
Customizing Forte Express Applications
Release 2.5 of Forte™ Express
Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6675-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte,and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents
Preface
Organization of This Manual . 10

Conventions. 11
Command Syntax Conventions . 11
TOOL Code Conventions . 11

The Forte Documentation Set . 12
Forte 4GL . 12
Forte Express. 12
Forte WebEnterprise and WebEnterprise Designer 12

Forte Example Programs. 13

Viewing and Searching PDF Files . 14

1 Express Application Architecture
Overview . 16

Forte Express Projects. 17
business_modelServices Project . 19
appl_modelWindows Project . 19

Classes Generated from the Business Model . 20
business_modelServices Project Classes . 20

Customizable Subclasses in business_modelServices 20

Classes Generated from the Application Model . 21
appl_modelWindows Project Classes . 21

Customizable Subclasses in appl_modelWindows 21
Class Diagrams . 22
Declared Type and Runtime Type . 23

Classes Generated from the Tutorial Application 24
CUSTOMERORDERClass and CUSTOMERORDERQuery 25

BusinessClass . 25
CUSTOMERORDER[Base]Class . 26
CUSTOMERORDERClass . 26
BusinessQuery . 26
CUSTOMERORDER[Base]Query . 27
CUSTOMERORDERQuery . 27
BusinessKey . 27
SqlQuery . 27
QueryConstraint . 27

4

TutorialClient Class . 27
BusinessClient . 28
TutorialBaseClient . 28
TutorialClient. 28
ClientConcurrency. 29

CUSTOMERORDERMgr and TutorialServiceMgr 29
BusinessMgr . 29
BusinessDBMgr . 30
CUSTOMERORDER[Base]Mgr . 30
CUSTOMERORDERMgr . 30
BusinessServiceMgr. 30
TutorialBaseServiceMgr . 31
TutorialServiceMgr . 31
ServiceConcurrency. 31

TutorialAppWindows Project . 32
CUSTOMERORDERWindow Class . 32

ExpressWindow. 34
ExpressContainerWindow . 34
ExpressClassWindow. 34

TutorialAppBroker Class . 35
ApplicationBroker. 36
TutorialAppBaseBroker. 36
TutorialAppBroker . 36
TheBroker . 36

CommandMgr. 37
CommandMgr . 37
CommandSetDesc . 38
ButtonSetDesc, MenuSetDesc, ToolBarSetDesc. 38

 LinkInfo . 38

Runtime Scenarios . 39
Object Interaction Diagram Notation . 39
Press Search Button . 40
Press Save Button . 41
Window Startup . 42
Window Close With Unsaved Changes . 43

Workshop Properties and Generated Classes . 44
Business Model Workshop . 44

Custom Generation Options. 44
Business Class Properties . 44
Association Properties . 45
Attribute Properties . 46
Service Properties . 46

Application Model Workshop . 48
Application Model Properties . 48
Generated Preferences . 49
Custom Generation Options. 49
BusinessClass Window Properties . 50
Link Properties . 51
Callout Properties . 53
Customizing Forte Express Applications

5

2 Customizing Express Applications
Overview . 56

General Considerations . 56
Creating Customizable Classes . 56

Creating a Single Customizable Class . 57
Creating Customizable Classes for All Classes 57

Customizing With the Customization Manager . 59
Using the Customization Manager . 60
Deleting Customizations . 62

Deleting Specific Customizations . 63
Deleting a Class . 64
Deferred Deletion of Customizations . 65
Deleting Window and Menu Customizations 65

Application-Wide Customizations . 66

A Roadmap to Customization Examples . 67
Customization Manager Help Files . 67

Business Model Customization Examples . 68
Application Model Customization Examples 69
Complex Examples . 71

Syntax of Examples . 71

Customizing Manually . 72
Locating Where to Customize. 72
Overriding Methods in a Superclass . 72
Customized Event Handling . 73

Explicitly Posted Events . 74
Local and Global Customizations . 74
Error Reporting . 74
Internationalizing Express Windows . 75

Customization Techniques: Window Classes . 76
Setting Widget State . 76

Built-in Widget States . 76
Customized Widget States. 77

Finding the Focus Field . 77
Determining If a User Has Changed Data . 77
Creating a New Instance

of a Business Class in a Window . 78
Working with an OutlineField. 78

Getting the Currently Selected Display Node. 78
Getting the Currently Selected Outline Index Node 78
Replacing the Currently Selected Display Node 78
Replacing the Currently Selected Outline Index Node 79

Using a Drilldown Link to a
Callout to Close an Outline Window . 79

Getting Information Passed by the Parent Window 79
Getting Application-Specific Data. 79
Getting the Initial Result Set . 80
Getting the Initial Query . 80
Get Parent Current Record . 80
Get Parent Window . 80
Contents

6

Customization Techniques: Business Rules on the Client 81
Window Validations . 81

Field Validation Sequence of Events . 81
Other Business Rules . 81

Customization Techniques: Result Sets . 82
Business Class Record Status . 82
BusinessClass Attribute IDs (ATTR_). 82
Getting and Setting the Value of a Displayed Field. 83

Accessing the Value of a Field in Search Mode. 83
Changing the Value of an Attribute . 83

Using the LogAttr Method. 83
Checking Query Information on a BusinessClass Object 84

Looping Through a Displayed Result Set . 85
Using Displayed Result Sets with Outline Fields 85

Removing Rows from a Result Set. 86
Displaying a Row in a Result Set . 86
Accessing a Nested Result Set . 86

Customization Techniques: Queries . 87
Modifying Generated Queries . 87

Select Queries . 87
Constructing a New Query. 88

Select Query . 89
Complex Select Query . 89

Update Query . 91
Examining the Generated SQL . 93
Using TOOL SQL Statements . 93

Complex Examples . 94
Using an Express Window as a Login Window. 94
Calculating a Derived Field From Nested Window Data 96
Generating Records with Unique Sequence IDs 99
Synchronizing Data in a Modeless Linked Window 99
Customizing the Database Mapping of a Business Class 101

Using Inheritance in Business Models . 102
Restricting the Query to Select a Single Row 105

Providing Automatic Append on Insert in an Array Window 106
Using Domains . 108

Selecting into a List Field From a Database Table. 108

Global Customization . 111
Modifying Window Subclasses of ExpressWindows Classes. 111
Customizing Subclasses of ExpressServices Classes 113

A Forte Express Example Applications
How to Install Forte Express Example Applications 116

Importing the Examples into your Repository 116
Creating Database Schema and Inserting Data 116
Modifying Service Properties in the Business Model 117
Regenerating Services . 117
Removing the Examples . 117

Removing the Database Tables . 118
Customizing Forte Express Applications

7

Overview of Forte Express Example Applications 119
General-Purpose Express Examples. 119
Customized Express Examples—Client . 119
Customized Express Examples—Server . 119

Application Descriptions. 120
Tutorial . 121
CustomClientTutorialApp . 121
CustomClient2App . 124
CustomClient3App . 124
CustomClient4App . 125
CustomClient5App . 126
CustomClient6App . 126
CustomQueryApp. 127
CustomQuery2App. 128
CustomQuery3App. 128

Index . 129
Contents

8

Customizing Forte Express Applications

Preface
This manual describes the architecture of applications created by Forte Express. Once you
are familiar with Express architecture, you can begin to customize your applications.

This manual is intended for application developers. We assume that you:

■ have programming experience

■ are familiar with SQL and your particular database management system

■ understand the basic concepts of Forte Express as described in A Guide to Forte Express

■ have an Express application that you wish to customize

Organization of This Manual10
Organization of This Manual
This manual begins with a discussion about Forte Express application architecture,
followed by a chapter that illustrates a variety of Express customizations. Briefly, the
chapters in the manual are:

Chapter Description

Chapter 1, “Express Application Architecture” Provides an overview of the architecture of Express
applications.

Chapter 2, “Customizing Express Applications” Provides a variety of customization examples and identifies
others available online.

Appendix A, “Forte Express Example Applications” Forte Express example applications.
Customizing Forte Express Applications

Conventions 11
Conventions
This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions
The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

TOOL Code Conventions
Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format Description

bold Bold text is a reserved word; type the word exactly as shown.

italics Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

UPPERCASE Uppercase text represents a constant. Type uppercase text exactly as shown.

underline Underlined text represents a default value.

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

braces { } Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

brackets [] Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

Format Description

parentheses () Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

comma , Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

colon : Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

semicolon ; Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.
Preface

The Forte Documentation Set12
The Forte Documentation Set
Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help.

Forte 4GL
■ A Guide to the Forte 4GL Workshops

■ Accessing Databases

■ Building International Applications

■ Escript and System Agent Reference Manual

■ Forte 4GL Java Interoperability Guide

■ Forte 4GL Programming Guide

■ Forte 4GL System Installation Guide

■ Forte 4GL System Management Guide

■ Fscript Reference Manual

■ Getting Started With Forte 4GL

■ Integrating with External Systems

■ Programming with System Agents

■ TOOL Reference Manual

■ Using Forte 4GL for OS/390

Forte Express
■ A Guide to Forte Express

■ Customizing Forte Express Applications

■ Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer
■ A Guide to WebEnterprise

■ Customizing WebEnterprise Designer Applications

■ Getting Started with WebEnterprise Designer

■ WebEnterprise Installation Guide
Customizing Forte Express Applications

Forte Example Programs 13
Forte Example Programs
Several Forte Express example application programs come with the Forte Express product.
The example files are located in the subdirectories of
$FORTE_ROOT/userapp/express/cl#/examples and have the suffix .pex. You can search for
TOOL commands or anything of special interest using operating system commands. The
.pex files are text files, so it is safe to edit them, although you should only change private
copies of the files.

Forte Express provides numerous code examples, some of which are provided in this
manual and others are accessible from the Express Help system. Many of these code
examples are drawn from a Forte example program. Whenever this is the case, text
following the last line of code identifies the relevant example program, as shown below.

In this manual, the example most often referred to is the Tutorial.

The procedure for installing the examples is documented in Appendix A, “Forte Express
Example Applications.” You can run the examples in the Project Workshop, experiment
with using them, run them under the Debugger, and make changes to the TOOL code. The
appendix also includes descriptions of the Forte Express example programs and
instructions for running them.

ResultSet.AppendRow(BusinessClass(obj));

MaxIndex.Value = MaxIndex.Value + 1;

SelectRecord(MaxIndex);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • EventHandler: CustomEvents
Preface

Viewing and Searching PDF Files14
Viewing and Searching PDF Files
You can view and search 4GL PDF files directly from the documentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

Note You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

� To copy the documentation to a client or server:

1 Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

2 Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

Note To uninstall the documentation, delete the fortedoc directory.

� To view and search the documentation:

1 Open the file fortedoc.pdf, located in the fortedoc directory.

2 Click the Search button at the bottom of the page or select Edit > Search > Query.

3 Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

Note For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

4 Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

5 Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

6 To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

7 To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]
Customizing Forte Express Applications

Chapter 1
Express Application Architecture
This chapter discusses the architecture of a generated Forte Express application by
examining the supplied and generated classes and illustrating how they interact.

Topics covered in this chapter include:

■ runtime interaction between the client and business service

■ a description of the supplied projects

■ a description of the generated projects

■ the relationship between generated classes and supplied classes

■ the flow of control of between methods and objects during runtime

■ the effect properties in the Business Model and Application Model Workshops have on
generated classes

Throughout this chapter, examples of general topics are drawn from the Tutorial
application. For example, you will see references to CUSTOMERORDERWindow and
CUSTOMERORDERQuery—these classes exist in the generated TutorialAppWindows and
TutorialServices projects.

Overview16
Overview
The classes Forte Express generates are used in one of the two runtime partitions, and
occasionally both (for example, CUSTOMERORDERClass). In general, everything in the
generated business_modelServices (TutorialServices) project is used in the server partition,
and everything in the generated appl_modelWindows (TutorialAppWindows) project is
used in the client partition. The following are the exceptions:

■ Objects of class business_classClass and business_classQuery are used in both partitions;
they are defined in the business_modelServices project.

■ Class business_modelClient is defined in project business_modelServices, but objects of
this class are used in the client partition.

Express services As described in A Guide to Forte Express, you create the Express services that manage the
business classes in your application. These Express services define the Service and
DBService service objects for your application.

The Service service object maintains no state and all communication is message duration.
Therefore, if a transaction is to span multiple messages, it must be managed from the client
(Forte Express handles this automatically if you select either the DB: Native Locking or DB:
Explicit Locking options for the Concurrency property in the Business Model Workshop;
see A Guide to Forte Express for more information about the Concurrency property).

In addition, because communication on the Service service object is message duration, it
can be load balanced.

The following diagram illustrates the two partitions that will exist at runtime in the
deployed Tutorial application and shows key objects in each. Objects are listed in ellipses,
and arrows between ellipses mean “invokes methods on.” The prefix “a” means an instance
of the class with that name (for example, aLINEITEMWindow). Multiple ellipses around an
object name means that there may be many such objects (for example, an array of).
Customizing Forte Express Applications

Overview 17
Note that you can customize every object in this diagram, except aDBSession, by modifying
its class definition. See Chapter 2, “Customizing Express Applications,” for details.

Figure 1 TutorialApp Partitions and Objects

Forte Express Projects
Every Forte Express application has as supplier projects ExpressServices and
ExpressWindows. The ExpressServices project contains a set of superclasses that provide
server functionality for the classes generated from business models. The ExpressWindows
project contains a set of superclasses that provide client functionality for the classes
generated from application models. For full descriptions of the ExpressServices classes and
the ExpressWindows classes, see the Forte online Help.

The generated projects are discussed briefly in this section and in more detail in “Classes
Generated from the Business Model” on page 20 and “Classes Generated from the
Application Model” on page 21.

Client Partition

Server Partition

aTutorialServiceMgr

aLINEITEMClass
aDBSession

aCUSTOMERORDERClass

aCUSTOMERORDERMgr aLINEITEMMgr

aCUSTOMERORDERWindow

aLINEITEMWindow

aCUSTOMERORDERClass

aLINEITEMClass

aTutorialClient

Queries Results

Database Server
Chapter 1Express Application Architecture

Overview18
The class hierarchies of the supplied projects are shown in the figures below:

Figure 2 ExpressServices Class Hierarchy

Figure 3 ExpressWindows Class Hierarchy

Object

SqlStatementHash

BusinessClass

BusinessQuery

BusinessKey

BusinessClient

BusinessMgr

BusinessDBMgr

SqlQuery

SqlStatementCache

SqlStatement

ClientConcurrency

ServiceConcurrency

ConcurrencyMgr

ConcurrencyKeys

ConcurrencyUserCB

ConcurrencyKeyCB

QueryConstraint

ConstraintNode

ConstraintAttr

ConstraintOperation

ConstraintSqlData

ConstraintValue

SqlData

Error

Trace

QueryAttrMap

HashFuncs

ConcurrencyKeyHash

BusinessServiceMgr

ApplicationBroker CommandMgr

OutlineIndexNode CommandSetDesc PreferencesDesc

MenuSetDesc ToolbarSetDesc

ButtonSetDesc

FolderDesc

StatusLineDesc

FolderMgr

TabSequenceMgr

LinkInfo

GenericMap

UserWindow

PreferencesWindowConfirmationWindow ExpressWindow IconWindow

ExpressContainerWindow

ExpressClassWindow

ExpressArrayWindowExpressFormWindowExpressOutlineWindow

Object

ArrayDesc
Customizing Forte Express Applications

Overview 19
business_modelServices Project
Forte Express generates the business_modelServices project, which contains several classes
based on the business model that support access to the underlying database. This project
also contains the service object that manages the interaction with the database, including
retrieving data and updating data with SQL statements. All the generated classes in
business_modelServices are ultimately subclasses of classes defined in the ExpressServices
project. The business_modelServices project includes the ExpressDomains project as a
supplier plan.

Forte Express uses the names of the business classes in the model and the name of the
model itself to define the names of generated projects and classes.

The business_modelServices project is a supplier project to the appl_modelWindows
project (described below) that Forte Express generates from an application model that uses
this business model as a supplier.

appl_modelWindows Project
Forte Express generates the appl_modelWindows project, which contains the window
classes based on the application model. These window classes provide the graphical user
interface to the application and define the flow between windows and the presentation of
data in the windows. All the window classes generated from the application model are
subclasses of classes defined in the Forte ExpressWindows project. The
appl_modelWindows project includes as supplier plans the business_modelServices
projects for the business models this application model uses. Other supplier plans include
ExpressDomains, ExpressServices, and ExpressWindows.
Chapter 1Express Application Architecture

Classes Generated from the Business Model20
Classes Generated from the Business Model
This section discusses the business_modelServices classes generated from the business
model. To generate these server classes, you can either use the Generate Server Code
command in the Business Model Workshop or the CompilePlan command in the Fscript
utility.

business_modelServices Project Classes
Forte Express generates the following classes in the business_modelServices project to store
data and describe queries used for the business classes.

If a class is Custom (indicated by a Yes in the Custom column), it is a customizable class
and will not be regenerated when you regenerate the business model, preserving your
customizations.

Forte Express also generates the following service objects in the business_modelServices
project:

For information about using and partitioning these service objects, see A Guide to Forte
Express.

Customizable Subclasses in business_modelServices
By default, Forte does not generate customizable subclasses of business_classClass,
business_classQuery, and business_classMgr. For information about creating customizable
subclasses of these business_modelServices project classes, see “Creating Customizable
Classes” on page 56.

Generated Class Superclass Custom? Description

business_classClass BusinessClass
(ExpressServices project)

No Based on the business class defined in the business model. Each
object stores a record of data from the table on which the business
class is based.

business_classQuery BusinessQuery
(ExpressServices project)

No Represents the information used to retrieve the data for the
business_classClass from the underlying database; also represents
information to update the underlying database. This class defines
constants, used as attribute indexes, for each of the attributes
defined for the business_classClass.

service_nameBaseClient BusinessClient

(ExpressServices project)

No Provides the interface between the application client and the
service_nameBaseMgr. Lets the client select and update
business_classBaseClass objects, which are managed by the
corresponding service_nameServiceMgr.

service_nameClient service_nameBaseClient Yes Contains your customizations for service_nameBaseClient. This class
is not regenerated when you regenerate your business model code,
preserving your customizations.

business_classMgr BusinessDBMgr
(ExpressServices project)

No Manages select and update operations on the underlying database
server.

service_nameBaseServiceMgr BusinessServiceMgr No Accepts select and update requests from BusinessClient objects and
sends them to the business_classMgr.

service_nameServiceMgr service_nameBaseServiceMgr Yes Contains your customizations for service_nameBaseServiceMgr.

Generated Service Object Class Defined By Description

service_nameDBService DBSession
(GenericDBMS project)

Provides the database session.

service_nameService service_nameServiceMgr Manages database interaction.
Customizing Forte Express Applications

Classes Generated from the Application Model 21
Classes Generated from the Application Model
This section describes the classes in the generated appl_modelWindows project. To
generate these client classes from the application model, you can either use the Generate
Client Code command under the File menu in the Application Model Workshop, or use the
CompilePlan command in the Fscript utility.

appl_modelWindows Project Classes
Forte Express generates the following classes in the appl_modelWindows project to
implement the user application defined in the application model.

If a class is Custom (indicated by a Yes in the Custom column), it is a customizable class
and will not be regenerated when you regenerate the application model, preserving your
customizations.

Forte Express also generates the following service object in the appl_modelWindows
project:

For information about using and partitioning TheBroker, see A Guide to Forte Express. For
information about the generated classes and their attributes, methods, events, and event
handlers, see the Forte online Help.

Customizable Subclasses in appl_modelWindows
By default, Forte does not generate customizable subclasses of appl_windowWindow and
appl_windowNode. For information about creating customizable subclasses of these
appl_modelWindows project classes, see “Creating Customizable Classes” on page 56.

Generated Class Superclass Custom? Description

appl_windowWindow ExpressArrayWindow, ExpressFormWindow,
or ExpressOutlineWindow
(ExpressWindows project)

No Contains the information about the appearance and
behavior of a window in an application. This class
includes the code generated for the widgets that you
defined for the window, as well as the attribute,
methods, constants, events, and event handlers required
to implement the functions and behavior that you
defined for this window.

appl_windowWindow can be a subclass of three
different superclasses, depending on whether you have
set the Layout of Fields Property in the Application
Model Workshop to Form, Array, or Outline. See A
Guide to Forte Express for information about the Layout
of Fields property.

appl_windowNode DisplayNode (Display library) No Displays data in an outline field. This class is generated
only if you set the Layout of Fields property to Outline in
the Application Model Workshop. See A Guide to Forte
Express for information about the Layout of Fields
property.

appl_modelBaseBroker ApplicationBroker
(ExpressWindows project)

No Defines the TheBroker service object, which contains the
generated preferences for the application and keeps
track of all open windows in the application.

appl_modelBroker appl_modelBaseBroker Yes Contains your customizations for
application_modeBaseBroker. This class is not
regenerated when you regenerate your application
model code, preserving your customizations.

Generated Service Object Class Defined By Description

TheBroker appl_modelBaseBroker Handles and maintains application preferences. Keeps a
list of open windows (for Exit All).
Chapter 1Express Application Architecture

Classes Generated from the Application Model22
Class Diagrams
The class diagrams in the following sections use the OMT notation described in the book
“Object-Oriented Modeling and Design” to show Express classes and their relationships.
The diagrams use a few extensions, influenced by those used in the book “Design Patterns”:

■ Arrows between classes mean that one class contains an attribute whose type is that of
the class to which the arrow points. The name of the attribute is given by the text near
the base of the arrow. A dot means an array of the other type is referenced. For example,
in Figure 4, class SuperclassName contains an attribute named Refclass1, whose type is
array of Otherclass1; SuperclassName also contains an attribute named Refclass2,
whose type is Otherclass2.

■ If one Express class references another, and the referenced class is described in another
diagram or in another manual, then the bounding box of the referenced class will be a
dotted line, and details about the class are usually not given. In Figure 4, OtherClass1 is
described in another diagram.

■ Each class displays a subset of the methods, attributes, event handlers, and constants
used in the Tutorial application, or in Chapter 2, “Customizing Express Applications.”
These elements are indicated by the appearance of an icon —the same icon you see in
the project workshop.

Figure 4 Example Class Diagram

■ Every class diagram will have at least two classes in an inheritance hierarchy and
frequently three. The two-class hierarchy represents classes for which a customizable
subclass is not generated by default. The three-class hierarchy represents those classes
for which a customizable class is always generated. The OMT class diagrams for both
types of classes are represented in Figure 5:

Figure 5 Class Inheritance Hierarchies

SuperclassName

Attribute1

Attribute2

Constant1

Constant2

Method1

Method2

EventHandler1

SubclassName

OtherClass2

Method

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

OtherClass1

Method

RefClass2RefClass1

●

ExpressClass (read-only)

MyClass (customizable)

MyBaseClass (read-only)

Default for:
business_classClass
business_classQuery
business_classMgr
appl_windowWindow
appl_windowNode

Default for:
service_nameClient
service_nameServiceMgr
appl_modelBroker

MyClass (read-only)

ExpressClass (read-only)
Customizing Forte Express Applications

Classes Generated from the Application Model 23
In all such class diagrams, the following is true:

■ ExpressClass is a superclass in either ExpressWindows or ExpressServices. This
superclass is not affected by code generation, but supports all types of classes that can
be generated below it in the class hierarchy. In hierarchies that involve an
ExpressWindow, ExpressClass will inherit from one of several classes from the
ExpressWindows project. Each ExpressClass is described in the Forte online Help.

■ myClass (read-only) and myBaseClass (read-only) are generated classes containing
specific characteristics that you specified in the application or business model. For
example, in the Tutorial application, CUSTOMERORDERBaseWindow contains all the
fields, mapped attributes, and methods to give the generated
CUSTOMERORDERWindow the behaviors you specified in the Application Model
Workshop.

■ myClass (customizable) is generated the first time you generate only—it is initially
empty. This class is where you will make your customizations. You are free to create
methods and attributes on this class that will extend the behaviors found in its
superclasses. Modifications you make to this class are safe because this class will not be
affected by subsequent code generation. For information on creating customizable
subclasses when they are not generated by default, see “Creating Customizable Classes”
on page 56.

Declared Type and Runtime Type
If a class has an attribute that references a superclass in a hierarchy, then at runtime the
type of the object referenced by that attribute will actually be the customizable subclass.
For example, in Figure 7 on page 25, the BusinessQuery class has an attribute OriginalClass
of type BusinessClass. At runtime, the attribute will be instantiated as a reference to the
customizable CustomerOrderClass.

This customizable subclass reference gives you control over the runtime application
behavior, because your subclass object and its customizations will be present wherever you
see a reference to the base class in the class diagrams in this chapter.

Remember, though, to access attributes, methods, or events defined only for the runtime
class, you must cast the object. Casting means identifying the class of a particular object.
See the TOOL Reference Manual for more information about casting.
Chapter 1Express Application Architecture

Classes Generated from the Tutorial Application24
Classes Generated from the Tutorial Application
This section uses OMT class diagrams to describe the Express classes generated in the
Tutorial application (see “Class Diagrams” on page 22 for information about how to read
the class diagrams). Every class description includes a diagram showing the class’s
inheritance and relationships to other classes. Each diagram also displays commonly used
methods, attributes, event handlers, and constants defined in the class.

Not all classes in the Tutorial application are shown in the following diagrams, because
many of them are similar. For example, the class diagram for CUSTOMERORDERWindow is
quite similar to that for LINEITEMWindow, so only CUSTOMERORDERWindow is shown.
In general, the diagrams that follow focus on the CUSTOMERORDER business class.

Also note that no superclasses outside of Forte Express projects are shown in the class
hierarchies. For example, Object is the root class for every superclass in every diagram, but
it is not shown.

Forte Express generates the following classes and service objects for the Tutorial business
model:

Figure 6 TutorialServices Project

Notice that there is a set of classes for each class in the business model: Customer,
CustomerOrder, LineItem, and Part. This section will describe only the classes based on the
CustomerOrder business class. Information about CustomerOrder applies to the other
business classes as well.

Note The Tutorial application has no server-side customizations. If there were server-side
customizations of, for example, the CUSTOMERORDERClass, Figure 6 would show
CUSTOMERORDERClass to have a superclass named CUSTOMERORDERBaseClass, which
would be listed as a subclass of BusinessClass.

The subset of classes generated based on the CustomerOrder business class includes:

Generic Class CustomerOrderClass

business_classClass CustomerOrderClass

business_classQuery CustomerOrderQuery

business_classMgr CustomerOrderMgr

business_modelClient TutorialClient (for each business model)

business_modelServiceMgr TutorialServiceMgr (for each Express service)
Customizing Forte Express Applications

Classes Generated from the Tutorial Application 25
CUSTOMERORDERClass and CUSTOMERORDERQuery
CustomerOrderClass represents the data in the CustomerOrder table. Any time you want to
retrieve or modify data in this table, you will use a CustomerOrderQuery object. Queries,
which are objects of type business_classQuery (CUSTOMERORDERQuery), are passed from
the client to the business service. For Select queries, the business service will return a result
set consisting of an array of objects of type business_classClass (CUSTOMERORDERClass).

