
Forte Fusion Backbone Integration Guide
Release 2.1 of Forte Fusion™
Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A. 1-800-786-7638

Part No. 806-7137-01
November 2000, Revision A

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights include U.S. Patent 5,457,797 and may include one or more
additional patents or pending patent applications in the U.S. or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. c-tree Plus is licensed
from, and is a trademark of, FairCom Corporation. Xprinter and HyperHelp Viewer are licensed from Bristol
Technology, Inc. Regents of the University of California. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Forte, and Forte Fusion are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Contents
Preface
About Forte Fusion . 10

Organization of this Manual . 12

Conventions. 13
Command Syntax Conventions . 13
Forte 4GL TOOL Code Conventions. 13

Fusion Example Programs. 14
Process Client Example Programs . 14
Backbone Example Programs . 14

Documentation . 15
Forte Fusion Documentation Resources . 15
Forte Fusion Process Management . 15
Forte Fusion Backbone. 16
Forte Application Environment. 16

Viewing and Searching PDF Files . 17

1 Introduction
Working with the Fusion Use Cases . 20

Using the Fusion Example Application . 21
Example Application Stylesheets. 21

Understanding XSL Stylesheets and XSL Transformations 22
Writing XSL Transformations. 23
Using Inbound and Outbound Stylesheets. 23

Inbound Transformations. 24
Outbound Transformations . 24

Developing Stylesheets with the Fusion Workshops 25

Developing Fusion Stylesheets: General Guidelines 27
Including Required Declarations and Processing Instructions. 27
Specifying the XML Output Type . 27
Creating Elements and Attributes. 27

Elements . 28
Attributes . 28

4

Developing Fusion Stylesheets: General Guidelines (continued)
Including Default Templates . 29

Overriding the Default for Text Nodes . 29
Combining Stylesheets . 30

Importing Subordinate Stylesheets . 30
Including External Stylesheets . 30

Reusing Templates . 31

Performing Common Fusion Stylesheet Transformations 32
Handling Process Attributes in Stylesheets . 32

Generating Process Attributes . 32
Transforming Process Attribute Lists . 33
Transforming Process Attribute Values . 34
Transmitting Application Documents as Process Attributes. 35

Supplying Activity Information to Applications . 36
Sending Messages to Applications . 36

Specifying the Message Type . 37
Communicating with Non-Partner Applications. 39

Communicating Between Applications Without A Process Definition 40
Creating an Inbound Stylesheet . 40
Configuring an Independent Proxy. 41
Omitting Fusion Process Management Functions . 41

2 Service Requestor Use Case
Use Case Summary . 44

Starting the Fusion Process. 45
Configuration Notes. 45
Step 1. Generating the Document Element . 46

Transformation Notes . 46
Step 2. Instructing the Engine to Start the Process 46

Transformation Notes . 47
Step 3. Passing Process Attributes to the Engine. 47
Command Document Example . 48

Document Notes . 49

Transforming State Information. 50
Step 1. Generating the Document Element . 50
Step 2. Generating the Application Command . 50

Transformation Notes . 51
Step 3. Creating the Message Content . 51

Transformation Notes . 51
Step 4. Generating Values for the Application . 52

Transformation Notes . 52
Generated Document Examples . 53

State Document . 53
Command Document . 54
Application Document . 54
Forte Fusion Backbone Integration Guide

5

3 Synchronous Service Provider Use Case
Use Case Summary .56

Communicating Synchronously With a Service Provider57
Step 1. Generating the Document Element. .57
Step 2. Generating a Message to the Application .58

Transformation Notes .58
Step 3. Providing the Message Content. .59

Transformation Notes .59
Step 4. Sending Process Attribute Values .60

Handling Redundant Values .60
Generated Document Examples .61

State Document .61
Command Document .62
Application Document .63

Receiving Synchronous Notification of Completion. .64
Step 1. Generating the Document Element. .64
Step 2. Sending a Command to the Engine. .64

Transformation Notes .64
Step 3. Returning Updated Process Attribute Values65
Command Document Example .65

Document Notes. .66

4 Asynchronous Service Provider Use Case
Use Case Summary .68

Communicating Asynchronously With a Service Provider70
Configuration Notes .71
Step 1. Generating the Document Element. .71
Step 2. Generating a Message to the Application .71

Transformation Notes .72
Step 3. Providing Identifying Information. .72

Transformation Notes .73
Step 4. Sending Process Attribute Values .74
Step 5. (HTTP Sessions) Receiving Acknowledgment from the Application 75

Transformation Notes .75
Generated Document Examples .76

State Document .76
Command Document .77
Application Document .79

Receiving Asynchronous Notification of Completion. .80
Step 1. Generating the Document Element. .80
Step 2. Sending a Command to the Engine. .81

Transformation Notes .81
Step 3. Identifying the Completed Activity to the Proxy 82

Transformation Notes .82
Step 4. Returning Updated Process Attribute Values83
Step 5. (HTTP Sessions) Acknowledging the Completion Message 84

Transformation Notes .84
Command Document Example .85

Document Notes. .86
Contents

6

5 Service Requestor Authentication Use Case
Use Case Summary . 88

Authenticating a Service Requestor with a Proxy . 90
Step 1. Configuring the Proxy for Authentication. 91

Setting Session Parameters . 91
Step 2. Creating a User Validation . 91
Step 3. Mapping Application Users to Fusion Users 92
Step 4. Submitting Authentication Information . 93

Sending a User Name and Password . 93
Sending an Authentication Document . 93
Creating an Authentication Document. 94
Example Authentication Document . 94

6 Service Provider Authentication Use Case
Use Case Summary . 96

Authenticating a Proxy with a Service Provider . 98

Configuring the Service Provider for Authentication . 99

Providing User Information to the Proxy. 100

7 Proxy Recovery Use Case
Use Case Summary . 102

Submitting a Recovered Activity to a Service Provider 103
Submitting the Activity . 103

Generated Document Examples . 105
State Document . 105

Document Notes . 106
Command Document . 106
Application Document . 106

Receiving Notification of Completion from the Application 107

Alternative Processing: Aborting the Recovered Activity 108
Transformation Notes. 108
Altering the Document Flow . 109
Generated Document Examples . 109

State Document . 109
Command Document . 109
Application Document . 109

8 Application Recovery Use Case
Use Case Summary . 112

Notifying the Proxy of Application Recovery . 114
Generated Command Document Example . 114

Submitting Activities to a Recovered Application . 115

Receiving Notification of Completion from the Application 116
Forte Fusion Backbone Integration Guide

7

9 Independent Proxy Use Case
Use Case Summary .118

Transferring Data Between Applications .119

Creating a Stylesheet for Data Transformation .120
Step 1. Overriding the Default for Text Nodes .120
Step 2. Generating the Command Document Element 121

Transformation Notes .121
Step 3. Generating the Command to Send a Message121

Transformation Notes .122
Communicating with Multiple Applications. .122

Step 4. Specifying the Target Application Location 122
Step 5. Generating a Message to the Target Application.122
Step 6. Generating the Target Application Document Element.123
Step 7. Specifying the Message Content .123

Transformation Notes .124
Sample Documents and Stylesheet .125

Initiating Application Document. .125
Inbound Stylesheet. .125
Command Document .127
Target Application Document .127

Configuring an Independent Proxy .128

10 Independent Proxy Authentication Use Case
Use Case Summary .130

Authenticating an Application To an Independent Proxy131
Authentication Message Flow. .131
Enabling Authentication .131

Submitting Authentication Information .132

Configuring the Proxy for Authentication .133
Step 1. Specify the Proxy As Independent .133
Step 2. Specify That the Proxy Require Authentication133
Step 3. Specify the Authentication Values. .133

Authenticating a Proxy To a Target Application .134

A Transforming Proxy Documents
Proxy Document Processing .136

XSL Stylesheets for the Proxy .136
Service Requestor Application .137
Service Provider Application .140

B Proxy Document Element Hierarchies
Command Document Element Hierarchy .146

State Document Hierarchy .147

Authentication Document Hierarchy. .148

Index . 149
Contents

8

Forte Fusion Backbone Integration Guide

Preface
The Forte Fusion Backbone is an enterprise application integration product that enables
communication between disparate applications. Forte Fusion enables platform-
independent automation and control of business processes through the use of a Fusion
process engine. Fusion also can integrate applications directly, without coordinating
activities through a process engine.

The Forte Fusion Backbone Integration Guide describes how to use Fusion to integrate
applications. Integrated applications exchange XML (Extensible Markup Language)
messages among themselves and Fusion application proxies. The manual explains how to
write XSL (Extensible Stylesheet Language) stylesheets, using XSLT (Extensible Stylesheet
Language Transformations) to transform XML documents. In this way, an application or an
application proxy can send documents that the recipient can understand and act upon.
The information is presented in a series of use cases that represent the most common
scenarios in a Fusion enterprise application.

The manual also provides introductory information about XSLT and the basic
transformations used with Fusion. Finally, the manual helps you perform tasks related to
integrating applications, including proxy configuration and application design
considerations.

This book is intended primarily for users who write XSL stylesheets, and secondarily for
application developers and Fusion system administrators. It assumes familiarity with Forte
Fusion (including process management concepts and Forte system management concepts,
as well as the HTTP protocol, XML, and XSL/XSLT. You also should be familiar with the
Fusion proxy documents and their XML vocabulary and structure. For information about
proxy document XML, see the Fusion Backbone online Help. For a list of related sources of
information, see “Documentation” on page 15.

About Forte Fusion10
About Forte Fusion
Forte Fusion is a suite of business integration tools for integrating and coordinating
heterogeneous applications. The tools and software components provided with Forte
Fusion let you integrate newly developed applications, legacy applications, and off-the-
shelf packages into business processes that are automated and controlled by a process
engine.

A Fusion system is a set of tools and software modules installed on top of a compatible
version of the Forte Application Environment. It is composed of two subsystems, a process
management system and an XML-based backbone system.

Fusion Process Management System The Fusion Process Management System
(formerly known as Conductor) provides a set of tools and software modules that support
the development, execution, and management of business processes. The heart of this
system is the Fusion Process Engine, which controls and manages business processes from
beginning to end, coordinating the work of the different resources or applications that
participate in the processes.

Forte Fusion customers use the Fusion Process Management System to:

■ develop process logic with the graphical process development workshops

■ manage sessions and processes, and the engine itself, using the Fusion Console and
other tools

■ build applications, called process clients, that make direct API calls to the process
engine, using the process client APIs (Forte 4GL, CORBA/IIOP, JavaBeans, ActiveX, or
C++)

Backbone System The Fusion Backbone System provides a set of tools and software
modules that use XML messaging over HTTP or JMS to simplify communication and
coordination between applications. A Fusion backbone can support different styles of
integration, but the backbone is always installed on top of the Fusion process engine
runtime. The heart of a backbone system is a set of application proxies that perform
message brokering and data transformation on behalf of applications. For business process
support, proxies interact with the Fusion process engine on behalf of any applications that
participate in a common business process. The main purpose of these interactions is to
communicate the initiation and completion of work activities.

Figure 1 Fusion System and Subsystems

Fusion System

Backbone
Manager

Process Management Backbone

Applications

Process
Engine

Management

Client Applications

Process Engine

Application
Proxies
Forte Fusion Backbone Integration Guide

About Forte Fusion 11
Forte provides adapters as well as an adapter toolkit to integrate packages or custom
applications that lack a native XML/HTTP interface into a Fusion backbone.

Forte Fusion customers use the Fusion Backbone System primarily to:

■ provide an XML/HTTP interface between proxies and applications

■ configure application proxies to participate in a managed business process

The XML/XSL Workshops provided with Fusion facilitate the development, testing,
debugging, storage, and management of sample XML documents and the XSL stylesheets
used for message transformation between applications.
Preface

Organization of this Manual12
Organization of this Manual
This manual begins with an introduction to XSL and guidelines for writing XSL stylesheets,
in general and in the context of a Fusion enterprise application. Most of the manual
consists of use cases that provide procedures for enabling the exchange of XML messages
in the most common scenarios you are likely to encounter. The manual also provides
appendixes that provide information about the flow and structure of the XML documents
that Fusion uses.

Briefly, the chapters of this manual are:

Chapter Description

Chapter 1, “Introduction” Provides an overview of the use cases presented in this
manual, XSL stylesheets, the Fusion example application,
and XSLT transformations

Chapter 2, “Service Requestor Use Case” Describes how to enable a service requestor application to
start a Fusion process

Chapter 3, “Synchronous Service Provider Use Case” Describes how to enable a Fusion proxy to request that a
partner application perform an activity; in this case, the
proxy waits for a response from the application

Chapter 4, “Asynchronous Service Provider Use
Case”

Describes a similar scenario to Chapter 3, except that the
application responds to the proxy during a subsequent
HTTP session

Chapter 5, “Service Requestor Authentication Use
Case”

Describes how to enable a partner application to
authenticate itself to a proxy when attempting to start a
Fusion process

Chapter 6, “Service Provider Authentication Use
Case”

Describes how to enable a proxy to authenticate itself to a
service provider application when requesting that the
application perform an activity

Chapter 7, “Proxy Recovery Use Case” Describes how to reestablish the flow of message between
a proxy and a partner application after the proxy has failed
and recovered

Chapter 8, “Application Recovery Use Case” Describes how to reestablish the flow of message between
a proxy and a partner application after the application has
failed and recovered

Chapter 9, “Independent Proxy Use Case” Describes how to use an independent proxy to transmit
XML documents between applications without being
connected to a Fusion process engine

Chapter 10, “Independent Proxy Authentication Use
Case”

Describes how to enable an application to authenticate
itself to an independent proxy

Appendix A, “Transforming Proxy Documents” Explains how messaging works within the proxy according
to the proxy’s function in a Fusion application system

Appendix B, “Proxy Document Element Hierarchies” Diagrams illustrating the element hierarchy and vocabulary
of Fusion proxy documents
Forte Fusion Backbone Integration Guide

Conventions 13
Conventions
This manual uses standard Forte documentation conventions in specifying command
syntax and in documenting Forte 4GL TOOL code.

Command Syntax Conventions
The specifications of command syntax in this manual use a “brackets and braces” format.
The following table describes this format:

Forte 4GL TOOL Code Conventions
Where this manual includes documentation or examples of Forte 4GL TOOL code, the
TOOL code conventions in the following table are used.

Format Description

bold Bold text is a reserved word; type the word exactly as shown.

italics Italicized text is a generic term that represents a set of options or values. Substitute an
appropriate clause or value where you see italic text.

UPPERCASE Uppercase text represents a constant. Type uppercase text exactly as shown.

underline Underlined text represents a default value.

vertical bars | Vertical bars indicate a mutually exclusive choice between items. See braces and brackets,
below.

braces { } Braces indicate a required clause. When a list of items separated by vertical bars is enclosed in
braces, you must enter one of the items from the list. Do not enter the braces or vertical bars.

brackets [] Brackets indicate an optional clause. When a list of items separated by vertical bars is enclosed
by brackets, you can either select one item from the list or ignore the entire clause. Do not
enter the brackets or vertical bars.

ellipsis … The item preceding an ellipsis may be repeated one or more times. When a clause in braces is
followed by an ellipsis, you can use the clause one or more times. When a clause in brackets is
followed by an ellipsis, you can use the clause zero or more times.

Format Description

parentheses () Parentheses are used in TOOL code to enclose a parameter list. Always include the parentheses
with the parameter list.

comma , Commas are used in TOOL code to separate items in a parameter list. Always include the
commas in the parameter list.

colon : Colons are used in TOOL code to separate a name from a type, or to indicate a Forte name in a
SQL statement. Always include the colon in the type declaration or statement.

semicolon ; Semicolons are used in TOOL code to end a TOOL statement. Always type a semicolon at the
end of a statement.
Preface

Fusion Example Programs14
Fusion Example Programs
Forte provides a number of example applications that illustrate Fusion features.

Process Client Example Programs
There are five different APIs available to build a Fusion process client. Example application
programs are provided for each API. Each API has its own example files in a subdirectory of
FORTE_ROOT/install/examples/conductr/. The PDF file in the examples subdirectory
explains how to install and run the example application.

