> Sun

microsystems

Customizing WebEnterprise Designer Applications

Release 1 of Forte™ WebEnterprise

Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-6680-01
October 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte,and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents

Preface

Organizationof ThisManual i, 12

CoNVENEIONS.ttt i e e 13
Command Syntax Conventions, 13
TOOL Code Conventions ov v it i e e e 13

The Forte DocumentationSet iiiiiirinn. 14
Forte AGL 14
Forte EXPress. . .o 14
Forte WebEnterprise and WebEnterprise Designer............... 14

Forte Example Programs.ot iiiii it i e ennnnaens 15

Viewing and Searching PDFFiles. iiinnnn. 16

WebEnterprise Designer Application
Architecture

Logical Architecturettt e 18
Runtime Architecture. 19
Web Application Server Architecture 20

Runtime Objects by Partition. 20
Use of EXpress Services. . ..ot 22

WebEnterprise Designer Projects., 23
HTTP Libraryo e e e e 24
The ExpressHandlers Project i 25
The htm/_modelHandlers Project 26

Customizable Subclasses in htm/_modelHandlers 27
Generated HTML Templates 27

WebEnterprise Designer Class Interactions. 28

Class Interaction Diagramt 28
Declared Type and Runtime Type i .. 28
Life of a Template Requestt 30
Runtime Scenariosot e 31
Object Interaction Diagram Conventions 31
EXPressHT TPACCESS . . v i e e e ettt 32
Starting the AccessService Service Object..................... 32

Customizing ExpressHTTPACCESSo v i i e 33

EXPressSCannert 34
Starting the ScannerService Service Object. 34
ExpressClassHandler e 35
Runtime Control Flow 35
Referenced Objects.ot 36
Field Identification i 36
Data Transfer. 37
Result Sets 37
Connections Between Handlers. 38
ExpressLogonHandler. 39
Customizing ExpressLogonHandler.......................... 39
ExpressPageData e 39
ForeignResult Sets i i 39
ExpressValueGenerator i 40
ExpressLookupInfo. 40
Modifying the Displayed Null Value 40
WebEnterprise Designer HTML Template Elements 41
LinKs .. 41
URL Parameters e e 41
Variables e 44

2 Customizing WebEnterprise Designer Application Classes

OVEIVIBW . oottt ittt it e e e e i e e a s a s ansnnennennsnnss 48
Before YouBegint 48
Creating Customizable Classes i, 48

Creating a Single Customizable Page Handler Class. 49
Creating a Full Set of Customizable Page Handler Classes. 49

Customizing With the Page Handler Customization Wizard 51
Customizing a Page HandlerClass 52
Customizing a Generated HTML Template. 53
Deleting Customizations, 54

Deleting Specific Customizations. 54
Deleting All CustomizationsinaClass. 55
Making Application-Wide Customizations. 56

A Roadmap to Customization Examples 57
Page Handler Customization Wizard Help Files. 57
Page Handler Customization Wizard Customizations............. 58

CustomizingManually it 60
Locating Where to Customize 60
Overriding Methods in a Superclass 60
Local and Global Customizations 61
Error Reporting.o e 61

Working with Business Classes.c.oviiriirinrrnnrnnenns 62
Business Class Record Status 62
BusinessClass Attribute IDs (ATTR.). i 62
Changing the Value of an Attribute. 63
Checking the Status of a BusinessClass Object................... 63
Undoing Changes Made to a BusinessClass Object 63

Customizing WebEnterprise Designer Applications

Customization Techniques: ClassHandler Classes. 64
Creating a New Instance of a Business Class 64
Gettingthe ResultSet i i 64
Getting the Initial Query. 64

Customization Techniques: BusinessRules 65
WheretoImplement 65
Business Rules onthe Browser 65

Customization Techniques:Dataot iinnnnnns 66
Formatting Fields. i 66
Formatting Custom Fields it 66
Decoding or Validating Fields 66
Processing Custom Fields on an HTML Form Submission 67

Processing an Insert or Update Form 67
Processinga SearchForm. 67
Global Customization.o 68

Customizing Generated HTML Templates

How WebEnterprise Designer Uses HTML Templates 70
CommonTemplates. i 70
Business Class Page Templates. 70

Link Page Templates. e 71
Logon Page Templates.t 72
Page Design Templates i i 72
Simple Page Design Templates 72
Fancy Page Design Templates, 73
Fancy Page Design Variations 73
Customizing HTML Templatest ininnnnnnnn 74
Customization TYPesottt 74
Where to Customize 74
What Not to Customize.t 75
Regenerating After Customizing.............. .o nnnnn. 76
Scenario 1: HTML ChangesOnly i 76
Scenario 2: HTML and Model Changes. 76
Scenario 3: Conflicting HTML and Model Changes 77
Customization Examplesttt 78
Conventions Used with the Examples. 78
Example: Customizing a Field on aSearchPage 79
Example: Customizing a Font Size ona DataPage 81

Customizing Page Designs

About Page Designs, Templates, andPages 86
Page Designs and Web Page Production 86
When to Customize Page Designsc.iiviiennnn.. 87

Page Design Elements and HTML Template Generation 88
Page Design File Namesand Selectors 88
Page Design Code Generation Processing 91
Guidelines for Customizing Code Generation Directives 92

Contents

Example: Customizinga PageDesignc.oviiriinnnnnns 93

Step 1. Create a New Design Directory. 93
Step 2. Identify the Design with a Bitmapand Text 94
Step 3. Clear Existing Generated HTML Templates 95
Step 4. Customize the Design Files............. 95
Step 4.1. Remove the Menu From the DataFile 95
Step 4.2. Modify the Menu DesignFile....................... 97
Step 4.3. Modify the Display DesignFile 98
Step 5. GenerateandlInspect i, 929
Step 6. Fine-Tune the Customized Design 101

Customizing Page Styles

HTML4.0 and StyleSheets i 104
WebEnterprise Designer and Style Sheets 104
Using HTML Style Elements with WebEnterprise Designer.......... 105
Identifying the Style SheettoUse............................ 105
Using HTML Attributes. o i e 105
The class Attribute 105

The id Attribute 106
Using HTML Style Elements i 106
CustomizingPage Styles.t 108
Outline of Basic Procedures., 108
Creating the New Style SheetFile........ 109
Modifying Existing Elements. 109
Adding New Elements i 109
Identifying the Style with a Bitmapand Text................... 111
Considering the Browserot 112
Browser Cachingot e 112
Browser Independence. i 112

Customizing Error Pages

WebEnterprise Exception Handling 114
Default Exception Processingo 114
WebEnterprise Exception Result Set Variables. 116

HTMLScannerException Class Variables. 116
HTTPAccessException Class Variables. 117
Variables for All Other Exceptions. 117

Customizing Error Pages.o oot i it e e ie e ae e 118
Modifying Default ErrorPages 118
Creating Custom ErrorPages.t 118
Customizing a WebEnterprise Designer HTML Application 118

The GetErrorTemplate Method 119
Example: Application-Specific Error Template 120
Example: Application-Specific Template with Custom Data 120
Customizing HTTPAccessExceptionso .. 121
Errors in Error Customization 122

Customizing WebEnterprise Designer Applications

Customization Examples

Introduction. e 124
Methods for Editing Generated Files 125
Using the Page Handler Customization Wizard............... 125
Customizing TOOL Methods Manually 125
Customizing Generated HTML and Text Files Manually 125
Example: Adding a Lookup ReferencePage 126
What This Example Does.t 126
Creatinga Lookup Link 127
Step 1. Add a Reference Page to the HTMLtutApp Model. 127

Step 2. Capture the SearchPage URL. 128

Step 3. Create a Link with the Captured URL 129

Step 4. Pass the Selected FieldValue 131
Testing Your Work Before the Final Step 132
Step 5. Remove the CustomerOrder-CustomerList Link 133
Usage Recommendations 133
Example: Passing Data with a Command Link 134
What This Example Does.t 134
Creating the Customization 135
Step 1. Add Insert and Update Commands (If Required) 135

Step 2. Add a VariabletoHoldtheValue 136

Step 3. Single Out One Instance of theData................. 136

Step 4. Populate the Order Number with Incoming Data 137
Testing Your Work oo 138
Example: Automatically Populating Data on an Insert Page......... 139
What This Example Does.t e 139
Creating the Customization 139
Step 1. Add a NewOrder Page to the HTMLtutApp Model 139

Step 2. Add a Variableto HoldtheValue 141
Testing Your Worko 142
Example: Adding a Drop List for Entering and Formatting Dates. 143
What This Example Does. i, 143
Creating Date-Formatting Drop Lists 144
Step 1. Define Drop Lists for Date Elements 144

Step 2. Override the Beforelnsert Method 145
Testing Your Worko e 146
Example: Removing a JavaScript Validation from a Page Mode.. 147
What This Example Does.t e 147
Creating the Customization 148
Step 1. Apply the JavaScript to a Customer Page Field......... 148

Step 2. Remove the JavaScript Validation from a Template. 149
Testing Your Worko 150
Example: Displaying the Record JustInserted 151
What This Example Does. i, 151
Creating the Customization 151
Testing Your Work oo 152

Contents

Example: Validatinga Whole Form oio... 153
What This Example Does e 153
Creating a Field Constraint with JavaScript 153

JavaScript Boilerplate 154
Step 1. Add the JavaScript Validation to the Template......... 154
Step 2. Add a Value Attribute to the Field Descriptions 156
Step 3. Modify the InsertButton. 156
Testing Your Worko e 157

Example: Making a Field Mandatorycccivinn... 158
What This Example Doest 158
Creating a Field Constraint with TOOL. 159
Testing Your Worko e 160

Drop List or Radio List Example:

Entering Lookup Information Manually....................... 161
What This Example Does e 161
Creating the Customization. 161
Step 1. Add a Drop List Validationtothe Field 161
Step 2. Generate the LookupFile.......................... 162
Step 3. Customize the Lookup File with Your Values 162
Testing Your Worko e 164
Drop List and Radio List Example:
Removing <Not Selected>and <None> 165
What This Example Doest 165
Creating the Customization. o, 165
Technique 1: Customizing the Page Mode Template........... 166
Technique 2: Customizing the Scripts File. 167
Testing Your Work e 168

8 Customizing Application Security

Security and HTML Applications.c oot 170
Authenticating Users.ottt e it aeaenns 171
Creatingthe LogonPage., 171
Code Generated for the LogonPage. 172

How the Logon Pageis Activated 172
Integrating the Application with an Authentication System 173
Example: Adding LogonSessionCode 174
Restricting Access to ApplicationPages.ccoivvinnat. 176
Sharing a Security Environment Across HTML Applications 178
Customizing Subsidiary HTML Models to Share Security.......... 179
Customizing the Main HTML Model to Share Security 179
ReStriCtioNs e 180
SUMMaAIY .« o ettt e e e e 180
Session TimMeout.t e i i 181
How Session TimeoutWorks 181
Finding the Ideal Setting for Session Timeout 182
Example: Customizing Session Timeout 183
Other Security Customizations. cciiiiirnn.n. 184

Customizing WebEnterprise Designer Applications

Partitioning and Deploying a
WebEnterprise Designer Application

About Partitioning a WebEnterprise Designer Application.......... 186
About HTML Application Projects and Service Objects........... 186
business_modelServices Service Objects 187
html_modelHandlers Service Objects 188
Relationship Between the Service Objects..................... 189
Creating a Default Partitioning Configuration 190
Modifying the Configuration 191

Testing the Application in a Distributed Environment.............. 192

Deploying the Application i 193
Making the Application’s Template Files Accessible

to the ScannerService SO. i 194
Copying the Application’s Template Files

to the Scanner Partition. L. 195
Setting Document Root on the

ScannerService Service Object Partition 195

Running the Application. inans 196
The AccessService Log File. i i 198
Memory Considerations.t 198

Indexciiiiiiinrennannennnenne-199

Contents

e

Customizing WebEnterprise Designer Applications |

Preface

This manual describes the architecture of applications created by Forte WebEnterprise
Designer. The architecture includes both a hierarchy of TOOL classes and generated HTML
templates. Once you are familiar with the WebEnterprise Designer architecture, you can
begin to customize your applications.

This manual is intended for application developers. We assume that you:
have programming experience
are familiar with SQL and your particular database management system
are familiar with HTML

understand the basic concepts of object-oriented programming as described in A Guide
to the Forte 4GL Workshops

have used the Forte Repository Workshop

have a basic understanding of WebEnterprise Designer as described in Getting Started
with WebEnterprise Designer

understand the basic concepts of WebEnterprise as described in A Guide to
WebEnterprise

12 Organization of This Manual

Organization of This Manual

The first five chapters of this manual discuss the basics of both TOOL and HTML
customization, including the organization of the elements and generated code you are
working with, guidelines to customization techniques you should use, and many examples
of useful customizations. This is followed by a chapter on how to add security to an HTML
application, using both TOOL and HTML customization techniques discussed previously.
The last chapter describes how to deploy a WebEnterprise Designer application in a
complex environment. Briefly, the chapters in the manual are:

Chapter
Chapter 1, “WebEnterprise Designer Application

Architecture”

Chapter 2, “Customizing WebEnterprise Designer
Application Classes”

Chapter 3, “Customizing Generated HTML
Templates”

Chapter 4, “Customizing Page Designs”

Chapter 5, “Customizing Page Styles”

Chapter 6, “Customizing Error Pages”

Chapter 7, “Customization Examples”

Chapter 8, “Customizing Application Security”

Chapter 9, “Partitioning and Deploying a
WebEnterprise Designer Application”

Description

Provides an overview of the architecture of both supplied
and generated WebEnterprise Designer classes and how
they interact.

Describes how to use the Page Handler Customization
Wizard, and describes each of the customizations you can
implement with it.

Provides an overview of generated HTML template files
and how they interact. Also provides guidelines and
examples of customizing them.

Provides guidelines for customizing the provided page
designs or creating your own.

Provides guidelines for customizing the provided page
styles or creating your own.

Provides guidelines for customizing the error pages that
display in the browser.

Describes 12 practical customizations for WebEnterprise
Designer applications.

Provides information on creating a secure WebEnterprise
Designer application, creating a logon page, and
integrating the application with your own authentication
system.

Describes how to partition and deploy a WebEnterprise
Designer application in a complex environment.

Customizing WebEnterprise Designer Applications

Conventions

Conventions 13

This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting TOOL code.

Command Syntax Conventions

The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

Format
bold

italics

UPPERCASE
underline

vertical bars |

braces {}

brackets []

ellipsis ...

Description
Bold text is a reserved word; type the word exactly as shown.

Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

Uppercase text represents a constant. Type uppercase text exactly as shown.
Underlined text represents a default value.

Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

TOOL Code Conventions

Where this manual includes documentation or examples of TOOL code, the TOOL code
conventions in the following table are used.

Format

parentheses ()

comma ,

colon :

semicolon ;

Description

Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.

Preface

14 The Forte Documentation Set

The Forte Documentation Set

Forte produces a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. The complete Forte Release
3 documentation set consists of the following manuals in addition to comprehensive
online Help.

Forte 4GL

® A Guide to the Forte 4GL Workshops
m Accessing Databases

® Building International Applications

m Escript and System Agent Reference Manual
m Forte 4GL Java Interoperability Guide
m Forte 4GL Programming Guide

m Forte 4GL System Installation Guide
m Forte 4GL System Management Guide
m Fscript Reference Manual

m Getting Started With Forte 4GL

m Integrating with External Systems

® Programming with System Agents

m TOOL Reference Manual

m Using Forte 4GL for OS/390

Forte Express

® A Guide to Forte Express
m Customizing Forte Express Applications

m Forte Express Installation Guide

Forte WebEnterprise and WebEnterprise Designer

® A Guide to WebEnterprise
m Customizing WebEnterprise Designer Applications
m Getting Started with WebEnterprise Designer

m WebEnterprise Installation Guide

Customizing WebEnterprise Designer Applications

Forte Example Programs 15

Forte Example Programs

In this manual, we often include code fragments to illustrate the use of a feature that is
being discussed. If a code fragment has been extracted from a Forte example program, the
name of the example program is given after the code fragment. If a major topic is
illustrated by a Forte example program, reference will be made to the example program in
the text.

These Forte example programs come with the Forte product. They are located in
subdirectories under $FORTE_ROOT/install/examples. The files containing the examples
have a .pex suffix. You can search for TOOL commands or anything of special interest with
operating system commands. The .pex files are text files, so it is safe to edit them, though
you should only change private copies of the files.

Preface

16 Viewing and Searching PDF Files

Viewing and Searching PDF Files

Note

Note

Note

You can view and search 4GL PDF files directly from the documentation CD-ROM, store
them locally on your computer, or store them on a server for multiuser network access.

You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

To
1

To

copy the documentation to a client or server:

Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

Set up a directory structure that keeps the fortedoc.pdf and the 4gl directory in the same
relative location.

The directory structure must be preserved to use the Acrobat search feature.

To uninstall the documentation, delete the fortedoc directory.

view and search the documentation:

Open the file fortedoc.pdf, located in the fortedoc directory.

Click the Search button at the bottom of the page or select Edit > Search > Query.

Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.

Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

Toolbar Button Keyboard Command
Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]

To return to the fortedoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

To revisit the query results, click the Results button at the bottom of the fortedoc.pdf
home page or select Edit > Search > Results.

Customizing WebEnterprise Designer Applications

Chapter 1

WebEnterprise Designer
Application Architecture

This chapter discusses the architecture of a generated WebEnterprise Designer application
by examining the supplied and generated classes and illustrating how they interact.

Topics covered in this chapter include:

a description of the runtime interaction between the Web application services and the
business services

a description of the generated WebEnterprise Designer project and its suppliers

a diagram describing the relationship between generated classes and supplied classes
the flow of control between methods and objects at runtime

the flow of control between pages at runtime

the effect of properties in the HTML Application Model Workshop on generated classes

Throughout this chapter, examples of general topics are drawn from the HTML Tutorial
application. For example, you will see references to CustomerOrderHandler and
Display_CustomerOrder.html—these elements exist in the generated
HTMLtutAppHandlers project and HTMLtutApp HTML document directory.

18

Logical Architecture

Forte WebEnterprise Designer supports a three-tier architecture. In a three-tier
architecture, the user interface, application services, and database processing are divided
into separate modules, as illustrated in Figure 1:

Web
User Interface HTML Application Model

d= k HTML Applicaation Model
an
Business Model

Application Logic

b |
Service Obj'e.cts

Database Server

Figure 1 Three-Tier Architecture

Using WebEnterprise Designer, you build the first and second tiers of your application.
With the HTML Application Model Workshop, you create the user interface and Web
application server; with the Business Model Workshop, you create the application business
services, which provide access to database information.

Customizing WebEnterprise Designer Applications |

Web Client

Runtime Architecture

Logical Architecture 19

Figure 2 illustrates the interactions of the parts of a WebEnterprise Designer application at

runtime.
Forte Environment
Web Server
|
opens
HTTP Requests _ Requests HTML _ requested
= Forte g page
—T NSAPI T
- I
Access Service R A
Scanner Service HTML
Pages
Result Method
Set Request
Y
&)
DB Service SO Service SO

Figure 2 Anatomy of a WebEnterprise Designer Application at Run-Time

In Figure 2, the Web Client at the left represents a client machine using a Web browser to
view a WebEnterprise Designer application. When the user requests new information, the
browser passes an HTTP request (a URL) to the Web server, requesting a Web page.

On the Web server, the fortecgi program or a Forte Web server plug-in directs the HTTP
request to the Forte WebEnterprise Designer AccessService service object, which passes the
page request to the ScannerService service object, along with any parameter values
relevant to the page.

The ScannerService service object opens the requested HTML page template and processes
the Forte tags to create the page. When the service object encounters certain tags in the
HTML template, it invokes the HandleTag and HandleCondition methods of the handler
class associated with the template. The handler class uses the Business Service service
object to access business services (which access the database), and returns any data
needed in a result set. The handler class caches the result set in the AccessService for future
use.

After the ScannerService service object populates the page template with the result set, it
returns the requested page back to the AccessService service object, which delivers it to the
Web server. The Web server in turn passes the page to the client Web browser, which
displays the page.

The AccessService service object maintains state for all the Web clients it serves. Its dialog
duration is session. Unlike normal session duration service objects, you may load balance
the AccessService service object. When you do, each new browser request is routed to the
next available replicate. Subsequent requests from the same browser session will be
directed back to the replicate that handled the first request.

WebEnterprise Designer Application Architecture Chapter 1

20 Logical Architecture

The handler class

The HTML templates

Customization guidelines

Web Application Server Architecture

An application generated by WebEnterprise Designer is comprised of a set of logical pages
and associations between those pages. These logical pages are implemented by a
combination of HTML templates and TOOL code. A TOOL class and a set of HTML
templates are generated for each logical page.

The TOOL class generated for each logical page is the bus_class_pageHandler class, referred
to as the “handler” or “page handler,” and is generated into the html_modelHandlers
project. It is a subclass of the ExpressClassHandler class from the ExpressHandlers project.
The handler implements the logic intended by the page, and formats any required data into
a WebEnterprise result set for substitution into the HTML page built by the WebEnterprise
scanner.

In particular, the handler page implements the WebEnterprise TagHandlerIFace interface
and handles WebEnterprise tag requests made by the HTML templates generated for the
logical page. The html_modelScanner class that is generated for the application
instantiates each of the handler class objects defined by the application and, when
required, dispatches to them tag requests made by their associated HTML templates.

The set of HTML templates for each logical page defines how the data for the page will be
displayed, and implements the links to other logical pages.

HTML templates are HTML files with embedded WebEnterprise tags. These tags cause:

= invocations of either the HandleTag or HandleCondition methods of the handler class
associated with the template

m substitution of data generated by the handler class into the HTML page sent in response
to the request for the WebEnterprise HTML template

In addition, WebEnterprise Designer generates what is required—principally, the Access
and Scanner services—to invoke the appropriate handler class method when requests for
HTML templates are made. The Web application server designer usually does not need to
be concerned with the required mechanisms, but they are essentially described in the
object interaction diagram of the template request process (see section “Runtime Control
Flow” on page 35).

Customizing a WebEnterprise Designer application involves modifying the generated
HTML templates, the generated handler classes, or both. In general, you customize:

m the handler class when you want to affect the logic of the page
An example is when you want to modify the data returned by a search request.

m the HTML template when you want to affect the presentation of data or the connection
between pages

Examples are when you want to display some fields in bold font, or move the location of
a field on the page.

Often customization involves changes to both an HTML template and a handler class. For
example, adding a custom field requires adding a tag reference for the field in the HTML
template to display the data, and adding the logic to the associated handler class to
compute the value and place it in the result set for the template.

Examples of all types of customizations are provided in Chapter 7, “Customization
Examples.”

Runtime Objects by Partition

Figure 3 illustrates the two partitions and their key objects that typically exist at runtime in
the deployed HTML Tutorial application.

Customizing WebEnterprise Designer Applications

Logical Architecture 21

Note You can customize every element in this diagram, except aDBSession, by modifying its
class definition or HTML template. See Chapter 2, “Customizing WebEnterprise Designer

Application Classes,” for details.

Web Applicgt_ion aHTMLtutAppAccess -
Server Partition -

\/

aHTMLtutAppScanner

1

v Y
(_aCustomerOrderHandler)

1

1
\

aExpressPageData aExpressPageData
1
1

\

aLineltemHandler

aCustomerOrderClass

Cocmemeoneios >

Business Services
Partition

Database
Server

> s —> s

__________ P~ Object reference
<> Datacontainer B~ Data flow

Figure 3 HTMLtutApp Partitions and Objects at Runtime

Figure Legend

Multiple ovals means there may be many such objects (for example, an array of). The prefix
“a” means an instance of the class with that name (for example, aLineltemHandler).
Control flow arrows mean “invokes methods on.” The object at the beginning of an object
reference arrow references the object at the arrow end.

WebEnterprise Designer Application Architecture Chapter 1

22 Logical Architecture

Use of Express Services

The classes generated by the HTML application model are used in the Web application
server partition. In addition, some of the classes generated by the business model (the
business_classClass, business_classQuery, and business_modelClient classes) are also used
in the Web application server tier. The Web application server is a client of the business
services generated by the business model.

For a description of Express Services classes, see Customizing Forte Express Applications.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Projects 23

WebEnterprise Designer Projects

This section describes WebEnterprise Designer projects, including the project generated
from the HTML application, the libraries and projects that supply the generated project,
and a brief overview of the HTML templates that are also generated for the application
(these are described fully in Chapter 3, “Customizing Generated HTML Templates”).

Figure 4 gives you an idea of what all this code is generated for:

For the application

[_[o[x]
as a whole:

TOOL classes

;Lr html_modelScannerService ‘

\ﬂ html_modelAccessService ‘

5
T

For each business class page
in the application:

N\
\
.

4
HTML Templates TOOL class

Display_page.html pageHandler
Data_page.html

HandleTag
Insert_page.html i
Update_page.html Ergsctisfsz cton
Search_page.html Getstuff

etc. etc.

Figure 4 Code Generated from a WebEnterprise Designer HTML Application

Figure 4 shows that, for each business class page, WebEnterprise Designer generates a set
of HTML templates and a Handler TOOL class. In addition, it generates a Scanner service
object and an Access service object (and corresponding classes that define each service
object) for the whole application.

All of the TOOL code for the HTML application is generated into the html_modelHandlers
project. The supplier projects of the html_modelHandlers project include:

m the HTTP library (a WebEnterprise project)
m the ExpressHandlers project (a WebEnterprise Designer project)

m the business models the HTML application uses and their suppliers, which include the
ExpressDomains and ExpressServices projects

This section provides class hierarchy diagrams of the HTTP library and the
ExpressHandlers project, followed by a detailed description of the html_modelHandlers
project. Complete descriptions of the HTTP library and the ExpressHandlers project are
found in Forte online Help. Descriptions of ExpressDomains and ExpressServices are found
in Customizing Forte Express Applications.

WebEnterprise Designer Application Architecture Chapter 1

24 WebEnterprise Designer Projects

HTTP Library

The HTTP library provides classes that are used to:

m define service objects for a Forte Web application
® manipulate HTTP requests and responses

m process HTML templates to generate Web pages
m Create and track unique client sessions

Figure 5 shows the class hierarchy for the HTTP library.

e

|
GenericException
HTMLScannerException

Superclasses of the
Access and Scan-
ner classes gener-

HTTPCookie

ated for
WebEnterprise De- HTTPMessage — HTMLAccessException
signer applications

HTTPResponse SessionException

HTTPRequest

ParameterList

Figure 5 HTTP Class Hierarchy

In addition to the classes shown in Figure 5, the HTTP Library contains the
TagHandlerIFace interface. This interface must be implemented in order for WebEnterprise
to process the Forte tags in the HTML templates. The ExpressHandler class (in the
ExpressHandlers project, described in the next section) implements this interface.

For descriptions of these classes, see Forte online help.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Projects 25

The ExpressHandlers Project

The ExpressHandlers project contains a set of superclasses that provides generic
functionality for the classes generated from the HTML application model. For example, the
ExpressHandler class is the superclass for the bus_class_pageHandler classes generated for
each of the application’s pages. Refer to the online help descriptions of the
ExpressHandlers classes for descriptions of these classes and their components.

Figure 6 shows the ExpressHandlers project’s class hierarchy and the key superclasses of its

supplier projects.

HTTP Library ExpressServices Project
| \

1
HTTPHTTPACCess HTTPHTMLScanner Expressservices.Error

Supplier Projects

ExpressHandlers Project

ExpressHTTPAccess

Q ExpressHandler ExpressHandlerError
ExpressScanner
l
ExpressClassHandler ExpressLogonHandler
ExpressLookupinfo
ExpressPageData
ExpressTestRunner
ExpressValueGenerator

Figure 6 ExpressHandlers Class Hierarchy and Suppliers

It is the ExpressHandler class and its subclasses that implement the TagHandlerIFace
interface (see Figure 5 on page 24).

WebEnterprise Designer Application Architecture Chapter 1

26 WebEnterprise Designer Projects

Generated Class

bus_class_pageHandler

logon_pageBaseHandler

logon_pageHandler

html_mode/BaseAccess

html_modelAccess

html_mode/BaseScanner

html_modelScanner

TestRunner

Superclass

ExpressClassHandler No

ExpressLogonHandler No

ExpressHTTPAccess No

ExpressScanner No

ExpressTestRunner No

The html_modelHandlers Project

The html_modelHandlers project contains TOOL classes generated from the HTML
application model. These classes provide the Web application server logic for the pages in
the model, and are subclasses of classes defined in the ExpressHandlers project.

You generate the classes in the html_modelHandlers project with either the File > Generate
Web Application Server Code command in the HTML Application Model Workshop, or the
CompilePlan command in the Fscript utility.

For a description of classes generated from the business model, see Customizing Forte
Express Applications.

WebEnterprise Designer generates the following classes in the html_modelHandlers project
to implement the user application defined in the HTML application model.

Custom? Description

Contains the information about the behavior of a page in an application. This
class includes the code generated to implement the functions and behavior
that you defined for this page.

Contains the information about the behavior of a logon page in an
application. This class includes the code generated to implement the functions
and behavior that you defined for this page.

logon_pageBaseHandler Yes Contains your customizations for logon_pageBaseHandler. This class is not

regenerated when you regenerate your HTML application model code, thereby
preserving your customizations.

Defines the Access service object, which contains the generated Web
connectivity preferences for the application.

html_modelBaseAccess Yes Contains your customizations for htm/_mode/BaseAccess. This class is not

regenerated when you regenerate your HTML application model code, thereby
preserving your customizations.

Defines the Scanner service object, which instantiates and holds the handler
objects.

html_model/BaseScanner Yes Contains your customizations for htm/_mode/BaseScanner. This class is not

regenerated when you regenerate your HTML application model code, thereby
preserving your customizations.

A class that allows you to test run your application without deploying it.

A Yes in the Custom column means the class is a customizable class and will not be
regenerated when you regenerate the HTML application model, which preserves your
customizations.

WebEnterprise Designer also generates the following service objects in the
html_modelHandlers project:

Generated Service Object Class Defined By Description

html_modelAccessService html/_modelAccess Receives HTTP requests from the Web server and passes
them to the ScannerService, then receives the response
from the ScannerService and passes the page information

back to the Web server.

html_modelScannerService htm/_mode/Scanner Converts requests from the AccessService service object
into pages.

For information about using and partitioning these service objects, see Chapter 9,
“Partitioning and Deploying a WebEnterprise Designer Application.”

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Projects 27

Customizable Subclasses in html modelHandlers

By default, WebEnterprise Designer does not generate customizable subclasses of
bus_class_pageHandler. For information about creating customizable subclasses of these
classes, see “Creating Customizable Classes” on page 48.

Generated HTML Templates

When you generate Web application server code for your HTML application,
WebEnterprise Designer also generates HTML files. These files correspond to the pages in
the model, implementing the flow between the pages and the presentation of data in the
pages. They are generated into the html_model directory under the HTML document root
directory.

WebEnterprise Designer generates the following HTML templates in the htmil_model
directory of the document root directory. Templates whose names include bus_class_page
are generated for business class pages; those with link_page in the name are generated for
link pages. “Logon” templates are generated for logon pages

Generated HTML Template
Main_bus_class_page.html

Data_bus_class_page.html

Display_bus_class_page.html
Insert_bus_class_page.html
Menu_bus_class_page.html
Search_bus_class_page.html
Update_bus_class_page.html

Header_bus_class_page.html

Footer_bus_class_page.html

Scripts_bus_class_page.html
Main_/link_page.html
Display_link_page.html
Logon_Jlogon_page.html

LogonFailed_logon_page.html
Validate_logon_page.html

Start.html
manifest.txt

report.txt

bus_class_page_qq_field_name.inc

Description
Top-level HTML definition of a business class page.

Provides the tags used to put the data (but not nested data) in the page to
be displayed.

Layout of the Data Display portion of the page, including nested pages.
Insert mode of the page.

Menu area for the page (if the page design includes a menu).

Search mode of the page.

Update mode of the page.

Defines the headers of all the model’s pages (if the page design includes
them).

Defines the footers of all the model’s pages (if the page design includes
them).

Scripts for the page.
Top-level HTML definition of a link page.
Layout of the data display portion of a link page.

The page displayed when a non-validated user attempts access to any page
in the application.

The page displayed when a user is denied access to the application.

The page used to validate the logon. This page is never displayed; it redirects
to the first page of the application or the logon failed page as appropriate.

Defines a shortcut for a string used in deployment.
Lists all the HTML files generated and so serves as a catalog of the directory.

Reports on the process of generating the HTML templates, and what has
been customized.

Contains stored and displayed values of a lookup field, if one is specified in
the model.

For more information on these templates, see Chapter 3, “Customizing Generated HTML
Templates.” For brief information on the document root directory, see “Setting Document
Root on the ScannerService Service Object Partition” on page 195. For more information on
document root, see Getting Started with WebEnterprise Designer or WebEnterprise

Designer online help.

WebEnterprise Designer Application Architecture

Chapter 1

28 WebEnterprise Designer Class Interactions

WebEnterprise Designer Class Interactions

This section provides information on the interactions between the classes described in the
previous sections. First, a class diagram of the class hierarchies and class references is
provided as a map of the territory. This is followed by a description of the main functions of
the key classes in the diagram.

Class Interaction Diagram

This section presents a class interaction diagram of the WebEnterprise Designer class
hierarchies. This class diagram uses OMT notation described in the book Object-Oriented
Modeling and Design (by Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen, published by
Prentice Hall) to show the classes and their relationships.

The diagram conventions are:

m arrows between classes mean that the class at the starting end of the arrow contains an
attribute whose type is that of the class the arrow points to

m the label of the arrow identifies the attribute
® adot at the end of an arrow indicates a reference to an array

® a class whose bounding box is a dotted line is a class described in another diagram or
manual, and details about the class are usually not given

m key classes display the attributes, constants, and methods referred to in the subsequent
discussion

These elements are indicated in the order shown in Figure 7. Constants are indicated by
the icon used for constants in the Workshop (the pi sign).

CTTmTmmmmmemmmmemmmeed RefClass1 RefClass2
] OtherClass1 1+ SuperclassName =~ [------------ > OtherClass2
1 Method : Attributel Method
""""""""""" Attribute2

Constant1

Constant2 Tt

Method1

Method2

| Subclassname |

Figure 7 Example Class Diagram

Declared Type and Runtime Type

If a class has an attribute that references a superclass in a hierarchy, then at runtime the
type of object referenced by that attribute will actually be the customizable subclass. For
example, in Figure 8 on page 29, the ExpressHandler class has an attribute Scanner of type
ExpressScanner. At runtime, the attribute will hold a reference to the customizable
HTMLtutAppScanner object.

This customizable subclass reference gives you control over the runtime application
behavior, because your subclass object and its customizations will be present wherever you
see a reference to the base class in the class diagrams in this chapter.

You commonly customize by creating a method in the subclass that overrides the method
in the superclass. Overriding methods are called automatically.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Class Interactions 29

Remember, though, to access attributes, methods, or events defined only for the runtime
class (and not in the superclass), you must cast the object. Casting means identifying the
class of a particular object. See the TOOL Reference Manual for more information about

casting.
Access - Scanner
ExpressScanner Handlers . ExpressHandler
Handlers ValueGenerator InUse InUse_»
FindHandler PO DISPLAY
GenerateLookupFiles Lookuplnfo ExpressValueGenerator POilNSERT
HandleTemplate " NewKey PO_SEARCH
NewValue PO_UPDATE
PT_FORM Tt
PT_LINK
html_modelBaseScanner PT_LIST
PT_LOGON
GetDocumentRoot ExpressLookuplinfo GetPageMode
GetMaxRecords " | DisplayedValueAttr Vel GetRequestParameter
StoredValueAttr RestrictAccess
GetDisplayedNullValue Query
GetValues
html_modelScanner WriteValues

ExpressClassHandler

NumAssocs
NumLinks Client
PageName
PageType
VisibleRows
DecodeValue
DisplayPage
DoClear
DoDelete
DofFirst

ManagedSessions FillResultSet
ExpressHTTPAccess . FindHandler

ApplicationName FormatValue

' bus_modelClient i
——— s

i BusinessClass igq— |
] :

\

HasLogonHandler T gz:gz:jﬁ:ﬁém
StartPage ExpressPageData PageHandler GetFieldName
StartURL 0

ConnectManagedSessions G »| CurrentRow ForeignData GetForeignPagelnfo

IsPrimarySession FirstVisibleRow GetPalngeData
Setup Folder GetVisibleRows

SetupSessionManagement AddForeignData D:t HandleCondition
Invalidate did HandIeTag.
ProcessAction
Select

UpdateClass

html_modelBaseAccess , IR .
! BusinessClass ®<¢————

HandleTemplateRequest

SetupAccess
bus_class_pageHandler
1mm el ' LINK_bus_class_pagel TU
E bus_classClass E GetfFieldLookuplnfo
html_modelAccess I GetFieldName
HandleTemplateRequest GetLlnkName
NewField

Figure 8 WebEnterprise Designer Class Interaction Diagram

WebEnterprise Designer Application Architecture Chapter 1

30 WebEnterprise Designer Class Interactions

Life of a Template Request

As a context for this information, this section reviews how the parts of a WebEnterprise
Designer application interact at runtime.

Runtime interactions of a WebEnterprise Designer application were discussed earlier in
“Runtime Architecture” on page 19. Figure 9 and the description that follows provide
further detail on how a request from a user’s browser is fulfilled in an HTML application.

incoming
template invoke invoke query or
request HandleTemplate HandleTag update data

I
8CHY
(N
AccessService ScannerService Tag
Service Object Service Object
- Handlers

return assembled return return return

Web page HTTPResponse result data
sets

RO
Business Service
Service Object

Figure 9 Life of a Template Request
The steps in the life of a template request, as depicted in Figure 9, are:

1 The incoming HTTP request from the Web browser is passed to the AccessService
service object html_modelAccessService.

2 The html_modelAccessService service object:
registers itself as a WebEnterprise server
defines the application’s session management security policies

invokes the HandleTemplateRequest method on the Scanner service object
html_modelScannerService

3 The html_modelScannerService service object processes the named template and
builds an HTML stream.

4 When html_modelScannerService encounters a FORTE EXECUTE tag in the template, it
invokes the HandleTag method of the page’s handler class.

5 The HandleTag method invokes the ProcessAction method to perform the requested
action.

6 If the action includes retrieving data from a database, the handler class uses the
Business Service service object to access the business services, and return data in a
result set.

7 The DisplayPage method of the page handler builds the result set for the Web page.

8 If html_modelScannerService encounters a FORTE IF tag in the template, it invokes the
HandleCondition method of the page’s handler class.

9 The HandleCondition method determines whether the requested condition holds and
returns either True or False accordingly.

10 html_modelScannerService then produces an HTTPResponse object, which contains
the complete Web page, and passes this to the html_modelAccessService service object.

11 html_modelAccessService returns the now-complete requested Web page back to the
client Web browser.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Class Interactions 31

Runtime Scenarios

To provide even more detail of some of the steps described above, some of the information
on individual classes in the following sections includes object interaction diagrams. Such

diagrams are based on the Jacobson notation described in the book Object-Oriented
Software Engineering.

Object Interaction Diagram Conventions

Object interaction diagrams illustrate how objects interact during runtime scenarios in a
generated page that employs methods of the class under discussion. These diagrams show
only the key objects involved in a scenario and the methods they invoke on each other. You

can build diagrams like these on your own by running your application and stepping
through it in the TOOL debugger.

The diagram conventions are:
m vertical lines represent objects

The object name is given at the top of the vertical line—its name is identical with its
class name, but prefixed with the letter “a”.

= the methods that the objects invoke on each other are represented by horizontal lines
between objects with an arrow indicating the direction

m the label on the arrow is the name of the method invoked

m time flows from top to bottom

a method line that points back to the same object is an object that invokes a method on
itself

aClass1
aClass2
aClass3

MethodName(params)

MethodName2(params)

MethodName3}()

-

MethodName4()

Figure 10 Example Object Interaction Diagram

WebEnterprise Designer Application Architecture Chapter 1

32 WebEnterprise Designer Class Interactions

ExpressHTTPAccess

Steps 1 and 2 in “Life of a Template Request” on page 30 outline the functions of the
generated html_modelAccessService service object in WebEnterprise Designer
applications. The html_modelAccessService service object is based on the generated
html_modelAccess class, which is a subclass of ExpressHTTPAccess.

The ExpressHTTPAccess class extends the WebEnterprise HTTPAccess class by defining a
number of WebEnterprise Designer-specific attributes and a common initialization
method called Setup. Every WebEnterprise Designer application has a generated
ExpressHTTPAccess subclass and a generated service object based on the generated class.

Starting the AccessService Service Object

The details of starting the html_modelAccessService service object are shown in Figure 11.
Startup is the result of invoking the html_modelAccess class’s Init method.

ahtml_modelAccess

Startup (html_modelAccess.Init)

Setup ()

SetupAccess ()

Enable Access (serviceName, part, cgi, plugin)

il

SetupSessionManagement (URL, timeOut) \

EnableSessionManagement ()

U

SetDefaultSessionProperty (newSessionProperty)

i

—1— if IsPrimarySession=TRUE
SetSessionTimeOut (timeOutInterval)

U

Start task ConnectManagedSessions()

_J

AA\ I

Figure 11 Object Interaction Diagram of the Startup of the AccessService Service Object

The Setup method drives the initialization of the html_modelAccessService service object
by invoking the following methods:

m SetupAccess method—registers the service object as a WebEnterprise server

m SetupSessionManagement method—defines the application’s session management
security policies

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Class Interactions 33

Customizing ExpressHTTPAccess

All ExpressHTTPAccess customizations are accomplished by overriding or creating
methods in the html_modelAccess class. Common customizations are:

® customizing the application’s server registration

WebEnterprise Designer applications, by default, employ autoregistration (in which the
service object automatically registers itself with fortecgi). To use manual registration,
override the html_modelAccess class’s SetupAccess method and modify its
EnableAccess method accordingly.

® customizing the application’s session management

The SetupSessionManagement method of the ExpressHTTPAccess class defines the
WebEnterprise session management characteristics of the application. Depending on
the setting of the HasLogonHandler attribute, you can define the application’s HTML
templates with the SESSION_AUTOCREATE property (if no logon page is defined) or the
SESSION_REQUIRED property.

See Getting Started with WebEnterprise Designer for a description of WebEnterprise
Designer default session management.

m authenticating logon information

When a logon page is defined, you must override the LogonSession method of the
HTTPAccess class to validate the authentication information supplied by the client user
(typically a username and password).

See Chapter 8, “Customizing Application Security,” for information on creating and
using logon pages.

m setting up the primary application to perform session management for included
applications

By default, each HTML application manages its own WebEnterprise sessions, including
logon (if defined) and HTML template security. Another common model is to have one
(primary) HTML application perform session management for itself and other
(subsidiary) HTML applications. (An included HTML application is a subsidiary
application.)

To create such a configuration, you must customize the primary HTML application and
all of the subsidiary HTML applications as follows:

Subsidiary HTML applications: In each subsidiary application, customize the
IsPrimarySession method to return FALSE. You can do this through the application-
wide “Is subsidiary application” customization point in the Page Handler
Customization Wizard. Just selecting this customization is enough; it will generate the
proper method code. You need not customize the method code it generates.