Figure 7 CustomerOrderClass and CustomerOrderQuery

BusinessClass
BusinessClass is the superclass of CustomerOrderBaseClass. The following are commonly
used attributes found on BusinessClass:

BusinessClass is described in detail in the Forte online Help.

service_nameService TutorialService (one for each Express service)

service_nameDBService TutorialDBService (one for each Express service)

service_nameClient TutorialClient (one for each Express service)

Generic Class CustomerOrderClass

BusinessQuery

NumAttrs

NumKeyAttrs

TableAliases

TargetAttrs

OP_SELECT

OP_UPDATE

AddAttr

AddConstraint

BuildQuery

ClearConstraints

GetOperation

GetUpdateAttr

HasAttr

CUSTOMERORDERQuery

SQLQuery

GetText

QueryConstraint

AddConstraint

AddOperation

AddSQLData

CUSTOMERORDERBaseQuery

ATTR_CUSTOMERNUMBER

ATTR_ORDERNUMBER

ATTR_REQUESTEDDATE

BusinessKey

Values

Compare

BusinessClass

InstanceStatus

ST_READONLY

ST_UPDATE

CUSTOMERORDERBaseClass

CUSTOMERNUMBER

ORDERNUMBER

REQUESTEDDATE

SetAttr

CUSTOMERORDERClass

ConstraintNode

ConstraintOperation

ConstraintValue

ConstraintSQLDataAAAAAAAA
AAAAAAAACUSTOMERClass

AAAAAAAA
AAAAAAAA

LINEITEMClass

CUSTOMER

LINEITEM

Stack

ConstraintAttr

UpdateQuery

Key

InstanceKey

Updated Class

Original Class

Values

Constraint

ForeignClasses

●

●

●

Attribute Description

InstanceStatus Provides the update status of each CustomerOrderClass object. Potential status values are
derived from properties set for the class in the Application Model Workshop.

UpdateQuery Points to the CustomerOrderQuery object associated with the CustomerOrderClass object. The
query may be an Update, Insert, or Delete query, depending on the application and the actions
taken by the user.

InstanceKey References a BusinessKey object that tracks the originally selected values for the primary key
fields in the current CustomerOrderClass object. The key values are used in the WHERE clause
for Update and Delete queries.
Chapter 1Express Application Architecture

Classes Generated from the Tutorial Application26
CUSTOMERORDER[Base]Class
CustomerOrderClass is the default name for the read-only, generated class that contains
information specific to the CustomerOrder business class. When a customization is created
for this class, it is automatically renamed to “CustomerOrderBaseClass,” and a new,
customizable subclass is created and named “CustomerOrderClass.” There is an attribute
in CustomerOrderBaseClass for every attribute specified for the CustomerOrder class in the
Business Model Workshop. There are additional attributes found on this class that Forte
Express creates based on associations you specified in the Business Model Workshop.

The table below describes important attributes of the CustomerOrder[Base]Class:

CUSTOMERORDERClass
CustomerOrderClass is the customizable, generated subclass of CustomerOrderBaseClass.
This class is initially empty, but you can make modifications to CustomerOrderBaseClass
behavior here by adding attributes and overriding methods defined in its superclasses.

BusinessQuery
BusinessQuery is the superclass of CustomerOrder[Base]Query and provides the methods
and attributes necessary for creating queries based on data from a business class. The text
of a query is created by a SqlQuery object; a SqlQuery object is created by a BusinessQuery
object. See the Forte online Help.

The following table describes common attributes on the BusinessQuery class:

 BusinessQuery is described in detail in the Forte online Help.

Attribute Description

CustomerNumber
OrderNumber
RequestedDate

Correspond to attributes defined on the business class in the Business Model Workshop. See
A Guide to Forte Express for information about attributes.

Customer Contains a reference to a CustomerClass object, based on the many-to-one association
between CustomerOrder and Customer in the Tutorial business model.

LineItem Contains a reference to an array of LineItemClass objects, based on the one-to-many
association between CustomerOrder and LineItem in the Tutorial business model.

Attribute Description

OriginalClass Points to the original CustomerOrder object, before the user has updated it. Forte Express uses this
attribute when the Concurrency property is set to Optimistic:Verify. Otherwise, this attribute is NIL.
See A Guide to Forte Express for information about the Concurrency property.

UpdatedClass Points to the updated CustomerOrder object. Forte Express uses this attribute when the Send Only
Changes on Update property is off. Otherwise, this attribute is NIL. See A Guide to Forte Express
for information about the Send Only Changes on Update property.

InstanceKey Points to the original primary key values. These values are necessary to execute an Update or
Delete query.

Values Points to the new values for Update queries. See the Forte online Help.

Constraint Points to the WHERE clause constraints. See the Forte online Help.
Customizing Forte Express Applications

Classes Generated from the Tutorial Application 27
CUSTOMERORDER[Base]Query
CustomerOrderQuery is the default name for the read-only, generated class that contains
information specific to the CustomerOrderQuery business class. When a customization is
created for this class, it is automatically renamed to “CustomerOrderBaseQuery,” and a
new, customizable subclass is created and named “CustomerOrderQuery.” The integer
“ATTR_...” constants defined in this class are used in many methods to identify the
attributes on the CustomerOrder business class. See Chapter 2, “Customizing Express
Applications,” for more information and example uses.

CUSTOMERORDERQuery
CustomerOrderQuery is the customizable, generated class. This class is initially empty, but
you can make modifications to the text of the query here by adding attributes and
overriding methods defined in superclasses.

BusinessKey
The BusinessKey class defines primary key values. For more information, see the Forte
online Help.

SqlQuery
The SqlQuery class creates SQL text based on the data described by a BusinessQuery
object. You can create a subclass of SqlQuery to modify the type of SQL Forte Express
generates. You will also have to override the GetSQLQuery method on the BusinessQuery
class so it will create your SqlQuery subclass. For more information, see the Forte online
Help.

QueryConstraint
The QueryConstraint class contains the constraints for the BusinessQuery object. These
constraints are a superset of the normal WHERE clause constraints; they may also include
ORDER BY settings, and a limit on the number of selected rows.

The Stack attribute points to a list of constraints that is an array of ConstraintNode objects.
References to a ConstraintNode will actually be references to a ConstraintNode subclass.

For more information, see the Forte online Help.

TutorialClient Class
Forte Express creates one BusinessClient object for each business_modelServiceMgr (see
“CUSTOMERORDERMgr and TutorialServiceMgr” on page 29). Windows do not
communicate with the business service directly, but use business_modelClient objects
(TutorialClient) to invoke methods in the business service.
Chapter 1Express Application Architecture

Classes Generated from the Tutorial Application28
TutorialClient is the subclass of BusinessClient that corresponds to TutorialServiceMgr. The
hierarchy of the TutorialClient class is shown below.

Figure 8 TutorialClient

BusinessClient
BusinessClient is the superclass of TutorialBaseClient and provides methods and attributes
that are responsible for all communication with the business_modelService service object
on the server. There will be one BusinessClient object in the client partition for each
business_modelService service object in the server partition.

Important attributes on the BusinessClient class are described below:

Important methods on the BusinessClient class are described below:

The BusinessClient class is described in detail in the Forte online Help.

TutorialBaseClient
TutorialBaseClient is a read-only, generated class. This class provides no additional
methods or attributes.

TutorialClient
TutorialClient is the customizable, generated subclass of TutorialBaseClient. This class is
initially empty, but you can make modifications to TutorialBaseClient behavior here by
adding attributes and overriding methods defined on the BusinessClient class.

Attribute Description

Concurrency Contains a reference to a ClientConcurrency object, which controls database concurrency from the
client side. See “ClientConcurrency” on page 29.

Mgr Contains a reference to the TutorialServiceMgr.

Method Description

LogAttr Stores the new value for each CustomerOrderClass attribute for use in subsequent update or insert
queries. The values are stored in the Values attributes of the CustomerOrderQuery object.

BusinessClient

AfterSelect

AfterUpdate

BeforeSelect

BeforeUpdate

Dispose

LogAttr

Select

Update

ClientConcurrency

AfterOperation

BeforeOperation

TutorialBaseClient

TutorialClient

Mgr

Concurrency

AAAAAAAA
AAAAAAAATutorialServiceMgr
Customizing Forte Express Applications

Classes Generated from the Tutorial Application 29
ClientConcurrency
The ClientConcurrency class controls concurrency from the client. You specify concurrency
options in the Business Model Workshop (see A Guide to Forte Express). If you choose the
Database: Explicit Locking or Database: Native Locking concurrency options, then the
ClientConcurrency object will begin and end transactions. If you choose the Optimistic:
Verify option, then each client message will be a separate transaction, beginning and
ending on the server.

The ClientConcurrency class is primarily used internally and should not be customized.

CUSTOMERORDERMgr and TutorialServiceMgr
In the Tutorial application, there is one business_modelService service object,
TutorialService, which is based on the Tutorial service (the TutorialService service object is
of type TutorialServiceMgr). The Tutorial service was created by default when you created
the Tutorial business model; you modify service properties, or create new services, in the
Business Model Workshop. See A Guide to Forte Express for more information about
Express services.

For each business class, there is a corresponding class that manages communication
between the business class and the database. For example, in the Tutorial application, the
CustomerOrderClass has a corresponding CustomerOrderMgr object. The TutorialClient
object passes queries to the TutorialService service object, which then communicates with
the appropriate business_classMgr class (in the case, CustomerOrderMgr).
CustomerOrderMgr handles communication with the database.

Figure 9 CustomerOrderMgr and TutorialServiceMgr

BusinessMgr
BusinessMgr is the superclass of BusinessDBMgr. BusinessMgr objects create business
classes, retrieve data for them, and perform updates to track changes in business classes.
For example, the ParentService attribute contains a reference to the service object that
passes queries to CustomerOrderMgr. See the Forte online Help for more information.

BusinessDBMgr

ExecuteSQL

Select

SQLdelete

SQLinsert

SQLselect

SQLupdate

Update

CUSTOMERORDERMgr

AAAAAAAA
AAAAAAAA
AAAAAAAASQLStatementCache

Find

BusinessMgr

SetDB

CUSTOMERORDERBaseMgr

Setup

BusinessServiceMgr

AfterSelect

AfterUpdate

BeforeSelect

BeforeUpdate

SelectQueries

UpdateQueries

ServiceConcurrency

CommitTrans

Load

ReadyToCommit

Rollback

StartTrans

TutorialBaseServiceMgr

Setup

●
Managers

ParentService

Fo
re

ig
nM

gr
s

AAAAAAA
AAAAAAA
AAAAAAA

DBSession

DB

StatementCache

StatementCache

ParentService

Concurrency

TutorialServiceMgr

BusinessClient
Mgr

StatementCache
Chapter 1Express Application Architecture

Classes Generated from the Tutorial Application30
BusinessDBMgr
BusinessDBMgr is the superclass of CustomerOrderBaseMgr. This class provides methods
for executing SQL queries based on any business class and attributes that handle
information about the execution of queries. Important attributes and methods are
described below:

The BusinessDBMgr class is described in the Forte online Help.

CUSTOMERORDER[Base]Mgr
CustomerOrderMgr is the default name for the read-only, generated class that contains
information specific to the CustomerOrderMgr business class. When a customization is
created for this class, it is automatically renamed to “CustomerOrderBaseMgr,” and a new,
customizable subclass is created and named “CustomerOrderMgr.” The Setup method on
this class populates the BusinessDBMgr.ForeignMgrs array.

CUSTOMERORDERMgr
The CustomerOrderMgr class is a customizable, generated class. This class is initially
empty, but you can make modifications to CustomerOrderBaseMgr behavior here by
adding attributes and overriding methods defined in the superclasses. The business service
will contain one object of this class for each business class managed by the server—for
example, there will be a CustomerOrderMgr, a LineItemMgr, and so on. The Service service
object (TutorialService) then hands queries it receives from the client (from TutorialClient)
to one of the appropriate business_classMgr objects, according to the business class of the
query.

BusinessServiceMgr
BusinessServiceMgr is the superclass of TutorialBaseServiceMgr. This class accepts select
and update requests from BusinessClient class objects (TutorialClient) and sends them to
the appropriate subclass of BusinessMgr (in this case, CustomerOrderBaseMgr).

Attribute Description

DB Contains a reference to the database session object to use for all queries.

StatementCache Contains a reference to the cache that will contain previously run queries. The cache
contains the results of the Prepare and DescribeTable methods on DBSession. Forte Express
first checks each query against the cache to see if an identical query has already run on the
current session. If there is an identical query, Forte Express uses the cached results from the
Prepare method.

ForeignMgrs Contains a reference to the other BusinessDBMgr objects with which the BusinessDBMgr
object may need to communicate based on associations in the Business Model Workshop.
This attribute is used only for Select queries and one-to-many relationships.

Method Description

SetDB Sets which database session to use (in this example, TutorialDBService).
Customizing Forte Express Applications

Classes Generated from the Tutorial Application 31
Important attributes on the BusinesServiceMgr class are described in the table below:

Important methods on the BusinesServiceMgr class are described in the table below:

The BusinessServiceMgr class is described in the Forte online Help.

TutorialBaseServiceMgr
TutorialBaseServiceMgr is a read-only generated class. The Setup method in this class
determines to which business_classMgr objects to pass queries.

TutorialServiceMgr
TutorialServiceMgr is a customizable, generated class. This class is initially empty, but you
can make modifications to TutorialBaseServiceMgr behavior here by adding attributes and
overriding methods defined in superclasses. Forte Express creates a service object based on
this class. You determine the number of service objects for an application in the Business
Model Workshop (see A Guide to Forte Express).

ServiceConcurrency
The ServiceConcurrency class is used by the BusinessServiceMgr to control concurrency
during query execution. Note that this class uses the concurrency specifications set in the
Business Model Workshop (see A Guide to Forte Express). This class may change the query,
or execute other queries to support the specified concurrency mode.

The ServiceConcurrency class is primarily used internally and should not be customized.

Attribute Description

Managers Contains a reference to an array of appropriate business_classMgr objects.

StatementCache Contains a reference to the cache that will contain previously run queries. The cache
contains the results of the Prepare and DescribeTable methods on DBSession. Forte Express
first checks each query against the cache to see if an identical query has already run on the
current session. If there is an identical query, Forte Express uses the cached Prepare method
results.

Concurrency Contains a reference to a ServiceConcurrency object instantiated by the
BusinessServiceMgr.

Method Description

AfterSelect Empty method intended for you to override in TutorialServiceMgr. Enter code in this method
to perform an operation after a select.

AfterUpdate Empty method intended for you to override in TutorialServiceMgr. Enter code in this method
to perform an operation after an update.

BeforeSelect Empty method intended for you to override in TutorialServiceMgr. Enter code in this method
to perform an operation before a select.

BeforeUpdate Empty method intended for you to override in TutorialServiceMgr. Enter code in this method
to perform an operation before an update.

SelectQueries

UpdateQueries

Walks through the queries received from the client and asks the appropriate
business_classMgr to execute each query. Note that because these methods affect queries,
you will usually override methods defined in BusinessDBMgr, for each business_classClass,
because that will only affect queries for that class. These methods are invoked when the
client wants to pass queries to the business server. See “Press Search Button” on page 40
and “Press Save Button” on page 41.
Chapter 1Express Application Architecture

TutorialAppWindows Project32
TutorialAppWindows Project
Forte Express generates the following classes and service objects for the TutorialApp
application model:

Figure 10 TutorialAppWindows Project

Notice that there is a class for each window class in the application model: Customer,
CustomerOrder, LineItem, and Part. There is only one customized class in the Tutorial
application: the CustomerOrder class. Therefore, Figure 10 shows only a Base
class/customizable class set only for this class. If you had customized the other window
classes, or if you had turned on the Always Generate Custom Classes toggle, Figure 10
would show a duo set for the other window classes. This section describes only the classes
based on the CustomerOrder business class. Information about CustomerOrder applies to
the other window classes as well.

For information on the Always Generate Custom Classes toggle, see “Custom Generation
Options” on page 49.

The classes from the TutorialAppWindows project for the CustomerOrderWindow class
include:

CUSTOMERORDERWindow Class
The Forte Express generates the following classes for the CustomerOrderWindow class. All
the supplied (non-generated) classes in this section are described in the Forte online Help.

Generic Class CustomerOrderWindowClass

business_classWindow CustomerOrderWindow

business_classBaseWindow CustomerOrderBaseWindow

business_modelBaseBroker TutorialAppBaseBroker (for each application model)

business_modelBroker TutorialAppBroker (for each application model)

TheBroker TutorialAppBroker (for each application model)
Customizing Forte Express Applications

TutorialAppWindows Project 33
Figure 11 CustomerOrderWindow Class

ExpressClassWindow

IsResultSetModified

KeepBackup

ModeText

ClearResultSet Save

DeleteRecordFromResultSet ScrollToFirst/Last/Next/Prev

Display Search

FieldValueChanged SelectRecord

FinishUp SetEditMode

InitResultSet SetMode

PostOpenInit SetResultSetFromData

PreOpenInit SetSearchMode

Quit ValidateField

ResetCommandStates ValidateRecord

ExpressFormWindow

ClearFieldForSearch

AddFieldToTabSequence

Generic Command Events

ExpressArrayWindowExpressOutlineWindow

CUSTOMERORDERBaseWindowCUSTOMERORDERBaseWindow

<ADDRESS> ADDRESS

<CUSTOMERNUMBER> CUSTOMERNUMBER

<LINEITEMLink1Panel>

<ORDERNUMBER> ORDERNUMBER

<REQUESTEDDATE> REQUESTEDDATE

ClearFieldsForSearch DisplayCurrentRecord

GetCurrentRecord GetRecordTemplate

GetSearchCriteria InsertRecordIntoResultSet(

LogAttrForInsertRecords NewObject

SetCurrentRecord SetDisplayedField

UpdateNestedResultSets

DataEvents WindowEvents

NestedWindowEvents LinkEvents

AAAAAAAA
AAAAAAAACUSTOMERORDERClass

AAAAAAAA
AAAAAAAA

LINEITEMWindow

LineItemLink1Nested

AAAAAAAA
AAAAAAAABusinessClass

ResultSet

●

●

D
is

pl
ay

ed
Re

su
ltS

et

CUSTOMERORDERWindow

AAAAAAAA
AAAAAAAABusinessClient

AAAAAAA
AAAAAAABusinessQuery

RecordTemplate

AAAAAAAA
AAAAAAAATabSequenceMgr

TabMgr

ExpressContainerWindow

FinishUp

InitLinks

OpenWindow

StartMethod

Translate

WindowEvents

ExpressWindow

StartMethod

AAAAAAA
AAAAAAA

UserWindow

AAAAAAAAStatusLineDesc

AppBroker

StatusLine

BusinessClient

AAAAAAALinkInfo

AAAAAAA
AAAAAAA
CommandMgr

AAAAAAA
AAAAAAAFolderMgr

CommandMgr

WindowInfo

FolderMgr

AAAAAAAA
AAAAAAAAApplicationBroker

D
is

pl
ay

ed
Re

su
ltS

et
Chapter 1Express Application Architecture

TutorialAppWindows Project34
ExpressWindow
ExpressWindow is the superclass for all window classes. This class defines the generic entry
point (StartMethod) used for all windows. For more information, see the Forte online Help.

ExpressContainerWindow
The ExpressContainerWindow class provides support for links to other windows. You
specify the types of links between windows in the Application Model Workshop (see A
Guide to Forte Express for information about links).

Important attributes on the ExpressContainerWindow class are described in the table
below:

For more information, see the Forte online Help.

ExpressClassWindow
The ExpressClassWindow class provides support for windows that display data associated
with another business class.

For more information, see the Forte online Help.

ExpressFormWindow, ExpressArrayWindow, ExpressOutlineWindow

ExpressFormWindow, ExpressArrayWindow, and ExpressOutlineWindow provide support
for the specific field layout of the generated window. CustomerOrderBaseWindow is a
subclass of one of these classes—the specific class is determined by settings specified in
the Application Model Workshop (see A Guide to Forte Express for information about
specifying window layout). For more information about the window superclasses, see the
Forte online Help.

CUSTOMERORDER[Base]Window

CustomerOrderWindow is the default name for the read-only, generated class that contains
information specific to the CustomerOrderWindow business class. When a customization
is created for this class, it is automatically renamed to “CustomerOrderBaseWindow,” and a
new, customizable subclass is created and named “CustomerOrderWindow.” In the tutorial,
you specified the CustomerOrder window to have a Form layout. As a result,
CustomerOrder[Base]Window is a subclass of ExpressFormWindow.

Attribute Description

AppBroker Contains a reference to the Application Broker service object (TheBroker).

WindowInfo Contains a reference to the LinkInfo object that describes the type of command set
specified for the window. See “LinkInfo” on page 38.

Attribute Description

BusinessClient Contains a reference to the object (TutorialClient) that handles all communication between
client and business server.

IsResultSetModified Is set to TRUE when the user changes the value of a field.

RecordTemplate Contains a reference to the fields needed for the window, the maximum number of records
to retrieve, and the sort order. The GetRecordTemplate method (on
CustomerOrderBaseWindow) instantiates and initializes the BusinessQuery object
referenced by RecordTemplate.

ResultSet An array that contains a reference to data the window will display, including deleted rows.

WindowMode Contains the current mode of the window (WM_EDIT or WM_SEARCH).
Customizing Forte Express Applications

TutorialAppWindows Project 35
CustomerOrder[Base]Window contains attributes for each displayed field and methods
that manage the links out of the window. In addition, CustomerOrder[Base]Window
contains the following useful attributes:

CustomerOrder[Base]Window has several event handlers that manage events on generated
fields and links to other windows.

For more information about the generated windows, see the Forte online Help.

CUSTOMERORDERWindow

CustomerOrderWindow is a customizable, generated class. This class is initially empty, but
you can make window and window class modifications here. See Chapter 2, “Customizing
Express Applications,” for details.

TutorialAppBroker Class
The TutorialAppBroker class is a subclass of the ApplicationBroker class. A service object
name TheBroker is generated of type TutorialAppBroker.

Figure 12 TutorialAppBroker Class

Attribute Description

DisplayedResultSet An array that contains a reference to the data the window will display (does not include a
reference to deleted rows). If the Layout of Fields property is set to Array, then
DisplayedResultSet is a mapped attribute for the array field. See A Guide to Forte Express
for information about the Layout of Fields property. For more information, see the Forte
online Help.

LineItemLink1Nested Contains a reference to a nested window. This attribute is generated only if the window
has a link to a nested window; the name of the attribute is based on the name of the link
to the nested window.

Event Handler Description

DataEvents Handles events on the fields generated onto the window. For example, an
AfterValueChange event is available for every field that has a Read status of Read/Write.
See A Guide to Forte Express for information about Read status.

LinkEvents Is present if you define links to other windows in the Application Model Workshop.

NestedwindowEvents Is generated in case the window is ever nested inside another window. This handler allows
the nested window to register for events in the parent window’s event loop.

WindowEvents Contains the register statements to register the other event handlers.

ApplicationBroker

ConfirmationDialog

RegisterWindow

UnRegisterWindow

TutorialAppBaseBroker

ExpressContainerWindow

PreferencesDesc

MaxRecords

ConfirmClose

ConfirmDelete…

●
AAAAAAAA
AAAAAAAA

MsgCatalog

AAAAAAAA
AAAAAAAAIconWindow

Windows

Preferences
Icons

ExpressMsgCatalog

AAAAAAAA
AAAAAAAATutorialAppBroker
Chapter 1Express Application Architecture

TutorialAppWindows Project36
ApplicationBroker
ApplicationBroker is the superclass for TutorialAppBaseBroker and provides application-
wide information, such as the current message catalog and preferences information. This
class also controls application shutdown.

Useful attributes on the ApplicationBroker class are described below:

For more information, see the Forte online Help.

TutorialAppBaseBroker
TutorialAppBaseBroker is a read-only, generated class containing the actual values of the
generated application preferences specified in the application model. For more
information, see the Forte online Help.

TutorialAppBroker
TutorialAppBroker is a customizable, generated class. This class is initially empty, but you
can make modifications to Application Broker behavior here by adding attributes and
overriding methods defined in the superclasses.

TheBroker
A service object named TheBroker is created of type TutorialAppBroker. One TheBroker
service object is created for each client project (in this case, TutorialAppWindows).
TheBroker keeps track of all the open windows in the application—Forte Express uses this
information if the user selects the Exit All command from the File menu. TheBroker also
manages the runtime preferences that were set in the Application Model Workshop (see A
Guide to Forte Express).

Attribute Description

Windows Contains an array that points to the open windows in the application.

Preferences Contains a reference to the object that contains the preferences set for the application in the
Application Model Workshop. See A Guide to Forte Express for information about setting generated
window preferences.
Customizing Forte Express Applications

TutorialAppWindows Project 37
CommandMgr
The classes in this diagram are not designed to be customized in the generated Express
application. They are shown here for completeness, because CommandMgr is referenced
by the ExpressWindow classes, and to explain how the window commands are
implemented. These classes are described in the Forte online Help.

Figure 13 CommandMgr

CommandMgr
The CommandMgr class handles the display of window buttons and menu commands, and
also sets the window state. If you set the Adaptive Command Interface option on a window
in the Application Model Workshop, then the CommandMgr object removes or adds
commands and changes window mode, depending on what is appropriate.

Adaptive Command Interface For example, if the Adaptive Command Interface property is off, then Forte Express uses
the information set in the Command Set and Default Interface properties to determine
which command widgets are generated onto a window. In addition, the LinkInfo object
passed to the window will specify that the default command interface and command set be
used.

If the Adaptive Command Interface property is on, then the values for the Command Set
and Default Interface properties are ignored, and the window is generated as if the All
Command Set was specified. Subsequently, when the window is invoked, Forte Express
uses the CommandSet and CommandInterface attributes on the LinkInfo class to
determine which menus, toolbars, and buttons are required on the window. Any
unnecessary commands are removed. See A Guide to Forte Express for more information
about using the Adaptive Command Interface property.

Start window behavior Note, however, that if the window is the start window, then no LinkInfo object is passed to
the window, and the Command Set and Default Interface properties for the window will be
used to determine which commands and interfaces to display on the window.

CommandMgr

CI_BUTTONS

CI_MENU

CI_MENU_TOOLBAR

GetState

HideCommand

InitCommandSet

SetDefault

SetMode

SetState

ShowCommand

CommandSetDesc

GetState

HideCommand

SetState

ShowCommand

ArrayDesc

ButtonSetDesc

ToolbarSetDesc

MenuSetDesc

Active Commands
●

ArraySet

ToolbarSet

ButtonSet

MenuSet
Chapter 1Express Application Architecture

TutorialAppWindows Project38
ActiveCommands attribute The ActiveCommands attribute on the CommandMgr class is an array that contains a
reference to all the active command sets for the parent window. These command sets are
referenced separately by the ButtonSet, MenuSet, and ToolbarSet attributes.

CommandSetDesc
CommandSetDesc is the superclass for all the classes that control command sets on a
generated window. This class provides common functionality, such as hiding commands
and changing command states, for all command sets.

ButtonSetDesc, MenuSetDesc, ToolBarSetDesc
The ButtonSetDesc, MenuSetDesc, and ToolbarSetDesc classes manage the behavior of
each specific command set—Buttons, Menu and Toolbar. Methods in these classes override
the common functionality provided by the CommandSetDesc class. There is one attribute
on each class for every command provided on the interface. For example,
ButtonSetDesc.DeleteCMD represents the delete button on a button interface.

 LinkInfo
The LinkInfo object contains the information passed into a window when the window is
called by a link. Forte Express uses the LinkInfo object to pass information to a window and
return information from a window. The LinkInfo object describes the caller, the query to
run, and which broker and business class to use.

Figure 14 LinkInfo

The following are useful attributes on the LinkInfo class.

Attribute Description

AppBroker Contains a reference to the ApplicationBroker object that the called window should use.

AppData Contains a generic object pointer to pass application data to the called window.

Client Contains a reference to the BusinessClient that the called window should use for any
queries it needs to run.

InitialSearch Contains the criteria for the initial search the called window will execute upon opening.