The examples are described in the appendix of the Forte Fusion Process Development
Guide.

Backbone Example Programs
There are three Forte Fusion Backbone example programs: one illustrating the use of the
Forte 4GL TOOL with Fusion, another is an example written in ‘C’, and a third example
illustrates JMS messaging.

The example programs are installed under FORTE_ROOT/install/examples/fusion.

The directory containing each example includes a readme file. The readme file contains the
background information and configuration instructions. The Forte 4GL example is a
complete system, while the ‘C’ example is an optional replacement for some parts of the
Forte 4GL example.
Forte Fusion Backbone Integration Guide

Documentation 15
Documentation
The Fusion online documentation includes the complete documentation set and a master
index as PDF (Portable Document Format) files as well as online help. For details on
viewing and searching these files, see “Viewing and Searching PDF Files” on page 17.

When you are using a Fusion development application, press the Help key or use the Help
menu to display online help. The help files are also available at the following location in
your Fusion distribution: FORTE_ROOT/userapp/forte/cln/*.hlp (n indicates the release
number).

When you are using a script utility, such as Conductor Script (Cscript) or Fusion Script
(FNscript), type help from the script shell for a description of all commands, or help
<command> for help on a specific command.

Forte Fusion Documentation Resources
The Forte Fusion Installation Guide explains installation options and how to install the
Fusion product (both the Fusion Process Engine and the Fusion Backbone).

Other useful resources available in the Fusion product documentation directory are:

■ the fndoc.pdf file which serves as a home page for the entire documentation set

■ a master index for all Fusion PDF documentation

■ a glossary of terms

■ a list of resources for learning more about the underlying technologies

Forte Fusion Process Management
The complete documentation set for Forte Fusion Process Management consists of the
following manuals and online help:

■ Forte Fusion Process Development Guide. Explains how to create business process logic
using the graphical process development workshops.

■ Forte Fusion Process Management System Guide. Explains system management concepts
and facilities, how to register process definitions, how to configure and manage the
process engine, and other related tasks.

■ Forte Fusion Process Client Programming Guide. If you are building new applications
that interact directly with the process engine, this manual explains how to use one of
the provided process client APIs for that purpose. Use in conjunction with the API
reference in the online help.

■ Online help. Provides complete API reference for the process client APIs as well as task
Help on the workshops and the Fusion Console.
Preface

Documentation16
Forte Fusion Backbone
The documentation set for the Forte Fusion Backbone consists of the following manuals
and online help:

■ Forte Fusion Backbone System Guide. Explains the backbone architecture, proxy
concepts and features, and how to configure backbones and proxies. It includes a
reference for FNscript, the Fusion scripting language. This should be the first manual
you read if you are integrating an application or an adapter into a Fusion backbone.

■ Forte Fusion Backbone Integration Guide. Explains how to develop XSL stylesheets and
perform other integration tasks so that appropriate XML message transformations can
occur between applications and proxies. The manual is used in conjunction with the
Forte Fusion Backbone System Guide and the Fusion Backbone online help.

■ Fusion Backbone online help. Explains proxy document XML, how to use the XML/XSL
workshops to create, debug, and manage XML documents and XSL stylesheets, how
XSLT and standard XML parsers are supported in Fusion, and provides a complete
reference for the HTTPSupport (formerly the HTTP-DC) API. The Forte HTTPSupport
API enables the development of standard HTTP communication services for
transporting and managing HTML and XML messages.

■ Forte Fusion Adapter Development Guide. Explains how to use the Forte Fusion software
development kit to build a custom Fusion adapter for HTTP services. Discusses the
design and functioning of a Fusion adapter, and includes guidance on using the ‘C’ and
Forte 4GL TOOL adapter SDKs. Use in conjunction with the Fusion Backbone online
help, which explains the HTTPSupport API, as well as with the adapter readme files. The
following table indicates the location of readme files that contain further information
about the ‘C’ adapter functions and the ‘C’ and TOOL adapter example programs:

Forte Application Environment
Forte provides a comprehensive documentation set describing the libraries, languages,
workshops, and utilities of the Forte Application Environment. For the complete Forte
Release 3 documentation set, see the Forte documentation listed on the Forte
CyberSupport page at http://www.forte.com/support.

Contents Location

Installing TOOL adapter example program FORTE_ROOT/install/examples/fusion/toolcon/readme.htm

Installing ‘C’ adapter example programs FORTE_ROOT/install/examples/fusion/ccon/readme.htm

Explanation of ‘C’ adapter functions and #defines FORTE_ROOT/install/fusion/ccon/fnconect.htm
Forte Fusion Backbone Integration Guide

Viewing and Searching PDF Files 17
Viewing and Searching PDF Files
You can view and search Fusion PDF files directly from the product CD-ROM, store them
locally on your computer, or store them on a server for multiuser network access.

There are two ways you can look up information in the Fusion documentation set:

■ view and search PDF files directly from the product CD-ROM

The Fusion documentation set has been indexed with Acrobat Catalog. Use Acrobat
Reader with Search to search for text strings across the book set and click hypertext links
to display the specified content.

■ look up index entries in the Forte Fusion Master Index, included on the product
CD-ROM

The master index also helps you find content across the full documentation set. It is a
composite of all Fusion book indexes and is intended to be displayed online or printed
to your local printer. It does not provide hypertext links to entries as the individual book
indexes do.

Note You need Acrobat Reader 4.0+ to view and print the files. Acrobat Reader with Search is
recommended and is available as a free download from http://www.adobe.com. If you do
not use Acrobat Reader with Search, you can only view and print files; you cannot search
across the collection of files.

� To copy the documentation to a client or server:

1 Copy the fortedoc directory and its contents from the CD-ROM to the client or server
hard disk.

You can specify any convenient location for the fortedoc directory; the location is not
dependent on the Forte distribution.

2 Set up a directory structure that keeps the fndoc.pdf and the fusion directory in the
same relative location.

The directory structure must be preserved to use the Acrobat search feature.

Note To uninstall the documentation, delete the fortedoc directory.

� To view and search the documentation:

1 Open the file fndoc.pdf, located in the fortedoc directory.

2 Click the Search button at the bottom of the page or select Edit > Search > Query.

3 Enter the word or text string you are looking for in the Find Results Containing Text field
of the Adobe Acrobat Search dialog box, and click Search.

A Search Results window displays the documents that contain the desired text. If more
than one document from the collection contains the desired text, they are ranked for
relevancy.

Note For details on how to expand or limit a search query using wild-card characters and
operators, see the Adobe Acrobat Help.

4 Click the document title with the highest relevance (usually the first one in the list or
with a solid-filled icon) to display the document.

All occurrences of the word or phrase on a page are highlighted.
Preface

Viewing and Searching PDF Files18
5 Click the buttons on the Acrobat Reader toolbar or use shortcut keys to navigate
through the search results, as shown in the following table:

6 To return to the fndoc.pdf file, click the Homepage bookmark at the top of the
bookmarks list.

7 To revisit the query results, click the Results button at the bottom of the fndoc.pdf home
page or select Edit > Search > Results.

Toolbar Button Keyboard Command

Next Highlight Ctrl+]

Previous Highlight Ctrl+[

Next Document Ctrl+Shift+]
Forte Fusion Backbone Integration Guide

Chapter 1
Introduction
This chapter provides an overview of the tasks and concepts involved in using Extensible
Markup Language (XML) and Extensible Stylesheet Language (XSL) to integrate
applications into a Fusion application. The chapter also discusses how to use this manual
and related tools for this purpose.

This chapter covers the following topics:

■ the Fusion use cases presented in the following chapters

■ the sample application included with your Forte installation

■ XSL stylesheets and XSL transformations

■ general guidelines for writing XSL stylesheets

■ handling common Fusion integration tasks in your XSL stylesheets

Working with the Fusion Use Cases20
Working with the Fusion Use Cases
Each of the following chapters of this manual describes a Fusion use case—a scenario that
represents a typical interaction between an application and the Fusion backbone. Taken
together, these cases present most of the typical situations that require XSL stylesheets
while using Fusion.

The following table lists the use cases presented in this manual:

For each case, the chapter provides a description of the case and procedures for enabling
its successful completion. These procedures describe how to write any required inbound or
outbound stylesheets, as well as other actions you must take, for example, configuring a
proxy with FNscript commands or defining Fusion process attributes.

The following table describes the information provided about each use case:

For a general overview of the Fusion processing involved in the service requestor and
service provider use cases, see Appendix A, “Transforming Proxy Documents.”

Chapter Use Case

Chapter 2, “Service Requestor Use Case” service requestor starts process

Chapter 3, “Synchronous Service Provider Use Case” service provider with synchronous processing

Chapter 4, “Asynchronous Service Provider Use Case” service provider with asynchronous processing

Chapter 5, “Service Requestor Authentication Use Case” service requestor with FusionXML authentication

Chapter 6, “Service Provider Authentication Use Case” service provider with FusionXML authentication

Chapter 7, “Proxy Recovery Use Case” proxy fails and recovers

Chapter 8, “Application Recovery Use Case” application fails and recovers

Chapter 9, “Independent Proxy Use Case” applications exchange XML documents through
independent proxy without a Fusion process engine

Chapter 10, “Independent Proxy Authentication Use
Case”

independent proxy requires authentication from
application (or must provide authentication to
application)

Use Case Information Description

description a brief description of the use case

expected outcome the actions that constitute the successful completion of the case, for example, a
Fusion process is started or an application performs an activity

actors the Fusion components and applications that take part in the case

proxy document flow the flow of proxy documents required for the case

required stylesheets the XSL stylesheets you write to enable the case to be completed successfully

other integrator tasks any additional actions you must perform, for example, configuring a proxy
Forte Fusion Backbone Integration Guide

Using the Fusion Example Application 21
Using the Fusion Example Application
Your Fusion installation includes an example application based on a Forte 4GL TOOL
adapter. The example represents an electronic customer order processing system, with
activities such as placing an order, verifying credit, and shipping the order.

You can find the example application in the following directory of your Fusion installation:

//FORTE_ROOT/install/examples/Fusion/toolcon

For information about installing and running the application, see the readme.htm file
included with the application.

Wherever possible, the use cases in this manual follow the example application. When the
application does not cover the scenario presented by a use case, the case conceptually
extends the example. Some examples from the application have been modified slightly for
the sake of brevity or clarity.

Example Application Stylesheets
The example application uses two XSL stylesheets:

■ orderin.xsl, an inbound stylesheet that transforms application documents into
command documents

■ orderout.xsl, an outbound stylesheet that transforms state documents into command
documents and application documents

These stylesheets have been written to provide examples of a wide range of
transformations required in integrating applications with Fusion. They are not meant to be
taken as guides to writing stylesheets for an actual order processing system.

Also, in the example application, all proxies share one set of stylesheets. This
implementation works in the example, because each of the activities uses the same XML
vocabulary and structure.

In actual practice, each activity might be a different type of application, for example a
legacy mainframe application or a third-party packaged application, with its own XML
vocabulary and structure. In such a real-world context, each proxy probably would have its
own set of stylesheets.

Note The stylesheet nopein.xsl is included as an example of an inbound stylesheet for use with
independent proxies.
Chapter 1Introduction

Understanding XSL Stylesheets and XSL Transformations22
Understanding XSL Stylesheets and XSL Transformations
An XSL stylesheet is an XML document that contains templates for transforming a source
document into a results document. In a Fusion enterprise application, each application
proxy has two associated stylesheets:

■ an inbound stylesheet that transforms an application document into a command
document

A command document instructs the proxy’s command processor to send instructions to
the Fusion process engine, to send messages to applications, or both. The inbound
stylesheet contains the rules that specify the commands and messages to send.

■ an outbound stylesheet that transforms a state document into command documents
and application documents

A state document is produced by a proxy and is based on information from the process
engine about the state of a process or activity. The outbound stylesheet contains rules
that specify how to generate a command document with further commands to the
engine, messages to applications, or both.

Figure 2 shows how a proxy applies an inbound stylesheet to an application document.

Figure 2 Applying an Inbound Stylesheet

Note The flow is reversed for outbound stylesheets, that is, the stylesheet is applied to a state
document, which is transformed into a command document that can produce an
application document.

A proxy can have one stylesheet that provides both inbound and outbound
transformations, although this is generally not good practice.

The following sections provide:

■ an overview of the kinds of transformations your XSL stylesheets should contain

■ an introduction to the XML/XSL workshops that Fusion provides for developing, testing,
and debugging stylesheets and for managing collections of stylesheets and sample XML
documents

For more information about proxy documents, see the Forte Fusion Backbone System Guide
and the Fusion Backbone online help.

Proxy

XSL
Processor Command

Document

Command
Processor

Inbound
stylesheet rules

XSL
Stylesheets

Instructions
to engine

Application
Document
Forte Fusion Backbone Integration Guide

Understanding XSL Stylesheets and XSL Transformations 23
Writing XSL Transformations
XSL stylesheets produce results documents by matching patterns in a source XML
document. For each pattern that your stylesheet matches, you provide a template that
describes how to render that pattern in the results document. To achieve this
transformation, you include an xsl:template element with the following format:

The value of the “match” attribute is the pattern you want to match in the source
document. This value can be as simple as an element name, or it can be a complicated
pattern that matches particular values somewhere in the source document.

Between the start and end tags of the xsl:template element, you use other XSL elements to
specify a template for rendering the item in the results document. The following example
matches an element called MsgDoc in the source document and transforms it into an
“FNCommand” element in a resulting command document:

While this template is very simple, you can use XSLT to specify more complex templates.
For example, the following template finds an element named Att in an application
document and transforms it into an FNProcessAttribute element (that corresponds to a
Fusion process attribute). The template also creates a Name attribute for the new element;
the value of this attribute is the value of the AttName element in the source document:

In addition to creating elements and attributes with different names, your templates can
apply functions to recompute source values, copy sections of the source tree directly into
the results tree, or specify more complex actions. Thus, your XSL stylesheets can provide a
wide range of transformations that might be needed in the fulfillment of your business
process.

Using Inbound and Outbound Stylesheets
A proxy is usually configured with two stylesheets:

■ Outbound stylesheets specify the rules applying to state documents produced by the
Fusion process engine.

■ Inbound stylesheets specify the rules applying to documents sent by the application to
the proxy.

The same stylesheets can apply in both directions, if appropriate.

Note An independent proxy—a proxy that is does not communicate with a process engine—
requires only an inbound stylesheet.

<xsl:template match="SourcePattern">

do something with the source document pattern that was matched...

</xsl:template>

Match the MsgDoc element <xsl:template match="MsgDoc">
Create a new element <xsl:element name="FNCommand"/>
End tag </xsl:template>

Match the Att element <xsl:template match="Att">

Create a new element <xsl:element name="FNProcessAttribute">

Create a new attribute <xsl:attribute name="Name">

Copy AttName element value <xsl:value-of select="AttName"/>

</xsl:attribute>

</xsl:element>

End tag </xsl:template>
Chapter 1Introduction

Understanding XSL Stylesheets and XSL Transformations24
The following sections provide a brief overview of the kinds of transformations that
inbound and outbound stylesheets might contain. For examples of Fusion stylesheets, see
the files orderin.xsl and orderout.xsl in the FORTE_ROOT/install/examples/fusion/toolcon
directory. These files are part of the TOOL adapter example application.

Inbound Transformations
An inbound stylesheet provides templates for transforming an application document into a
command document that tells the proxy what actions to take. These actions generally
result in instructions to the Fusion engine, responses to the application, or both.

For example, the following stylesheet instruction matches the NewOrder element in the
application source document; it then creates a template for an FNCndCommand element
in the resulting command document. Using a Command attribute, this element directs the
engine to create an instance of FNOrdersProcess:

In the above example, the <FNCndCommand…> tag by itself has the same effect as the
<XSL:element> tag shown previously; it creates a new element in the results document.

Outbound Transformations
After a proxy has instructed the process engine to perform an activity, the engine sends a
state document to the proxy describing the current state of the activity. An outbound
stylesheet transforms this state information into a command document.