Primary HTML application: You must customize the ConnectManagedSessions method
of the primary application to instantiate and populate the ManagedSessions attribute
with references to the html_modelAccessService service objects of the subsidiary
applications. You can do this with the application-wide “Define subsidiary applications”
customization point. Modify the code generated by this customization point to name
your subsidiary application(s) in the line:

ManagedSessi ons. AppendRow(subsi di aryAccessServi ce);

See Chapter 8, “Customizing Application Security,” for more details and an example.

WebEnterprise Designer Application Architecture Chapter 1

34 WebEnterprise Designer Class Interactions

ExpressScanner

Procedures in “Life of a Template Request” on page 30 described how the
html_modelScannerService service object coordinates the assembly of the Web page that
fulfills the template request in WebEnterprise Designer applications. The
html_modelScannerService service object is based on the generated html_modelScanner
class, which is a subclass of ExpressScanner.

The ExpressScanner class extends the WebEnterprise HTMLScanner class by defining a
number of WebEnterprise Designer-specific attributes. Every WebEnterprise Designer
application has a generated ExpressScanner subclass and a generated service object based
on the generated class.

Starting the ScannerService Service Object

The details of starting the html_modelScannerService service object are shown in Figure 12.
Startup is the result of invoking the html_modelScanner class’s Init method.

ahtml_modelScanner

Startup (htm/_modelScanner.Init)

0

wv
(0]
=
o
=]

i

RegisterTagHandler (handlerRef) (once for each handler)

]

Figure 12 Object Interaction Diagram of Startup of the ScannerService Service Object

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Class Interactions

ExpressClassHandler

35

The ExpressClassHandler class is the primary class used to implement application logic in
a WebEnterprise Designer Web application server. A subclass of the ExpressClassHandler
class is generated for every page in an HTML application (see Figure 4 on page 23). In “Life

of a Template Request” on page 30, it is

the methods of these “page handlers” that the

scanner invokes to translate Forte HTML tags into runtime data.

Page handler classes use two methods to respond to Forte tags: the HandleTag method and
the HandleCondition method. The method signatures for these methods are predefined in
the TagHandlerIFace interface (of the HTTP library), which is implemented by the

ExpressClassHandler class.

Helpful background to this section is the chapter on Creating Pages Using Templates in A
Guide to WebEnterprise, which describes what a Forte HTML template is and provides an
example of how the FORTE EXECUTE and FORTE ITERATE tags are used in a template to

generate a frame.

Runtime Control Flow

The details of a template request are shown in Figure 13. This diagram provides further
details of the procedure described in “Life of a Template Request” on page 30, and provides
a starting point for the discussion that follows. It is offered here, because it shows the role

played by the ExpressClassHandler class (actually, by the generated subclasses, or page

handler classes) in this process.

ahtml_modelAccess

ahtml_modelScanner
aExpressClassHandler

JaExpressHandler.InUse
(Framework mutex)

Template Request

HandleTemplate (
—p

equest)

GenerateLookupfFile:

7]

HandleTemplate (r

]

HandleTag (tag,red

>

pguest)

Lock()
—

FindHandler (nan

H

ProcessAction (a

H

DisplayPage (tag

H

Unlock ()

HandleCondition (

ondName, reques

Lock ()

Unlock ()

uest, response, pgrameters, rsetcontext)

Once for each FORTE
EXECUTE in the template

e)
Once for each

tion, request, response, parameters, rset) ACTION in request

request, response, parameters, rset, pagedata)

Once for each FORTE IF
in the template

t, response, parameters, context)

Figure 13 Object Interaction Diagram of a

WebEnterprise Designer Application Architecture

Template Request

Chapter 1

36 WebEnterprise Designer Class Interactions

The generated html_modelScannerService service object instantiates the generated
bus_class_pageHandler objects and invokes their HandleTag or HandleCondition methods
when it encounters the following tags embedded in the templates requested by Web

clients:
<?forte execute ...>
<?forte if ...>

Note In this manual, as in A Guide to WebEnterprise, the tags are referred to in text in
abbreviated form (for example, “the FORTE EXECUTE tag”), while the actual syntax
requires a preceding question mark (as above). For a full description of Forte HTML tag
syntax, see A Guide to WebEnterprise.

Each EXECUTE tag invokes the HandleTag method of the associated ExpressClassHandler
object. Each IF tag invokes the HandleCondition method of the associated
ExpressClassHandler object.

The HandleTag method:

m invokes the FindHandler method to find the proper handler object to execute this tag
request (this will be the current object, unless this is a request from a nested page)

m invokes the ProcessAction method to perform the action being requested

m invokes the DisplayPage method to format any result data into a WebEnterprise result
set

Formatting the data for the current logical page might require other logical pages, if the
current page has any nested or folder logical pages. For more information, see the
section “Foreign Result Sets” on page 39.

The HandleCondition method:

m determines whether the requested condition holds and returns either True or False
accordingly

Referenced Objects

An ExpressClassHandler object (more particularly, a page handler object) holds a reference
to the html_modelScanner service that uses it. The scanner is used to provide global
services for the Web application server including key generation, and generation of lookup
files.

A page handler object, at initialization, creates and holds a reference to the generated
BusinessClient for the business class that the page is based on. The generated
BusinessClient is used to retrieve and modify business classes.

Field Identification

Each business class page has a number of attributes specified for display as fields on one or
more of its HTML page mode templates—Display, Search, Insert, and Update. These may
be attributes of the primary business class or of associated business classes.

Primary and Associated Business Classes The business class that the page is based on is
the primary business class for that page. An associated business class is one that is the
target of an association from a primary business class, or from another associated class in
the business model. The association can be either one-to-one, many-to-one, or optional.

Customizing WebEnterprise Designer Applications

Note

WebEnterprise Designer Class Interactions 37

Field Indexes and Association IDs

Each attribute is given a field index and association ID to identify it and place it in a
WebEnterprise result set, so that it can be properly rendered on the page. In fact, a field
index and association ID pair are given to all of the following items:

m each attribute that appears on any of the HTML page mode templates for the business
class page

m each attribute that is indirectly referenced by the business class page

m each association needed to navigate from the primary business class to all associated
business classes used by the page

The field index and association ID are integer quantities and are unique only to the current
business class page. Fields are numbered consecutively from 1, within an association.

The association ID identifies the field or association uniquely within the business class
page, and, if it is a field, indicates whether it is from the primary or an associated business
class. A field from the primary business class has an ID of 0; fields from associated business
classes have IDs unique within the business class page, numbered consecutively from 1.

Only associations that are actually used are assigned association IDs. An association is used

if:

® one or more of the attributes of the associated business class is used by the business
class page

® one or more attributes of any business class included in the associations emanating
from the associated business class is used by the business class page

This definition can be applied successively.

Converting Between Field Index and Attribute ID

Every valid association ID and field index pair is associated with an attribute of the
business class indicated by the association ID. Use the GetFieldAttrID method to find the
attribute ID of this attribute.

You can also do the inverse conversion: to find the field index from the association ID and
attribute ID, use the GetFieldIndex method.

Data Transfer

Data displayed on an HTML page is rendered into text at some point and WebEnterprise
Designer applications perform this rendering automatically. The only time you might need
to affect this is when you want to modify the textural representation of data to be placed on
the form. Within the ExpressClassHandler, result data is contained in business class objects
that you can manipulate directly, using the FormatValue and DecodeValue methods. (There
are customization points available for such customizations. For more information, see
“Formatting Fields” and “Decoding or Validating Fields” on page 66.)

Result Sets

Result data that is to be rendered on an HTML page is placed in a WebEnterprise ResultSet
object. Of the total result set data retrieved for the Web client, the ResultSet object holds
only that part that is to be rendered on the requested page. For example, if a user submits a
query that returns a result set of 50 rows, but the page being rendered is a form with only
one visible row, then one of the 50 rows is placed in the ResultSet object, along with the
information that the row is a specific one of 50 rows.

For more information on result sets, see “ExpressPageData” on page 39.

WebEnterprise Designer Application Architecture Chapter 1

38 WebEnterprise Designer Class Interactions

Formatting Data into a WebEnterprise Result Set

DisplayPage and FillResultSet are the methods used to populate the ResultSet object.
DisplayPage determines the specific business class objects to be formatted into the
ResultSet object. FillResultSet fills the ResultSet object with a single business class invoking
FormatValue on each attribute added to the ResultSet object.

DisplayPage is the last method invoked by the HandleTag method. Therefore, whatever
changes you make to data in the result set, they must be made before the DisplayPage
method is invoked.

For a descriptive list of all variables pertinent to a ResultSet object, see “Variables” on
page 44. For information on customizing DisplayPage, see “Formatting Custom Fields” on
page 66.

Decoding Data from a WebEnterprise Request

When an HTTP request is received, particularly a request from an HTML form, there are
often parameters that must be decoded. When a request comes from a WebEnterprise
Designer Insert or Update form, some of the parameters represent new data values for
attributes in the result set. These values are updated by the UpdateClass method. When a
request comes from a WebEnterprise Designer Search form, some of the parameters
represent query constraints that need to be added to the Express query being run. Adding
query constraints is done by the AddConstraints method. Both UpdateClass and
AddConstraints use the DecodeValue method on each parameter. DecodeValue can then be
used as a common point to implement field validation.

Result Sets and Session Management

Since only one instance of a handler class is instantiated for each logical page in the HTML
application model, the handler class cannot hold any Web client-specific state, such as
result data. To maintain client-specific state, the handler class uses WebEnterprise session
management features. Each client’s result set is placed in an ExpressPageData object,
which is then held by the WebEnterprise session using the page name as the key. To retrieve
the result set associated with the current request, the handler class uses the HTTPRequest
object passed on the HandleTag or HandleCondition request, and invokes the
GetSessionData method on it, passing the current page name as the key.

The result set for a given Web client therefore becomes a collection of result sets, one for
each logical page visited, and is maintained by the generated html_modelAccess service.

Connections Between Handlers

There are no explicit connections between handlers for different logical pages, but
sometimes, for example with nested pages, one handler might need to access another. Two
mechanisms are available for obtaining a reference to another handler:

m using the scanner’s Handlers attribute

A scanner’s Handlers attribute is an array that holds a reference to every handler. You
can therefore compute the required Handlers reference if you know the its array index.

m using the scanner’s FindHandler method

You can use this method to find any handler based on its name.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer Class Interactions 39

ExpressLogonHandler

The ExpressLogonHandler class is the other “page handler” class of WebEnterprise
Designer applications. An application-specific subclass of the ExpressLogonHandler class
is generated only if a logon page exists in the application. This class manages the process of
user authentication for HTML applications.

The ExpressLogonHandler class is the superclass for the HTML application’s
BaseLogonHandler class and its subclass, LogonHandler.

The HTML application’s SessionCreationURL attribute is set to the URL of the logon page,
causing that page to be presented to any “new” (meaning unvalidated) client. When the
page’s form is completed and submitted, the ExpressLogonHandler class’s
HandleCondition method is invoked to validate the user’s authentication data and either
start a WebEnterprise session or throw an exception.

For further details on SessionCreationURL, see “How the Logon Page is Activated” on
page 172.

Customizing ExpressLogonHandler

Using a Logon page requires customization of the logon process. By default, no validation
of the Logon page’s user authentication fields is performed—the client is always logged in.

Overriding the application’s LogonSession method performs this customization. You can
do this by selecting the Logon Validation customization point in the Page Handler
Customization Wizard. For detailed information on customizing the logon process, see
Chapter 8, “Customizing Application Security.”

ExpressPageData

The ExpressPageData class holds the result set for a particular business class page for a
single Web client. The result set data is saved as WebEnterprise session data, with the
logical page name as the key. The ExpressPageData class keeps track of the current row and
the rows visible on the rendered HTML page by means of the CurrentRow and
FirstVisibleRow attributes. The CurrentRow attribute is used for operations that act upon a
single row, such as update and delete.

When search or select requests are processed by a page handler, the old data held by the
associated ExpressPageData object is invalidated (with the Invalidate method) and
replaced with the requested data. Insert, update, or delete requests can modify data held by
the ExpressPageData object.

Foreign Result Sets

Displaying a logical page containing nested or folder pages requires access to the
ExpressPageData objects for the nested or folder pages. Access to these objects is achieved
with the ExpressPageHandler class’s DisplayPage and GetForeignPagelnfo methods.

To retrieve data for nested or folder links, the DisplayPage method calls the GetForeignData
method to access the page handler for the nested or folder page. The results are stored in
the nested or folder page’s ExpressPageData object, which is attached to the parent page as
an associated result set by the ExpressPageHandler class’s AddForeignData method.

WebEnterprise Designer Application Architecture Chapter 1

40 WebEnterprise Designer Class Interactions

ExpressValueGenerator

The ExpressValueGenerator class is used to generate new keys for business classes when
the insert command is used.

ExpressLookupinfo

The ExpressLookupInfo class is used to validate fields that have drop-down or radio-list
validation. This class is the validation object used to retrieve and save the displayed and
stored values. It is tied to an attribute of a business class in one of the included business
models, and implements a lookup table object. The scanner holds one validation object for
each unique stored and displayed attribute combination used by all fields in all pages in
the application.

Normally, each field has its own validation object. However, if two fields use the same
business class and the same stored and displayed attributes, they will each use a single
copy of the validation object.

Modifying the Displayed Null Value

Override the GetDisplayedNullValue method if you want to display a string other than the
default string “<NULL>" to represent a null selection.

Customizing WebEnterprise Designer Applications

WebEnterprise Designer HTML Template Elements 11

WebEnterprise Designer HTML Template Elements

This section describes various features of WebEnterprise and HTML that are used by
WebEnterprise Designer templates. These features include:

m links
m variable references
® URL parameters

For further information on these features, see the “Planning Web Pages” chapter in A Guide
to WebEnterprise.

Links

Web pages use links to allow Web users to jump quickly from page to page. In the HTML
application model, you define links to connect the pages. In addition, the commands that
you specify for the individual pages are links to different modes of the page (the Insert
command links to the Insert mode of the page, for example).

Alink is an anchor (for example <a HREF="....”) with a URL (universal resource locator) that
is embedded in an appropriate place in an HTML template. The two types of links
previously mentioned are automatically formatted by WebEnterprise Designer. You can
customize these or add your own to the page. This section discusses some elements of link
formatting that are specific to WebEnterprise Designer.

A typical embedded URL reference in an HTML statement in a WebEnterprise Designer
HTML template might look like this:

<a HREF="$$(FORTE. ExecURL) ?Ser vi ceName=eCool Ser vi ce&Tenpl at eNane=eC
ool / Di spl ay_3(USER. TopPage) . ht ml &Acti on=Movi eHandl er. Last &Uni qui f i
er =$$(FORTE. Uni quel D)” target="_fortedisplay”>

URL Parameters

Example

Some of the URL parameters used in WebEnterprise Designer URL references are generic to
WebEnterprise, and some are specific to WebEnterprise Designer. The URL parameters
below that are identified as WebEnterprise parameters are described in detail in A Guide to
WebEnterprise.

m ServiceName—(WebEnterprise) identifies the name of the Web access service
Syntax: &ServiceName=html_modelService

Ser vi ceName=HTM.t ut AppServi ce

This parameter is used by the interface (whether fortecgi or the Forte Web server plug-
in). The fortecgi program or the plug-in looks up the specified service name in the
fortecgi.dat file.

If the service name appears in the fortecgi.dat file, the Web access service object is
enabled and registered; fortecgi or the plug-in forwards the Web request (the URL) to
the named service.

If the service name does not appear in the file, then it is either unknown or not currently
enabled. In this case, fortecgi or the plug-in returns a Request Failure error to the Web
user with the message “Service not found.”

WebEnterprise Designer Application Architecture Chapter 1

42 WebEnterprise Designer HTML Template Elements

m TemplateName—(WebEnterprise) identifies the name of the WebEnterprise Designer
template to be used to construct the page

Syntax: &TemplateName=html_model/ page_mode_bus_class_page.html
Example &Tenpl at eName=HTM._t ut App/ Updat e_Cust oner. ht m

This parameter is required and, on UNIX systems, is case-sensitive. Based on this value,
the Web access service passes the current request to either the page handler or the
ScannerService SO.

m Action—(WebEnterprise Designer) specifies the action requested

The ExpressHandlerClass class’s ProcessAction method processes actions. This method
compares the text value of the Action parameter with the known actions and executes
the indicated method. By convention, these methods are named the same as the Action
value with a “Do” prefix. For example the Next action invokes the DoNext method.

Syntax: &Action=handler.action

The handler prefix is optional. If unspecified, the current handler is assumed. However,
sometimes the action must be executed by a handler other than the current one, which
typically happens with nested pages. To execute the “Next” action on a nested page, the
link must request the outer page (otherwise only the nested page would be displayed).
However, when the outer pages handler gets the “Next” request, it must dispatch it to
the nested handler. This is done by specifying the nested page in the Handler
parameter.

Example http://ww. myServer. conl page. ht m ?Ser vi ceNane=AppSer vi ce
&Tenpl at eName=nyApp/ Di spl ay_Movi e. ht m &Act i on=Next

The &Action=Next parameter of this URL causes the page to be redisplayed after
executing the handler class’s Next function. (The Next function causes the result set to
be scrolled to the next element.)

There can be several Action parameters. When there is more than one, each action is
performed in turn.

= LinkName—(WebEnterprise Designer) specifies the name of the link that requested the
current page

The name is formed by concatenating the name of the HTML application with the name
of the link (as seen in the Link Properties dialog title bar) separated by a period.

Syntax: LinkName=html_model.link_name

Example Li nkNane=HTM.t ut App. Cust oner Li nk1

m ReturnTemplate—(WebEnterprise Designer) used to remember the template requesting
a function

Typically, the ReturnTemplate is displayed after the page needed by the requested
function. For example, when requesting the Update action, the update HTML template
is displayed. After the update is complete, the original page should be redisplayed.

Syntax: &ReturnTemplate=html_model/ page_mode_bus_class_page.html
Example &Ret ur nTenpl at e=HTM_t ut App/ Di spl ay_Hore. ht m

Customizing WebEnterprise Designer Applications

WebEnterprise Designer HTML Template Elements 43

m Selection—(WebEnterprise Designer) used to specify the fields on the page that are
being used to provide constraints for a select operation against the business service

The Selection parameter is used with the Select action (&Action=Select) on a search
page. The fields specified in the Selection parameter then also appear as parameters
providing the values for the fields being constrained.

Syntax: &Selection=bus_class_page_qq_field
Example &Sel ect i on=Cust oner Or der _qq_Cust ormrer Nunber

m Uniquifier—(WebEnterprise Designer) specifies a unique value; used to defeat caching
done by the browser in some cases

This parameter and its variable are used when the requested page has been used before,
and therefore contains data, but a “fresh” page is desired. To retrieve the fresh page,
specify a unique number with the parameter, so that the retrieved page is not the
cached one.

For example, if the user activates the Next command, the page being requested is
exactly the same page as the current page, but with different data. If browser caching is
enabled, the browser will satisfy this request from the cache, which means displaying
the same data, not the new data. Using the Uniquifier parameter with the
FORTE.UniquelD variable creates a request that does not match any page in the
browser’s cache. This forces the request to be passed on to the application, which
processes the Next command, thereby advancing the result set to the next row. Then,
when the page is populated with data, the next row will be displayed.

Syntax: &Uniquifier=$$(FORTE.UniquelD)
Example &Uni qui fi er =$$(FORTE. Uni quel D)

WebEnterprise Designer Application Architecture Chapter 1

a4 WebEnterprise Designer HTML Template Elements

Variables

The FORTE result set

Other special result sets

Example

To use a result set in a template, you first use the HandleTag method to generate the result
set. As each member of the result set is generated, it is assigned a name. This allows you to
refer to any member in a result set using a Forte variable. Variable references contained in
HTML templates have the following form:

result_set_name.result_set_member_name

The FORTE EXECUTE and FORTE ITERATE commands define the result set names. The
variable names are defined by the application logic.

WebEnterprise defines one special result set—the FORTE result set—that always exists and
into which WebEnterprise places various useful variables, for example FORTE.ExecURL
(described below).

In addition to FORTE, WebEnterprise Designer uses three other result sets:
m USER—holds various static values for a request

m entry—used for all data that is being placed on the current page

m listentry—the iteration result set for the data rows for the current page

For more information on result sets and Forte variables in WebEnterprise, see the chapter
“Creating Pages Using Templates” in A Guide to WebEnterprise.

m FORTE.ExecURL—(WebEnterprise) specifies the path to the Web server used by the
application

WebEnterprise uses the value of $$FORTE.ExecURL to expand all generated URLs
(including links in generated pages) to include the correct domain and host name for
the Web server, and the location of either the fortecgi program or the Forte Web server
plug-in.

EnableAccess starts the Web client’s access to the current Web access service.
A URL embedded in a template might appear as:

<a class="al i nk" HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=HTM.t ut AppSe
rvi ce&Tenpl at eName=HTM_t ut App/ Sear ch_Cust oner . ht m &Ret ur nTenpl at e
=HTM_t ut App/ Di spl ay_$$(USER. TopPage) . ht m &Uni qui fi er =$$(FORTE. Uni
quel D)" target="_fortedisplay">

And the actual URL link would be expanded to:

<a class="alink" HREF="http://ww.forte.conicgi-forte?Servi ceNane
=HTM_t ut AppSer vi ce&Tenpl at eNane=HTM._t ut App/ Sear ch_Cust onmer . ht m &R
et ur nTenpl at e=HTM_t ut App/ Di spl ay_$$(USER. TopPage) . ht ml &Uni qui fi er
=$$(FORTE. Uni quel D)" target="_fortedisplay">

® FORTE.UniqueID—(WebEnterprise Designer) returns a unique number; used to defeat
the caching mechanism

See the item “Uniquifier” in the section “URL Parameters” on page 41.

&Uni qui f i er =$$(FORTE. Uni quel D)

m USER.TopPage—(WebEnterprise Designer) defines the outermost logical page being
displayed

Customizing WebEnterprise Designer Applications

Example

WebEnterprise Designer HTML Template Elements 45

With nested or folder logical pages, the TopPage is not always the same as the current
logical page. This parameter is set by the Display_bus_class_page.html template to
bus_class_page. The various Data_bus_class_page.html templates included by the
Display page always refer to the TopPage parameter, rather than explicitly using the
bus_class_page name.

&Tenpl at eName=HTM.t ut App/ Di spl ay_$$(USER. TopPage) . ht m

entry.RequestStatus_busClassPage—the page’s request status

Each page has a request status formatted into this variable that describes the outcome
of the request. For successful search requests, this variable contains a string that
describes the current row number and the number of rows found by the search request.
(for example, “row 1 of 5”).

entry.CurrentRow_busClassPage—the current row number for the indicated page

When a search request returns more than one row, this variable indicates which row a
given action (for example, Update) will operate on.

entry.CurrentRowIndex_busClassPage—the index, within the visible rows, of the current
row from the result set

For example, if the result set contains 10 rows, rows 3 through 7 are being displayed, and
row 4 is the current row, then this variable contains the value 2, because row 4 is the
second row from 3.

entry.FirstVisibleRow_busClassPage—the row number of the first row being displayed
from the result set

For example, if the result set contains 10 rows, rows 3 through 7 are being displayed, and
row 4 is the current row, then this variable contains the value 3, because row 3 is the first
row from the result set being displayed.

entrylist_busClassPage—a list of data rows

This variable contains a list of data rows that are iterated using the FORTE ITERATE
command.

entry.Rows_busClassPage—number of rows in the result set
entry.VisibleRows_busClassPage—number of rows being currently displayed
listentry.qqRowNumber—value of the current iteration row of listentry

listentry.busClassPage_qq_fieldName—the value of an individual field on a particular
page for the current iteration row of listentry

WebEnterprise Designer Application Architecture Chapter 1

46 WebEnterprise Designer HTML Template Elements

Customizing WebEnterprise Designer Applications |

Chapter 2

Customizing WebEnterprise
Designer Application Classes

In general, you customize an application’s logic by using the Page Handler Customization
Wizard. The Page Handler Customization Wizard provides a set of common
customizations.

Topics covered in this chapter include:
using the Page Handler Customization Wizard
creating customizable classes
deleting customizations and customizable classes
online customization examples
customizing generated handler classes
adding business rules to a handler
global customizations

Note that the examples and illustrations in this chapter use the example created in Getting
Started with WebEnterprise Designer, and make references to the class and model names
used there. Also, this chapter assumes some familiarity with Chapter 1, “WebEnterprise
Designer Application Architecture.”

48 Overview

Overview

Read this overview to learn some basic facts about customizing WebEnterprise Designer
application classes. Before making customizations, make sure that the behavior you want
cannot be accomplished by simply setting options within the HTML Application Model
Workshop or Business Model Workshop and regenerating your application.

Before You Begin

The following are suggestions you should take into consideration before you begin your
customizations.

m Use the Page Handler Customization Wizard (see “Customizing With the Page Handler
Customization Wizard” on page 51) if possible, rather than create customizations
directly in generated projects.

® You can choose to customize individual page handler classes, or make application-wide
customizations by modifying classes by modifying the html_modelAccess or
html_modelScanner classes.

m Always try to make your customizations in such a way that they continue to work after
you later make changes to and regenerate your HTML application model. Test
frequently after making changes.

m Itis best not to create new classes in projects generated by WebEnterprise Designer. Try
to keep to only generated classes in these projects (you can of course customize these
classes—just do not add new ones). Add new classes in a separate supplier project.

m Decide whether you need to customize a few classes or many. Your decision will
determine whether or not to turn on the Always Generate Custom Classes toggle. When
this is turned on, WebEnterprise Designer automatically generates a “Base” class and a
leaf-level (customizable) class for each business class page in the model. This may
speed development is you will customize most or all generated classes.

Creating Customizable Classes

WebEnterprise Designer generates both customizable and base (read-only) classes for all
components of the HTML application model except for page handler classes, for which
only base classes are generated. This strategy generates the minimum number of classes
required by the application, and therefore the smallest image size for deployed
applications.

To implement customizations that involve page handler classes requires first generating
customizable classes for the page handlers. You do this automatically for an individual
page when you start the Page Handler Customization Wizard for that page. Alternatively,
you can create a full set of customizable classes for all pages in the model by enabling the
Always Generate Custom Classes option on the Custom Generation Options dialog. (This
dialog is displayed when you choose the File > Custom Generation Options... command).

Customizing WebEnterprise Designer Applications

Overview 49

When you create customizable page handler classes—whether a single one or a full set—
WebEnterprise Designer automatically expands the class hierarchy, with a Base class above
the leaf-level page handler class. All the components that were generated into the base
class are copied to the leaf-level class. The base class is renamed to
bus_class_pageBaseHandler, and the new, customizable leaf-level class is named
bus_class_pageHandler. Figure 14 illustrates this principle.

Before: After:

‘ ExpressClassHandler (read-only) | | ExpressClassHandler (read-only) |

bus_class_pageHandler (read-only) '_rinamed —®| bus_class_pageBaseHandler (read-only) |
class

new class —>| bus_class_pageHandler (customizable) |

Figure 14 Naming Conventions Before and After Creating Customizable Classes

If you decide you do not want the customizable class, you delete it using the Page Handler
Customization Wizard (see “Deleting Customizations” on page 54). This collapses the
three-class hierarchy back into the two-class hierarchy and renames the read-only Base
class to its original name.

Creating a Single Customizable Page Handler Class

The Page Handler Customization Wizard allows you to customize individual classes. When
you invoke the Page Handler Customization Wizard for the first time on a specific class,
WebEnterprise Designer automatically expands the class hierarchy for the particular class,
as shown in Figure 14. For more information, see “Customizing With the Page Handler
Customization Wizard” on page 51.

Creating a Full Set of Customizable Page Handler Classes

If you know you will be customizing many classes, it might be more convenient to generate
the hierarchy at the onset of your development cycle. You do this by setting the Always
Generate Custom Classes toggle in the Custom Generation Options dialog. When set, this
option tells WebEnterprise Designer to create the full hierarchy automatically for every
business class page in your model. When you use this option, note:

m Turning it on turns it on for all the business class pages in the HTML application model;
it can then be turned off only by deleting all the customizations on each class using the
Page Handler Customization Wizard. You should not delete the individual classes
manually from the generated project.

In other words, you create customizable classes for all business class pages in the model
with one step, but you must remove individual customizable classes separately.

m Turning it off will affect only new classes created from the time you turned it off,
resulting in some Base classes having “Base” in their names and some not.

Customizing WebEnterprise Designer Application Classes Chapter 2

50 Overview

To create customizable subclasses for every business class page in your model:

1 In the HTML Application Model workshop, choose the File > Custom Generation
Options... command.

The Custom Generation Options dialog appears.

Custom Generation Options]

Superclazs Prefix for Global Customization: | BEEs:

I Always Generate Custom Classes

Cancel |

2 Turn on the Always Generate Custom Classes toggle.

This toggle causes WebEnterprise Designer to generate customizable leaf-level classes
for every class in the business model or page in the HTML application model.

3 Click OK.

4 Generate code by choosing the File > Generate Web Application Server Code
command.

See “Deleting Customizations” on page 54 for information on deleting customizable
classes.

Customizing WebEnterprise Designer Applications

Customizing With the Page Handler Customization Wizard 51

Customizing With the Page Handler Customization Wizard

The Page Handler Customization Wizard assists you in customizing your WebEnterprise
Designer applications. When you start the Page Handler Customization Wizard on a
business class page, you are presented with a list of categories that contain common
customizations. When you double-click on one of the customizations, the Page Handler
Customization Wizard automatically opens a Method Workshop window, displaying the
appropriate method where you will place your customization code, as shown in Figure 15.
The initial method code contains documentation of the method parameters and return
code, and, if required, a super.method statement and a return statement.

Customize Page Handler: Customer [HI[E E3

-

» Individual Field Operations
Whole Object Operations
Adding constraints to the search criteria
Updating the object
w Inzerting a Mew Record

Double-clicking the customization
Creating anew key opens the Method Workshop for the item
p Database Operations

Processing Commands

Security
HTHML Files
Application

rvww

Method: HTMLtutAppH andlers. CustomerH andler. MewClassForlnsert M= 3
File Edit “iew Help

MewClazsForlnzert]] : BuzinessClass

t i =
£ 2 /f HeuwClassForInsert
EmeEEI Delete | Close 3 £ The HewClassForInsert method creates a new business cl
4 £ appropriate sub-class for the current page and initial
5 14 insert. This includes generating a new key.
Information about 6 4
the method !
€ me 8 newClass : BusinessClass = super.NewClassForInsert;
9
18 return newClass;
[l JJ_J

Figure 15 Page Handler Customization Wizard Opening the Appropriate Method Workshop

In addition to locating your customization code for you, the Page Handler Customization
Wizard has online help associated with each customization. You can access help by clicking
the Help button while a customization is selected, as shown in Figure 16, or by browsing
through the Help system Index to the List of all Page Handler Customizations.

Customize Page Handler: CUSTOMER [HI[El E3

p Individual Field Operations =
p ‘whole Object Operations
w Processing Commands

[ing th | | | Selecting the customization
Current: Retun the current page withaut maki and clicking on the Help button

Custom: Processing a custom command opens the Help text for the item
Delete: Deleting an object from the result set

First: Setting the curent object to the first obje)
| | _'l_I

Eustomizel Delete | Cloge | Help ‘I

< Forte Help |_ (O] =]
File Edit Bookmark Options Help

Ennlenlsl Index I Elack I Frint I

Clear: Clearing the result set

L Retsten Topics

Help topic includes a
link to the method This customization processes the "Clear” action, which clears all data held in the result set.
being overridden, — ¢ Overrides method: ExpressClassHandler DoClear

and shows the

method code — super.DoClear (request=request, respOnsesIespONSe, paraleCers=paransters,
rset=rset, pagelata=pageData);

Figure 16 Page Handler Customization Wizard’s Help on a Customization Topic

Customizing WebEnterprise Designer Application Classes Chapter 2

52 Customizing With the Page Handler Customization Wizard

You also use the Page Handler Customization Wizard to delete customizations. You can
delete specific customizations, or entire subclasses. (You delete a subclass by deleting all its
customizations, an operation that deletes the subclass, renames the Base class, and
collapses the hierarchy to the “Before” structure in Figure 14 on page 49.)

The following sections describe how to use the Page Handler Customization Wizard.

Customizing a Page Handler Class

You use the Page Handler Customization Wizard to customize the page handler classes that
underlie the business class pages in your model. When you start the Wizard for a previously
uncustomized page handler class, a customizable subclass is created for the page (this
action is illustrated in the following procedure).

To customize a page handler class using the Page Handler Customization Wizard:
1 Select the business class page you wish to customize.
2 Choose the Component > Customize... command.

The Page Handler Customization Wizard appears.

3 Click the arrow to the left of the categories to view specific customizations.

Customize Page Handler: Customer [HI[E E3

e

Click on arrow —=-} » Individual Field Dperations
to display p ‘whale Object Operations
contents p FProcessing Commands
p Security
p HTMLFiles
b hocaon

e

Farmatting a field
Adding custom field to the ResultSet
Decoding or validating a field

Updating a field

p ‘whole Object Operations
p Processing Commands
q » Security
- p HTMLFiles
_IDeIete p Application

¥
A ¥

Eustomizel Delete | Cloze | Help |

4 (Optional) Select the customization you wish to perform and press the Help key.
A help screen appears as shown in Figure 16 on page 51.
5 Double-click the specific customization you wish to make (or click Customize).

If this is the first customization you are making to this class, WebEnterprise Designer
displays the following dialog:

Question [%]
@ The model must be generated before a customization

can be created on CUSTOMER. Click OK to generate
the model and create the customization.

Cancel |

6 Click OK.

Customizing WebEnterprise Designer Applications

Page Handler Customization
Wizard is non-modal

Customizing With the Page Handler Customization Wizard 53

WebEnterprise Designer automatically expands the class hierarchy to include a
customizable class for the selected business class page, and the Method Workshop
opens, displaying an override of the appropriate method. The example shown here is
from the “Creating a new key” customization point (under the category/subcategory
Whole Object Operations/Inserting a new record).

Method: HTMLtutAppH andlers. CustomerH andler. HewKey M= 3
File Edit “iew Help
Mewkeylsource: BusinessClass, quenyBusinessGuery]
1 I =
2 /7 HewKey
3 14 The NHewKey method generates new key values for a business class and
4 14 logs the key attributes for update.
5 I
] £ source
7 14 The source parameter holds the business class for which new key
8 14 values are required.
9 I
18 14 query
11 14 The query parameter holds the business query associated with the
12 14 business class identified by the source parameter.
13 I
14
15 super .NewKey(source=source, query=queryj;
< of]

7 Modify or add code appropriate to the customization you wish to make.

8 Choose the File > Compile command to compile the method.

9 (Optional) Return to Step 3 and add more customizations to the class.

10 Close the Method Workshop and the Page Handler Customization Wizard window.

Note that the Page Handler Customization Wizard window is not modal. In other words,
you can view customization information about a class, leave the window open and select
another window or business class, and the Page Handler Customization Wizard will display
the appropriate information for the newly selected class.

Customizing a Generated HTML Template

Forte generates the application’s HTML templates files (described in Chapter 3,
“Customizing Generated HTML Templates”) into a subdirectory of the document root
directory. You can edit these files by opening them with an HTML editor or text editor, or
you can use the Page Handler Customization Wizard. The organization of the Wizard’s
customization points guides you conveniently to the correct location for your
customization. For example, find the file you wish to customize in the following Wizard
categories:

m HTML Files category—for page mode templates of the selected page

m Application/HTML Files—for application-wide customizations, including customizing
the logon page, the start page, or the page responsible for validations

Before you can edit generated files with the Customization Wizard, you must set the
FORTE_WW_HTMLEDITOR and FORTE_WW_EDITOR environment variables with the full
pathname of the editor of your choice. For example:

FORTE_WW_HTMLEDITOR c:\PROGRA~1\WINDOW-~1\Accessories\wordpad.exe

For more information on setting these variables, see the online help topic for the variable.
For information on using shortnames for file specification on Windows NT, see the help
topic, “Use a shortname for the Default Browser field.”

Customizing WebEnterprise Designer Application Classes Chapter 2

54 Customizing With the Page Handler Customization Wizard

Deleting Customizations

Use the Page Handler Customization Wizard to delete specific customizations or all
customizations in a class.

Deleting Specific Customizations
A customization point that has been implemented has a method symbol next to it:

Customize Page Handler: Customer [HI[E E3

p Individual Field Operations =
w ‘Whole Object Operations

Adding constraints to the search criteria
Updating the object

A customization Creating a new empty record
was made here ————————— P ;3@ Creating a new key
p Databaze Operations
Processing Commands
Security
HTHL Files
Application

¥
A ¥

Eustomizel Delete | Cloze | Help |

4
4
4
4

To delete a customization:

1 Select the class that contains the customization and choose Component > Customize...
to display the Page Handler Customization Wizard.

2 Select the customization you wish to delete and click the Delete button.

Customize Page Handler: Customer [HI[E E3

p Individual Field Operations =
w ‘Whole Object Operations

Adding constraints to the search criteria
Updating the object
w Inzerting a New Record
Creating a new empty record

p Databaze Operations
Processing Commands
Security
HTHL Files
Application

¥
A ¥

Eustomizel Delete | Cloze | Help |

rvywvww

The Delete Customization dialog appears.

Delete Customization |3

I~ Delete All Customizations

Cancel |

3 Check the Delete Selected Customization option and click OK.

WebEnterprise Designer deletes the selected customization.

Customizing WebEnterprise Designer Applications

Customizing With the Page Handler Customization Wizard 55

Deleting All Customizations in a Class

Use the Page Handler Customization Wizard to delete all customizations in a class. When it
deletes all customizations, the Customization Wizard also deletes the customizable class,
renames the base class to its original name, and collapses the class hierarchy (see the
“Before” structure in Figure 14 on page 49)

To delete all customizations (entire class):
1 If the Always Generate Custom Classes option is enabled, disable it.

Because the Customization Wizard will delete the customizable class after it deletes all
its customizations, you must disable this option so that the Wizard will be able to delete
the class.

2 Select the class you wish to delete and choose Component > Customize... to display the
Page Handler Customization Wizard.

Customize Page Handler: Customer [HI[E E3

e

Individual Field Operations
‘whole Object Operations
Processing Commands
Security

HTHL Files

Application

vyFvwvwvwyw

¥
A ¥

Eustomizel Delete | Cloze | Help |

3 Click the Delete button.

The Delete Customization dialog appears, with only the Delete All Customizations
toggle active. (This happens only when you click Delete without selecting a specific
customization to delete.)

Delete Customization |3

" | Delete Selected|Eustarmization
¥ Delete All Customizations

Cancel |

4 Click OK.

The following dialog appears.

When To Code Generate HE B3

Deleting all customizations on CUSTOMER requires a Code Generation.
Click "Generate Mow" to Code Generate now and delete all customizations;
click "Defer' to delete the customizations next time vou do a Code Generation.

Generate Mow | Cancel |

5 Click Defer or Generate Now, depending on whether you have more classes to delete
(Defer) or not (Generate Now).

Customizing WebEnterprise Designer Application Classes Chapter 2

56 Customizing With the Page Handler Customization Wizard

Each time you delete all customizations in a class, WebEnterprise Designer regenerates
the model. If you plan to delete all customizations on several classes, choose Defer to
defer the model regeneration until you specifically request it.

When you choose Generate Now, WebEnterprise Designer removes all customizations
(if any) in the leaf-level class, and returns the class hierarchy to its original “Before”
structure shown in Figure 14 on page 49.

Alternatively, you can defer all deletions and regenerate the model with the File >
Generate Web Application Server Code command.

Note If you exit the workshop without regenerating the model, you will be prompted that the
Delete All Customizations that you specified will not occur. If you ignore this reminder and
exit without regenerating, the customized classes will not be deleted.

Making Application-Wide Customizations

The Page Handler Customization Wizard has an “Application” customization category.
Application customizations are customizations that affect the application as a whole,
rather than a specific page in the model, such as logon.

Deleting application When you delete all customizations for business class pages, application customizations
customizations are not deleted. You must select each application customization specifically and then
delete it.

Customizing WebEnterprise Designer Applications

A Roadmap to Customization Examples 57

A Roadmap to Customization Examples
WebEnterprise Designer provides many customization tools to help you customize your
application. These are accessible through the Page Handler Customization Wizard.
Customization tools fall into these categories:
m Page Handler Customization Wizard customization points

For the complete list, see “Page Handler Customization Wizard Customizations” on
page 58.

® customization examples

The main customization examples are in Chapter 7, “Customization Examples,” but
other chapters also provide examples, according to their subject. Use the Table of
Contents to locate them.

® customization techniques

Use the Table of Contents in this manual to help locate the sections in this chapter that
describe the type of customization you wish to make.

= WebEnterprise Designer example applications

For a complete description of example applications shipped with WebEnterprise
Designer, see Getting Started with WebEnterprise Designer.

Page Handler Customization Wizard Help Files

At any point while you are using the Page Handler Customization Wizard, you can press the
Help key to display online information about the currently selected customization.

Customize Page Handler: Customer [HI[E E3

p Individual Field Operations =
p ‘whole Object Operations
w Processing Commands

la——Select customization
Current: Retumn the current page without maki
Delete: Deleting an object from the result set
First: Setting the current object to the first obje
Goto: Setting the current object based on an it
Insert: Inzerting a new object in the result zet
Last: Setting the current object ta the last obje
Mext: Setting the curent object to the next obi—
Previous: Setting the current object to the pres
Search: Filling the result set with new objects

SetCurrentFaolder: Setting the curent folder_lll
«| | »

Eustomizel Delete | Close | Help | @« Click Help button

Figure 17 Page Handler Customization Wizard Help

You can also access these item-specific customization examples directly by their titles in
the List of all Page Handler Customizations help topic.

Customizing WebEnterprise Designer Application Classes Chapter 2

58 A Roadmap to Customization Examples

Page Handler Customization Wizard Customizations

The customizations available from the Page Handler Customization Wizard are:

Customization Section

Individual Field Operations

Whole Object Operations

Inserting a new record

Database Operations

Processing Commands

Custom Commands

Security

HTML Files

Customizing WebEnterprise Designer Applications

Customization

Formatting a field

Adding custom field to the ResultSet

Decoding or validating a field

Updating a field

Adding constraints to the search criteria

Updating the object

Creating a new empty record

Creating a new key

Delete: Before sending a delete object request

Insert: Before sending an insert object request

Search: Before sending a retrieve object request

Update: Before sending an update object request

Clear: Clearing the result set

Current: Return the current page without making any changes
Delete: Deleting an object from the result set

First: Setting the current object to the first object in the result set
Goto: Setting the current object based on an index

Insert: Inserting a new object in the result set

Last: Setting the current object to the last object in the result set
Next: Setting the current object to the next object in the result set
Previous: Setting the current object to the previous object in the result set
Search: Filling the result set with new objects

SetCurrentFolder: Setting the current folder

Update: Updating the current object

your_command_name (as many as you have added)

Restricting access to all page modes

Restricting access to the search page mode

Restricting access to the display page mode

Restricting access to the insert page mode

Restricting access to the update page mode

Under this category are all HTML file templates for the page

- ARoadmaptoCustomization Examples 59

Customization Section

Lookup Files

Logon Validation

Application

HTML Files

Customization

Under this category are the lookup files for drop list and radio list
validation for the page

This customization point opens the HTTPAccess.LogonSession method for
adding security logic to your Logon page

Define HTML template for exceptions
Define subsidiary applications

Is subsidiary application

Modify session timeout

AccessError page (AccessError.html)

Start page (Start.html)

© Customising WebEnterprise Designer Application Clases Chapter2

60 Customizing Manually

Customizing Manually

View inherited elements

Drag and drop

You can perform customizations that do not appear in the predefined list of common
customizations in the Page Handler Customization Wizard. To do so, open the project that
contains the class you wish to customize and then override the appropriate method or
methods in that class. However, before you can customize a class, the class hierarchy must
include the customizable leaf-level class. These are subclasses of the superclass whose
name contains the word “Base.” These are not automatically generated by default. To
create customizable classes, see either “Creating a Single Customizable Page Handler
Class” on page 49 or “Creating a Full Set of Customizable Page Handler Classes” on page 49.