LinkStyle Contains the link type, which is determined by the Link setting in the Link Properties dialog.

ParentWindow Contains a reference to the calling window.

RecordIndex Contains the record number in the result set to return to the caller (lookup links expect a
BusinessClass object to be returned).

ResultSet Contains a reference to the BusinessClass object that contains the original data passed to
the called window. ResultSet is not used for output—any returned data is passed using the
return code from the called window’s Display method.

LinkInfo

CommandInterface

CommandSet

LinkStyle

RecordIndex

AAAAAAAABusinessClass

AAAAAAA
AAAAAAA

ExpressClassWindow

AAAAAAA
AAAAAAABusinessQuery

AAAAAAAA
AAAAAAAA

Object

AAAAAAAA
AAAAAAAA

BusinessClient

AppBroker

Client

AppData

InitialSearch

ParentWindow

●

ResultSet

AAAAAAA
AAAAAAAApplicationBroker
Customizing Forte Express Applications

Runtime Scenarios 39
Runtime Scenarios
This section uses Object Interaction Diagrams to trace the interaction between objects
during several key runtime scenarios in a generated Tutorial window
(CUSTOMERORDERWindow with nested LINEITEMWindow). These diagrams show the
objects involved in the processing and the methods they invoke on each other.

The diagrams show only the key objects involved in a scenario and the methods they
invoke on each other. You can build diagrams like these on your own by running your
application and stepping through it in the TOOL debugger.

Object Interaction Diagram Notation
The Interaction Diagrams are based on the Jacobson notation described in the book
“Object-Oriented Software Engineering”. These diagrams illustrate runtime scenarios and
the flow of control when Express applications perform particular actions.

Vertical lines in these diagrams represent objects. The object name is given at the top of the
vertical line—its name is identical with its class name, but prefixed with the letter “a”.

Objects invoke methods on each other, and these methods are represented by horizontal
lines between objects with an arrow indicating the direction. The name of the method
invoked is shown on the line. Thus, in Figure 15, object aClass1 invokes method
MethodName() on class aClass2 with parameters ‘params’.

Time flows from top to bottom. Thus, after aClass1 invokes aClass2.MethodName(),
aClass2 then invokes aClass3.MethodName2().

If an object invokes a method on itself, this is shown as a method line that points back to
the same object.

Figure 15 Example Object Interaction Diagram

aClass1 aClass2 aClass3

MethodName(args)

MethodName2(params)

MethodName3()

MethodName4()
Chapter 1Express Application Architecture

C
u

st
o

m
iz

in
g

 F
o

rt
e

Ex
p

re
ss

 A
p

p
lic

at
io

n
s

StatementCache aDBSession aLINEITEMMgr

Perform same operations as above,
but on LINEITEMQuery:
BuildQuery(),
GetText(),
SQLSelect(),
Find(),
Open/Fetch/CloseCursor()
R
u

n
ti

m
e

Sc
en

ar
io

s
40

Pr
es

s
Se

ar
ch

 B
ut

to
n

aCUSTOMERORDERWindow aTutorialClient aTutorialServiceMgr aClientConcurrency

GetSearchCriteria()

Search(BusinessQuery)

Select(BusinessQuery)

SelectQueries(ClientID, array of BusinessQuery)

BeforeOperation(transactionMode)

BeforeSelect(BusinessQuery)

Begin Dependent Transaction
StartTrans()

BeforeSelect(BusinessQuery)

Select(CUSTOMERORDERQuery)

aServiceConcurrencyaCUSTOMERORDERMgraCUSTOMERORDERQueryaSQLQuery aSQL

BuildQuery(SQLQuery)

GetText()
SQLSelect(SQLQuery,SQLText)

Find(SQLText)

OpenCursor(SQLStatement)

FetchCursor()

CloseCursor()

Select(LINEITEMQuery)

AfterSelect()

end transaction
AfterSelect(Array of BusinessClass,BusinessQuery)

AfterOperation(transactionMode)
SetMode(WM_EDIT)

SetResultSetFromData(data)

R
u

n
tim

e Scen
ario

s
41

C
h

ap
ter

1
Exp

ress A
p

p
licatio

n
 A

rch
itectu

re

Press Save Button

aLINEITEMMgr aCUSTOMERORDERClass
aCUSTOMERORDER Window aTutorialClient aClientConcurrency

Save()

ValidateRecord()

BeforeOperation(tranMode)

aTutorialServiceMgr aServiceConcurrency aCUSTOMERORDERMgr aSQLQuery aSQLStatementCache aDBSession

LogattrForInsertRecords()

UpdateNestedResultSets()

Update(ResultSet)

BeforeUpdate(array of BusinessClass)

AddAttr(Foreign Business Class)

aCUSTOMERORDERQuery

UpdateQueries(clientId, array of
BusinessQuery) ReadyToCommit(clientId, array of BusinessQuery)

Begin Dependent Transaction
BeforeUpdate()

Update(BusinessQuery)

BuildQuery(SQLQuery)

GetText()

SQLInsert(), SQLUpdate(), or SQLDelete()

ExecuteSQL()

Find()

Execute()

Update(BusinessQuery)

AfterUpdate()

End Transaction
CommitTrans(array of BusinessQuery, clientId, tranMode)

Reset()
AfterUpdate()

ResetCommandStates()

AfterOperation()

Runtime Scenarios42
Window Startup
aCUSTOMERORDERWindow aCommandMgr aLINEITEMWindow aCommandMgr

Display()

PreOpenInit()

InitCommandSet()

InitLinks()

PreOpenInit()

aTutorialAppBroker

InitCommandSet

InitLinks()

Translate()

OpenWindow()

PostOpenInit()

InitResultSet()

SetResultSetFromData()

SetResultSetFromData()

RegisterWindowEvents()

RegisterNestedWindowEvents()

RegisterWindow()

Translate()
Customizing Forte Express Applications

Runtime Scenarios 43
Note that the Display method is not executed on the nested window. This is because the
nested window’s events will be registered as part of the parent window’s event loop, so the
nested window does not its own event loop.

Window Close With Unsaved Changes
aCUSTOMERORDERWindow aTutorialClient aCUSTOMERORDERClass aTutorialAppBroker

HandleValueChange()

ValidateField()

FinishUp()

LogAttr(BusinessClass, ATTR_…

Dispose()

SetAttr(ATTR_,DataValue)

FieldValueChanged(ATTR_, DataValue)

ConfirmationDialog()

UnregisterWindow(CUSTOMERORDERWindow)
post AfterFinishUp
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes44
Workshop Properties and Generated Classes
This section discusses the effects of Business Model and Application Model property
settings on the generated classes.

Business Model Workshop
The following sections describe the properties set in the Business Model Workshop and
their effect on the classes generated into the business_modelServices project.

The generated classes will always have one attribute for each attribute specified in the class
definition, plus an attribute for each association that points to another class.

Custom Generation Options
You access the Custom Generation Options dialog with the File > Custom Generation
Options command.

Figure 16 Custom Generation Options Dialog

The Superclass Prefix for Global Customization field in the Custom Generation Options
dialog specifies the prefix used by the superclasses for the classes generated from the
business model. By default, this prefix is “Business,” which is the prefix used by the
ExpressServices project. You change this value if you customize classes from the
ExpressServices project in a new project. Note that you must include the project as a
supplier to the business model. See “Global Customization” on page 111 for more
information.

Always Generate Custom
Classes toggle

When you turn on the Always Generate Custom Classes toggle, Express automatically
generates a Base class and a customizable class for every business class. This feature is
useful in situations where you know you will be customizing many business classes,
because it will be faster to generate all the customizable classes up front, and then simply
delete all the customizations on the classes that you do not intend to customize. Note that
to delete the class customizations, you must use the Customization Manager, described in
“Deleting Customizations” on page 62.

Alternatively, if you do not turn on this toggle, you create a customizable class by selecting
the Component > Customize… command for each business class you wish to customize.
Express must regenerate the business model the first time you add a customization on a
class. Thus, if you plan to customize most of your business classes, it is recommended that
you turn on the Always Generate Custom Classes toggle.

Business Class Properties
You access the Business Class Properties dialog by double-clicking a class in the model.

Figure 17 Class Properties Dialog
Customizing Forte Express Applications

Workshop Properties and Generated Classes 45
The following properties are set in the Business Class Properties dialog.

Class Name The class name becomes the prefix for the name of the generated class (for
example, CustomerOrderQuery).

Database Table The database table name is generated into the GetTableName method of
the business_classBaseQuery class (CustomerOrderBaseQuery) to specify which database
table the business class is based on.

Send Only Changed Fields on Update This property determines the value of the
UpdatedClass attribute on the business_classBaseQuery (for example,
CustomerOrderBaseQuery) class. When the Update method on the BusinessClient class is
invoked and the Send Only Changed Fields on Update property is turned off, the
UpdatedClass attribute will be set to the BusinessClass object being updated. Otherwise,
the attribute is NIL. The Update method determines whether or not to set the
UpdatedClass attribute by invoking the SendClassOnUpdate method on the BusinessQuery
class. The SendClassOnUpdate method by default returns FALSE. When the Send Only
Changed Fields on Update property is turned off, Express generates a SendClassOnUpdate
method that returns TRUE.

In the Tutorial example, the Send Only Changed Fields on Update property is on. This
means that in an CustomerOrderMgr customization, for example, you will be able to
inspect the query to be executed (the CustomerOrderQuery object), but you will not be
able to see the CustomerOrderClass object and its values that were used to construct the
query.

Association Properties
You access the Association Properties dialog by double-clicking on an association in the
model.

Figure 18 Association Properties Dialog

Associations affect what other BusinessMgr objects a given BusinessMgr can reference (by
way of its ForeignMgrs attribute).

Association Name The name of the association becomes the name of the attribute on
the generated TOOL class. For example, in the Tutorial business model there is an
association called Customer drawn from the CustomerOrder business class to the
Customer business class. The generated CustomerOrder class has an attribute called
Customer of type CustomerClass. See A Guide to Forte Express for information about how
Express uses the Direction property to determine on which class to generate the attribute.

Direction The direction of an association determines which class is the From
(referencing) class, and which class is the To (referenced) class. The From class will have an
attribute that references the To class. In the example above, CustomerOrder is the From
class; Customer is the To class. As a result, the Customer attribute is generated on the
CustomerOrder class.
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes46
Aggregation If the Aggregation property is set, then the BusinessMgr of the aggregate
class invokes methods on the BusinessMgr of the component class. For example, because
there is an aggregate relationship between CustomerOrder and LineItem, the LineItemMgr
will be invoked by the CustomerOrderMgr to update data in the LineItem table, while other
objects will not interact directly with the LineItemMgr.

Multiplicity The Multiplicity property controls whether the reference from one class to
another is simple (one-to-one, many-to-one), or an array of references (one-to-many). A
many-to-one setting indicates that there can be many references to the same object. For
example, the association from CustomerOrder to Customer is many-to-one; therefore, the
Customer attribute on CustomerOrder is a simple object. Conversely, the association
between CustomerOrder and LineItem is one to many; therefore, the LineItem attribute on
CustomerOrder is an array of references.

From/To Attributes Specifies the columns used to construct joins between tables.

Attribute Properties
You access the Attribute Properties dialog by double-clicking a class’s attribute in the
model.

Figure 19 Attribute Properties Dialog

The following properties are set in the Attribute Properties dialog.

Attribute Name The value for Attribute Name becomes the name of an attribute on the
generated BusinessClass object. For example, CustomerClass has the following attributes:
Name, Address, Phone, and CustomerNumber.

Key If an attribute is marked as a key, then Forte Express generates statements for that
attribute into the SetKey method on the business_classBaseClass. These statements
populate the Values attribute on the BusinessKey object.

Domain The domain will be the data type for the attribute in the generated
business_classBaseClass.

Field Width The Field Width value is the width of the field on the generated window.

Field Title The Field Title text is the field label on a generated form window.

Column Heading The Column Heading text is the column label on a generated array or
outline window.

Database Column The database column name is generated into the GetColumnName
method on the business_classBaseQuery class to specify which database column the
attribute is associated with.

Custom This property determines whether the attribute is mapped to a database column.
If the Custom toggle is selected, then the attribute will not be part of any queries.

Service Properties
The Service Properties dialog has three tab pages: General, Database, and Connection. You
access the Service Properties dialog with the Component > New > Service command.
Customizing Forte Express Applications

Workshop Properties and Generated Classes 47
By default, the general properties tab page appears, shown in Figure 20.

Figure 20 Service Properties Dialog—General Page

Service Name The generated DBSession service object and TOOL service object names
are based on the Service Name property. For example, for the Tutorial service, Express
generates TutorialDBSession and TutorialService.

Concurrency The value for the Concurrency property is generated into the Setup method
of the business_classBaseServiceMgr (TutorialBaseServiceMgr), where it is used to initialize
values in the ServiceConcurrency object referenced by the ServiceMgr.

The value of the concurrency property also controls whether before images of the
BusinessClass objects being updated are sent to the server when the Update method on the
BusinessClient class is invoked. If the Concurrency property is Optimistic: Verify, then a
copy of the business class before any changes were made (the before image) is stored in the
OriginalClass attribute of the BusinessQuery class. Otherwise, the OriginalClass attribute is
NIL.

When the Concurrency property is Optimistic: Verify, the Update method of the
BusinessDBMgr class uses the OriginalClass attribute to add constraints to the query being
run. A constraint is added for each database attribute that is not a LongTextDomain, or any
subclass of LongTextDomain. The constraints will cause the query to succeed only if the
values of all columns in the database when the update is performed match the values they
had when the row that was used to create the BusinessClass object was selected. Database
columns used for TextData attributes, or any subclass of TextData such as TextDomain, will
have trailing blanks removed before a comparison is made with the BusinessClass attribute
(note that the BusinessClass attribute had any trailing blanks removed when it was set).
Database columns used for DoubleData attributes, or any subclass of DoubleData, such as
DoubleDomain, will be compared for equality within 12 digits of precision.

Visibility The value for the Visibility property is generated into the TOOL service object
based on the business_modelServiceMgr class (TutorialService).

Dialog Duration The value for the Dialog Duration property is generated into the TOOL
service object based on the business_modelServiceMgr class (TutorialService).

The database properties tab page is shown in Figure 21.

Figure 21 Service Properties Dialog—Database Page

Database Manager The value for the Database Manager property is generated into the
DBSession service object (TutorialDBService) that is generated for each Express service.

Database Name The value for the Database Name property is generated into the
DBSession service object (TutorialDBService) that is generated for each Express service.
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes48
User Name The value for the User Name property is generated into the DBSession service
object (TutorialDBService) that is generated for each Express service.

User Password The value for the Password property is generated into the DBSession
service object (TutorialDBService) that is generated for each Express service.

The connection properties tab page, shown in Figure 22, allows you to specify options that
are processed when the connection to the database is established.

Figure 22 Service Properties Dialog—Connection Page

Option Name The name of the option to be processed when the connection to the
database is established. Clicking the New button activates a selection list of options. For a
list of available options, refer to the ConnectDB method on the DBResourceMgr class in
the Accessing Databases manual.

Value A value appropriate to the specified option.

Application Model Workshop
The TOOL classes derived from a business model will always have one attribute for each
attribute specified in the business class, plus an attribute for each association that points to
another class. All these attributes will be present in instances of the business class.

However, the attributes that are set by the query are determined by which attributes are
displayed as fields in a generated window. In the Application Model Workshop, you have
the following options regarding the display of attributes:

■ display the attribute

■ display the attribute as read only

■ do not display the attribute

The first two options will always result in a field on the generated window. If you need to
use an attribute in a query, but do not want it displayed on the window, see the
Customization Manager Help example, “Selecting a Table Column Not Displayed on
Window,” which is listed in “Application Model Customization Examples” on page 69. To
see this example in context, see the Express example CustomQueryApp; in the
CustomQueryAppWindows project, look for the GetRecordTemplate method in the
CustomerWindow class.

Application Model Properties
The application model properties are specified in the Application Model Properties dialog,
shown in Figure 23, below.

Figure 23 Application Model Properties Dialog
Customizing Forte Express Applications

Workshop Properties and Generated Classes 49
The window specified in the Start Window property is generated into the StartMethod
method of the generated project.

Generated Preferences
You set default behavior for generated windows with the Generated Preferences dialog
(shown in Figure 24). which you access with the File > Generated Preferences command.

Figure 24 Generated Preferences Dialog

The settings you specify in the Generated Preference dialog are the values of the
Preferences attributes in the ApplicationBroker object. Forte Express generates the initial
values for the attribute as assignment statements in the appl_modelBaseBroker’s Init
method (for example, TutorialAppBaseBroker.Init).

Custom Generation Options
You set custom options for generating client code with the Custom Generation Options
dialog, shown in Figure 25

Figure 25 Custom Generation Options Dialog

The Superclass Prefix for Global Customization field in the Custom Generation Options
dialog specifies the prefix used by the superclasses for the classes generated from the
application model. By default, this prefix is “Express,” which is the prefix used by the
ExpressWindows project. You must change this value if you customize classes from the
ExpressWindows project in another. Note that you must include the project as a supplier to
the application model. See “Global Customization” on page 111.

Always Generate Custom
Classes toggle

When you turn on the Always Generate Custom Classes toggle, Express automatically
generates a Base class and a customizable class for every window class. This feature is
useful in situations where you know you will be customizing many window classes,
because it will be faster to generate all the customizable classes up front, and then simply
delete all the customizations on the classes that you do not intend to customize. Note that
to delete the class customizations, you must use the Customization Manager, described in
“Deleting Customizations” on page 62.

Alternatively, if you do not turn on this toggle, you create a customizable class by selecting
the Component > Customize… command for each window class you wish to customize.
Express must regenerate the application model the first time you add a customization on a
class. Thus, if you plan to customize most of your window classes, it is recommended that
you turn on the Always Generate Custom Classes toggle.
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes50
BusinessClass Window Properties
Double-click on a BusinessClass window in the drawing area of the Application Model
Workshop to access its property sheet, shown in Figure 26, below.

Figure 26 Business Class Window Properties Dialog

Window Name Forte Express appends “Window” to the Window Name value. This name
is the name of the generated window class and appears in the title bar of the generated
window.

Layout of Fields Forte Express uses the value of the Layout of Fields property to
determine which class will be the superclass of the generated business_classWindow (or, if
customized, business_classBaseWindow) class (for example,
CUSTOMERORDERBaseWindow). The superclass is determined as follows:

Direction The value for the Direction property affects the generated classes only if the
Layout of Fields property is Form. A setting of Down generates fields below the previous
field and a setting of Across generates fields to the right of the previous field.

Wrap The value for the Wrap property affects the generated classes only if the Layout of
Fields property is Form. The specified number tells Forte Express how many fields to
generate before starting a new row or column of fields.

Default Interface The Default Interface property affects the type of interface commands
generated onto the window and displayed at runtime. If the Default interface is set to Menu
and Toolbar, then Forte Express generates two attributes in the CommandMgr object:
MenuSet, which points to a MenuSetDesc object, and ToolbarSet, which points to a
ToolBarSetDesc object, and displays a menu and toolbar on the window at runtime.

Note that this property is overridden at runtime if the Adaptive Command Interface
property is set.

Command Set The Command Set property determines which of the commands are
generated onto the window. The Default Interface property determines how those
commands appear to the user.

Layout of Fields Value Superclass

Form ExpressFormWindow

Array ExpressArrayWindow

Outline ExpressOutlineWindow

Command Set Generated Commands

All Commands that allow both search and update of records (includes scrolling commands).

Search Commands that allow a user to retrieve records (includes scrolling commands).

Multiple Record Edit Commands that allow update of multiple records (includes scrolling commands).
Customizing Forte Express Applications

Workshop Properties and Generated Classes 51
Note that this property is ignored if the Adaptive Command Interface property is set.

Adaptive Command Interface The Adaptive Command Interface property determines
whether the Default Interface and Command Set properties are used to restrict which
commands are generated onto the window, when the window is called from another
Express window, and whether the calling window has control over what commands the
window displays. If the Adaptive Command Interface property is set, then the
CommandSet and CommandInterface attributes in the LinkInfo object are set by a
combination of factors in the business model and Link Properties dialog that indicate the
appropriate command set and interface. Otherwise, those attributes are determined by the
Default Interface and Command Set properties in the Link Properties dialog.

Link Properties
Double-click on a link in the drawing area of the Application Model Workshop to access its
property sheet, shown in Figure 27, below.

Figure 27 Link Properties Dialog

Type The Type property determines what widgets Express generates onto a window, and
also what link methods are generated into the business_classBaseWindow class. The table
lists the widgets associated with each link and the generated link methods. See the Forte
online Help for descriptions of the generated methods.

Single Record Edit Commands that allow update of a single record.

Multiple Record View Commands that allow users to view of multiple records (includes scrolling commands).

Single Record View Commands that allow users to view a single record.

Link Widgets Generated Methods

Command Push button CommandLinKTolink_nameLink#

Drilldown none DrillDownLink

Folder FolderTab InitFolderlink_nameLink#

Lookup Push button LookupLinkTolink_nameLink#

Nested Placeholder panel InitNestedLinklink_nameLink#

Command Set Generated Commands
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes52
Display Controls which records to display in the generated window. Also affects the code
in the generated methods, such as CommandLinkTo, and so on.

Association This property is used when there are multiple associations between business
classes to determine which association to use. The association affects the SQL statements
generated at runtime.

Pre-Fetch Dependent Records The Pre-Fetch Dependent Records property determines
how Forte Express selects detail data. Note that the Pre-Fetch Dependent Records property
is available only for a window class that is based on a business class that is a “from-class” in
a business model. The following table describes how Forte Express retrieves detail data
depending on the status of the Pre-Fetch Dependent Records property:

Called Window

Mode status The mode status setting determines if the end user must exit the called
window before he or she can access other windows in their application. The Mode status
property determines the value of the LinkStyle attribute on the LinkInfo class.

Read status The Read status property determines the value of the IsReadOnlyResultSet
attribute in the LinkInfo object.

Pre-Fetch Dependent Record Property Express Behavior

Not settable There is no attribute in the calling window in which to save the detail
data, so Forte Express reselects detail records each time the user scrolls
to another master record. Express reselects the data even if the user
scrolls to a record whose detail data has already been retrieved.

Available, but not on Each time the user scrolls to a new master record, Forte Express passes
a business_classBaseQuery object to execute the query based on the
criteria stored in the InitialSearch attribute in the LinkInfo object. The
records are retained on the client, and Express does not re-execute the
query each time the user scrolls to the same data for viewing.

On Forte Express selects all the detail records for each master record, and
passes the entire result set to the called window in the ResultSet
attribute in the LinkInfo object.

Mode Status Setting LinkStyle Attribute Value

Modal WS_MODAL

Modeless WS_MODELESS

Read Status Setting IsReadOnlyResultSet Attribute Value

Read/Write FALSE

Read Only TRUE
Customizing Forte Express Applications

Workshop Properties and Generated Classes 53
Callout Properties
You access callout properties with the Component > New > Callout command, which
displays the New Callout dialog:

Selecting any type of callout and clicking OK brings up the Callout Properties dialog, shown
in Figure 28.

Figure 28 Callout Properties Dialog

Name For a Custom or “Call Project” callout, the Name property will become the name of
the method generated for the link to the callout. For a “Launch Applet” callout, it will be
the name of the applet.

TOOL Code The TOOL code you enter will become the code in the command link
method in the generated read-only window class of the window that invokes the callout
(the read-only class is business_classWindow if there are no customizations,
business_classBaseWindow if there are).
Chapter 1Express Application Architecture

Workshop Properties and Generated Classes54
Customizing Forte Express Applications

Chapter 2
Customizing Express Applications
In general, you customize an application by using the Customization Manager. The
Customization Manager provides a set of common customizations

Topics covered in this chapter include:

■ using the Customization Manager

■ creating customizable classes

■ deleting customizations and customizable classes

■ online customization examples

■ customizing generated window classes

■ adding business rules to a client

■ manipulating result sets

■ customizing queries

■ global customizations

Note that the examples and illustrations in this chapter use the example created in A Guide
to Forte Express, and make references to the class and model names used there. Also, this
chapter assumes some familiarity with Chapter 1, “Express Application Architecture.”

Overview56
Overview
Read this overview to learn some basic facts about customizing Express applications.
Before making Express customizations, make sure that the behavior you want cannot be
accomplished by simply setting options within the Application or Business Model
Workshop and regenerating.

General Considerations
The following are suggestions you should take into consideration before you begin your
customizations.

■ Use the Customization Manager (see “Customizing With the Customization Manager”
on page 59) if possible, rather than create customizations directly in generated projects.

■ You can choose to customize specific classes, or make customizations to your
application as a whole by modifying classes that are not represented in the model (for
example, applicationNameBroker or applicationNameServiceMgr).

■ Always try to make your customizations in such a way that they continue to work after
you later make changes to and regenerate your application model. For example, if you
change your Layout of Fields property from Outline to Array, you want your
customizations to continue to work.

■ Before customizing, first try to add and remove components from generated windows
by changing window and link properties in the Application Model Workshop. If you
cannot achieve what you need to in the workshop, see “Setting Widget State” on
page 76.

■ When adding a field to a generated window, remember to use “new()” to create it in the
Init method and to call super.Init in the Init method.

■ It is best not to create new classes in projects generated by Express. Try to keep to only
generated classes in these projects (you can of course customize these classes—just do
not add new ones).

■ Decide whether you need to customize a few classes or many. Your decision will
determine whether or not to turn on the Always Generate Custom Classes toggle. When
turned on, Express automatically generates a “Base” class and a leaf-level
(customizable) class for each business or window class in the model. The downside is
that you have to delete any unwanted customizable classes one by one, using the
Customization Manager.

Creating Customizable Classes
Express generates class components into the leaf-level classes, which are not customizable.
This creates the minimum number of classes required by the application, and therefore the
smallest image size for deployed applications. To customize an application requires that
you first create customizable classes. You do this either by creating individual customizable
classes with the Customization Manager, or by creating customizable classes for all
components in the model using the Always Generate Custom Classes option on the
Custom Generation Options dialog.
Customizing Forte Express Applications

Overview 57
When you create customizable classes—whether a single class or one for every class in the
model—Express automatically expands the class hierarchy, creating a Base class above the
leaf-level class. All the components that were generated into the leaf-level class are moved
to the Base class, leaving the leaf-level class free for customizations. The Base class is
renamed to business_classBaseClass (or appl_modelBaseWindow), and the new,
customizable class is named business_classClass (or appl_modelWindow). Figure 29
illustrates this principle.

Figure 29 Naming Conventions Before and After Creating Customizable Classes

If you decide you do not want the customizable class, you delete it using the Customization
Manager (see “Deleting Customizations” on page 62). This collapses the three-class
hierarchy back into the two-class hierarchy and renames the read-only Base class to its
original name.

Creating a Single Customizable Class
The Customization Manager allows you to customize individual classes. When you invoke
the Customization Manager for the first time on a specific class, Express automatically
expands the class hierarchy for the particular class, as shown in Figure 29. For more
information, see “Customizing With the Customization Manager” on page 59.

Creating Customizable Classes for All Classes
If you know you will be customizing many classes, it might be more convenient to generate
the hierarchy at the onset of your development cycle. You do this by setting the Always
Generate Custom Classes toggle in the Custom Generation Options dialog. When set, this
option tells Express to automatically create the full hierarchy for every business or window
class in your model. When you use this option, note:

■ Turning it on turns it on for all the classes in the model (business classes in the business
model or window classes in the application model, depending on where you set the
option); it can then only be turned off by deleting all the customizations on each class
using the Customization Manager. You should not delete the individual classes in the
generated project.