Also, you might need to communicate process attribute values to an application. The
following template matches an FNProcessAttribute element and transforms it and the
information contained in its Name and Type attributes back into Att, AttName, and AttType
elements that are part of the application’s XML vocabulary. The template also places the
value of the FNProcessAttribute into an AttValue element:

In the above example, the “@” indicates an XML attribute. The line “<xsl:value-of
select="text()|*">” copies the textual content of the AttValue element to the results
document.

Find the NewOrder element <xsl:template match="NewOrder">

Create the FNCndCommand <FNCndCommand Command="CreateProcess"

element and its attributes ProcessName="FNOrdersProcess">

. . .

</FNCndCommand>

</xsl:template>

Match source element <xsl:template match="FNProcessAttribute">

Create Att element <Att>

Create AttName element <AttName>

Copy value of Name attribute <xsl:value-of select="@Name">

End tag </AttName>

Create AttType element <AttType>

Copy value of Type attribute <xsl:value-of select="@Type">

End tag </AttType>

Create AttValue element <AttValue>

Copy FNProcessAttribute value <xsl:value-of select="text()|*">

</AttValue>

</Att>

</xsl:template>
Forte Fusion Backbone Integration Guide

Understanding XSL Stylesheets and XSL Transformations 25
Developing Stylesheets with the Fusion Workshops
Fusion provides two graphical workshops that you can use to create, test, and manage the
stylesheets you want to use with a Fusion backbone:

■ The XML/XSL Plan Workshop lets you define collections of XML source documents and
XSL stylesheets to use for testing and debugging.

Source documents can be actual application documents or documents that you create
for testing purposes. You can create documents directly in the workshop or import
existing files. You also can register stylesheets with Fusion backbones directly from this
workshop.

Figure 3 shows an XML/XSL Plan with an XML source document and two XSL
stylesheets:

Figure 3 XML/XSL Plan Workshop

■ From the XML/XSL Plan Workshop, you can open the XML/XSL Workshop. This second
workshop lets you edit and debug your XML source documents and XSL stylesheets.

You can validate source documents and stylesheets to ensure that they are well-formed,
and process source documents against a stylesheet to generate an XML results
document. The workshop debugger makes it easy to find and fix any errors in your
stylesheets before you register them. For ease in debugging, you can simultaneously
display your XML input, XML output, and the associated XSL stylesheet.
Chapter 1Introduction

Understanding XSL Stylesheets and XSL Transformations26
Figure 4 shows the XML/XSL Workshop with an XML source document, XSL stylesheet,
and XML results document:

Figure 4 XML/XSL Workshop

For information about using the XML/XSL Plan Workshop and the XML/XSL Workshop, see
the Fusion Backbone online help.
Forte Fusion Backbone Integration Guide

Developing Fusion Stylesheets: General Guidelines 27
Developing Fusion Stylesheets: General Guidelines
The following sections provide some general guidelines for writing XSL stylesheets for a
Fusion enterprise application. For more information about Fusion XSL support, see the
Fusion Backbone online help.

Including Required Declarations and Processing Instructions
The proxy’s XSL processor expects the XML declaration and the XSL stylesheet element,
containing the XSL namespace declaration, as the first two lines of all stylesheets. The last
line of the stylesheet must be the close tag for the stylesheet element.

Include the following declarations in all your Fusion stylesheets:

You can use <xsl:transform> and </xsl:transform> interchangeably with the xsl:stylesheet
start and end tags.

When you create your stylesheets in the Fusion XML/XSL Workshop, the required items are
added automatically.

Specifying the XML Output Type
When you process an XML source document with an XSL stylesheet, the results document
can be any of several types—HTML, plain text, or XML. All Fusion documents must have
XML as their type so that the proxy can process them.

To specify that your results documents be XML documents, include the following
instruction in each of your stylesheets:

The indent attribute specifies that the lines of the results document be indented to reflect
the document’s XML hierarchy. Although the proxy does not require indentation to process
the document, you can read an indented document more easily in the XML/XSL Workshop
or other XML editor.

Creating Elements and Attributes
Many of your applications, as well as Fusion itself, have distinct XML vocabularies. Thus an
element or attribute in one vocabulary may have a different name in another vocabulary.
Also, one application may store certain values as elements, and another application may
store those values as attributes.

Many of the transformations you must write, therefore, involve creating new XML elements
and attributes in the results document. For example, Fusion uses an FNProcessAttribute
element to indicate a data value. However, an application may use an element called Att to
represent a data value. Thus, when you send a message from the proxy to the partner
application, you must transform each FNProcessAttribute element into an Att element, so
that the client can process the value.

This section describes how to create elements and attributes.

For more information about working with process attributes, see “Handling Process
Attributes in Stylesheets” on page 32.

<?xml version="1.0"?>

<xsl:stylesheet http://www.w3.org/1999/XSL/Transform"

version="1.0">

. . .

</xsl:stylesheet>

<xsl:output method="xml" indent="yes"/>
Chapter 1Introduction

Developing Fusion Stylesheets: General Guidelines28
Note An XML attribute is a value attached to an element. A Fusion process attribute is a value
defined as part of a process definition. While XML attributes and process attributes can be
transformed into each other in a Fusion application, there is no inherent relationship
between the two entities.

Elements
Use either of the following methods in your XSL stylesheets to create elements in your
results document:

Literal result element Include the element in the stylesheet as you want it to appear in the results document. The
XSL processor copies it to the results document as a literal result element.

To create an element called WorkType in an application document, include the following
line in your outbound stylesheet:

xsl:element Use the xsl:element element, specifying the new element name as the value of the Name
attribute.

To create the WorkType element using xsl:element, include the following lines in your
outbound stylesheet:

The two methods are functionally identical, and which one you use is strictly a matter of
personal preference. While xsl:element is more verbose, it can make the stylesheet easier to
read.

Attributes
Similarly as for elements, there are two methods to create attributes in results documents:

Literal result element Specify the attribute name and value as literal result elements.

To create the WorkOrder element with a WorkType attribute whose value is “New Work,”
include the following lines in your outbound stylesheet:

xsl:attribute Use the xsl:attribute element to create the new attribute.

The xsl:attribute element has a required name attribute that specifies the name of the
attribute to create. You specify the attribute value as text (with whitespace being
significant) within the xsl:attribute element start and end tags.

To create the WorkType attribute, with a value of “NewWork,” as shown in the previous
example, include the following lines in your outbound stylesheet:

Again, this alternative is more verbose, but it makes the stylesheet more readable. Also, you
must use this method if you are creating new attributes for existing elements.

Create new element <WorkType/>

Create new element <xsl:element name="WorkType">

End new element </xsl:element>

New element and attribute <WorkOrder WorkType="NewWork"/>

Create WorkType attribute <xsl:attribute name="WorkType">NewWork</xsl:attribute>
Forte Fusion Backbone Integration Guide

Developing Fusion Stylesheets: General Guidelines 29
Including Default Templates
As part of its standard implementation, XSLT provides default templates to ensure that all
elements of a source XML document are processed by a stylesheet. Even though the Fusion
XSL processor observes these defaults, it is good practice to include explicitly the two most
important default templates in all your stylesheets. Doing so helps with debugging, and it
also ensures that the stylesheets are portable to other XSL processors.

The first of these defaults matches the root element of the source document, then
recursively processes all its children, that is, all the nodes of the source document:

Because the root element is always matched, this template ensures that all child nodes of
the root element are processed, even when there are no explicit matches in the stylesheet.

The other default rule you should include processes all text nodes of the source document.
This rule is useful to ensure that all data values that are stored in the source document as
text are copied to the results document, even if there are not specific matches on the
elements that contain these values.

Note There are situations where you do not want all text nodes to be copies to the results
document. For information about overriding the default behavior, see the next section,
“Overriding the Default for Text Nodes.”

The default rule for text nodes concatenates the values of all text nodes and copies them to
the results document:

Note The “@*” in the above template, indicating a match for any attribute node, is shown for
compliance with the XSLT Recommendation. Because attributes technically are not child
nodes, however, they are never implicitly matched by the first default template shown
above. Therefore, you can omit the match for attributes, and include the match for text
nodes only.

Overriding the Default for Text Nodes
You often do not want all text nodes copied to the results document. Rather, you only want
the text that your stylesheet explicitly matches.

For example, if your application document contains multiple customer orders, the default
rule for text nodes might cause the data from all orders to be copied to the results
document. However, you might only want to process only selected orders and ignore the
others.

Match the root element <xsl:template match="/">

Process children of root <xsl:apply-templates/>

<xsl:template>

Match any text node <xsl:template match="text()|@*">

Copy value of current node <xsl:value-of "."/>

</xsl:template>
Chapter 1Introduction

Developing Fusion Stylesheets: General Guidelines30
� To copy text nodes selectively to the results document:

1 Include the following template in place of the usual default for text nodes:

This “empty” template matches any text node. However, rather than performing some
action on the match, as the default template does, it simply ends (with the “/”), doing
nothing.

Thus, rather than copying the text to the results document, as the default rule does, the
template simply ignores the match.

2 Include templates in your stylesheet to match the specific text you want to appear in the
results document.

Combining Stylesheets
If some of your stylesheets repeat the same transformations, you can create one or more
stylesheets with common transformations, then use these stylesheets as part of the
stylesheets you write for specific proxies.

XSLT provides two elements for using a stylesheet within another stylesheet:

■ xsl:import

■ xsl:include

The following subsections describe how to use these elements.

Importing Subordinate Stylesheets
To import a stylesheet as a subordinate of your main stylesheet, use the following element:

where imported_stylesheet is an absolute pathname or a pathname relative to the current
stylesheet.

You must place the xsl:import tag at the top level of the stylesheet (as a child of the root
element), immediately after the xsl:stylesheet declaration.

When there are conflicting templates between the main stylesheet and the imported
stylesheet, the templates in the main stylesheet always take precedence. If you import
multiple stylesheets, each new import overrides the earlier imports, with the importing
stylesheet having the highest precedence of all.

Including External Stylesheets
To include external stylesheets without concern for precedence, use the following element:

where included_stylesheet is an absolute pathname or a pathname relative to your main
stylesheet.

<xsl:template match="text()"/>

<xsl:import href="imported_stylesheet"/>

<xsl:include href="included_stylesheet"/>
Forte Fusion Backbone Integration Guide

Developing Fusion Stylesheets: General Guidelines 31
The templates in an included stylesheet are evaluated as though they were part of the main
stylesheet. Where there are conflicting templates, the normal rules of priority apply. For
information about template conflict resolution, see the XSLT Recommendation at
http://www.w3.org/TR/xslt#conflict.

The Fusion processor resolves conflicts by using the template that occurs last in the
stylesheet.

The xsl:include element must be at the top level of the main stylesheet (as a child of the
root element). While there are no restrictions on where in the stylesheet you place the
xsl:include element, it is good practice to put it right after the xsl:stylesheet element for
readability.

Reusing Templates
In addition to reusing entire stylesheets, you can name individual templates and reuse
them later in a stylesheet. For example, you might create a template that sends a specific
message to an application, then invoke this template when different elements in the
application document are matched.

To name a template, include a name value in the “name” attribute of the xsl:template
element. The following example creates a template named “AppMsg” that sends a message
to an application:

To invoke this template, use the xsl:call-template element within any desired xsl:template
element:

Name the template <xsl:template name="AppMsg"/>

Send application a command <FNAplCommand Command="SendMessage" Method="Post">

Create the message <FNMessage>

lengthy message goes here...

</FNMessage>

</FNAplCommand>

</xsl:template>

Match an element <xsl:template match="MsgDoc">

Call the named template <xsl:call-template name="AppMsg"/>

</xsl:template>
Chapter 1Introduction

Performing Common Fusion Stylesheet Transformations32
Performing Common Fusion Stylesheet Transformations
A primary task involved in integrating your applications with Fusion is to write the XSL
stylesheets that transform your proxy documents. For example, you must transform an
application document containing a new customer order into a command document to
start a Fusion process. For each use case in this manual, detailed procedures are provided
for writing the specific XSL transformations required for the successful completion of the
scenario.

There are a number of transformations, however, that are common to many of the
stylesheets you write as part of a Fusion enterprise application. The following sections
provide instructions for including some of these transformations in your stylesheets.

Handling Process Attributes in Stylesheets
When you create a Fusion process definition, you define process attributes to hold values
that are used by the applications in the process. In a Fusion enterprise application, both
inbound and outbound stylesheets often need to manipulate Fusion process attributes:

■ Inbound stylesheets take values from an application document (or supply values
themselves) and place them into Fusion process attributes.

■ Outbound stylesheets retrieve process attribute values from state documents and can
send them to an application.

The following sections describe how your stylesheets can generate and retrieve process
attributes. For more information about creating process attributes in Fusion, see the Forte
Fusion Process Development Guide.

Generating Process Attributes
Inbound stylesheets often need to generate Fusion process attributes so that processes can
be started and activities completed. To declare process attributes, include the following
elements in an inbound stylesheet:

■ FNProcessAttributeList to define a list of process attributes

■ FNProcessAttribute to define a process attribute

The FNProcessAttribute element has required Name and Type attributes to specify the
process attribute name and data type.

For Fusion to use any process attributes you generate through a stylesheet, the process
attribute must have been created as part of the Fusion process definition, and the names
and data types must match those you specify in the Name and Type attributes of the
FNProcessAttribute element. Fusion ignores any process attributes created by a stylesheet
if the process attributes are not known to the process engine.

For an application to return an updated value for a process attribute, the process attribute
must have been defined with a lock type of Write or WriteQueue in the Fusion process
definition. For information about lock types, see the Forte Fusion Process Development
Guide.
Forte Fusion Backbone Integration Guide

Performing Common Fusion Stylesheet Transformations 33
Process Attribute Creation Example

The following example matches the Customer element in an application document, then
creates a list with two process attributes based on values found in the application
document:

■ The CustName process attribute derives its value from the CustomerName child of the
Customer element.

■ The CustID process attribute derives its value from the CustomerID attribute of the
Customer element.

A stylesheet not only can create a process attribute, but also can set its value, rather than
obtaining the value from the application. The following example creates a process attribute
called OrderStatus, and supplies a value of “New Order”:

Transforming Process Attribute Lists
The state document for an activity also contains the current values for any process
attributes specified in the application dictionary entry for the activity. The process attribute
list has the following structure:

You often need to provide these values to the application, for example, when requesting a
service provider to start an activity. To do so, your outbound stylesheet must transform the
process attribute list in the state document into a vocabulary and structure that the
application understands.

In the example application, the process attribute list is transformed into an element called
Atts in the application document. Each process attribute corresponds to a child element
called Att. Finally, the name, data type, and value of each process attribute correspond to
the AttName, AttType, and AttValue child elements of the Att element.

Match Customer element <xsl:template match="Customer">

Create process attribute list <FNProcessAttributeList>

Create process attribute <FNProcessAttribute Name="CustName" Type="TextData">

Get value from source element. <xsl:value-of select="CustomerName">

</FNProcessAttribute>

Create process attribute <FNProcessAttribute Name="CustID" Type="TextData">

Get value from source attribute <xsl:value-of select="@CustomerID">

</FNProcessAttribute>

</FNProcessAttributeList>

</xsl:template>

Create the process attribute <FNProcessAttribute Name="OrderStatus" Type="TextData">

Define process attribute’s value New Order

</FNProcessAttribute>

<FNProcessAttributeList>

<FNProcessAttribute Name="proc_att_name" Type="data_type">

attribute_value

</FNProcessAttribute>

additional process attributes...

</FNProcessAttributeList>
Chapter 1Introduction

Performing Common Fusion Stylesheet Transformations34
Your outbound stylesheet must provide two templates to perform these transformations:

■ a template to transform the FNProcessAttributeList element into the Atts element

■ a template to transform each FNProcessAttribute element and its attributes into an Att
element and its child elements

Process attribute list To transform a process attribute list for an application document, include a template like
the following in an outbound stylesheet:

Process attributes To transform a process attribute for an application document, include a template like the
following in an outbound stylesheet:

Transformation Notes

In the above template:

■ The values of the newly generated AttName and AttType elements are supplied by
copying the values of the FNProcessAttribute element’s Name and Type attributes.