Customizable classes are never regenerated, so any changes you make to them will be
preserved.

The most common way to customize the behavior of a WebEnterprise Designer application
is to override a method inherited from a superclass with TOOL code of your own.

Locating Where to Customize

Making customizations through the Page Handler Customization Wizard automatically
places them where you want them. If none of the customization points provided by the
Customization Wizard suits your needs, then this section will help you locate common
places to add customizations. If the type of customization you want to make is not covered
here, follow these suggestions:

m Review the class interaction diagram in Chapter 1 (“Class Interaction Diagram” on
page 28), The interconnections between objects can be useful in figuring out where to
make a customization. The class descriptions following each class diagram can also be
useful.

m Look through the class function descriptions in Chapter 1 (starting with
“ExpressHTTPAccess” on page 32). If processing similar to what you need is covered in
that section, then you will probably see which method you need to override.

® Run your application under the Debugger to just before where you want to change
behavior. Set “Method Enter” breakpoints in the Debugger and continue execution of
your application. Step or continue from there until you locate the best method to
override.

In addition, you can examine inherited class elements to help you determine what and
where to customize.

Overriding Methods in a Superclass

Whenever this document instructs you to override a method, you must include a call to the
method in the superclass (super.method) in your customized code. Omitting this call in
most cases will cause the overridden method to fail to perform properly. In rare cases, you
must not include a call to super.method—in these cases, the instructions will point this out
explicitly. Customizations provided by the Page Handler Customization Wizard create
initial code for the method that has a super.method method call, if one is required.

You override an existing method by creating a new method in the customizable class (for
example CustomerOrderHandler) identical in name, parameters, and return values to the
method in the superclass (CustomerOrderBaseHandler). Then, invoke the superclass
method (to access its functionality) and add your own custom TOOL code.

When you want to create a method in a subclass that overrides a method defined in a
superclass, drag the method from the Class Workshop for the superclass to the Class
Workshop for the subclass.

Customizing WebEnterprise Designer Applications

Note

Customizing Manually 61

To override a method:

1 Choose the View > Inherited command in the Class Workshop to help you find which
methods are defined in a superclass.

2 Use the File > Open SuperClass command in the Class Workshop to open the Class
Workshop for the superclass where the method is defined.

3 Drag-and-drop the method from the superclass to your customizable subclass.

This will create a method in the subclass with the correct name, parameters, and return
type.

4 Open the method in the subclass and delete all its code, replacing it with the single
statement:

return super. nmethod_name(paraneter_list);

For example, when overriding a method called NewSelectQuery, which has a parameter
named assoclD and returns a value, replace the code in the newly created subclass
method with the following statement:

return super. NewSel ect Quer y(assocl D=assocl D) ;

5 Add your custom code in this overridden method.
Depending on your customization, you could add a call to super after this.

If you were to override a superclass method by dragging the method into the subclass and
then modifying the code, you would not need to call super.method. However, do not
customize in this manner, because future versions of WebEnterprise Designer may change
the implementation of the original method, causing your customized method to fail to
compile or to execute improperly. Your call to super.method encapsulates the method’s
behavior, making WebEnterprise Designer upgrades simpler.

Local and Global Customizations

Most customizations affect a particular business class page and are thus “local” in nature.
However, you might need to make some customizations that will affect all business class
pages (for example, log certain actions). The coding techniques for making local and global
customizations are similar, but special steps must be taken to cause a change to affect all
future generated business class pages. These steps are described in “Global Customization”
on page 68.

Error Reporting

You can handle errors and raise exceptions in your customizations as you would in a non-
WebEnterprise Designer application (using the GetTextData method on the MsgCatalog
class, the AddError method on the ErrorMgr class, and so on). See the TOOL Reference
Manual and the Framework Library online Help for more information.

You will see that classes in the ExpressHandlers project make use of the
ExpressHandlerError class. This class is not intended for you to customize or subclass; you
call it directly in your custom code. Most uses of the ExpressHandlerError class are in raise
statements, like the following:

-- Raise used by WbEnterprise Designer code,

-- not intended for you to override.

rai se ExpressHandl erError (origi nat or=sel f,
error=Error. GEN_UNI MPLEMENTED) . Get Except i on;

In the above example, a new ExpressHandlerError object is instantiated and its
GetException method returns an exception object.

Customizing WebEnterprise Designer Application Classes Chapter 2

62 Working with Business Classes

Working with Business Classes

This section discusses some basic concepts about working with business classes that you
need to know if you want to change field values and add or remove rows from a result set.

Business Class Record Status

Records in the result set contained in the ExpressPageData object contain InstanceStatus
attributes. The values of these attributes indicate what changes have been made to a record
since it was loaded from the database. These status values are used to determine which
queries to run on behalf of a record after it has been updated, inserted, or deleted. The
following constants, defined in the BusinessClass class, describe each numeric value for

InstanceStatus:
InstanceStatus

Constant Value Meaning

ST_READONLY 2 Record is read-only and cannot be modified. No Update/Insert/Delete
queries will be run on behalf of this record.

ST_READWRITE 4 Record was loaded from the database and is updateable, but has not been
changed by the user. Once changed, state will become ST_UPDATE.

ST_UPDATE 8 Record has been modified since being selected from database. Update
statement will be run.

ST_INSERT 16 Record is newly created, contains values entered by the user, and is not yet
in database. Insert statement will be run.

ST_DELETE 32 Record has been deleted (not yet deleted from database). Delete statement
will be run.

ST_EMPTY 1 Empty record to be filled in by user—user has not yet typed any values into

the record. (When values are entered, state will become ST_INSERT).

BusinessClass Attribute IDs (ATTR)

Many methods require an integer parameter to indicate the attribute ID of the business
class. The attribute IDs for each business class attribute are generated as constants in class
business_classBaseQuery. The constants are named the same as the
business_classClass.attribute name, but with the prefix “ATTR_". For example, the attribute
CustomerClass.CustomerNumber has a corresponding constant
ATTR_CUSTOMERNUMBER defined in CustomerBaseQuery. (These classes are found in
the business_modelService project generated from the supplier business model.)

Note that when two business classes contain an identically named field (often it is a
database join field), the values of the generated ATTR_ constants in the two BaseQuery
classes will not necessarily be identical. For example, do not assume the following have the
same value:

CustomerBaseQuery.ATTR_CUSTOMERNUMBER
CustomerOrderBaseQuery ATTR_CUSTOMERNUMBER

Since these constants are inherited, the examples will refer to them through the
customizable leaf-level class. For example, the examples will refer to

CustomerQuery. ATTR_NAME, rather than CustomerBaseQueryATTR_NAME, where it is
defined.

Customizing WebEnterprise Designer Applications

Working with Business Classes 63

Changing the Value of an Attribute

When you want to change the value of an attribute of a BusinessClass you should use the
UpdateAttr method of the ExpressPageHandler class. When changing the value of an
attribute of a BusinessClass there are several things you need to do. This logic is
encapsulated in the UpdateAttr method.

Checking the Status of a BusinessClass Object

When a BusinessClass object is updated, its UpdateQuery attribute is set. The following
example checks whether the BusinessClass object myCust has been updated and if its
Address attribute has been modified (the object pageData is of type ExpressPageData):

nmyCust : CustonerC ass = pageData. Dat a[1] ;

if (myCust <> NIL) then
if ((nyCust. UpdateQuery = NIL)
or (mycust. UpdateQuery. Values = NIL)) then
task. Part. LogMyr. Put Li ne(’ Busi ness cl ass has not been

updated.’);
el se
task. Part. LogMgr. Put Li ne(' Busi ness cl ass has been updated.');
i f
(myCust . Updat eQuery. Get Updat eAttr (att r =CUSTOVERQuer y. ATTR_ADDRESS)
= NIL) then
task. Part. LogMyr. Put Li ne(' Address field has not been
updated.');
el se
task. Part. LogMyr. Put Li ne(' Address field has been updated.');
end if;
end if;
end if;

Undoing Changes Made to a BusinessClass Object

It is possible to undo changes made to a BusinessClass object by using the BusinessClient’s
Revert method:
myCust : CustonerC ass = pageData. Data[1];
if (myCust <> NIL) then
Cient.Revert (nyCust);
end if;

Customizing WebEnterprise Designer Application Classes Chapter 2

64 Customization Techniques: ClassHandler Classes

Customization Techniques: ClassHandler Classes

WebEnterprise Designer provides a set of commands and behavior as a result of your
specifications in the HTML Application Model Workshop. However, there may be times
when you need to modify the generated behavior.

This section shows examples and describes coding techniques you should employ when
customizing handler classes. In these examples, business class page names, class names,
and attribute names are used for illustration. You will need to change these to be
appropriate for your handler class. Also, the “method” statements below should not be
typed into the Method Workshop; they are provided for your information.

Creating a New Instance of a Business Class

You can customize your application to insert data into the result set, but rather than using
“new()” to create an object, you should use the NewClass or NewClassForInsert methods to
create an object that is initialized for the current business class page.

For example, if business class page CustomerOrder is based on class CustomerOrderClass,

then create a new instance of CustomerOrderClass using the following code in a handler
method:

record: BusinessC ass = NewCl ass();

The new CustomerOrderClass object will instantiate and log the attributes used by the
associated business class page.

The differences between NewClass and NewClassForInsert are:

= NewClass instantiates attributes used by the associated business class page,
NewClassForInsert does not

m NewClassForInsert uses NewKey to assign values to the key attributes of the business
class

Getting the Result Set

Use the GetPageData method to get the current result set of the Web client issuing the
request for the associated business class page.

Getting the Initial Query
Use the NewQuery method to get the query required to retrieve all the data that is

requested by the associated business class page. This is an unrestrained query; therefore all
rows in the database are returned unless constraints are applied on some of the attributes.

Customizing WebEnterprise Designer Applications

Customization Techniques: Business Rules 65

Customization Techniques: Business Rules

Business rules are special data requirements that you want your application to enforce
automatically, or particular actions the application must perform based on the state of the
data.

Where to Implement

Problems implementing
on the browser

When to implement on the
Web application server or
the business service

You can choose to implement business rules in the following places:
® on the browser

m in the Web application server

® in the business services

If you implement your business rules on the browser, the user gets immediate feedback
rather than after submitting the request. However, anything done on the browser can
potentially be defeated by the user. Therefore to ensure integrity, you should always
implement your business rules in either the Web application server or in the business
service. You may want to implement them on the browser as well, to provide a better user
interface.

Whether you implement a rule in the Web application server or the business service will
depend on the nature of the rule. When a rule is applicable to the business service (and
could be reused by other applications, for example, enforcing that all user IDs be more
than six characters), implement it in the business service. When the rule is specific to one
specific application (for example, enforcing that user IDs for the Travel application start
with the letter T), implement it in the Web application server. Usually, you will have a
combination of rules in both locations.

Business Rules on the Browser

In general, when you implement business rules on the browser, you must custom code
them for each HTML template. However, you can avoid this by creating a JavaScript
function that gets included and invoked wherever it is needed. The “Example: Validating a
Whole Form” on page 153 (in Chapter 7) demonstrates how to use JavaScript to implement
business rules on the browser.

Customizing WebEnterprise Designer Application Classes Chapter 2

66 Customization Techniques: Data

Customization Techniques: Data

This section discusses a variety of customizations that concern processing data from a
result set and presenting it on a page.

Formatting Fields

At the end of processing a request, all the data from the user’s result set that is to appear on
a displayed HTML page is formatted into a WebEnterprise ResultSet object. To change the
formatting of this data, use either of the following:

m Page Handler customization: Formatting a field (Fields category)

See the customization list in “Page Handler Customization Wizard Customizations” on
page 58.

m Override handler method: FormatValue

This method is invoked on each field to be displayed. Parameters passed to it include
the DataValue object to be displayed and the field’s field index and association ID. For
information on field indexes and association IDs, see “Field Identification” on page 36.

Formatting Custom Fields

Custom fields are fields that you have added to the HTML template yourself. The generated
application will not know about these fields; therefore, you have to add them to the
WebEnterprise ResultSet object yourself. To do this, use either of the following:

m Page Handler customization: Adding data for a custom field to a page (Fields category)
m Override handler method: DisplayPage method

Add your data to the rset parameter. See A Guide to WebEnterprise for specifics on how
to manipulate a ResultSet object like the rset parameter.

Decoding or Validating Fields

Processing a request from a Search, Update, or Insert form includes decoding the fields on
the page that represent business class attributes. To change the format that data is
accepted in these fields, or to perform data validation, use either of the following:

= Page Handler customization: Decoding or validating a field (Fields category)
m Override handler method: DecodeValue method

This method is invoked on each field. Parameters passed to it include the TextData
object with the user-entered value and the field’s field index and association ID. For
information on field indexes and association IDs, see “Field Identification” on page 36.

Customizing WebEnterprise Designer Applications

Customization Techniques: Data 67

Processing Custom Fields on an HTML Form Submission

The generated application will not know about fields you add to the HTML template
yourself. You have to decode such custom fields from the WebEnterprise HTTPRequest
object yourself.

Processing an Insert or Update Form

To process values specified on an Insert or Update form, use either:
m Page Handler customization: Insert or Update (Database Operations category)
m Override handler method: Beforelnsert or BeforeUpdate methods

Values will be found on the request parameter. See A Guide to WebEnterprise for

specifics on how to manipulate an HTTPRequest object like the request parameter.

Processing a Search Form

There are two customization points you can use when processing custom fields on a Search
form.

If you want the custom fields to affect the generated query, then use either:
m Page Handler customization: Search (Database Operations category)

m Override handler method: BeforeSearch method

To change the way the request is processed, use either:

= Page Handler customization: Search (Actions category)

m Override handler method: DoSearch method

Customizing WebEnterprise Designer Application Classes Chapter 2

68 Global Customization

Global Customization

Note

You can add global customizations by subclassing directly from the ExpressHandlers
project. Global customizations affect all classes generated from that point forward. You
make global customizations when you wish to affect features throughout the application.

You can add global customizations by creating a project that contains subclasses of specific
classes in ExpressHandlers (the specific classes are listed below). Using options in the
HTML Application Model Workshop, you specify that WebEnterprise Designer use these
projects to provide the superclasses for the generated classes.

To customize ExpressHandlers classes:

1 In the Repository Workshop, create a new project to contain your customized classes
(CustomProject).

2 In the Project Workshop for CustomProject, choose the File > Supplier Plans command
and add ExpressHandlers and HTTP as suppliers to the project.

3 Create subclasses of the following superclasses in CustomProject:

ExpressClassHandler
ExpressHTTPAccess
ExpressLogonHandler
ExpressLookupInfo
ExpressPageData
ExpressScanner
ExpressTestRunner
ExpressValueGenerator

4 Name each subclass with the same custom prefix (for example, “New,” as in
NewClassHandler).

Each subclass must use the same suffix as its superclass. You must create subclasses of
all eight of the above classes, even if you do not plan to customize all of them.

5 Using the Class and Method Workshops, add your customizations to any or all of these
classes.

6 Inthe HTML Application Model Workshop, choose the File > Custom Generation
Options command.

7 Enter your custom prefix name (for example, “New” in Step 4) in the Superclass Prefix
for Global Customization property.

This property will initially be set to “Express.”
8 Click OK to apply your change and dismiss the dialog.
9 Choose File > Supplier Plans and add CustomProject as a supplier plan to the model.

Now when you generate code for the HTML application model, WebEnterprise Designer
searches the supplier projects of the application and looks for classes with the prefix “New.”
The generated HTML model classes will be subclasses of the CustomProject classes.

To use your customizations in future HTML application models, just perform steps 6-9, as
described above.

Supplier plans added to the HTML application model will be added to the supplier plans
for the generated project. These supplier plans are not automatically removed from the
generated project if you remove the supplier plan as a supplier to the HTML application
model. For example, if you change your model supplier plans to pick up customizations
from a different project, then you must manually change the supplier plans in the
generated project.

Customizing WebEnterprise Designer Applications

Chapter 3

Customizing Generated
HTML Templates

This chapter provides information on how to customize the HTML files generated from an
HTML application model. These files are referred to as HTML templates.

HTML templates are .html files that contain embedded WebEnterprise tags. WebEnterprise
Designer processes HTML templates to produce HTML documents displayed in a browser.
Processing removes the tags, substitutes actual data values for dynamic data references,
and sometimes includes other HTML templates.

Topics covered in this chapter include:
how WebEnterprise Designer uses HTML templates
what and where to customize (and what not to customize) in the HTML templates
how your customizations are preserved after regeneration

At the end of the chapter are two annotated, customized HTML files that illustrate
principles of good customization.

70 How WebEnterprise Designer Uses HTML Templates

How WebEnterprise Designer Uses HTML Templates

When you generate code for an HTML application model, WebEnterprise Designer
generates HTML templates into a subdirectory of the document root directory that has the
same name as the HTML model. For example, the HTML templates for the HTMLtutApp
tutorial reside in the %{FORTE_ROOT}/html/docs/HTMLtutApp directory.

The document root directory is the top-most directory of HTML template files used by
WebEnterprise Designer, and is specified in a number of ways, the most common of which
is with the FORTE_WW_DOCUMENT_ROOT environment variable. For more information
on specifying the document root, see “Setting Document Root on the ScannerService
Service Object Partition” on page 195.

For each logical page in the HTML application model, WebEnterprise Designer generates a
set of related HTML templates to support it. These generated HTML templates are design-
specific, but some are common to all designs.

Common Templates

This section describes the HTML templates common to all page designs, organized by
different page types, including:

® business class pages
m link pages

m logon pages

Business Class Page Templates

The following table lists the templates common to all business class pages. Templates you
generally customize have a “Yes” in the Customize column.

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the page (but not nested
data).

Display_bus_class_page.html No Display mode of the page, which includes data for this page
and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Scripts_bus_class_page.html No Scripts for the page.

The Main template (for example, Main_Customer.html in the HTMLtutApp application)
has two main functions:

m it is the template referenced by other pages

When a page calls another page, it references the URL of the Main template. The other
templates are considered internal.

m it includes other templates as appropriate for the function being performed

If the function is to display data, the Main template includes the page’s Display
template. The Display template in turn includes the Data template. If there are nested
pages, the Display template includes the Data templates of all nested pages.

The Scripts template defines any JavaScript functions required by the page.

Customizing WebEnterprise Designer Applications

Note

How WebEnterprise Designer Uses HTML Templates 71

Generated Maintenance Files and Directory

In addition to HTML templates, two text files are generated into the document directory
that are used to keep track of important information regarding the generation:

File Name Customize Description
manifest.txt No Lists each generated file, one per line.

report.txt No Describes details of the generation with respect to the customization.

A copy of the entire set of generated files is generated into the .base subdirectory, which
maintains these copies throughout successive regenerations. See the section“Regenerating
After Customizing” on page 76 for more details concerning the report.txt file and the .base
directory.

You should not modify the files in the .base directory.

Lookup Files

When you specify drop list or radio list validation for a page’s field, you can also specify a

Lookup class, and then further specify which of the class’s attributes is to be the displayed
field and which is to be the field where user input is stored (the same attribute can serve as
both). (For more information on setting up a drop or radio list, see the Forte online Help.)

For every field that uses validation, WebEnterprise Designer generates a file that contains
the legal stored and displayed values:

File Name Customize Description

bus_class_page_qq_field_name.inc Yes Contains stored and displayed values of the field.

If you specified a lookup class, then the lookup file is automatically populated from the
database when the application starts. If you did not specify a Lookup class, then the file is
generated without values and must be populated with data externally. In this case, you may
use the Page Handler Customization Wizard to edit the file. Be sure to save a copy of this
file, because it will be overwritten if you change the model and have to regenerate.
Alternatively, you can populate this file at runtime.

For information on how to populate the generated file with data, see “Drop List or Radio
List Example: Entering Lookup Information Manually” on page 161.

Start Page

The final file generated by WebEnterprise Designer is a start page for the application:
File Name Customize Description
Start.html Usually not Defines a shortcut for a string used in deployment.

The start page allows the administrator to publish a simpler URL for the application.

Link Page Templates

If a link page is defined for the application, WebEnterprise Designer generates the following
HTML templates:

File Name Customize Description
Main_link_page.html No Top-level HTML definition of the page.
Display_link_page.html Yes Layout of the data display portion of the page.

Customizing Generated HTML Templates Chapter 3

72 How WebEnterprise Designer Uses HTML Templates

Logon Page Templates

If a logon page is defined for the application, WebEnterprise Designer generates the
following HTML templates:

File Name Customize Description

Logon_Jlogon_page.html Yes The page displayed when a non-validated user attempts access
to any page in the application.

LogonFailed_logon_page.html Yes The page displayed when a user is denied access to the
application.
Validate_logon_page.html No The page used to validate the logon. This page is never

displayed; it redirects to the first page of the application or the
logon failed page as appropriate.

Page Design Templates

Different HTML templates are generated for different page designs. This section describes
the template sets generated for two of the provided designs: simple and fancy. The other
provided page designs (fancyMenu, fancyNoBorder, fancyNoCaption, and fancyNoFooter)
are variations on the fancy page design. How they differ from the fancy page design will be
made clear in the section on the fancy design.

Simple Page Design Templates

The simple page design creates a single HTML page and supports four modes of operation:
search, display, insert, and update. When the current page is to be displayed in one of these
modes, the Main template includes the template corresponding to that mode.

Files generated for the Simple page design are:

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the page (but not nested
data).

Display_bus_class_page.html No Display mode of the page, which includes data for this page
and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Scripts_bus_class_page.html No Scripts for the page.

Customizing WebEnterprise Designer Applications

How WebEnterprise Designer Uses HTML Templates 73

Fancy Page Design Templates

The fancy page design extends the simple design by using frames to divide the canvas into
four sections:

® a header frame at the top

m adisplay frame in the middle divided into:
a menu frame on the left

a data frame on the right
m a footer frame at the bottom

The header, footer, and menu are defined statically. The data frame contains dynamic data
substituted in at runtime.

Files generated for the fancy design are:

File Name Customize Description

Main_bus_class_page.html Usually not Top-level HTML definition of the page.

Data_bus_class_page.html Yes Provides the tags to be displayed for the page (but not nested
data).

Display_bus_class_page.html No Display mode of the page, which includes data for this page
and nested pages.

Insert_bus_class_page.html Yes Insert mode of the page.

Menu_bus_class_page.html Yes Menu area for the page.

Search_bus_class_page.html Yes Search mode of the page.

Update_bus_class_page.html Yes Update mode of the page.

Header_bus_class_page.html Yes Header of the page.

Footer_bus_class_page.html Yes Footer of the page.

Scripts_bus_class_page.html No Scripts for the page.

Fancy Page Design Variations

All the other fancy page designs are based on the files just described, with certain
modifications. These designs are:

m fancyMenu has no header or footer templates

The Header_bus_class_page.html and Footer_bus_class_page.html templates are not
included.

m fancyNoBorder has no border around the panes
m fancyNoCaption has no page titles

The fancy page design places a caption in the display pane over the data. The
fancyNoCaption page design removes the caption and has only data. This is good for
nested pages when the data is self-descriptive and needs no additional label.

m fancyNoFooter has no footer template

The Footer_bus_class_page.html template is not included. The logo normally in the
footer is moved to the upper right corner of the header.

Customizing Generated HTML Templates Chapter 3

74 Customizing HTML Templates

Customizing HTML Templates

Note

You are free to make changes to the HTML templates generated by WebEnterprise
Designer. You might want to customize the generated HTML for a variety of reasons, such
as:

m to change the font or other design elements
® to change the layout or containment hierarchy
® to add graphics or other HTML elements

WebEnterprise Designer allows you to customize any of the generated HTML templates; it
preserves customizations during any subsequent generation of the HTML application
model. This section describes how this process works, and gives guidance as to how to
avoid damaging your HTML templates through customization.

If your customizations are limited to font and style changes, you should first look at
creating custom page designs or styles, which is usually easier and more reusable. See
Chapter 4, “Customizing Page Designs” and Chapter 5, “Customizing Page Styles,” for more
information.

Customization Types

You can customize HTML templates for a single application or for many applications.

Single application When a specific change is required for an individual application, you
generate the HTML templates and then customize one or more of them. This type of
customization is the subject of this chapter.

Multiple applications When a change is required throughout one or more applications,
you effectively create a custom page design. This type of customization is the subject of
Chapter 4, “Customizing Page Designs.”

Where to Customize

In general, when you are customizing the Simple or Fancy page design, you will customize
one of the page mode templates (data, search, insert, or update).

Because there are separate templates for each mode of the logical page, it is possible to
customize only a single mode. An example of this type of customization is when you do not
want some field validations applied when the user is entering search criteria, but you do
want them when the user is doing an insert or update. In this case, you would customize by
removing the unwanted field validations from the page’s Search template.

If, on the other hand, you want to make changes in a single logical page, you must make
the same changes to all the templates in the set.

You can customize the Main and Display templates, but there is usually no need to do so.
An exception to this rule is when you want to affect the frame definition in the Fancy
design (for example, by changing where the frame boundaries are, removing the header or
the footer, and so forth). In that case, you might want to customize the Main template.

You might also want to customize the Header, Footer, and Menu templates of the Fancy
design.

Within a template you can add, remove, or modify almost any of the normal HTML tags.
The next section, “What Not to Customize,” offers guidelines on what to customize.

Customizing WebEnterprise Designer Applications

WebEnterprise tags

WebEnterprise variables

Hidden fields

Customizing HTML Templates 75

What Not to Customize

Note

There are some items you must leave alone when customizing HTML templates.
WebEnterprise Designer templates are a combination of HTML tags, WebEnterprise tags,
and plain text. The following table provides guidelines on customizing these three
categories:

Type of Item Modify or Add Move Remove
HTML tags Always OK Usually OK Usually OK
Plain text Always OK Usually OK Usually OK
WebEnterprise tags Never OK Never OK Never OK
WebEnterprise variables Add OK oK OK

WebEnterprise tags are HTML-like tags that start with “<?forte ...” and are usually
embedded in an HTML comment, as in:

<I--<?forte iterate listentry entry.list_Myvie start="1" max="1">-->

In this manual, as in A Guide to WebEnterprise, the tags are referred to in text in
abbreviated form (for example, “the FORTE EXECUTE tag”), while the actual syntax
requires a preceding question mark (as above). For a full description of Forte HTML tag
syntax, see A Guide to WebEnterprise

WebEnterprise variables are plain text starting with “$$” and usually enclosed by
parentheses, as in:

$$(1istentry. Movi e_gg_Mvi el D)

WebEnterprise variables are described in “WebEnterprise Designer HTML Template
Elements” on page 41.

When customizing HTML templates, you must never remove or modify any hidden fields
on forms. Hidden fields are identified with “HIDDEN” for input type, such as:

<i nput type="H DDEN' nane="Servi ceNanme" val ue="novi eService">

Customizing Generated HTML Templates Chapter 3

76 Regenerating After Customizing

Regenerating After Customizing

You will usually regenerate the HTML application model after you have made
customizations to the HTML templates. When you do this, new HTML templates are
generated. Your customizations are preserved in one of three ways:

m by keeping the customized file in preference to overwriting the newly-generated one

® by merging the customized file with the newly-generated one (when this can be done
without conflicts)

® by merging the customized file with the newly-generated one, but leaving the
customization commented out

Forte reports on what happened to each file during the regeneration by means of the
report.txt file. The following scenarios describe the details of this process.

Scenario 1: HTML Changes Only

Consider the circumstance in which you have completely finished your model and decide
to change one or more HTML templates. Perhaps you wish to change the background color
of all the templates, or you might want to use a different font for several labels.

HTML template change Changes to colors, fonts, and so forth, on certain templates
HTML model change No changes that affect those pages

HTML code generation change Forte compares the newly-generated pages
corresponding to the changed pages to the equivalent pages in the Base Level directory
(the .base directory). It finds no differences between the new pages and the Base Level page
equivalents. It leaves the Top Level pages unchanged (the HTML changes are preserved).
The template is listed by name in the report.txt file, along with any other templates that fall
into this category, following the heading:

NOTE: The follow ng fil es had user custom zati ons but no nodel changes.
The user customni zations have been left. No changes are needed.

In addition, the count of files treated in this way will be listed at the end of the report.txt
file.

Scenario 2: HTML and Model Changes

Now consider the circumstance in which you have changed one or more HTML templates,
and now you change the model.

HTML template change Changes to colors, fonts, and so forth, on certain pages

HTML model change Attributes added or removed, links added or removed, both field
and command labels edited

HTML code generation change Forte compares and finds differences between the new
templates and equivalent templates in both the Base Level directory, and detects user
modifications in the Top Level files. Forte merges the new model changes with the HTML
changes. Base Level files are updated to reflect the new HTML model. The template is listed
by name in the report.txt file, along with any other templates that fall into this category,
following the heading:

WARNI NG The followi ng fil es had user custom zati ons and nbdel changes
but were merged wi t hout conflicts. The previously generated file (i.e.,
the root ancestor) is left in <fil eNanme>. ol d. The user custom zed
file based upon the previous generationis left in<fileNanme>.cust. The
generated file fromthe current generati on before nergingis left in

Customizing WebEnterprise Designer Applications

Regenerating After Customizing 77

<fileNanme>.gen. The nerged fileis left in<fileNane> htm . No changes
are needed but you may wi sh to i nspect the file to confirmthat the
mer ge produced the desired result.

In addition, the count of files treated in this way are listed at the end of the report.txt file.
Pre-merged files are preserved and the following files are generated:

m htmlTemplate.old files—old Base Level files (not merged)
m htmlTemplate.cust files—old Top Level files (with HTML customizations, not merged)
m htmlTemplate.gen files—Newly-generated files (not merged)

m htmlTemplate.html files—Newly-generated files with user customizations merged in

Scenario 3: Conflicting HTML and Model Changes

Now consider the circumstance in which you have changed one or more HTML templates,
and also changed the model in some conflicting way. For example, perhaps you changed all
Part Number labels to “Part No” in the model, but to “PN” in the HTML files.

HTML template change Changes to labels
HTML model change Changes to labels, but different from the HTML changes

HTML code generation change Forte compares and finds differences between the new
templates and equivalent Base Level templates and detects user modifications in the Top
Level templates. Forte attempts to merge the files, but because there are conflicting
changes, the merge results in an error. The template is listed by name in the report.txt file,
along with any other templates that fall into this category, following the heading:

ERROR. The followi ng fil es had user custom zati ons and nodel changes
that were nerged with conflicts. Thesefiles will needto be reconcil ed.
The previously generated file (i.e. the root ancestor) is left in

<fil eName>. ol d. the user custonized file based upon the previous
generation is left in <fileNane>. cust. The generated file fromthe
current generation before merging is left in <fileNane>.gen. The
merged fileis left in <fileName>. html w th comments surrounding the
conflicting lines. These conflicts will need to be resol ved manual | y.

The count of files treated in this way are listed at the end of the report.txt file, and the same
files are generated as listed in “Scenario 2: HTML and Model Changes.”

After generation an error dialog alerts the user to the presence of merge conflicts and
directs the user to the report.txt file. The conflicts are indicated in the .html file with blocks
of text as shown below:

<l-- >>>>>> BEG N CONFLI CT BLOCK -- GENERATED TEXT: -->
generated information ...

<l-- ====== CUSTOM ZED TEXT: (left as coment)
exanpl e of user-entered information ...

<l-- <<<<<< END CONFLI CT BLOCK -->

The first comment line points out the conflict block. The generated text follows as regular
HTML. The second comment line introduces a comment block that ends only the end of
the user-customized block (that is, the user-customized HTML is left in the file as a
comment).

Customizing Generated HTML Templates Chapter 3

78 Customization Examples

Customization Examples

This section contains two examples that illustrate where to put certain customizations, and
what you should not modify or, in some cases, delete or even move.

The examples are:
m “Example: Customizing a Field on a Search Page,” which follows

This customization shows how to remove a JavaScript validation from a Search page and
replace it with a simple input field. This example is fully described in Chapter 7,
“Customization Examples.”

m “Example: Customizing a Font Size on a Data Page” on page 81

This customization shows how to make the font of a field on a Data page two points and
bold.

Conventions Used with the Examples

In these examples, the following conventions are followed:
m bolded lines are customized lines
m unshaded lines are lines that should not be modified

Unless otherwise noted, you can delete or comment out the unshaded lines (or move
the whole block containing the line), but you should not edit the text of the code.

For a description of WebEnterprise variables and HTML URL parameters and links, see
“WebEnterprise Designer HTML Template Elements” on page 41.

Customizing WebEnterprise Designer Applications

Customization Examples 79

Example: Customizing a Field on a Search Page

This example shows a sample Search page from the tutorial application (HTMLtutApp),
which was customized to apply an IsAlphabetic validation to the Customer Name field of
the Customer page. This validation was inconvenient for the Search page, where the user
might want to use a wildcard. Therefore, on this Search page, the validation has been
commented out and a simple input field inserted.

This customization is described in “Example: Removing a JavaScript Validation from a Page
Mode” on page 147.

<l-- Forte WebEnterprise Designer Search formdefinition for nodel

HTM_t ut App usi ng page design fancy and style cool. Generated
on

20- Feb-1999 13:05:14 -->
<l--<?forte if CustonerHandl er. RestrictSearchAccess>-->
<I--<?forte redirect "HTM.t ut App/ AccessError. ht m &PageNane=Cust oner
&PageMbde=Sear ch" >- - >
<l--<?/forte if>->
<htm >
<head>
<title>
Sear ch Cust oner
</title>

<link href="/fortel/styles/cool.css" rel="styl esheet"
type="text/css">

</ head>
Do not move or delete. <l--<?forte include "HTM.tut App/ Scri pts_Customer. htm ">-->
<body cl ass="nodi fy">
<caption align="left">
<di v cl ass="captionform >
Fi nd Cust oner
</ di v>
</ capti on>
<f or m et hod="POST" acti on="$$(FORTE. ExecURL) " >

Do not move or <i nput type="H DDEN' nane="Servi ceNane"
val ue="HTM.t ut AppServi ce" >
edit these <i nput type="H DDEN' nanme="Tenpl at eNane"
val ue="$$(FORTE. Ret ur nTenpl at e) " >
lines. <i nput type="H DDEN' nane="Action"
val ue="Cust oner Handl er. Sear ch" >

<table border="0" cellspacing="3" cell paddi ng="5">
<tr>

<th cl ass="I abel modi fy" styl e="wi dt h: 20% >
Cust omer Nunber

</th>

<td class="dataf ornmt' styl e="wi dt h: 80% >

<i nput type="text" name="Custoner_qq_Cust oner Nunber"
si ze=40>

</td>

Customizing Generated HTML Templates Chapter 3

80 Customization Examples

</tr>
<tr>

<th cl ass="I abel modi fy" styl e="wi dt h: 20% >

Nanme
</th>
<td class="datafornm' styl e="w dth: 80% >
Start comment. <I--
Call to <script |anguage="JavaScript">
JavaScript Sel ect _Cust oner _qqg_Nane(’ Cust omer _qq_Nanme’, ' Nane’, ' qgNone’) ;
validation. </script>
End comment. 5555
Add input field. <i nput type="text" name="Custoner_qgq_Nane" size=40>
</td>
</tr>
<tr>

<th class="I abel modi fy" styl e="wi dth: 20% >
Addr ess

</th>

<td class="datafornm' styl e="w dth: 80% >

<i nput type="text" name="Custoner_qq_Address" size=40>
</td>

</tr>
<tr>

<th cl ass="I abel modi fy" styl e="wi dt h: 20% >
Phone

</th>

<td class="datafornm' styl e="w dth: 80% >

<i nput type="text" name="Custoner_qgq_Phone" size=40>
</td>

</[tr>
</tabl e>

<t abl e border="0" w dth="1" cel | spaci ng="3" cel | paddi ng="5">
<tr>
<td cl ass="butt ons" >
<I NPUT TYPE="subnit" VALUE="SEARCH'>
</td>
</[tr>
</tabl e>
</fornmp
</ body>
</ htm >

Customizing WebEnterprise Designer Applications

Customization Examples 81

Example: Customizing a Font Size on a Data Page

Do not move this line.
Begin data display.

Start definition of Movie field.

Begin modification.

End modification.

End definition of Movie field.
Start definition of Title field.

End definition of Title field.
Start definition of Rating field.

End definition of Rating field.
Start Critic Rating field.

This next example is a sample Data page from the Movie application provided in the
WebEnterprise examples directory. This example shows how you would make the Movie
field a larger font than the default and also bold, rather than regular.

<l-- Forte WebEnterprise Designer Display formdefinition for nodel
novi eApp usi ng page design fancy and style cool. Generated on
16- Feb-1999 22:50:51 -->
<I--<?forte iterate listentry entry.list_Myvie start="1" nax="1">-->
<tabl e wi dt h="100% border="0" cel |l spaci ng="3" cel | paddi ng="5" >
<caption align="left”>
<di v cl ass="capti onf orm' >
Movi e
</ di v>
</ caption>
<tr>

<th class="I abel form' styl e="wi dth: 20% >
Movi el D

</th>

<td class="dataform' style="w dth: 80% >
 <bol d>
$$(listentry. Movi e_qgg_Movi el D)
</ bol d>

</td>

</tr>
<tr>

<th class="I abel form' styl e="wi dth: 20% >
Title

</th>

<td class="dataform' style="w dth: 80% >
$$(listentry. Movie _qq_Title)

</td>

</tr>
<tr>

<th class="I abel form' styl e="wi dth: 20% >
Rat i ng

</th>

<td class="datafornm' style="w dth: 80% >

$$(listentry. Mvi e_qgg_MPRati ng)
</td>

</tr>
<tr>

Customizing Generated HTML Templates Chapter 3

82 Customization Examples

End Critic Rating Field
Start Description field.

End Description field.
Start Web Address field.

End Web Address field.

End data display table.

Do not move this line.
Begin commands for nested
page (because they can not
appear in the command
panel of the main page).
Begin Search command.

End Search command.

Begin Update command.

<th class="Iabel form' styl e="wi dth: 20% >
Critic Rating

</th>

<td class="datafornm' style="w dth: 80% >
$$(listentry. Mvie_gg_CriticRating)

</td>

</tr>
<tr>

<th class="I abel form' styl e="wi dth: 20% >
Descri ption

</th>

<td class="datafornm' styl e="w dth: 80% >
$$(1istentry. Movie_qq_Description)

</td>

</tr>
<tr>

<th class="I abel form' styl e="w dth: 20% >
Web Address

</th>

<td class="datafornm' style="w dth: 80% >
$$(listentry. Mvi e_qq_webaddr ess)

</td>

</tr>
</t abl e>
<?forte if $$(USER TopPage) Handl er . | sNest edPage(PageNanme="Movi e") >
<tabl e wi dth="40% align="center" border="0" cell spaci ng="3"
cel | paddi ng="5">
<tr>
<t d> </t d>
<t d>
<a class="al i nk"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNarme=novi eAppSer vi ce&Tenpl at eNanme=nov
i eApp/ Sear ch_Movi e. ht ml &Ret ur nTenpl at e=novi eApp/ Di spl ay_$$(USER. TopP
age) . ht m &Uni qui fi er =$$(FORTE. Uni quel D)" target="_fortedisplay">
Sear ch</ a>
</td>

<t d> </t d>
<t d>
<?forte if Mvi eHandl er. HasCur r ent Row>

<a class="al i nk"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=novi eAppSer vi ce&Tenpl at eName=nov
i eApp/ Updat e_Movi e. ht ml &Ret ur nTenpl at e=novi eApp/ Di spl ay_$$(USER. TopP
age) . ht m &Uni qui fi er =$$(FORTE. Uni quel D) &Act i on=Movi eHandl er. Current "
target="_fortedi splay">

Customizing WebEnterprise Designer Applications

End Update command.

Begin Insert command.

End Insert command.

Begin Delete command.

End Delete command.

Begin First command.

End First command.

Begin Previous command.

Customization Examples 83

Updat e</ a>
<?forte el se>

Updat e

<?forte if>
</td>
<t d> </t d>
<t d>

<a class="al i nk"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNarme=novi eAppSer vi ce&Tenpl at eNanme=nov
i eApp/ | nsert _Movi e. ht m &Ret ur nTenpl at e=novi eApp/ Di spl ay_$$(USER. TopP
age) . ht m &Uni qui fi er =$$(FORTE. Uni quel D)" target="_fortedisplay">
I nsert</a
</td>
<t d> </t d>
<t d>
<?forte if Movi eHandl er. HasCurr ent Row>
<script |anguage="JavaScript">
function confirmdel ete(that,url,action)

{
ret = confirm"Delete this record?");
if (ret)
that.href = url + action;
el se {
that.href = url;
}

}

</script>

<a class="al i nk" HREF="#1"
NAME="1"oncl i ck="confirmdel ete(this,’ $$(FORTE. ExecURL) ?Ser vi ceNanme=
novi eAppSer vi ce&Tenpl at eNanme=novi eApp/ Di spl ay_Movi e. ht M &Ret ur nTenpl
at e=novi eApp/ Di spl ay_$$(USER. TopPage) . ht m &Uni qui fi er =$$(FORTE. Uni qu
elD)’,’ &ActionMvi eHandl er. Del ete’)" target="_fortedisplay">
Del et e</ a>
<?forte el se>

Del et e

<?forte if>
</td>
<t d> </t d>
<t d>

<a class="alink"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=novi eAppSer vi ce&Tenpl at eName=nov
i eApp/ Di spl ay_$$(USER. TopPage) . ht m &Act i on=Movi eHandl er. Fi r st &Uni qui
fier=$$(FORTE. Uni quel D) "t arget ="_fortedi spl ay">
First
</td>
<t d> </t d>
<t d>
<a class="alink"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=novi eAppSer vi ce&Tenpl at eName=nov
i eApp/ Di spl ay_$$(USER. TopPage) . ht m &Act i on=Movi eHandl er. Pr evi ous&uUni
qui fi er=$$(FORTE. Uni quel D)" target="_fortedi spl ay">

Customizing Generated HTML Templates Chapter 3

84 Customization Examples

Previ ous </ a>

End Previous command. </td>
<t d> </t d>
Begin Next command. <t d>

<a cl ass="al i nk"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNarme=novi eAppSer vi ce&Tenpl at eNanme=nov
i eApp/ Di spl ay_$$(USER. TopPage) . ht nl &Act i on=Mbvi eHandl er. Next &Uni qui f
i er =$$(FORTE. Uni quel D)" target="_fortedi splay">

Next </ a>
End Next command. </td>
<t d> </t d>
Begin Last command. <t d>

<a cl ass="al i nk"
HREF="$$(FORTE. ExecURL) ?Ser vi ceNarme=novi eAppSer vi ce&Tenpl at eNanme=nov
i eApp/ Di spl ay_$$(USER. TopPage) . ht nl &Act i on=Mbvi eHandl er. Last &Uni qui f
i er =$$(FORTE. Uni quel D)"target="_fortedi spl ay">
Last
End Last command. </td>
<?forte if MvieHandl er. HasCurr ent Row>
<t d> é </t d>
<t d>
<f or m met hod="POST" acti on="$$FORTE. ExecURL"
target="_fortedi splay">
<i nput type="HI DDEN' nane="Servi ceNane"
val ue="novi eAppServi ce" >
<i nput type="HI DDEN' nane="Tenpl at eNane"
val ue="novi eApp/ Di spl ay_$$(USER. TopPage) . ht m ">
<i nput type="H DDEN' nane="Action"
val ue="Movi eHandl| er . Got 0" >
<i nput type="submit" VALUE="CGo to">
<i nput type="text" name="Position" size=5>

</fornpr
</td>
<?/forte if>
</tr>
End nested command panel. </t abl e>
Do not move this line. <?/forte if>
<t abl e border="0">
<tr>
<t h>
Displays requested row. <div id="reqstatus">$$(entry. Request St at us_Movi e) </ di v>
</th>
</tr>
</t abl e>
Do not move this line. <I--<?/forte iterate listentry>-->

Customizing WebEnterprise Designer Applications

Chapter 4

Customizing Page Designs

WebEnterprise Designer contains a set of page designs—simple, fancy, and several
variations of fancy—that represent several common Web page layouts. You use these to
determine the layout of pages in your WebEnterprise Designer applications.