In other words, you create customizable classes for all business or window classes in the
model with one step, but you must remove individual customizable classes separately.

■ Turning it off will only affect new classes created from the time you turned it off,
resulting in some Base classes having “Base” in their names and some not.

ExpressClass (read-only)

MyClass (read-only)

ExpressClass (read-only)

MyClass (customizable)

MyBaseClass (read-only)

Before: After:

renamed class

new class
Chapter 2Customizing Express Applications

Overview58
� To create customizable subclasses for every business or window class in your model:

1 In the Business Model or Application Model workshop (depending on where the classes
are that you want to customize), choose the File > Custom Generation Options…
command.

The Custom Generation Options dialog appears.:

2 Turn on the Always Generate Custom Classes toggle.

This toggle causes Express to generate customizable leaf-level classes for every class in
the business or application model.

3 Click OK.

4 Generate code.

In the Business Model, choose the File > Generate Server Code command.

In the Application Model, choose the File > Generate Client Code command.

See “Deleting Customizations” on page 62, for information on deleting customizable
classes.
Customizing Forte Express Applications

Customizing With the Customization Manager 59
Customizing With the Customization Manager
The Customization Manager assists you in customizing your Express applications. When
you start the Customization Manager on a class, you are presented with a list of common
customizations. When you double-click on one of the customizations, the Customization
Manager automatically opens a Method Workshop window, displaying the appropriate
method where you will place your customization code, as shown in Figure 30. The initial
method code contains documentation of the method parameters and return code, and, if
required, a super.method statement and a return statement.

Figure 30 Customization Manager Opening the Appropriate Method Workshop

In addition to locating your customization code for you, the Customization Manager has
online help associated with each customization, including example code, and in many
cases several related examples. which you can copy and paste into the Method Workshop to
give you a start on your customization code. You can access on help by pressing the Help
button while a customization is selected, as shown in Figure 31.

Double-clicking the customization
opens the Method Workshop for the item

Information about the
method
Chapter 2Customizing Express Applications

Customizing With the Customization Manager60
Figure 31 Customization Manager’s Help on a Customization Topic

A comprehensive list of examples available from the Customization Manager is provided in
“A Roadmap to Customization Examples” on page 67.

You also use the Customization Manager to delete customizations. You can delete specific
customizations, or entire subclasses. (You delete a subclass by deleting all its
customizations, an operation that deletes the subclass, renames the Base class, and
collapses the hierarchy to the “Before” structure in Figure 29 on page 57.) You can also
delete window customizations, reverting back to the original window while preserving the
rest of the window class’s customizations.

The following sections describe how to use the Customization Manager.

Using the Customization Manager
You use the Customization Manager to customize specific classes in your model. Any
instructions for using the Customization Manager apply to both the Business Model and
Application Model Workshops.

When you start the Customization Manager for a read-only class, a customizable subclass
is created for the class. Figure 29 on page 57 shows the naming conventions for the new
class hierarchy.

Selecting the customization

opens the Help text for the item

Help text includes descriptions
and examples

and clicking on the Help button
Customizing Forte Express Applications

Customizing With the Customization Manager 61
� To customize a class using the Customization Manager:

1 Select the window class or business class you wish to customize.

2 Choose the Component > Customize… command.

The Customization Manager appears.

3 Click the arrow to the left of the categories to view specific customizations.

4 (Optional) Select the customization you wish to perform and press the Help key.

A help screen appears as shown in Figure 31 on page 60. If you like, you can copy the
code into the clipboard before you open the Method Workshop. For a complete
description of the examples available through Customization Manager Help, see
“Customization Manager Help Files” on page 67.

5 Double-click the specific customization you wish to make.

If this is the first customization you are making to this class, Express displays the
following dialog:

6 Click OK.
Chapter 2Customizing Express Applications

Customizing With the Customization Manager62
Express automatically expands the class hierarchy to include a customizable class for
the selected window or business class, and the Method Workshop opens, displaying an
override of the appropriate method.

7 If you have copied code from the online help, you can paste it into the Method
Workshop.

Make sure you remove the default call to super.methodname, as the help example code
already includes it. Make any changes or additions required for your specific
customization needs.

8 Choose the File > Compile command to compile the method, which determines
whether there are errors.

9 (Optional) Return to Step 3 and add more customizations to the class.

10 Close the Method Workshop and the Customization Manager window.

Customization Manager
is non-modal

Note that the Customization Manager window is not modal. In other words, you can view
customization information about a class, leave the window open and select another
window or business class, and the Customization Manager will display the appropriate
information for the newly selected class.

Deleting Customizations
You can use the Customization Manager to delete specific customizations or to delete all
customizations in a class. If you delete all customizations, the Customization Manager
deletes the customizable class, renames the Base class to its original name, and collapses
the class hierarchy (see the “Before” structure in Figure 29 on page 57).

Note If you toggled the Always Generate Custom Classes toggle on in the Custom Generation
Options dialog to generate a complete hierarchy of customizable classes, you must toggle it
off before deleting any classes.
Customizing Forte Express Applications

Customizing With the Customization Manager 63
Deleting Specific Customizations
You can tell that a method has been customized by the method symbol next to the
customization, as shown below:

Figure 32 A Select Customization Exists

Note Several of the customizations map to the same method. If you customize a method that is
mapped to multiple customizations, the symbol will appear beside both customizations.
For example, two customizations in the Application Model (Window/Set Generated
Window State and Window/Set Displayed Search Criteria) both map to the
ClearFieldsForSearch method. If you create one of these customizations, the symbol
appears on the other, as well. In fact, if you create a ClearFieldsForSearch method outside
the Customization Manager, the symbol will appear beside both these customizations.
When you delete the customization you implemented, the symbol disappears in all
locations.

� To delete a customization:

1 Select the class that contains the customization and choose Component > Customize….

The Customization Manager appears.

2 Select the customization you wish to delete and click the Delete button.

The Delete Customization dialog appears.

3 Turn on the Delete Selected Customization toggle and click OK.

Express deletes the selected customization.

A customization
was made here
Chapter 2Customizing Express Applications

Customizing With the Customization Manager64
Deleting a Class
When you delete all customizations for a class, Express removes any customizations in the
leaf-level class, moves the class components from the leaf class to the Base class, removes
the leaf class, and renames the Base class to its original name.

Note that each time you Delete All Customizations, Express regenerates the model. If you
plan to delete several classes in a model by deleting all customizations to those classes, you
can defer the model regeneration until you specifically request it.

� To delete all customizations (entire class):

1 If the Always Generate Custom Classes toggle is turned on, turn it off.

If this option is left on, you will recreate any classes you delete the next time you
generate code. Access this toggle by choosing the File > Custom Generation Options…
command.

2 Select the class you wish to delete and choose Component > Customize…

The Customization Manager appears.

3 Click the Delete button.

The Delete Customization dialog appears, with only the Delete All Customizations
toggle active.

4 Click OK.

The following dialog appears.

5 Click Defer or Generate Now, depending on whether you have more classes to delete
(Defer) or not (Generate Now).

See the next section for information on deferring generation.

When you choose Generate Now, Express removes any customizations (if any) in the
leaf-level class, and returns the class hierarchy to its original “Before” structure shown
in Figure 29 on page 57.
Customizing Forte Express Applications

Customizing With the Customization Manager 65
Deferred Deletion of Customizations
Each time you delete All Customizations for a class, Express automatically regenerates the
model. If you plan to delete all customizations in multiple classes, you can use the Defer
button in the Delete Customization dialog to defer regeneration of the model until you
explicitly choose to regenerate. For example, say you wish to delete all customizations for
three business classes. For the first two classes, choose the Defer button in the
confirmation dialog. When you delete all customizations for the third class, choose the OK
button. This will automatically cause Express to regenerate the model. Alternatively, you
can also choose the File > Generate (Client/Server) Code command. Note that if you exit
the workshop without regenerating the model, the customizations will not be deleted, and
you will be prompted as a reminder that the Delete All Customizations that you specified
will not occur.

� To delete all customizations and defer the deletion:

1 Perform steps 1 - 4 above.

2 Click the Defer button.

Note You must regenerate the model before leaving the Business/Application Model
Workshop or the class(s) will not be deleted.

Deleting Window and Menu Customizations
You make window and menu customizations in the Window and Menu Workshops,
respectively. Express can automatically delete window and menu customizations, while
preserving other types of customizations.

� To delete a window or menu customization:

1 Select the window class whose window or menu customizations you wish to delete and
choose the Component > Customize… command.

The Customization Manager appears.

2 Select Window Workshop (or Menu Workshop) and click the Delete button.

The Delete Customization dialog appears.

3 Turn on the Delete Selected Customization toggle and click OK.

Express deletes the all window (or menu) customizations.

Note You can only delete window or menu customizations using the Customization Manager.
Chapter 2Customizing Express Applications

Customizing With the Customization Manager66
Application-Wide Customizations
The Customization Managers for both the Business Model and Application Model
Workshops have a customization category of “Application.” Application customizations are
customizations that affect the application as a whole, rather than a specific window or
business class in the model, such as Exit and Start.

Deleting application
customizations

When you delete all customizations for a business or window class, application
customizations are not deleted. You must select each application customization specifically
and then delete it.
Customizing Forte Express Applications

A Roadmap to Customization Examples 67
A Roadmap to Customization Examples
Forte Express provides many customization examples and tools to help you customize your
application. These are provided either in printed form (in this chapter) or are accessible
through the Customization Manager online Help. The longer examples are both online and
printed in this chapter.

Customization examples fall into these categories:

■ Customization Manager Help files—online only

A complete list is provided in “Business Model Customization Examples” on page 68
and “Application Model Customization Examples” on page 69.

■ complex examples—both online and in this chapter

A complete list is provided in “Complex Examples” on page 71.

■ customization techniques—in this chapter

Use the Table of Contents in this manual to help locate the sections in this chapter that
describe the type of customization you wish to make.

■ example Express Applications—shipped with Express

For a complete description of these example applications, see Appendix A, “Forte
Express Example Applications.”

Customization Manager Help Files
Using the Customization Manager is fully described in the previous section, “Customizing
With the Customization Manager” on page 59.

At any point while you are using the Customization Manager, you can press the Help key to
display online information about the currently selected customization.

Figure 33 Customization Manager Help—Application Model Workshop

There is example code for most customizations, which you can copy and paste into the
Method Workshop to give you a start on your customization code. If you paste example
code into the Method Workshop, be sure to delete the default override of super.method, as
that method invocation also appears in the example code.

You can also access these item-specific customization examples directly by their titles on
the List of Examples in the top Customization Manager window (when you first open it and
nothing is selected), or by the List of Examples link on every Help topic page. Complex
examples (see “Complex Examples” on page 71) are included in the list.

Select customization

Click Help button
Chapter 2Customizing Express Applications

A Roadmap to Customization Examples68
Business Model Customization Examples
The table below lists all Help examples available from the Customization Manager when
you access it from the Business Model Workshop.

Customization Section Customization Example Title

Queries Generate New Key Value Creating a New Key for a BusinessClass Object

Select Adding a Restriction to a Select Query

Examining a Select Query

Insert/Update/Delete Validating an Attribute

Validating a Record

Substituting an Update for a Delete

Insert/Update/Delete Adding a Customer Number to a Record Without
Displaying It

Query Text Select Dump Select Queries if Log Flags are Set

Check If Query Contains a Where Clause

Insert/Update/Delete Writing Generated SQL to a Log File

Application Before Select Checking for Queries on a Particular Business Class

After Select Setting the Value of a Derived Field

Before Update Checking for Inserts on a Particular Table

After Update Auditing Modified Values
Customizing Forte Express Applications

A Roadmap to Customization Examples 69
Application Model Customization Examples
The table below lists all Help examples available from the Customization Manager when
you access it from the Application Model Workshop.

Customization Section Customization Example Title

Window After Command Link After Exiting a Window Called by a Command Link

After DrillDown Link After Exiting a Window Called by a DrillDown Link

After Folder Link After a Folder Window Is Initialized

After Lookup Link After Exiting a Window Called by a Lookup Link

After Modeless Command
Link to <name> Open

After a Modeless Window to a Command Link Opens

After Modeless DrillDown
Link to <name> Open

Saving a Reference to a Modeless Window

After Nested Link After a Nested Window Is Initialized

Before Command Link Before Invoking a Window Called by a Command Link

Before DrillDown Link Before Invoking a Window Called by a DrillDown Link

Before Folder Link Before a Folder Window Is Initialized

Before Lookup Link Before Invoking a Window Called by a Lookup Link

Before Nested Link Before a Nested Window Is Initialized

Close Closing the Current Window

Event Handler Handling Mouse Clicking Events

Updating Records in Event Code

Handling Row Exit Events

Folder Tab Selected When a Folder Tab Is Selected

Modify Tab Sequence Adding a Field to the End of a Tab Sequence

Adding a Field on a Nested Window to a Tab Sequence

Adding a Field to the Middle of a Tab Sequence

Modify Tab Sequence Adding a Field to the Start of a Tab Sequence

Removing a Field from a Tab Sequence

Restrict Initial Search Restricting Search Criteria From a Calling Window

Restrict User Search Restricting Search Criteria From a User

Set Displayed Search
Criteria

Setting Displayed Search Criteria

Set Generated Widget
State

Setting a Generated Widget State
Chapter 2Customizing Express Applications

A Roadmap to Customization Examples70
Window Initialize After Window is Open Setting a Window to Search or Edit Mode

Before Window is Visible After a Window is Initialized but Before It is Visible

Changing a Window’s Title

Before Window is Open Restricting a Window’s Initialization Query

Setting a Window’s Initial Query to Select All Records

Initializing as Folder Customization Called Only When Window is a Folder

Initializing as Modal Positioning a Modal Window

Initializing as Modeless Customization Called Only When Window is Modeless

Initializing as Nested Checking If a Window Is Nested

Toolbar & Buttons Check Edit or Search
Mode

Checking Whether Edit or Search Mode Was Selected

Delete Record from Result
Set

When Deleting a Row from a Result Set

Insert Record into Result
Set

When Inserting a Row into a Result Set

Save Checking for User Changes Before a Save

Validating Data Before a Save

Search Adding Processing Before/After Search

Window Data Add Records to Save Adding Related Records to a Result Set Before a Save

Create New myClassClass Customizing New BusinessClass Objects

Field Value Changed Calculating a Derived Field

Posting an Event on a Changed Field Value

Record Displayed Customizing Events Based on Displayed Records

Display Current Record Printing a Message on a Record Select

Executing a Query on a Record Select

Select Not-Displayed Table
Column

Selecting a Table Column Not Displayed on Window

Set Values in New Record Setting Default Values in Newly Inserted Records

Inserting a Record into a Result Set

Validate Fields Validating Fields

Validating Domains

Validating a Lookup in an Array Field

Validate Records Validating Records

Checking That Data is Entered in Mandatory Fields

Validate Record -- Mark
Valid/Invalid

Validating Whether a Record Needs to Be Validated

Application Exit Customizing an Application at Exit

Start Using a Non-Express Window As a Login Window

Customization Section Customization Example Title
Customizing Forte Express Applications

A Roadmap to Customization Examples 71
Complex Examples
Several complex customization examples are available, both through the Customization
Manager’s online Help and printed in this chapter. These are listed in the following table

Syntax of Examples
The examples throughout this document and in the Express Help system are a mixture of
complete methods and code fragments from larger methods. The method name and
parameters that you are to specify in the Method Properties dialog are identified in this
manual as bolded text at the top of the code. In the Help text, a line above the code that
begins Overrides Method: identifies the method. Note that parameters are input
parameters unless otherwise stated. The example below illustrates a method definition in
bold, followed by method code:

Location in Customization Mgr See... Example Title

List of Examples page 94 Using an Express Window as a Login Window

Hot link on:
Window Data/Field Value Changed

page 96 Calculating a Derived Field From Nested Window Data

Hot link on:
Window Initialize/Before Window is
Visible

Window Data/Add Records to Save

page 99 Generating Records with Unique Sequence IDs

List of Examples page 99 Synchronizing Data in a Modeless Linked Window

List of Examples page 101 Customizing the Database Mapping of a Business Class

method myWindow.Search(query : BusinessQuery) :

 Array of BusinessClass

-- put Before-Search code here.

data : Array of BusinessClass =

 Super.Search(queryTree);

if (GetCurrentRecord().InstanceStatus < BusinessClass.ST_EMPTY)

then

 -- put After-Search code here.

end if;

return data;
Chapter 2Customizing Express Applications

Customizing Manually72
Customizing Manually
You can perform customizations that do not appear in the predefined list of common
customizations in the Customization Manager. To do so, open the project that contains the
class you wish to customize and then override the appropriate method or methods in that
class. However, before you can customize a class, the class hierarchy must include the
customizable leaf-level class. These are always classes whose superclass name contains the
word “Base.” As stated previously, these are not automatically generated by default. To
create customizable classes, see either “Creating a Single Customizable Class” on page 57
and “Creating Customizable Classes for All Classes” on page 57.

Customizable classes are never regenerated, so any changes you make to them will be
preserved. For window classes, if you modify the window associated with the class, then
those changes are merged into the customizable window according to the rules of window
inheritance (see A Guide to the Forte 4GL Workshops for information about window
inheritance).

The most common way to customize the behavior of an Express application is to override a
method in a superclass with TOOL code of your own.

Locating Where to Customize
Making customizations through the Customization Manager automatically locates them
where you want them. If none of the customizations provided by the Customization
Manager suit your needs, then this section will help you locate common places to add
customizations. If the type of customization you want to do is not covered here, follow
these suggestions:

■ Look through the runtime scenarios in Chapter 1, “Express Application Architecture.”. If
processing similar to what you need is covered, then you will probably see which
method you need to override.

■ Review the OMT class descriptions in Chapter 1, “Express Application Architecture.”
The interconnections between objects can be useful in figuring out where to make a
customization. The class descriptions following each class diagram can also be useful.

■ Run your application under the Debugger to just before where you want to change
behavior. Set “Post” and “When” breakpoints in the Debugger and continue execution
of your application. Step in from there until you locate the best method to override.

View inherited elements In addition, you can examine inherited class elements to help you determine what and
where to customize.

Overriding Methods in a Superclass
Whenever this document instructs you to override a method, you must include a call to the
method in the superclass (super.method) in your customized code. Omitting this call in
most cases will cause the overridden method to fail to perform properly. In rare cases, you
must not include a call to super.method—in these cases, the instructions will point this out
explicitly. Customizations provided by the Customization Manager create initial code for
the method that has a super.method method, if one is required.
Customizing Forte Express Applications

Customizing Manually 73
You override an existing method by creating a new method in the customizable class (for
example CUSTOMERORDERWindow) identical in name, parameters, and return values to
the method in the superclass (CUSTOMERODERBaseClass). Then, invoke the superclass
method (to access its functionality) and add your own custom TOOL code.

Drag and drop When you want to create a method in a subclass that overrides a method defined in a
superclass, drag the method from the Class Workshop for the superclass to the Class
Workshop for the subclass.

� To override a method:

1 Select the Inherited command from the View menu in the Class Workshop to help you
find which methods are defined in a superclass.

2 Use the Open SuperClass command from the File menu in the Class Workshop to locate
the superclass where the method is defined.

3 Drag-and-drop the method from the superclass to your customizable subclass.

This will create a method in the subclass with the correct name, parameters, and return
type.

4 Open the method in the subclass and delete all its code, replacing it with the single
statement:

For example, when overriding a method called Search, which has a parameter named
queryTree and returns a value, replace the code in the newly created subclass method
with the following statement:

5 Add your custom code in this overridden method.

If you were to override a superclass method by dragging the method into the subclass and
then modifying the code, you would not need to call super.method. However, do not
customize in this manner, because future versions of Forte Express may change the
implementation of the original method, causing your customized method to fail to compile
or to execute improperly. Your call to super.method encapsulates the method’s behavior,
making Express upgrades simpler.

Customized Event Handling
To handle events in your windows, use the Customization Manager’s Window/Event
Handler customization, which creates an event handler named CustomEvents. Do not try
to add event handling by creating an event loop in a Display method, as you would in a
non-Express window. When CustomEvents is present, Forte Express invokes this handler
the WindowEvents or NestedWindowEvents event handlers in the
business_classBaseWindow. Events in the CustomEvents handler will be added to the event
loop.

return super.method_name(parameter_list);

return super.Search(queryTree=queryTree);
Chapter 2Customizing Express Applications

Customizing Manually74
If your CustomEvents event handler registers for an event that the Express-generated
classes also register for, then your registration will override the Express registration (your
event is registered last, and according to the rules for event registration, the last registration
for a particular event takes effect). In general, Express will register for the following events
on the generated buttons, menu items and fields:

■ a Click event on all buttons

■ an Activate event on all menu items

■ an AfterValueChange event on all data fields

■ a ChildAfterFirstKeyStroke on the <DataGrid> grid field

■ an AfterRowValueChange and an AfterRowEntry on all array fields

■ an AfterCurrentNodeChange on all outline fields

If you also need to perform some operations within one of these events, then you will need
to look at the Express TOOL code for that event in the business_classBaseWindow or its
superclasses and find a method to override. Several of the examples in this chapter override
methods invoked in response to one of these events (for example, ValidateField,
FieldValueChanged, or AfterChildWindowChange).

Explicitly Posted Events
You may post and handle your own events in Express-generated windows, without
restriction. However, you should not try to handle events that Express posts—Express
needs to handle these. See“Calculating a Derived Field From Nested Window Data” on
page 96 for an example that posts events between windows.

Local and Global Customizations
Most customizations affect a particular class or window and are thus “local” in nature.
However, you may need to make some customizations that will affect all windows or
classes (for example, add a button or logo to all windows). The coding techniques for
making local and global customizations are similar, but special steps must be taken to
cause a change to affect all future generated windows or classes. These steps are described
in “Global Customization” on page 111.

Error Reporting
You can handle errors and raise exceptions in your customizations as you would in a non-
Express application (using the GetTextData method on the MsgCatalog class, the AddError
method on the ErrorMgr class, and so on). See the TOOL Reference Manual and Framework
Library and AppletSupport Library for more information.

You will see that classes in the ExpressServices and ExpressWindows projects make use of
an Error class defined in ExpressServices, but this class is not intended for you to customize
or subclass. Most uses of the Error class are in raise statements, like the following:

In the above example, the Error method creates an instance of the Error class.

-- Raise used by Express code, not intended for you to override.

raise Error(originator=self,

 error=Error.GEN_UNIMPLEMENTED).GetException;
Customizing Forte Express Applications

Customizing Manually 75
Internationalizing Express Windows
To internationalize an Express window, edit the customizable class’s window in the
Window Workshop (remember you can select the class, choose the Component >
Customize… command, and then double-click the Window Workshop category). In the
Properties dialogs for the window’s widgets, enter a message number for each piece of text
(you can specify a default message set number for the entire window on the window’s
Properties dialog). Each message number corresponds to a message in a message catalog
that you must supply with the translated text.

Express automatically invokes the ReloadLabelText method on the window just before the
window is opened to cause the appropriate message catalog to be used and the translated
message text to be displayed. If you wish to allow users to change the language a window
displays while the window is displayed, then you must invoke the ReloadLabelText method
in the appropriate place in your code. Express will not translate message text if no message
catalog exists for the current application—it will use the default text entered in the Window
Workshop. See the Forte 4GL Programming Guide for information about the
ReloadLabelText method.

The message catalog you build to translate the messages described above must also
contain the message text for built-in components on the generated window (components
defined in the ExpressWindows project). These messages are provided in a file in the
Express distribution. When you compile your message catalog, you must also compile in
the contents of message text file:

$FORTE_ROOT\userapp\express\cl#\message\winen_us.msg

This file contains message text in the message set 60100. The built-in Express messages can
be in your message catalog and will not conflict with any message numbers you create,
because message sets above 60000 are reserved for Forte (message set 60100 is used for
Express).

Whether a user-defined message catalog exists or not, Express will use its message catalog
to access status and error message text, as it did in Release 1 (the US English version of this
file is in: $FORTE_ROOT\install\nls\exmsg\en_us.cat).

For details about message catalogs and how to compile them, see Forte 4GL Programming
Guide.
Chapter 2Customizing Express Applications

Customization Techniques: Window Classes76
Customization Techniques: Window Classes
Forte Express provides a set of window commands and behavior as a result of your
specifications in the Application Model Workshop. However, there may be times when you
need to modify the generated behavior.

This section shows examples and describes coding techniques you should employ when
customizing window classes. In these examples, class names, window names, and attribute
names are used for illustration. You will need to change these to be appropriate for your
window class. Also, the “method” statements below should not be typed into the Method
Workshop, they are provided for your information.

Setting Widget State
Window widgets can be divided into three types:

■ built-in widgets defined in classes in the ExpressWindows project: menu items, buttons,
and grid fields

■ widgets generated onto the window, based on setting in the Application Model
Workshop

■ widgets added to the window as a window customization

Enabling, disabling, and other widget-state manipulations of these three types are
discussed in the following sections.

Built-in Widget States
The generated window classes contain a CommandMgr attribute, of type CommandMgr,
which controls the various built-in buttons and menu items that can appear on an Express-
generated window. Use this class to manipulate the built-in menu items, buttons, and so
on, on your generated windows. If a command appears both as a menu item and as a
button on the toolbar, then the CommandMgr class will automatically take care of them
both. See the discussion in “CommandMgr” on page 37 in Chapter 1, “Express Application
Architecture.”

Also note that the built-in menu items and controls present on your windows are affected
by the window and link properties you set in the Application Model Workshop. If you want
to remove a menu item or control and cannot do so in the Application Model Workshop,
then you may delete it from the generated window in the Window Workshop. You may add
your own built-in commands to all your windows as a global customization (see “Global
Customization” on page 111), or to a single window in the Window Workshop. However,
note that Express will not try to manage the state of your button. For example, the
CommandMgr class will not know about your menu items and controls; it will not disable
them when the user is in Search mode, and so on), so you must do this on your own.

The CommandMgr class defines constants that you should use to refer to the built-in menu
items and buttons you want to modify. The constants are named with a prefix of C_RS for
Result Set commands, and C_WC for Window commands.
Customizing Forte Express Applications

Customization Techniques: Window Classes 77
The following examples illustrate using the CommandMgr class to check built-in
component states:

Note that Express enables and disables commands as the user switches modes, so you may
need to hide a command in multiple overridden methods if you want it to stay hidden. If
you want a command to go away and never come back, use the RemoveCommand method
in the CommandSetDesc class.

Customized Widget States
The state of user-added (customized) widgets will not be modified by Express, so you can
control these widget states whenever and however you want. You can, for example, override
the PostOpenInit method and set the state of your widgets there. You may set the state
directly, or use the SetWidgetState method shown above—the advantage of SetWidgetState
method is that it will also set the widget color to match the Express generated fields in the
same state.

When adding window attributes, do not forget to use “new()” to create them in the
window’s Init method, and of course to call super.Init() there.

Finding the Focus Field
Use the GetFocusField method to access the field that currently has the input focus. This
method can be called from any window in an Express window (for example, even from a
nested or folder window). GetFocusField returns the same result whether it is called from
the outermost window or from a nested or folder window.