■ To place the process attribute value into the AttValue element, the template copies any
text nodes found within the FNProcessAttribute element.

Transforming Process Attribute Values
Application document elements or attributes and their corresponding Fusion process
attributes might have different data formats as well as different names. Also, applications
within the same process might represent names differently, or use different units of
measurement or currency.

For example, customer John Smith might be known to one application as follows:

<CustomerName>
<FirstName>John </FirstName>
<LastName>Smith</LastName>

</CustomerName>

Match process attribute list <xsl:template match="FNProcessAttributeList">

Create app doc list element <Atts>

Process children <xsl:apply-templates/>

</Atts>

</xsl:template>

Match process attribute
element

<xsl:template match="FNProcessAttribute">

Create Att element in app doc <Att>

Create AttName child element <AttName>

Copy value of Name attribute <xsl:value-of select="@Name">

</AttName>

Create AttType child element <AttType>

Copy value of Type attribute <xsl:value-of select="@Type">

</AttType>

Create AttValue child element <AttValue>

Copy value of process attribute <xsl:value-of select="text()|*">

</AttValue>

</Att>

</xsl:template>
Forte Fusion Backbone Integration Guide

Performing Common Fusion Stylesheet Transformations 35
However, the corresponding Fusion process attribute might represent customer John Smith
as follows:

<CustName>John Smith</CustName>

Thus, when your inbound stylesheet generates the process attribute, it also must change
the way the value is represented. When the outbound stylesheet sends the process attribute
value back to the application, it also must change its representation back to what the
application understands.

XSLT, through XPath, provides a wide variety of functions for manipulating character and
numerical data. In the following example shown here, when you generate the CustName
element, you also must use a concatenation function to combine the first and last names of
the customer.

To accomplish this task, use a template like the following:

To transform the customer name in the opposite direction, apply another XPath string
function that deconstructs the single name value into first and last names.

For information on the full set of functions available, see the XPath recommendation at
http://www.w3c.org.

Transmitting Application Documents as Process
Attributes
You might want the application document that initiates a Fusion process to be transmitted
as a Fusion process attribute to additional applications in the process. In this way, each
application can share a business object, such as a customer order or employee record.

� To transmit an application document as a process attribute:

1 In your Fusion process definition, declare a process attribute of type XmlData to hold
the application document.

For greatest run-time efficiency, create a read-only process attribute to hold the
application document. That is, do not modify the original document as it moves
through the process (in much the same way that you would pass an original paper
document such as a purchase order unchanged through a manual process).

2 In your inbound stylesheet that processes the application document, generate the
process attribute defined in Step 1.

3 Use an xsl:copy-of element to match the root element of the application document,
then copy all its children (that is, the entire document) into the process attribute you
created in Step 2.

The following stylesheet transformations perform Step 2 and Step 3:

If you want subsequent applications in the process to modify parts of the original
document, for example, order status or completion date, create individual Fusion process
attributes with Write or Write Queue locks. To pass the information as an XML document,
create the process attribute with the XmlData data type.

Create the process attribute <FNProcessAttribute Name="CustName" Type="TextData">

Combine app. element values <xsl:value-of select="concat(FirstName,LastName)">

</FNProcessAttribute>

Create the process attribute <FNProcessAttribute Name="CustOrder" Type="XMLData">

Select root; copy to result tree <xsl:copy-of select="/">

</FNProcessAttribute>
Chapter 1Introduction

Performing Common Fusion Stylesheet Transformations36
Supplying Activity Information to Applications
The Fusion process engine generates a state document with information about an activity
who state has changed to ACTIVE. This information is contained in an FNIdentity element,
each attribute of which specifies information about the activity, for example, the process ID
or activity name.

For a complete description of the FNIdentity element and its attributes, see the Fusion
Backbone online help. For information about activity states, see the Forte Fusion Process
Development Guide.

Your outbound stylesheets can retrieve the value of an FNIdentity attribute from the state
document, then present it in a format that is meaningful to the application.

� To supply activity information to an application:

1 Include a template that matches the value of the desired attribute of the FNIdentity
element.

2 Create a new element that the application understands.

3 Copy the value of the attribute into the new element.

The following example matches the ProcessID attribute of the FNIdentity element and
passes its value to the partner application as the order confirmation number:

Specifically, the template in this example uses an XPath location path to match the desired
value in the state document. This location path specifies an FNIdentity element that is a
child of a FNCndState element with a State attribute (indicated by “@State”) whose value is
“ProcessStarted.” The xsl:value-of element copies the value of the ProcessID attribute into
the new Cfnumber element.

For more information about the structure and vocabulary of state documents, see the
Fusion Backbone online help.

After you create the elements you want, you then can pass them to an application as
described in the following section, “Sending Messages to Applications.”

Sending Messages to Applications
Both inbound and outbound stylesheets can specify that messages be sent to applications.
An inbound stylesheet might generate a message to let the application know that the
application document has been received. An outbound stylesheet might generate a
message based on the state of an activity, for example, that the activity has been started.

Your stylesheets thus need to include rules for generating such messages. You use the
following elements in your stylesheets to generate messages to applications:

■ FNAplCommand to specify how to send the message

■ FNMessage to indicate the start and end of the message

Whatever you include between the start and end tags of the FNMessage element is sent
as the body of the message.

Match relevant State attribute
of the FNIdentity element

<xsl:template
match="FNCndState[@State=’ProcessStarted’]/FNIdentity">

Create the Cfnumber element <Cfnumber>

Give it value of process ID <xsl:value-of select="@ProcessID"/>

</Cfnumber>

</xsl:template>
Forte Fusion Backbone Integration Guide

Performing Common Fusion Stylesheet Transformations 37
Specifying the Message Type
Use the Command attribute of the FNAplCommand element to specify how to send the
message to the application. This attribute can take either of these values:

■ SendResponse to send an HTTP message in response to the application’s message

■ SendMessage to send a new HTTP message and wait for a response

When you use SendMessage, specify either of the following HTTP methods for sending the
message content:

■ Get appends the contents of the message to the URL used to contact the application.

■ Post includes the contents of the message in the body of the HTTP message, so that it is
not visible as part of the URL.

Post is the more secure method. However, the application must be capable of receiving
messages sent with the Post method.

For the complete syntax of the FNAplCommand element, see the Fusion Backbone online
help.

JMS Considerations

Proxies configured for JMS also use the FNAplCommand to generate messages to
applications, but be aware of the following special considerations:

■ If you use SendResponse to respond to an incoming JMS message, then the body of the
XML must be empty.

■ The method (Get or Post) must be specified, even though it is ignored by proxies
configured for JMS.

Completing a Roundtrip Communication

The HTTP communication protocol that Fusion uses is a request/response protocol. That is,
when an HTTP client sends a request to an HTTP server, the server must respond to the
client in some way, even if only to acknowledge receipt of the request.

For example, when you enter a URL into a Web browser (an HTTP client), the Web server
(HTTP server) responds by displaying the page. If the server cannot find the page, it must
send a message to this effect to the browser.

Note JMS is inherently an asynchronous communication protocol. This section on round-trip
communication applies only to proxies configured for HTTP.

HTTP messages can have two parts:

■ a header containing metadata about the message, such as the recipient’s name and
location

■ a message body with the contents of the message, such as the customer order

Every HTTP message has a header; the body is optional. You often use an HTTP header
with no body, known as an empty message, when you have no information to transmit, but
you simply need to complete an HTTP communication cycle.

In Fusion, when a partner application sends an application document to the proxy, the
proxy must complete the communication in either of these ways:

■ The outbound stylesheet generates an FNAplCommand element whose Command
attribute has a value of “SendMessage.” The FNAplCommand element contains an
FNMessage element that contains an application document to send to the application.
Chapter 1Introduction

Performing Common Fusion Stylesheet Transformations38
■ The inbound stylesheet generates a response in the form of an empty FNAplCommand
element whose Command attribute has a value of “SendResponse.” In this case, the
proxy sends a message header only, with no message content.

When the proxy generates such a response, any subsequent message from the
application, for example a message that the activity has been performed, constitutes the
beginning of a new roundtrip communication. To complete this communication, your
inbound stylesheet must have another template to generate a response to this second
application document. (This response also could be in the form of an empty
FNAplCommand element.)

For an example of this message-response cycle, see Chapter 4, “Asynchronous Service
Provider Use Case.”

For more information about the HTTP protocol, see the HTTP specification at
http://www.w3.org/Protocols/.

Message Examples

The following examples show templates you can include in stylesheets to send messages to
applications. The examples assume you have a proxy configured for HTTP communication.
The differences for proxies configured for JMS communication are called out in notes.

The first example, from an inbound stylesheet, matches the NewOrder element in the
application document, then sends a simple SendResponse message to let the application
know the order has been received. Because the message has no content, this purpose is
implied and would need to be embedded in the application itself.

Note If you use SendResponse to respond to an incoming JMS message, then the XML body must
be blank. JMS is an asynchronous protocol, and does not expect a response.

The second example, from an outbound stylesheet:

■ matches an activity, indicated by the FNCndState element, whose state is specified as
“ProcessStarted” in the state document sent by the Fusion process engine

■ generates a command to send an application document to the partner application

■ generates the application document

Note If your proxy is configured to use JMS, you must still specify the Method attribute, even
though the attribute is ignored.

Match NewOrder element <xsl:template match="NewOrder">

Send HTTP response <FNAplCommand Command="SendResponse"/>

</xsl:template>

Match the activity state <xsl:template match="FNCndState[@State=’ProcessStarted’]">

Send an HTTP message <FNAplCommand Command="SendMessage" Method="Post">

Start the application document <FNMessage>

Document element of app doc <OrderConfirmation>

Message content OrderEntered

</OrderConfirmation>

</FNMessage>

</FNAplCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Performing Common Fusion Stylesheet Transformations 39
Communicating with Non-Partner Applications
When a stylesheet causes a message to be sent to an application, the message is sent to the
proxy’s partner application by default. However, you might want the proxy to send a
message to another application as well. For example, you might want a shipping
application to be notified when each new order has been placed.

To send a message to an application other than a proxy’s partner, use the following
elements, which are children of the FNAplCommand element:

■ FNDestination in your stylesheet to specify the address of the alternate application

■ FNMessage to embed the message

For example:

Command to send message <FNAplCommand Command="SendMessage" Method="Post">

Application address <FNDestination Address="canus.dogstar.com:120"/>

Start the message <FNMessage>

document element of app doc <OrderConfirmation>

Message contents order number 123 placed on 3/3/00

</OrderConfirmation>

</FNMessage>

</FNAplCommand>
Chapter 1Introduction

Communicating Between Applications Without A Process Definition40
Communicating Between Applications
Without A Process Definition

In some relatively simple integration scenarios, you might want applications to
communicate with each other through a Fusion backbone, but not use the process
management capabilities that the Fusion process engine provides. For example, you might
want a personnel application to provide new employee information to other applications,
such as a defect tracking system. You can use Fusion for this purpose without having to
define a Fusion process or run a process engine.

A proxy that functions without interacting with a Fusion process engine is called an
independent proxy. An independent proxy:

■ operates as a server (or client/server) because the partner application is responsible for
initiating work

■ receives an application document from its partner application document

■ uses an inbound stylesheet to generate a command document that sends an application
document to one or more target applications

Because an independent proxy never receives a state document from a Fusion process
engine, it does not require an outbound stylesheet. Rather, the inbound stylesheet
generates the commands to communicate with the target application, as described in
the next section. For an example of a stylesheet that an independent proxy could use,
see nopein.xsl in the TOOL adapter example program directory.

Creating an Inbound Stylesheet
The inbound stylesheet for an independent proxy must match a pattern in the source
document, for example, the document element that defines an employee record. The
stylesheet then must generate the following elements in the command document:

■ FNCommand to indicate a command document

■ FNAplCommand to specify that a command should be sent to an application

■ FNDestination to specify the URL of any target application other than the default
partner configured for the proxy

If there is more than one target application, the stylesheet must provide an appropriate
match that generates an FNDestination element for each target application.

■ FNMessage to encapsulate the application document

Any information between the FNMessage start and end tags becomes the application
document that is sent to the target application.

With multiple target applications, you typically need multiple FNMessage elements
(one to correspond to each FNAplCommand element) to create the appropriate
application document tailored to each application’s information needs and XML
structure and vocabulary. An FNAplCommand message is also needed for responding to
the original request.

For more information about using these elements, see “Performing Common Fusion
Stylesheet Transformations” on page 32 and the Fusion Backbone online help.

For use cases involving independent proxies, see Chapter 9, “Independent Proxy Use Case”
and Chapter 10, “Independent Proxy Authentication Use Case.”
Forte Fusion Backbone Integration Guide

Communicating Between Applications Without A Process Definition 41
Configuring an Independent Proxy
When you configure an independent proxy, use the UseProcessEngine command and set
process engine usage to off.

If the proxy requires HTTP user authentication from the requestor application, use the
following FNScript commands:

■ For the SetAuthentication command, set the Scheme parameter to Basic and the Server
parameter to Local.

■ Use the SetCredentials command to specify the user name and password the proxy
expects from the application.

■ Use SetPort to configure the port.

For more information about configuring proxies and specifying user authentication, see
the Forte Fusion Backbone System Guide.

Omitting Fusion Process Management Functions
Use independent proxies for situations that have simple application integration
requirements. Without a connection to a Fusion process engine, a Fusion application
cannot make use of various process management features:

■ Because there is no process definition, you cannot specify the timing of tasks.

■ You cannot use Fusion process attributes to store values that are shared by different
applications.

Your stylesheet is responsible for each value that you send between applications. You
also cannot store and transmit application documents as XmlData process attributes.

■ You have limited HTTP user authentication functions:

■ You must use Basic authentication, which lets the independent proxy require a user
name and password when the requestor application initiates a session. Using a Fusion
process definition allows FusionXML authentication, for specifying additional user
information.

■ You cannot make use of such Fusion user identification features as User Validations,
User Profiles, and Roles.

■ Without a Fusion process engine, the proxy has no way to maintain state information
about the current status of an activity. Thus, if the proxy or application fails, there is no
way to recover information about which tasks are current or completed.

If your Fusion enterprise application is complex enough to require some number of these
features, you should redesign it to use a Fusion process engine.
Chapter 1Introduction

Communicating Between Applications Without A Process Definition42
Forte Fusion Backbone Integration Guide

Chapter 2
Service Requestor Use Case
This chapter describes the XSL stylesheets you need to write and related integration tasks
you need to perform to enable a service requestor application to initiate a Fusion process.

If the proxy requires authentication from the service requestor before creating the process,
there are additional tasks you must perform. After you read this chapter, see Chapter 5,
“Service Requestor Authentication Use Case.”

For more information about the way in which Fusion processes requests from service
requestors, see Appendix A, “Transforming Proxy Documents.”

Use Case Summary44
Use Case Summary
The following table provides an overview of this use case:

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Use Case Information Description

description A service requestor application attempts to initiate a Fusion process.

expected outcome The application’s proxy instructs the process engine to start the process, and the
proxy notifies the application that the process has been started.

actors ❚ service requestor application

❚ application proxy

❚ Fusion process engine

proxy document flow 1 Service requestor sends application document to proxy.

2 Proxy sends command document to engine to start the process.

3 Proxy creates state document based on information from engine about process.

4 Proxy generates command document that includes message for application that
request was received.

5 Proxy sends application document to service requestor.

required stylesheets inbound stylesheet to transform application document into command document to
start process (Step 2)

outbound stylesheet to:

❚ transform state document into command document to notify application (Step 4)

❚ transform message embedded in command document into application document
containing notification (Step 5)

other integration tasks ❚ ensure that any Fusion process attributes referred to in the inbound command
document are part of the process definition

❚ use the AddListener FNscript command to configure a proxy as a listener (HTTP
server or JMS listener)

❚ you can also use the SetPort FNscript command to configure the proxy as an
HTTP server

Service Requestor

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ProcStarted)

 url

Command
Document

(CreateProcess)

 url

Application
Document

1

2

3

4

5

Forte Fusion Backbone Integration Guide

Starting the Fusion Process 45
Starting the Fusion Process
Each Fusion process has one application, called the service requestor, that initiates the
process. In the example application, the order entry application is the service requestor.