This chapter provides information on WebEnterprise Designer page designs and how to
customize them, including:

the internal structure of page designs
strategies and considerations for customizing page designs
a customization example

For information on WebEnterprise Designer styles and how to customize them, see
Chapter 5, “Customizing Page Styles.”

86 About Page Designs, Templates, and Pages

About Page Designs, Templates, and Pages

The production of a Web page by WebEnterprise Designer involves a number of steps and
several intermediate representations of the page. The ultimate source that determines the
layout the Web page when it is displayed in a browser is the page design.

Page designs determine:

whether HTML frames are used
whether headers and footers are displayed
how navigation menus are represented

the basic structure of all documents

The scope of a page design is the entire Forte installation. Changes to a design affect every
HTML application that is subsequently generated from it. Designs reside in subdirectories
of the Forte Express installation, under the ${FORTE_ROOT}/userapp/express/clx/designs
directory.

Page Designs and Web Page Production

WebEnterprise Designer uses the following steps to render an HTML page:

1

When the page is defined in the HTML Application Model Workshop it is associated
with a page design.

This design specification is fundamentally a pointer to a directory. For example, when
you specify that the application will use the simple design, this directs WebEnterprise
Designer to use the files in the ${FORTE_ROOT}/userapp/express/clx/designs/simple
directory for generation.

When you generate code for the HTML Application, the metadata for each page in the
model, as well as the model itself, is input to the HTML Template Generator.

The metadata, as defined in the HTML Application Model, includes attributes that the
generator uses to determine:

which HTML templates to generate

the effect of Code Generation Directives within the design files

The output of this phase is a set of application-specific HTML templates stored under
the HTML document root directory. (For information on the HTML document root and
its setting, see “Setting Document Root on the ScannerService Service Object Partition”
on page 195.)

When you run the HTML Application, the client requests a particular HTML template,
which the WebEnterprise runtime system reads and scans for WebEnterprise template
directives.

The directives represent both methods to be called and references to dynamic
application data. WebEnterprise resolves these references, substitutes data into the
template, and returns a “pure HTML” document to the Web server and the user’s
browser screen.

Customizing WebEnterprise Designer Applications

About Page Designs, Templates, and Pages 87

When to Customize Page Designs

Sometimes you might want to customize an application’s generated HTML template. Such
a customization affects only that one page in that particular application. This type of
customization is covered in Chapter 3, “Customizing Generated HTML Templates.” If,
however, your company wants all of its Web applications to possess a similar structure and
“look and feel,” you can best accomplish this with WebEnterprise Designer by creating a
custom page design, to be used as the basis for pages in all applications.

Creating a custom design is, however, not a trivial task. Designs contain a mixture of code
generation directives, WebEnterprise template directives, and HTML. You must take care to
ensure that changes to page designs result in valid HTML pages. This chapter offers
guidelines and examples that will help you create custom designs.

Customizing Page Designs Chapter 4

88 Page Design Elements and HTML Template Generation

Page Design Elements and HTML Template Generation

When you generate an HTML application, Forte first generates the TOOL project and its
contents, and then creates the required HTML templates. During the generation of HTML
templates, the Forte generator processes each component of the HTML model sequentially,
in the following order:

m the model object itself
m each page defined in the model
® any input validations or output-formatting JavaScript procedures

Design files are the main tools used to process the pages of the HTML model. Not only do
the contents of the files direct the processing, but the file names themselves play a role in
the process.

This section begins with a description of the elements of page design file names, followed
by a description of the functions of code generation directives that are the contents of the
files.

Page Design File Names and Selectors

Design file names (that is, the names of files that reside in the specific design directory)
play a crucial role in HTML template generation. Design file names have two important
functions:

m determining which design files are selected for generation
m defining the names of the generated HTML template files

For a description of generated templates, refer to “How WebEnterprise Designer Uses
HTML Templates” on page 70.

The best way to understand the design filename structure is to use an example, in this case,
the fancy page design files, found in ${FORTE_ROOT?}/userapp/express/clx/designs/fancy.
The following sections describe each file in this directory, including descriptions of the
different elements of the filenames. These elements are called selectors, because they select
elements of the application.

_RC_IsAabModel_Start.html
_RC_IsAabModel AccessError.html

These files select the Start and AccessError pages for processing. The selectors are:

Selector Use
IsAabModel Refers to the entire model and selects the file for generation.
RC Refers to one component (rather than an array of components to be iterated); thus,

every generated model results in a Start.html and AccessError.html template file.

Start Selects the Start page, which is the page users normally request when they enter the
application, and which redirects them to the application’s starting page, as defined in
the model.

AccessError Selects the page that is returned if the application is customized to restrict access to

certain pages and that access is denied.

For information on customizing security in HTML applications, see Chapter 8,
“Customizing Application Security.”

Customizing WebEnterprise Designer Applications

Page Design Elements and HTML Template Generation 89

_RC_IsFormWindow_Data_ RR_Name_.html
_RC_IsListWindow_Data__RR_Name_.html

These files select each form and list page in the application for processing. The selectors

are:
Selector
RC
IsFormWindow
IsListWindow

Data

_RR_Name_

Use

Refers to one component (rather than an array of components to be iterated).
Selects the form pages in the model.

Selects the list pages in the model.

Selects the Data template, which governs the layout and display of a page’s data,
whether the page is the only page displayed, a master page, or a detail page.

Is replaced by the name of the page in the model, for example, a list page named
Customer generates a template file named Data_Customer.html.

_RC_IsDataWindow_Main__RR_Name_.html
_RC_IsDataWindow_Header__RR_Name_.html
_RC_IsDataWindow_Footer__RR_Name_.html
_RC_IsDataWindow_Menu__RR_Name_.html
_RC_IsDataWindow_Display__RR_Name_.html
_RC_IsDataWindow_Search__RR_Name_.html
_RC_IsDataWindow Insert._ RR_Name_.html
_RC_IsDataWindow_Update__RR_Name_.html

These files select all data pages for processing. The selectors are:

Selector
RC
IsDataWindow

Main
Header
Footer
Menu

Display
Search
Insert

Update

_RR_Name_

Use
Refers to one component (rather than an array of components to be iterated).

refers to Data pages. Each Data page (which includes both form and list pages)
generates templates from each of these design files.

The fancy design employs HTML frames in which the Main file defines the frame layout.
Defines the frame positioned across the top of the page.

Defines the frame positioned across the bottom of the page.

Defines the frame on the left side of the page.

Defines the large center frame, depending upon the page mode.

Is replaced by the name of the page in the model, for example, a list page named
Customer generates a template file named Menu_Customer.html.

Customizing Page Designs Chapter 4

90 Page Design Elements and HTML Template Generation

_RC_IsLinkWindow_Main__RR_Name_.html|
_RC_IsLinkWindow_Display__RR_Name_.html

These files select link pages for processing. The selectors are:

Selector Use

RC Refers to one component (rather than an array of components to be iterated).
IsLinkWindow Selects link pages. Each link page generates two HTML templates.

Display Defines the page that displays the link page (for example, the Display_Home.html

template for the Home page in the HTMLtutApp tutorial).

Main Defines a shorthand page that simply includes the Display page (in the same
application, the Main_Home.html template).

_RR_Name_ Is replaced by the name of the page in the model, for example, a list page named
Customer generates a template file named Main_Customer.html.

_RC_HaslJavaScripts_Scripts_ RR_Name_.html

This file defines the scripts file. The selectors are:

Selector Use
RC Refers to one component (rather than an array of components to be iterated).
HasJavaScripts Selects each page that has a JavaScript script defined for it. There are two types of

scripts: input validation scripts and output-formatting scripts.

Scripts Defines the page that displays the link page (for example, the Display_Home.html
template for the Home page in the HTMLtutApp tutorial).

_RR_Name_ Is replaced by the name of the page in the model, for example, Scripts_Customer.html.
The specified JavaScript files are included by the Scripts_Customer.html file.

_RI_LookupFields_UniqueName_.inc

The file defines input validation lookup fields. Lookup template files are generated for
each input validation lookup field defined in the application. The selectors are:
Selector Use

_RI Refers to an array of components. It is iterated, with each element’s _UniqueName_
attribute forming an output file.

LookupFields Refers to the lookup attributes defined for the validation.

UniqueName Refers to the unique naming scheme of the lookup field’s file name
(pagename_qq_field).

Note The files produced by code generation are merely “stubs,” without any of the actual Express
Business Class data. When the application is actually executed, the database is queried and
the actual lookup files are created and written to the application's HTML template
directory.

Customizing WebEnterprise Designer Applications

Page Design Elements and HTML Template Generation 91

Page Desigh Code Generation Processing

Page design files contain a mixture of code generation directives, WebEnterprise HTML
template tags, and standard HTML V4.0 tags. When you generate code for an HTML
application, the code generator selects and processes design files (as described in “Page
Design File Names and Selectors” on page 88). This processing involves two activities that
result in an HTML template:

m code generation attribute references are replaced with the actual values of those
attributes

m code generation conditional and looping directives are executed

All code generation attributes and directives are enclosed within a pair of “curly braces”
(for example, {{attributes-and-directives}}). The code generator scans the page design file
for these and then processes the enclosed directive. The code generation processor
essentially has access to all attributes and properties that are defined within the HTML
application model. For example, consider the following lines in the
_RC_IsDataWindow_Display__RR_Name.html file:

<title>
Di splay {{%R(page)[%(Nane)]}}
</title>

These lines direct the code generator to fetch (%R) the current page object and print (%P)
its Name attribute. The result could be:

<title>
Di spl ay Movi es
</title>

This example illustrates the simplest of code generation directives; many are much more
involved. The most powerful directives are those involving conditional and looping logic.
These directives span multiple lines and, in the case of page design files, surround blocks of
HTML template tags, HTML tags, and other code generation directives.

Consider this block from _RC_IsListWindow_Data__ RR_Name.html:

<! --{{9%(NestedLinks)[}}-->
<cent er >

<tabl e wi dt h="80% cel | spaci ng="3" cel | paddi ng="5"
al i gn="CENTER" >
<l--<?Forte include

"{{9R(page) [YE(Parent)[¥(Nare)]]}}/ Data_{{%E(Node) [°(Nane)]}}. htm
| ">-->

</t abl e>
</ cent er >

<--{{1}}-->

This code block contains the following notable items:

m The code generation directives are enclosed within standard HTML 4.0 comments (that
is, “<!-- comment -->").

This means that page design files can be edited with standard HTML editors.

m The “%F(NestedLinks)[“ directive on the first line actually is not completed until the
closing “]” on the last line.

The effect of this block is to iterate through all (if any) of the nested links defined for the
ListWindow, reproducing the lines between the <center> and </center> HTML tags.

Customizing Page Designs Chapter 4

92 Page Design Elements and HTML Template Generation

The generated HTML template block might be:

<center>
<tabl e wi dt h="80% cell spaci ng="3" cel | paddi ng="5"
al i gn="CENTER" >
<I--<?Forte include "Myvie/Data_Show ngs. htm ">-->
</t abl e>
</ cent er>
<center>
<tabl e wi dt h="80% cell spaci ng="3" cel | paddi ng="5"
al i gn="CENTER" >
<l--<?Forte include "Mviel/Data_Reviews. htnm ">-->
</t abl e>
</ cent er>

Guidelines for Customizing Code Generation Directives

The general rule is: do not customize code generation directives! Code generation
directives are complex entities and not easily modified. However, if you understand the
purpose of a code generation directive, it may be possible to move or delete it. Take great
care to identify the entire scope of a directive and deal with it as a whole, rather than
treating a block within curly-braces as a unit.

If your customization requires change or movement of code generation directives, the best
practice is to make incremental changes, regenerate the application, compare the new
HTML templates with the old and, if acceptable, continue.

Customizing WebEnterprise Designer Applications

Example: Customizing a Page Design 93

Example: Customizing a Page Design

In page design customizations, the most important consideration is whether the design will
use HTML frames and, if so, what that frame layout will be. Begin your customization by
selecting the existing design that most closely matches the new design you wish to create. If
your design is not based on frames, use the simple design as a starting point. If your design
is to be frame-based, use fancy or one of its variants.

This section illustrates techniques for creating customized page designs with an example
that creates a design that does not use frames, but achieves a framelike appearance by
using HTML tables. This design consists of two panes: one for the display of data, the other
for a menu. We will name the design “brilliant.”

The remainder of this chapter describes how to create the brilliant page design. We will not
describe every detail of the complete customization, but only the first major part of it, and
then give guidelines for the rest. We will generate the HTMLtutApp tutorial application
with the newly-created brilliant design.

The general steps for creating a customized page design are:

1 Create a new design directory for the design files and populate it with copies of files of
the closest style.

2 Create the bitmap and text that identify and describe the design in the HTML
Application Model Wizard.

3 Clear the Document Directory of all existing generated HTML templates.

This is to prevent the code generator from merging the customizations with existing
designs.

4 Make the necessary customizations.
In this simple example, we describe how to customize the display of form pages.
5 Generate the HTML and inspect it for errors.

6 Fine-tune the customized design.

Step 1. Create a New Design Directory

This section describes how to create a directory for the new design and how to populate it.
To create and populate a new design directory:

1 Create a brilliant directory under the ${FORTE_ROOT}/userapp/express/clx/designs
directory.

2 Copy all the files in ${FORTE_ROOT?}/userapp/express/clx/designs/simple to the new
brilliant directory.

Use the simple directory files as a starting point, because simple is not frame-based,
and therefore closest of all the available designs to our proposed design.

Customizing Page Designs Chapter 4

94 Example: Customizing a Page Design

Step 2. Identify the Design with a Bitmap and Text

Two files within the design directory serve to identify the design in the Page Design
Properties dialog:

® a bitmap image of a thumbnail picture of a page created with the design
m a brief textual description of the design

(You access the Page Designs properties dialog by clicking the Page Design browser button
on either the HTML Application Properties dialog or on the Page Options page of the Page
Wizard.)

For our example, even though the definition of the simple design is closest to the brilliant
design, we want it to look more like the fancyMenu design. Therefore, we will use the
fancyMenu bitmap for our image identifier. The identifiers of the fancyMenu design are
shown in Figure 18:

Page Designs]

fanc: -

fancynoborder
fancynocaption
fancynofooter
zimple

Bitmap image of design

[~
A design uzing frames with 2 panes: menw, and display. The_display

pane has a caption followed by data. Commands are placedHrt Textual descript/'on of des/gn
menu.

Cancel |

Figure 18 Page Design Identifiers

To identify a page design:

1 Copy the fancyMenu.bmp file from the fancyMenu directory to the brilliant directory.
2 Rename the fancyMenu.bmp file brilliant.bmp.

3 Create a text file named brilliant.txt in the brilliant directory.

4 Add the following text to the brilliant.txt file:

A design using tables with two panes: nmenu and di splay. The

di spl ay

pane has a caption followed by data. Conmands are placed in the
nenu.

5 Save and close the brilliant.txt file.

Customizing WebEnterprise Designer Applications

Example: Customizing a Page Design 95

Step 3. Clear Existing Generated HTML Templates

WebEnterprise Designer's HTML template generator is designed to identify and merge
customizations made to the HTML templates. However, the process of customizing a page
design not only defeats the generator’s merge logic, but can result in a large number of
spurious errors. Therefore, before generating an HTML application that uses a modified
page design, first delete the entire contents of the application's HTML template directory.

To clear generated HTML templates:
1 Delete the ${FORTE_ROOT}/html/docs/HTMLtutApp subdirectory.
This includes the .base subdirectory.

2 During the customization process, each time you modify a design used by an HTML
application, clear the old generated HTML templates before generating a new set.

Once the design is stable, you can omit this step.
Step 4. Customize the Design Files

Depending upon the nature of the customization, this step can be straightforward or
extremely complex. For example, removing the caption from the main pane is a simple
customization that requires only that you delete several lines from each design file that
displays captions (the Display, Update, Insert, and Search files).

In this section, you will customize the display of form pages. This is only the first part of the
task of customizing an entire design. Customization of the other parts of this page design is
left as an exercise for the reader.

To customize the display of form pages, you will:
1 Extract the navigation menu block from the form’s Data design file.
2 Place the extracted menu block in a new Menu file.

3 Modify the DataWindow Display design file, defining the pane table structure, and
including the new Menu design file.

Step 4.1. Remove the Menu From the Data File

If you compare the list of files in the simple design directory with that of the fancy design
(and its variants), you will notice that, unlike the fancy designs, simple has no Menu file
(_RC_IsDataWindow_Menu__RR_Name_.html). This is because the navigation menu for
the simple design is in the Data file (the _RC_IsFormWindow_Data__RR_Name_.html file).

In this example, you will create a Menu file for the brilliant design. One way to do this is to
take the menu block from the Data file and put it into a Menu file that you create. But this
menu is not in the correct form. The simple menu is a horizontal line of menu items placed
immediately below the form data. Our new design is modeled on the fancy design family,
where the menu is a vertical array of items.

Customizing Page Designs Chapter 4

96 Example: Customizing a Page Design

3 Display Customer - Netscape

d v A2 38
i Bookmarks 4 Netste [ion-CleartActon=SelecttLinkHame=HTMLtuthpp DustomerLink blriuifer=1_[v] 7| i Bookmarks 4 Netste[ior-Cleartcton=5electLinkHame=HTMLtApp CustomerLink1 riqutier=1_¥]
Tip-a-Canoe Customers Tip-a-Canoe Customers

Costomer Number 1 Costomer Number 1
Nams Jans Dos Nams Jans Dos
Address 101051 Address 101051
Plane 3321234 2124
~ ~ ot 13 Home Guders
(e e e w2 oEE. o) Menu
vecord 16f 3 Home rders for this Custom: -

] | |

= [Document ¥ Done % @ |Documen ¥ Done %

simple Design fancyMenu Design

Figure 19 Menu in simple and fancyMenu Designs

Therefore, you can either modify the simple menu block so that it creates a vertical menu,
or, you can take advantage of the existing fancyMenu menu, which is already vertically
aligned. In this example, we will use the second option, because the fancyMenu menu is
closer to what we need.

First, however, you must remove the menu block from the
_RC_IsDataWindow_Menu__RR_Name_.html file.

To remove the menu block from the data file:
1 Open the _RC_IsFormWindow_Data__RR_Name_.html file in a text editor.
2 Find this menu block:
<tabl e w dt h="40% align="center" border="0" cell spaci ng="3"
cel | paddi ng="5">
<tr>
<I--{{%(HTM.Conmmands)[}}-->

<I--{{9%(lsNext)[}}-->
<t d> </t d>

{{.%'-’(Label)}}
</td>

<--{{1}}-->
<L--{{1}}-->

</[tr>
</t abl e>

3 Remove this entire block from the file.

4 Save and close the _RC_IsFormWindow_Data_ RR_Name_.html file.

Customizing WebEnterprise Designer Applications

Note this line for later

Example: Customizing a Page Design 97

Step 4.2. Modify the Menu Design File

In this section, you will create a Menu file for the brilliant design by copying the Menu file
from the fancyMenu directory to the brilliant directory. You will then change the file from
an HTML frame to an included part of a frameless page. This requires two changes. You
will:

m strip off all lines at the top and bottom that are required for frames
m eliminate all the frame-related “target” attributes
To create and modify the Menu design file:

1 Copy the _RC_IsDataWindow_Menu__RR_Name_.html file from the fancyMenu design
directory and paste it in the brilliant directory.

2 Open the _RC_IsDataWindow_Menu__RR_Name_.html file in a text editor.
3 Strip off lines at the top and bottom that are required for frames.

Include everything from the first line through the <body> tag at the top, and the
</body> and </html> tags from the end of the file.

Remove the bolded lines:

<!-- Forte WbEnterprise Designer Menu formdefinition for nodel
{{% (| sAabMbdel) [%°(Nane)] % %&(Parent) [4°(Nane)]]}} using page
desi gn fancyMenu and style {{%(HTM.Style)}}. Cenerated on

20- Feb-1999 13: 06:17 -->

<t--{{%\(page)}}-->

<I--<?forte assign USER TopPage="{{YR(page) [¥(Nanme)]}}">-->

<htm >
<head>
<link href="/fortel/styl es/{{%(page) [W(HTM.Style)]}}.css"
rel ="styl esheet" type="text/css">
</ head>

<body cl ass="nmenu" >
<p cl ass="captionnenu" >
{{"R(page) [%°(Nane)]}} Menu:
</ p>

</ body>
</htm >

4 Eliminate all the “target="_fortedisplay” attributes on the menu’s anchor tags (<A>).

These are all frame-related and will have unpleasant effects in a frame-less application.
For example, remove the bold text from all lines like this:

<a class="anenu" HREF="$$(FORTE. ExecURL) ?Ser vi ceNanme={ { %(. . .
&Uni qui fi er =$$(FORTE. Uni quel D)" target="_fortedi splay">
{{%P(Label)}}

5 Save and close the _RC_IsDataWindow_Menu__RR_Name_.html file.

Customizing Page Designs Chapter 4

98 Example: Customizing a Page Design

Step 4.3. Modify the Display Design File

The Display HTML template (the RC_IsDataWindow_Display__RR_Name.html file) is the
main HTML page for displaying data. It creates the panes in the browser’s page and places
the menu on the left and the data in the rest. In this section, you will create an HTML table
for the entire page, a table row that is the entire table, and then two table data elements
(defined by the HTML <td> tag) within that row.

The first <td> in the table you will create contains the menu. We'll use the class="menu"
attribute (noted in the code of the fancyMenu menu’s <body> tag, which you excised in the
previous section) to get the proper menu style elements (colors and font).

To modify the Display file to create the required display and call the Menu file:
1 Open the RC_IsDataWindow_Display__RR_Name.html file in a text editor.
2 Find the display block.
3 Remove the line that includes the Menu.
Remove the bold line:

Begin display block <body cl ass="di spl ay" >

<I--<?forte execute {{%R(page)[¥°(Nane)]}} Handl er. ProcessActi on
resul tset="entry">-->

<I--<?forte assi gn USER TopPage="{{%R(page) [(Nanme)]}}">-->

<I--<?forte include "{{%(page)[Y&E(Parent)[%(Nanme)]]}}/ Data_
{{%R(page) [%(Nane)]}}. htm " >-->

End display block </ body>

4 Replace the deleted line with the following code:
<t abl e border=0 wi dt h="100% cell spaci ng=0 cel | paddi ng=0>
<tr>
<td valign=top w dt h=155 rowspan=3 cl ass="nenu" >
<I--<?Forte include

"En{%?(page)[%E(Parent)[‘%P(Narre)]]}}/anu_{{‘%R(page)[‘%P(NanB)]}}- h
tml ">-->

</td>
<td>
<!--<?Forte include

"En{%?(page)[%E(Parent)[‘%P(Narre)]]}}/Data_{{‘%R(page)[‘%P(NanB)]}}- h
tml ">-->

</td>
</[tr>
</t abl e>

5 Save and close the _RC_IsDataWindow_Display_ RR_Name.html file.

Customizing WebEnterprise Designer Applications

Example: Customizing a Page Design 99

Step 5. Generate and Inspect

The next step is to generate the application and inspect for errors. Generation errors are
written to the Launcher log, and are also noted in the generated HTML template, with
syntax like:

*** BAD SELECTOR USED I N VARI ABLE REFERENCE

To verify your work by generating code:

1 Open the HTMLtutApp application in the HTML Application Model Workshop.

2 Choose File > Properties to open the HTML Application Properties dialog.

3 Click the browser on the Page Design field to display the available page designs.
The brilliant design appears in the list:

e

fancy
fancymenu
fancynoborder
fancynocaption
fancynofooter
zimple

Identifiers for the brilliant design

[~
A design uzing tables with bwo pane: menu and display. The dizplay

pane has a caption followed by data. Commands are placed in the
menu.

Cancel |

Select brilliant and click OK.

Click OK to apply the changes and close the HTML Application Properties dialog.

Generate the code for the application.

N 6o v oA

Inspect for errors by opening the Launcher window and running the application and
looking for “BAD SELECTOR” messages.

Our example does, in fact, have errors. The launcher window has a series of error messages:

The tenpl ate vari abl e page i s undefi ned.

Customizing Page Designs Chapter 4

100 Example: Customizing a Page Design

And when you run the HTMLtutApp application, the windows contain a number of “BAD
SELECTOR” messages:

“BAD SELECTOR”
error messages

5 - Netscape
i w Go Window Help

Vb EIE T

7| Boskmake 4 Netke[ion-Cleathoton-5slectLinkName-HTHLtthpp Customet rkTéUriuter=! =]

El [Document Done Z

The problem is that the top of the _RC_IsDataWindow_Menu__RR_Name_.html file (which
you copied from fancyMenu in “Step 4.2. Modify the Menu Design File” on page 97)
contains a code generation directive that is essential to the directives contained within the
menu block. This directive assigns a value to the code generation page object. The menu
uses this object, but you deleted it from the menu design file, so you need to replace it.

To fix the error in the Menu file:

1
2

Open the _RC_IsDataWindow_Menu__RR_Name_.html file in a text editor.
Insert the following line (the assignment of the page object) at the top of the file.

<!--{{%(page)}}-->

(This line is also at the top of _RC_IsFormWindow_Data__RR_Name_.html, if you want
to copy it from another file.)

Delete the ${FORTE_ROOT}/html/docs/HTMLtutApp subdirectory, including the .base
subdirectory.

Remember, you have to do this every time you change a design template. See “Clear
Existing Generated HTML Templates” on page 95 for information.

Attempt to regenerate and run the HTMLtutApp application.

When you click on the Generate Web Application Server Code button, nothing
happens! This is because the code generator is sensitive to changes in the
WebEnterprise Designer definition of the model, but is unaware of the external state of
HTML templates and page designs. In order to force a code generation, you must
change something in the HTML Application.

Change the Title field of the HTML application in the property dialog, and then change
it back again.

For example, change the title from “HTML Tutorial” to “HTML Tutoriall” and then
change it back to “HTML Tutorial.”

Regenerate the application.

New HTML template files are created. The launcher window should show no errors.

Customizing WebEnterprise Designer Applications

- FExample:Customizing a Page Design 101

7 Run the HTMLtutApp application.

The application is displayed in the new brilliant design, that should also have no errors:

El [Document Done Z

Step 6. Fine-Tune the Customized Design

The following steps are the minimum ones you must do to complete the new design:

m using the Display page as a model, convert the other page modes (Search, Update, and
Insert) to panes using tables

= modify also the layout of list pages (this example only modified form pages)

Further fine-tuning could include incorporating the common features of your company’s
Web applications, for example, by adding the company logo to headers and footers.

Testing a customized design requires a fairly rich HTML application, exercising all the
features of WebEnterprise Designer applications. Over time, as your own applications
evolve in complexity and power, your customized design will improve until it is exactly
what you want.

. customisingPageDesigns Chapterd

102 Example: Customizing a Page Design

Customizing WebEnterprise Designer Applications |

Chapter 5

Customizing Page Styles

WebEnterprise Designer contains two HTML style sheets—cool and steel—that govern the
presentation aspects of application pages. In the WebEnterprise Designer Application

Model Workshop, these are referred to as styles. This chapter provides information on these
styles and how to customize them, including:

what HTML style sheets are
the characteristics of WebEnterprise Designer native styles

how to customize styles and add them to the WebEnterprise Designer application
environment

104 HTML 4.0 and Style Sheets

HTML 4.0 and Style Sheets

WebEnterprise Designer creates Web pages that conform to the HTML 4.0 standard defined
by the World Wide Web Consortium (W3C). The HTML 4.0 specification is available at
http://www.w3c.org/ TR/REC-html40.

A recent aspect of the evolution of HTML is the separation, in HTML 4.0, of the
presentation aspects of Web documents (which include such properties as font
information, colors, and alignment) from the layout of the page. In HTML 4.0, the
presentation aspects are contained in style sheets, which are combined with HTML
documents to produce fully rendered pages in a browser. The tags and attributes of earlier
versions (HTML 2.0 and HTML 3.2), including “" and “bgcolor=", are now listed as
“deprecated” features, in favor of style sheets as the recommended mechanism for
describing presentation.

The browsers supported by WebEnterprise Designer, Netscape Navigator (version 4.0 and
above) and Microsoft Internet Explorer (version 4.0 and above), both support HTML 4.0
documents, including style sheets conforming to the W3C Cascading Style Sheets, level 1
specification (CSS1). The HTML templates generated for WebEnterprise Designer
applications are designed to work in concert with CSS1 style sheets. This specification is
available at http://www.w3c.org/pub/WWW/TR/REC-CSS1.

WebEnterprise Designer and Style Sheets

Each page defined in the HTML Application Workshop is associated with a page design and
a style. The design governs the layout of the application’s page. When you generate the
application’s Web server code, pages are processed through this design, resulting in HTML
templates. This process and its opportunities for customization are the subject of

Chapter 4, “Customizing Page Designs.”

WebEnterprise Designer styles are native style sheets used by the generated HTML
templates to format their HTML elements. There are two native styles, cool and steel. Cool
defines a colorful presentation using both serif and sans-serif fonts. Steel creates pages
devoid of color that use only sans-serif fonts.

The style sheets themselves are part of the WebEnterprise Web server installation and are
installed under the Web server root. When you specify them, you use URLs relative to the
Web server document root. For example, you specify the cool style with
/forte/styles/cool.css, and the steel style with /forte/styles/steel.css. The actual locations of
these files might be one of the following:

m c:\Netscape\Suitespot\forte\styles\cool.css—location of the cool style on the Netscape
Web server root directory on NT

m /usr/netscape/suitespot/forte/styles/steel.css—location of the steel style on the
Netscape Web server root directory on UNIX

= c:\InetPub\forte\styles\steel.css—location of the steel style on Microsoft IIS on NT

The rest of this chapter provides a description of style elements used in WebEnterprise
Designer HTML templates and offers guidelines for creating your own styles to use with
WebEnterprise Designer applications.

Customizing WebEnterprise Designer Applications

Using HTML Style Elements with WebEnterprise Designer 105

Using HTML Style Elements with WebEnterprise Designer

HTML 4.0 specifications of:

background color
document font

Pre-4.0 background color
Pre-4.0 document font

An HTML template generated by WebEnterprise Designer refers to style sheets in two ways:
® to name the style (CSS1) file to use to process the page

m to use elements defined in the style sheet to format HTML elements of the page

Identifying the Style Sheet to Use

Use the HTML link tag in the document header to identify the style file to use for
processing the page. For example:

<link href="/fortel/styl es/cool.css" rel ="styl esheet"
type="text/css">

This line specifies the cool.css style sheet file. (File specification for style sheets are relative
to the Web server root directory; see “WebEnterprise Designer and Style Sheets” on

page 104 for a discussion of this.) The browser asks the Web server to fetch the style sheet
(unless it is already in the browser’s cache) and then uses its contents to format the HTML

page.

Using HTML Attributes

The HTML 4.0 and CSS1 specifications provide several ways to apply styles to a document.
WebEnterprise Designer employs two HTML 4.0 style sheet selectors:

m the class attribute, which assigns the style to all elements defined by the specified tag
m the id attribute, which assigns the style to a single element

In HTML, the class and id attributes are element identifiers, and in particular, document-
wide element identifiers.

The class Attribute

You can use the class attribute with many HTML tags to specify a CSS1 style element. For
example, consider this class attribute specification within an HTML <body> tag:

<body cl ass="di spl ay" >

The class attribute in this case directs the browser to find the display element in the current
style sheet and apply its attributes to the HTML <body> tag.

In this example, the current style sheet is the cool.css file. The display element in cool.css is
specified as follows:
.di splay {
background- col or: rgb(255, 255, 255);
font-famly: "Tines New Roman", Tines, Ceorgia,
"Century School book", "Bookman O d Style", serif;
}

In the above code, the document’s background color is defined as white. A list of fonts is
specified for the document; the browser will choose the first one it supports. In previous
versions of HTML, you would specify these attributes with the following tags:

<body bgcol or = "FFFFFF">

<basefont face = "Ti nes New Roman, Tinmes, Georgia, Century
School book,

Bookman A d Style, serif">

Customizing Page Styles Chapter 5

106 Using HTML Style Elements with WebEnterprise Designer

The Scope of the class Attribute

An important aspect of the class identifier is that the attributes of the style element
identified by it (that is, display) apply to all HTML elements defined between the <body>
and </body> tags (in this case, the entire document). If the class attribute were placed in
the <table> tag, it would apply to all elements between the <table> and </table> tags.

Finally, one class may override another within its scope. Consider the following HTML tags:

<body cl ass="di spl ay" > VWH TE
<p>Tabl e of Contents</p> VWH TE
<t abl e cl ass="nytabl es" > RED
<tr>. . . </[tr>> RED
</t abl e> RED
<t abl e> VWH TE
<tr>. . . </[tr> VWH TE
</t abl e> VH TE
</ body> VWH TE

If the display class defines the background color as white and the mytables class defines it
as red, the document’s background color shifts from white to red and then back to white, as
specified by the labels in the column at the right of the code.

The id Attribute

Like the class attribute, the id attribute is an element identifier. The difference between id
and class is that id applies only to the current tag. For example:

<div id="statusline">Row 1 of 42</div>

In this line, id applies the statusline style elements only to the output string “Row 1 of 42."
If other HTML tags are defined within the block defined within <div> and </div>, they are
not governed by statusline.

Using HTML Style Elements

Both WebEnterprise Designer styles (cool and steel) use a common set of CSS1 elements.
These elements are:

Style type Style element Use for formatting:
General page-level styles display The display frame body of the page’s display mode.
modify The display frame body of the page’s Insert and Update
modes.
menu The body of the menu frame.
footer The body of the footer frame.
header The body of the header frame.
Anchors (links) amenu The anchors (links) in the menu frame.
alink The anchors (except for Data or Field Label links) in the

display frame.

adata The anchors in the display frame that are attached to data
items (links whose Activate Link On property is set to Data).

alabel The anchors in the display frame that are attached to the
label of data items (links whose Activate Link On property is
set to Field Label).

Customizing WebEnterprise Designer Applications

Using HTML Style Elements with WebEnterprise Designer 107

Style type Style element Use for formatting:
Page captions captionform The caption above the retrieved data on data pages of form
pages.
captionlist The caption above the retrieved data on data pages of list
pages.
captionlogon The caption above the data entry fields on logon pages.
captionmenu The caption above the commands in the menu frame.
Column labels rowidlist The row ids on list pages.
labellist The field labels above the data columns on the data

templates of list pages.

labelform The field labels on the data templates of form pages.
labelmodify The input field labels on the data templates of insert, update,
and search mode pages.
Column data datalist The retrieved data on the data templates of list pages.
dataform The retrieved data on the data templates of form pages.
Form buttons buttons All buttons on all page modes of data pages (for example,
the Insert and Search buttons).
buttonlogon The button on logon pages.
Status line (accessed by “id=") #regstatus The status line of the data display (Record 1 of n).

Figure 20 shows how some of these elements appear on a Web page.

3% Main CustomerOrder - Netscape
File Edit Wiew Go Window Help
¥ 3D e € 3 & 3
M J'Bookmarks \&. Metsite: | et umberkCustomerDrder_gq_CustomerNumber=3%LinkMame=H T MLtutdpp. CustomerOrdeiLink 2 niquifisr=342 j
0 ——————— header
HTML Tutorial
captionmenu)
P Customer Orders captionform
B CusmmriN . Bimmons \
Insert
labelform Customer Numbe dataform
Update Order Numbe:
Delete Requested Date’ \ 01 Tar 1055 00 0@/
amenu Eet Dedler reoord 17 Homa
#reqstatus Last Ordes Product Description captionlist
bext Order OvlerNumher ~ ItemNumber PN Description Price Quantity libelist
a/’nk - - > (1 1003 1 0002 Fiberglass Canoe 5990 1 datalist
rOWld/lSt z 1005 3 Q0003 5Foot Oar 999 2
CSaarch Insert Update Delete Rjﬂi‘;"e’:} a//nk
Redisplay
CustomerDrder
display.
menu
footer
[&F[|Dacument: Dane A

Figure 20 Style Element Examples

Customizing Page Styles Chapter 5

108 Customizing Page Styles

Customizing Page Styles

The first step in customizing a page style is to assess the scope of your project. You should
ask yourself the following questions:

Will you be modifying elements only or adding new ones as well?

If you modify only existing elements, you only need make changes to the style sheet
itself. If you add new elements, you must add them to both the generated HTML
templates and to the style sheet they will use.

Will the new style be available to all applications, or will it be restricted?

If the use of the new style is restricted to specific applications, then you can simply
customize each application’s HTML templates to use the new style. If any application is
allowed to use the style, you must add the style to the list in the Style browser in the
HTML Application Model Workshop. You might also want to add the elements to one or
more page designs.

Will the new style be usable with all available page designs or will it be restricted?

If you do not add support for the new style elements to all page designs, this can result
in some invalid combinations of designs and styles. HTML templates using a particular
style element will display correctly only if the style being used implements the element.
You can either add the element to all styles or document any restrictions to design/style
combinations in the textual descriptions that display in the Style and Page Design
browsers.

The following sections provide customization guidelines under different scenarios arising
from how you answer these questions. All discussions and examples refer to creating a new
style, which is based on the cool style, and named the “marketing” style.

Outline of Basic Procedures

The general steps for creating and implementing a customized style are:

1

Create a new style sheet file by copying the most similar existing one, and rename it
with the new style name.

Details are given in “Creating the New Style Sheet File” on page 109.

Determine whether you will add new elements to the style sheet or only modify existing
elements.

If you are only modifying existing elements, refer to “Modifying Existing Elements” on
page 109 for information.

If you are adding new elements, refer to “Modifying Existing Elements” on page 109.
Determine whether use of the new style is to be restricted or not.

If you are restricting the style to certain applications, refer to “Adding New Elements” on
page 109.

If the style is to be made generally available, you will want to identify it in the HTML
Application Model Workshop. Refer to “Identifying the Style with a Bitmap and Text” on
page 111 for details.

Test the new style with different browsers and adjust accordingly.

Refer to “Considering the Browser” on page 112 for important information and
guidelines regarding browsers.

Customizing WebEnterprise Designer Applications

Customizing Page Styles 109

Creating the New Style Sheet File

The first step in creating the new marketing style is to create a marketing.css file in the
WebEnterprise Designer styles directory. The styles directory depends on where your Web
server directory is. See “WebEnterprise Designer and Style Sheets” on page 104 for a
description of several possibilities, or see your system administrator for the exact location
in your installation.

To create a new style sheet file:
1 Find the cool.css file in the Web_server_root/forte/styles directory.
2 Copy the cool.css file to a new marketing.css file in the same directory.

Now application pages that use the marketing style will look just like cool style pages.

Modifying Existing Elements

When you make customizations that only modify existing elements, such customizations
generally require changes only to the style sheet itself. Guidelines for this type of
customization are as follows:

To customize only existing elements in the new style sheet:
1 Create a new style sheet, as described in “Creating the New Style Sheet File,” above.
2 Modify a few elements in the new style sheet.

Refer to “Using HTML Style Elements with WebEnterprise Designer” on page 105 for
information on the elements used in the WebEnterprise Designer style sheets. For a
basic reference on HTML 4.0, see the HTML 4.0 specification at
http://www.w3c.org/ TR/REC-html40.

3 Test the style sheet by regenerating code and running the application.
If your changes do not appear, refer to “Browser Caching,” below for a solution.
4 Repeat Steps 2 and 3 until your new style is perfected.

Remember to read “Considering the Browser” on page 112 for information related to
testing and use of your new style.

Adding New Elements

If you choose to add new style elements, you must add them to both the style sheet and the
generated HTML templates that refer to it. How you do this depends on whether or not you
want the style to be available to all applications or not.

To customize a restricted style:

1 Open the new CSS1 style sheet (marketing.css from “Creating the New Style Sheet File,”
above).

2 Make your changes, including adding new elements.

For information on elements used by WebEnterprise Designer, refer to “Using HTML
Style Elements with WebEnterprise Designer” on page 105. For a basic reference on
HTML 4.0, see the HTML 4.0 specification at http://www.w3c.org/ TR/REC-html40.

3 Save and close the marketing.css file.

4 Open each of the application's HTML templates and change the <link> tag to your new
style.

Example <link href="/fortel/styl es/ marketing.css" rel ="styl esheet"
type="text/css">

Customizing Page Styles Chapter 5

110 Customizing Page Styles

5 Modify the HTML, as appropriate, to use your new style elements.

See Chapter 3, “Customizing Generated HTML Templates,” for details on customizing
HTML templates.

If, however, multiple applications can use the new style elements, then you might want to
follow these procedures instead:

To customize generally available styles:

1 Identify the new style to the HTML Application Model Workshop, as described in
“Identifying the Style with a Bitmap and Text,” below.

This automatically customizes the <link> reference in the HTML templates of any
application that uses this style.

2 Customize your new style sheet, as in the previous procedure.

3 Instead of modifying the individual templates of an application, modify one or more
page designs.

See Chapter 4, “Customizing Page Designs,” for details.

Bear in mind, however, that adding support for new style elements to a restricted number
of designs or styles can result in some invalid combinations of designs and Styles. For
example, if a new design uses a new style element that is only implemented in one new
style, then application pages using the new design must use the new style. Obviously,
HTML templates using a particular style element will only display correctly if the style in
use implements the element. To avoid this restriction, you could add the element to all
styles, or you can document the restrictions in the design and style description files (for
example, the marketing.txt files described next in “Identifying the Style with a Bitmap and
Text”).

Customizing WebEnterprise Designer Applications

Customizing Page Styles 111

Identifying the Style with a Bitmap and Text

If you will be making the new style generally available to all applications, then you need to
identify and describe the style in the HTML Application Model Wizard. Two files within
the ${FORTE_ROOT}/userapp/express/clx/styles directory identify the style in the Style
Properties dialog:

® a bitmap image of a thumbnail picture of a page created with the style
m a brief textual description of the style

(You access the Styles properties dialog by clicking the Style browser button on either the
HTML Application Properties dialog or on the Page Options page of the Page Wizard.)