Determining If a User Has Changed Data
To determine if a user has changed data displayed in a window, use the IsResultSetModified
attribute on the window. For example:

Example: Disable the
Preferences Window
Command

CommandMgr.SetState(

 command = CommandMgr.C_WC_PREFERENCES,

 state = FALSE);

Example: Hide the Insert
button

CommandMgr.HideCommand(

 command = CommandMgr.C_RS_INSERT);

Example: Show (unHide) the
Insert button:

CommandMgr.ShowCommand(

 command = CommandMgr.C_RS_INSERT);

theFocusField : FieldWidget = GetFocusField();

if theFocusField <> NIL then

 -- focus field found

end if;

if self.IsResultSetModified = TRUE then

 -- user has changed data in this window

end if;

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: CUSTOMERORDERWindow • Method: Save
Chapter 2Customizing Express Applications

Customization Techniques: Window Classes78
Creating a New Instance
of a Business Class in a Window

You can customize your application to insert data into the result set, but rather than using
“new()” to create an object, you can use the NewObject method to create an object that is
initialized for the particular type of BusinessClass.

For example, if window CUSTOMERORDERWindow is based on class
CUSTOMERORDERClass, then create a new instance of CUSTOMERORDERClass using the
following code in a window method:

The new CUSTOMERORDERClass object would have references to the appropriate objects.
See “Providing Automatic Append on Insert in an Array Window” on page 106 for another
example of the NewObject method.

Working with an OutlineField
Forte Express generates four additional methods when a window contains an outline field
(you create an outline window in the Application Model Workshop by setting the Layout of
Fields property to Outline in a Business Class Window’s properties dialog):

■ GetCurrentDisplayNode

■ GetCurrentIndexNode

■ SetCurrentDisplayNode

■ SetCurrentIndexNode

These methods are provided to let you access the data currently being displayed in an
outline field. See the Forte online Help for information about these methods.

The following sections illustrate typical customizations you can make using these methods.

Getting the Currently Selected Display Node
In an Outline field that contains LINEITEMClass records, get the currently selected node
using the GetCurrentDisplayNode method. For example:

Getting the Currently Selected Outline Index Node
To access the object that has pointers to the current record and the current display node,
use the GetCurrentIndexNode method. For example:

Replacing the Currently Selected Display Node
In an Outline field that contains LINEITEMClass records, replace the currently selected
node with a new one using the SetCurrentDisplayNode method. For example:

Example: NewObject method record : BusinessClass = NewObject();

curINode : LINEITEMNode =

 GetCurrentDisplayNode();

curINode : OutlineIndexNode =

 GetCurrentIndexNode();

newNode : LINEITEMNode = new();

 ...

SetCurrentDisplayNode(node = newNode);
Customizing Forte Express Applications

Customization Techniques: Window Classes 79
Replacing the Currently Selected Outline Index Node
To replace the object that has pointers to the current record and the current display node,
use the SetCurrentIndexNode method. For example:

Using a Drilldown Link to a
Callout to Close an Outline Window

You can allow the user to close an outline window by double-clicking on a row. This is a
convenient way for the user to select data in an outline window and return it to the calling
window.

� To use a drilldown link to a callout from an outline window:

1 In your application model, create a custom callout called CloseWin.

2 Enter “FinishUp();” in the TOOL Code field.

3 Create a drilldown link from the outline window to this callout.

4 Regenerate your application.

The callout code will be placed in the DrillDownLink method on the outline window’s base
window, as shown below:

Getting Information Passed by the Parent Window
This section describes convenient methods you can use to access information passed to a
window by another (parent) window.

Getting Application-Specific Data
Use the GetAppData method to get the application-specific information passed to a
window by its calling window. Given a calling window that has a “Before Command Link”
customization, in which it passes an object of type CUSTOMERClass to the receiving
window as the application data, the receiving window can access that object using this
method:

newINode : OutLineIndexNode = new();

 ...

SetCurrentIndexNode(node = newINode);

PARTBaseWindow.DrillDownLink(data:Array of BusinessClass,

query:BusinessQuery, appData:Object): Array of BusinessClass

FinishUp();

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: PartBaseWindow • Method: DrillDownLink

cust : CUSTOMERClass = CUSTOMERClass(GetAppData());

if cust <> NIL then

 -- manipulate CUSTOMERClass object

end if;
Chapter 2Customizing Express Applications

Customization Techniques: Window Classes80
Getting the Initial Result Set
Use the GetInitialRecords method to get the initial result set passed to a window by its
calling window. For example, an initial result set, rather than a query, will be passed if two
windows both display records of type PARTClass, and in the Application Model, the Display
property of the link between the two windows is set to “All PART records displayed in the
calling window.” The called window can access that initial result set using
GetInitialRecords, for example:

Getting the Initial Query
Use the GetInitialSearch method to get the initial query passed to a window by its calling
window. For example, a query rather than a result set will be passed to a window if the
called window displays data associated with the current row in the calling window. The
called window can access that initial query using GetInitialSearch, for example:

Get Parent Current Record
Use the GetParentCurrentRecord method to access the current record in the parent
(calling) window. For example:

Get Parent Window
Use the GetParentWindow method to access the calling window’s UserWindow object. For
example:

initialResultSet : Array of PARTClass =

(Array of PARTClass)(GetInitialRecords());

if initialResultSet <> NIL then

 -- initial resultset was passed

end if;

initialSearch : BusinessQuery = GetInitialSearch();

if initialSearch <> NIL then

 -- initial query was passed

end if;

parentRec : BusinessClass = GetParentCurrentRecord();

if parentRec <> NIL then

 -- parent record is available

end if;

parentWin : ExpressClassWindow = GetParentWindow();

if parentWin <> NIL then

 -- parent window accessed

end if;
Customizing Forte Express Applications

Customization Techniques: Business Rules on the Client 81
Customization Techniques: Business Rules on the Client
Business rules are special data requirements that you want your application to enforce
automatically, or particular actions the application must perform based on the state of the
data. This section describes how to provide several types of data validation, as well as
calculate derived fields.

Window Validations
In general, client validation logic must be custom coded for each window. However, with
domains, most of the work can be coded one time only in each domain by creating a
Validate (or any other name of your choosing) method there and invoking that method
when a field validation is required (see the online example “Validating Fields” listed in
“Application Model Customization Examples” on page 69). For more information about
working with domains, see the online example “Validating Domains” listed in “Application
Model Customization Examples” on page 69.

Field Validation Sequence of Events
The generated BaseWindow defines a DataEvents event handler, which handles the
AfterValueChange event for every editable field in the window (see the Forte online Help
for information about the DataEvents event handler). Inside this AfterValueChange block,
the following occurs inside a HandleValueChange method (in order—note that the SetValue
method on the mapped field attribute has already occurred before this sequence begins):

■ a ValidateField method is invoked with a parameter to indicate the current field Id (see
“BusinessClass Attribute IDs (ATTR_)” on page 82). An empty version of the
ValidateField method is implemented in the ExpressClassWindow class; it is intended
that you override this method for each window, to contain a block for each field you
want to validate. Raise an exception if a validation error occurs.

■ a LogAttr method is invoked to note that the current business_classClass attribute value
has changed. See “Using the LogAttr Method” on page 83.

■ a SetValue method is invoked on the current field’s corresponding data item in the
current row of DisplayedResultSet. This sets the value in the result set to be the same as
the mapped data value in the window. This step is not done for array fields because the
array is already mapped directly to the data. The window attribute IsResultSetModified
is set to TRUE.

■ a FieldValueChanged method is invoked identically to the ValidateField method
described above. FieldValueChanged is also implemented as a hook in the
ExpressClassWindow class, and it is intended that you override it in your window
classes. At this point in the processing, you know that your field value is valid. Thus, you
can override the FieldValueChanged method to calculate values of other fields. See the
online example “Calculating a Derived Field” listed in “Application Model
Customization Examples” on page 69.

Other Business Rules
For other examples that add business rules to the client, see the following examples in the
table in “Application Model Customization Examples” on page 69:

■ Checking That Data is Entered in Mandatory Fields (Window Data/Validate Records)

■ Posting an Event on a Changed Field Value (Window Data/Field Value Changed)

■ Calculating a Derived Field From Nested Window Data (Window Data/Field Value
Changed)
Chapter 2Customizing Express Applications

Customization Techniques: Result Sets82
Customization Techniques: Result Sets
This section discusses a variety of customizations that allow you to change field values and
add or remove rows from a result set.

Business Class Record Status
Records in the query result set contain InstanceStatus attributes whose values indicate
what changes have been made to a record since it was loaded from the database. These
status values are used to determine which queries to run on behalf of a record at Save time.
The following constants, defined in the BusinessClass class, describe each numeric value
for InstanceStatus:

BusinessClass Attribute IDs (ATTR_)
Many methods require an integer parameter to indicate the attribute ID of the business
class. The attribute IDs for each business class attribute are generated as constants in class
business_classBaseQuery. The constants are named the same as the
business_classClass.attribute name, but with the prefix “ATTR_”. For example, the attribute
CUSTOMERClass.CUSTOMERNUMBER has a corresponding constant
ATTR_CUSTOMERNUMBER defined in CUSTOMERBaseQuery.

Note that when two business classes contain an identically named field (often it is a
database join field), the values of the generated ATTR_ constants in the two BaseQuery
classes will not necessarily be identical. For example, do not assume the following have the
same value:

CUSTOMERBaseQuery.ATTR_CUSTOMERNUMBER

CUSTOMERORDERBaseQuery.ATTR_CUSTOMERNUMBER

Since these constants are inherited, the examples will refer to them through the generated
class. For example, the examples will refer to CUSTOMERQuery.ATTR_NAME, rather than
CUSTOMERBaseQuery.ATTR_NAME, where it is defined.

Constant
InstanceStatus
Value Meaning

ST_READONLY 2 Record is read only and cannot be modified. No Update/Insert/Delete queries
will be run on behalf of this record.

ST_READWRITE 4 Record was loaded from the database and is updateable, but has not been
changed by the user. Once changed, state will become ST_UPDATE.

ST_UPDATE 8 Record has been modified since being selected from database. Update
statement will be run.

ST_INSERT 16 Record is newly created, contains values entered by the user, and is not yet in
database. Insert statement will be run.

ST_DELETE 32 Record has been deleted (not yet deleted from database). Delete statement
will be run.

ST_EMPTY 1 Empty record to be filled in by user—user has not yet typed any values into
the record. (When values are entered, state will become ST_INSERT).
Customizing Forte Express Applications

Customization Techniques: Result Sets 83
Getting and Setting the Value of a Displayed Field
There are cases where the displayed value for a field is stored in both an attribute of the
window class (as is done in “standard” Forte windows), and in a row of the
DisplayedResultSet attribute. To assign a new value to the field corresponding to an
attribute in business_classClass, use the PlaceValueInDisplayedField method (see the Forte
online Help for details). The PlaceValueInDisplayedField method is the recommended way
to change the displayed field value because it automatically performs a number of steps,
such as invoking the LogAttr method. The following example illustrates:

Accessing the Value of a Field in Search Mode
When a generated Express window is in Search mode, data fields will have a widget state of
FS_QUERY. In this state, field values are not copied to their mapped attribute. Therefore, to
access the value of a field while in search mode, you should access the field’s TextValue
attribute, for example: <CUSTOMERNUMBER>.TextValue.

Changing the Value of an Attribute
In cases where an attribute of a BusinessClass is not displayed, you cannot use the
PlaceValueInDisplayedField method. You will need to modify the attribute directly.

Express applications track which attributes of each BusinessClass object have been
modified, so the correct queries can be issued later when the user presses Save. If you need
to modify an attribute value as a customization and want it logged so the new value will
appear in a subsequent Update or Insert statement for that object, then you need to use the
LogAttr method (see below), in addition to doing a SetValue on the attribute. For example,
to modify the NAME attribute of a window’s current record (CUSTOMERClass), do the
following:

Using the LogAttr Method
If you want to make changes to the result set and want those changes to be part of
subsequent update or insert queries, then you will need to use the LogAttr method.

Every BusinessClass object references a BusinessQuery object (reference may be NIL).
LogAttr saves information about modifications to a BusinessClass object in the
BusinessQuery object referenced by the BusinessClass object (in
BusinessClass.UpdateQuery.Values attribute). If LogAttr has been run on a BusinessClass,
then this will cause an Update or Insert SQL statement to be run for that BusinessClass
object at save time (Update or Insert is determined based on the State attribute of the
BusinessClass object, as described in “Business Class Record Status” on page 82). Running
LogAttr on an attribute causes that attribute to be added to the query.

myAddr : TextData = new(value = ’1800 Harrison St’);

-- PlaceValueInDisplayedField will update the

-- DisplayedResultSet and display the new value in the field.

-- Note that the field parameter is case sensitive.

PlaceValueInDisplayedField(field = ’ADDRESS’, data = myAddr);

See CustomClient4App
example

Project: CustomClient4AppWindows • Class: CustomerWindow • EventHandler: CustomEvents

BusinessClient.LogAttr(GetCurrentRecord(),

 CUSTOMERQuery.ATTR_NAME);

GetCurrentRecord().NAME.SetValue(‘Paul’);
Chapter 2Customizing Express Applications

Customization Techniques: Result Sets84
The following examples illustrate using the LogAttr method (BusinessClient is an attribute
on the window class):

Note that LogAttr should be run on an attribute before the value is changed, because the
optimistic concurrency option requires a before-image of the object at update time, as does
the Revert feature (see Chapter 1, “Express Application Architecture” for information on
workshop properties and generated classes).

You can either use LogAttr before changing the attribute value in each object, or you can
use LogAttr on the entire object without specifying an attribute, as shown below. If you do
not specify an attribute, then the entire class is logged, regardless of which attribute has
changed. This ensures that any new values are sent to the database at save time.

After that, you can use LogAttr either before or after the attribute value changes. If you use
LogAttr on an attribute that does not change, this will generate an update clause where the
column is updated with the same value.

Checking Query Information on a BusinessClass Object
There are several operations that can be run on a BusinessClass object to check whether
the LogAttr method has been run (the object myCust below is of type
CustomerOrderClass):

■ Check if a BusinessClass object has been updated (has LogAttr been run on the class, or
on any attribute of the class) and whether the ADDRESS attribute has been updated:

Example: Mark that attribute
CUSTOMERNUMBER in a
BusinessClass object is about
to be updated

BusinessClient.LogAttr(source = myCust, attr =

 CUSTOMERORDERQuery.ATTR_CUSTOMERNUMBER);

Example: Mark that some
attribute in a BusinessClass
object has been updated

BusinessClient.LogAttr(source = myCust);

myCust : CUSTOMERClass = GetCurrentRecord();

if (myCust <> nil) then

if (myCust.UpdateQuery = NIL) or

(mycust.UpdateQuery.Values = NIL) then

task.Part.LogMgr.PutLine(

’Business class has not been updated.’);

else

task.Part.LogMgr.PutLine(

’Business class has been updated.’);

if (myCust.UpdateQuery.GetUpdateAttr(

attr = CUSTOMERQuery.ATTR_ADDRESS) = NIL) then

task.Part.LogMgr.PutLine(

’Address field has not been updated.’);

else

task.Part.LogMgr.PutLine(

’Address field has been updated.’);

end if;

end if;

end if;

See CustomClient4App
example

Project: CustomClient4AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents
Customizing Forte Express Applications

Customization Techniques: Result Sets 85
■ Reset a BusinessClass object so it behaves as if it was just selected from the database.
This will reset the status and “forget” any LogAttr information:

Note that Reset is not the same as RevertToSaved. The Reset method does not change the
value of attributes in the DisplayedResultSet, but simply changes the InstanceStatus and
UpdateQuery attributes on the BusinessClass object.

Looping Through a Displayed Result Set
You can loop through the displayed result set as you would any array. The row type will be
the BusinessClass object (such as CUSTOMERClass). There will be attributes
corresponding to the attribute names in your business object. The following code
illustrates looping through a displayed result set:

Using Displayed Result Sets with Outline Fields
For windows that have their Layout of Fields property set to Outline, the
DisplayedResultSet attribute will be defined as “Array of OutlineIndexNode” (each
OutlineIndexNode contains a ResultSetNode attribute, of type BusinessClass, and an
OutlineNode attribute, of type DisplayNode). This differs from other field layouts (form and
array), where DisplayedResultSet is defined as “Array of business_classClass” (for example,
array of CUSTOMERClass). The Express methods described in this section, such as
GetCurrentRecord, continue to work correctly for outline fields (see the Forte online Help
for information about the GetCurrentRecord method). However, you will have to modify
direct access to the DisplayedResultSet window attribute. For example, the above example
code would have to be modified to the following if the window’s field layout is Outline:

myCust : CUSTOMERClass = GetCurrentRecord();

if (myCust <> nil) then

myCust.Reset();

end if;

See CustomClient4App
example

Project: CustomClient4AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents

for drs in DisplayedResultSet do

 if drs.CUSTOMERNUMBER.Value > <somevalue> then

 -- do some processing...

 end if;

end for;

See CustomClient4App
example

Project: CustomClient4AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents

for drs in DisplayedResultSet do

if (CUSTOMERClass(drs.ResultSetNode).CUSTOMERNUMBER.Value

< 100) then

 -- do some processing...

end if;

end for;

See CustomClient6App
example

Project: CustomClient6AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents
Chapter 2Customizing Express Applications

Customization Techniques: Result Sets86
Removing Rows from a Result Set
To remove the currently displayed row from the displayed result set and mark it for deletion
from the database, you would use the DeleteRecordFromResultSet method, as shown:

Displaying a Row in a Result Set
To display a specific row from the result set, you would use the SelectRecord method, as
shown below:

Accessing a Nested Result Set
There are two attributes that allow you to access the result set in a nested window. For
example, in a CustomerOrder window with a nested LineItem window, the following refer
to data of type Array of LINEITEMClass:

■ GetCurrentRecord().LINEITEM (this corresponds to the nested ResultSet, which
includes deleted records)

■ LINEITEMLink1Nested.DisplayedResultSet

Note that LINEITEMLink1Nested is of type LINEITEMWindow, which is the window class
of the nested window. Of these two, GetCurrentRecord().LINEITEM is preferred because it
is more direct and is based off the current record. So, to loop through the line items for the
current CustomerOrder, you would use the following code:

See the Forte online Help for more information about these generated attributes.

-- Remove record and mark it for deletion.

DeleteRecordFromResultSet(confirm = FALSE);

See CustomClient6App
example

Project: CustomClient6AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents

row : integerData = new(value = 2);

SelectRecord(theIndex = row);

See CustomClient6App
example

Project: CustomClient6AppWindows • Class: CustomerWindow • Eventhandler: CustomEvents

for li in GetCurrentRecord().LINEITEM do

if (li.InstanceStatus <> BusinessClass.ST_DELETE) then

if li.PARTNUMBER.Value = 90001 then

 -- do something to this lineitem.

end if;

end if;

end for;

See CustomClient5App
example

Project: CustomClient5AppWindows • Class: CustomerOrderWindow • Eventhandler: CustomEvents
Customizing Forte Express Applications

Customization Techniques: Queries 87
Customization Techniques: Queries
Express does not generate pre-defined queries. Select queries are built at runtime by the
window class. The target list in any Select query is based on the fields displayed on the
generated window. This information is generated into the method
business_classBaseWindow.GetRecordTemplate, and the Select WHERE clause is based on
the QBE-style entries made by the end user while the window is in Search mode. For
updates and inserts, the target list is based on which object attributes are marked as
changed (see “Using the LogAttr Method” on page 83). For updates and deletes, the
WHERE clause is based on the keys specified for the class in the business model.

You can use the same techniques used on the Express windows classes to build queries to
augment the generated queries. This can be done in either the client or business service.

Express queries are always executed by the business service. As with any database
application, query performance is much better if performed on the server, rather than the
client.

Queries are encapsulated into an object of class business_classQuery (such as
LINEITEMQuery). The classes business_classClass and business_classQuery reference each
other (BusinessClass.UpdateQuery, BusinessQuery.OriginalClass, and
BusinessQuery.UpdatedClass). See the class diagram in “CUSTOMERORDERClass and
CUSTOMERORDERQuery” on page 25 for details.

Modifying Generated Queries
The queries constructed by Express can be modified by adding columns to the target list or
modifying the WHERE clause. Queries can also be tested to see which business class they
are for, and which business class attributes participate in the query. The following example
illustrates.

The variable “myQuery” in the example below refers to an object of type BusinessQuery
(superclass of business_classQuery).

Select Queries
Add columns to the select query target list using the business_classQuery.AddAttr method,
where the parameter specifies the attribute to add:

Example: Check if a Query is
for CUSTOMERClass

if myQuery.IsA(CUSTOMERQuery) then

 -- query for CUSTOMERClass

end if;

Example: Check if the target
list of a query contains
attribute ADDRESS

if myQuery.HasAttr(attr =

 CUSTOMERQuery.ATTR_ADDRESS)

then

 -- target list contains ADDRESS.

end if;

See CustomQueryApp
example

Project: CustomQueryAppWindows • Class: CustomerWindow • Method: GetRecordTemplate

Example: Adding columns to
the select query target list

myQuery.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_CUSTOMERNUMBER);
Chapter 2Customizing Express Applications

Customization Techniques: Queries88
Execute a select query using the Select method on the BusinessClient class (for example,
TutorialClient). This method executes the query and returns an array of BusinessClass as
the query results:

WHERE Clause Parameters Add constraints to the query WHERE clause using the business_classQuery.AddConstraint
method, in whose parameters you specify the business class attribute for which to add a
constraint, the value of the constraint, and the operator. Use the following constants to
refer to the operator:

■ ConstraintOperation.OP_EQ for “=”

■ ConstraintOperation.OP_GT for “>”

■ ConstraintOperation.OP_LT for “<“

Constructing a New Query
Express generates queries for the types of operations needed in the generated windows
based on settings in the Business Model and Application Model Workshops. However, there
may be times when you need to issue queries that are not represented in your application
model. You can do this by either:

■ adding an SQL query to your application’s TOOL code and creating a new database
service on which to execute the query

■ building up an Express BusinessQuery object and then executing it in the business
service

The second of these two techniques requires that the table you are querying be known in
your Business Model; the first technique does not. This section shows the second option.

Note You cannot construct and execute queries on a component class—that is, a class that has
an aggregate relationship with another class. Any business class on which you construct a
query must have a corresponding business_classMgr class (for example, CustomerMgr).
However, a component class does not have an associated business_classMgr class, because
it is managed by its aggregate class. Thus, for example, you cannot construct a query on the
LineItem class as it is used in the Tutorial business model.

tempQuery : PARTQuery = PARTQuery(

RecordTemplate.GetQuery(LINEITEMQuery.ATTR_PART));

returnSet : Array of BusinessClass;

...

if BusinessClient.TransActive() = TRUE then

returnSet = BusinessClient.Select(query = tempQuery,

 TransactionMode = ConcurrencyMgr.TR_CONTINUE);

else

returnSet = BusinessClient.Select(query = tempQuery,

 TransactionMode = ConcurrencyMgr.TR_START);

end if;

tempQuery.Reset();

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • Method: ValidateField

tempQuery.AddConstraint(attr = PARTQuery.ATTR_PARTNUMBER,

 operation = ConstraintOperation.OP_EQ,

 value = TheCurrentRecord.PARTNUMBER);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • Method: ValidateField
Customizing Forte Express Applications

Customization Techniques: Queries 89
In this example, you will issue queries against the Customer table in a window that is based
on CUSTOMERClass.

Select Query
In your Customer window, you will select all the customers with a customer number that is
equal to or greater than 2. You will execute the following query, which will return an array
of CUSTOMERClass objects:

To do this, create a method in the CUSTOMERWindow with the following code:

Complex Select Query
This method illustrates how to construct a multi-table join query. It does not rely on any
data from the CUSTOMERORDERWindow class. It could be constructed in any window.

We construct a Select query that selects a set of CustomerOrder table rows and matching
data from the Customer and LineItem tables. In addition, each LineItem row must contain
matching data from the Part table.

Because of optimizations made by the Express services partition, the query we execute will
be run as two queries: one to select all the CustomerOrder rows (doing a join to Customer),
then a second query to select all the LineItem rows to match all the selected
CustomerOrder rows (and doing a join between LineItem and Part). The Express services
partition then breaks up the set of selected LineItem rows and associates each group with
its corresponding CustomerOrder row. The result set returned to the client looks like each
CustomerOrder row had a separate query run to select its associated LineItem rows.
However, all the results were obtained with only two queries.

select CUSTOMERNUMBER, NAME, ADDRESS, PHONE

from CUSTOMER

where CUSTOMERNUMBER >= 2

-- Create a new query object and add the attribute list.

cq : CUSTOMERQuery = new;

cq.AddAttr(attr = CUSTOMERQuery.ATTR_CUSTOMERNUMBER);

cq.AddAttr(attr = CUSTOMERQuery.ATTR_NAME);

cq.AddAttr(attr = CUSTOMERQuery.ATTR_ADDRESS);

cq.AddAttr(attr = CUSTOMERQuery.ATTR_PHONE);

-- Add a constraint to the query.

cust : IntegerData = new(value = 2);

cq.AddConstraint(

attr = CUSTOMERQuery.ATTR_CUSTOMERNUMBER,

value = cust,

operation = ConstraintOperation.OP_GE);

-- Execute the Select query.

customer_array : array of CUSTOMERClass =

(array of CUSTOMERClass)(BusinessClient.Select(

query = cq,

transactionMode = ConcurrencyMgr.TR_START));
Chapter 2Customizing Express Applications

Customization Techniques: Queries90
method CUSTOMERORDERWindow.ComposeQueries

begin

-- Define BusinessQuery objects.

customerOrderQ : CUSTOMERORDERQuery = new();

customerQ : CUSTOMERQuery = new();

lineItemQ : LINEITEMQuery = new();

partQ : PARTQUERY = new();

-- Set fields to retrieve from CustomerOrder table.

customerOrderQ.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_CUSTOMERNUMBER);

customerOrderQ.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_ORDERNUMBER);

customerOrderQ.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_REQUESTEDDATE);

-- Set query restriction: OrderNumber >= 1000

customerOrderQ.AddConstraint(

attr = CUSTOMERORDERQuery.ATTR_ORDERNUMBER,

value = IntegerData(value = 1000),

operation = ConstraintOperation.OP_GE);

-- Set fields to retrieve from Customer table.

customerQ.AddAttr(attr = CUSTOMERQuery.ATTR_CUSTOMERNUMBER);

customerQ.AddAttr(attr = CUSTOMERQuery.ATTR_ADDRESS);

-- Request that the Customer attribute of CUSTOMERORDERClass

-- be filled in as specified by CUSTOMERQ. This will be

-- executed as a CustomerOrder-to-Customer join.

customerOrderQ.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_CUSTOMER,

query = customerQ);

-- Set fields to retrieve from LineItem table.

-- ’ATTR_SIMPLE’ means all LineItem non-reference

-- attributes.

lineItemQ.AddAttr(attr = LINEITEMQuery.ATTR_SIMPLE);
Customizing Forte Express Applications

Customization Techniques: Queries 91
Update Query
The example in this section manipulates the objects in the customer_array selected above.
The example then invokes the BusinessClient.Update method, which issues database
queries on each row according to its status.

Note that the initial status of each business_classClass object is significant, because the
status is used by the LogAttr method to set additional state information and create other
objects needed so the appropriate SQL query will be executed later by the Update method.
The rows in the customer_array begin with status ST_READWRITE, which was given them
by the BusinessClient.Select method when the objects were selected. See “Business Class
Record Status” on page 82 for more information about the BusinessClass object status.

-- Request that the LineItem attribute of

-- CUSTOMERORDERClass be specified by LineItemQ.

-- This will be executed as a CustomerOrder-to-LineItem

-- join.

customerOrderQ.AddAttr(

attr = CUSTOMERORDERQuery.ATTR_LINEITEM,

query = lineItemQ);

-- Set fields to retrieve from Part table.