When a service requestor sends an application document to its proxy, the proxy must
generate a command document to the Fusion process engine. The command document:

■ contains the FNCommand document element to identify itself as a command
document

■ instructs the engine to start the process

■ passes any required process attributes (and possibly other process attributes) to the
engine

The proxy’s inbound stylesheet must contain the rules that cause this command document
to be generated correctly. The following subsections describe how to include these rules in
your inbound stylesheet.

Authentication The following steps assume that any user is authorized to start a process. For information
about how to allow only authorized users to create a process, see Chapter 5, “Service
Requestor Authentication Use Case.”

Configuration Notes
Connecting to JMS provider
application

For proxies configured to use JMS, use the SetProtocol Name=JMS Fusion Script command
to specify information for connecting to a JMS provider application.

Adding listeners To enable the proxy to receive requests from the partner application, configure the client as
a listener (HTTP server or JMS listener) using the AddListener Fusion Script command.
When issuing this command specify the protocol you are using for messaging (HTTP or
JMS) and other information specific to the protocol.

If you specify HTTP, then you specify the port at which the proxy should receive messages
from an application.

If specify JMS, then you specify the messaging model (point-to-point or publish/subscribe)
and other optional information for JMS messaging (JMS message selectors,
acknowledgement mode, and durable messaging behavior).

You can also use the SetPort command to configure an HTTP listener.

For more information about configuring proxies, including documentation on Fusion
Script commands, see the Forte Fusion Backbone System Guide.
Chapter 2Service Requestor Use Case

Starting the Fusion Process46
Step 1. Generating the Document Element
An application proxy identifies a command document using the FNCommand element as
its document element. The first task your inbound stylesheet must perform is to generate
this document element.

To generate the FNCommand document element, include the following template in your
inbound stylesheet:

Transformation Notes
In the above template:

■ The match could also have been on the document element of the application
document. It is good practice, however, to match the root element, because this match
is guaranteed to be successful.

■ The xsl:apply-templates element ensures that the XSLT processor processes all children
of the root element of the application document. Without the xsl:apply-templates
element, the XSLT processor would complete its work, and the FNCommand element
would be generated as an empty element.

Step 2. Instructing the Engine to Start the Process
Your inbound stylesheet next must generate a command to the Fusion process engine to
start the process. This command is contained in the FNCndCommand element, which has
two attributes:

■ Command tells the engine what action to take, in this case, to start a process.

■ ProcessName tells the engine the name of the process to start.

To generate the appropriate FNCndCommand element and attributes, include a template
similar to the following in your inbound stylesheet:

Match app doc root element <xsl:template match="/">

Create command doc doc elem. <FNCommand>

Process children of root element <xsl:apply-templates/>

</FNCommand>

</xsl:template>

Match NewOrder elem. in app doc <xsl:template match="NewOrder">

Send CreateProcess command and <FNCndCommand Command="CreateProcess"

process name ProcessName="FNOrdersProcess">

Process children of NewOrder <xsl:apply-templates/>

</FNCndCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Starting the Fusion Process 47
Transformation Notes
In the above template:

■ The xsl:apply-templates element continues the recursive processing begun in Step 1
under Starting the Fusion Process on page 46. Thus, the FNCndCommand element is
generated within its parent FNCommand element, and the elements you create in the
next step become children of FNCndCommand.

■ The stylesheet supplies both the command for the engine and the name of the process
to start. Thus, the application does not need to have knowledge of this information.

Step 3. Passing Process Attributes to the Engine
The next step in starting the process is to supply the Fusion process engine with values for
the required process attributes. This task is accomplished by:

■ creating a process attribute list, indicated by an FNProcessAttributeList element

■ creating each process attribute, indicated by an FNProcessAttribute element

■ copying the appropriate values from the application document

For procedures for creating process attributes, see “Generating Process Attributes” on
page 32.

Your process definition can contain process attributes of type XmlData that contain well-
formed XML documents as their values. In the example application, the entire application
document is passed as the value of the StartingMessage process attribute. You also could
pass part of the application document as a process attribute in addition t, or instead of, the
entire application document.

For information on including an application document in a process attribute, see
“Transmitting Application Documents as Process Attributes” on page 35.
Chapter 2Service Requestor Use Case

Starting the Fusion Process48
Command Document Example
The following command document, generated from the service requestor’s application
document, is created by the preceding steps.

Doc element for cmd <FNCommand>

doc

Command to engine to <FNCndCommand Command="CreateProcess"

create process ProcessName="FNOrdersProcess">

Start proc attribute list <FNProcessAttributeList>

Process attribute <FNProcessAttribute Name="Billee"

Type="TextData">Jack</FNProcessAttribute>

Process attribute <FNProcessAttribute Name="Shippee"

Type="TextData">Jill</FNProcessAttribute>

Process attribute <FNProcessAttribute Name="ItemCount"

Type="TextData">12</FNProcessAttribute>

Process attribute <FNProcessAttribute Name="OrderID"

Type="TextData">555</FNProcessAttribute>

App doc as process <FNProcessAttribute Name="StartingMessage" Type="XmlData">

attribute

App doc doc element <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>Jack</AttValue>

</Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

<AttValue>Jill</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>12</AttValue>

</Att>

<Att>

<AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue>555</AttValue>

</Att>

<Atts>

</NewOrder>

End of application doc </MsgDoc>

</FNProcessAttribute>

End process attrib list </FNProcessAttributeList>

</FNCndCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Starting the Fusion Process 49
Document Notes
In the above command document:

■ The application document is sent to the engine as a process attribute of type XmlData.
This step is somewhat redundant in this case and is shown for example purposes only.
The information about the order that the engine actually uses is contained in the other
process attributes, which contain the same information as the application document.

■ The CDATA sections shown in the actual XML that is generated when you run the
example application are omitted here for the sake of simplicity. CDATA sections allow
you to include characters that are generally processed as XML markup, such as “<” or
“>”, without having the processor replace them with entities, such as “<” or “>”.
Chapter 2Service Requestor Use Case

Transforming State Information50
Transforming State Information
When the process engine notifies the proxy that the process was started, the proxy
generates a state document that contains:

■ the state (“ProcessStarted”) of the new process

■ the process name and ID

■ the current value of the process attributes used by the process

The proxy’s outbound stylesheet must include templates that cause the following actions to
take place:

■ The proxy generates a command document with a command to send the application a
message.

■ The proxy generates the application document containing the appropriate message.

The following subsections describes how to include these rules in your outbound
stylesheet.

Step 1. Generating the Document Element
The first step the outbound stylesheet must perform is to generate the FNCommand
element that designates a command document. The template for this task in the outbound
stylesheet is the same as in the inbound stylesheet.

For instructions for generating the document element for a command document, see
“Generating the Document Element” on page 46.

Step 2. Generating the Application Command
The next step your outbound stylesheet must perform is to generate the commands to send
a message to the application.

� To generate these commands:

1 Create a template that matches a FNCndState element in the state document whose
State attribute has a value of “ProcessStarted.”

2 Generate an FNAplCommand element whose Command attribute has a value of
“SendMessage” and whose Method attribute specifies the HTTP method (Get or Post).

Note If your proxy is configured to use JMS, you must still specify an HTTP method, even
though this method is ignored when using JMS.

3 Generate an FNMessage element to hold the message to the application.

To generate the appropriate FNAplCommand element and attributes, include a template
like the following in your outbound stylesheet

Match an activity whose state <xsl:template

is “ProcessStarted” match="/FNState/FNCndState[@State=’ProcessStarted’]">

Send an HTTP message <FNAplCommand Command="SendMessage" Method="Post">

Start the message <FNMessage>

See Step 3 for these rules rules to generate message content

</FNMessage>

</FNAplCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Transforming State Information 51
Transformation Notes
In the above template:

■ The full /FNState/FNCndState[@State=’ProcessStarted’] location path is used for
example purposes only. The parent (FNState) element is not necessary, because the
source document contains no other FNCndState elements with different parents (that
is, the FNCndState element always appears as a child of the FNState element in a state
document).

For more information about specifying location paths, see the Fusion Backbone online
Help and the XPath Recommendation at http://www.w3.org.

■ The xsl:apply-templates element ensures that the message content (to be generated by
the template in the next section) is placed within the FNMessage element.

For more information about sending messages to applications, see “Sending Messages
to Applications” on page 36.

Step 3. Creating the Message Content
After you create the FNMessage element, you create its contents. Whatever is contained
between the start and end tags of the FNMessage element is returned as an application
document to the service requestor.

The outbound application document can contain whatever information the application
expects. In the example application, the application document contains:

■ an OrderEntered element, which indicates in the application’s XML vocabulary that the
order was placed successfully

■ a confirmation number, which is generated from the value of the Process ID

For a template that generates the confirmation number, see the next section,
“Generating Values for the Application.”

To generate the OrderEntered element, include the following transformations within the
template from the previous step:

Transformation Notes
In the above template:

■ The transformation is a continuation of the one shown in the previous section,
“Generating the Application Command.” The templates are broken out here for
illustration purposes, but your stylesheet would contain only one FNMessage element
to generate this application document.

■ The xsl:apply-templates element ensures that the confirmation number element
(shown in the next section) is created as a child of the OrderEntered element.

Message created in Step 2 <FNMessage>

Create element for app doc <OrderEntered>

Process children <xsl:apply-templates/>

</OrderEntered>

</FNMessage>
Chapter 2Service Requestor Use Case

Transforming State Information52
Step 4. Generating Values for the Application
The final step in creating the application document is to pass back to the application any
information it needs. You do so by transforming values in the state document, which might
have no meaning to the application in their present form, into a different form that the
application can understand.

In the example application, the Process ID is transformed into a confirmation number
required by the order entry application. Whereas the Process ID itself is meaningless to the
application, it provides a unique value that can be transformed easily into the value of an
element, the confirmation number, that is meaningful to the application.

To generate the confirmation number, your outbound stylesheet must:

■ create the Cfnumber element

■ copy the Process ID as the value of the Cfnumber element

To accomplish these tasks, include a template like the following in your outbound
stylesheet:

Transformation Notes
In the above template:

■ The template matches the FNIdentity child element of an FNCndState element whose
State attribute has a value of “ProcessStarted.” The FNIdentity element conveys
identifying process information in the state document.

■ The xsl:value-of element selects the value of the ProcessID attribute of the FNIdentity
element and copies this value to the results document as the text-node child of the
Cfnumber element.

For more information about extracting values from FNIdentity attributes, see “Supplying
Activity Information to Applications” on page 36.

Match FNIdentity child of relevant <xsl:template

FNCndState element match="FNCndState[@State=’ProcessStarted’]/FNIdentity">

Create element for app doc <Cfnumber>

Copy value of process ID attribute <xsl:value-of select="@ProcessID">

</Cfnumber>

</xsl:template>
Forte Fusion Backbone Integration Guide

Transforming State Information 53
Generated Document Examples
The following sections provide examples of the XML documents that a proxy generates
when a Fusion process starts.

State Document
A proxy generates a state document similar to the following after the process engine
informs it that a process has been started:

XML declaration <?xml version="1.0"?>

State doc document element <FNState>

State of process <FNCndState State="ProcessStarted">

Process information <FNIdentity

ProcessID="52"

ProcessName="FNOrdersProcess"/>

App dict process attribute list <FNProcessAttributeList>

StartingMessage proc attribute <FNProcessAttribute Name="StartingMessage" Type="TextData">

Orig service requestor app doc <MsgDoc>

<NewOrder>

<Atts>

<Att>

 <AttName>Billee</AttName>

 <AttType>TextData</AttType>

<AttValue><![CDATA[fred]]></AttValue>

 </Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

 <AttValue><![CDATA[fred]]></AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

 <AttType>TextData</AttType>

 <AttValue><![CDATA[20]]></AttValue>

</Att>

 <Att>

 <AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue><![CDATA[15]]></AttValue>

 </Att>

</Atts>

</NewOrder>

</MsgDoc>

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndState>

</FNState>
Chapter 2Service Requestor Use Case

Transforming State Information54
Command Document
The following command document is generated from the above state document by the
transformations described in this chapter.

Application Document
The lines between the start and end tags of the FNMessage element in the above command
document make up the application document that is sent to the service requestor as the
response to its initial message.

Start command document <FNCommand>

Command to send msg to app <FNAplCommand Command="SendMessage" Method="Post">

Application document follows <FNMessage>

Document element of app doc <OrderEntered>

Confirmation number element <Cfnumber>

Process ID as confirmation nbr 1234

</Cfnumber>

</OrderEntered>

Application doc completed </FNMessage>

</FNAplCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Chapter 3
Synchronous Service
Provider Use Case
This chapter describes the XSL stylesheets and related integration tasks that enable a proxy
to initiate a synchronous session with a service provider application. In this case, the proxy
initiates an HTTP session by sending a request for work to a service provider, and the
service provider performs the work and returns a notice of completion during the same
HTTP session. (Because the Java Message Service is inherently asynchronous, this chapter
only discusses synchronous sessions configured to use HTTP for communication.)

If the proxy and service provider communicate asynchronously, that is, the proxy sends a
request during one HTTP session, and the service provider responds send notice of
completion of work during a later session, then you must perform additional tasks. For
more information about asynchronous service providers, read this chapter, then see
Chapter 4, “Asynchronous Service Provider Use Case.”

If the service provider requires authentication from the proxy before performing the
activity, then you must perform additional tasks, also. For more information about
enabling authentication for a service provider proxy, read this chapter (and Chapter 4 if
applicable), then see Chapter 6, “Service Provider Authentication Use Case.”

For information about the Fusion processing involved in requesting a service provider to
perform an activity, see Appendix A, “Transforming Proxy Documents.”

The service provider application (or its adapter) determines whether synchronous or
asynchronous communication takes place with the partner proxy.

Use Case Summary56
Use Case Summary
The following table provides an overview of this use case:

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Use Case Information Description

description A proxy offers an ACTIVE activity to a service provider and waits for the service
provider to send notification of completion of wok before the process can proceed.

expected outcome The proxy sends a message to the application instructing it to start the activity; the
application completes the activity and notifies the proxy

actors ❚ Fusion process engine

❚ application proxy

❚ service provider application

proxy document flow 1 Proxy generates an “ActivityStarted” state document based on a call from the
engine that the activity has entered the ACTIVE state.

2 Proxy generates command document with request for service provider.

3 Proxy sends HTTP request to service provider with application document in the
message.

4 Service provider sends application document to proxy with message that activity
was performed.

5 Proxy generates command document to notify engine that activity is complete.

required stylesheets outbound stylesheet to:

❚ transform state document into command document that sends request to service
provider (Step 2)

❚ generate application document containing request to service provider (Step 3)

inbound stylesheet to transform application document into command document to
notify engine that application performed the activity (Step 5)

other integrator tasks ❚ use application codes in the Fusion application dictionary that the application
understands

❚ use the AddAplUrl FNscript command to configure the proxy as an HTTP client

Proxy

 url

Application
Document

 url

Command
Document

 url

Application
Document

4

2

3
Service Provider

 url

State
Document

(ActivityStarted)

1
 url

Command
Document
(CmpltActvty)

5

Forte Fusion Backbone Integration Guide

Communicating Synchronously With a Service Provider 57
Communicating Synchronously With a Service Provider
After a service requestor has started a Fusion process, the engine offers subsequent
activities in the process to service provider applications. In the example application, after
an order is placed, the engine asks the credit verification service to provide a credit check.

The process cannot proceed until the credit verification application has responded to its
proxy with the results of the credit check. The proxy sends the request to the application as
an HTTP request, and the service provider returns an acknowledgment of completion (or
possibly inability to complete the activity) as the response for the HTTP request. The type
of communication, in which the process waits for the application to respond before
proceeding, is known as synchronous communication.

Because the request to the service provider and the application’s response take place within
the context of the same HTTP request/response session, your outbound stylesheet does
not need to provide the application with identifying information about the activity, and the
application does not need to return the identifying information to the proxy.