For example, Figure 21 shows the identifiers of the cool style in the Style Properties dialog:

Styles]

N
steel

ﬁi‘;.éa.ﬁceﬁon Titie

Bitmap image of style

|

& miked color style using a combination of serif and Textual descrjpﬁon of Sty/e

zang-serif fonts.

Cancel |

Figure 21 Style Identifiers

To make your new style available to the workshop, you must add two files to that directory.
To identify the marketing style:

1 Make a copy of the cool.bmp file in the ${FORTE_ROOT}/userapp/express/clx/styles
directory.

2 Rename the cool.bmp file marketing.bmp.
3 Create a text file named marketing.txt in the same directory.
4 Add the following text to the marketing.txt file:

The corporate standard style for external Web applicati ons.

5 Save and close the marketing.txt file.

Now when you display the Style Property dialog, you will see three choices: steel, cool, and
marketing. If you select the marketing style, the generated HTML templates will
automatically contain a <link> tag referring to the marketing.css file.

Customizing Page Styles Chapter 5

112 Customizing Page Styles

Considering the Browser

This section discusses two important considerations regarding browsers and customized
style sheets.

Browser Caching

One difficulty with implementing a new style sheet is that browsers tend to cache the style
sheet in their local memory. Even though you have modified the style sheet, the browser
can choose to use its local, unmodified copy, instead. Browser preference settings affecting
cache behavior do not apply to style sheets in the same way they apply to HTML
documents. If you make style sheet changes, but the appropriate changes are not displayed
when you run the application, examine the Web server log to see if the browser is re-
fetching the old style file. If so, shut down and restart the browser.

Browser Independence

An important objective of WebEnterprise Designer is that generated applications be
browser-independent. That is, application pages should look much the same whether
viewed with Netscape Navigator or Microsoft Internet Explorer.

The two style sheets included with WebEnterprise Designer achieve this objective.
However, it has been our experience that the support for CSS1 in the browser products is
not as robust as their support for HTML 4.0. Style sheet elements that appear correct
might, in fact, not display correctly.

For example, CSS1 supports specification of colors by keyword (such as “white”, “red”,
“blue”, and so forth). However, one of the browser products does not currently implement
this correctly. For this reason, we have adopted the “rgb” (red, green, blue) syntax for color
specification, which both products correctly implement. An example of this is from the
cool.css file:

.display (
background- col or: rgb(255, 255, 255);

It is vital that applications in general, and style sheets in particular, undergo testing with
both browser products.

Customizing WebEnterprise Designer Applications

Chapter 6

Customizing Error Pages

When errors are detected during the processing of WebEnterprise Designer applications,

they are displayed in the browser as an error page. You can customize the appearance of
this error page or create your own.

This chapter provides information on how to:
modify the appearance of the default HTML exception page
create customized error pages

Most of the information in this chapter applies to WebEnterprise applications, as well as
WebEnterprise Designer applications.

114 WebEnterprise Exception Handling

WebEnterprise Exception Handling

WebEnterprise applications, including those created with WebEnterprise Designer, are
based on a request-response model, in which the browser client requests Forte services,
which are returned in HTML form (Web pages in the browser). When errors occur during
the processing of these requests, Forte exceptions must be converted to an HTML
representation and returned to the client.

WebEnterprise uses dynamic exception mapping to format exceptions. Standard template-
driven HTML Scanner technology allows the developer to control the appearance of error

pages.

In addition, the WebEnterprise Designer Page Handler Customization Wizard contains
customization points that permit arbitrary application-specific processing of exceptions.

Default Exception Processing

The default WebEnterprise exception processing steps are as follows:

1 Exceptions raised within the WebEnterprise runtime system are caught and processed
at two distinct points:

exceptions raised during the processing of an HTMLScanner template request are
processed within the HTMLScanner service object

all other exceptions are processed within the HTTPAccess service object

2 When WebEnterprise catches an exception, it maps the exception class to an error
HTML template file to format the exception’s attributes.

The default error HTML templates all reside in the ${FORTE_ROOT}/ html/errors
directory. Exceptions are mapped to templates as follows:

Error Mapped to error template
HTMLScannerException htmlscanner.html
HTTPAccessException httpaccess.html

All other exceptions generic.html

3 WebEnterprise then generates an internal HTTPRequest, with the appropriate error
template file as the requested template.

4 WebEnterprise converts the exception’s attributes to HTTPRequest parameters, which
are accessible to the HTML template within the FORTE pseudo-result set.

Exception attributes are listed and described in the next section, “WebEnterprise
Exception Result Set Variables.”

5 WebEnterprise then processes the template file using standard HTMLScanner
procedures.

6 The default error templates display all exception attributes.

An example error page is shown in Figure 22.

Customizing WebEnterprise Designer Applications

WebEnterprise Exception Handling 115

ain Customer - Netscape
File Edit “iew Go ‘Wwindow Help

i e ADatId

“vBookmarks J‘ Netsite:Itubﬂpp.-"Display_Eustomer.html&&ction{lear&&ction:SeIect&LinkName=HTMLtuL&pp.EustomerLink‘I&Uniquifier=1 j

HTML Tutorial

Search

Insert

HTMI.ScannerException detected

Update
Delete

First
Lustomer

Last
Lustomer

Next
Lustomer

Previous
Lustomer

Redisplay CharOffset %
Customer N

Exception
Tracebhack

=il | Documert: Do i

Figure 22 Default Scanner Exception Page

Customizing Error Pages Chapter 6

116 WebEnterprise Exception Handling

WebEnterprise Exception Result Set Variables

As described in the previous section, when WebEnterprise processes exceptions, it converts
exception attributes to HTTPRequest parameters, which are then accessible from the
HTML templates by means of the $$(FORTE.parameter_name) specification. (For
information on the syntax of Forte variables, see A Guide to WebEnterprise.)

The sections that follow provide a table listing each exception class’s attributes and their
associated HTMLScanner result set variable references. Attributes that are undefined are
assigned a default value (generally “0” for a numeric attribute and “n/a” for text attributes).

HTMLScannerException Class Variables

The following table lists the attributes of the HTMLScannerException class and their
corresponding result set variables. These are the variables used in the htmlscanner.html

template.
Attribute Result set variable Description
Classname $$(FORTE.ExceptionClass) “HTMLScannerException”
Message $$(FORTE.Message) The error’s text
DetectingMethod $$(FORTE.DetectingMethod) The method raising the exception
MethodLocation $$(FORTE.MethodLocation) Additional identifying information
Severity $$(FORTE.Severity) The severity text description

$$(FORTE.SeverityGIF) The severity image file

CharOffset $$(FORTE.Charoffset) The byte offset in the line of the error
LineNumber $$(FORTE.LineNumber) The line number in the HTML template
Sourceline $$(FORTE.SourceLine) The text of the HTML template line
ExceptionTraceback $$(FORTE.ExceptionTraceback) The method’s traceback

Customizing WebEnterprise Designer Applications

WebEnterprise Exception Handling 117

HTTPAccessException Class Variables

The following table lists the attributes of the HTTPAccessException class and their
corresponding result set variables. These are the variables used in the httpaccess.html
template.

Attribute Result set variable Description

Classname $$(FORTE.ExceptionClass) “HTTPAccessException”

Message $$(FORTE.Message) The error’s text

DetectingMethod $$(FORTE.DetectingMethod) The method raising the exception

MethodLocation $$(FORTE.MethodLocation) Additional identifying information

Severity $$(FORTE.Severity) The severity text description
$$(FORTE.SeverityGIF) The severity image file

ExceptionTraceback $$(FORTE.ExceptionTraceback) The method’s traceback

Variables for All Other Exceptions

The following table lists the attributes and corresponding result set variables used for errors
that are neither HTMLScannerException nor HTTPAccessException errors. These are the
variables used in the generic.html template.

Attribute Result set variable Description

Classname $$(FORTE.ExceptionClass) The name of the exception class

Message $$(FORTE.Message) The error’s text

DetectingMethod $$(FORTE.DetectingMethod) The method raising the exception

MethodLocation $$(FORTE.MethodLocation) Additional identifying information

Severity $$(FORTE.Severity) The severity text description
$$(FORTE.SeverityGIF) The severity image file

Customizing Error Pages Chapter 6

118 Customizing Error Pages

Customizing Error Pages
This section provides customization guidelines for WebEnterprise error pages. The
different levels of customization discussed include:
= modifying the default error pages
® creating a custom error page
® adding new result set variables
m using the error page customization point in the Page Handler Customization Wizard

All but the last level are available to all WebEnterprise users; the last level is available only
to WebEnterprise Designer users.

Modifying Default Error Pages

The simplest way to customize WebEnterprise error pages is to modify the HTML template
files in the ${FORTE_ROOT}/html/errors directory. It is a straightforward task to adjust the
HTML tags to produce an installation-specific or company-wide error page format.

For a basic reference on HTML 4.0, see the HTML 4.0 specification at
http://www.w3c.org/ TR/REC-html40.

Creating Custom Error Pages

If you want your application to log errors, delete sessions, or take other application-specific
action beyond the default WebEnterprise exception handling procedure, you can use two
additional levels of customization that are supported within WebEnterprise, namely:

m creating your own error HTML template files

You can use the variables described in “WebEnterprise Exception Result Set Variables”
on page 116 and customize the exception class mapping, as well.

m creating your own result set variables

With your own variables, you can include application-specific dynamic data on the
error page.

While these customization levels are available to any WebEnterprise application,
WebEnterprise Designer provides customization points that simplify the creation of
custom error handlers. These are described in the next section.

Customizing a WebEnterprise Designer HTML Application

WebEnterprise Designer’s Page Handler Customization Wizard contains a customization
point for customizing an application’s error pages. For complete information on the
Customization Wizard, see “Customizing With the Page Handler Customization Wizard” on
page 51.

To customize an application’s error page using the Customization Wizard:
1 Open your application in the HTML Application Model Workshop.

2 Select the business class page you wish to customize.

3 Choose the Component > Customize... command to open the Wizard.

If this is the first customization you are making to this class, WebEnterprise Designer

displays a dialog requesting permission to generate a customizable class for the page.
Click OK.

4 Open the Application group by clicking on the arrow next to it.

Customizing WebEnterprise Designer Applications

Customizing Error Pages 119

Customize Page Handler: Customer [HI[E E3

e

Individual Field Operations
‘whole Object Operations
Processing Commands
Security
HTHL Files
Application

Define HTML template for exceptions Customization point for creating a customized error page

Drefine subszidiary applications

4
4
4
4
»
v

|z subsidiary application
Modify session timeout
p HTHLFiles

¥
A ¥

Eustomizel [Elete | Cloze | Help |

5 Select the “Define HTML template for exceptions” customization point and click
Customize.

The Method Workshop opens, displaying the GetErrorTemplate method. This method
overrides the HTMLScanner.GetErrorTemplate method defined.

6 Add your code to implement application-specific error processing in GetErrorTemplate.

For information on GetErrorTemplate, click the Help button while this customization point
is selected. Documentation is also provided as comments in the method body, as well. The
Help topic description contains a link to a description of the
HTMLScanner.GetErrorTemplate method.

The following sections provide an expanded version of the Help documentation.

The GetErrorTemplate Method

The GetErrorTemplate method provides a means of modifying the HTML template that
should be used when an exception is generated during processing a user request.

GetErrorTemplate (e=GenericException, request=HTTPRequest, customParameter=array of NamedElement)

Returns Framework.TextData

Parameter Required Input Output
e

request

customParameters

The arguments to the GetErrorTemplate method are:

Argument Description

e : GenericException The actual exception object thrown by the application.

request : HTTPRequest The HTTPRequest object being processed when the exception was
thrown.

customParameters : Array of NamedElement An optional array of name-value pairs. If this is returned, the
elements are added to the error's HTTPRequest parameters and
are therefore available to the error HTML template as resultset
variables.

Return Value

GetErrorTemplate returns a TextData object that contains the specification of the HTML
template file to be used to format and return the error. As with all HTML template
specifications, this file is assumed to reside within the WebEnterprise document root. This
makes it simple to access an application-specific error page.

Customizing Error Pages Chapter 6

120 Customizing Error Pages

WebEnterprise also provides the ability to directly access HTML documents (including
HTML templates) that reside under the installation’s html directory. Any template
specification that begins with the token “/forte/” is re-mapped to the
${FORTE_ROOT}/html directory.

For example, the template name “/forte/errors/htmlscanner.html” resolves to
${FORTE_ROOT}/html/errors/htmlscanner.html. Using this syntax, a site can easily create
site-wide HTML template directories.

Example: Application-Specific Error Template

This example maps HTMLScanner exceptions to an application-specific (Movie) error
template and all other exceptions to the standard generic error template.

/1l GetErrorTenpl ate(e: CenericException, request: HITPRequest,
/1 out put custonmParaneters: Array of NamedEl ement) : TextData
/1
errorTenpl ate : TextData = new;
cust omPar aneters = nil;
/1
i f e.lsA(HTM.Scanner Exception) then
error Tenpl at e. Set Val ue(’ Movi e/ Error _Scanner. htm) ;
el se
error Tenpl at e. Set Val ue(’ /forte/errors/generic. htm ’);
end if;
/1
return error Tenpl at e;

Example: Application-Specific Template with Custom Data

This example extracts the user name associated with the session (previously attached to the
session during Logon) and adds it to the customParameters object. This will cause it to be
added to the result set variables. A custom error HTML template (not illustrated here) will
then display the user name on a standard application error page. (See Chapter 8,
“Customizing Application Security,” for details on capturing and storing user
authentication information.)

/'l GetErrorTenpl ate(e: CenericException, request: HITPRequest,

/1 out put custonmParaneters: Array of NamedEl ement) : TextData
/1

/1l Every exception will be processed with the sanme tenpl ate

/1

errorTenpl ate : TextData = new;
error Tenpl at e. Set Val ue(’ Movi e/ Errors. html *);
/1
/'l Assume that the LogonSession nmethod returned the usernane in the
/'l credentials object, where it was added to the Sessi onDat a.
/1
cust onPar aneters = new,
p : NamedEl enment = new,
p. Name = ‘ Applicati onUser nane’ ;
i f request.CurrentSession <> NI L then
p. Obj ect = Text Dat a(request. Current Sessi on. Get Sessi onDat a(
Text Dat a(val ue=" Logon- Credentials’)));

Customizing WebEnterprise Designer Applications

Customizing Error Pages 121

el se
p. Obj ect = Text Dat a(val ue=" No session’);
end if;
cust onPar anet er s. AppendRow(p) ;
/1

return errorTenpl at e;

The user name is available in the Movie/Errors.html template as the result set variable
$$(FORTE.ApplicationUsername).

Customizing HTTPAccessExceptions

Example

Caution

As noted above, the HTMLScanner.GetErrorTemplate method performs mapping for
exceptions raised during HTML template processing. This phase includes exceptions raised
in Business Services. Overriding GetErrorTemplate effectively customizes these exceptions.

Some WebEnterprise exceptions occur outside of the HTMLScanner template processor,
for example, errors occurring during non-template requests (“pagename” requests), HTTP
parsing errors, and communications failures. Such errors can raise exceptions that require
a slightly different customization.

These exceptions are caught, mapped, and formatted within the HTTPAccess subclass
service object. By default, the HTTPAccess.GetErrorTemplate method applies exactly the
same mapping logic as HTMLScanner.GetErrorTemplate. However, customizing the
HTMLScanner method has no effect on the exceptions processed within HTTPAccess.
Unless you also customize HTTPAccess.GetErrorTemplate, HTTPAccess exceptions will be
processed through the default htmlscanner.html, httpaccess.html, and generic.html
templates.

You customize HTTPAccess exception processing by customizing the GetErrorTemplate
method in the HTTPAccess subclass. Since this method has the same signature as the
HTMLScanner method, you can customize in several ways:

m copy your customized GetErrorTemplate method from your HTMLScanner subclass to
your HTTPAccess subclass

m override the HTTPAccess.GetErrorTemplate method and have it directly call your
HTMLScanner.GetErrorTemplate

/'l Movi eAccess. Cet Error Tenpl at e(e: Generi cException, request:
HTTPRequest ,

/1 output custonParanmeters: Array of NanedEl enent) : TextData

/1

return Movi eScanner Servi ce. Get Error Tenpl ate(e, request,

cust onPar anet er s) ;

m override the HTTPAccess.GetErrorTemplate method, implementing different custom
exception logic

As a suggestion, you might use a general purpose HTTPAccess.GetErrorTemplate
method in every WebEnterprise application, but a different
HTMLScanner.GetErrorTemplate method for each application.

When customizing exceptions with GetErrorTemplate, check for the existence of objects
before you use them. This is particularly true when the HTTPAccess.GetErrorTemplate calls
a customized HTMLScanner.GetErrorTemplate. For example, exceptions caught in
HTTPAccess might not have their HTTPRequest.CurrentSession attribute set (because the
error occurred before the session was associated with the request). The GetErrorTemplate
method that processes the exception must be careful to test CurrentSession for a NIL value
before using it.

Customizing Error Pages Chapter 6

122 Customizing Error Pages

Errors in Error Customization

What happens if errors occur during the mapping and formatting of exceptions? What if
the error template object returned by GetErrorTemplate is syntactically incorrect or refers
to a file which does not exist? What if my customized GetErrorTemplate refers to the
request.CurrentSession object, but it is NIL because no session exists?

In these cases, the “last chance exception processor” is invoked. The last chance exception
processor catches and dismisses the exception raised during exception processing. It then
creates an HTML error response containing the original exception’s attributes. The format
of this error page is fixed.

If, after customizing your error pages, exceptions are not returned using customized pages
(or, for that matter, the default pages in ${FORTE_ROOT}/html/errors), then it is likely that
there is an error in the error customization. Since the last chance exception processor’s
mission is to hide these errors, you can diagnose the problem by tracing handled
exceptions (that is, by enabling trc:10:25 in the partition where either or both the
HTMLScanner and HTTPAccess service objects exist). The exception caused by
customization should then appear in the trace log.

Customizing WebEnterprise Designer Applications

Chapter 7

Customization Examples

This chapter describes a number of desirable customizations for WebEnterprise Designer
applications. These examples illustrate how information described in the previous chapters
of this manual might be used in real-life situations.

The customizations in this chapter include:
adding a Lookup reference page
passing data with a command link
automatically populating data on an Insert page
adding a drop list for entering and formatting dates
removing a JavaScript validation from a page mode
displaying the record just inserted
validating a whole form
making a single field mandatory
entering lookup information for drop lists or radio lists manually

removing <Not Selected> and <None> from drop lists and radio lists

124 Introduction

Introduction

The examples in this chapter are based on Tech Notes for WebEnterprise Designer that are
available on the Forte Cybersupport Web site. Check this Web site frequently for new
information.

All customizations in this book start with the HTMLtutApp tutorial application, described
in Getting Started with WebEnterprise Designer. We recommend you create your own
tutorial application. Alternatively, you can import a finished version of the tutorial by
following the instructions provided in Appendix A of Getting Started with WebEnterprise
Designer.

The examples are as follows:
m “Example: Adding a Lookup Reference Page” on page 126

Creates a link to a list of customers from the Insert mode of the Customers page.
Selecting a customer from the lookup page passes the Customer Number value back to
the Insert page.

m “Example: Passing Data with a Command Link” on page 134

Similar to the previous example, but instead of a lookup page, uses a variable to pass the
record value of the selected record to the Insert page.

m “Example: Automatically Populating Data on an Insert Page” on page 139

Yet another way to pass a value to the Insert page. This example creates a new Customer
page and uses a WebEnterprise Designer variable to pass the value to the Insert page.

m “Example: Adding a Drop List for Entering and Formatting Dates” on page 143
Creates three drop lists and uses stored values for date entry.

m “Example: Removing a JavaScript Validation from a Page Mode” on page 147
Removes an inappropriate field constraint from a Search mode template.

m “Example: Displaying the Record Just Inserted” on page 151

Moves the most recently inserted record to the top of the result set list, so that it is
displayed immediately after it is entered.

m “Example: Validating a Whole Form” on page 153

Uses a JavaScript script to validate a form. Also provides a JavaScript boilerplate for
further use.

m “Example: Making a Field Mandatory” on page 158
Uses TOOL customization to force a user to enter data in a field.
m “Drop List or Radio List Example: Entering Lookup Information Manually” on page 161

Shows how to enter displayed values and stored values in drop lists or radio lists without
referring to a business class.

m “Drop List and Radio List Example: Removing <Not Selected> and <None>" on page 165

Shows how to remove unwanted default values from drop lists and radio lists and
specify new ones.

Customizing WebEnterprise Designer Applications

Introduction 125

Methods for Editing Generated Files

The Page Handler Customization Wizard provides convenient and organized access to any
files generated for your HTML application model, including TOOL files and HTML
template files. When the method you want to customize does not have a customization
point defined for it in the Customization Wizard, you have to customize manually, using
the Method Workshop.

Using the Page Handler Customization Wizard

Complete information on using the Wizard is provided in “Customizing a Generated HTML
Template” on page 53. Before you can edit generated files with the Customization Wizard,

you must set the FORTE_WW_HTMLEDITOR environment variable with the full pathname
of the editor of your choice. For example, if you were using the HTML editor FrontPage:

FORTE_WW_HTMLEDITOR D:\frontpage\bin\fpeditor.exe

For information on setting these variables, see the online Help topic for the variable. For
information on using shortnames for file specification on Windows NT, see the help topic,
“Use a shortname for the Default Browser field.”

Customizing TOOL Methods Manually

Chapters 1 and 2 of this manual offer general guidance concerning which methods to
customize for many types of customizations. Once you know which method to override or
customize, then you edit the method in the Method Workshop. If your customization is to a
page handler class, you must first create a customizable version of the class. (Refer to
“Creating Customizable Classes” on page 48.)

For example, “Step 2. Override the Beforelnsert Method” on page 145 describes a TOOL
method customization that creates a Beforelnsert method in the CustomerOrderHandler
class that overrides the ExpressClassHandler.Beforelnsert method. You can use the
following alternative to the Customization Wizard:

To customize a method of an ExpressHandlers class in a HTMLtutAppHandlers class:

1 In the Project Workshop for ExpressHandlers, open the Class Workshop for the
ExpressClassHandlers class.

2 Locate the Beforelnsert method in the Class Workshop.

3 In the Project Workshop for HTMLtutAppHandlers, open the CustomerOrderHandler
class.

4 Drag the Beforelnsert method (in Step 2) into the Class Workshop for the
CustomerOrderHandler class.

5 Open the new Beforelnsert method.

6 Proceed with the customizations described in “Step 2. Override the Beforelnsert
Method” on page 145.

Customizing Generated HTML and Text Files Manually

Chapter 3, “Customizing Generated HTML Templates,” describes all generated page
handler templates. These are all found in the ${FORTE_ROOT}/Document
Root/html_model directory. You can edit the HTML files with the Page Handler
Customization Wizard, but if you want to edit them manually, you can use either an HTML
editor or a text editor to edit files with an .html extension.

Customization Examples Chapter 7

126 Example: Adding a Lookup Reference Page

Example: Adding a Lookup Reference Page

In the HTMLtutApp tutorial application, adding a new order to a customer record is
somewhat clumsy and counter-intuitive. You navigate to the customer you wish to add an
order to, but when you choose Insert, the page displays with all fields empty. Thus, there is
no connection between the customer record you are viewing and the Insert page. This
example offers a solution.

What This Example Does

This modifies the HTMLtutApp tutorial application, adding a lookup link from the Insert
mode of the CustomerOrder page to a customer list. Selecting a customer from this list
automatically passes the selected customer’s number back to the Insert page.

The lookup link on the Insert page looks like this:

Insert CustomerOrder

Cusiomer Number I View Customer — LOOkUp link

Order Nunber |

Requested Date I

INZERT

Figure 23 Lookup Link on Customer Order Insert Page

Clicking on the lookup link displays a master list of customers:

Customer List

Customer Number Name Address Phone
> Use 1 Jane Doe 10 10th St. 332-1234
Use links 4[Use 2 1. Smith 11 11th Ave. 3324321
Use 3 R. Simmons 111 A St 4434321
a

Feoards

Figure 24 Customer List Page

Clicking on the Use link associated with the desired customer redisplays the Customer
Order Insert page with the selected customer’s number showing in the appropriate field.

Insert CustomerOrder

Cusiomer Number |3 View Customer

Order Number |

Requested Date |

INSERT

Figure 25 Customer Number Returned with the Insert Page

Customizing WebEnterprise Designer Applications

Example: Adding a Lookup Reference Page 127

Creating a Lookup Link

This section describes how to add a lookup link to the HTMLtutApp tutorial application.
The general steps of this procedure are as follows:

1

In the HTML application model, create a CustomerList page based on the Customer
class and link it to the Customer Order page; specify that the new page will start in
Search mode.

Run the application and capture the URL of the Insert mode of the CustomerList page.

Customize the Insert template of the CustomerOrder page, adding a lookup link to the
URL captured in Step 2, and a Forte variable for the selected order’s CustomerNumber
value.

Add a link to the Data template of the CustomerList page to its Insert page, and pass the
CustomerNumber of the selected customer with the link.

Remove the link between the CustomerOrder class and CustomerList class so that it
only appears on the Insert mode of the CustomerOrder page.

Step 1. Add a Reference Page to the HTMLtutApp Model

This section describes how to modify the HTMLtutApp model as the first step in creating a
lookup link.

To set up the HTMLtutApp model for a lookup link:

1
2
3

q
5

Start the HTML Application Model Workshop for the HTMLtutApp application.
Create a new list page based on the Customer class.

Enter CustomerList for the HTML Page Name, and make the title Customer List.
The Page Options page of the Page Wizard should look like this:

Page Wizard - Page Options [%]
 Page Options
Business Class: |Eust0mer

HTML Page Mame: | CustomerList

Fage Title: | Customer List

Page Layout: I List

L L«

Label Position: IAcross
visble Fiows: [& =

Page Design: | Usze model default

Syl | Use model default

]

Cancel | < Hack | Mest > | Finizh |

Create a link between the CustomerOrder page and this page.

Double-click on the link to display the Link Properties dialog.

Customization Examples Chapter 7

128 Example: Adding a Lookup Reference Page

6 Name the link Customer List and set the Called Page Options to start on the Search
Page.

The Link Properties dialog should look like this:

Link Properties: CustomerListLink4]
Label: I Customer List

Dizplay: IEustomer records] associated with selected CustomerDrder j

Azsociation: I Customer j

- Calling Page Options

" Data ¢ Field Label % Separate Label

I Cusztomer Mame ¥ l

i Called Page Options

Activate Link Or:

Start on: ISearch Page

Previous Results: IEIeared

K1 K K

Dizplay in: ISame Browser

()8 | Eancell

7 Click OK to apply your changes and dismiss the dialog.
Your model should look like this:

Orders far thiz Custamer

Customers == Customer
4—‘ Hame
Home

. @@ .
00 Product List Customer List

Lookup Link
CustomerList additions

Step 2. Capture the Search Page URL

In this section, you run the application and capture the URL of the search mode of the
CustomerList page.

To capture the URL of the Search page mode:
1 Run the HTMLtutApp application.

2 From the Home page, click the Customers link to get to the Tip-a-Canoe Customers
page.

3 From the Customers page, click the Orders for this Customer link to get to the Customer
Orders nested page.

Customizing WebEnterprise Designer Applications

Begin definition of
Customer Number field

End definition

6

Example: Adding a Lookup Reference Page 129

Under the Customer Order portion of the page is the new Customer List link; click on it.

The search mode of the CustomerList page should appear, as shown here.

e 7 .:D Lot |
HTML Tutorial

Find CustomerList

Customer Nurber

ey

Adiress |

Plone [

SEARCH

[Powered by Forts___ge”®

In the data section of the page, right-click to bring up the menu, and choose Open
Frame in New Window.

This step is necessary, because the HTMLtutApp application uses a page design with
frames. If you do not perform this step when copying the URL, later, when you run the
application, you will get the frameless version.

Copy the URL (to the clipboard) in the new window and exit the application.

Step 3. Create a Link with the Captured URL

In this section, you use the URL string you copied in the previous section to create a link in
the CustomerOrder Insert template. You will also add a variable for the CustomerNumber.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

To customize the CustomerOrder page:

1

2

Using the HTML-editing option of your choice, open the Insert_CustomerOrder.html
file.

Find the section defining the Customer Number field.
The original code looks like this:

<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
Cust omer Number
</th>
<td cl ass="dataforn' style="wi dth: 80% >
<i nput type="text" name="Customer Or der _qqg_Cust oner Nunber"
si ze=40>
</td>
</tr>

3 Add a Forte variable for the CustomerNumber field:

val ue=" $$(FORTE. Cust ormer Nunber)”

Customization Examples Chapter 7

130 Example: Adding a Lookup Reference Page

Begin definition of
Customer Number field

New Forte variable added

Modified URL link
(this is one line

Add link label

End definition

4

5

7
8

Also add an HREF line with the saved URL from the previous section.
The URL will look like this (this is all one unbroken string):

http://your_web_server/web. f orte?Servi ceName=HTM.t ut AppSer vi ce

&Tenpl at eName=HTM._t ut App/ Sear ch_Cust oner Li st. ht M &Ret ur nTenpl at e=
H

HTM_t ut App/ Di spl ay_Cust oner Li st. ht m &Acti on=Cl ear &Act i on=Sear ch
&Sel ecti on=Cust oner Li st _qgq_Cust onmer Nurber
&Cust omer Li st _qq_Cust oner Nunber =1

&Li nkNanme=HTM_t ut App. Cust oner Li st Li nk4&Uni qui fi er =$$(FORTE. Uni que
ID)"

When you paste the URL into the HTML code, substitute the beginning of the string up
to the first question mark:

http://your_web_server/web. forte?Servi ceNane. . .

with the Forte ExecURL variable:
$$(FORTE. ExecURL) ?Ser vi ceNane. . .

And also substitute the final variable:
Uni qui fi er=32
with the Forte UniquelD variable:
Uni qui fi er =$$(FORTE. Uni quel D)
Then add a label (View Customer) for the link at the end of the line.

Your final code should look like this (changes in bold):

<tr>
<th cl ass="I abel modi fy" styl e="wi dt h: 20% >
Cust onmer Numnber
</th>
<td class="datafornl' style="w dth: 80% >

<i nput type="text" name="Customer Order_qqg_Cust omer Nunber"
si ze=40 val ue=" $$(FORTE. Cust oner Nunber) " >
<a href =" $$(FORTE. ExecURL) ?Ser vi ceName=HTM.t ut AppSer vi ce&Tenpl at e
Name=HTM_t ut App/ Sear ch_Cust oner Li st . ht ml &Ret ur nTenpl at e=HTM_t ut Ap
p/ Di spl ay_Cust omer Li st . ht m &Act i on=C ear &Act i on=Sear ch&Sel ect i on=
Cust oner Li st _qq_Cust oner Nunber &Cust oner Li st _qq_Cust omer Nunber =1&L
i nkName=HTM_t ut App. Cust oner Li st Li nk4&Uni qui fi er =$$(FORTE. Uni quel D
)" >
Vi ew Cust omer

</ a>

</td>

Close the Insert_CustomerOrder.html file and save your changes.

Test your work by repeating Step 1 to Step 4 of the procedure “To capture the URL of the
Search page mode:” on page 129.

Customizing WebEnterprise Designer Applications

Example: Adding a Lookup Reference Page 131

9 In the Customer Orders nested page, click on the Insert command in the command list
(left panel).

The Insert mode page shown in Figure 23 on page 126 shows the new View Customer
link you just created.

10 Click on the View Customer link.

The CustomerList page opens in Search mode:

HTML Tutorial

"¢ Find CustomerList

Costomer Nuber |

Nae | [

Adiress |

Flone | [

[Powered by Forte_ge”

11 Exit the application.

Step 4. Pass the Selected Field Value

In this section, you modify the Data template of the Customer List page, adding a link to
the CustomerOrder Insert page and passing the Customer Number of the selected
customer as a parameter, so that it displays in the Insert page.

To customize the Data template of the Customer List page:
1 Using the HTML-editing option of your choice, open the Data_CustomerList.html file.
2 Find the first HREF statement.

The original HREF statement looks like this:

First HREF instance <a class="rowi dlist" HREF="$$(FORTE. ExecURL) ?Ser vi ceName=HTM.t ut A
ppSer vi ce&Tenpl at eName=HTM.t ut App/ Di spl ay_$$(USER TopPage) . ht m &Act i
on=Cust oner Li st Handl er . Set Curr ent Row&Posi ti on=$$(1i st entry. qqRowN
unber) &Uni qui fi er =$$(FORTE. Uni quel D) "

target="_fortedisplay"> $$(listentry. gqgRowNunber) </ a>

Modify the first HREF statement as follows (changes are in bold):

First HREF instance specifies <a class="row dlist" HREF="$$(FORTE. ExecURL) ?Ser vi ceName=HTM.t ut A

the target of ppSer vi ce&Tenpl at eName=HTM_t ut App/ | nsert _Cust omrer Or der . ht Ml &Ret ur nT
enpl at e=HTM.t ut App/ Di spl ay_Cust oner O der . ht ml &Uni qui fi er =$$(FORTE
. Uni quel D) &Cust oner Nunber =$$(| i st entry. Cust onmer Li st _qqg_Cust omer Nu
nmber) "

the new “Use” link target='

_fortedisplay">Use</ a>

Customization Examples Chapter 7

132 Example: Adding a Lookup Reference Page

3

To summarize the changes:

&TemplateName=HTMLtutApp/Insert_CustomerOrder.html identifies the template
as the Insert mode of CustomerOrder

&ReturnTemplate=HTMLtutApp/Display_CustomerOrder.htmlspecifies the Display
mode of the same page as the return template

&Uniquifier=$$(FORTE.UniquelD) defeats the caching mechanism and retrieves a
“fresh” page

&CustomerNumber=$$(listentry.CustomerList_qq_CustomerNumber) passes the
selected CustomerNumber value as a parameter

Use—Adds a new label for each row

For more information on Forte tags, see Chapter 3, “Customizing Generated HTML
Templates.”

Exit the Data_CustomerList.html file and save your changes.

Testing Your Work Before the Final Step

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly. After testing, you will perform the final step, in “Step 5. Remove the
CustomerOrder-CustomerList Link,” which follows this section.

To test the work you have done so far:

1
2

Run the HTMLtutApp application.

Navigate to the Customer Orders page and click on the Insert command in the
command list (left panel).

In the Insert mode of the Customer Orders page, click on the View Customer link.
This takes you to the CustomerList page in Search mode.
Click on the Search button.

This takes you to the CustomerList page in Display mode, shown in Figure 24 on
page 126.

Click on the Use link of any customer record.

You are returned to the Insert mode of the Customer Orders page, as shown in Figure 25
on page 126, with the selected customer’s Customer Number showing.

Add an order number and date.

Enter the date in the format dd-mmm-yyyy hh:mm:ss (for example, 05-Mar-1999
00:00:00).

Click the Insert button.
You are returned to The Customer Order page.
Click on Last Order in the command list.

Your new order appears. (You may have to reload the page to display all the fields.)

Customizing WebEnterprise Designer Applications

Example: Adding a Lookup Reference Page 133

Customer Orders

Customer Name Jane Doe
Customer Number 1
Order Number 10010
Requested Date 05-Idar-1999 00:00:00

veoevd 3 gf 3 Horne Custormer List

9 Exit the application.

Step 5. Remove the CustomerOrder-CustomerList Link

In this section, you remove the link you created in Step 1. You do this because you use the
lookup link only when you are inserting a new customer order, as set up in Step 3.
Therefore, you only want the link to appear on the Insert mode of the CustomerOrder page.
(If the link remains, it is visible on all modes of the CustomerOrder page.)

To finish the customization:
1 Open the HTML Application Model Workshop for the HTMLtutApp application.
2 Delete the link between the CustomerOrder page and the CustomerList page.

Your model should look like Figure 26.

Orders far thiz Custamer

Customers

‘—‘ Hame ¥

Home

J2en) Product List

CustemerList | —— Page used for Lookup Link

Figure 26 HTMLtutApp Model Modified for a Lookup Link

Usage Recommendations

To use this link properly, always select the customer first, by using the Customer View link,
then add the other customer order data on the Insert page. If you fill in the other fields
before using the Customer View link, all your data will be lost when you return to the Insert
page, except for the customer number.

Customization Examples Chapter 7

134 Example: Passing Data with a Command Link

Example: Passing Data with a Command Link

This customization is similar to the previous one (“Example: Adding a Lookup Reference
Page” on page 126), in that you customize the application to pass a value from a selected
record to an Insert page. In this example, there is no lookup list to select from; instead, the
primary key value of the selected order is passed to the Insert page, so that the new record
will automatically be inserted into the selected order.

What This Example Does

This example modifies the HTMLtutApp tutorial application to add data to a command
link. As in the uncustomized HTMLtutApp tutorial, the user can choose a customer from
the Customer page, then navigate to the master-detail page that displays orders for that
customer. At this point, the user can browse through the orders until she comes to the one
she wants to insert a line item to:

Customer Orders

Customer Name E. Simmons
Customer Number 3
ustomer et Selected customer order
Order Number 1005

Requesied Date 01-Lfar-1995 00:00:00

record 12 Home

Product Description

Order Nuniber Liem Number PN Description Price Quantity

1003 1 90002 Fiberglass Cance 59.99 1

(I

105 3 20003 5FootQar 9.9 2 .
Insert command for Line Item

Redisplay

Search Insert Update Dalste 50 5 =

Figure 27 Selected Customer on Master-Detail Page

The user clicks on the Insert command under the Product Description section (the nested
Lineltem page) to invoke the Lineltem Insert page, which displays with the order number
showing:

Insert LineItem

Order Number IIUUE

Tiem Nuniber I

PN | |

Quantity |

INSERT |

Figure 28 Lineltem Insert Page Showing Passed Value

Thus, the new line item will be added to the order selected by the user.

Customizing WebEnterprise Designer Applications

Example: Passing Data with a Command Link 135

Creating the Customization

This section describes how to customize the HTMLtutApp tutorial application to add data
to a command link. The general steps of this procedure are as follows:

1
2
3

4

Make sure the Insert and Update commands are defined for the page in question.
Add a variable to the Data mode of the page to hold the value.

Enclose the whole link definition in a “forte iterate” loop to single out one instance of
the data.

Populate the appropriate field on the Insert page with the incoming data.

Step 1. Add Insert and Update Commands (If Required)

The Insert mode of the Lineltem page must have Insert and Update commands defined for
it. These are already defined in the HTMLtutApp tutorial application, as described in
Getting Started with WebEnterprise Designer. However, if you have not finished the tutorial,
or are modifying your own application, make sure the page in question has these
commands.

To add the Insert and Update commands to a page (if necessary):

1

q
5

In the HTML Application Model Workshop for the HTMLtutApp application, open the
Page Wizard for the Lineltem page by double-clicking on the page.

Click Next until the Commands page displays.
If there are no Insert and Update commands on the page, add them.

The Commands page should look like this (other commands can be missing, but it
should at least have the Insert and Update commands):

- Commands
Command Type Command Mame Label
Search | Search | Search =
Ingert | Ingert | Ingert
Update | Update | Update
Celete | Delete | Delete
Fedizplay | Fedizplay | Fedizplay

I R | K

Lol

Ingert | Delete |

Cancel | < Back | [EREs |

Click Finish to apply your changes and close the Page Wizard.

Generate code for the model.

Customization Examples Chapter 7

136 Example: Passing Data with a Command Link

Step 2. Add a Variable to Hold the Value

In this section, you will add code to the Data_Lineltem.html template that adds a variable
to hold the order number data to the Insert command link.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

To add a variable to the Insert command link of the Lineltem page:
1 Using the HTML-editing option of your choice, open the Data_Lineltem.html file.
2 Find the section that defines the link to the Insert mode of the page.

The original code looks like this:

<t d>

Start link definition <a class="al i nk" HREF="$$(FORTE. ExecURL) ?Ser vi ceName=HTM._t ut AppSe
rvi ce&Tenpl at eName=HTM.t ut App/ | nsert _Li nel tem ht m &Ret ur nTenpl at e=H
TM_t ut App/ Di spl ay_$$(USER. TopPage) . ht ml &Uni qui fi er =$$(FORTE. Uni qu
elD)" target="_fortedi splay">

End link definition I nsert </ a>
</td>

3 Add a variable to hold the order number data.
Example &ORDERNUMBER=$$(| i stentry. Li neltem qqg_Or der Nunber)

where:
ORDERNUMBER is a local variable

listentry.Lineltem_qq_OrderNumber is a Forte variable that stores the value of
ORDERNUMBER

The customized code should look like this (changes in bold):

<t d>

Start link definition <a class="al i nk" HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=HTM.t ut AppSe
rvi ce&Tenpl at eName=HTM_t ut App/ I nsert _Li nel tem ht mM &Ret ur nTenpl at e
=HTM_t ut App/ Di spl ay_$$(USER. TopPage) . ht m &Uni qui fi er =$$(FORTE. Uni
quel D) &ORDERNUVBER=$$(i stentry. Li nel t em qq_Or der Nunber)”
target="_fortedisplay">

End link definition I nsert
</td>

4 Continue on to the next section without closing the Data_Lineltem.html file.

Step 3. Single Out One Instance of the Data

Because Lineltem is a list page that could have multiple line items, you need some way to
single out a single instance of the data. In this section, you will do this by using a “forte
iterate” loop to the Insert link definition.

To add a forte iterate loop:
1 Enclose the code you entered in the previous section in a “forte iterate” loop.
The syntax of the forte iterate loop is:

Begin forte iterate loop <I--<?forte iterate listentry entry.list_Lineltemstart="1"
max="1">-->
Your application |ogic here
End forte iterate loop <I--<?/forte iterate listentry>-->

Customizing WebEnterprise Designer Applications

Begin forte iterate loop

Start link definition

End link definition
End forte iterate loop

Begin table definition
of Order Number field

End definition

Begin table definition
of Order Number field

New variable

End definition

Example: Passing Data with a Command Link 137

Your final modified code should look like this (changes in bold):

<t d>
<I--<?forte iterate listentry entry.list_Lineltemstart="1"
max="1">-->
<a class="al i nk" HREF="$$(FORTE. ExecURL) ?Ser vi ceNane=HTM.t ut AppSe
rvi ce&Tenpl at eName=HTM_t ut App/ I nsert _Li neltem ht mM &Ret ur nTenpl at e
=HTM_t ut App/ &ORDERNUMBER=$$(| i stentry. Li nel t em qq_Or der Nunber) " Di
spl ay_$$(USER. TopPage) . ht ml &Uni qui fi er =$$(FORTE. Uni quel D)
target="_fortedisplay">

I nsert
<l--<?/forte iterate listentry>-->
</td>

2 Close the Data_Lineltem.html file and save your changes.

Step 4. Populate the Order Number with Incoming Data

In this section, you modify the Insert template of the Lineltem page to display the value
stored in the CUSTOMERORDER variable that you added to the link in “Step 2. Add a
Variable to Hold the Value” on page 136.

To customize the Insert mode of the Lineltem page to display the data:
1 Using the HTML-editing option of your choice, open the Insert_Lineltem.html file.
2 Find the section that defines the OrderNumber field.