-- ’SIMPLE_ATTR’ means all Part non-reference

-- attributes.

partQ.AddAttr(attr = PARTQuery.ATTR_SIMPLE);

-- Request that the Part attribute of LINEITEMClass

-- be filled in a specified by partQ. This will be

-- executed as a LineItem-to-Part join.

lineItemQ.AddAttr(

attr = LINEITEMQuery.ATTR_PART,

query = partQ);

-- Execute the Select query.

orders : array of CUSTOMERORDERClass =

(array of CUSTOMERORDERClass)(BusinessClient.Select(

query = CustomerOrderQ,

transactionMode = ConcurrencyMgr.TR_SINGLETON));

-- Write the data returned by the query to the logger.

bc : BusinessClass = new();

task.Part.LogMgr.PutLine(bc.FillString(

source = orders));

end method;

See CustomQuery3App
example

Project: CustomQuery3AppWindows • Class: CustomerOrderWindow • Method: ComposeQueries
Chapter 2Customizing Express Applications

Customization Techniques: Queries92
-- Find the largest CUSTOMERNUMBER

max_cust : integer = 0 ;

for c in customer_array do

if c.CUSTOMERNUMBER.value > max_cust then

max_cust = c.CUSTOMERNUMBER.value;

end if;

end for;

-- Add three new CUSTOMERClass objects to array.

i : integer = 0;

while i < 3 do

c: CUSTOMERClass = new;

c.CUSTOMERNUMBER = new;

c.NAME = new;

c.ADDRESS = new;

c.PHONE = new;

max_cust = max_cust + 1;

text:TextData = new;

c.CUSTOMERNUMBER.SetValue(max_cust);

text.SetValue(’CUSTOMER ’);

text.Concat(max_cust);

c.NAME.SetValue(text);

text.SetValue(’ADDRESS FOR CUSTOMER ’);

text.Concat(max_cust);

c.ADDRESS.SetValue(text);

text.SetValue(’510-777-2222’);

c.PHONE.SetValue(text);

--This is a shorthand way of changing all datavalue objects.

BusinessClient.LogAttr(source = c, attr =
BusinessQuery.ATTR_SIMPLE);

customer_array.AppendRow(object = c);

i = i + 1;

end while;

-- Mark the last item in the CUSTOMERClass array as Deleted.

BusinessClient.Delete(source =
customer_array[customer_array.items]);

-- Execute the Save

BusinessClient.Update(source = customer_array,

transactionMode = ConcurrencyMgr.TR_END);
Customizing Forte Express Applications

Customization Techniques: Queries 93
Examining the Generated SQL
You can access the text for each generated query by overriding business_classMgr methods
for each businessClass you are interested in:

■ override the ExecuteSql or SQLUpdate/SQLInsert/SQLDelete methods for
Update/Insert/Delete queries

■ override the SQLSelect method for select queries

The “SQLText” parameter to these methods is the text of the query to be run, but with
parameters to the query (such as values from the BusinessClass object or values entered by
the user)— appearing as “?”. These are SQL placeholders. The SQLData parameter gives the
values that will be substituted for the placeholders at runtime. You can modify the query
text (parse it, add new clauses, and so on) in a method that overrides one of these methods.
When you pass the modified query text to the super.method, the modified query text will be
executed.

Note You can cause the query text to be printed to the Server Partition’s log file by setting the
logger flag (-fl) to “trc:ex:1-2:255.” See the Forte 4GL System Management Guide for
information about setting logger flags.

Using TOOL SQL Statements
It is preferable for efficiency reasons to use the queries Express constructs for you
whenever possible. However, if needed, you may enter TOOL SQL statements directly in
your generated Express Window customization code (just like you would do in a non-
Express window). Those SQL statements may also reference the generated DBSession
service object (for example, TutorialDBService) in the query’s “on session” clause, or you
may create a new DBSession service object and reference that. Note that you must first add
“GenericDBMS” as a supplier plan to your generated application_modelWindows project if
you plan to create your own DBSession service object in it.
Chapter 2Customizing Express Applications

Complex Examples94
Complex Examples
The following examples offer more complex customizations than are provided in the
Customization Manager Help for individual items, or in the previous sections of this
chapter. Most of these examples are also available online through the Customization
Manager Help, as described in “Complex Examples” on page 71. The examples are:

■ “Using an Express Window as a Login Window” on page 94

■ “Calculating a Derived Field From Nested Window Data” on page 96

■ “Generating Records with Unique Sequence IDs” on page 99

■ “Synchronizing Data in a Modeless Linked Window” on page 99

■ “Customizing the Database Mapping of a Business Class” on page 101

■ “Providing Automatic Append on Insert in an Array Window” on page 106

■ Using Domains: “Selecting into a List Field From a Database Table” on page 108

Using an Express Window as a Login Window
If you plan to use an Express window as your logon window, you should have a table with
user information in your database, as well as a business class (User, for example) in your
business model based on that table. Your Express login window will be based on this
business class.

� To create an application that uses an Express window as its login window:

1 In the Application Model Workshop, create a window based on the User business class.

2 Use the Attribute List to specify that the relevant fields be displayed. Typically, these
would be USERNAME and PASSWORD fields.

3 In the Business Class Window Properties dialog for the login window, set the following
properties:

4 Add a command link between the login window and your first “main” window.

5 In the command link’s Link Properties dialog, set the following properties:

6 Generate the windows.

7 Open the generated login window in the Window Workshop.

8 Delete the toolbar by selecting a widget in the toolbar, and pressing Ctrl-Click to select
the parent until you get the “ToolBarGrid”. Once you have selected ToolBarGrid, delete
it.

9 In the Menu Workshop, remove the Result Set and Edit menu items from the menu.

Property Setting

Layout of Fields Form

Default Interface Menu and Toolbar

Command Set Search

Property Setting

Label ‘Log on’

Display No Records

Read Status Read/Write

Mode Status Modeless
Customizing Forte Express Applications

Complex Examples 95
10 Override methods in your login window to verify the user is valid and to close down the
login window to save memory. These overrides are described below.

Verifying Logon Information The following method comes from the CustomClient2 example, which uses an Express
window as its login window. In this example, a login window is invoked before users can
proceed to the Customer window, and the user’s name and password are verified in the
database.

� To verify a user’s login ID and password:

1 Create a CommandLinkTolink_nameLink1 method in the window, overriding the
identically named method in the superclass. This method is invoked when the user
presses the CUSTOMERLink1BC button (see the Forte online Help for more
information).

Example: Override
ORDUSERBaseWindow.
CommandLinkToCUSTOMERLink1

method ORDUSERWindow.CommandLinkToCUSTOMERLink1(

 data : Array of BusinessClass = NIL,

 query : BusinessQuery = NIL,

 appData : Object = NIL)

 : Array of BusinessClass

-- Check for a field being left blank.

if <USERNAME>.TextValue.IsEqual(’’) or

 <PASSWORD>.TextValue.IsEqual(’’) then

self.Window.MessageDialog(

‘Please fill in both fields.', MT_ERROR);

ClearResultSet();

return nil;

-- Check for use of wildcards.

elseif (<USERNAME>.TextValue.MoveToChar('%') = TRUE) or

 (<PASSWORD>.TextValue.MoveToChar('%') = TRUE)

self.Window.MessageDialog('No wildcards allowed.', MT_ERROR);

ClearResultSet();

return nil;

-- Check database to make sure it's a valid user.

else

loginResult:Array of BusinessClass =
Search(GetSearchCriteria());

if (loginResult = nil) or

(loginResult.Items <> 1) or

(loginResult[1].InstanceStatus = BusinessClass.ST_EMPTY) then

self.Window.MessageDialog('Not a valid user.', MT_ERROR);

ClearResultSet();

return nil;

else

return super.CommandLinkToCUSTOMERLink1(

data = data, query = query, appData = appData);

end if;

end if;

See CustomClient2App
example

Project: CustomClient2AppWindows • Class: OrdUserWindow • Method:
CommandLinkToCUSTOMERLink1
Chapter 2Customizing Express Applications

Complex Examples96
� To close down the login window after the user successfully logs in:

1 Create an attribute on your login window of type ExpressContainerWindow.

This will be your handle to the first “main” window in your application. You will need to
keep this around so that you will later be able to exit the application after the “main”
window shuts down. In the CustomClient2 example, this attribute is called
MainWindow.

2 Override AfterCUSTOMERLink1Open to set up a handle to CUSTOMERWindow and
close down your login window:

3 Override StartMethod to actually exit the application after your “main” window shuts
down:

Calculating a Derived Field From Nested Window Data
To calculate a derived field from nested window data, you need to create a custom attribute
and override several methods. In this example, you will add a field to the window that will
maintain a total count of the number of items ordered.

� To create a custom attribute:

1 In the Business Model Workshop, add a new attribute to the CustomerOrder class.

2 Open the attribute’s Properties dialog and, in addition to setting other appropriate
properties, select the Custom toggle.

3 In the Application Model Workshop, display the custom attribute in the window based
on the CustomerOrder business class (custom attributes can be displayed on the
window, but are not used in queries).

Example: Override
ORDUSERBaseWindow.
AfterCUSTOMERLink1Open

method ORDUSERWindow.AfterCUSTOMERLink1Open(

 linkedWindow : ExpressContainerWindow)

-- Give the attribute a handle to the Customer Window,

-- which we’ll need later to shut it down.

MainWindow = linkedWindow;

-- Now close the login window to save memory.

self.FinishUp();

Example: Override
ExpressContainerWindow.
StartMethod

method ORDUSERWindow.StartMethod()

super.StartMethod();

-- Need to exit after the Customer window shuts down.

if MainWindow <> nil then

event case

when MainWindow.AfterFinishUp do

exit;

when MainWindow.AfterCancelWindow do

exit;

end event;

end if;

See CustomClient2App
example

Project: CustomClient2AppWindows • Class: OrdUserWindow • Method: StartMethod
Customizing Forte Express Applications

Complex Examples 97
� To calculate the value for the custom attribute (derived field):

1 Create a method to loop through the line items and sum the quantity:

2 Override the AfterChildWindowChange and DisplayCurrentRecord methods to invoke
the CountQuantity method. The first method runs when changes are made to the
nested LineItem window, and the second method runs when the user moves to a new
master record (see also the example “Executing a Query on a Record Select” listed in
“Application Model Customization Examples” on page 69).

Example: Create
CustomerOrderWindow.
CountQuantity

method CUSTOMERORDERWindow.CountQuantity(

 lineitems=Array of LINEITEMClass) : integer

cnt : integer = 0;

if lineitems <> NIL then

for item in lineitems do

-- When a displayed row has been deleted, don’t count it.

if item.InstanceStatus <> BusinessClass.ST_DELETE then

 cnt = cnt + item.QUANTITY.IntegerValue;

end if;

end for;

end if;

return cnt;

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: CustomerOrderWindow • Method: CountQuantity

Example: Override
ExpressClassWindow,
AfterChildWindowChange

method CUSTOMERORDERWindow.AfterChildWindowChange(

 window : ExpressClassWindow)

-- check which nested window changed.

if window.IsA(LINEITEMWindow) then

 ItemCount.integerValue = CountQuantity(lineitems =

 LINEITEMWindow(window).DisplayedResultSet);

end if;

super.AfterChildWindowChange(window=window);

Example: Override
CustomerOrderBaseWindow.
DisplayCurrentRecord

method CUSTOMERORDERWindow.DisplayCurrentRecord()

theCurrentRecord : CUSTOMERORDERClass = GetCurrentRecord();

if (theCurrentRecord <> nil) and

(theCurrentRecord.InstanceStatus <> BusinessClass.ST_EMPTY)
then

-- Calculate the ItemCount based on adding the Quantity values.

ItemCount.IntegerValue = CountQuantity(

lineItems = theCurrentRecord.LINEITEM);

theCurrentRecord.ItemCount = new;

theCurrentRecord.ItemCount.SetValue(ItemCount.IntegerValue);

end if;

super.DisplayCurrentRecord();

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: CustomerOrderWindow • Method: DisplayCurrentRecord
Chapter 2Customizing Express Applications

Complex Examples98
Another way to calculate a derived field from nested window data is to modify the
LINEITEMWindow so it posts an event whenever the user changes a Quantity field value.
This will cause the CountQuantity method code in the parent window to execute only when
the Quantity field changes, rather than when anything changes in the nested window (the
AfterChildWindowChange method will execute after any change in the nested window). To
do this, you modify the above example to:

1 Create the CountQuantity method exactly like step one in the previous example.

2 Create a new event called QuantityChanged on the LINEITEMWindow.

3 Override the FieldValueChanged method to detect a change to the Quantity field; when
detected, post the QuantityChanged event:

4 Override the DeleteRecordFromResultSet method to detect when a LineItem row has
been deleted; when detected, post the QuantityChanged event:

5 Override the DisplayCurrentRecord method in the CUSTOMERORDERWindow, as
described in step two in the previous example.

6 Create a CustomEvents event handler in the CUSTOMERORDERWindow and add the
following statements to handle the event raised by LINEITEMWindow:

To see this technique in context, see the Express example program
CustomClientTutorialApp. Look for the methods described above in the
CustomerOrderWindow and LineItemWindow classes in the
CustomClientTutorialAppWindows project.

Example: Override
ExpressClassWindow.
FieldValueChanged

method LINEITEMWindow.FieldValueChanged(

 fieldNum : integer, newValue : DataValue)

if fieldNum = LINEITEMQuery.ATTR_QUANTITY then

post QuantityChanged;

end if;

super.FieldValueChanged(fieldNum=fieldNum,

 newValue=newValue);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • Method: FieldValueChanged

Example: Override
ExpressClassWindow.
DeleteRecordFromResultSet

method LINEITEMWindow.DeleteRecordFromResultSet(

 confirm : boolean = FALSE) : boolean

-- We need to post an event to update the ItemCount field when

-- a record is deleted.

retVal : boolean;

retVal = super.DeleteRecordFromResultSet(confirm = confirm);

if retVal = TRUE then

post QuantityChanged;

end if;

return(retVal);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • Method: DeleteRecordFromResultSet

Example: Create
CustomerOrderWindow,
CustomEvents

when LINEITEMLink2Nested.QuantityChanged do

 ItemCount.IntegerValue = CountQuantity(lineitems =

 GetCurrentRecord().LINEITEM);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • Method: DeleteRecordFromResultSet
Customizing Forte Express Applications

Complex Examples 99
Generating Records with Unique Sequence IDs
This example illustrates looping through the displayed result set to assign sequence
numbers to an attribute that is part of a composite key. The Sequence method would be
invoked before saving by overriding the Save method. See “Validating Data Before a Save,”
listed in “Application Model Customization Examples” on page 69. This approach applies
only when you have a one-to-many aggregate association. Otherwise, you could not
guarantee you were adding unique sequence numbers.

In other circumstances, when you do not have a one-to-many aggregate association, you
should use a database stored procedure to generate unique sequence numbers.

This method will assign sequence numbers to rows about to be inserted.

Synchronizing Data in a Modeless Linked Window
Normally, a modeless linked window does not need to communicate further with its parent
window. However, you may want to keep the linked window’s data synchronized with the
parent. Then if the user changes records in the parent window, a new query will be run in
the linked window to automatically refresh its data.

Example: Override
ExpressClassWindow.Save

method CUSTOMERORDERWindow.Save()

self.Sequence();

return super.Save();

See CustomClient5App
example

Project: CustomClient5AppWindows • Class: CustomerOrderWindow • Method: Save

Example: Create Sequence
method

method CUSTOMERORDERWindow.Sequence()

maxseq : integer = 0;

-- Find the highest existing LINEITEMNUMBER.

for li in GetCurrentRecord().LINEITEM do

if (li.InstanceStatus = BusinessClass.ST_READWRITE) or

(li.InstanceStatus = BusinessClass.ST_READONLY) or

(li.InstanceStatus = BusinessClass.ST_UPDATE) then

if (maxseq < li.LINEITEMNUMBER.IntegerValue) then

maxseq = li.LINEITEMNUMBER.IntegerValue;

 end if;

end if;

end for;

-- Give sequence numbers to rows about to be inserted.

for li in GetCurrentRecord().LINEITEM do

if (li.InstanceStatus = BusinessClass.ST_INSERT) then

maxseq = maxseq + 1;

li.LINEITEMNUMBER.IntegerValue = maxseq;

end if;

end for;

See CustomClient5App
example

Project: CustomClient5AppWindows • Class: CustomerOrderWindow • Method: Sequence
Chapter 2Customizing Express Applications

Complex Examples100
In the following example, suppose there is a modeless link between the CUSTOMER and
CUSTOMERORDER windows, and the Link Properties dialog is set to Display:
“CUSTOMERORDER record(s) associated with selected CUSTOMER”. Also in this Link
Properties dialog, the Called Window fields are set to Read Only and Modeless. If the user
opens a CUSTOMERORDER window, then you would like its data to refresh automatically
when the user changes rows in the (parent) CUSTOMER window. Here are the steps to
accomplish this:

1 Add a new attribute to the CUSTOMERWindow of type CUSTOMERORDERWindow (the
type of the linked window). Name the attribute CUSTOMERORDERChild. This attribute
will be the parent window’s “handle” to the linked window.

2 Override the method that is invoked after the user presses the Link button and the
linked window is displayed. Assign the method’s “window” parameter to the new
attribute created above (cast required):

3 Override the method that is invoked when the user selects a new CUSTOMER record
(see also the example “Executing a Query on a Record Select,” listed in “Application
Model Customization Examples” on page 69) and execute a query in the linked
CUSTOMERORDER window.

4 Edit the Class Properties for the linked (child) CUSTOMERORDERWindow and make it
Shared.

Example: Override
CustomerBaseWindow.
AfterCUSTOMERORDERLink1Open

method CUSTOMERWindow.AfterCUSTOMERORDERLink1Open(

 window : ExpressContainerWindow)

-- Save reference to linked window

self.CUSTOMERORDERChild = CUSTOMERORDERWindow(window);

super.AfterCUSTOMERORDERLink1Open(linkedWindow = window);

See CustomClient3App
example

Project: CustomClient3AppWindows • Class: CustomerWindow • Method: AfterCUSTOMERORDERLink1Open

Example: Override
CUSTOMERBaseWindow.
DisplayCurrentRecord

method CUSTOMERWindow.DisplayCurrentRecord()

if (GetCurrentRecord() <> nil) and

(GetCurrentRecord().InstanceStatus <> BusinessClass.ST_EMPTY)

then

 -- moving to new record.

 -- execute query in child window.

 if (self.CUSTOMERORDERChild <> nil) and

 (CUSTOMERORDERChild.Window.IsOpen = TRUE) then

 SearchCriteria : CUSTOMERORDERQuery =

 CUSTOMERORDERQuery(

 CUSTOMERORDERChild.GetRecordTemplate());

 SearchCriteria.AddConstraint(

 attr = CUSTOMERORDERQuery.ATTR_CUSTOMERNUMBER,

 value = GetCurrentRecord().CUSTOMERNUMBER,

 type = IntegerDomain());

 CUSTOMERORDERChild.SetResultSetFromQuery(

 SearchCriteria);

 end if;

end if;

super.DisplayCurrentRecord();

See CustomClient3App
example

Project: CustomClient3AppWindows • Class: CustomerWindow • Method: DisplayCurrentRecord
Customizing Forte Express Applications

Complex Examples 101
Note CustomerOrderWindow must have the Shared property set to IsDefault=On. The event loop
of the CustomerWindow is running in one task; this event loop is initiating a change on the
CustomerOrderWindow that has an event loop running in a different task. To avoid
conflicts where two tasks try to modify displayed data simultaneously, use the Shared
Object property. This prevents two methods on the CustomerOrderWindow from executing
simultaneously. See the TOOL Reference Manual for information about the Shared
property.

Customizing the Database Mapping of a Business Class
The Business Model Workshop assumes that the attributes in a business class all come
from the same database table. This example shows what to do when attributes in a
business class come from different database tables.

In this example, there are two tables in the database that have a one-to-one join
relationship. However, you only want to specify one of the tables as a business class in the
Business Model Workshop. The second table will be handled by customizations to the
generated BusinessQuery class.

The Part table has a one-to-one relationship with the PartDesc table. The key to table Part
is column PartNumber, and the key to PartDesc is column PartNo. Besides the key,
PartDesc has one column: a long text field that describes how to construct the part
(FullDescrip). The PartDesc table does not have a corresponding business class defined in
the Business Model Workshop.

After the customizations described below, SQL select statements against the Part table will
also join with PartDesc. Updates, inserts and deletes will be done on both tables (for
example, two queries will be run; one for each table).

� To customize the database mapping of a business class:

1 Create an attribute FullDescrip in class PART in the Business Model Workshop.

Note that this new attribute will cause a corresponding ATTR_ constant to be generated
into class PARTBaseQuery. By default, Express will assume that this new attribute
corresponds to a column in table Part; the following customizations will change that.

2 Override the PARTBaseQuery.GetTableName method to cause the BusinessQuery
methods to also do selects and updates against the PartDesc table.

3 Override the PARTBaseQuery.GetColumnName method to handle the attributes for
table PartDesc.

Example: Override
PARTQuery.GetTableName

method PARTQuery.GetTableName(TableIndex : integer,

 output TableName : TextData)

if (TableIndex = 2) then

 TableName = TextData(value = ’PartDesc’);

else

 super.GetTableName(TableIndex = TableIndex,

 TableName = TableName);

end if;

method PARTQuery.GetNumTables() : integer

return (1 + super.GetNumTables());
Chapter 2Customizing Express Applications

Complex Examples102
This method tells Express that columns Partno and FullDescrip are in the PartDesc table
(otherwise, it will think the columns are in the Part table).

Using Inheritance in Business Models
This example shows how to customize Express for the case where a set of business classes
form an inheritance relationship, and each class is associated with a separate table in the
database.

When you specify an inheritance relationship between classes in the Business Model
Workshop, Express assumes that all the classes in the inheritance relationship are
associated with a single database table. However, you may want to create an application
that requires each business class to map to a separate database table.

This example discusses the case where each business class maps to a database table. Each
mapped table has the same number of Primary Key columns (the key columns may have
different names), and the tables have a one-to-one relationship to each other. Note that
every Part is either a CatalogPart or a CustomPart, so the row count in the Part database
table is equal to the sum of the row count in both of the Part subclass tables. This
configuration is not supported directly by Express and the Business Model Workshop, but
can be added as a customization.

The table below shows the descriptions of the tables used in this example:

Example: Override
PARTQuery.GetColumnName

method PARTQuery.GetColumnName(attr : integer,

 input output tableIndex : integer,

 output columnName : TextData)

-- For key attribute, set only the columnName.

-- For non-key attributes, set columnName

-- and tableIndex.

if (attr = ATTR_FULLDESCRIP) then

 tableIndex = 2; -- set table PartDesc

 columnName = ’FullDescrip’;

elseif (attr = ATTR_PARTNUMBER) and (tableIndex = 2) then

 -- Required, because key column has different

 -- name in table PartDesc (tableIndex=2).

 columnName = ’PartNo’;

else

 super.GetColumnName(attr = attr,

 tableIndex = tableIndex,

 columnName = columnName);

 return;

end if;

tableIndex = TableAliases[tableIndex].Value;

Table Name Columns

Part PartNumber (primary key)

Description

Type

Price

CatalogPart PartNumber (primary key)

CatalogNumber
Customizing Forte Express Applications

Complex Examples 103
The customization builds on the previous example where we map certain attributes in a
business class to another table. This example adds a join table for each of the two
subclasses, and maps the subclass attributes to columns in those tables.

This application will display a list of Part objects in an array field. If you double-click on a
Part row, Express drills down to another window—the window that opens depends on
whether the Part clicked was a CatalogPart or a CustomPart (Express determines this by
checking the value of attribute Part.Type, which is not visible in the array field). The
business model in the figure below illustrates the relationship between the classes used in
this application:

Figure 34 Business Model Generalization

� To create an inheritance relationship between business classes based on different
database tables:

1 Create three windows in the Application Model Workshop, one window for each
Business Class and create links between these three windows.

The top-most window is for the Part class and has its Layout of Fields property set to
Array. The other two (“linked”) windows are for the CatalogPart and CustomPart classes
and have a Layout of Fields property of “Form”; these both display all the fields in Part
plus the additional fields in the subclass. The Part window has a command link to the
other two windows. However, the command link buttons will be made invisible below,
and the link will be invoked using a double-click on the array field row.

2 In the BusinessQuery classes CatalogPartQuery and CustomPartQuery, override the
GetTableName, GetNumTables, and GetColumnName methods so Express will perform
a join with the subclass table, and will know which column is in that class:

CustomPart PartNumber (primary key)

AssemblyInstructions

Table Name Columns

method CatalogPartQuery.GetTableName(

TableIndex : integer,

output TableName : TextData)

if (TableIndex = 2) then

TableName = TextData(value = ‘CatalogPart’);

else

super.GetTableName(TableIndex = TableIndex,

 TableName = TableName);

end if;

method CatalogPartQuery.GetNumTables() : integer

return (1 + super.GetNumTables());

method CatalogPartQuery.GetColumnName(

 attr : integer, input output tableIndex : integer,
Chapter 2Customizing Express Applications

Complex Examples104
 output columnName : TextData)

-- For key attribute, set only the columnName.

-- For non-key attrs, set columnName & tableIndex.

if (attr = ATTR_CATALOGNUMBER) then

 tableIndex = 2; -- set table CatalogPart

 columnName = ’CatalogNumber’;

elseif attr = ATTR_PARTNUMBER and tableIndex = 2 then

 columnName = ’PartNumber’;

else

 super.GetColumnName(attr = attr,

 tableIndex = tableIndex,

 columnName = columnName);

 return;

end if;

tableIndex = TableAliases[tableIndex].Value;

method CustomPartQuery.GetTableName(

TableIndex : integer,

output TableName : TextData)

if (TableIndex = 2) then

TableName = TextData(value = ‘CustomPart’);

else

super.GetTableName(TableIndex = TableIndex,

 TableName = TableName);

end if;

method CustomPartQuery.GetNumTable() : integer

return 1 + super.GetNumTables();

method CustomPartQuery.GetColumnName(

 attr : integer, input output tableIndex : integer,

 output columnName : TextData)

if attr = ATTR_ASSEMBLYINSTRUCTIONS then

 tableIndex = 2;

 columnName = 'AssemblyInstructions';

elseif attr = ATTR_PARTNUMBER and tableIndex = 2 then

 columnName = 'PartNumber';

else

 super.GetColumnName(attr = attr,

 tableIndex = tableIndex,

 columnName = columnName);

 return;

end if;

tableIndex = TableAliases[tableIndex].value;
Customizing Forte Express Applications

Complex Examples 105
3 Override PartWindow.GetRecordTemplate to tell Express to add the “type” column to
the target list of any queries this window performs on the Part table:

4 Make the command link buttons invisible in PartWindow.

Since both buttons are contained in the grid field “SideBCGrid”, make that grid field
invisible (see “Setting Widget State” on page 76).

5 Handle the childDoubleClick event on the array field in PartWindow. When the event is
posted, check the type of the part in that row and then invoke the appropriate window
by invoking its generated CommandLinkTo method. Note that the buttons that
normally invoke the CommandLinkTo methods were made invisible above.

Now when you start PartWindow and select data into its array field, you can double-click
on a row and another window will display the subclass information for the Part in that
array field row.

Restricting the Query to Select a Single Row
You can restrict the queries run by the linked subclass windows so they only select the
single row associated with the double-clicked row in the array field. In the above example,
the subclass windows select all the CatalogPart rows or all the CustomPart rows.