When the activity enters the ACTIVE state, the proxy generates a state document that:

■ indicates that the proxy has started the activity

■ contains the current value of any process attributes specified in the activity’s
application dictionary item

■ contains identifying information about the activity, such as the unique process ID and
activity ID that the engine generates, as well as the process name, activity name, and
application code

The proxy uses the state document to generate a command document that:

■ contains the FNCommand document element to identify itself as a command
document

■ sends a message to the application to perform the activity

■ sends the application any values it needs to complete the activity

The proxy’s outbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describe how to include
these rules in your outbound stylesheet.

Configuration Note To submit requests to the service provider, configure the proxy as an HTTP client. To
accomplish this task, issue the AddAplURL FNscript command, specifying the application’s
network address to which requests should be sent.

For information about configuring proxies as clients and servers, see the Forte Fusion
Backbone System Guide.

Step 1. Generating the Document Element
A proxy identifies a command document using the FNCommand element as its document
element. The first task your outbound stylesheet must perform is to generate the document
element for the command document.

For instructions for creating the FNCommand document element, see “Generating the
Document Element” on page 46.
Chapter 3Synchronous Service Provider Use Case

Communicating Synchronously With a Service Provider58
Step 2. Generating a Message to the Application
The proxy next must construct an application document to ask the application to perform
the activity. To accomplish this task, your outbound stylesheet needs rules to:

■ identify the started activity in the state document

■ generate a command to send a message to the application

■ create the FNMessage element whose content becomes the application document that
is sent to the application

■ generate the document element and any top-level child elements for the application
document, so that the message is meaningful to the application

After you have created this application document structure, you can generate the content
of the application document, as shown in the subsequent two sections.

To send a request to the service provider application, include a template like the following
in your inbound stylesheet:

Transformation Notes
In the above template:

■ WorkRoot and NewWork are shown as examples of a document element and top-level
element, respectively, that an application might understand as indicating a new request
from a proxy.

■ The xsl:apply-templates element ensures that the child elements from the state
document are processed to generate the content of the message, as shown in the next
sections.

Match started activity in state doc <xsl:template match="FNCndState[@State=’ActivityStarted’]">

Send HTTP message <FNAplCommand Command="SendMessage" Method="Post"/>

Specifies that app doc follows <FNMessage>

Document element for app doc <WorkRoot>

Top-level element for app doc <NewWork>

Process children <xsl:apply-templates/>

</NewWork>

</WorkRoot>

</FNMessage>

</FNAplCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Communicating Synchronously With a Service Provider 59
Step 3. Providing the Message Content
After you construct the application document, your stylesheet must include whatever
information the application needs to perform the activity. In the example application, the
service provider requires:

■ the application code, which identifies the activity to the application

The application code is defined in the application dictionary entry for the application
when the Fusion process is defined. Thus the application should understand this value
when it retrieves it from the application document.

■ the list of process attributes, in a form that the application understands (described in
“Sending Process Attribute Values” on page 60)

The application code value is included as one of the attributes of the FNIdentity element in
the state document that the proxy generates for the activity.

To include the application code in the message to the application, include the following
template in your outbound stylesheet:

Transformation Notes
The xsl:apply-templates element shown in the previous step ensures that the WorkType
element is generated as a child of the NewWork element.

Match FNIdentity in state doc <xsl:template match="FNIdentity">

App doc element to hold app code <WorkType>

Copy value of application code <xsl:value-of select="@ActivityAppCode" />

</WorkType>

</xsl:template>
Chapter 3Synchronous Service Provider Use Case

Communicating Synchronously With a Service Provider60
Step 4. Sending Process Attribute Values
You also must send the application the values of any process attributes that it uses. The
state document that the proxy generates for the active activity contains an
FNProcessAttributeList element containing FNProcessAttribute child elements. Each of the
FNProcessAttribute elements corresponds to a process attribute in the application
dictionary entry for the activity.

To send the process attribute values to the service provider application, your outbound
stylesheet must transform these FNProcessAttributeList element and FNProcessAttribute
elements in the state document into a form that the application can understand.

In the example application, values for two process attributes are sent to the CreditCheck
service provider application:

■ the original service requestor application document

This document is the value of the StartingMessage process attribute, whose type is
XmlData. This process attribute is transformed into an element called Order.

■ a process attribute called CreditApproved, which holds the result of the credit check

This process attribute is passed to the service provider as an element called
CreditApproved. The process attribute is passed with a default value of “No,” and the
application passes back an actual value (which also might be “No”) when it responds to
the proxy after performing the credit check.

For information on how the result value from the credit check is passed back to the
proxy, see “Receiving Synchronous Notification of Completion” on page 64.

Note Because the service provider might send back a different value for this process attribute, it
must have a lock type of Write or WriteQueue in the Fusion process definition. For
information about creating process attributes and specifying lock types, see the Forte
Fusion Process Development Guide.

For an example of a template that retrieves a value from a process attribute, see
“Transforming Process Attribute Lists” on page 33. For an example of the transformations
used to send such an application document to an application, see “Transmitting
Application Documents as Process Attributes” on page 35.

Handling Redundant Values
In the example application, the information about the contents of the order is sent to the
CreditCheck service provider application by simply passing the original application
document. This method works fine in the example application, because the CreditCheck
application (and the other service providers) uses the same XML vocabulary as the service
requestor application.

In actual practice, your applications are likely to have different elements that correspond to
Fusion process attributes. Thus, the outbound stylesheets for some proxies might need to
generate individual elements to hold certain values, even though those values are
embedded within the original service requestor application document.
Forte Fusion Backbone Integration Guide

Communicating Synchronously With a Service Provider 61
Generated Document Examples
The following sections provide examples of the XML documents that a proxy generates
when the activity for a service provider application enters the ACTIVE state.

State Document
A proxy generates a state document like the following after the Fusion process engine
informs it that an activity has entered the ACTIVE state:

XML declaration <?xml version="1.0"?>

State doc document element <FNState>

State of started activity <FNCndState State="ActivityStarted">
Process/activity information <FNIdentity

ProcessID="52"

ProcessName="FNOrdersProcess"

ActivityID="5"

ActivityName="CreditCheck"

ActivityAppCode="CreditCheck"/>

Process attribute list from app dict. <FNProcessAttributeList>

Process attribute <FNProcessAttribute

Name="CreditApproved"

Type="TextData">

No

</FNProcessAttribute>

StartingMessage proc attribute <FNProcessAttribute

Name="StartingMessage"

Type="XmlData">

Service requestor app document <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>XmlData</AttType>

<AttValue><![CDATA[fred]]></AttValue>

</Att>

<Att>

<AttName>Shippee</AttName>

<AttType>XmlData</AttType>

<AttValue><![CDATA[fred]]></AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>XmlData</AttType>

<AttValue><![CDATA[20]]></AttValue>

</Att>

<Att>

<AttName>OrderID</AttName>

<AttType>XmlData</AttType>

<AttValue><![CDATA[15]]></AttValue>
Chapter 3Synchronous Service Provider Use Case

Communicating Synchronously With a Service Provider62
Command Document
The following table shows the entire command document that is generated by the
preceding steps.

</Att>

</Atts>

</NewOrder>

</MsgDoc>

</FNProcessAttribute>

Process attribute <FNProcessAttribute

Name="Status"

Type="TextData">

Invoiced

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndState>

</FNState>

Start command document <FNCommand>

Command to send msg to app <FNAplCommand Command="SendMessage" Method="Post">

Application document follows <FNMessage>

Document element of app doc <OrderEntered>

App doc top-level element <WorkRoot>

<NewWork>

Value of application code <WorkType>CreditCheck</WorkType>

Begin service provider value list <SPAtts>

Service provider element to hold <SPAtt>

original service requestor <SPAttName>Order</SPAttName>

application document <SPAttType>XmlData</SPAttType>

<SPAttValue>

Start service requestor app doc <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>Jack</AttValue>

</Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

<AttValue>Jill</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>12</AttValue>

</Att>

<Att>
Forte Fusion Backbone Integration Guide

Communicating Synchronously With a Service Provider 63
Application Document
The lines between the start and end tags of the FNMessage element in the above command
document make up the application document that is sent to the service provider to
perform the activity.

The actual command document that the example application generates has been modified
slightly here to differentiate more clearly between the values from the service requestor
(the Atts and Att elements in the original service requestor application document) and the
values understood by the service provider (the SPAtts and SPAtt elements).

<AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue>555</AttValue>

</Atts>

</NewOrder>

End service requestor app doc </MsgDoc>

</SPAttValue>

</SPAtt>

Service provider element to hold <SPAtt>

credit status value <SPAttName>CreditApproved</SPAttName>

 <SPAttType>TextData</SPAttType>

Default value for credit status <SPAttValue>No</SPAttValue>

 </SPAtt>

</SPAtts>

 </NewWork>

</WorkRoot>

</OrderEntered>

Application doc completed </FNMessage>

</FNAplCommand>

</FNCommand>
Chapter 3Synchronous Service Provider Use Case

Receiving Synchronous Notification of Completion64
Receiving Synchronous Notification of Completion
After the service provider performs its activity, it sends an application document as an
HTTP response to inform the proxy that the activity has been completed. This application
document also contains the current values of any process attributes changed by the
activity.

The proxy uses this application document to generate a command document that:

■ contains the FNCommand document element to identify itself as a command
document

■ sends a command to the Fusion process engine to complete the activity

■ returns values for any process attributes that were changed by the service provider

The proxy’s inbound stylesheet must contain the rules that cause this command document
to be generated correctly. The following subsections describe how to include these rules in
your inbound stylesheet.

Step 1. Generating the Document Element
An application proxy identifies a command document by the FNCommand element as its
document element. The first specific task your inbound stylesheet must perform is to
generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Generating the
Document Element” on page 46.

Step 2. Sending a Command to the Engine
The command document next must instruct the engine to complete the activity. In the
example application, the inbound stylesheet performs this task by matching the
WorkCompleted element in the application document and transforming it into a
CompleteActivity command.

To instruct the engine to complete the activity, include a template like the following in your
inbound stylesheet:

Transformation Notes
In the above template:

■ The “WorkCompleted” element from the application document indicates that the
activity was successfully completed. If the application potentially could report some
other result, you would need a template to match the result and generated the
appropriate FNCndCommand Command attribute, such as “Rollback Activity” or
“AbortActivity.”

■ The xsl:apply-templates element ensures that the process attribute list, to be generated
by the next step, is placed within the start and end tags of the FNCndCommand
element.

Match WorkCompleted element in app doc <xsl:template match="WorkCompleted">

Send CompleteActivity command to engine <FNCndCommand Command="CompleteActivity">

Process children <xsl:apply-templates/>

</FNCndCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Receiving Synchronous Notification of Completion 65
Step 3. Returning Updated Process Attribute Values
The final task the command document performs is to return the current values for any
process attributes that were affected by the application. To accomplish this task, your
inbound stylesheet must:

■ construct an FNProcessAttributeList element

■ construct an FNProcessAttribute element with the appropriate Name and Type
attributes for each corresponding Att element (and its child elements) in the application
document

■ retrieve the current values from the application document

For information about transforming application document values into command
document process attribute lists, see “Generating Process Attributes” on page 32.

Command Document Example
The following table shows the entire command document that is generated by the
preceding steps.

Start command document <FNCommand>

Command engine to complete activity <FNCndCommand Command="CompleteActivity">

Start process attribute list <FNProcessAttributeList>

App doc as process attribute <FNProcessAttribute Name="StartingMessage"

Type="XmlData">

Doc element of app document <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>Jack</AttValue>

</Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

<AttValue>Jill</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>12</AttValue>

</Att>

<Att>

<AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue>555</AttValue>

</Att>

</Atts>

</NewOrder>

End of application document </MsgDoc>

</FNProcessAttribute>
Chapter 3Synchronous Service Provider Use Case

Receiving Synchronous Notification of Completion66
Document Notes
In the above command document:

■ Because there is no FNIdentity element to identify the process and activity, the proxy
assumes that the document refers to the current process and activity.

For information about command documents for asynchronous communication, see
Chapter 4, “Asynchronous Service Provider Use Case.”

■ The CreditApproved process element contains the result of the application’s credit
check. This process attribute must have been defined in the application dictionary as
writable.

Updated process attribute <FNProcessAttribute Name="CreditApproved"

Type="TextData">

New process attribute value Yes

</FNProcessAttribute>

End of process attribute list </FNProcessAttributeList>

</FNCndCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Chapter 4
Asynchronous Service
Provider Use Case
This chapter describes the XSL stylesheets and related integration tasks that enable a proxy
to communicate asynchronously with a service provider application.

For basic information about submitting activities to service providers, see Chapter 3,
“Synchronous Service Provider Use Case.”

The service provider application (or its adapter) determines whether synchronous or
asynchronous communication takes place with the partner proxy. For asynchronous
communication, proxies can be configured to use either HTTP or the Java Message Service
(JMS).

Use Case Summary68
Use Case Summary
The following table provides an overview of this use case:

Use Case Information Description

description A proxy offers an ACTIVE activity to a service provider, which returns the disposition
of the request to the proxy at a later time, during a separate session.

expected outcome The proxy sends a message to the application instructing it to start the activity; the
application confirms receipt of the request, then performs the activity and notifies
the proxy at a later time that it has completed the activity.

actors involved ❚ the Fusion process engine

❚ the application proxy

❚ the service provider application

proxy document flow 1 Proxy generates an “ActivityStarted” state document based on a call from the
engine that the activity has entered the ACTIVE state.

2 Proxy generates command document with request for service provider.

3 Proxy sends request to service provider as application document, which includes
identifying information about the activity.

4 (HTTP sessions) Service provider acknowledges receipt of application document.

5 At some later point, service provider sends application document to proxy with
completion message and information to identify the completed activity.

6 Proxy generates command document to notify engine that activity is complete.

7 (HTTP sessions) Proxy generates response to application to complete HTTP
message/response communication

Proxy

 url

Application
Document

(with FNIdentity
info)

 url

Command
Document

 url

State
Document

(ActvtyStarted)

1

2

3

Service Provider

 url

Application
Document

(with FNIdentity
info)

5

 url

ack
msg

7

 url

Command
Document
(CmpltActvty)

6

 url

ack
msg

4

Forte Fusion Backbone Integration Guide

Use Case Summary 69
The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion. The example
applies to proxies configured to use either HTTP or JMS messaging, calling out
implementation differences between the communication protocols.

stylesheets required outbound stylesheet to:

❚ transform state document into command document that sends request and
identifying information to service provider (Step 2)

❚ generate application document containing request to service provider (Step 3)

❚ send acknowledgement to application’s completion message (Step 7)

inbound stylesheet to:

❚ receive (and ignore) notification that request from proxy was received (Step 4)

❚ transform subsequent application document into command document to notify
engine that application performed the activity and identify the activity completed
(Step 6)

Other integrator tasks ❚ use the AddAplUrl FNscript command to configure proxies as a sender (HTTP
client or JMS sender)

❚ use the AddListener FNscript command to configure proxies as a listener (HTTP
server or JMS listener)

❚ you can also use the SetPort FNscript command to configure the proxy as an
HTTP server

❚ provide process definition with application codes that the application understands

❚ ensure that the partner application can store and return identifying information
about the activity

Use Case Information Description
Chapter 4Asynchronous Service Provider Use Case

Communicating Asynchronously With a Service Provider70
Communicating Asynchronously With a Service Provider
In some Fusion processes, a proxy might send an activity to a service provider as a request
during one session, and the service provider responds with notice of completion of work
during a separate session. Such behavior, in which other requests and responses intervene
between the time the proxy sends the activity and the time the application sends
notification of complication, is known as asynchronous communication.

For example, an order fulfillment process like the Fusion example application might
include a service provider application that generates customer invoices. This application
might receive requests from the proxy, then hold them and generate the invoices in batch
mode at the end of the day. When the application notifies the proxy that an invoice has
been generated, it must be able to identify the order to which the invoice refers.