The original code looks like this:

<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
O der Number
</th>

<td class="datafornml' styl e="wi dth: 80% >
<i nput type="text" name="Lineltem gqq_Order Number" size=40>
</td>
</tr>

3 Add code to populate Customer Number with values:

val ue=$$(FORTE. ORDERNUMBER)

where ORDERNUMBER is the variable defined in Step 3 of the previous section.
Your code should look like this (changes are in bold):

<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
Order Nunber
</th>

<td class="datafornm' styl e="w dth: 80% >
<i nput type="text" name="Lineltem gqq_Order Number" size=40
val ue=$$(FORTE. ORDERNUVBER) >
</td>
</tr>

4 Close the Insert_Lineltem.html file and save your changes.

Customization Examples Chapter 7

138 Example: Passing Data with a Command Link

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the customization:

1
2
3

Run the HTMLtutApp application.
On the Home page, navigate to the Tip-a-Canoe Customers page.

Browse through the customer records and click the Orders for this Customer link for
some customer.

On the Customer Orders nested page, click the Insert link below the Product
Description.

The Lineltem Insert page should display with the correct Order Number showing:

Insert LineItem

Order Numbher IlDDS

Ttemn Number I

PN |

Quantity |

INSERT |

Add an Item Number, a PN, and a Quantity.

To test your work accurately, use values for Item Number and PN that exist in your
database. For example (from the tutorial database):

Item Number: 1
PN: 90003
Quantity: 3

Click the Insert button to return to the Customer Orders page.

Reload the page to populate the rest of the fields. If you entered the values suggested in
Step 5, your page should look like this:

e T]
HTML Tutorial

Customer Orders
CostomerName R Sinmons
Costomer Nunber 3
Orier Nuber 1005

Requested Date 01-Max-1995 00,0000

Product Description

OrderNunber lemNumber BN Description Price Quantity
[1005 1 M FiowgassCnce 990 1

| Newrow

1005 3 o003 5Fact O 959 2

Seah Izt Update Delste B

Customizing WebEnterprise Designer Applications

Example: Automatically Populating Data on an Insert Page 139

Example: Automatically Populating Data on an Insert Page

This example describes a technique different from the previous example (“Example:
Passing Data with a Command Link” on page 134) for passing a customer number value
from a selected Customer to the Insert mode of a CustomerOrder page. This example
creates an additional CustomerOrder page, then uses a variable created by WebEnterprise
Designer to pass the value to the Insert and Update modes of this page.

What This Example Does

In the uncustomized HTMLtutApp tutorial, if a user wants to add an order to a particular
customer, he invokes the Insert mode of the Customers page, which displays with all fields
blank. If he does not remember the number of the particular customer he selected, he must
return to the Customers page for the information.

In this customization, you add a new CustomerOrder page, called NewOrder, to the
application and link it to the Customers page. When you run the application and navigate
to the Tip-a-Canoe Customers page, you activate the link to the new page, which goes to
the Insert mode of the page and passes the customer number value with the link. Figure 29
shows an example display:

Insert NewOrder

Order Number |

C
Nunther |2

Requested Date I

Selected customer’s number

INSERT |

Figure 29 Insert Mode of NewOrder Page

Creating the Customization

This section describes how to customize the HTMLtutApp tutorial application to pass a
CustomerNumber field value to the Insert mode of a CustomerOrder page. The general
steps of this procedure are as follows:

1 Add a new business class page, the NewOrder page, to the model, based on the
CustomerOrder business class; link it to the Customers page.

2 Customize the generated NewOrder Insert template to populate the CustomerNumber
field with an incoming value.

Use a variable automatically created by WebEnterprise Designer to hold the value.

Step 1. Add a NewOrder Page to the HTMLtutApp Model

This section describes how to modify the HTMLtutApp model as the first step in
automatically populating an Insert page.

To modify the HTMLtutApp model:
1 Open the HTMLtutApp application in the HTML Application Model Workshop.

2 Create a form page based on the CustomerOrder class.

Customization Examples Chapter 7

140 Example: Automatically Populating Data on an Insert Page

3 On the Page Options page of the Page Wizard, enter:

Business Class: CustomerOrder
HTML Page Name: NewOrder

(It does not matter what you enter in the Page Title field because you will only access
the Insert mode of this page, which does not display the page title.)

4 Click Next until you reach the Field Properties page.
5 Add spaces to the field labels as shown and click Finish:

r Field Properties
Field Label Formatting Routine
| OrderMumber | Order Mumber =
|Eust0merNumber |Eust0mer MHumber Add spaces in the field labels
| FequestedD ate | Requested Date

I R R)

-

Cancel | < Back I Mext > I Finizh |

6 Add a command link between the Customer page and the NewOrder page.
7 Open the Link Properties dialog and enter or set these values:

Label: Add Customer Order

Display: CustomerOrder record(s) associated with selected Customer
Activate Link On: Separate Label

Start on: Insert Page

The Link Properties dialog should look like this:

Link Properties: NewOrderLink3]
Label: IAdd Customer Order

Dizplay: IEustomerDrder record(z] associated with selected Customer j

Azsociation: I COrders j

- Calling Page Options

" Data ¢ Field Label % Separate Label

I Cusztomerturmnber ¥ l

i Called Page Options

Activate Link Or:

Start on: I Inzert Page

Previous Results: IEIeared

K1 K K

Dizplay in: ISame Browser

()8 | Eancell

Customizing WebEnterprise Designer Applications

Example: Automatically Populating Data on an Insert Page 141

8 Click OK to apply these values and close the dialog.
Your model should look like this:

Add Customer Order == MewDrder

Added CustomerOrder page

Orders far thiz Custamer

Customers [== Customer

‘—‘ Hame ¥

Home

J2en) Product List

Figure 30 HTMLtutApp Model with Additional CustomerOrder Page
9 Generate the application code.

At this point, you can test the application and insert orders by clicking the Add Customer
Order link. However, none of the fields are populated with values yet, so you have to enter
them manually. The next step shows you how to populate the Customer Number field with
the value from the selected customer.

Step 2. Add a Variable to Hold the Value

As part of the generated HTML code, WebEnterprise Designer creates the variable you will
use to hold the CustomerNumber value. This variable is NewOrder_qq_CustomerNumber,
which is created in the Data template of the Customer page as part of the coding required
to satisfy the link’s display option (CustomerOrder record(s) association with Customer).
The code in Data_Customer.html page looks like this:

<td>

<l--<?forte if CustonerHandl er. HasCurrent Row>- - ><a cl ass="al i nk"
hr ef =" $$FORTE. ExecURL?ser vi ceNane=HTM_t ut AppSer vi ce&; t enpl at eNane=H
TM_t ut App/ Mai n_NewOr der . ht m &; St arti ngPage=I nsert & Ret ur nTenpl at e=H
TM_t ut App/ Di spl ay_NewOr der. ht m & Acti on=Cl ear &; Acti on=Sear ch&; Sel ec
ti on=NewOr der _qgqg_Cust omer Nunber & NewQr der _qq_Cust oner Nurmber =$$(1 i st
entry. Cust oner _qq_Cust oner Nunber) &; Li nkNane=HTM.t ut App. NewCOr der Li nk
3&; Uni qui fi er =3$(FORTE. Uni quel D) " target="_top">Add Custoner
O der </ a>

<!--<?forte el se>-->Add Custoner O der<!--<?/forte if>-->

</td>

You will use the NewOrder_qq_CustomerNumber variable to populate the Customer
Number field on the NewOrder Insert page with the Customer Number value of the
customer selected on the Customer page.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

Customization Examples Chapter 7

142 Example: Automatically Populating Data on an Insert Page

To populate the Customer Number value in the NewOrder Insert page:
1 Using the HTML-editing option of your choice, open the Insert_ NewOrder.html file.
2 Find the table definition for the CustomerNumber field.

The original code looks like this:

Begin table definition of <tr>
Customer Number field <th class="I abel nodi fy" styl e="wi dth: 20% >
Cust omer Number
</th>

<td class="datafornml' styl e="w dth: 80% >
<i nput type="text"
nane="Cust oner Or der _qq_ReqCust oner Nunber ze=40>
</td>
End definition </tr>

3 Add code to populate Customer Number with values:
val ue=3(FORTE. NewOr der _qg_Cust ormrer Nurrber)

where NewOrder_qq_CustomerNumber is the variable defined in the
Data_Customer.html template.

Your code should look like this (changes are in bold):

Begin table definition of <tr>
Customer Number field <th cl ass="I abel modi fy" styl e="wi dth: 20% >
Cust onmer Number
</th>

<td class="datafornml' styl e="w dth: 80% >
<i nput type="text" name="Lineltem qq_Order Number" size=40

New variable val ue=$$(FORTE. NewOr der _qq_Cust ormrer Nunber) >
</td>
End definition </tr>

4 Close the Insert NewOrder.html file and save your changes.

5 Regenerate the application’s code.

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the customization:

1 Run the HTMLtutApp application.

2 On the Home page, navigate to the Tip-a-Canoe Customers page.
3 Browse through the customer records and choose one.
4

Click on the Add Customer Order link.

The Insert NewOrder page should display, as in Figure 29 on page 139, with the
Customer Number of the selected customer showing.

Customizing WebEnterprise Designer Applications

Example: Adding a Drop List for Entering and Formatting Dates 143

Example: Adding a Drop List for Entering and Formatting Dates

In the uncustomized HTMLtutApp tutorial application, one of the fields on the Customer
Orders page requires a date value, but the application provides no help on the Insert page
regarding date format. If a user enters the date in any other than a DD-MMM-YYYY
HH:MM:SS format, she will get an error.

This customization solves this problem by creating drop lists with month, day, and year
values for entry of new customer orders.

What This Example Does

In this customization, when the user invokes the Insert mode of the Customer Order page,
it is displayed with drop lists in the Requested Date field for month, day, and year:

Insert CustomerOrder

Customer Numbher I 1

Order Numbher IlDDQ

Requesied Date |Mar j |Dg j |1999 j Drop lists for date elements

INSERT |

Figure 31 Requested Date Field Formatted with Drop Lists

The user fills in the other fields, then uses the drop lists to specify the requested date. When
she clicks the Insert button, the Customer Order~Lineltem page is displayed, showing the
new order with the correct date format:

Customer Orders

Customer Name Jane Doe
Customer Number 1
Order Number 1009
Requesied Date 09-Mar-1999 000000 —— Correct date format

veoevd 3 gf 3 Horne

Product Description

Order Numbher Ttemn Number PN Description Price Quantity

Figure 32 Inserted Customer Order Showing the Date

Customization Examples Chapter 7

144 Example: Adding a Drop List for Entering and Formatting Dates

Begin table definition of
Requested Date field

End definition

Begin table definition of
Requested Date field

Begin Month drop list
definition
Begin Month values

Creating Date-Formatting Drop Lists

This section describes how to customize the HTMLtutApp tutorial application to substitute
drop lists for the date definition in the Insert template of the CustomerOrder page. The
general steps of this procedure are as follows:

1 Customize the Insert template of the CustomerOrder page, replacing the table
definition of the Requested Date field with HTML code that builds three drop lists for
Month, Day, and Year.

2 Customize the BeforeInsert method to:
build the DateTimedata object with the values from the drop list
modify the RequestedDate attribute in the underlying business class
(CustomerOrderClass)

continue the normal WebEnterprise Designer processing

Step 1. Define Drop Lists for Date Elements

In this section, you will make changes to the Insert_CustomerOrder.html page to include a
drop list for the three parts of the date, and provide appropriate data for each list.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

To define drop lists for the Requested Date field:

1 Using the HTML-editing option of your choice, open the Insert_CustomerOrder.html
file.

2 Find the table definition for the RequestedDate field.
The original code looks like this:

<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
Request ed Date
</th>
<td class="datafornml' styl e="wi dth: 80% >
<i nput type="text" name="Custoner O der_qqg_Request edDat e"
si ze=40>
</td>
</tr>

3 Replace the definition line (beginning <input type="text”) with HTML code defining
three drop lists.

Your code should look like this (changes are in bold):

<tr>
<th cl ass="I abel modi fy" styl e="wi dt h: 20% >
Request ed Date
</th>
<td class="datafornml' styl e="w dth: 80% >
<sel ect name="Mnth" size="1">

<OPTI ON val ue="Jan" >Jan
<OPTI ON val ue="Feb" >Feb
<OPTI ON val ue="Mar " >Mar
<OPTI ON val ue=" Apr " >Apr

Customizing WebEnterprise Designer Applications

End Month definition
Begin Day drop list definition
Begin Day values

End Day definition

Begin Year drop list definition
Year values

End Year definition

End definition

4

Example: Adding a Drop List for Entering and Formatting Dates 145

<CPTI ON val ue="May" >May
<OPTI ON val ue="Jun" >Jun
<OPTI ON val ue="Jul ">Jul
<OPTI ON val ue="Aug" >Aug
<OPTI ON val ue="Sep" >Sep
<OPTI ON val ue="Cct " >Cct
<OPTI ON val ue="Nov" >Nov
<OPTI ON val ue="Dec" >Dec

</sel ect >

<sel ect name="Day" size="1">

<opt i on>01<opt i on>02<opt i on>03<opt i on>04<opt i on>05<opt i on>06
<opti on>07<opti on>08<opti on>09<opt i on>10<opti on>11l<opti on>12
<opti on>13<opti on>14<opti on>15<opti on>16<opti on>17<opti on>18
<opti on>19<opti on>20<opt i on>21<opti on>22<opti on>23<opti on>24

<opt i on>25<opt i on>26<opt i on>27<opt i on>28<opt i on>29<opt i on>30
<opti on>31
</sel ect >
<sel ect name="Year" size="1">
<opti on>1999<opt i on>2000<opti on>2001
</sel ect >
</td>
</tr>

Save and close the Insert_CustomerOrder.html file.

Step 2. Override the Beforelnsert Method

You want to prevent the user from inserting a blank value for the Requested Date field.
Therefore, you will make changes to the page handler’s Beforelnsert method.

In this section, you use a customization point in the Page Handler Customization Wizard to
create a Beforelnsert method for the CustomerOrderHandler class (which will override the
ExpressClassHandler.Beforelnsert method). You then customize the method as described.

To override the Beforelnsert method for this customization:

1
2

Open the HTMLtutApp model in the HTML Application Model Workshop.

Start the Page Handler Customization Wizard for the CustomerOrder page, as described
in “Customizing a Generated HTML Template” on page 53.

Open the Whole Object Operations category, then the Database Operation subcategory.

Double-click on the “Insert: Before sending an insert object request” customization
point.

If this is the first customization you are making to this class, WebEnterprise Designer
displays a confirmation dialog to expand the class hierarchy to include a customizable
class for this class page. Click OK.

The Method Workshop opens, displaying an override of the Beforelnsert method.

Customization Examples Chapter 7

146 Example: Adding a Drop List for Entering and Formatting Dates

5 Add the following code to the end of the method body:

TheMonth : Textdata = request.fi ndNameVal ue(‘ Month’);
TheDay : Textdata = request.findNaneVal ue(‘ Day’);
TheYear : Textdata = request.findNaneVal ue(* Year’);
TheDate : Textdata = new(Val ue=TheDay. val ue) ;

TheDat e. concat (' -");

TheDat e. concat (TheMont h. val ue) ;

TheDat e. concat (' -');

TheDat e. concat (TheYear . val ue) ;

InsertDate : DateTi nedata = new (val ue=TheDay. val ue);
Client.LogAttr(source,

at t r =Cust oner Or der Query. ATTR_REQUESTEDDATE) ;

Cust oner Or der O ass(sour ce) . REQUESTEDDATE. Set val ue(I nsert Dat e) ;

6 Compile the method, close the Method Workshop and the Customization Wizard.

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the customization:
1 Run the HTMLtutApp application.
2 On the Home page, navigate to the Tip-a-Canoe Customers page.

3 Browse through the customer records and click the Orders for this Customer link for
some customer.

Remember the customer number this customer.
4 Click the Insert command in the left pane of the page.

The Customer Order Insert page is displayed and should show the new date drop lists.

Insert CustomerOrder

Customer Numbher I

Order Number |

Requested Date | [Jan || [01 [7][1998 [7]

INSERT |

5 Enter the customer number from Step 4, and a fictitious order number.

Do not enter an order number from the tutorial database (1002-1006), because it will
raise an error.

6 Use the drop lists to enter a date and click the Insert button.
The nested Customer Order-~Lineltem page is displayed.
7 Navigate to the new order and reload the page.

The new order should resemble Figure 32 on page 143.

Customizing WebEnterprise Designer Applications

Example: Removing a JavaScript Validation from a Page Mode 147

Example: Removing a JavaScript Validation from a Page Mode

WebEnterprise Designer allows JavaScript for field validations, and provides several sample
validations for your use. Users can also create their own JavaScript validations. All
JavaScript validations must exist in the $FORTE_ROOT /userapp/http/cl0/scripts/validate
directory. The tutorial chapter in Getting Started with WebEnterprise Designer describes
how to add a JavaScript validation as a possible enhancement to the HTMLtutApp
application.

When you generate code for an application that has a field validation, WebEnterprise
Designer performs the following actions:

m generates a Scripts_bus_class_page.html file that contains all JavaScript functions for the
page, including:

invoking the selected JavaScript

adding a selected field to the Web page

m modifies the Insert, Search, and Update templates of bus_class_page page to call the
JavaScript functions (from the Scripts_bus_class_page.html file)

Sometimes you do not want the validation applied to all the pages by default. This
customization shows you how to remove the validation from a specific page mode
template.

What This Example Does

This example modifies the HTMLtutApp application by applying the IsAlphabetic
validation to the Customer Name field of the Customer page. This validation is a JavaScript
script that enforces that only alphabetical characters can be entered into the field. This is a
reasonable restriction when inserting or updating a name field, but presents an
inconvenience on the search page, where Forte normally allows the percent sign (%) as a
wildcard character. If the IsAlphabetic validation is enforced on the Search page, this
character will raise an error

Find Customer

Customer Numbher I

Name IJ‘% Entering a wildcard character
raises an error

Address I /

2371 ' henna.forte.com - [JavaScript Application] [%]

& This field requires an alphabetic value.

SEARCH |

Figure 33 IsAlphabetic Validation Error

This customization shows you how to avoid this problem by deleting the unwanted
validation from the Search template of the Customer page.

Customization Examples Chapter 7

148 Example: Removing a JavaScript Validation from a Page Mode

Creating the Customization

This section describes how to add a validation to a field in the HTMLtutApp tutorial
application, and then how to remove it from the Search template of that page. The general
steps of this procedure are as follows:

1 Add the IsAlphabetic JavaScript validation provided by WebEnterprise Designer to the
Name field of the Customer page.

2 Modify the Search template of the Customer page, commenting out the line that
invokes the validation script and substituting a plain field definition.

Step 1. Apply the JavaScript to a Customer Page Field

In this section, you apply the IsAlphabetic validation to the Name field of the Customer
page.
To set a validation on the Name field of the Customer page:
1 Open the HTMLtutApp application in the HTML Application Model Workshop.
2 Double-click on the Customer page to open the Page Wizard.
3 Click Next until you reach the Field Validation page.
4 Select Name in the field name window.
5 Select JavaScript from the Validation Option’s drop list.
6 Select IsAlphabetic from the Script Name’s drop list.
The Field Validation page should look like this:

Page Wizard - Field ¥alidation [%]
- Field ¥ alidation
Narne 1 alidation Option: IJavaScript j
Customertumber Sciipt Name: [is4lphabetic =l

I ame
Address
Fhone

¥
A ¥

Cancel | < Back I Mext > I Finizh |

7 Click Finish to apply your changes and close the Page Wizard.
8 Generate the application’s code.

At this point, you can run the application and test the validation by attempting to type a
non-alphabetic character in the Name field on an insert, update, or search page. Hint: the
validation’s warning message pops up when you attempt to leave the field after typing
something in, including tabbing to the next field, or clicking the cursor anywhere outside
the field.

Customizing WebEnterprise Designer Applications

Begin table definition of
Name field

Call to
JavaScript validation
End call

End definition

Begin table definition of
Name field

Begin comment

End comment
Field definition added

End definition

Note

Example: Removing a JavaScript Validation from a Page Mode 149

Step 2. Remove the JavaScript Validation
from a Template

This section describes how to remove the JavaScript validation from the Search template of
the Customer page. Before beginning this section, please review “Methods for Editing
Generated Files” on page 125.

To remove the validation from the search template:
1 Using the HTML-editing option of your choice, open the Search_Customer.html file.
2 Locate the table definition for the Name field.

The original code looks like this:

<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
Nanme
</th>
<td class="datafornm styl e="w dth: 80% >
<script |anguage="JavaScript">
Sel ect _Cust onmer _qq_Name(’ Cust oner _gq_Nane’, ' Nanme’,’ qgNone’);
</script>
</td>
</tr>

3 Comment out the JavaScript call.
4 Add a new line to add the Name field to the Search page.
Your modified code should look like this (changes in bold):

<tr>
<th cl ass="I abel modi fy" styl e="wi dt h: 20% >
Nanme
</th>
<I--
<td class="datafornml' styl e="w dth: 80% >
<script |anguage="JavaScript">
Sel ect _Cust omer _gq_Name(’ Cust oner _qgq_Nane’ ,’ Name’,’ qgNone’);

</script>
>
<i nput type="text" name="Custoner_qgq_Nane" size=40>
</td>
</tr>

5 Close the Search_Customer.html file and save your changes.
6 Regenerate the application’s code.

The complete Search_Customer.html file is provided as an example in “Example:
Customizing a Field on a Search Page” on page 79 of Chapter 3, “Customizing Generated
HTML Templates.”

Customization Examples Chapter 7

150 Example: Removing a JavaScript Validation from a Page Mode

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the customization of the JavaScript validation:
1 Run the HTMLtutApp application.
2 Navigate to the Tip-a-Canoe Customers page.

3 To test that the validation still works on a page not customized, click Insert in the
command list.

4 Enter some non-alphabetic characters and press the Tab key.

The validation’s warning message should appear:

Insert Customer

Customer Numbher I

MName IHenSry

Address I

2371 ' henna.forte.com - [JavaScript Application] [%]

& This field requires an alphabetic value.

INSERT |

Figure 34 \Validation Working on Insert Page

5 To test that the validation was removed from the search page, return to the Customers
page and click Search in the command list.

6 Enter a non-alphabetic character in the Name field, for example J%, and press the Tab
key.

If you entered J%, you are automatically returned to the Customers page, showing that
two records were returned (there are two customers with names beginning with “J” in
the HTMLtutApp database). This demonstrates that your customization of the search
page is working, and the validation was removed.

Customizing WebEnterprise Designer Applications

Example: Displaying the Record Just Inserted 151

Example: Displaying the Record Just Inserted

When a user inserts a new record, by default WebEnterprise Designer places it at the end of
the result set. When the display page is redisplayed, the record just entered is at the end of
the list and frequently not visible. In many cases, it would be more convenient for the user
to see the record he just entered immediately displayed on the display page. This
customization causes this to happen.

What This Example Does

This example uses the HTMLtutApp tutorial application, customizing the Dolnsert method
to specify that the first visible row will be the newly-inserted record.

Thus, when you enter a new record:

Insert Customer

Customer Numbher I‘l

Name Inlfred E. Newman

Address [123 Main St.

Phone | [456-1234)

INSERT |

Figure 35 Entering a New Customer Record

after you click the Insert button, this record is immediately displayed on the Customer
display page:

Tip-a-Canoe Customers

Customer Number 4
Name Alfred E. Newman
Address 123 Main St
Phone 456-1234

reoawd 4 gf 4 Horne ©rders for this Custamer

Figure 36 New Record Displayed

Creating the Customization

This section describes how to use the Customization Wizard to override the
ExpressClassHandler.Dolnsert method in the page handler class of the Customer page to
specify that the most recently-entered record displays immediately after insert.

Before beginning this customization, please review “Customizing With the Page Handler
Customization Wizard” on page 51. Alternatively, you can read the online Help topic found
under the Help index entry “Customize:Page Handler.”

Customization Examples Chapter 7

152 Example: Displaying the Record Just Inserted

To code this customization with the Customization Wizard:

1 Open the HTMLtutApp application in the HTML Application Model Workshop.
2 Start the Page Handler Customization Wizard for the Customer page.

3 Open the Processing Commands category.
4

Double-click on the “Insert: Inserting a new object in the result set” customization
point.

If this is the first customization you are making to this class, WebEnterprise Designer
displays a confirmation dialog to expand the class hierarchy to include a customizable
class for this class page. Click OK.

The Method Workshop opens, displaying an override of the Dolnsert method.
5 Add the following code to the end of the method body:

pagedat a. Fi r st Vi si bl eRow = pagedat a. dat a. i t ens;

The whole method body should look like this (changes in bold):

super . Dol nsert (request =r equest, response=response,
par amet er s=par aneters, rset=rset, pageData=pageData);
pagedat a. Fi r st Vi si bl eRow = pagedat a. dat a. i t ens;

6 Compile the method and close the Method Workshop.
7 Close the Page Handler Customization Wizard.

8 Regenerate code for the application.

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the Dolnsert method customization:

1 Run the HTMLtutApp application.

2 Navigate to the Tip-a-Canoe Customers page.

3 Click the Insert command in the command list (left pane).
The Insert Customer page appears.

4 Enter valid data in all the fields, for example:

Customer Number: 4
Name: Alfred E. Newman
Address: 123 Main St.
Phone: 456-1234

5 Click Insert.

The Customer display page should appear, showing this record, as shown in Figure 36
on page 151.

Customizing WebEnterprise Designer Applications

Example: Validating a Whole Form 153

Example: Validating a Whole Form

By default, WebEnterprise Designer allows a user to leave fields blank when submitting an
insert, update, or search. This section and the one that follows present customizations that
prevent a user from leaving a particular field blank when submitting an insert. The example
in this section uses a JavaScript script and other modifications to the HTML template.

Note This example validates multiple fields when the form is submitted (when the user presses
the appropriate command button). To validate an individual field at data entry time (when
the user tabs out of the field after entering data), see “Example: Making a Field Mandatory”
on page 158.

What This Example Does
This customization example modifies the HTMLtutApp tutorial application to force a user

to enter data in the PN (part number) and Description fields when inserting a new record
in the Tip-a-Canoe Products page.

Insert Part2

PN
| >Restricted fields (cannot be null)

Description

Price |

Picture |

INSERT |

Figure 37 Restricted Fields on Insert Page

For example, if a user leaves one of these field blank, when she clicks the Insert button, an
error message pops up, specifying the constraint:
henna_forte_com - [JavaScript Application] [%]

To comectly ingert the Part you must enter the correct value in the following field(z]:
Part number

Figure 38 Restricted Field Error Message

Creating a Field Constraint with JavaScript

This section describes how to add a constraint to a field by using modifications to an HTML
template. The modifications include adding JavaScript code and modifying the existing
HTML code. The general steps of this procedure are as follows (all modifications are to the
Insert mode template of the Part2 page):

1 Add the JavaScript script to the HTML page.
2 Add a value attribute to the field descriptions.
3 Modify the Insert button

Customization Examples Chapter 7

154 Example: Validating a Whole Form

JavaScript Boilerplate

The JavaScript code used for this example is based on the following a JavaScript boilerplate
script. You can use this boilerplate as a starting point for your own validation script.

Start script <SCRI PT LANGUAGE="JavaScri pt">

Start Field Validation validation function fieldvalidation(form {

Contains allblanks function al | bl anks(form
/1 Add functions as needed. Each function corresponds to a field
functionl(form

}
Boilerplate for specifying function allblanks(fornm {
a function affected by the if((functionl(form) {
validation. form submt ()
}
Begin condition if field fails if((functionl(form == false{
conpose(form
}
}
Creates error window function conpose(form ({
Text of error message var text = "You forgot to fill in correctly the follow ng
field(s):"
i f(functionl(form == false) {
Rest of text for function1 text += "\n your Message"
}
al ert (text)
}
Defines the function1 fn function functionl(form {
that checks that a if (formFieldNane.value == "") {
specific field is not blank. return fal se
False returned if field }
is empty. el se {
Otherwise True returned return true
}
}
End script </ SCRI PT>

Step 1. Add the JavaScript Validation to the Template

In this section, you add a JavaScript validation script to the Insert_Part2.html template.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

To add a JavaScript validation script to restrict non-null field entry:
1 Using the HTML-editing option of your choice, open the Insert_Part2.html file.

2 At the top of the file, immediately after the <head> tag, enter the following JavaScript
code (modifications to the boilerplate script are in bold):

<SCRI PT LANGUAGE="JavaScri pt">

Customizing WebEnterprise Designer Applications

Example: Validating a Whole Form

function fieldvalidation(form {

al | bl anks(form

i spart nunber (form

i sdescription(form

}

function allblanks(form {

i f((ispartnunber(form && isdescription(form)) {
form subm t ()

155

}

i f((ispartnunber(form == false || isdescription(form ==
false)) {

conpose(form

}

}

functi on conpose(form ({

var text = "To correctly insert the Part you rmust enter the
correct

value in the following field(s):"
i f(ispartnunber(form == false) {
text += "\'n Part nunber"
}
i f(isdescription(form == false) {
text += "\'n Description"

}
alert(text)
}
function ispartnunber(form {
if (form Part2_gq_PartNunber.value == "") {
return fal se
}
el se {
return true
}
}
function isdescription(form {
if (formPart2_qgq_Description.value == "") {
return false
}
el se {
return true
}
}
</ SCRI PT>

3 Save your work, but do not close the file.

This script will be invoked every time the user submits an insert form. If all fields pass the

validation, the form is submitted; otherwise, the error message is displayed.

Customization Examples

Chapter 7

156 Example: Validating a Whole Form

Begin table definition of
PN field

End definition

Begin table definition of
PN field

Add call to script

End definition

Step 2. Add a Value Attribute to the Field Descriptions

In this section, you add a value attribute to each field that will be validated and initialize it
to “. We will later access this attribute in our JavaScript script.In this example, you add the
attribute to the PN and Description fields.

To add a value attribute to the validated fields:
1 Further along in the Insert_Part2.html template, find the section describing the fields.
2 Add the value attribute as follows (modification is in bold):

<tr>
<th cl ass="I abel modi fy" styl e="wi dth: 20% >
PN
</th>
<td class="dataforn' styl e="w dth: 80% >
<i nput type="text" name="Part2_qq_Part Nunber val ue=""
si ze=40>
</td>
</tr>
3 Make the same change for the Description field.

4 Save your work, but do not close the file.

Step 3. Modify the Insert Button

In this section, you make changes to the Insert button so that it calls the JavaScript script
before the form gets submitted.

To modify the Insert button:

1 Towards the end of the Insert_Part2.html template, find the line section specifying
values for the Insert button.

2 Add code that calls the validation script.
You code should look like this (changes in bold):

<tr>
<td cl ass="buttons">
<I NPUT TYPE="button" VALUE="I| NSERT"
onClick="fieldvalidation(this.form">
</td>
</tr>

3 Save your work and close the Insert_Part2.html template file.

Customizing WebEnterprise Designer Applications

Example: Validating a Whole Form 157

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the customization of the JavaScript validation:

1 Run the HTMLtutApp application.

2 Navigate to the Tip-a-Canoe product list page.

3 Click the Insert command in the command list (left pane) to display the Insert page.
4 Enter data in every field except the PN or Description field.

For example:

Insert Part2

PN |

Description ISea Kavak

Price [5359

Picture I.-"’ forte/examples/ wedtut/ images/ kayvak. gif]

INSERT |

5 Click the Insert button.

The error message window should pop up, as shown in Figure 38 on page 153.

Customization Examples Chapter 7

158 Example: Making a Field Mandatory

Example: Making a Field Mandatory

By default,WebEnterprise Designer allows a user to leave fields blank when submitting an
insert, update, or search. This section describes a customization that prevents a user from
leaving a particular field blank when submitting an insert. The implementation described
in this example uses a TOOL customization.

Note You could also write a JavaScript function to accomplish the same thing. You would install
it in the validation scripts directory (${FORTE_ROOT}/userapp/http/clx/scripts/validate),
and then select it as a JavaScript validation option in the Validation Options page of the
Page Handler.

What This Example Does

This customization examples modifies the HTMLtutApp tutorial application to ensure that
a user enters data in the Customer Number field when inserting a new record in the Tip-a-
Canoe Customers page.

Insert Customer

Customer Number | — | Restricted field (can not be null)

Namel

Address I

Phone |

INSERT |

Figure 39 Restricted Field on Insert Page

For example, if a user inserting a record leaves the Customer Number field blank, when she
clicks the Insert button, an error page is displayed, specifying the constraint:

v AV 383
| Booknaks A Nosia] Flome=HTMLiwhpp Cotamet i riadier =]
HTML Tutorial

Original message:
Invalid value for Customer Number field

[Powered by Forte __gg®
MbEnte prise

@[[Doounenbone 7

Figure 40 Restricted Field Error Page

Customizing WebEnterprise Designer Applications

Example: Making a Field Mandatory 159

Creating a Field Constraint with TOOL

This section describes how to add a constraint to a field by customizing TOOL code. In this
particular example, you will customize code to prevent the user from inserting blank values
into the Customer Number field of the Customer page.

You will use a customization point in the Page Handler Customization Wizard to create a
Beforelnsert method for the CustomerHandler class (which will override the
ExpressClassHandler.BeforeInsert method).

To create a field constraint with TOOL:

1 Open the HTMLtutApp application in the HTML Application Model Workshop.
2 Start the Page Handler Customization Wizard for the Customer page.

3 Open the Individual Field Operations category.

4 Double-click on the “Decoding or validating a field” customization point.

If this is the first customization you are making to this class, WebEnterprise Designer
displays a confirmation dialog to expand the class hierarchy to include a customizable
class for this class page. Click OK.

The Method Workshop opens, displaying an override of the Beforelnsert method.
5 Add the following code to the beginning of the method body:

if ((GetFieldName (assocl D=assocl D, fieldlndex=fieldlndex) =

‘ Cust omer _qq_Cust omer Nunber’) and (value=NIL or val ue.val ue=""))
t hen

e : CenericException = new,
e. Set Wt hPar ams (SP_ER _ERROR,

Error message text. "Invalid val ue for Customer Nunmber field');
task. Error Myr. AddError (e);
raise e;
end if;

The GetFieldName method returns the name of the Customer Number field of the
Customer page.

6 Compile the method, close the Method Workshop and the Customization Wizard.

Customization Examples Chapter 7

160 Example: Making a Field Mandatory

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test the TOOL customization:

1 Run the HTMLtutApp application and navigate to the Customer page.
2 Click the Insert command in the command list (left pane).

3 Enter data in every field except the Customer Number field.

For example:

Insert Customer

Customer Numbher I

Name IJDhn Doe

Address I'?SQ Jackson 3t.

Phone | [135-2464]

INSERT |

4 Click the Insert button.

The error message page should display, as shown in Figure 40 on page 158.

Customizing WebEnterprise Designer Applications

Drop List or Radio List Example: Entering Lookup Information Manually 161

Drop List or Radio List Example:
Entering Lookup Information Manually

Drop lists and radio lists require a stored value and a display value for each option in the
list. When you specify this type of validation on a page field (in the Page Wizard), you can
use the attributes of a business class (a “Lookup class”) to supply these values. These values
are created at runtime. When you generate code for the application, WebEnterprise
Designer generates a file that is populated with the stored and displayed values.

If you leave the Lookup class, display field, and stored field unspecified, WebEnterprise
generates a Lookup file without values, and you must populated the file with data
manually. This example describes how to do this.

What This Example Does

This customization modifies the HTMLtutApp tutorial application by adding a drop list to
the Picture field of the Product List (Part2) page, so that the user can select a title from a
drop list rather than having to type in a long file specification string.

Insert Part2

PN [s0005

Description IBasswoDd Qars

Price | [25.99

Picture | Fair of Paddles 'l

<Mot Selected=
Medium Canoe
Large Canoe

Small Paddle
INSERT | |Large Paddle

Figure 41 Customized Drop List

Note The next customization, “Drop List and Radio List Example: Removing <Not Selected> and

<None>" on page 165, shows you how to remove the <Not Selected> option from the drop
list.

Creating the Customization

This section shows you how to customize a drop list that is not linked to the attributes of a
business class. The general steps of this procedure are as follows

1 Add the drop list validation to the gifAddress field of the Part2 business class page.
2 Generate code so that WebEnterprise Designer generates a lookup file.
3 Modify the lookup list in the lookup file, adding displayed and stored values for each

option.

Step 1. Add a Drop List Validation to the Field

In this section, you set up for the customization by adding a drop list validation on the
gifAddress (Picture) field of the Part2 page.

To add a drop list validation to the gifAddress field:
1 Open the HTMLtutApp application in the HTML Application Model Workshop.

Customization Examples Chapter 7

162 Drop List or Radio List Example: Entering Lookup Information Manually

Double-click on the Part2 page to display the Page Wizard.
Click the Next button repeatedly until you reach the Field Validation page.
Select the gifAddress field in the field name pane.

From the Validation Option drop list, select Droplist.

A v A W N

Leave Lookup Class, Displayed Field, and Stored Field unspecified. The Page Wizard
Field Validation page should look like this:

Page Wizard - Field Validation [<]

- Field Validation

Mame “1 walidation Option: IDroDIISt

Parthumber
Drescription
Plice Loakup Class: |

Displayed Field: |
Stored Field: |

i [iii [ii L Lo

¥
A L

Cancel | < Back I Mext > I Finish |

7 Click Finish to apply your changes and close the Page Wizard.

Step 2. Generate the Lookup File

Now, you must generate the lookup file.

To generate a lookup file:

1 Regenerate the application’s code.

2 Test the validation by running the application.
3 Navigate to the Tip-a-Canoe Products page.
4

Click on the Insert, or Update command in the command list (in the tutorial, you
removed this field from the Search page; otherwise, you could choose Search, too).

The appropriate page mode appears. The Picture field on the Insert or Update pages
should contain three values:

Picture I vl

[<NULL> :
our displayed value

These are the default values defined in the lookup file when there is no lookup class
defined for the validation.

5 Exit the application.

Step 3. Customize the Lookup File with Your Values

In this section, you will modify the generated lookup file and add the values for your list.
You can use the Page Handler Customization Wizard to access the file. For information, see
“Methods for Editing Generated Files” on page 125.

Customizing WebEnterprise Designer Applications

Declare total number of values
in the list.

Initialize stored value array
Initialize displayed value array

Null value stored value
Null value displayed value

First non-null value stored
value

First non-null value displayed
value

Note

Drop List or Radio List Example: Entering Lookup Information Manually 163

There are five graphic files provided for the HTMLtutApp tutorial. You will use the fully-
defined file specification for the files as the stored values. The displayed values will be
labels for the five pictures.

To customize the lookup file:

1

Using the Page Handler Customization Wizard, open the Part2_qq_gifAddress.inc file.

The file is found in the Lookup Data Files category of the Wizard. This category only
exists when the application contains a drop list or radio list validation. Open the file by
selecting it and clicking the Customize button.

The original code looks like this:
Numval ues = 2;

st oredVal ues = new Array(Nunval ues) ;
di spl ayedVal ues = new Array(Nunval ues) ;

st oredVal ues[0] = ' qqNULLqQqZa047! #$% yJk523qgNULLqQ’ ;
di spl ayedVal ues[0] = & t; NULL>' ;
storedVal ues[1] = 'your stored val ue’;

di spl ayedVal ues[1] = ’'your displayed val ue’;

Modify the NumValues value to the number of values you will have.
For this example, specify five values:

NunVal ues = 5;

Specify whether the lookup list will have a <NULL> value or not.

For this example, we do not want a <NULL> value, so comment out the null value
line(s):

/1 storedVal ues[0] = ' qqNULLqQZa047!#$9% yJk523qqNULLqQ’ ;
/1 di spl ayedVal ues[0] = &l t; NULL> ' ;

Replicate the storedValues, and displayedValues lines, so that the total number of paired
lines matches the NumValues number (in this case, five pairs total).

Modify the elements’ indices so that they start at 0 and end in NumValues - 1.

Modify the values assigned to storedValues and displayedValues, entering appropriate
values to the array.

In this example, the storedValues strings are the file specifications for the five graphic
product files. All files are stored in the /forte/examples/wedtut/images directory.

Graphics files for WebEnterprise Designer applications are assumed to be stored under
the Web server root directory, so their specifications are relative to this directory.

The displayedValues strings will be labels for the files, as follows:

File name displayedValues string
canoea.gif Medium Canoe
canoef.gif Large Canoe
paddle1.gif Small Paddle
paddle2.gif Large Paddle
2paddles.gif Pair of Paddles

Customization Examples Chapter 7

164 Drop List or Radio List Example: Entering Lookup Information Manually

Your modified code should look like this (changes are in bold):

storedVal ues[0] = ’'/forte/exanpl es/ wedt ut/i mages/ canoea. gi f’;
di spl ayedVal ues[0] = ' Medi um Canoe’ ;

storedVal ues[1] = '/forte/ exanpl es/ wedtut/i mages/ canoef.gif’;
di spl ayedVal ues[1] = ’'Large Canoe’;

storedVal ues[2] = ’'/forte/exanpl es/ wedt ut/i mges/ paddl el.gif’;
di spl ayedVal ues[2] = 'Snall Paddle’;

storedVal ues[3] = '/fortel/exanpl es/wedtut/i mages/ paddl e2.gi f’;
di spl ayedVal ues[3] = ’'Large Paddl e’;

storedVal ues[4] = '/forte/exanpl es/wedt ut/i mages/ 2paddl es. gi f’;
di spl ayedVal ues[4] = ’'Pair of Paddles’;

7 Close the Part2_qq_gifAddress.inc file and save your changes.

Note Save a copy of the Part2_qq_gifAddress.inc file in another directory. If you make changes
to the model and regenerate code, this file is replaced with the uncustomized version.
After regeneration, replace the new file with your saved version.

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test your manually customized lookup file:

1 Start the HTMLtutApp tutorial application.

2 On the home page, click the Product List link to access the Products page.
3 Click Insert to display the Insert mode of the Products page.

4 Enter the following values on the Insert page:

PN: 90005
Description: Basswood Oars
Price 29.99

5 Select the Pair of Paddles option from the Picture drop list.
6 Click the Insert button to redisplay the Tip-a-Canoe Products page.
7 Navigate to the last record.

Your page should look like this:

Tip-a-Canoe Products

1 Description Price

New record with picture

Customizing WebEnterprise Designer Applications

Drop List and Radio List Example: Removing <Not Selected> and <None> 165

Drop List and Radio List Example:
Removing <Not Selected> and <None>

By default, the WebEnterprise Designer drop list and radio list include <Not Selected> and
<None> as options. In fact, <Not Selected> is the default option for the drop list, and
<None> is the default for the radio list. This example describes how to remove these
options, in case you do not want them in your drop list or radio list.

What This Example Does

This example builds on the customization described in the previous section (“Drop List or
Radio List Example: Entering Lookup Information Manually” on page 161), removing the
<Not Selected> default from the drop list on the Insert and Update modes of the Product
List page. The resulting drop list looks like this:

Insert Part2

PN |

Description I

Price |

Piciure IMedium Canoe 'l . .
Drop list without the

e Ceme <Not Selected> default option
Large Canoe

Srall Paddle
Large Paddle
Pair of Paddles

INSERT |

Figure 42 Customized Drop List

Creating the Customization

You can remove the default options in one of two ways:
= modify the default option specification in the generated page mode files
®m modify the default option parameter in the Scripts_bus_class_page.html file

You use the same procedures to remove the <None> default from a radio list. The only
difference is whether in the HTML model you specify a radio list or a drop list field
validation.

