Expressions
	Comparison Expressions
	Logical Expressions
	BooleanData and BooleanNullable Classes

	Numeric Data Types
	Integer Data Types
	Float Data Types
	Numeric Constants
	Numeric Expressions
	Using SQL Statements in Numeric Expressions

	Objects
	Working with Objects
	Using Object Constructors
	The Init Method

	Referencing an Object
	Objects for Widgets

	Specifying an Object Value
	Comparing Objects
	The NIL Constant
	Using Methods as Object Values

	Casting
	Accessing Attributes
	Setting Attributes
	Setting Attributes for Widgets

	Invoking Methods
	Parameters
	Output Parameters
	Class Parameters
	Return Value

	Array Classes and Array Objects
	Working with Arrays
	Declaring an Array Variable
	Constructing the Array Object

	Referencing an Array Object
	Specifying Array Object Values
	Casting Array Objects

	Working with Array Rows
	Referencing an Attribute in a Row

	Variables
	Declaring a Variable
	Referencing a Variable
	Assigning a Variable

	Named Constants
	Declaring a Local Constant
	Referencing a Named Constant
	Using Named Constants in Expressions

	Cursors
	Service Objects

	3 TOOL Statement Reference
	Assignment
	Syntax
	Example
	Description

	Begin
	Syntax
	Example
	Description
	Variables in Compound Statements

	Begin Transaction
	Syntax
	Example
	Description
	Transaction Type
	Transaction Statement Block
	Exception Handling
	Label

	Case
	Syntax
	Example
	Description
	Expression
	When Clause
	Statement Block
	Exception Handling
	The Label

	Constant
	Syntax
	Example
	Description
	Constant Name
	Constant Value

	Continue
	Syntax
	Example
	Description
	Using a Label

	Declaration
	Syntax
	Example
	Description

	Event
	Syntax
	Example
	Description
	Event Loop Statement
	Event Case Statement
	Preregister Clause
	Postregister Clause
	When Clause
	Event Specification
	Declaring Variables for Event Parameters
	Statement Block
	Exception Handling
	Label

	Exception
	Syntax
	Example
	Description
	When Clause
	Else Clause

	Exit
	Syntax
	Example
	Description
	Using a Label

	For
	Syntax
	Example
	Description
	Using an Array
	Using a Range
	Using a Cursor or a Select Statement
	Exception Handling
	Statement Label

	If
	Syntax
	Example
	Description
	Boolean Expressions
	Statement Blocks
	Exception Handling

	Method Invocation
	Syntax
	Example
	Description
	Parameters
	Output Parameters
	Class Parameters

	Post
	Syntax
	Example
	Description
	Specifying the Event
	Specifying the Parameters

	Raise
	Syntax
	Example
	Description
	Identifying the Exception
	Raising the Current Exception

	Register
	Syntax
	Example
	Description
	Event Handler Reference
	Parameter List

	Return
	Syntax
	Example
	Description
	Return Value

	SQL Close Cursor
	Syntax
	Example
	Description

	SQL Delete
	Syntax
	Example
	Description

	SQL Execute Immediate
	Syntax
	Example
	Description

	SQL Execute Procedure
	Syntax
	Example
	Description

	SQL Fetch Cursor
	Syntax
	Example
	Description

	SQL Insert
	Syntax
	Example
	Description

	SQL Open Cursor
	Syntax
	Example
	Description

	SQL Select
	Syntax
	Example
	Description

	SQL Update
	Syntax
	Example
	Description

	Start Task
	Syntax
	Example
	Description
	Invoking the Method
	Completion Clause
	Transaction Clause

	While
	Syntax
	Example
	Description
	Expression
	Statement Block
	Exception Handling
	Label
	Exiting the While Loop

	4 Project Definition Statements
	Begin c, dce, obb
	Syntax
	Description

	Begin class
	Syntax
	Example
	Description
	Definition List

	Begin tool
	Syntax
	Description
	Project Name
	Includes Clause
	Definition List
	Has Property Clause

	Class
	Syntax
	Example
	Description
	Class Name
	Implements Clause
	Is Mapped Clause
	Inherits Clause
	Public and Private Definitions
	Has File Clause

	Component Definitions
	Attributes
	Virtual Attributes
	Events
	Methods
	Event Handlers
	Constants
	Has Property Clause
	Has Property Restricted Clause
	Has Property Extended Clause

	Example Class Definition

	Constant
	Syntax
	Example
	Description
	Constant Name
	Constant Value

	Cursor
	Syntax
	Example
	Description
	Cursor Name
	Placeholders
	Cursor Select Statement
	For Clause

	Event Handler
	Syntax
	Example
	Description
	Class and Handler Name
	Parameters
	Preregister Clause
	Postregister Clause
	When Clause
	Exception Handling

	Interface
	Syntax
	Example
	Description
	Interface Name
	Inherits Clause

	Component Definitions
	Virtual Attributes
	Events
	Methods
	Event Handlers
	Constants
	Has Property Clause

	Method
	Syntax
	Example
	Description
	Class and Method Name
	Parameters
	Return Type
	Statement Block (Method Body)
	Exception Handler

	Service
	Syntax
	Example
	Description
	Name
	Class
	Service Object Attributes
	DBResourceMgr Service Object Attributes
	DBSession Service Object Attributes
	Simple Service Object Attributes

	A Reserved Words
	TOOL Reserved Words
	SQL Reserved Words

	B Forte TOOL Example Applications
	How to Install Forte Example Applications
	Overview of Forte TOOL Example Applications
	TOOL Examples

	Application Descriptions
	Auction
	ImageTester

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