When the service provider activity enters the ACTIVE state, the proxy generates a state
document that:

■ indicates that the proxy has started the activity

■ contains the current value of any process attributes specified in the activity’s
application dictionary item

■ contains identifying information about the activity, such as the process ID and activity
ID, as well as the process name, activity name, and application code

Using the outbound stylesheet, the proxy uses the state document to generate a command
document that:

■ contains the FNCommand document element to identify itself as a command
document

■ sends a message to the application to perform the activity

■ sends the application any process attribute values it needs to complete the activity

■ sends the application the identifying information from the FNIdentity element

When the application later responds that it has completed the activity, it returns any
updated process attribute values, as well as the identifying information, so that the
proxy knows which activity has been completed.

The proxy’s outbound stylesheet must contain the rules that cause this command
document to be generated correctly. The following subsections describes how to include
these rules in your outbound stylesheet.

Also, your inbound stylesheet might need a template to process an intermediate
application document that the service provider sends to acknowledge the proxy’s request,
before it responds with notification that the activity is completed. For information about
writing this template, see “(HTTP Sessions) Receiving Acknowledgment from the
Application” on page 75.
Forte Fusion Backbone Integration Guide

Communicating Asynchronously With a Service Provider 71
Configuration Notes
For asynchronous communication, a proxy must submit requests to the service provider
during one session and receive acknowledgements during a separate session. Thus, you
must configure the proxy as both a sender and listener (HTTP client/JMS sender and HTTP
server/JMS listener).

Connecting to JMS provider
application

For proxies configured to use JMS, use the SetProtocol Name=JMS Fusion Script command
to specify information for connecting to a JMS provider application.

Configuring a Sender Use the AddAplURL Fusion Script command to configure the proxy as an HTTP client or
JMS sender. When issuing this command, for proxies configured for HTTP, specify the
application’s network address to which requests should be sent. For proxies configured for
JMS, specify the messaging model (point-to-point or publish/subscribe) and other optional
information for JMS messaging (such as JMS priority, persistence, and other JMS
specifications).

Configuring a Listener Use the AddListener Fusion Script command to configure the proxy as an HTTP server or
JMS listener. When issuing this command specify the protocol you are using for messaging
(HTTP or JMS).

If you specify HTTP, then you specify the port at which the proxy should receive messages
from an application.

If specify JMS, then you specify the messaging model (point-to-point or publish/subscribe)
and other optional information for JMS messaging (JMS message selectors,
acknowledgement mode, and durable messaging behavior).

You can also use the SetPort command to configure an HTTP listener.

For more information about configuring proxies, see the Forte Fusion Backbone System
Guide.

Step 1. Generating the Document Element
An application proxy identifies a command document by using the FNCommand element
as its document element. The first specific task your inbound stylesheet must perform is to
generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Generating the
Document Element” on page 46.

Step 2. Generating a Message to the Application
The proxy next must construct an application document to ask the application to perform
the activity. To accomplish this task, your outbound stylesheet needs rules to:

■ match the started activity in the state document

■ generate a command to send a message to the application

■ create the FNMessage element, whose content is the application document that is sent
to the application

■ generate the document element and any top-level child elements for the application
document, so that the message is meaningful to the application

After you have created this application document structure, you can generate the content
of the application document, as shown in subsequent sections.
Chapter 4Asynchronous Service Provider Use Case

Communicating Asynchronously With a Service Provider72
To send a request to the service provider application, include a template similar to the
following in your inbound stylesheet:

Transformation Notes
In the above template:

■ WorkRoot and NewWork are shown as examples of elements that an application might
understand as indicating a new request from a proxy.

■ The xsl:apply-templates element ensures that the child elements from the state
document, that is, the activity information and process attributes, are processed to
generate the content of the message, as shown in the next sections.

■ If your proxy is configured to use JMS, you must still specify an HTTP method for the
FNAplCommand even though this method is ignored when using JMS.

Step 3. Providing Identifying Information
After you construct the application document, your stylesheet must generate its content. In
the case of asynchronous processing, the application document must include the process
ID and activity ID from the state document. These two values together uniquely identify
the activity to the Fusion process engine. The application must store these values until it
performs the activity, and it then must return them later to the proxy to identify the activity
that was performed.

The application also can include the application code, which is included in the state
document. This value, which identifies the activity for the application to perform, is
defined in the application dictionary entry when the Fusion process is defined.

You also must provide the application with any process attributes it requires, in a form that
the application understands. For information about transforming process attributes, see
“Sending Process Attribute Values” on page 74.

The application code, process ID, and activity ID are contained in the state document as
values of attributes of the FNIdentity element. The service provider uses the application
code to determine what activity to perform. For more information about passing the
application code to the service provider, see “Providing the Message Content” on page 59.

Match started activity in state <xsl:template match="FNCndState[@State=’ActivityStarted’]">

doc

Send message <FNAplCommand Command="SendMessage" Method="Post">

Specifies that app doc follows <FNMessage>

Document element for app doc <WorkRoot>

Top-level element for app doc <NewWork>

Process children to hold app <xsl:apply-templates/>

doc </NewWork>

</WorkRoot>

</FNMessage>

</FNAplCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Communicating Asynchronously With a Service Provider 73
In most cases, however, the application does not use the process ID and activity ID as it
does the application code, but simply stores these values as a string to pass back to the
proxy after performing the activity. Because the application does not care about the
contents of this string, the simplest method is pass the entire FNIdentity element to the
application, even though it contains redundant or unnecessary information, such as the
ActivityName attribute.

Depending on the application, your outbound stylesheet might be able simply to copy the
FNIdentity element as it appears in the state document. Or you might need to place the
FNIdentity element inside an element that is part of the application’s vocabulary, for
example, an “AddtlInfo” element that the application uses to store external information.

To summarize the transformations you must include in your outbound stylesheet:

1 Match the FNIdentity element in the state document.

2 Transform the value of the application code attribute into an element that the
application can use.

3 Pass the entire FNIdentity element to the application, possibly placing it inside an
element that is part of the application’s XML vocabulary.

To provide this information in the message to the application, include a template like the
following in your outbound stylesheet:

Transformation Notes
In the above templates:

■ The xsl:copy-of element copies the FNIdentity element and everything below it in the
source document tree, which in this case are the attributes of FNIdentity.

■ The “.” expression indicates the current node in the source document, that is, the point
at which the match in the xsl:template element occurred (which in this case is
FNIdentity).

■ If you pass the FNIdentity element to the application without placing it within another
element, you can omit the <AddtlInfo> and </AddtlInfo> lines.

Match FNIdentity in state doc <xsl:template match="FNIdentity">

App doc element to hold app code <WorkType>

Copy value of application code <xsl:value-of select="@ActivityAppCode"/>

</WorkType>

Create element to hold FNIdentity <AddtlInfo>

Copy FNIdentity and its attributes <xsl:copy-of select="."/>

</AddtlInfo>

</xsl:template>
Chapter 4Asynchronous Service Provider Use Case

Communicating Asynchronously With a Service Provider74
Step 4. Sending Process Attribute Values
You also must send the application the values of any process attributes that it uses. The
state document that the proxy generates for the active activity contains an
FNProcessAttributeList element containing FNProcessAttribute child elements. Each of
these FNProcessAttribute elements corresponds to a process attribute in the application
dictionary entry for the activity.

To send the process attribute values to the service provider application, your outbound
stylesheet must transform the FNProcessAttributeList element and FNProcessAttribute
elements in the state document into a form that the application understands.

This process is identical for synchronous and asynchronous activities. In the example
application (which contains no asynchronous activities), values for two process attributes
are sent to the CreditCheck service provider application:

■ the original service requestor application document

This document is the value of the StartingMessage process attribute, whose type is
XmlData. This process attribute is transformed into an element called Order.

■ a process attribute called Status, which holds the current status of the order

When the billing application notifies the proxy that it has performed its activity, the
application document it sends back changes the status of the order to “Invoiced.”

For information on how the result value from the credit check is passed back to the
proxy, see “Returning Updated Process Attribute Values” on page 83.

Note Any process attribute for which the service provider might send back an updated value
must be specified with a lock type of Write or Write Queue in the Fusion process definition.
For information about creating process attributes, see the Forte Fusion Process
Development Guide.

For an example of a template that retrieves a value from a process attribute, see
“Transforming Process Attribute Lists” on page 33. For an example of the transformations
used to send an entire application document as a single value, see “Transmitting
Application Documents as Process Attributes” on page 35.
Forte Fusion Backbone Integration Guide

Communicating Asynchronously With a Service Provider 75
Step 5. (HTTP Sessions) Receiving Acknowledgment
from the Application

Because every HTTP request requires a response, the service provider must acknowledge
that it has received the proxy’s request to perform the activity. This response is necessary
because the application does not send the disposition of the activity until some later time,
at which point a new request/response cycle is initiated.

Note This second request/response cycle must be completed by a subsequent acknowledgment
by the proxy. For information about handling the application document received after the
activity is performed, see “Receiving Asynchronous Notification of Completion” on
page 80.

The service provider can respond in either of two ways to the proxy’s request to perform the
activity:

■ send only an HTTP header to complete the cycle

In this case, there is no message content for your inbound stylesheet to process.

■ send an application document containing the acknowledgment

To avoid any unnecessary or possibly confusing processing of the application
document, it is good practice to use an empty template to ensure that the proxy ignores
this message. This template must match whatever application document element
specifies the acknowledgment.

You include this template in your inbound stylesheet for the application’s proxy,
because the communication is going from the application to the proxy.

To ensure that the proxy ignores the acknowledgment message, include a template like the
following in your inbound stylesheet:

Transformation Notes
In the above template:

■ The inbound stylesheet matches the WorkStatus element whose Status attribute has a
value of “Received,” then instructs the XSL processor to ignore it.

■ This example is an arbitrary representation of how an application might send the
acknowledgment of the proxy’s request. The actual template your inbound stylesheet
uses depends, of course, on the XML your application uses to represent the
acknowledgment.

Match status attr in app doc <xsl:template match="WorkStatus[@Status=’Received’]"/>
Chapter 4Asynchronous Service Provider Use Case

Communicating Asynchronously With a Service Provider76
Generated Document Examples
The following sections provide examples of the XML documents that a proxy generates
when the activity for a service provider application enters the ACTIVE state.

State Document
A proxy generates a state document like the following after the Fusion process engine
informs it that an activity has entered the ACTIVE state:

XML declaration <?xml version="1.0"?>

State doc document element <FNState>

State of started activity <FNCndState State="ActivityStarted">

Process/activity information <FNIdentity

ProcessID="52"

ProcessName="FNOrdersProcess"

ActivityID="5"

ActivityName="OrderVerification"

ActivityAppCode="OrderVerification"/>

Process attribute list from app dict. <FNProcessAttributeList>

Status process attribute <FNProcessAttribute Name="Status" Type="TextData">

current value from prev. activity CreditVerified

</FNProcessAttribute>

StartingMessage proc attribute <FNProcessAttribute Name="StartingMessage"

Type="TextData">

Service requestor app document <MsgDoc>

<NewOrder>

<Atts>

<Att>

 <AttName>Billee</AttName>

 <AttType>TextData</AttType>

<AttValue><![CDATA[fred]]></AttValue>

 </Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

 <AttValue><![CDATA[fred]]></AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

 <AttType>TextData</AttType>

 <AttValue><![CDATA[20]]></AttValue>

</Att>

 <Att>

 <AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue><![CDATA[15]]></AttValue>

 </Att>

</Atts>

</NewOrder>

</MsgDoc>
Forte Fusion Backbone Integration Guide

Communicating Asynchronously With a Service Provider 77
Document Notes

The above state document is identical to the one shown in the synchronous example in
Chapter 3, “Synchronous Service Provider Use Case.” The engine always provides the same
information about the activity, and the proxy includes this information in the state
document, whether the activity is synchronous or asynchronous.

Command Document
The following command document to send the activity request to the service provider is
generated by the preceding steps.

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndState>

</FNState>

Start command document <FNCommand>

Command to send msg to app <FNAplCommand Command="SendMessage" Method="Post">

Application document follows <FNMessage>

Document element of app doc <OrderEntered>

App doc top-level element <WorkRoot>

<NewWork>

Value of application code <WorkType>CreditCheck</WorkType>

Element to hold FNIdentity <AddtlInfo>

Copy FNIdentity from state doc <FNIdentity
ProcessID="52"

ProcessName="FNOrdersProcess"

ActivityID="5"

ActivityName="BillPreparation"

ActivityAppCode="SendInvoice"/>

</AddtlInfo>

Begin service provider value list <SPAtts>

Service provider element to hold <SPAtt>

original service requestor <SPAttName>Order</SPAttName>

application document <SPAttType>XmlData</SPAttType>

<SPAttValue>

Start service requestor app doc <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData

</AttType>

<AttValue>Jack</AttValue>

</Att>

<Att>

<AttName>Shippee

 </AttName>

<AttType>TextData

 </AttType>
Chapter 4Asynchronous Service Provider Use Case

Communicating Asynchronously With a Service Provider78
Document Notes

The above command document is largely the same as that shown on page 62 for a
synchronous service provider activity, except that the asynchronous version adds the
AddtlInfo element to hold the FNIdentity element and its attributes.

<AttValue>Jill

 </AttValue>

</Att>

<Att>

<AttName>ItemCount

 </AttName>

<AttType>TextData

</AttType>

<AttValue>12</AttValue>

</Att>

<Att>

<AttName>OrderID

</AttName>

<AttType>TextData

</AttType>

<AttValue>555</AttValue>

</Att>

</Atts>

</NewOrder>

End service requestor app doc </MsgDoc>

 </SPAtt>

Service provider element to hold <SPAtt>

billing status value <SPAttName>Invoiced</SPAttName>

 <SPAttType>TextData</SPAttType>

Default value for invoice status <SPAttValue>No</SPAttValue>

 </SPAtt>

</SPAtts>

 </NewWork>

</WorkRoot>

</OrderEntered>

Application doc completed </FNMessage>

</FNAplCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Communicating Asynchronously With a Service Provider 79
Application Document
The lines between the start and end tags of the FNMessage element in the above command
document make up the application document that is sent to the service provider to request
that it perform the activity.

In this application document:

■ The values from the service requestor (the Atts and Att elements in the original service
requestor application document) are distinguished from the values understood by the
service provider (the SPAtts and SPAtt elements).

■ The FNIdentity elements and attributes (contained within the AddtlInfo element) are
included to identify the activity for asynchronous processing.

■ The service provider might return another application document to acknowledge the
proxy’s request. For information on handling such a document, see “(HTTP Sessions)
Receiving Acknowledgment from the Application” on page 75.
Chapter 4Asynchronous Service Provider Use Case

Receiving Asynchronous Notification of Completion80
Receiving Asynchronous Notification of Completion
After an asynchronous service provider performs the activity requested, it returns an
application document to its proxy. This document contains:

■ a message that the activity was performed

■ information to identify the activity performed

The proxy transforms this application document into a command document that tells the
Fusion process engine to complete the activity. The proxy’s inbound stylesheet must
contain the rules that cause this command document to be generated correctly.

HTTP sessions For HTTP sessions, because the application document begins a new HTTP
request/response cycle, the command document must contain an instruction to send a
response to the application, thus completing the cycle.

The following subsections describes how to include the necessary templates in your
inbound stylesheet to accomplish these tasks.

Step 1. Generating the Document Element
An application proxy identifies a command document by using the FNCommand element
as its document element. The first specific task your inbound stylesheet must perform is to
generate the document element for the command document.

For instructions for creating the FNCommand document element, see “Generating the
Document Element” on page 46.
Forte Fusion Backbone Integration Guide

Receiving Asynchronous Notification of Completion 81
Step 2. Sending a Command to the Engine
The command document next must instruct the engine to complete the activity. In the
example application, the inbound stylesheet performs this task by matching the
WorkCompleted element in the application document and transforming it into a
CompleteActivity command.

Note Although the service provider activities in the example application are all synchronous, the
command to the engine is the same for asynchronous activities. The only difference in the
command document is the FNIdentity element, as described in “Identifying the Completed
Activity to the Proxy” on page 82.