This section describes both techniques. Although the drop list validation used for this
example was customized manually (in “Drop List or Radio List Example: Entering Lookup
Information Manually” on page 161), the techniques described here work the same for a
drop list or radio list that uses values from a Lookup business class.

Customization Examples Chapter 7

166 Drop List and Radio List Example: Removing <Not Selected> and <None>

Begin table definition of
Picture field

Call to
JavaScript validation

End call

End definition

Technique 1: Customizing the Page Mode Template

In this section, you customize the Insert and Update templates of the Product List page,
changing the default selection string into either a nonsensical string or a legal string (that
is, one of the stored values in the list). If you use a nonsensical value, the default option is
not displayed; if you use a legal value, that one becomes the default value.

Before beginning this section, please review “Methods for Editing Generated Files” on
page 125.

To remove the <Not Selected> option from a drop list:

1
2

3

N o v b

Using the HTML-editing option of your choice, open the Insert_Part2.html file.
Locate the table definition for the Picture field.
The original code looks like this:
<tr>
<th class="I abel nodi fy" styl e="wi dth: 20% >
Picture
</th>
<td class="datafornm' styl e="w dth: 80% >
<script |anguage="JavaScript">

Sel ect _Part2_qq_gi fAddress(’ Part2_qq_gi fAddress’,’ Picture’,’ qgNon
e);
</script>
</td>
</[tr>

The “qqNone” is passed to the script as a parameter for the default value to be selected
in the drop list or radio list.

You could either:

remove the Select_Part2_qq_gifAddress('Part2_qq_gifAddress', Picture','goaway’
parameter completely

add any string value, for example:

Sel ect _Part2_qq_gi f Address(’ Part2_qq_gi f Address’,’ Picture’,’ go
away') ;

add a valid selection that you want to highlight, for example, replace “gqqNone” with
one of the stored values used in “Step 3. Customize the Lookup File with Your Values”
on page 162:

Sel ect _Part2_qq_gi fAddress(’ Part2_qq_gi fAddress’,’ Picture’,
"/ fortel exanpl es/ wedt ut/i mages/ paddl e2. gi f’);

Close and save the Insert_Part2.html file.
Repeat Steps 1 through 4 for the Update_Part2.html file.
Close the Page Handler Customization Wizard.

Go to “Testing Your Work” on page 168 for a description of what your results should look
like.

Customizing WebEnterprise Designer Applications

Drop List and Radio List Example: Removing <Not Selected> and <None> 167

Technique 2: Customizing the Scripts File

This section describes how to implement the same customization of the previous section,
but modifying the Scripts_Part2.html file instead of the page mode templates.

To remove the <Not Selected> option from a drop list:
1 Using the HTML-editing option of your choice, open the Scripts_Part2.html file.
2 Locate the line containing the “qqNone” string.

The original code looks like this:

if (Selected_Value == "'qgNone’)

docunent . witel n(‘ <option sel ected val ue="">& t; Not
Sel ect ed> ;') ;

3 Comment this section out:

/1if (Selected_ Value == 'qgNone’)

/I docunent.witel n(‘<option selected val ue="">& t; Not
Sel ect ed> ;') ;

4 Close and save the Scripts_Part2.html file.

5 Close the Page Handler Customization Wizard.

Customization Examples Chapter 7

168 Drop List and Radio List Example: Removing <Not Selected> and <None>

Testing Your Work

Now it is time to test your work to verify that you made no mistakes and the customization
works correctly.

To test your drop list customization:
1 Run the customized HTMLtutApp application.

2 From the Home page, click on the Product List link to access the Tip-a-Canoe Product
List page.

3 On the Product page, click on either the Insert or Update command in the command
list.

If you substituted a nonsensical string in your customization, the results should look
like this:

Drop list: No <Not Selected> option, and no default

No default (displayed value
is first item in list)

Large Canoe
Small Paddle
Large Paddle

INSERT | |Pair of Paddles

Radio list: No <None> option, and no default

' Medium Canoe © Large Cance € Small Paddle © Large Paddle

Piciure
' Pair of Paddles

If you substituted a valid stored value string in your customization, the results should
look like this:

Drop list: No <Not Selected> option, and the default is the displayed value for the
paddle2.gif file

Picture ||_arge Canoe 7] ———— Specified default value displayed

Radio list: No <None> option, and the default is the displayed value for the paddle2.gif
file

© Medium Canoe © Large Cance € Small Paddle @ Large Paddle
" Pair of Paddles

Customizing WebEnterprise Designer Applications

Chapter 8

Customizing Application Security

WebEnterprise Designer provides a number of application security models, ranging from
open access to all pages to restricted page-based access to authenticated users.

This chapter provides information on all types of security customization, including:
WebEnterprise session management
how to implement a logon procedure to restrict access to authenticated users
how to grant application page access based on the authenticated user
how to share WebEnterprise session management across several HTML applications

other common WebEnterprise security customizations, such as session timeout

170 Security and HTML Applications

Security and HTML Applications

Storing state information for
standard Forte vs. Web
applications

Embedding session ids in
cookies vs. URLs

Managing shopping cart
applications

Managing secure
Web applications

WebEnterprise Designer’s implementation of security is based on the session management
feature of WebEnterprise. For complete information on this feature, see A Guide to
WebEnterprise.

Normally, the HTTP requests issued by Web browsers are stateless, meaning each request is
atomic and does not require any knowledge of past (or future) requests. Many simple read-
only Web applications are built in this manner,

More sophisticated applications, such as those created with WebEnterprise Designer,
require knowledge of the browser client’s state, including such information as intermediate
data in a multiple-request operation, the username and access rights of the browser client,
and so forth.

In standard Forte window-based applications, you can store state information on both the
client (using local objects) and the server (using transaction or session dialog duration
service objects). However, in a Web application, you cannot use either of these
mechanisms. Instead, you use WebEnterprise session management to enable the
application to associate all of the browser’s application requests into a session, which
contains this information. See A Guide to WebEnterprise for more details on session
management.

Sessions are tracked in one of two ways: using Web “cookies” containing a unique session
id, or embedding the session id directly in all the application URLs. WebEnterprise will
attempt to use cookies but, if the client’s browser has disabled cookies, will instead modify
all URLs with session ids. This “cookie detection” happens automatically when a client first
requests a page from an HTML application; no special action is required.

One type of sophisticated application, generally known as a “shopping cart” application,
permits users to enter data into the system. Such applications do not restrict access to the
individual HTML pages, but must track a sequence of HTML requests together as a
transaction. When the transaction is completed (for example, by submitting a purchase
form), the request includes identifying data (such as name, address, and credit card
information) to ensure that the submission is valid.

The session management used in default WebEnterprise Designer applications supports
the creation of these shopping cart-style applications. All application pages are accessible
to all clients. No user logon process is required. Information required to place an order (for
example, name, address, credit card number, and so forth) can be entered on an order form
and submitted.

Another type of sophisticated application permits access to specified HTML pages only to
validated users. Typically, these applications present a logon page, which is presented to
the user before he can enter the application. The user supplies an “identity” (usually a
username and password), which, when validated, grants access to the application’s HTML
pages. The identity becomes a property of each Web request and can be used by the
application to restrict access to certain pages or activities.

This chapter describes how to customize an HTML application to build this third type of
“secure” application, including:

m creating a logon page
® integrating an application with your own user authentication system
m granting different levels of application access to different users

m sharing a WebEnterprise security environment across several HTML applications

Customizing WebEnterprise Designer Applications

Authenticating Users 171

Authenticating Users

When a WebEnterprise Designer application does not have a logon page defined for it, all
generated HTML templates are defined with the SESSION_AUTOCREATE session property.
A WebEnterprise session is then automatically created whenever a Web client requests an
HTML template. This “Web session” is persistent, binding subsequent Web requests from
that browser client together, until it eventually expires (based on the value of the
SessionTimeOut attribute). In this scenario, all application pages are accessible without
any logon or authentication procedure.

For information on the SessionTimeOut attribute, see online help or A Guide to
WebEnterprise. You can override the default (for WebEnterprise Designer, 60 minutes) in
WebEnterprise Designer applications with the application-wide “Modify session timeout”
customization point of the Page Handler Customization Wizard.

Creating the Logon Page

You create your application’s logon page with the HTML Application Model Workshop’s
Page Wizard.

To create a Logon page:

1 In the HTML Application Model Workshop for your application, click the New HTML
—= Page button.

The Page Wizard appears.
2 Select Logon Page in the page type list and click Next.
The Logon Page Options page is displayed.

rLogon Page Options
HTML Page Mame: | Logon

Logon Page Title: | Logon

UszerM ame Label: | Uszertame

User-supplied
validation fields

Password Label: | Paszword

Page Design: | Usze model default

s

Syl | Use model default

Cancel | < Back | [EREs | Finizh |

3 Modify the fields on the Logon Page Options page as desired.
For information on all the fields on this dialog, press the Help key.

Notice that the default logon page contains two user-supplied fields. If your site's
security framework requires additional (or fewer) logon fields, you will need to
customize the generated Logon.html file accordingly. See Chapter 3, “Customizing
Generated HTML Templates,” for details.

4 Click Finish to create the logon page.

Customizing Application Security Chapter 8

172 Authenticating Users

Code Generated for the Logon Page

When you generate code for an application that contains a logon page, WebEnterprise
Designer generates a LogonHandler TOOL class in the html_modelHandlers project, and
three HTML templates for the logon page:

®m Logon_logon_page.html

This template contains the HTML form that is presented to the un-authenticated user
when they attempt to access any page in the application. You can customize your logon
page by editing this file.

m Validate_logon_page.html

This template is requested when the user submits the Logon form. It contains the
WebEnterprise tag that causes the user authentication data to be validated.

This page is never actually displayed and need not be edited.
m LogonFailed_logon_page.html

If the user’s supplied authentication data fails validation, then this HTML page is
returned to the user. You can supply an application or company-specific error page by
editing this file.

If the user is successfully validated, the application’s start page is returned to his or her
browser. The user then has access to all of the HTML pages in the application. (See below
for how to add further granularity to your application’s security model.)

How the Logon Page is Activated

For background on this subject, review “ExpressHTTPAccess” on page 32 and
“ExpressLogonHandler” on page 39.

Creating a logon page has the following effect on the HTML application: Every HTML page
in the application (except the logon page) is marked with the WebEnterprise
SESSION_REQUIRED property. This means that the page will not be returned unless the
client already has a valid WebEnterprise session. If a request is received for one such page
and there is no valid session (if the request has neither a valid session cookie or session id
in the URL), then WebEnterprise redirects the request to the Logon_logon_page.html page,
which is returned to the browser. The Web address of the logon page becomes the
WebEnterprise SessionCreationURL of the application.

For additional information about the SessionCreationURL attribute, see online help.
To activate the logon page:

1 The browser user requests the HTML application’s start page (Start.html).

2 Iflogon security is implemented in the application, the logon page is returned.

3 The user enters the appropriate user identification information and submits the form
(clicks the Logon button).

4 The application validates the information and, if authenticated, creates a
WebEnterprise session.

5 The application’s starting page is returned to the browser.

If the user information fails validation, no session is created and the LogonFailed page is
returned.

Customizing WebEnterprise Designer Applications

Authenticating Users 173

Integrating the Application with an Authentication System

When the user fills out and submits the logon page, the
ExpressLogonHandler.HandleCondition method is invoked. This method calls the
application’s html_modelAccess.LogonSession method to authenticate the data entered on
the logon page. If the logon is successful, then:

m WebEnterprise creates a WebEnterprise session and attaches it to the Web response

= if LogonSession returns a “credentials” object, then it is attached to the WebEnterprise
session using the name “Logon-Credentials.”

During processing of subsequent requests, these credentials can be retrieved by means
of the HTTPSession.GetSessionData method.

By default, the LogonSession method returns a value of TRUE, indicating that the user is
permitted to create a session and access the application’s pages. Adding security to your
HTML application requires you to customize the LogonSession method.

Your html_modelAccessService.LogonSession method captures the parameters entered on
the logon page and passes them to your own user authentication subsystem (such as an
LDAP service, the Windows NT user authentication system, or an X.500 server) for
validation. LogonSession should return the boolean TRUE if the user’s logon is validated,
and FALSE if not. You can optionally return a “credentials” object containing any user-
specific data (username, group, and so forth) that your application requires.

Use the Page Handler Customization Wizard to customize the logon page.

To customize an application’s logon page using the Customization Wizard:
1 Open your application in the HTML Application Model Workshop.

2 Select the logon page.

3 Choose the Component > Customize... command to open the Wizard.

The Page Handler Customization Wizard appears.

Customize Page Handler: Logon M= B3
Logon ¥ alidation = Customization point for logon page
p Application

¥
A ¥

Eustomizel [Elete | Cloze | Help |

4 Select the “Logon Validation” customization point and click Customize.

The Method Workshop opens, displaying the LogonSession method. This method
overrides the HTTPAccess.LogonSession method.

5 Add your TOOL code to authenticate the user information and, optionally, place
persistent user information into the credentials object.

Customizing Application Security Chapter 8

174 Authenticating Users

Example: Adding LogonSession Code

For this example, assume that a SecuritySO service object exists containing an Authenticate
method that can validate a username-password pair with an external authentication
subsystem. This method also returns a “Rights” object that contains credential
information. The Rights object might, for example, denote various levels of permitted
access that restricts some page access to certain users.

The LogonSession method might look like this:
LogonSessi on(request: HITPRequest, output credentials: Object):

bool ean

/1

/'l LogonSessi on

/1 The LogonSession nmethod is used to validate a new session
/1 LogonSessi on should return TRUE if the |ogon information is
/1 valid, signalling that the session may be created. FALSE
/1 shoul d be returned if the logon information is invalid and
/1 the session creation request should be rejected

/1

/1 request

/1 The request paraneter hol ds the HITPRequest object of
/1 the HTTP request that is attenpting to create a new
/1 sessi on.

/1 Default | ogon forns will have ‘Usernane’ and ‘ Password
/1 par anet er s.

/1

/1 credential s

/1 The credentials parameter is used to return

aut henti cati on

/1 information. It will be attached to the session using
t he

/1 descriptor ‘Logon-Credentials’ if the session is

/1 successful ly created. Subsequent requests may use the
/1 CGet Sessi onData nmet hod of the HITTPSessi on obj ect using
/1 the ‘Logon-Credentials’ descriptor to retrieve the

/1 credential s object.

/1 return val ue

/1 TRUE - |ogon validated; session may be created

/1 FALSE - login rejected.

/1

/1

begi n

credentials = N L;

/1

/1l First retrieve the data entered on the Logon page

/1

user Name : TextData = request. Fi ndNaneVal ue(* User nane’) ;
passWrd : TextData = request. Fi ndNaneVal ue(‘ Password’) ;

Customizing WebEnterprise Designer Applications

Authenticating Users 175

/1 Now call our authentication subsystemto validate the user
/1 (actual inplenentation is site-specific)
/1

i f SecuritySO Authenticate(userNane, passWrd, credentials) = FALSE
t hen

return FALSE;
end if;

/1

/'l The credentials object will be stored with the HTTPSessi on.
/1l It can be retrieved via

/'l CGet Sessi onDat a(| nt eger Dat a(val ue=" Logon- Credentials’))

/1

return TRUE;

end net hod;

Customizing Application Security Chapter 8

176 Restricting Access to Application Pages

Restricting Access to Application Pages

This section shows what you can do with authentication credentials for a WebEnterprise

Designer client after you have captured them.

A common application requirement is granting different levels of application access to
different users or groups of users. This section explores a technique for solving this
problem. Building on the example in the previous section, the example in this section will
restrict “update” and “insert” access to users who are managers.

Use the Page Handler Customization Wizard to customize the appropriate page of the

application.

To restrict access to a page:

1 Open your application in the HTML Application Model Workshop.

2 Select the page you wish to restrict access to.

3 Choose the Component > Customize... command to open the Wizard.

The Page Handler Customization Wizard appears.

Customize Page Handler: Customer... [H[E E3

e

Individual Field Operations
‘whole Object Operations
Processing Commands

4
4
»
v

Securty

Restricting access to all page modes
Restricting access to the search page mode
Riestricting access to the display page mode
Restricting access to the ingert page mode

Restricting access to the update page mode
p HTHLFiles
p Application

¥
A ¥

Eustomizel [Elete | Cloze | Help |

Customization points for
restricting access to pages

4 Select the “Restricting access to the insert page mode” customization point and click

Customize.

The Method Workshop opens, displaying the RestrictInsertAccess method in the page
handler class of the selected page. This method overrides the
ExpressHandler.RestrictInsertAccess method. The customizable section of this method

is near the bottom and looks like:

if (not restrict) then

/1

/1 Add custom code here to conpute restrictions:
/1

[l restrict = .

end if;

Customizing WebEnterprise Designer Applications

Restricting Access to Application Pages 177

Assume that the “credentials” object saved in the above section is a TextData object with
values of either “Manager” or “Worker”. To permit access only to managers, replaces the
above block with the following code:

if (not restrict) then
credential : TextData =
Text Dat a(response. Current Sessi on. Cet Sessi onDat a(
Text Dat a(val ue=" Logon- Credentials’)));
if (credential . Conpare(source=' manager’,i gnorecase=TRUE) <>
0) then
restrict = TRUE;
end if;
end if;

5 Add the identical customization for the “Restricting access to the update page mode”
customization point.

Only managers can now modify the application page.

You can customize each application page in this manner to restrict access to individual
page modes (namely, search, display, insert, and update) or to all page modes. Users who
request a page that is denied to them receive an appropriate error page.

Customizing Application Security Chapter 8

178 Sharing a Security Environment Across HTML Applications

Sharing a Security Environment Across HTML Applications

A Web application that
includes another application
has security leaks

Alternative 1: Give both
applications a logon page

Note

Alternative 2: Let all
applications share the session

WebEnterprise Designer supports designs that span multiple HTML applications. One
HTML model can include another, thus providing links between related applications. The
WebEnterprise Help system describes how to include one HTML application in another
(refer to the topic “New Included HTML Application Model”).

WebEnterprise supports several different security designs for included applications.
Consider an HTML Model “MainModel” that includes a second HTML Model,
“SubsidiaryModel.” Assume that MainModel implements a logon page that restricts access
to the application. For queries within MainModel, full WebEnterprise security will be in
effect. But what happens when a user clicks on the link from a MainModel application page
to the SubsidiaryModel page? It depends.

The default WebEnterprise Designer security model grants open access to all pages to all
users. Therefore, unless you employ one of the mechanisms described below, users
jumping to a SubsidiaryModel page are not bound by MainModel’s WebEnterprise security
environment. When the user jumps back to the MainModel application, the requested
pages are again governed by the existing MainModel session.

One alternative is to define logon pages in both SubsidiaryModel and MainModel. In this
case, each HTML application then implements its own independent session management.
When users first accesses a MainModel page, they are required to logon. When they
subsequently jump to a SubsidiaryModel page, they are again required to logon, this time
starting a SubsidiaryModel session. When they return to a MainModel page, they resume
running within their existing MainModel session.

In this security model, because the two applications each implement their own session
management environment, they can use different authentication subsystems and enforce
security in completely different ways.

A more sensible security model lets the SubsidiaryModel (and any other included
applications) share the WebEnterprise session initiated by the main application,
MainModel. MainModel defines a logon page, performs authentication, and implements
session management for itself and all applications sharing its session management
environment.

Sharing session management between a main HTML model and one or more secondary
models requires customization of each HTML model, as described next.

Customizing WebEnterprise Designer Applications

Sharing a Security Environment Across HTML Applications 179

Customizing Subsidiary HTML Models to Share Security

Follow these procedures with each subsidiary model.
To customize subsidiary models to share the security environment:
1 In each subsidiary application, create a logon page.

This page will never be returned to the user, so there is no need to customize the
generated LogonSession method.

2 Customize each subsidiary application’s logon page using the Page Handler
Customization Wizard.

Use the “Is subsidiary application” customization point under the Application group.
This action creates an html_modelAccess.IsPrimarySession method, which does not
require any change.

Customizing the Main HTML Model to Share Security

Follow these procedures to customize the main HTML application model.
To customize the main model to share the security environment:

1 Implement an authenticated logon page in the MainModel, using the procedures
described in “Authenticating Users” on page 171.

2 Customize the main application’s logon page using the Page Handler Customization
Wizard.

Use the “Define subsidiary applications” customization point under the Application
group. This creates an html_modelAccess.ConnectManagedSessions method.

3 The lower part of the method contains a block of code that you must now modify to add
each subsidiary application to the ManagedSessions array.

For example, if the main application will manage two subsidiary applications, Sub1 and
Sub2, then add their Access service objects to ManagedSessions, as shown:

ManagedSessi ons = new;,
/1

/1 User code shoul d be added here to popul ate the nanagedSessi ons
array

/1 with references to the ExpressHTTPAccess servi ce objects of the
/'l subsidiary applications. Replace subsidiaryAccessService with
/'l subsidiary application’'s AccessService service object. Add

addi ti onal
/1 lines as necessary to specify other subsidiary applications.
/1

ManagedSessi ons. AppendRow(SublAccessService);
ManagedSessi ons. AppendRow(Sub2AccessService);

super . Connect ManagedSessi ons;

Customizing Application Security Chapter 8

180 Sharing a Security Environment Across HTML Applications

Restrictions

Ensure that all HTML applications that share a common session manager are also all
accessed through the same Web server. The Fortecgi Location and, if specified, Plug-in URL
properties for all linked HTML applications must reference the same Web server URL.

The ConnectManagedSessions method overridden in “Customizing the Main HTML Model
to Share Security,” above, must execute after each of the subsidiary Access services has
completed initialization. The ConnectManagedSession template contains a method call to
delay for 20 seconds before referencing the subsidiary Access services:

/1
/1 This is so that the managed applications’ ExpressHTTPAccess
service

/'l have a chance to conplete their startup.
// On some systens you nmay need to increase the delay to all ow

suf fici ent
/'l time for the managed applications’ startup to conplete.
/1

t ask. del ay(20000); // 20-second del ay

In some networked configurations, this delay might be insufficient. If the referenced
objects are not completely instantiated, then a distributed access exception will be raised.
In that case, you should increase the length of the delay appropriately.

Summary

The above implementation will cause a single session manager to be created, shared by the
three HTML applications. A single logon page is presented to the user, governing access to
all application pages.

Customizing WebEnterprise Designer Applications

Session Timeout 181

Session Timeout

How WebEnterprise stops
applications that time out

How a user resumes a
timed-out application

In this section, you will learn how “session timeout” works in a WebEnterprise Designer
application, and how you can customize this feature.

How Session Timeout Works

WebEnterprise creates a session when a user at a browser first accesses a WebEnterprise
Designer application. Objects required to track the session, including current database
result sets, are then associated with the session and reside within Forte services.

Web applications generally do not have a “Logout” procedure; the user simply moves on to
a different Web site, or closes their browser, or goes home. In each case, the Web
application receives no notification that the user is done with the application. Web
applications, then, must decide for themselves when a user’s session can be deleted.

WebEnterprise defines a SessionTimeOut for each application (or, set of applications when
the security environment is shared). Each client request updates a timestamp in its
HTTPSession object. WebEnterprise periodically scans all managed sessions, identifies
those that have been inactive for longer than the SessionTimeOut value, and deletes the
session and any data associated with it.

For information on the SessionTimeOut attribute, see online help for either
HTTPSession.SessionTimeOut or SessionMgr.SessionTimeOut. For additional information,
see A Guide to WebEnterprise.

Consider the case of a user sitting at a browser window using a WebEnterprise Designer
application. She has successfully gone through the Logon process and is navigating
through the application. She has entered a Search page and selected a data set, the first 10
rows of which are displayed on her screen. She goes to lunch, returning an hour later. She
sits at her workstation and clicks the application’s Next button. What happens?

While she was enjoying her Curried Prawns, WebEnterprise realized that her session “timed
out” and deleted her HTTPSession object. It now receives a request that contains the
previously-valid session id. But, not finding it in its cache of sessions, WebEnterprise does
what it always does when a request without a valid session is received: it returns the logon
page. Our user, perceptively realizing that she must start over, re-enters her username and
password, is authenticated, enters search criteria, and resumes her work.

Customizing Application Security Chapter 8

182 Session Timeout

Finding the Ideal Setting for Session Timeout

The “ideal” setting for SessionTimeOut varies from application to application. If it is set too
low, users may find their session invalid when they answer a short phone call. Requiring
the user to logon again after a short distraction will not endear the user to the application.

On the other hand, each active session does entail a cost, namely, the memory required to
store the HTTPSession object and any data associated with the session. For WebEnterprise
Designer applications, the data sets associated with business queries may be substantial.
The WebEnterprise partition may find itself running out of memory if it must manage a
large number of active sessions, each with a large amount of session data.

You can adjust the memory profile of WebEnterprise Designer applications in a variety of
ways:

® boost the partition’s available Forte memory by setting the FORTE_GC_SPECIAL
environment variable

m reduce the amount of session data by restricting the number of rows fetched into the
intermediate result set

By default, WebEnterprise Designer fetches and caches 100 rows of data.

= when designing application pages, select very long fields in pages that are used
infrequently

m customize the application to reduce session timeout

See the next section for information on this suggestion.

Customizing WebEnterprise Designer Applications

Session Timeout 183

Example: Customizing Session Timeout

The default session timeout for WebEnterprise Designer applications is one hour. In
practice, however, due to the frequency with which session expiration is checked, an
inactive session could remain in memory for slightly less than two hours before it is deleted
(if the user issued a request shortly after a check, it would not be a candidate for the next
check, since, by that time, 60 minutes had not yet passed; therefore, it would not be deleted
for yet another 60 minutes).

To change the session timeout:

1 Start the Page Handler Customization Wizard for the logon page, as described in
“Integrating the Application with an Authentication System” on page 173.

2 Open the Application category and select the “Modify session timeout” customization
point and click Customize.

The Method Workshop opens, displaying a customizable SetSessionManagement
method. This method overrides the ExpressHTTPAccess.SetSessionManagement
method.

3 Locate the line of code that defines the SessionTimeout value:

ti meQut . Set Val ue(’ 00: 00: 00: 01: 00: 00’) ;

timeOut is an IntervalData object. Change the value string to a different, valid
IntervalData value. When the application is next executed, all sessions will observe the
new session timeout interval.

Customizing Application Security Chapter 8

184 Other Security Customizations

Other Security Customizations

A WebEnterprise Designer application’s security framework is primarily defined within a
single method: ExpressHTTPAccess.SetupSessionManagement. If your application requires
security customizations not described in this chapter, then it may be necessary to override

and modify this method. For details on WebEnterprise security and session management,
see A Guide to WebEnterprise.

Customizing WebEnterprise Designer Applications

Chapter 9

Partitioning and Deploying a
WebEnterprise Designer
Application

This chapter provides information about the elements of a distributed WebEnterprise
Designer application and how to partition and deploy a WebEnterprise Designer
application.

Topics in this chapter include:
WebEnterprise Designer application projects
WebEnterprise Designer application service objects
how to make a default partitioning configuration
how to test the application in a distributed environment
how to deploy a WebEnterprise Designer application
how to start a WebEnterprise Designer application

For complete information on Forte partitioning and deployment, see A Guide to the Forte
4GL Workshops and the Forte 4GL System Management Guide.

186 About Partitioning a WebEnterprise Designer Application

About Partitioning a WebEnterprise Designer Application

Use the “Handlers” project
to partition the application

After generating your code for your HTML application and making any desired
enhancements, use the Partition Workshop to:

m test the application in a distributed environment

m partition the final application for deployment and make the appropriate application
distributions

The following sections provide background information about the projects and the service
objects in the HTML applications, and the default partitioning scheme Forte provides for
WebEnterprise Designer applications.

About HTML Application Projects and Service Objects

As described in Getting Started with WebEnterprise Designer, when you generate the code
for your HTML application model, two or more Forte projects are created:

Project Name Description
htm/_mode/Handlers The main project for the application.
business_modelServices A supplier project for the “Handlers” project. There is one “Services” project for

each business model that is a supplier to the HTML application model.

The “Handlers” project generated from the HTML application model is the main project for
the application. The “Services” project generated from the business model functions as a
supplier project to the main project. Therefore, when it is time to test your application in a
distributed environment or partition the application for deployment, you must partition
the “Handlers” project.

WebEnterprise Designer applications frequently consist of multiple business models and
multiple HTML models. A Services project is generated for each business model, and a
Handlers project is generated for each HTML model. Whenever an HTML model references
a business model, the generated Handlers project will include the generated Services
project as a supplier. If an HTML model includes another HTML model, then the generated
Handlers project for the first model will include the generated Handlers project for the
second model as a supplier.

When you partition your HTML application using the Partition Workshop, Forte creates a
default configuration for the application based on the application’s service objects. Both
the “Handlers” and “Services” projects contain service objects that affect this default
configuration.

Briefly, the service objects in your HTML applications are:

Dialog
Service Object Partition Visibility Duration Description

html_modelAccessService Forte Web Environ- Session The application contains one AccessService
Access ment

(can be service object per model, which provides the
Server changed) primary link bgtwgen a Web browser and
the Forte application. It responds to HTTP
requests from the Web client by returning
the appropriate Web page.
html_mode/ScannerService Forte Web User Session The application contains one ScannerService
Access service object per model, which responds to
Server HTTP requests from AccessService by

opening the HTML template file in the
request and processing the Forte tags to
generate a Web page. The Scanner will
always be in the same partition as the
AccessService with which it is associated.

Customizing WebEnterprise Designer Applications

About replicating
these services

Creating new services

About Partitioning a WebEnterprise Designer Application 187

Dialog
Service Object Partition Visibility Duration Description
service_nameService Application Environ- Message The application contains one Service service
Server ment object for each Forte Express service defined
in the Business Model Workshop. You can
change the replication of this service object
to provide load balancing and/or failover.
service_nameDBService Application User Session The application contains one DBService
Server service object for each Service service

object. The DBService service object will
always be in the same partition as the
Service service object with which it is
associated.

A pair of service objects is generated for each model in the application. The service objects
of included HTML models are by default partitioned with the corresponding service objects
of the main model, though they can be put in other partitions.The following two sections
provide further information about these service objects.

business_modelServices Service Objects

See A Guide to Forte Express and Customizing Forte Express Applications for complete
information about the business_modelServices service objects service_nameService and
service_nameDBService.

One business_modelService service object and one business_modelDBService service object
are generated for each business model. These are generated into the
business_modelServices project. The HTMLtutApp application’s one business model
supplier is the HTMLtutorial business model, whose generated service project is therefore
the HTMLtutorialServices project. Two service objects are generated into this project,
namely:

m HTMLtutorialService
m HTMLtutorialDBService

These service objects work together to manage database interaction. You can replicate
these services, which is desirable for any of the following requirements:

® You want to distribute processing in the deployment environment.

® You want to provide different replication options (load balancing or failover) for
different service objects.

= You want your application to interact with more than one database.

Each service is bound to a particular database session, so you must create a separate
service for each database you wish to access. You can then assign the corresponding
service objects to the nodes that have the appropriate resources.

You create new services in the Business Model Workshop, using the Component > New
Service command (described in A Guide to Forte Express). Each time you create a new
service, Express adds a Service service object and a DBService service object to your
application.

If you have multiple business models in your application, you must consider your
application usage patterns to determine how best to partition the business model services.
Technote 10467, which you can access from Forte’s Support and Services Web page,
provides a discussion of this subject.

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

188 About Partitioning a WebEnterprise Designer Application

html_modelHandlers Service Objects

Partition AccessService on
Forte server platforms only

The AccessService can be
replicated for failover and
load balancing

Compile the partitions

Caution

See Chapter 1, “WebEnterprise Designer Application Architecture” for information on the
superclasses on which the html_modelHandlers services are based, namely HTMLScanner
and HTTPAccess. These are found in the HTTP library. For complete information on all
WebEnterprise Designer and WebEnterprise projects and libraries, see Forte online help.

One html_modelAccessService service object and one html_modelScannerService service
object are generated for an HTML application. These are generated into the
html_modelHandlers project. These service objects work together to field HTTP requests
from the client browser by way of the Web server. The html_modelAccessService and
html_modelScannerService are bound together, and will always be in the same partition.
The ScannerService is user-visible and therefore can be referenced only by the
AccessService in the same partition. The AccessService retains a reference to a session
object for each user, which includes the user’s result set. The ScannerService refers to the
result set when processing a page.

When you partition your HTML application, you must assign the partition that contains
the AccessService service object to a Forte server node. You cannot assign the AccessService
service object to a client node.

The AccessService service object can be replicated for load balancing or failover. (Failover
happens whether you replicate or not if Autostart is enabled; you might want to replicate
for failover if Autostart is disabled, however.) If the replicates are partitioned to different
nodes, they can all use the same unique port number (the WebEnterprise Listening Port
number) assigned to the application when it was created.

When there are multiple AccessService service object replicates partitioned to the same
node, each replicate must be assigned a unique port number. This is achieved by specifying
a range of port numbers with the FORTE_WW_PORTS environment variable. If
FORTE_WW_PORTS is set, the HTTPAccess service object randomly selects a port number
from the range and uses it as the listening port number. When a user first accesses a
WebEnterprise Designer application from a browser, the request is routed to one of the
replicates. A cookie is sent back to the browser with the necessary information to get back
to the same replicate. Subsequent requests will include that cookie, so that the user will be
routed to the replicate that includes her session object.

The syntax for this environment variable is:
FORTE_WW_PORTS startrange-endrange

The startrange and endrange numbers should be set to integer values between 1025 and
65535, and must designate ports that will not be in use on the node when the deployed
application is run. For example:

setenv FORTE_WW_PORTS 6100-6300

The ScannerService service object is bound to the AccessService service object. Each
replicate of the AccessService service object has its own copy of the ScannerService service
object.

We recommend that the partitions that contain the AccessService and the ScannerService
service objects be compiled, to provide improved performance for the partition.

If you compile the partition that contain an AccessService and a ScannerService service
object, you must be sure to install the compiled HTTP library in the deployment
environments where your Forte HTML application will be running. The partition that
contains these service objects needs to access the HTTP library, and if that partition is
compiled, the HTTP library that it uses must also be compiled. See the WebEnterprise
Installation Guide for information about the compiled HTTP libraries that are provided as
part of the WebEnterprise product.

Customizing WebEnterprise Designer Applications

Web Client

About Partitioning a WebEnterprise Designer Application 189

If you have multiple HTML models, there will be a pair of service objects for each model. If
you are running the application on a machine with native threads, you may choose to
include the AccessService and ScannerService service objects from multiple models in the
same partition.

Relationship Between the Service Objects

The interactions between the four service objects in the HTML application are shown in
Figure 43, below:

1

The AccessService service object receives HTTP requests for pages from fortecgi or a
Forte Web server plug-in on the Web server.

The AccessService service object invokes a method on the ScannerService service
object, requesting the appropriate page and passing any parameter values relevant to
the page.

The ScannerService opens the requested HTML page template and processes the Forte
tags to create the page, and executes methods, which may request data from the
database.

Database requests are sent to the business service application server where the
DBService provides the database session used by the Service service object to access the
database.

Result sets are returned to the ScannerService, which processes them and populates the
page template with the result set. The entire result set is cached in the service in case
the user needs to browse through the result set.

The ScannerService sends the requested page information back to the AccessService
service object.

The AccessService service object delivers the HTML information to the Web server,
which passes it to the client Web browser and displays the page.

Figure 43 illustrates:

Forte Environment

Web Server
> Forte 11—
NSAPI
- 6 r
Forte he r
ISAPI .
- AccessService .
50 ScannerServicé HTML
Pages
4
\
&
DB Service SO Business Service SO

Figure 43 Relationship between AccessService, ScannerService, Service, and DBService

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

190 About Partitioning a WebEnterprise Designer Application

Exceptions to
default configuration

On the application server partition, the DBService service object is a user-visible DBSession
service object, private to the partition. The Service service object is an environment-visible,
shared object in the application. The user-visible service object can be accessed only
through the environment-visible service object—other partitions cannot access it directly.
The DBService service object is protected from inappropriate access, because no other
partitions can access it.

The same relationship that exists between the two business model service objects also
exists between the HTML model service objects. The ScannerService service object is user-
visible and private to the partition, and the AccessService service object is environment-
visible and shared.

Creating a Default Partitioning Configuration

When Forte partitions an application, it assigns all compatible service objects to the same
partition. Forte assigns the Express business model service objects to one partition and the
WebEnterprise service objects to another.

The default partitioning will be altered if any of the following conditions are true:
m any of the service objects have replication turned on

Replication is discussed in A Guide to WebEnterprise.
m external resource managers for the service objects differ in type or location

This could occur if pages are built from multiple business models that have different
resource managers. (See the Forte 4GL System Management Guide or Getting Started
with WebEnterprise Designer for information on setting a resource manager for a
business model.) In this case, the Partition Workshop assigns each server partition to
the node where the required external resource is installed.

See A Guide to the Forte 4GL Workshops for information on the Partition Workshop and
partitioning in general.
To partition an HTML application:

1 In the Repository Workshop, select the html_modelHandlers project and click the
Partition button.

Alternatively, you can choose the Plan > Run > Partition command. Or, you can open
the html_modelHandlers project and click the Partition button or choose Run >
Partition from there.

The Partition Workshop is displayed with the default configuration for the HTML
application. Figure 44 shows the default configuration for the WebEnterprise Designer
tutorial example.

Customizing WebEnterprise Designer Applications

Environment drop list

Logical partitions

Logical partitions browser—t———

Assigned partitions browser

The client partition is
a development-only tool

Unassigned service objects

Common variants to the
default configuration

About Partitioning a WebEnterprise Designer Application 191

Configuration: HTMLtutAppHandlers.centrale M= 3
File Edit Component Run “iew Help

G| ¥ @|r

| v

HTMLtutAppHandlers_cll_Client |A
vj HTMLtutéppHandlers_cll_Partl
:@: HTMLiutAppdcoessService 1
:@: HTMLtutAppS cannerService
vj HTMLtutéppHandlers_cll_Part2
@ HTMLbutonalDE Service
i@ HTMLtutarialService

- -
¥ » 1 | »

Figure 44 Default Configuration for HTMLtutApp

The client partition (html_modelHandlers_CI0_Client) is used to keep the server partitions
running in the development environment and launch, if selected, the browser window. In a
deployed environment, it has no function. Because of this, the process of deploying and
running a WebEnterprise Designer application is different from other Forte applications.
The WebEnterprise Designer process is described in “Deploying the Application” on

page 193.

If you have any DBService service objects in the application that cannot be supported in
the current environment (for example, because the appropriate database resource is not
defined in the environment), both the DBService service object and its corresponding
Service service object will be unassigned. To run your application in this environment, you
must either update the DBService service object definition so it can be assigned to a
partition, or you must define the appropriate resource manager in your environment. (See
A Guide to Forte Express for information about updating the DBService service object
definition.) You can then assign the partition to the appropriate node.

There are several changes you might wish to make to the default configuration:

= replicate the AccessService service object for load balancing and/or failover and mark
the assigned partition to be compiled

= replicate business service object partitions for load balancing and/or failover, and mark
the assigned partitions to be compiled

Modifying the Configuration

The same methods and considerations that apply to other WebEnterprise applications
apply to WebEnterprise Designer applications. Please refer to Getting Started with
WebEnterprise Designer for information on modifying your HTML application
configuration. Remember to set the FORTE_WW_PORTS variable if you replicate the
AccessService SO partition on the same node. Refer to “html_modelHandlers Service
Objects” on page 188 for more information.

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

192 Testing the Application in a Distributed Environment

Testing the Application in a Distributed Environment

Once you have put the HTML application through a test run from the HTML Application
Model Workshop, you should test it in a distributed environment from the Partition
Workshop.

ki

Note

To test run an HTML application in distributed mode from the Partition Workshop:

1

In the Partition Workshop (displaying the html_modelHandlers configuration), click the
Run button.

Alternatively, you can choose the Run > Run command.
When you are done testing the application, exit it and close the Partition Workshop.

If you are unable to exit the application, you can use the Run > Cancel Run command at
any time to cancel execution.

This command cancels the client partition for the application. The remote partitions
will still continue to run; use the Run > Stop Remote Partitions command to stop
remote partitions.

To test run your application in distributed mode from other workshops:

You can only do this after you have partitioned your application once.

1

In the Repository Workshop, select the HTMLtutAppHandlers project and choose Plan >
Run > Run Distributed.

Alternatively, open the html_modelHandlers project and choose Run > Run Distributed.
When you are done testing the application, exit it and close the Partition Workshop.

If you are unable to exit the application, you can use Plan > Run > Cancel Run
(Repository Workshop) or Run > Cancel Run (Project Workshop) at any time to cancel
execution.

This command cancels the client partition for the application. The remote partitions
will still continue to run; use the Run > Stop Remote Partitions command to stop
remote partitions.

See A Guide to the Forte 4GL Workshops for further information about testing applications
in a distributed environment.

Customizing WebEnterprise Designer Applications

Deploying the Application 193

Deploying the Application

Note

To deploy a WebEnterprise Designer application, you must partition the application for
each deployment environment in which it will run. After the application is correctly
partitioned, you must create a separate distribution for each deployment environment.

The application distribution is a representation of the application outside the repository—
you use the application distribution to install the application in an environment.

To deploy your HTML application:

1 In the Repository Workshop, double-click the main project (the html_modelHandlers
project) for your application.

This opens the Project Workshop for the html_modelHandlers project.
2 In the Project Workshop, choose the File > Configure as > Server command.
This opens the Partition Workshop for the html_modelHandlers project.

If, after configuring for deployment, you want to modify this application and run it from
the development environment, you must reconfigure the html_modelHandlers project
as a client. (And then you must redistribute your application.)

3 In the Partition Workshop, select the desired environment from the environment drop
list, if it is not already selected.

The Partition Workshop opens the configuration for the project or creates a default
configuration if one does not already exist.

4 Modify the configuration as desired.
See A Guide to WebEnterprise for information on modifying the default configuration.

5 When your configuration is the way you want it, use the File > Make Distribution
command to make the application distribution.

Forte displays the Make Distribution dialog.

||_Dca| j 4 Location where you want Forte to
place application distribution files.
The choice is Local or Remote.

|("' Partial Make ™ Full Make

I~ Auta Compile

Cancel |

Figure 45 Make Distribution Dialog

6 Specify where you want the application distribution files placed by selecting an item
from the drop list.

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

194 Deploying the Application

7 Specify whether to perform a Partial Make or Full Make distribution.

The first time you make a distribution, you should choose the Full Make option.
Subsequently, you can choose Partial Make. A Partial Make creates the distribution only
for those components that have changed since the last make.

Note If any of your partitions are compiled and you wish to use the Auto-Compile option of
the Make Distribution command, you must ensure that your environment is set up for
automatic compilation. (See the Forte 4GL System Management Guide for information
on setting up your environment for automatic compilation.) If your environment is not
set up for automatic compilation, you must compile the partitions by hand (see A Guide
to the Forte 4GL Workshops for information about compiling partitions).

You should also make sure that you have marked the appropriate service objects as
compiled.

8 Click the Make button.

Forte creates the distribution files and installs them on your machine. When finished,
Forte displays the following message to inform you that the distribution is complete.

Information E

@ Thiz application is now completely installed.