To restrict the query, pass search criteria to limit the select to the specific row to the called
window. The called window will in turn modify the query to add the criteria to the query’s
where clause. To pass the restriction to the called window, use LinkInfo.AppData. The
following shows how to perform this customization for the PartWindow-to-
CatalogPartWindow link (the PartWindow-to-CustomPartWindow link would be
customized in the same way).

Example: Override
PartWindow.GetRecord
Template

method PartWindow.GetRecordTemplate(

 template : BusinessQuery = NIL)

 : BusinessQuery

np : BusinessQuery = super.GetRecordTemplate(

 template = template);

np.AddAttr(attr = NPartQuery.ATTR_TYPE);

return(np);

method PartWindow.SetWindowState(state : integer)

super.SetWindowState(state = state);

SetWidgetState(<SideBCGrid>, FS_INVISIBLE);

eventHandler PartWindow.CustomEvents()

when <DisplayedResultSet>.ChildDoubleClick do

 pc : PartClass = GetCurrentRecord();

 if pc.TYPE.Integervalue = 1 then

 CommandLinkToCatalogPartLink1();

 elseif pc.TYPE.integervalue = 2 then

 CommandLinkToCustomPartLink2();

 end if;
Chapter 2Customizing Express Applications

Complex Examples106
� To restrict a query to select a single row:

1 Override the CommandLinkToCatalogPartLink1 method to cause the PARTNUMBER in
the current record to be passed to the linked window (it is passed as LinkInfo.AppData):

2 Override the PreOpenInit method in the linked CatalogPart window and use the
PARTNUMBER passed by the calling window as an additional restriction in the query it
will subsequently run:

Providing Automatic Append on Insert in an Array Window
This example is not available from the Customization Manager online Help.

By default, array fields that Express generates do not support Forte’s standard automatic
append feature, which allows the end user to insert a record into an array field by either
clicking in the empty row following the last row non-empty row displayed in the array field
or by tabbing from the last column in the last row displayed in the array field. However, you
can customize your generated window to simulate this feature.

� To add automatic append functionality:

1 You must add a CustomEvents event handler to handle the event Forte posts when an
end user clicks on the empty row or tab from the last column. In this event handler, you
will add code that creates the new record and includes it in the window's result set.

method PartWindow.CommandLinkToCatalogPartLink1(

 data : Array of BusinessClass=NIL,

 query : BusinessQuery = NIL,

 appData : Object=NIL) : Array of BusinessClass

return super.CommandLinkToCatalogPartLink1(

 data = data, query = query,

 appData = GetCurrentRecord().PARTNUMBER);

method CatalogPartWindow.PreOpenInit()

-- Add additional restriction to query to be run

-- by this window (query is an argument to window).

WindowInfo.InitialSearch.AddConstraint(

 attr = CatalogPartQuery.ATTR_PARTNUMBER,

 value = DataValue(WindowInfo.AppData),

 type = IntegerDomain());

super.PreOpenInit();

Example: Create CustomEvents
event handler

Event Handler LineItemWindow.CustomEvents() : EventRegistration

-- This code allows the user to auto append in an array field.

-- Here we add code to instantiate a new record and include

-- it in the window’s result set.

when <DisplayedResultSet>.AfterRowAppend(obj = NewObject) do

NewObject(BusinessClass(obj));

<DisplayedResultSet>.UpdateFieldFromData();

ResultSet.AppendRow(BusinessClass(obj));

MaxIndex.Value = MaxIndex.Value + 1;

SelectRecord(MaxIndex);

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: LineItemWindow • EventHandler: CustomEvents
Customizing Forte Express Applications

Complex Examples 107
2 Turn on automatic append in the array field using the AllowsAppend attribute.

In most cases, you will not want auto append to be on at all times, so you must add
code to turn it on and off as appropriate given the current window mode and command
set. The way you do this will depend on how you intend to use the window that contains
the array, as described below.

If your window runs as a top-level window (that is, it is not nested inside of another
window), override the window’s SetWindowState method and include the following
code:

If you use the array window as a nested window that displays multiple aggregate
associated records, then you do not need to override SetWindowState. Instead, you will
add code to the array window’s parent window to decide when the nested window
should allow auto append. Override the DisplayCurrentRecord method in the parent
window and add the following code:

Example: Override
ExpressClassWindow.
SetWindowState

method MyWindow.SetWindowState(state : integer)

super.SetWindowState(state);

case state is

when ST_EDIT do

<DisplayedResultSet>.AllowsAppend = TRUE;

when ST_SEARCH do

<DisplayedResultSet>.AllowsAppend = FALSE;

when ST_VIEW do

if WindowInfo.CommandSet = CommandMgr.CS_EDIT_MULTIPLE

or WindowInfo.CommandSet = CommandMgr.CS_ALL then

<DisplayedResultSet>.AllowsAppend = TRUE;

else

<DisplayedResultSet>.AllowsAppend = FALSE;

end if;

end case;

Example: Override
ExpressClassWindow.
DisplayCurrentRecord

method CustomerOrderWindow.DisplayCurrentRecord()

super.DisplayCurrentRecord();

if WindowMode.Value = WM_EDIT and MaxIndex.Value > 0 then

LINEITEMLink2Nested.<DisplayedResultSet>.AllowsAppend = TRUE;

else

LINEITEMLink2Nested.<DisplayedResultSet>.AllowsAppend = FALSE;

end if;

See CustomClientTutorialApp
example

Project: CustomClientTutorialAppWindows • Class: CustomerOrderWindow • Method: DisplayCurrentRecord
Project: CustomClientTutorialAppWindows • Class: LineItemWindow • EventHandler: CustomEvents
Chapter 2Customizing Express Applications

Complex Examples108
Using Domains
Domains provide a general mechanism for validation code and specialized display of
attributes. Do not place field validation code in the SetValue method for the custom
domain, because the SetValue method is invoked on the domain class for each attribute
when rows are loaded into the DisplayedResultSet array. Thus, SetValue will probably run
more often than you want for validation (generally, you only want to validate data entered
by the user when she attempts to leave the field).

The fields on the generated window will have mapped attributes that are of the domain
type specified for the corresponding business class attribute. The types of the business
class attributes will also be domain types. For example, the objects in the
DisplayedResultSet array will have attributes whose type is a domain. Thus, because
domains can be associated with fields and with business classes, keep the following in
mind: the domain (mapped attribute) does not have the widget it is associated with as a
class variable. In many cases, there is no associated widget, as with
window.DisplayedResultSet (array of BusinessClass), where each attribute is a domain type
and there is no directly associated widget.

Even though you cannot assume a domain has a field associated with it, the domain is
where you want to place your field manipulation code (for example, list field loading,
validation, and so on). So you will sometimes want to make the widget associated with a
domain a parameter to domain methods. However, note that if you do this, then you will
have to make the Display project a supplier to the domain project.

For example, in the window.PreOpenInit method you might invoke a method on the
domain associated with a list field. The method would fill the list field’s ListElement array,
and would be passed a ListField parameter. For example:

Selecting into a List Field From a Database Table
This example shows how a domain with a form widget of DropList, RadioList, or ScrollList
can be loaded by way of a database query that is run by the Express Services partition.

In this example, we want to create a droplist with part numbers and part descriptions. We
have many domains with a similar need, and therefore will create an abstract superclass
domain class (SelectListIntegerDomain) as a subclass of IntegerNullable and place the
method that performs the query there. We then create our domain class (PartListDomain)
as a subclass of SelectListIntegerDomain and give it a form widget of DropList. A window
method invokes the domain method that performs the query and passes it the list field to
load.

We will place the custom domain classes in a separate project, which should have
ExpressServices as a supplier plan. In the business model, we will map the attribute
LINEITEM.PARTNUMBER to the custom domain PartListDomain.

stateDomain.SelectList(field = stateList)
Customizing Forte Express Applications

Complex Examples 109
1 Create an abstract domain and a method called SelectList.

SelectList will construct and execute the query, and then load the list field. See “Select
Queries” for more information on constructing and running Express queries.

Note The domain method cannot create the PARTQuery object because that would make it
dependent on the generated Services project, and would create a circular set of supplier
plan inclusions (since the generated Services project already includes the Domain
project).

method SelectListIntegerDomain.SelectList (

field : ListField, query : BusinessQuery,

intattr : integer, textattr : integer,

client : BusinessClient)

-- Execute a database query and use the results to load a
ListField

--

-- Parameters:

-- field - the ListField to load

-- query - the Select query to run. This should be a new query;

-- attributes intattr and textattr will be added to this.

-- intattr - ATTR_ number of the integer attribute in each row of

-- the result set returned by “query.”

-- textattr - ATTR_ number of the text attribute in each row of

-- the result set returned by "query."

-- businessclient - the caller's BusinessClient. This object's

-- select() method will be invoked to run the query.

mode : integer;

if client.TransActive() then

mode = ConcurrencyMgr.TR_CONTINUE;

else

mode = ConcurrencyMgr.TR_SINGLETON;

end if;

returnSet : Array of BusinessClass = client.Select(

query = query, transactionMode = mode);

list : Array of ListElement = new;

integerValue : IntegerData;

for b in returnSet do

integerValue = IntegerData(b.GetAttr(intattr));

list.AppendRow(ListElement(

integerValue = IntegerValue.Value,

textValue = b.GetAttr(textattr).TextValue));

end for;

field.SetElementList(list = list);
Chapter 2Customizing Express Applications

Complex Examples110
2 Create a window method “LoadPartList” that will invoke the above domain method,
passing it the other arguments it needs to run the query.

We create a temporary domain object to invoke the SelectList method on; we cannot
use a domain instance in the array field’s mapped array because the array field will be
empty at this point.

Note The above window method is invoked at window startup in the Window Initialize/After
Window is Open customization is the Customization Manager (Application Model):

A possible improvement to this example is to do query result caching. For example, cache
the results of the above query, and others like it, on the client, or on a shared service. Give
each query a unique name to identify it. Then, rather than always running a query as
shown above, check the cache first and only run the query if the cache does not already
contain the results of that query.

method myWindow.LoadPartList ()

-- Load values into DropList array field column.

p : PartListDomain = new;

q : PARTQuery = new;

q.AddAttr(PARTQuery.ATTR_PARTNUMBER);

p.SelectList(field = <DisplayedResultSet[*].PARTNUMBER>,

query = q,

intattr = PARTQuery.ATTR_PARTNUMBER,

textattr = PARTQuery.ATTR_DESCRIPTION,

client = self.BusinessClient);

method myWindow.PostOpenInit()

super.PostOpenInit();

LoadPartList();
Customizing Forte Express Applications

Global Customization 111
Global Customization
You can add global customizations by subclassing directly from the ExpressServices or
ExpressWindows project. Global customizations affect all classes generated from that point
forward. In other words, you make global customization when you wish to affect
application-wide features, such as window style.

You can add global customizations by creating a project that contains subclasses of specific
classes in ExpressWindows and/or ExpressServices (the specific classes are listed below).
Using options in the Business Model Workshop and the Application Model Workshop, you
specify that Forte Express use these projects to provide the superclasses for the generated
classes.

The following sections describe how to perform global customizations on both
ExpressWindows and ExpressServices classes. Remember that you may subclass only the
classes that are specified below.

Modifying Window Subclasses of ExpressWindows Classes
You should be familiar with the behavior of Forte window inheritance before trying to
perform global customizations on Express windows. See A Guide to the Forte 4GL
Workshops for more information.

You customize subclasses in the ExpressWindows project when you want to modify the
style of a window.

� To modify window style:

1 Create a new project (CustomProject).

2 Choose the Supplier Plans command from the File menu and add ExpressWindows as a
supplier to the project.

3 Create subclasses of the following classes in CustomProject:

■ ExpressArrayWindow

■ ExpressFormWindow

■ ExpressOutlineWindow

Each subclass must be given the same prefix, such as NewArrayWindow,
NewFormWindow, and NewOutlineWindow. Each subclass must use the same suffix as
its superclass. Note that you must create subclasses of all three of the above classes,
even if you do not plan to customize all of them.

When you create these new classes, because they are Window classes, the system will
automatically generate a Display method for each. Delete this generated Display
method in all three classes.

4 Make your customizations to the window in any or all of these window classes.

Note that the three classes correspond to the three styles specified by the Layout of
Fields property in the Business Class Window Properties (Form, Array, and Outline). So
to customize all generated Form windows, modify NewFormWindow, and so on.

Be sure to name every widget you add to the window, or the window inheritance
mechanism will not work correctly.
Chapter 2Customizing Express Applications

Global Customization112
5 In the Application Model Workshop, choose the Custom Generation Options command
from the File menu.

6 Enter “New” in the Superclass Prefix for Global Customization property.

This property will initially be set to “Express”.

7 Choose the Supplier Plans command from the File menu and add CustomWindows as a
supplier plan to the application model.

Note Supplier plans added to the Application or Business Model will be added to the supplier
plans for the generated project. These supplier plans will not be automatically removed
from the generated project if you remove the supplier plan as a supplier to the application
model. Thus, if you change your model supplier plans to, for example, pick up
customizations from a different project, then you must manually change the supplier plans
in the generated project.

You are now finished making your global customization and can regenerate your
application model. The generated classes will contain the modifications you made to the
corresponding CustomProject.

To use your customizations in future application models, just perform steps 5-7, as
described above.

To see an example of this technique, see the Express example program
CustomClientTutorialApp. Look at the CustomClientTutorialAppWindows project and its
supplier project, CustomWindows.
Customizing Forte Express Applications

Global Customization 113
Customizing Subclasses of ExpressServices Classes
� To customize ExpressServices classes:

1 Create a new project (CustomProject).

2 Choose the Supplier Plans command from the File menu and add ExpressServices as a
supplier to the project.

3 Create subclasses of the following superclasses in CustomProject:

■ BusinessClass

■ BusinessClient

■ BusinessDBMgr

■ BusinessQuery

■ BusinessServiceMgr

Each subclass must be given the same prefix, such as NewClass, NewClient, and
NewDBMgr, NewQuery, and NewServiceMgr. Each subclass must use the same suffix as
its superclass. Note that you must create subclasses of all five of the above classes, even
if you do not plan to customize all of them.

4 Make your customizations to any or all of these classes.

5 In the Business Model Workshop, choose the Custom Generation Options command
from the File menu.

6 Enter “New” in the Superclass Prefix for Global Customization property.

This property will initially be set to “Business”.

7 Choose the Supplier Plans command from the File menu and add CustomWindows as a
supplier plan to the business model.

Note Supplier plans added to the Business Model will be added to the supplier plans for the
generated project. These supplier plans will not be automatically removed from the
generated project if you remove the supplier plan as a supplier to the business model. For
example, if you change your model supplier plans to pick up customizations from a
different project, then you must manually change the supplier plans in the generated
project.

You are now finished making your global customization and can regenerate your business
model. The generated classes will contain the modifications you made to the
corresponding CustomProject.

To use your customizations in future business models, just perform steps 5-7, as described
above.
Chapter 2Customizing Express Applications

Global Customization114
Customizing Forte Express Applications

Appendix A
Forte Express Example
Applications
Forte provides a number of example applications that illustrate how to use Forte Express.
This appendix provides instructions on how to install the examples, a brief overview of the
applications to help you locate relevant examples, and a section describing each example
in detail. Typically, you run an example application, then examine it in the various Forte
Workshops to see how it is implemented. You can modify the examples if you wish.

How to Install Forte Express Example Applications116
How to Install Forte Express Example Applications
You can run the Forte Express example applications only after you have imported them
into your repository, run a database script, modified the service properties in the business
models, and regenerated the applications.

Importing the Examples into your Repository
The examples are located in subdirectories under the
FORTE_ROOT/userapp/express/cl#/examples directory. The example applications are
stored as .pex files. You can import them with the Fscript utility or from the Project
Workshop. The simplest way to load all the examples is to import them by including the
ins_apps.fsc script in Fscript. The ins_apps.fsc script is located in the
FORTE_ROOT/userapp/express/cl#/examples/install directory.

� To import the examples:

1 Bring up Fscript in standalone mode and issue the following command:

This will import all of the Express example applications, compile them, and quit Fscript.

Creating Database Schema and Inserting Data
All of the Express examples rely on database tables. The following are scripts to create these
tables and are located in the FORTE_ROOT/userapp/express/cl#/examples/install
directory:

■ maketut.syb, which uses Sybase’s implementation of SQL

■ maketut.ora, which uses Oracle’s implementation of SQL

■ maketut.inf, which uses Informix’s implementation of SQL

Maketut.ora does not need to be edited. Simply use file redirection with sqlplus.
Maketut.inf does not need to be edited, but you must specify the test database you wish to
use on the dbaccess command line. If you will be using maketut.syb, edit the first line to
use an existing database. For example, create a database called testapps, then edit
maketut.syb to start with:

Use the standard mechanism for redirecting the maketut file to load the data into your
database. The scripts create database schema and insert data related to an order entry
system. They are the same tables used by the Tutorial example in A Guide to Forte Express.

fscript> UsePortable

In the lines below, replace the ‘#’ in ‘cl#’ with the

Compatibility Level for your release of Forte Express.

fscript> setenv FORTE_EP_EX_CL cl#

fscript> SetPath %{FORTE_ROOT}/userapp/express/cl#/examples/install

fscript> Include ins_apps.fsc

use testapps
Customizing Forte Express Applications

How to Install Forte Express Example Applications 117
Modifying Service Properties in the Business Model
Each Express example consists of at least four plans: the business model,
business_modelServices, the application model, and application_modelWindows. Before
you can run an example, you must modify the service properties in the business model so
that they are correct for your database. For each example you plan to run, open the
Business Model Workshop and double-click on the business service in the Business Class
Service List. The Service Properties dialog will open, as shown in Figure 35.

Figure 35 Service Properties Dialog

You will need to update the database fields (Database Manager, Database Name, User
Name, User Password) with values appropriate for your environment. See Accessing
Databases if you are unfamiliar with how to reference the Database Manager or Database
Name. Once you have updated the fields, click OK.

Regenerating Services
Once you have imported the examples and made the appropriate modification, you need
to regenerate the server code. In the Business Model Workshop, select the Generate Server
Code command from the File menu. Regenerating the code propagates the new Service
Properties you have set into the DBSession service object throughout the
business_modelServices project.

Detailed descriptions of how to run each example are provided in the “Application
Descriptions” on page 120.

Removing the Examples
If you want to remove all the examples from your workspace, you can do so by including
the rem_apps.fsc script in Fscript.

� To remove the examples:

1 Bring up Fscript and issue the following commands:

This will exclude all the Express example applications and quit Fscript.

fscript> UsePortable

fscript> SetPath %{FORTE_ROOT}/userapp/express/cl#/examples/install

fscript> Include rem_apps.fsc
Appendix AForte Express Example Applications

How to Install Forte Express Example Applications118
Removing the Database Tables
When you no longer need the database tables, you can drop them using scripts located in
the FORTE_ROOT/userapp/express/cl#/examples/install directory. The scripts are the
following:

■ droptut.syb, which uses Sybase’s implementation of SQL

■ droptut.ora, which uses Oracle’s implementation of SQL

■ droptut.inf, which uses Informix’s implementation of SQL

Droptut.ora does not need to be edited. Simply use standard file redirection with sqlplus.
Droptut.inf does not need to be edited, but you must supply the test database name on the
dbaccess command line. If you will be using droptut.syb, edit the first line to use the
database you chose above. For example, if you created a database called testapps, then edit
droptut.syb to start with:

Use the standard mechanism for redirecting the maketut file to remove the data from your
database.

use testapps
Customizing Forte Express Applications

Overview of Forte Express Example Applications 119
Overview of Forte Express Example Applications
This section provides an overview of the Forte Express example applications, organized by
general topic. The following tables list the example applications under the particular part of
the Forte Express system they demonstrate.

The Directory/Example column in each table shows the name of the subdirectory under
FORTE_ROOT/userapp/express/cl#/examples where you can find the .pex files for the
examples, and the name of the example. For the complete description of an individual
application, see “Application Descriptions” on page 120.

General-Purpose Express Examples

Customized Express Examples—Client

Customized Express Examples—Server

Directory/Example Description

tutorial/Tutorial This example is an on-line copy of the Tutorial described in A Guide to Forte Express.

Directory/Example Description

c_custom/CustomClientTutorialApp Illustrates how to customize classes generated by the Application Model.
Demonstrates many of the client customizations discussed in Chapter 2,
“Customizing Express Applications.” Uses global customizations and a
non-Express login window.

c_custom/CustomClient2App Illustrates how to make a read-only nested window updateable. Uses an
Express window as a login window. And shows how to manipulate data
before printing.

c_custom/CustomClient3App Illustrates how to synchronize data in a modeless linked window.

c_custom/CustomClient4App Illustrates how to manipulate the result set.

c_custom/CustomClient5App Illustrates how to access a nested result set. It also shows how to
generate records with unique sequence ids.

c_custom/CustomClient6App Illustrates how to manipulate the result set in an outline window. It also
shows how to delete and display rows in the result set in any window.

Directory/Example Description

s_custom/CustomQueryApp Illustrates how to query for table columns not displayed on the window, and
how to assign a value to the attribute associated with that table column and
save it. It also illustrates how to check if a query is for a certain class, and if the
target list contains a certain attribute.

s_custom/CustomQuery2App Illustrates how to construct your own query. This example performs select and
update queries.

s_custom/CustomQuery3App Illustrates how to construct your own query involving a complex join.
Appendix AForte Express Example Applications

Application Descriptions120
Application Descriptions
This section lists the example applications. Each example has four sections describing it.

The Description section defines the purpose of the example, what problem it solves, and
what Express features it illustrates. In all the examples with customizations, a table is
provided in the Description section. The table describes:

■ the customization features

■ the projects, classes, and methods where you can find the code

■ where you can find the topic discussed, either in Chapter 2, “Customizing Express
Applications,” or online, in Customization Manager Help

The online Help location is identified by the notation shorthand given in the table
below. You can also access all examples by title from the List of Examples, which is a
Help topic in the Customization Manager accessible from both the Business Model and
Application Model Workshops. Titles are listed in “Customization Manager Help Files”
on page 67.

Some long examples are only available from the List of Examples.

The following table gives the notation used in the Description section tables with the
Topic and Item you will find in Customization Manager online Help. (This table does
not list all Help Topics or Items, only those referenced in this chapter.)

The Pex Files section gives you the subdirectory and file names of the exported projects.
The examples are in subdirectories under the
FORTE_ROOT/userapp/express/cl#/examples directory. In general, you should follow the
instructions in “How to Install Forte Express Example Applications” on page 116 to install
all the examples. You can also import example applications individually if you wish. When

Notation Help Topic Help Item

W/BefLookup Window Before Lookup Link

W/Close Close

W/EventHdlr Event Handler

W/TabSquence Modify Tab Sequence

W/SetDisplay’d Set Displayed Search Criteria

W/SetWState Set Generated Window State

WI/AfterOpen Window Initialize After Window Open

W/InitNested Initializing as Nested

WD/FieldValCh Window Data Field Value Changed

WD/DisplayCR Display Current Record

WD/NotDisplay Select Not-Displayed Table Column

WD/ValFields Validate Fields

WD/ValRecord Validate Record

T&B/Search Toolbar and Buttons Search

T&B/Save Save

Ap/Start Application Start

LOE List of Examples

Q/InsUpDel Queries Insert/Update/Delete
Customizing Forte Express Applications

Application Descriptions 121
multiple .pex files are listed, there are supplier projects in addition to the main project. You
will need to import all the files listed to run the application. Be sure to import the files in
the order given so that dependencies will be satisfied.

In each example subdirectory you will find at least four files with the following name
scheme:

■ name_b.pex —the .pex file for the Business Model

■ name_a.pex—the .pex file for the Application Model

■ name_s.pex—the .pex file for the Services project generated by the Business Model

■ name_w.pex—the .pex file for the Windows project generated by the Application Model

Additional files are supplier projects such as custom domains and custom windows or
message catalogs.

The Special Requirements section identifies any special setup procedures you may need to
follow.

Finally, the To Use section tells you how to step through the application’s functions.

Caution Every example requires standard setup steps. Even if you only want to import one of the
example applications, you will still need to follow the instructions given in “How to Install
Forte Express Example Applications” on page 116 for building database schema, updating
service properties, and regenerating the application.

Tutorial
Description Tutorial is an on-line copy of the application described in the Tutorial
chapter in A Guide to Forte Express. We recommend you go through the Tutorial chapter to
create your own application. If you need to, you can load the Tutorial example we provide
and run and examine it. Many of the other Express examples use the Tutorial example as
their starting point.

Pex Files tutorial/tut_b.pex, tutorial/tut_a.pex, tutorial/tut_s.pex, tutorial/tut_w.pex.

Special Requirements None.

� To use the Tutorial application:

1 Open the TutorialApp Application Model and click the run icon.

Procedures for querying, updating, inserting, and deleting records are described in the
Tutorial chapter in A Guide to Forte Express.

CustomClientTutorialApp
Description CustomClientTutorialApp illustrates numerous customization techniques
for the client side of your application. The application:

■ has a login window that is called before the application comes up

■ uses window inheritance and Express global customization techniques to display a
standard logo on all the windows

■ checks whether windows are nested, and doesn’t display the logo if they are

■ illustrates record validation

■ illustrates field validation using a custom domain
Appendix AForte Express Example Applications

Application Descriptions122
The table below outlines all the customizations found in this example.

Customization Feature Project Class Method/EventHandler See...

Adding Processing Before/After
a Search

CustomClientTutorialAppWindows CustomerOrderWindow Search T&B/Search

Adding Processing Before/After
a Save

CustomClientTutorialAppWindows CustomerOrderWindow Save T&B/Save

Placing Default Search Criteria
in a Field

CustomClientTutorialAppWindows CustomerOrderWindow ClearFieldsForSearch W/SetDisplay’d

Detecting Select of New Record CustomClientTutorialAppWindows CustomerOrderWindow DisplayCurrentRecord WD/DisplayCR

Changing Generated
Component States

CustomClientTutorialAppWindows CustomerOrderWindow SetWindowState

ClearFieldsForSearch

W/SetWState

Setting a Window to Search
Mode

CustomClientTutorialAppWindows CustomerOrderWindow PostOpenInit WI/AfterOpen

Determining If a User has
Changed Data

CustomClientTutorialAppWindows CustomerOrderWindow Save page 77

Handling Events CustomClientTutorialAppWindows CustomerOrderWindow CustomEvents W/EventHdlr

Adding Processing If a Window
is Nested

CustomWindows LogoArrayWindow InitializingAsNested() W/InitNested

Closing the Current Window CustomClientTutorialAppWindows CustomerOrderWindow CustomEvents W/Close

Using a DrillDown Link to a
Callout to Close an Outline
Window

CustomClientTutorialAppWindows PartBaseWindow DrillDownLink page 79

Removing a Field from the Tab
Sequence

CustomClientTutorialAppWindows CustomerOrderWindow AddFieldsToTabSequence W/TabSquence

Providing Auto Append on
Insert in a Nested Array
Window

CustomClientTutorialAppWindows CustomerOrderWindow

LineItemWindow

DisplayCurrentRecord

CustomEvents

page 106

Using a Domain to Validate a
Field

CustomClientTutorialAppWindows

CustomTutDomains

LineItemWindow

PosNumDomain

ValidateField

Validate

WD/ValFields

Validating a Record CustomClientTutorialAppWindows CustomerOrderWindow ValidateRecord WD/ValRecord

Modifying a SQL Query to
Validate a Field

CustomClientTutorialAppWindows LineItemWindow ValidateField WD/ValFields

Calculating a Derived Field CustomClientTutorialAppWindows LineItemWindow FieldValueChanged WD/FieldValCh

Calculating a Derived Field from
Nested Window Data

CustomClientTutorialAppWindows CustomerOrderWindow

LineItemWindow

CountQuantity

DisplayCurrentRecord

CustomEvents

QuantityChanged

FieldValueChanged

DeleteRecordFromResultSet

page 96

Using a non-Express Window as
a Login Window

CustomClientTutorialAppWindows

CustomWindows

CustomClientTutorialAppBroker

CustomLoginWindow

RegisterWindow

Display

Ap/Start

Passing Arguments to Linked
Windows

CustomClientTutorialAppWindows CustomerOrderWindow

CustomerWindow

BeforeLookupLink

PostOpenInit

W/BefLookup

Global Customization of
Windows

CustomClientTutorialAppWindows

CustomWindows

CustomerOrderWindow

LineItemWindow

LogoArrayWindow

LogoFormWindow

LogoOutlineWindow

page 111
Customizing Forte Express Applications

Application Descriptions 123
Pex Files c_custom/ctutdom.pex, c_custom/custwin.pex, c_custom/cctut_b.pex,
c_custom/cctut_a.pex, c_custom/cctut_s.pex, c_custom/cctut_w.pex.