9 Ifyou are deploying in more than one environment, select the next environment, make
modifications to the configuration if necessary, and use the File > Make Distribution
command to create the distribution.

Making the Application’s Template Files Accessible
to the ScannerService SO

Your HTML template files that Forte generated in subdirectories of the document root
directory must be accessible to the ScannerService service object. If you have replicated
this service object, these files must be accessible to all replications.

Note This does not apply to the document root/.base directory or its files. These are for
development purposes only. For information on the .base directory, see “Generated
Maintenance Files and Directory” on page 71.

To make the application’s generated template files accessible to the ScannerService service
object, you must copy them to the node where the Scanner’s partition exists, in the
directory specified by the document root property for that application.

Customizing WebEnterprise Designer Applications

Note

Deploying the Application 195

Copying the Application’s Template
Files to the Scanner Partition

You can copy the document root directory containing the subdirectory of the application’s
templates from your development environment to the environment of your Scanner
Service partition using either of the following techniques:

= Copy the application’s template file directory from one environment to the other using
file copy, FTB or any other methods of your operating system.

You can perform this copy either before or after deployment.

m After you make the distribution, but before you install it, copy the application’s template
file directory into the Scanner Service partition folder under the
$FORTE_ROOT/appdist/ partition_id directory.

At deployment time, the files will be copied into the partition’s machine.

The partition_id directory name is constructed from the partition name in the Partition
Workshop. For example, the partition containing the ScannerService service object in
Figure 44 on page 191 is named HTMLtutAppHandlers_Cl0_Partl. The partition_id
directory will be named HTMLtul.

For complete information on this technique, see the Forte 4GL System Management
Guide.

Once the template files are on the target node, either move them to the location specified
by the application’s document root, or set the document root to the directory the files are
in. The next section provides information on setting a WebEnterprise Designer
application’s document root.

Setting Document Root on the
ScannerService Service Object Partition

The Scanner Service must be aware of the top-most directory of the copied files. This top-
most directory is called the document root. You can set the value of an HTML application’s
document root using any of the following methods, given in order of precedence:

1 Use the -docroot command-line argument when starting the partition containing the
ScannerService service object.

2 Set the value of the FORTE_WW_DOCUMENT_ROOT environment variable.

This must be defined in portable (not local) file syntax (such as
“%{FORTE_ROOT}/html/docs”).

3 Set the value of the DocumentRoot attribute of the ScannerService service object in the
HTML model properties.

4 Use the default value, which is “%{FORTE_ROOT}/html/docs.”

These methods and priorities regarding the value of document root are slightly different
than those discussed in A Guide to WebEnterprise, and apply specifically to WebEnterprise
Designer.

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

196 Running the Application

Running the Application

After you have deployed your application, you can run it.

To run a deployed HTML application:

1

5
6

Start the Environment Console.

If you did not enable the Install in Current Environment option when you created your
distribution (see Figure 45 on page 193), first load (using File > Load Distribution) and
then install (using Component > Install) the application.

Double-click the node on which you made the distribution to open it.
Alternatively, select the node and choose Component > Open.

From the node window, click the triangular control to display the node’s contents.
Select the application and click the Start Up button.

Alternatively, select a server partition and choose Component > Start Up.

When the partitions are marked “online,” your application is running. When the
AccessService service object starts up, it will register itself with the Web server. Your Web
server needs to be running when the AccessService partition starts.

Mode: HENNA M= 3
File Edit Component Help
& &

Hame Type Status =

- + HEHNA Hode OHLINE

» m HTTP_HEHHA Library OFFLINE

» 4y AutoCompileSuc_cl@ Part1_HEHNNA Installed Partition OFFLINE

» 4y AutoCompileSuc_cl@ Part2_HEHNNA Installed Partition OFFLINE

» 4y CodeGenerationSuc_cl8_Parti1-router_HENNA Installed Partition OFFLINE

» 4y CodeGenerationSuc_c18 Part1_HENNA Installed Partition OFFLINE

» 4y EnvManager_c1@ Client_ HEHNHNA Ad hoc partition ONLINE

» dy Express_cl11_Client_ HEHNHNA Ad hoc partition ONLINE

» 4y Forte_DCE_Executor_HENHNA Ad hoc partition OFFLINE

» 4y Forte_Executor_HEHNA Ad hoc partition ONLINE

» 4y FTLaunch_cl@ Client_ HENHNA Ad hoc partition ONLINE

b =3 HEHHA__HEHHA HMachine OHLINE

p =y HTHLtutAppHandlers_cl8 _Part1_HEHHA Installed Partition OMLINE |

» 4y HodeManager_HENNA Active Partition ONLINE
< of]
Partition HT MLtutdppH andlers_cl0_Part] changed status to OMLIME.

Start your browser, if it is not already running.
Type in a URL with the following syntax:

[pl ugi nURL| f ort ecgi URL] ?ser vi cenane=WebEser vi cenane
&t enpl at enane=ht m appnane/ St art. ht mi

Note that this is all one string with no breaks. You obtain the values for the variables in
this string from the HTML Application Properties dialog, as shown in Figure 46. It is also
found in the log for the Access partition.

Customizing WebEnterprise Designer Applications

Caution

When installing compiled
HTTP libraries on UNIX

When installing compiled
HTTP libraries on NT

Running the Application 197

HTML &pplication Name: HTMLbutApp htmlappname
Start Page: E
Starting Action: I j
Style: | cool E
Title: |HTML Tutorial
‘wieb Enterprise Service Mame: | HTMLtutAppService ‘————— WebEservicename

‘wieb Enterprize Listening Port: | 49178

Fortecqgi Location: | http: #¢henna.forte. com/cgi-forteforte —

fortecgiURL
pluginURL

Flug-in URL: | http: #¢henna.forte. comAweb. forte
HTML Document Root: | Z{FORTE_ROOT }html/docs
Drefault Browser: | cAPROGRA™1 M etzcape\Communic.

Cancel |

Figure 46 Obtaining URL Elements from the Properties Dialog

For example, a string using the values in Figure 46 would be:

http://henna. forte.com web. f ort e?servi cename=HTM._t ut AppSer vi ce
&t enpl at ename=HTM_t ut App/ Start . ht m

See the Forte 4GL Programming Guide for complete information about partitioning
applications and making distributions. See the Forte 4GL System Management Guide for
information on using the Environment Console.

Because all Forte Web applications use the HTTP library, it must be installed in all
deployment environments where the Web application is deployed. If any of the partitions
in your Web application that access the HTTP library are compiled, the compiled form of
the HTTP library must be installed in the deployment environment. WebEnterprise
provides the HTTP library in both interpreted and compiled forms for installation in
deployment environments. See the WebEnterprise Installation Guide for information. The
library must be installed on any Forte node that runs a partition that includes an
AccessService service object.

If you install the compiled HTTP libraries on UNIX, follow these instructions: after you
have compiled a partition that accesses the compiled HTTP library, do not move the
compiled HTTP library (for example, by moving $FORTE_ROOT to a different disk or
directory). If you do move the library after the partition is compiled, you must re-compile
the partition so the partition and library can be correctly linked.

If you install the compiled HTTP libraries on NT, you need to add the
$FORTE_ROOT /userapp/http/cl0 directory to the “PATH” environment variable.

Partitioning and Deploying a WebEnterprise Designer Application Chapter 9

198 Running the Application

The AccessService Log File

When the partition that includes the AccessService is started, its log file will include
messages indicating that it has been successfully connected to the Web server, and give the
starting URL for the application. the partition log; for more information, see the Forte 4GL
System Management Guide.

The following message indicates that this service started successfully:

Enabl e access to HTM.t ut AppService at port 6203 from
http://henna.forte.conicgi-forte/fortecgi.exe (pluglnURL =
http://henna.forte.coniweb.forte)

The following message indicates the starting page for the application:

*** URL of starting page =
http://henna.forte.conlfweb. forte?Servi ceNane=

HTM.t ut AppSer vi ce&Tenpl at eNanme=HTM.t ut App/ Start . ht ni

If your application includes multiple HTML models, there will be several such messages.
Your users will only need to know the starting URL for the main model. If that model
references other models, its links will have the proper URL.

Memory Considerations

Because of the nature of Web applications, the result set of data for a user is maintained in
memory in the partition that includes the AccessService. The AccessService holds a session
object for each user that includes that result set. The session object will be cleared and
garbage collected when the session times out (which, by default, is irrespective of whether
the user exits the browser or otherwise quits the application). The default session timeout
is set with the ExpressHTTPAccess.SetupSessionManagement method. For a WebEnterprise
Designer application, the timeout default is one hour.

You can change the application’s timeout setting with the Page Handler Customization
Wizard customization point “Modify session timeout” under the Application category.

When you set the maximum memory for partitions that include an AccessService, you must
take the timeout setting into account, as well as the number of concurrent users you will
have and the average size of the result sets they will work with. See the Forte 4GL System
Management Guide for information on setting the memory parameters for a partition.

Customizing WebEnterprise Designer Applications

Index

A

AccessServer partition
and WebEnterprise Designer
architecture 19
location on a server node 188
when to compile 188

AccessService SO
and error processing 114
and port numbers 188
description of functions 19, 189
load balancing considerations 188
replication status 188
startup (object interaction diagram) 32

Action URL parameter 42

adata style element 106

AddConstraints method 38

AddError method 61

AddForeignData method 39

Adding data to command link example 134
alabel style element 106

alink style element 106

Always Generate Custom Classes option
disabling to delete classes 55
effect on class hierarchy 49
enabling 50
of Custom Generation Options

command 49

amenu style element 106

Association IDs
and business class page fields 37
and the GetFieldAttrID method 37
and the GetFieldIndexID method 37
description 37

Attributes
IDs and result sets 62
programmatically changing value of 63

Authenticating users
integrating with authentication

system 173
using a logon page 171
using

ExpressHTTPAccess.LogonSession 33
using logon information 39

Bad selector errors 100

.base directory
function 76
meaning of file extensions in 77

Beforelnsert method
and processing custom fields 67
customization 145, 159
BeforeSearch method 67
BeforeUpdate method 67

bus_class_pageHandler class, See Page
handler classes

business_modelServices project 186
businessClass_qq_attribute.inc file 163

BusinessClass class
attribute IDs 62
InstanceStatus attribute 62
record status 62

Business classes, transferring data between
pages and 37

BusinessClass objects
and attribute IDs 62
and InstanceStatus attributes 62
and their UpdateQuery attribute 63
checking whether updated 63
undoing changes 63

200 Section C

Business class pages
generated HTML templates, fancy 73
generated HTML templates, generic 70
generated HTML templates, simple 72
modeling as a lookup page 127
restricting access to 176
transferring data between classes and 37

BusinessClient class, Revert method 63

Business models, generated service objects 186-190
Business rules, customizing 65

Business services, generated service objects 186-190
buttonlogon style element 107

buttons style element 107

C

captionform style element 107
captionlist style element 107
captionlogon style element 107
captionmenu style element 107

class identifiers
and page styles 105
scope 106

Class interaction diagram of WebEnterprise Designer
classes 28

Code generation directives
and customization 92
and page design templates 91
description 91
page object 100
command syntax conventions 13

Component menu
New Service command 187
Open command 196
Start Up command 196

Configure as Server command 193
ConnectManagedSessions method 179
Cookies, in WebEnterprise applications 170
cool.css file, location 104

CSS1 style sheets, See Styles

CurrentRow attribute 39

Customizable classes
and ExpressHTTPAccess 33
automatically creating 50
deferring deletion 56
deleting page handler classes 54

Customizing WebEnterprise Designer Applications

Customization examples
adding a lookup link 126
adding data to command links 134
creating a drop or radio list manually 161
customizing a page design 93
customizing logon validation 173
customizing styles 108
displaying the record just inserted 151
entering and formatting dates 143
list of examples in examples chapter 124
managing subsidiary applications 179
mandatory field 158
modifying session timeout 183
populating data on an Insert page 139
removing a validation from a page mode 147
restricting access to pages 176
setting or removing a radio or drop list

default 165

whole field validation 153

Customizations, preserving
file types in .base directory 77
function of .base directory 76
HTML changes only 76
lookup files 164
model changes 76
model changes, conflicting 77
summary 76

Customizing application security

customizing login validation example 174

customizing main models 179

customizing session timeout example 183

customizing subsidiary models 179

integrating with an authentication system 173

restricting access to pages 176

sharing security environment across
applications 178

using logon pages 173

Customizing error pages

and HTMLScanner.GetErrorTemplate
method 119

and HTTPAccess.GetErrorTemplate method 121

application-specific error template example 120

application-specific template with custom data
example 120

creating your own 118

default error processing steps 114

error class-error template mapping 114

error directory 114

errors in customization 122

modifying default error pages 118

page design templates for 88

result set variables 116

with the Customization Wizard 118

Customizing generated HTML templates

customizing a field on a search page 79

customizing font size on a data page 81

identifying hidden fields 75

identifying WebEnterprise tags 75

identifying WebEnterprise variables 75

linking to the Insert page URL 129

passing a selected value as a parameter 131

preserving customizations, See Customizations,
preserving

removing validation from a single template 147

setting or removing a radio or drop list
default 165

types of customization 74

using a variable from the calling page’s Data
template 141

when customizing styles 109

where and where not to customize 74

whole field validation 153

without the Customization Wizard 125

Customizing generated lookup files

manually customizing drop lists or radio lists 161
preserving customizations 164
without the Customization Wizard 125

Customizing generated scripts files

setting or removing a radio or drop list
default 165
without the Customization Wizard 125

Customizing page designs

bad selector errors 100

code generation errors 99

customizing menus 95

description of code generation directives 91

elements of design files 88

example 93

identifying a design in the Page Handler
dialog 94

role of data template 96

role of display template 98

when to customize 87

Customizing page handler classes

adding data to command links example 134
displaying the record just inserted 151
entering and formatting dates 143

lookup link example 126

making a field mandatory 158

populating data on an Insert page example 139
removing validation from a Search page 147
techniques with business rules 65
techniques with ClassHandler classes 64
where to 60

without the Customization Wizard 125

Section D 201

Customizing styles
adding new elements 109
basic procedures 108
browser caching problems 112
creating a new style sheet 109
identifying a style in the Page Handler

dialog 111

making a style browser-independent 112
only modifying existing elements 109
scope considerations 108

Customizing WebEnterprise Designer classes
creating a single customizable page handler
class 49
creating customizable classes, overview 48

creating customizable page handler classes for all

pages 49
customization techniques 64
error reporting 61
general considerations 48
global customization 68
how to override methods 60
local vs. global 61
result sets, manipulating 66
techniques with business rules 65

D

dataform style element 107

datalist style element 107

Data templates
See also Page modes
customization examples 131, 136, 141
modifying the design of 96

Data types, declared type vs. runtime type 28

Dates, formatting
creating drop lists for 144
example 143
TOOL code for 145
DBService SO
See also service_nameDBService
description of function 189
replicating 187
DecodeValue method 37, 38, 66
Decoding data, from a WebEnterprise request 38

Define HTML template for exceptions
(customization) 118

Define subsidiary applications
(customization) 33, 179

Deleting customizable page handler classes 54

Index

202 Section E

Deploying WebEnterprise Designer applications Environment variables
as client or server 193 FORTE_WW_DOCUMENT_ROOT 195
installing HTML template files on Scanner FORTE_WW_EDITOR 53
partition 194 FORTE_WW_HTMLEDITOR 53, 125
procedures 193-195 FORTE_WW_PORTS 188
telling the Scanner SO where HTML pages error directory 114
are 195 .
_ Error handling
Diagrams See also Customizing error pages
AccessService startup 32 customization of 118
class interactions, WebEnterprise Designer default process 114
classes 28 error directory 114

ExpressHandlers class hierarchy 25

HTML application runtime anatomy 19 ErrorMgr class, AddError method 61

HTTP class hierarchy 24 Error pages, page design templates for 88
life of a template request 35 ExpressClassHandler class
partitions and objects at runtime 21 AddConstraints method 38
scanner startup 34 Beforelnsert method 67
DisplayPage method 36, 38, 66 Beforesearch method 67
] playrag T BeforeUpdate method 67
display style element 106 DecodeValue method 37, 38, 66
Display templates, modifying design template of 98 decoding data from a WebEnterprise request 38
—-docroot command-line flag 195 DisplayPage method = 36, 38, 66

Dolnsert method customization 151
DoSearch method 67

FillResultSet method 38
FindHandler method 36

formatting data into a result set 37
FormatValue method 37, 66

Document root
accessibility of directory to the ScannerService
SO 194
default specification 195
defined by FORTE_WW_DOCUMENT_ROOT 195

Dolnsert method, customization 151 GetFieldAttrID method 37

DoSearch method 67 GetFieldIndexID method 37

Drop list customizing examples GetPageData method 64
manually modifying lookup file 161 HandleCondition method 19, 36
removing or setting the default 165 HandleTag method 19, 36

implementing the TagHandlerIFace interface 35
NewQuery method 64

E ProcessAction method 36
referenced objects 36
EnableAccess method 33 role in class structure 35

transferring data between classes and pages 37

Entering and formatting dates example 143 UpdateAttr method 63

entry.CurrentRow_busClassPage variable 45 UpdateClass method 38
entry.CurrentRowIndex_busClassPage variable 45 ExpressHandler class, FindHandler method 38
entry.FirstVisibleRow_busClassPage variable 45 ExpressHandlers project
entry.list_busClassPage variable 45 class hierarchy 25
entry.RequestStatus_busClassPage variable 45 subclassing for global customization 68
entry.Rows_busClassPage variable 45 ExpressHTTPAccess class

customizing 33

EnableAccess method 33
entry result set 44 functional description 32
HasLogonHandler attribute 33

entry.VisibleRows_busClassPage variable 45

Customizing WebEnterprise Designer Applications

ExpressHTTPAccess class (continued)
LogonSession method 33
SetSessionManagement method 183
SetupAccess method 32, 33
Setup method 32
SetupSessionManagement method 33, 198

ExpressLogonHandler class
functional description 39
HandleCondition method 39

ExpressLogonHandler class, HandleCondition
method 173

ExpressLookuplnfo class
functional description 40
GetDisplayedNullValue method 40
ExpressPageData class
AddForeignData method 39
and foreign result sets 39
CurrentRow attribute 39
FirstVisibleRow attribute 39
functional description 39

ExpressScanner class
functional description 34
Handlers attribute 38

Express Services classes, and the Web application
server 22

ExpressValueGenerator class 40

ExpressWindows project
class hierarchy 25

F

Field indexes
and business class page fields 37
and the GetFieldAttrID method 37
and the GetFieldIndexID method 37
converting between 37

Fields, hidden
examples 79
identifying in HTML templates 75

FillResultSet method 38

FindHandler method 36, 38
FirstVisibleRow attribute 39

Folder pages, and ExpressPageData 39
footer style element 106

FormatValue method 37, 66

Form pages, page design templates for 89

FORTE.ExecURL variable
description 44
example 79

Section F 203

FORTE.UniquelD variable
description 44
example 82

FORTE_WW_DOCUMENT_ROOT environment
variable

and deployment 195

constraints 195

setting 195

FORTE_WW_EDITOR environment variable 53

FORTE_WW_HTMLEDITOR environment
variable 53, 125

FORTE_WW_PORTS environment variable 188
FORTE result set 44

FORTE tags (FORTE EXECUTE, FORTE IF, FORTE
ITERATE, etc.), See WebEnterprise tags

G

Generated .base directory files 77

Generated classes
customizing 49
from business model, See Customizing Forte
Express Applications
from HTML application model 26
modifying 60
Generated HTML pages, See Generated HTML
templates

Generated HTML templates
business class pages, fancy 73
business class pages, generic 70
business class pages, simple 72
customizing a field on a search page 79
customizing font size on a data page 81
identifying hidden fields 75
identifying WebEnterprise tags 75
identifying WebEnterprise variables 75
installing on Scanner partition 194
link pages, generic 71
logon pages, generic 72, 172
Main template 70
preserving customizations, See Customizations,

preserving

Scripts template 70
Start page 71
summary 27
where and where not to customize 74

Generated lookup files 71
Generated maintenance files 71
Generated TOOL code, for logon pages 172

Index

204 Section H

generic.html file
corresponding exceptions 114
result set variables 117

GetDisplayedNullValue method 40

GetErrorTemplate method
html_modelAccess class 121
html_modelScanner class 119
HTMLScanner class 119
HTTPAccess class 121
warning 121

GetFieldAttrID method 37
GetFieldIndexID method 37
GetPageData method 64
GetTextData method 61

Global customization
and supplier plans 68
procedures 68
when todo 61

HandleCondition method
and logon pages 173
and runtime control flow 36
and the ScannerService SO 19
and user authentication 39
and WebEnterprise tags 35
defined in TagHandlerlFace 35

Handler classes, See Page handler classes
Handlers attribute 38

HandleTag method
and runtime control flow 36
and the ScannerService SO 19
and WebEnterprise tags 35
defined in TagHandlerlFace 35

HasLogonHandler attribute 33
header style element 106

html_modelAccess class
and customizing ExpressHTTPAccess 33
ConnectManagedSessions method 179
GetErrorTemplate method 121
IsPrimarySession method 179
LogonSession method 173
SetSessionManagement method 183

html_modelAccessService SO
See also AccessService SO
and error processing 114
and the deployment process 188
and the ExpressHTTPAccess.Setup method 32
description 186

Customizing WebEnterprise Designer Applications

html_modelHandlers project
customizable subclasses 27
description 26
HTML application’s main project 186
service objects of 188

html_model HTML templates, See Generated HTML

templates

html_modelScanner class
and the htm/_model/ScannerService SO 34
description 20
GetErrorTemplate method 119

html_modelScannerService SO
See also ScannerService SO
and error processing 114
and runtime control flow 36
and the deployment process 188
description 186
object interaction diagram of startup 34

HTML 4.0, and WebEnterprise Designer 104

HTML application model
classes generated from 26

HTML applications
load balancing 19

HTML document root, See Document root

htmlscanner.html file
corresponding error class 114
result set variables 116

HTMLScanner class, GetErrorTemplate method

HTMLScannerException class
attribute-result set variable list 116
corresponding error file 114

HTML templates
and page design elements 88
using links 41

httpaccess.html file
corresponding error class 114
result set variables 117

HTTPAccess class
GetErrorTemplate method 121
SessionCreationURL attribute 39, 172

HTTPAccessException class
attribute-result set variable list 117
corresponding error file 114

HTTP library
and compiled partitions 188
class hierarchy 24
installing compiled 197

119

id identifier, and page styles 106

Insert command
adding a JavaScript call to 156
adding datato 134, 139
and ExpressValueGenerator class 40
customizing Beforelnsert method 145, 159

Insert templates
See also Page modes
customization
examples 129, 137, 142, 144, 153, 154, 166

InstanceStatus attribute 62
IsPrimarySession method 179
Is subsidiary application (customization) 33, 179

J

JavaScript examples
adding call to Insert button 156
boilerplate script 154
location of validation scripts 147
making a field mandatory 154
removing a default from a drop list 166, 167
removing a script call from a template 149

JavaScript fields, page design templates for 90

L

labelform style element 107
labellist style element 107
labelmodify style element 107
LinkName URL parameter 42
Link pages
HTML templates generated for 71
page design templates for 90

Link tags, identifying page styles with 105

listentry.busClassPage_qq_fieldName variable 45
example 81, 132, 136

listentry.qqRowNumber variable 45
listentry result set 44
List pages, page design templates for 89

Load balancing
and port numbers 188
with AccessService SOs 19, 188

Local customization 61

Section | 205

Logon pages
and SESSION_REQUIRED 172
code generated for 172
creating 171
customizing 173
how activated 172
HTML templates generated for 72
validation fields 171

LogonSession method 33, 173
Logon Validation (customization) 173

Lookup files
businessClass_qq_attribute.inc file 163
generated 71
manually customizing drop lists or radio lists
preserving customizations in 164

Lookup link example 126

Main projects
and partitioning 186
html_modelHandlers project 186

Main template 70

Make Distribution command 193

manifest.txt file 71

Memory considerations, and session timeout 198
Menu design templates, modifying 95

Menus, creating in a page design 95

menu style element 106

Methods, how to override 60

Modify session timeout (customization) 183, 198
modify style element 106

MsgCatalog class, GetTextData method 61

Nested pages
adding data to command links of 134
and ExpressPageData 39

NewClass class, compared to NewClassForinsert
class 64

New HTML Page command 171
NewQuery method 64

Index

206 Section O

o

Object interaction diagrams
AccessService startup 32
a template request 35
scanner startup 34

P

Page designs
and code generation 91
and menus 95
directory of templates 86
identifiers 94
role in Web page production 86
scope 86
what they determine 86
when to customize 87

Page design templates
description of template file names 88
fancy 73
for different page elements 89
for error pages 88
for form and list pages 89
for JavaScript scripts 90
for link pages 90
for lookup fields 90
for page modes 89
for start pages 88
simple 72
variations on fancy 73

Page design templates, selectors

RC 88
_RR_Name_ 89
UniqueName 90
Data 89

HasJavaScripts 90
IsAabModel 88
IsDataWindow 89
IsFormWindow 89
IsLinkWindow 90
IsListWindow 89
LookupFields 90

Page handler classes

and HandleTag and HandleCondition
methods 35

Beforelnsert method customization 145, 159

connections between 38

customization techniques 64

desciption 20

Dolnsert method customization 151

Customizing WebEnterprise Designer Applications

finding by name 38
referencing other page handlers 38
RestrictinsertAccess method customization 176

Page handler customizations
Application category 56
creating an initialized object in a page 64
customization techniques 64
customizing manually 60
Define HTML template for exceptions 118
Define subsidiary applications 33, 179
Fields category 66
getting the initial query 64
getting the result set 64
Insert (Database Operations) 145, 159
Is subsidiary application 33, 179
list of all customization points 58
local vs. global 61
Logon Validation 173
Modify session timeout 183, 198
Restricting access to page modes 176
summary of categories 57

Page Handler Customization Wizard
about 51
accessing online help 51, 57
application-wide customizations 56
automatically generating a customizable page

handler class 53

customizing error pages 118
deleting customizations 54
indicator that customization exists 54
list of all customization points 58
Lookup Data Files example 163
using 52

Page modes

adding a variable to Insert command link in Data

template 136
adding customized link to Data template 131
adding drop lists in the Insert template 144
adding lookup link to Insert template 126
adding mandatory field validation to Insert
template 153
creating drop lists for date formatting on Insert
template 143
customizing 74
page design templates for 89
passing data to Insert template 134
populating a field in the Insert
template 142, 154
populating data on an Insert template 139
removing default from a drop list 166

removing validation from a search template 149

restricting access to 176
validating a whole form from a search
template 153

Partition command 190

Partitioning WebEnterprise Designer applications
as client or server 191
canceling if unable to exit 192
default configuration 190
main project (htm/_mode/Handlers) 186
partition_id directory name 195
procedures 186-191
service objects 186
starting server partitions 196
stopping remote partitions 192
supplier project (business_modelServices) 186
testing distributed 192
unassigned service objects 191

PDF files, viewing and searching 16
Populating data on an Insert page example 139

Port numbers
and AccessService SOs 188
and FORTE_WW_PORTS 188

ProcessAction method 36

Radio list customizing examples
manually modifying lookup file 161
removing or setting the default 165

Referenced objects, and ExpressClassHandler class 36
Registration, customizing 33

report.txt file
and simple HTML changes 76
conflicting model changes 77
description 71
simple model changes 77

#reqstatus style element 107
Restricting access to page modes (customization) 176
RestrictinsertAccess method 176

Result sets
and attribute IDs 62
and BusinessClass.InstanceStatus attributes 62
and session management features 38
entry 44
foreign 39
formatting data into 37
FORTE 44
inserted record, changing default position 151
listentry 44
manipulating 66
USER 44

Section R 207

Result set variables
creating your own 118
description 116

ReturnTemplate URL parameter 42
Revert method 63
rowidlist style element 107

Run menu
Cancel Run command 192
Partition command 190
Run command 192
Stop Remote Partitions command 192

S

ScannerServer partition
and WebEnterprise Designer architecture 19
installing HTML template files on 194
when to compile 188

ScannerService SO
accessibility to the document root directory 194
and error processing 114
and the HandleCondition method 19
and the HandleTag method 19
description of functions 19, 189
replication status 188

Scripts template 70

Search templates, customization examples 149, 153
Security, See Customizing application security
Security environment, sharing

about 178
restrictions 180

Selection URL parameter 43
service_nameDBService 187
service_nameService 187
ServiceName URL parameter 41

Service objects
creating 187
description of interaction 189
generated from business model 186-190
generated from HTML model 186-190
html_modelAccessService 186
html_modelScannerService 186
service_nameDBService 187
service_nameService 187
unassigned 191
which can be replicated 188

Index

208 Section T

Service SO
See also service_nameService
description of function 189
replicating 187
SESSION_AUTOCREATE property 171
SESSION_REQUIRED property 172
SessionCreationURL attribute 39, 172

Session management

and logon pages 172

and secure applications 170

and shopping cart applications 170

authenticating users 171

customizing 33

for included applications 33

how session ids are tracked 170

how session timeout works 181

ideal timeout setting 182

session property without logon page 171

sharing security environment across
applications 178

storing state information in Web
applications 170

tracking sessions 170

Session properties

when SESSION_AUTOCREATE is used 171

when SESSION_REQUIRED is used 172
Session timeout

and AccessService service object 198

customizing 183, 198

default 198

finding the ideal setting 182

how it works 181

resuming the session 181
SessionTimeOut attribute 181
SetSessionManagement method 183
SetupAccess method 32, 33
Setup method 32
SetupSessionManagement method

and session timeout 198

role in customization 33
Start page 71
Start pages, page design templates for 88
steel.css file, location 104

Style elements
#reqstatus 107

adata 106
alabel 106
alink 106

amenu 106

Customizing WebEnterprise Designer Applications

buttonlogon 107
buttons 107
captionform 107
captionlist 107
captionlogon 107
captionmenu 107
dataform 107
datalist 107
display 106
footer 106
header 106
labelform 107
labellist 107
labelmodify 107
menu 106
modify 106
rowidlist 107

Styles
and deprecated features 104
class identifier 105
conformation to HTML 4.0 104
customizing, See Customizing styles
definition of elements 106
description 104
identifying in link tags 105
id identifier 106
location of style sheet files 104
specifying in HTML template 105

Subsidiary applications, managing (example)
Supplier plans, See Supplier projects
Supplier projects
and partitioning 186
business_modelServices 186

T

TagHandlerlFace interface 20

TagHandlerlFace interface, implemented by
ExpressClassHandler 35

TemplateName URL parameter 42

Template request, life of
detailed description 30
general overview 19
object interaction diagram of 35

Testing distributed 192
Three-tier architecture 18
TOOL code conventions 13

179

U

UniquelD variable 83

Uniquifier URL parameter 43, 83, 131
UpdateAttr method 63

UpdateClass method 38
UpdateQuery attribute 63

URL parameters
Action 42
LinkName 42
ReturnTemplate 42
Selection 43
ServiceName 41
TemplateName 42
Uniquifier 43
usage 41

USER.TopPage variable
description 44
example 82

USER result set 44

Vv

Validation
adding to a field 148
and ExpressLookuplinfo 40
creating a drop or radio list manually 161
making a field mandatory 158
removing a default from a drop list 166
removing from a page mode 147
removing from a template 149
setting or removing a radio or drop list

default 165

whole field validation 153

Variables, environment, See Environment variables

Variables, WebEnterprise Designer, See
WebEnterprise Designer variables

W

Web application server
and Express Services classes 22
architecture 20
example 20

Section U 209

WebEnterprise Designer
conformation to HTML 4.0 104
customization guidelines 20
customizing security, See Customizing application
security
error directory 114
error handling 114
logical architecture 18
projects 23
result set variables 44, 116
runtime architecture 19
runtime scenarios 31
session management, See Session management
styles, See Styles
URL parameters 41
variables 44

WebEnterprise Designer applications
deploying 193-195
deploying as client or server 193
distributed testing 192
generated service objects 186-190
main project (htm/_modelHandlers) 186
partitioning 186-191
partitioning, default configuration 190
supplier project (business_modelServices) 186

WebEnterprise Designer classes
customizable 49
working with business classes 62

WebEnterprise Designer class structure
and server registration 33
and session management 33
authenticating logon information 33
diagram 28
role of ExpressClassHandler 35-38
role of ExpressHTTPAccess 32
role of ExpressLogonHandler class 39
role of ExpressLookuplinfo class 40
role of ExpressPageData 39
role of ExpressScanner class 34
role of ExpressValueGenerator class 40

WebEnterprise Designer projects
ExpressHandlers project 25
html_modelHandlers project 26
HTTP Library 24

WebEnterprise Designer URL parameters
Action 42
LinkName 42
ReturnTemplate 42
Selection 43
Uniquifier 43

Index

210 Section W

WebEnterprise Designer variables
entry.CurrentRow_busClassPage 45
entry.CurrentRowIndex_busClassPage 45
entry.FirstVisibleRow_busClassPage 45
entry.list_busClassPage 45
entry.RequestStatus_busClassPage 45
entry.Rows_busClassPage 45
entry.VisibleRows_busClassPage 45
examples 130, 131, 136, 141
FORTE.ExecURL 44
FORTE.parameter_name 116
FORTE.UniquelD 44
listentry.busClassPage_qq_fieldName 45, 132, 1

36
listentry.qqRowNumber 45
lookup link example 132
usage 44
USER.TopPage 44

WebEnterprise error handling 114

WebEnterprise Listening Port number
and FORTE_WW_PORTS 188
and load balancing 188

Customizing WebEnterprise Designer Applications

WebEnterprise tags
about 20
example of FORTE IF 79, 81
format convention used in book 36
identifying in HTML templates 75

WebEnterprise URL parameters
ServiceName 41
TemplateName 42
usage 41

WebEnterprise variables

examples 81

identifying in HTML templates 75
Web server

and fortecgi program 19
and Forte Web server plug-in 19

Web server root directory
and graphics files 163
and styles 104

	Contents
	Preface
	Organization of This Manual
	Conventions
	Command Syntax Conventions
	TOOL Code Conventions

	The Forte Documentation Set
	Forte 4GL
	Forte Express
	Forte WebEnterprise and WebEnterprise Designer

	Forte Example Programs
	Viewing and Searching PDF Files

	1 WebEnterprise Designer Application Architecture
	Logical Architecture
	Runtime Architecture
	Web Application Server Architecture
	Runtime Objects by Partition
	Use of Express Services

	WebEnterprise Designer Projects
	HTTP Library
	The ExpressHandlers Project
	The html_modelHandlers Project
	Customizable Subclasses in html_modelHandlers

	Generated HTML Templates

	WebEnterprise Designer Class Interactions
	Class Interaction Diagram
	Declared Type and Runtime Type

	Life of a Template Request
	Runtime Scenarios
	Object Interaction Diagram Conventions

	ExpressHTTPAccess
	Starting the AccessService Service Object
	Customizing ExpressHTTPAccess

	ExpressScanner
	Starting the ScannerService Service Object

	ExpressClassHandler
	Runtime Control Flow
	Referenced Objects
	Field Identification
	Data Transfer
	Result Sets
	Connections Between Handlers

	ExpressLogonHandler
	Customizing ExpressLogonHandler

	ExpressPageData
	Foreign Result Sets

	ExpressValueGenerator
	ExpressLookupInfo
	Modifying the Displayed Null Value

	WebEnterprise Designer HTML Template Elements
	Links
	URL Parameters
	Variables

	2 Customizing WebEnterprise Designer Application Classes
	Overview
	Before You Begin
	Creating Customizable Classes
	Creating a Single Customizable Page Handler Class
	Creating a Full Set of Customizable Page Handler Classes

	Customizing With the Page Handler Customization Wizard
	Customizing a Page Handler Class
	Customizing a Generated HTML Template
	Deleting Customizations
	Deleting Specific Customizations
	Deleting All Customizations in a Class

	Making Application-Wide Customizations

	A Roadmap to Customization Examples
	Page Handler Customization Wizard Help Files
	Page Handler Customization Wizard Customizations

	Customizing Manually
	Locating Where to Customize
	Overriding Methods in a Superclass
	Local and Global Customizations
	Error Reporting

	Working with Business Classes
	Business Class Record Status
	BusinessClass Attribute IDs (ATTR_)
	Changing the Value of an Attribute
	Checking the Status of a BusinessClass Object
	Undoing Changes Made to a BusinessClass Object

	Customization Techniques: ClassHandler Classes
	Creating a New Instance of a Business Class
	Getting the Result Set
	Getting the Initial Query

	Customization Techniques: Business Rules
	Where to Implement
	Business Rules on the Browser

	Customization Techniques: Data
	Formatting Fields
	Formatting Custom Fields
	Decoding or Validating Fields
	Processing Custom Fields on an HTML Form Submission
	Processing an Insert or Update Form
	Processing a Search Form

	Global Customization

	3 Customizing Generated HTML Templates
	How WebEnterprise Designer Uses HTML Templates
	Common Templates
	Business Class Page Templates
	Link Page Templates
	Logon Page Templates

	Page Design Templates
	Simple Page Design Templates
	Fancy Page Design Templates
	Fancy Page Design Variations

	Customizing HTML Templates
	Customization Types
	Where to Customize
	What Not to Customize

	Regenerating After Customizing
	Scenario 1: HTML Changes Only
	Scenario 2: HTML and Model Changes
	Scenario 3: Conflicting HTML and Model Changes

	Customization Examples
	Conventions Used with the Examples
	Example: Customizing a Field on a Search Page
	Example: Customizing a Font Size on a Data Page

	4 Customizing Page Designs
	About Page Designs, Templates, and Pages
	Page Designs and Web Page Production
	When to Customize Page Designs

	Page Design Elements and HTML Template Generation
	Page Design File Names and Selectors
	Page Design Code Generation Processing
	Guidelines for Customizing Code Generation Directives

	Example: Customizing a Page Design
	Step�1. Create a New Design Directory
	Step�2. Identify the Design with a Bitmap and Text
	Step�3. Clear Existing Generated HTML Templates
	Step�4. Customize the Design Files
	Step 4.1.�Remove the Menu From the Data File
	Step 4.2.�Modify the Menu Design File
	Step 4.3.�Modify the Display Design File

	Step�5. Generate and Inspect
	Step�6. Fine-Tune the Customized Design

	5 Customizing Page Styles
	HTML 4.0 and Style Sheets
	WebEnterprise Designer and Style Sheets

	Using HTML Style Elements with WebEnterprise Designer
	Identifying the Style Sheet to Use
	Using HTML Attributes
	The class Attribute
	The id Attribute

	Using HTML Style Elements

	Customizing Page Styles
	Outline of Basic Procedures
	Creating the New Style Sheet File
	Modifying Existing Elements
	Adding New Elements
	Identifying the Style with a Bitmap and Text
	Considering the Browser
	Browser Caching
	Browser Independence

	6 Customizing Error Pages
	WebEnterprise Exception Handling
	Default Exception Processing
	WebEnterprise Exception Result Set Variables
	HTMLScannerException Class Variables
	HTTPAccessException Class Variables
	Variables for All Other Exceptions

	Customizing Error Pages
	Modifying Default Error Pages
	Creating Custom Error Pages
	Customizing a WebEnterprise Designer HTML Application
	The GetErrorTemplate Method
	Example: Application-Specific Error Template
	Example: Application-Specific Template with Custom Data

	Customizing HTTPAccessExceptions
	Errors in Error Customization

	7 Customization Examples
	Introduction
	Methods for Editing Generated Files
	Using the Page Handler Customization Wizard
	Customizing TOOL Methods Manually
	Customizing Generated HTML and Text Files Manually

	Example: Adding a Lookup Reference Page
	What This Example Does
	Creating a Lookup Link
	Step 1.�Add a Reference Page to the HTMLtutApp Model
	Step 2.�Capture the Search Page URL
	Step 3.�Create a Link with the Captured URL
	Step 4.�Pass the Selected Field Value

	Testing Your Work Before the Final Step
	Step 5.�Remove the CustomerOrder-CustomerList Link

	Usage Recommendations

	Example: Passing Data with a Command Link
	What This Example Does
	Creating the Customization
	Step 1.�Add Insert and Update Commands (If Required)
	Step 2.�Add a Variable to Hold the Value
	Step 3.�Single Out One Instance of the Data
	Step 4.�Populate the Order Number with Incoming Data

	Testing Your Work

	Example: Automatically Populating Data on an Insert Page
	What This Example Does
	Creating the Customization
	Step 1.�Add a NewOrder Page to the HTMLtutApp Model
	Step 2.�Add a Variable to Hold the Value

	Testing Your Work

	Example: Adding a Drop List for Entering and Formatting Dates
	What This Example Does
	Creating Date-Formatting Drop Lists
	Step 1.�Define Drop Lists for Date Elements
	Step 2.�Override the BeforeInsert Method

	Testing Your Work

	Example: Removing a JavaScript Validation from a Page Mode
	What This Example Does
	Creating the Customization
	Step 1.�Apply the JavaScript to a Customer Page Field
	Step 2.�Remove the JavaScript Validation from a Template

	Testing Your Work

	Example: Displaying the Record Just Inserted
	What This Example Does
	Creating the Customization
	Testing Your Work

	Example: Validating a Whole Form
	What This Example Does
	Creating a Field Constraint with JavaScript
	JavaScript Boilerplate
	Step 1.�Add the JavaScript Validation to the Template
	Step 2.�Add a Value Attribute to the Field Descriptions
	Step 3.�Modify the Insert Button

	Testing Your Work

	Example: Making a Field Mandatory
	What This Example Does
	Creating a Field Constraint with TOOL
	Testing Your Work

	Drop List or Radio List Example: Entering Lookup Information Manually
	What This Example Does
	Creating the Customization
	Step 1.�Add a Drop List Validation to the Field
	Step 2.�Generate the Lookup File
	Step 3.�Customize the Lookup File with Your Values

	Testing Your Work

	Drop List and Radio List Example: Removing <Not Selected> and <None>
	What This Example Does
	Creating the Customization
	Technique 1: Customizing the Page Mode Template
	Technique 2: Customizing the Scripts File

	Testing Your Work

	8 Customizing Application Security
	Security and HTML Applications
	Authenticating Users
	Creating the Logon Page
	Code Generated for the Logon Page
	How the Logon Page is Activated

	Integrating the Application with an Authentication System
	Example: Adding LogonSession Code

	Restricting Access to Application Pages
	Sharing a Security Environment Across HTML Applications
	Customizing Subsidiary HTML Models to Share Security
	Customizing the Main HTML Model to Share Security
	Restrictions
	Summary

	Session Timeout
	How Session Timeout Works
	Finding the Ideal Setting for Session Timeout
	Example: Customizing Session Timeout

	Other Security Customizations

	9 Partitioning and Deploying a WebEnterprise Designer Application
	About Partitioning a WebEnterprise Designer Application
	About HTML Application Projects and Service Objects
	business_modelServices Service Objects
	html_modelHandlers Service Objects
	Relationship Between the Service Objects
	Creating a Default Partitioning Configuration
	Modifying the Configuration

	Testing the Application in a Distributed Environment
	Deploying the Application
	Making the Application’s Template Files Accessible to the ScannerService SO
	Copying the Application’s Template Files to the Scanner Partition
	Setting Document Root on the ScannerService Service Object Partition

	Running the Application
	The AccessService Log File
	Memory Considerations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