Special Requirements None.

� To use CustomClientTutorialApp:

1 Open the CustomClientTutorialApp Application Model and click the run icon.

You will see a Login window.

2 To continue to the application, enter ‘Rosebud’ and click the OK button.

To see the Login window fail, enter a bad password twice.

3 Notice that the CustomerOrder window came up in Search mode, rather than Edit
mode, which is the default.

4 As you experiment with the application, watch the console window. At a number of
customization points, a message will be written to the logger.

5 Notice the logo displayed at the top of the CustomerOrder window and the Customer
window. Notice that there is no logo above the nested LineItem window.

6 In the Customer window, notice that it has a different title, which has been passed to it
programmatically.

7 In the CustomerOrder window, notice that the Address field is not displayed. It has been
turned off programmatically.

8 Go into Insert Mode and insert a record. Try entering a negative value in the quantity
field in the LineItem array. You will see an error message when you tab out of the field.

9 Enter several LineItem rows with quantities that, when totalled, add up to more than
100. You will see an error message when you try to save this record.

10 Notice that when you go into Search mode, a Search criteria is placed in the Customer
Number field.

11 When you search for records or insert them, two derived fields are updated. The Cost
field is based on the Price of the Part and the Quantity in the LineItem array. The
ItemCount field is calculated based on the total of the values of the Quantity fields.
These fields are kept current whenever records are inserted, deleted, or changed.

12 Enter new LineItem rows. Enter an invalid value for the Part Number. You will see an
error message. Enter a valid value (‘90003’). This should be allowed.

13 Enter another new LineItem row. This time, leave the Part Number blank, but click on
the Lookup button to the right of the Part Number field. Select a Part record in the
outline field and double click on it. You should be returned to the LineItem array, and
the Part Number and Price fields should be filled in.

14 When tabbing around the CustomerOrder window, notice that the Requested Date field
is skipped. That field was removed from the tab sequence programmatically since a
default value is provided for the date.

15 When inserting LineItems in the array, notice that Auto Append is turned on. This
means you can insert new rows simply by tabbing out of the last field on the prior row,
or by clicking in the new row. It is not necessary to click the Insert button.

16 Finally, exit the application by clicking the Exit Now button.
Appendix AForte Express Example Applications

Application Descriptions124
CustomClient2App
Description CustomClient2App illustrates the use of an Express window as a login
window, and shows how to make a read-only nested window updateable. It also shows how
to print an Express window. It illustrates the case where you simply want to print the
window, and also illustrates how to manipulate data before printing.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, c_custom/cc2_a.pex,
c_custom/cctut_s.pex, c_custom/cc2_w.pex.

Special Requirements None.

� To use CustomClient2App:

1 Open the CustomClient2App Application Model and click the run icon. You will see a
Login window. To continue to the application, enter ‘Rita’, ‘Nick’, or ‘Warren’ as the User
Name, and ‘Rosebud’ as the password. Case is significant. Click the Log On button. To
see it fail, enter a bad password.

2 Notice that the Customer Order nested array window is updateable, in spite of the fact
that it does not have an aggregate relationship with its parent, the Customer window.

3 In the Customer window, select all customers. The first record should have an address
and phone number. Click the Print Window button. The printed output should show the
data exactly as it appears on the screen.

4 Then click the Print (No Address/Phone) button. Notice in the printed output that the
data in both the Address and Phone fields has been replaced with the text ‘Withheld for
Privacy’.

CustomClient3App
Description CustomClient3App illustrates how to synchronize data in a modeless linked
window.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, c_custom/cc3_a.pex,
c_custom/cctut_s.pex, c_custom/cc3_w.pex.

Special Requirements None.

Customization Feature Project/Class Methods/EventHandlers See...

Using an Express Window
as a Login Window

CustomClient2AppWindows

OrdUserWindow class

CommandLinkToCUSTOMERLink1

AfterCustomerLink1Open

StartMethod

LOE,
page 99

Making a Read-Only
Nested Window
Updateable

CustomClientTutorial

CustomClient2App

(examine links in Business and Application
models)

Printing an Express
Window

CustomClient2AppWindows

CustomerWindow

CustomEvents

PrintWindow

Manipulating Data Before
Printing an Express
Window

CustomClient2AppWindows

CustomerWindow

CustomEvents

PrintWindowWithChanges

Customization Feature Project/Class Methods/EventHandlers See...

Synchronizing Data in a
Modeless Linked Window

CustomClient3AppWindows

CustomerWindow class

AfterCUSTOMERORDERLink1Open

DisplayCurrentRecord

LOE,
page 99
Customizing Forte Express Applications

Application Descriptions 125
� To use CustomClient3App:

1 Open the CustomClient3App Application Model and click the run icon. You will see a
Customer window. Search for a customer or customers.

2 Open the CustomerOrder window with the Lookup button.

3 Use the arrow keys in the Customer window to scroll through your result set. Notice the
values displayed in the CustomerOrder window change as the Customer changes in the
Customer window.

CustomClient4App
Description CustomClient4App illustrates how to manipulate the results set.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, c_custom/cc4_a.pex,
c_custom/cctut_s.pex, c_custom/cc4_w.pex.

Special Requirements None.

� To use CustomClient4App:

1 Open the CustomClient4App Application Model and click the run icon. You will see a
Customer window. Go into Search mode and search for all customers.

2 Click the Check Query button. A message will be written to the logger stating that the
business class has not been updated.

3 Click the Change Address button. You will see a new street address displayed in the
ADDRESS field.

4 Click the Check Query button again. The logger message will now state that the
business class and the address field have been updated.

5 Click the Reset button.

6 Click the Check Query button. A message will be written to the logger stating that the
business class has not been updated.

7 Click the Loop Thru button. For each customer record, a message will be written to the
logger, stating whether the CustomerNumber is less than or greater than 100.

Customization Feature Project/Class Methods/EventHandlers See...

Setting the Value of a
Displayed Field

CustomClient4AppWindows

CustomerWindow class

CustomEvents page 83

Checking Query
Information on a
BusinessClass

CustomClient4AppWindows

CustomerWindow class

CustomEvents page 84

Looping Through a
Displayed Result Set

CustomClient4AppWindows

CustomerWindow class

Custom Events page 85
Appendix AForte Express Example Applications

Application Descriptions126
CustomClient5App
Description CustomClient5App illustrates how to access a nested result set. It also shows
how to generate unique sequence ids for part of a composite key in a component table of a
one-to-many aggregate association.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, c_custom/cc5_a.pex,
c_custom/cctut_s.pex, c_custom/cc5_w.pex.

Special Requirements None.

� To use CustomClient5App:

1 Open the CustomClient5App Application Model and click the run icon. You will see a
CustomerOrder window with a nested LineItem window. Go into Search mode and
search for all customer orders.

2 Scroll through your result set until you find a Customer Order record that has a few
LineItem records. Click the Insert button below the LineItem array. Add a couple
records. The LineItemNumber column is read-only. Just supply values for the Quantity
and PartNumber fields. Add at least one PartNumber 90001.

3 Click the Save icon in the CustomerOrder window. When the record is saved, notice that
sequential LineItemNumbers have been assigned. The first new LineItemNumber is
always the highest existing LineItemNumber plus one.

4 Experiment with inserting and deleting LineItems.

5 Click the Loop Thru button. This will loop through the LineItem array for the current
CustomerOrder record, and write a message to the logger each time it finds a LineItem
record with a PartNumber of 90001.

CustomClient6App
Description CustomClient6App illustrates how to manipulate the results set in an
ExpressOutlineWindow and how to remove or display a row in a result set in any window.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, c_custom/cc6_a.pex,
c_custom/cctut_s.pex, c_custom/cc6_w.pex.

Special Requirements None.

Customization Feature Project/Class Methods/EventHandlers See...

Accessing a Nested
Result Set

CustomClient5AppWindows

CustomerOrderWindow class

CustomEvents page 86

Generating Records with
Unique Sequence IDs

CustomClient5AppWindows

CustomerOrderWindow class

Save

Sequence

LOE,
page 99

Customization Feature Project/Class Methods/EventHandlers See...

Using Displayed Result
Sets with Outline Fields

CustomClient6AppWindows
CustomerWindow class

CustomEvents page 85

Removing Rows from a
Result Set

CustomClient6AppWindows

CustomerWindow class

CustomEvents page 86

Displaying a Row in a
Result Set

CustomClient6AppWindows

CustomerWindow class

Custom Events page 86
Customizing Forte Express Applications

Application Descriptions 127
� To use CustomClient6App:

1 Open the CustomClient6App Application Model and click the run icon. You will see a
Customer outline window. Go into Search mode and search for all customers.

2 Click the Loop Thru button. A message will be written to the logger stating which
customer numbers are greater than or less than 100.

3 Click the Add Row button. You will see a new row displayed.

4 Select a row. Click the Remove row button. The row will disappear.

5 Click the Display Row 2 button. The second row in the result set will be highlighted.

CustomQueryApp
Description CustomQueryApp illustrates how to query for table columns not displayed
on the window, and how to assign a value to the attribute associated with that table column
and save it. It also illustrates how to check if a query is for a certain class, and if the target
list contains a certain attribute.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, s_custom/cq_a.pex,
c_custom/cctut_s.pex, s_custom/cq_w.pex.

Special Requirements None.

� To use CustomQueryApp:

1 Open the CustomQueryApp Application Model and click the run icon. You will see a
Customer form window which is missing the address field.

2 Examine the console window. Information about the query and the target list will be
written there.

3 Enter values for a new customer. Save this record, and make a note of the
CustomerNumber.

4 Exit CustomQueryApp.

5 You may now want to confirm that a value for address field was assigned
programmatically. You can do this by directly querying the Customer table in your
database, or by running the Tutorial example, opening the Customer window in that
application and searching for the Customer you just added. You should see the value
‘River Road’ in the address field.

Customization Feature Project/Class Methods/EventHandlers See...

Selecting a Table Column
not Displayed on a
Window

CustomQueryAppWindows

CustomerWindow class

GetRecordTemplate WD/NotDisplay

Checking if a Query is for a
certain class

CustomQueryAppWindows

CustomerWindow class

GetRecord Template page 87

Checking if a Target List
Contains certain Attributes

CustomQueryAppWindows

CustomerWindow class

GetRecord Template page 87

Using the LogAttr method
to Save Attributes not
Displayed on a Window

CustomQueryAppWindows

CustomerWindow class

Save page 83
Appendix AForte Express Example Applications

Application Descriptions128
CustomQuery2App
Description CustomQuery2App illustrates how to construct your own query. It executes
select and update queries.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, s_custom/cq2_a.pex,
c_custom/cctut_s.pex, s_custom/cq2_w.pex.

Special Requirements None.

� To use CustomQueryApp:

1 Open the CustomQuery2App Application Model and click the run icon. You will see a
Customer form window.

2 Examine the console window. The constructed queries are run automatically after the
window opens. Information about the customer records will be written there. You will
see the customer numbers returned by the select statement, the customer numbers
after three new customers are added to the CUSTOMERClass array, and the customer
numbers after one new customer has been deleted and the update has been executed.

3 In the CUSTOMER window, go into Search mode and select all customers. As you scroll
through the records, you should see the two new customers.

CustomQuery3App
Description CustomQuery3App illustrates how to construct your own query involving a
complex join. It executes only a select query.

Pex Files c_custom/ctutdom.pex, c_custom/cctut_b.pex, s_custom/cq3_a.pex,
c_custom/cctut_s.pex, s_custom/cq3_w.pex.

Special Requirements None.

� To use CustomQueryApp:

1 Open the CustomQuery3App Application Model and click the run icon. You will see a
CustomerOrder form window.

2 Examine the console window. The constructed query is run automatically after the
window opens. The results of the select query, which joins four tables, will be written
there.

Customization Feature Project/Class Methods/EventHandlers See...

Constructing a New Select
Query

CustomQuery2AppWindows

CustomerWindow class

ComposeQueries page 89

Constructing a New
Update Query

CustomQuery2AppWindows

CustomerWindow class

ComposeQueries page 91

Customization Feature Project/Class Methods/EventHandlers See...

Constructing a New Select
Query involving Complex
Join

CustomQuery3AppWindows

CustomerOrderWindow class

ComposeQueries page 89
Customizing Forte Express Applications

Index
A
Adaptive Command Interface property

description 51
using 37

AfterChildWindowChange method
overriding 97

AfterValueChange event 81

Aggregation Properties dialog 46

Aggregation property 46

Always Generate Custom Classes option 58

Always Generate Custom Classes toggle
creating a customizable hierarchy of

classes 57
turning off to delete classes 62, 64

Append on insert, in array windows 106

appl_modelWindows project
description 19
generated classes 21

Application model
business class property sheet 50
callout property sheet 53
classes generated from 21
Custom Generation Options 49
Customize... command 49
generated preferences property

sheet 49
link property sheet 51
main property sheet 48

Application Model Properties dialog 48

Array windows, providing automatic append
on insert 106

Association Name property 45

Association Properties dialog 45

Association property 52

Attribute Name property 46

Attribute Properties dialog 46

Attributes
IDs 82
programmatically changing value of 83

Automatic append in array windows 106

B
BusinessClass class

about 25
attribute IDs 82
property sheet 50
record status 82

BusinessClient class
about 28

BusinessDBMgr class
about 30

BusinessKey class
about 27

BusinessMgr class
about 29

Business model
aggregation property sheet 46
association property sheet 45
attribute property sheet 46
business class property sheet 44
classes generated from 20
Custom Generation Options 44
Customize... command 44

BusinessQuery class
about 26

Business rules (client) 81

BusinessServiceMgr class
about 30

ButtonSetDesc class
about 38

130 Section C
C
Callout

example 79
property sheet 53

Class diagrams
CommandMgr 37
CustomerOrderClass 25
CustomerOrderMgr class 29
CustomerOrderQuery 25
CustomerOrderWindow 32
legend 22
LinkInfo 38
TutorialAppBroker 35
TutorialClient 27
TutorialServiceMgr class 29

Class Name property 45

Class Properties dialog 44

Client business rules, window validations 81

ClientConcurrency class 29

Column Heading property 46

CommandLinkTolink_nameLink# method
example 95

CommandMgr attribute
example 76

CommandMgr class
about 37

CommandSetDesc class
about 38

Command Set property 50

command syntax conventions 11

Concurrency property 47

CustomClient2App sample application 124

CustomClient3App sample application 124

CustomClient4App sample application 125

CustomClient5App sample application 126

CustomClient6App sample application 126

CustomClientTutorialApp sample application 121

CustomEvents event handler
example 98, 106

Custom Generation Options command
effect on future classes in the model 57
options dialog 44, 49
turn toggle off to delete classes 62

Customizable classes
automatically creating 58
deleting 62
naming conventions 22, 57

Customization Manager 59–66
about 57
Application Model examples 69
application-wide customizations 66
Business Model examples 68
deleting customizations 62
deleting menu customizations 65
deleting window customizations 65
online help and examples 5967–71
symbol that customization exists 63
when multiple customizations map to a

method 63

Customize command 44, 49

Customizing 55
automatic append in array windows 106
business class, database mapping 101
business rules, adding to client 81
callout to close an outline window 79
creating an initialized object in a window 78
determining if a user has changed data 77
disabling the Preferences Window command 77
displayed result set, looping through 85
displaying a row in a result set 86
displaying the Insert button 77
display node, getting currently selected 78
display node, replacing currently selected 78
domains 108
error reporting 74
event handling 73
field, accessing value in search mode 83
field, getting/setting value of 83
finding the focus field 77
general considerations 56
generated window classes 76
global 111
hiding the Insert button 77
inheritance 102
internationalization 75
local and global 74
locating where to 72
LogAttr method, example 83
outline fields 78
outline index node, getting currently selected 78
outline index node, replacing currently

selected 79
outline window, closing with callout 79
Customizing Forte Express Applications

131Section D
Customizing (continued)
queries 87
query, constructing new 88
query, modifying generated 87
result set, accessing nested 86
result sets, manipulating 82
result sets, removing rows from 86
selecting into a list field 108
sequence IDs, generating unique 99
SQL, examining generated 93
synchronizing data in a modeless linked

window 99
TOOL SQL statements, example 93
using displayed result sets with outline fields 85
widget states 76
widget states, modifying customized 77
window validations 81

Custom property 46

CustomQuery2App sample application 128

CustomQueryApp sample application 127

D
Database Column property 46

Database Manager property 47

Database Name property 47

Database Table property 45

Database tables, mapping business classes to 102

Default Interface property 50

DeleteRecordFromResultSet method
overriding 98

Deleting customizable classes 62

Derived fields, calculating from nested window
data 96

Dialog Duration property 47

Direction property 45, 50

DisplayCurrentRecord method
overriding 97, 100, 107

Display property 52

Domain property 46

Domains
selecting into a list field 108
using 108

DrillDownLink method, example 79

E
Event handlers

customizing 73

Example applications
CustomClient2App 124
CustomClient3App 124
CustomClient4App 125
CustomClient5App 126
CustomClient6App 126
CustomQuery2App 128
CustomQueryApp 127
Tutorial 121

ExpressArrayWindow class
about 34

Express classes
customizable 20, 57
read-only 56

ExpressClassWindow class
about 34

ExpressContainerWindow class
about 34

ExpressFormWindow class
about 34

ExpressOutlineWindow class
about 34

ExpressServices project
class hierarchy 18
overview 17
subclassing 111

ExpressWindow class
about 34

ExpressWindows project
class hierarchy 18
overview 17
subclassing 111

F
Fields

accessing value in search mode 83
calculating derived from nested window data 96
getting/setting value of displayed field 83

Field Title property 46

FieldValueChanged method
overriding 98

Field Width property 46

Forte Express, architecture overview 16

From/To Attributes property 46
Index

132 Section G
G
Generated classes

customizing 57
description 20
from application model 21
from business model 20
modifying 72
overriding methods 72
read-only 20
Tutorial application 24

Generated Preferences Dialog 49

GetAppData method
example 79

GetColumnName method
overriding 102

GetCurrentDisplayNode method
example 78

GetCurrentIndexNode method
example 78

GetCurrentRecord method
example 86

GetFocusField method
example 77

GetInitialRecords method
example 80

GetInitialSearch method
example 80

GetParentCurrentRecord method
example 80

GetParentWindow method
example 80

GetRecordTemplate method
overriding 105

GetTableName method
overriding 101

Global customization 74, 111

H
HandleValueChange method

example 81

I
Inheritance, using in business models 102

InstanceStatus attribute
values 82

Internationalization of Express windows 75

IsResultSetModified attribute
example 77

K
Key property 46

L
Layout of Fields property 50

Links, property sheet 51

LogAttr method
example 83

Login ID, verifying 95

Login windows
closing 96
using Express windows 94
verifying ID and password 95

M
MenuSetDesc class

about 38

Methods, how to override 72

Mode status property 52

Multiplicity property 46

N
Name property 53

Naming conventions of generated classes 22

NewObject method
example 78

O
Object interaction diagrams

notation 39
save 41
search 40
window close with unsaved changes 43

Object runtime diagrams, window startup 42

Option Name 48

Outline fields, customizing 78

Overriding methods 72
Customizing Forte Express Applications

133Section P
P
Password, verifying 95

PDF files, viewing and searching 14

Pre-Fetch Dependent Records property 52

Q
Queries

adding columns to the select list 87
adding constraints to the WHERE clause 88
constructing new 88
customizing 87
examining generated SQL 93
modifying generated 87
using TOOL SQL statement 93

QueryConstraint class
about 27

R
Read-only Express classes

customizing 56
description 20

Read status property 52

RemoveCommand method
example 77

Reset method 85

Result sets
accessing nested 86
displaying a row 86
getting/setting value of a displayed field 83
looping through displayed 85
removing rows from 86
using displayed result sets with outline fields 85

S
Save button, pressing (object interaction

diagram) 41

Search button, pressing (object interaction
diagram) 40

Search method 40

Select method 40

Send Only Changed Fields on Update property 45

Sequence numbers, generating unique 99

ServiceConcurrency class
about 31

Service Name property 47

Service Properties dialog
connection page 48
database page 47
general page 47

SetCurrentDisplayNode method
example 78

SetCurrentIndexNode method
example 79

SetWindowState method
overriding 107

SqlQuery class
about 27

StartMethod method
overriding 96

Supplier plans 111

T
ToolbarSetDesc class

about 38

TOOL code conventions 11

TOOL Code property 53

Tutorial sample application
description 121
generated classes 24

Type property 51

U
User Name property 48

User Password property 48

V
ValidateField method

example 81

Value (service connection property) 48

Visibility property 47
Index

134 Section W
W
Widgets

customizing state of 76
modifying built-in widget states 76
modifying customized widget states 77

Window classes, customizing 76

Window close (object interaction diagram) 43

Window Name property 50

Windows
automatic append in array windows 106
creating Express login windows 94
synchronizing data in a modeless linked

window 99

Window startup
object interaction diagram 42

Wrap property 50
Customizing Forte Express Applications

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	1 Express Application Architecture
	Overview
	Forte Express Projects
	business_modelServices Project
	appl_modelWindows Project

	Classes Generated from the Business Model
	business_modelServices Project Classes
	Customizable Subclasses in business_modelServices

	Classes Generated from the Application Model
	appl_modelWindows Project Classes
	Customizable Subclasses in appl_modelWindows

	Class Diagrams
	Declared Type and Runtime Type

	Classes Generated from the Tutorial Application
	CUSTOMERORDERClass and CUSTOMERORDERQuery
	BusinessClass
	CUSTOMERORDER[Base]Class
	CUSTOMERORDERClass
	BusinessQuery
	CUSTOMERORDER[Base]Query
	CUSTOMERORDERQuery
	BusinessKey
	SqlQuery
	QueryConstraint

	TutorialClient Class
	BusinessClient
	TutorialBaseClient
	TutorialClient
	ClientConcurrency

	CUSTOMERORDERMgr and TutorialServiceMgr
	BusinessMgr
	BusinessDBMgr
	CUSTOMERORDER[Base]Mgr
	CUSTOMERORDERMgr
	BusinessServiceMgr
	TutorialBaseServiceMgr
	TutorialServiceMgr
	ServiceConcurrency

	TutorialAppWindows Project
	CUSTOMERORDERWindow Class
	ExpressWindow
	ExpressContainerWindow
	ExpressClassWindow

	TutorialAppBroker Class
	ApplicationBroker
	TutorialAppBaseBroker
	TutorialAppBroker
	TheBroker

	CommandMgr
	CommandMgr
	CommandSetDesc
	ButtonSetDesc, MenuSetDesc, ToolBarSetDesc

	LinkInfo

	Runtime Scenarios
	Object Interaction Diagram Notation
	Press Search Button
	Press Save Button
	Window Startup
	Window Close With Unsaved Changes

	Workshop Properties and Generated Classes
	Business Model Workshop
	Custom Generation Options
	Business Class Properties
	Association Properties
	Attribute Properties
	Service Properties

	Application Model Workshop
	Application Model Properties
	Generated Preferences
	Custom Generation Options
	BusinessClass Window Properties
	Link Properties
	Callout Properties

	2 Customizing Express Applications
	Overview
	General Considerations
	Creating Customizable Classes
	Creating a Single Customizable Class
	Creating Customizable Classes for All Classes

	Customizing With the Customization Manager
	Using the Customization Manager
	Deleting Customizations
	Deleting Specific Customizations
	Deleting a Class
	Deferred Deletion of Customizations
	Deleting Window and Menu Customizations

	Application-Wide Customizations

	A Roadmap to Customization Examples
	Customization Manager Help Files
	Business Model Customization Examples
	Application Model Customization Examples
	Complex Examples

	Syntax of Examples

	Customizing Manually
	Locating Where to Customize
	Overriding Methods in a Superclass
	Customized Event Handling
	Explicitly Posted Events

	Local and Global Customizations
	Error Reporting
	Internationalizing Express Windows

	Customization Techniques: Window Classes
	Setting Widget State
	Built-in Widget States
	Customized Widget States

	Finding the Focus Field
	Determining If a User Has Changed Data
	Creating a New Instance of a Business Class in a Window
	Working with an OutlineField
	Getting the Currently Selected Display Node
	Getting the Currently Selected Outline Index Node
	Replacing the Currently Selected Display Node
	Replacing the Currently Selected Outline Index Node

	Using a Drilldown Link to a Callout to Close an Outline Window
	Getting Information Passed by the Parent Window
	Getting Application-Specific Data
	Getting the Initial Result Set
	Getting the Initial Query
	Get Parent Current Record
	Get Parent Window

	Customization Techniques: Business Rules on the Client
	Window Validations
	Field Validation Sequence of Events

	Other Business Rules

	Customization Techniques: Result Sets
	Business Class Record Status
	BusinessClass Attribute IDs (ATTR_)
	Getting and Setting the Value of a Displayed Field
	Accessing the Value of a Field in Search Mode

	Changing the Value of an Attribute
	Using the LogAttr Method
	Checking Query Information on a BusinessClass Object

	Looping Through a Displayed Result Set
	Using Displayed Result Sets with Outline Fields

	Removing Rows from a Result Set
	Displaying a Row in a Result Set
	Accessing a Nested Result Set

	Customization Techniques: Queries
	Modifying Generated Queries
	Select Queries

	Constructing a New Query
	Select Query

	Complex Select Query
	Update Query

	Examining the Generated SQL
	Using TOOL SQL Statements

	Complex Examples
	Using an Express Window as a Login Window
	Calculating a Derived Field From Nested Window Data
	Generating Records with Unique Sequence IDs
	Synchronizing Data in a Modeless Linked Window
	Customizing the Database Mapping of a Business Class
	Using Inheritance in Business Models
	Restricting the Query to Select a Single Row

	Providing Automatic Append on Insert in an Array Window
	Using Domains
	Selecting into a List Field From a Database Table

	Global Customization
	Modifying Window Subclasses of ExpressWindows Classes
	Customizing Subclasses of ExpressServices Classes

	A Forte Express Example Applications
	How to Install Forte Express Example Applications
	Importing the Examples into your Repository
	Creating Database Schema and Inserting Data
	Modifying Service Properties in the Business Model
	Regenerating Services
	Removing the Examples
	Removing the Database Tables

	Overview of Forte Express Example Applications
	General-Purpose Express Examples
	Customized Express Examples—Client
	Customized Express Examples—Server

	Application Descriptions
	Tutorial
	CustomClientTutorialApp
	CustomClient2App
	CustomClient3App
	CustomClient4App
	CustomClient5App
	CustomClient6App
	CustomQueryApp
	CustomQuery2App
	CustomQuery3App

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