To instruct the engine to complete the activity, include a template like the following in your
inbound stylesheet:

Transformation Notes
In the above template:

■ The “WorkCompleted” element from the application document indicates that the
activity was successfully completed. If the application reported some other result, you
would need a template that matched the result and generated the appropriate
FNCndCommand Command attribute, such as “RollbackActivity” or “AbortActivity.”

■ The xsl:apply-templates element ensures that the FNIdentity element and the process
attribute list, which are generated by the templates shown in the next two sections,
respectively, are placed within the start and end tags of the FNCndCommand element.

■ The xsl:template element that matches the completed activity contains both the
FNCndCommand element to send the completion command to the engine and the
FNAplCommand element to send acknowledgment of completion to the application.

For more information about acknowledging the completion of the activity, see “(HTTP
Sessions) Acknowledging the Completion Message” on page 84.

Match WorkCompleted element in app doc <xsl:template match="WorkCompleted">

Send CompleteActivity command to engine <FNCndCommand Command="CompleteActivity">

Process children <xsl:apply-templates/>

</FNCndCommand>

See page 84 for acknowledgment acknowledgment to application

command </xsl:template>
Chapter 4Asynchronous Service Provider Use Case

Receiving Asynchronous Notification of Completion82
Step 3. Identifying the Completed Activity to the Proxy
The next task your inbound stylesheet must perform is to return the process ID and activity
ID to the proxy, so that the proxy knows which activity to complete. Assuming that your
outbound stylesheet passed the entire FNIdentity element as described in “Providing
Identifying Information” on page 72, your inbound stylesheet can retrieve this information
from the application document in either of two ways.

FNIdentity as child element If the FNIdentity element was passed inside another element, provide a template that
matches that element, then copies into the command document the FNIdentity element
inside of the parent element.

To retrieve the FNIdentity element from inside another element, include a template like the
following in your inbound stylesheet:

FNIdentity by itself If the FNIdentity element was passed on its own, provide a template that matches it and
copies it into the command document.

To retrieve the FNIdentity element directly from the application document, include the
following template in your inbound stylesheet:

Transformation Notes
In the above templates:

■ Because the xsl:copy-of element is by definition recursive, copying the entire segment of
the source node tree from the point of the match, there is no need for an xsl:apply-
templates element to ensure that any children of the FNIdentity element are copied.

■ The “.” expression in the second template above indicates that the copying should start
at the point where the match was found, that is, at the FNIdentity element itself.

■ The proxy only requires the process ID and activity ID attributes to identify the activity
to complete. However, because the proxy ignores the additional information, it is
simpler to return the entire FNIdentity element than to attempt to extract the two
attributes from it.

Match AddtlInfo element in app doc <xsl:template match="AddtlInfo">

Copy FNIdentity element inside it <xsl:copy-of select="FNIdentity"/>

</xsl:template>

Match FNIdentity element in app doc <xsl:template match="FNIdentity">

Copy it to command doc <xsl:copy-of select="."/>

</xsl:template>
Forte Fusion Backbone Integration Guide

Receiving Asynchronous Notification of Completion 83
Step 4. Returning Updated Process Attribute Values
The final task the command document performs is to return the current values for any
process attributes that were affected by the application. In the example application, the
billing service provider returns an updated value of the Status process attribute to indicate
that it has sent an invoice for this order.

Note The application also returns the original service requestor application document as the
value of the StartingMessage process attribute. However, the application does not change
the value of this process attribute.

To return process attribute values to the proxy, your inbound stylesheet must:

■ construct an FNProcessAttributeList element

■ construct an FNProcessAttribute element with the appropriate Name and Type
attributes for each corresponding element (and its child elements) in the application
document

■ retrieve the current values from the application document

For information about transforming application document values into command
document process attribute lists, see “Generating Process Attributes” on page 32.
Chapter 4Asynchronous Service Provider Use Case

Receiving Asynchronous Notification of Completion84
Step 5. (HTTP Sessions) Acknowledging the
Completion Message

When the service provider sends the application document containing the completion
information, it initiates a new HTTP request/response cycle. Therefore, the command
document that the proxy generates must send a message back to the application to
complete the cycle.

The simplest way to accomplish this task is to generate an empty response message to the
application. You can place this message within the template that matches the completed
activity in the application document, as shown in “Sending a Command to the Engine” on
page 81. Because you are generating the command to the engine and the command to the
application as a result of matching the same element in the application document, your
stylesheet only needs one template to accomplish both tasks.

To generate a response to the service provider, include the following element in your
inbound stylesheet within the template that matches the completed activity in the
application document:

Transformation Notes
In the above template:

■ The empty FNAplCommand element causes an HTTP message to be sent with a header
and no content. This communication is sufficient to complete the request/response
cycle.

■ The empty FNAplCommand is an acceptable response to an incoming JMS message
(although not required when using JMS). This means you can use the same template to
handle incoming HTTP and JMS messages.

■ For the complete template of which the application command is part, see “Sending a
Command to the Engine” on page 81.

Generate empty msg command <FNAplCommand Command="SendResponse"/>
Forte Fusion Backbone Integration Guide

Receiving Asynchronous Notification of Completion 85
Command Document Example
The following command document is generated by the preceding steps.

Start command document <FNCommand>

Command engine to complete activity <FNCndCommand Command="CompleteActivity">

FNIdentity element returned by app <FNIdentity

ProcessID="52"

ProcessName="FNOrdersProcess"

ActivityID="5"

ActivityName="BillPreparation"

ActivityAppCode="SendInvoice"/>

Start process attribute list <FNProcessAttributeList>

App doc as process attribute <FNProcessAttribute Name="StartingMessage"

Type="XmlData">

Doc element of app document <MsgDoc>

<NewOrder>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>Jack</AttValue>

</Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

<AttValue>Jill</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>12</AttValue>

</Att>

<Att>

<AttName>OrderID</AttName>

<AttType>TextData</AttType>

<AttValue>555</AttValue>

</Att>

</Atts>

</NewOrder>

End of application document </MsgDoc>

</FNProcessAttribute>

Updated process attribute <FNProcessAttribute Name="Status"

Type="TextData">

New process attribute value Invoiced

</FNProcessAttribute>

End of process attribute list </FNProcessAttributeList>

</FNCndCommand>

App command to send empty response <FNAplCommand Command="SendResponse"/>

</FNCommand>
Chapter 4Asynchronous Service Provider Use Case

Receiving Asynchronous Notification of Completion86
Document Notes
In the above document:

■ There are two children of the FNCommand document element—the FNCndCommand
element to send the CompleteActivity instruction to the engine, and the
FNAplCommand to send the empty response to the service provider.

■ The entire FNIdentity element is copied directly from the application document. The
proxy ignores any attributes it does not need.

■ The value of the Status process attribute is changed to “Invoiced” to reflect the status of
the order as returned by the billing application.
Forte Fusion Backbone Integration Guide

Chapter 5
Service Requestor
Authentication Use Case
This chapter describes how to enable a service requestor application to authenticate itself
to a proxy (configured for HTTP) to initiate a Fusion process. The chapter discusses the
authentication documents you might need to write and related integration tasks you need
to perform. Authentication discussed in this chapter applies only to proxies configured for
HTTP communication.

For basic information about submitting a request to a proxy to create a Fusion process, see
Chapter 2, “Service Requestor Use Case.”

For general information about authentication in a Fusion enterprise application (including
authentication for proxies configured for JMS), see the Forte Fusion Backbone System
Guide.

Use Case Summary88
Use Case Summary
The following table provides an overview of this use case:

Use Case Information Description

description A service requestor application attempts to initiate a Fusion process with a proxy
that requires authentication.

expected outcome The application’s proxy accepts the application’s authentication, instructs the Fusion
engine to start the process, and notifies the application that the process has been
started.

actors involved ❚ the service requestor application

❚ the application proxy

❚ the Fusion process engine

proxy document and
message flow

1 Service requestor sends application document to proxy.

2 Proxy responds with message containing HTTP 401 Unauthorized error and
WWW-Authenticate header specifying the type of authentication it requires (Basic
or FusionXML).

3 Service requestor resends application document with authorization header
containing authentication information (either user name/password combination
or XML authentication document).

4 Proxy submits the authentication information to the Fusion engine as a user
profi.le.

5 After the engine validates the user profile, the proxy submits a command
document to create the process.

6 Proxy creates state document based on information received from engine about
the process.

7 Proxy generates command document that includes message for application that
request was received.

8 Proxy sends:

❚ application document to service requestor

❚ HTTP cookie to service requestor to authenticate it for rest of current session
Forte Fusion Backbone Integration Guide

Use Case Summary 89
The remainder of this chapter describes this use case in more detail and provides
procedures for writing authentication documents and performing the tasks required for
authentication.

stylesheets required inbound stylesheet to transform application document into command document to
start process (Step 5)

outbound stylesheet to:

❚ transform state document into command document to notify application (Step 6)

❚ generate application document containing notification (Step 8)

No stylesheets are required to process an authentication document (for FusionXML
authentication), because you create this document using Fusion’s XML structure and
vocabulary.

Other integration tasks ❚ use the SetAuthentication FNscript command to configure the proxy to require
authentication and to specify the type of authentication

❚ create a Fusion user validation against which to authentication the user
information submitted by the service requestor

Use Case Information Description

Service Requestor

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document

(ProcessCreated)

 url

Command
Document

(CreateProcess)

5

6

7

8

Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

2

 url

Application
Document

3

Authorization Header

Cookie

Authentication
Info
4

 url

Application
Document

1

Chapter 5Service Requestor Authentication Use Case

Authenticating a Service Requestor with a Proxy90
Authenticating a Service Requestor with a Proxy
When a service requestor sends its proxy a request to start a Fusion process, the proxy may
require authentication from the service requestor before instructing the Fusion process
engine to create the process.

Authentication message flow The following flow of documents and messages takes place when a service requestor
attempts to start a Fusion process with a proxy that requires authentication:

1 The service requestor sends an application document to the proxy.

2 The proxy rejects the document, and returns a “401 Unauthorized” error message with a
WWW-Authenticate header specifying the authentication type (Basic or FusionXML).

3 The service requestor resubmits the application document with the appropriate Fusion
user information included in the authorization header of the HTTP message.

The specific information you supply depends on whether the proxy requires Basic or
FusionXML authentication. For information about supplying user validation
information, see “Submitting Authentication Information” on page 93.

Note You could submit the user information with the application document from the beginning
and bypass Step 2 and Step 3. However, it is good practice for security reasons not to send
the authorization information until the proxy requests it.

4 The proxy submits this user information to the Fusion process engine, which validates it
against the user validation you specified when you created the Fusion process
definition.

For more information about Fusion user validations, see the Forte Fusion Process
Development Guide.

5 If the engine validates the user information that the proxy submitted on behalf of the
service requestor, the proxy:

■ creates an HTTP session for the service requestor

■ sends a cookie to the service requestor, so that the application is authorized for
subsequent requests during the current HTTP session

6 The proxy now can submit a command document to the engine requesting that it create
the process for the service requestor.

When the proxy accepts the application document from the service requestor, the
procedure for creating the process and notifying the application is the same as described in
Chapter 2, “Service Requestor Use Case.”

Enabling authentication To enable the service requestor to be authenticated and the process created, you must take
the following steps:

1 Configure the proxy to require authentication, and specify the type of configuration
required.

2 Create a Fusion user validation against which to validate the user information that the
proxy submits.

3 Map your service requestor application users to users recognized by the Fusion user
validation.

4 Configure the proxy with the proper identification corresponding to the Fusion user
validation.

The following sections describe how to perform these tasks.
Forte Fusion Backbone Integration Guide

Authenticating a Service Requestor with a Proxy 91
Step 1. Configuring the Proxy for Authentication
To require authentication from a service requestor, you must configure its proxy for the
type of authentication desired. To do so, issue the SetAuthentication FNScript command as
follows:

With Basic authentication, the service requestor sends a user name and password
combination to the proxy. For information about supplying this information, see “Sending
a User Name and Password” on page 93.

With FusionXML authentication, the service requestor sends an XML authentication
document with additional user information, for example, a Fusion user profile or role. For
more information about creating authentication documents, see “Sending an
Authentication Document” on page 93.

Setting Session Parameters
You also can use the following FNscript commands to specify how the proxy handles user
sessions:

For more information about proxy configuration, see the Forte Fusion Backbone System
Guide.

Step 2. Creating a User Validation
When you define a Fusion process, you create a user validation to authorize connections to
the process engine. The user validation examines information about the user to determine
whether or not the user is authorized to connect to a Fusion engine. Any application that
attempts to start a session with the engine is verified by the user validation.

If the service requestor’s proxy is configured to require authentication from its partner
application, then the proxy passes any user information that the application submits to it
(through either a user/password combination or an authentication document) to the
engine to verify against the user validation.

For information about submitting application user information to the proxy, see
“Submitting Authentication Information” on page 93.

For information about defining Fusion user validations, roles, and user profiles, see the
Forte Fusion Process Development Guide and the online Help for the appropriate
Workshops.

Basic authentication fnscript> SetAuthentication Basic

FusionXML authentication fnscript> SetAuthentication FusionXML

Command Description

SetSessionMaximum specifies how many concurrent sessions the proxy accepts
from the service requestor

SetSessionTimeout specifies how long the proxy waits for a response from a
service requestor

SetAuthentication Server=Local | Process Engine specifies the source of the user authentication information
Chapter 5Service Requestor Authentication Use Case

Authenticating a Service Requestor with a Proxy92
Step 3. Mapping Application Users to Fusion Users
For either Basic or FusionXML authentication, the proxy takes the information the
application supplies and submits it to the Fusion process engine for validation. Neither the
proxy nor the engine has any knowledge of the application user. Therefore, your
application must be able to map its users to a Fusion user recognized by the user validation
defined for the engine.

The simplest way for an application to supply the correct user information to the proxy is
for it to map all valid users to a small set of Fusion users, or even a single Fusion user. For
example, you might create a Fusion user called OrderClerk. When both Mary Smith and Joe
Young connect to the service requestor application, the application passes the OrderClerk
user name and password to the proxy to authenticate against the user validation for the
process.

If you are using FusionXML authentication to specify additional information, the same
concept applies to user roles and profiles. That is, the application must map each of its
authorized users to a Fusion role or profile as required by the user validation for the engine.

For example, the Fusion process that the example Fusion application uses contains a role
called ProcessCreator. If the example application required FusionXML authentication, then
the StartAndVerify service requestor application would need to pass this role name each
time an application user attempted to start a session with the proxy.
Forte Fusion Backbone Integration Guide

Authenticating a Service Requestor with a Proxy 93
Step 4. Submitting Authentication Information
When a proxy that requires authentication returns a 401 Unauthorized message, you must
resubmit the service requestor application document with the appropriate authorization
information in the message header. The type of authorization you specified using the
FNscript proxy configuration command SetAuthentication determines the information
you must include:

■ For Basic authentication, include a user name:password string.

■ For FusionXML authentication, include a string containing an XML authentication
document.

The following subsections describe how to use each of these methods.

For information about configuring proxies, see “Configuring the Proxy for Authentication”
on page 91.

Sending a User Name and Password
If the proxy uses Basic authentication, include the following string in the authorization
header for the application document:

where name and password are a Fusion user name and password accepted by the user
validation for the Fusion process.

For example, assume that user name “OrderClerk” and password “$$clerk##” are a valid
Fusion user name and password for this process. When the service requestor is prompted
by the proxy to submit authentication, you would include the following string in the HTTP
message header:

The name and password are encoded with Base64 and sent to the proxy, which submits the
information to the engine. If the Fusion engine validates this user name and password, the
proxy processes the command document instructing the engine to create the process.

Sending an Authentication Document
If the proxy uses FusionXML as its authentication type, then the service requestor submits
an authentication document in its response to the proxy’s WWW-Authenticate message.
The authentication document can contain additional Fusion user information beyond the
name and password, such as roles and user profiles.

To send an authentication document to a proxy, include the following string in the
authorization header for the application document:

where XML_authentication_document is a string containing an XML document. For
information about specifying the contents of this document, see the following section,
“Creating an Authentication Document.”

If the Fusion engine validates the contents of the authentication document to the proxy,
the proxy then submits the command document instructing the engine to create the
process.

Authorization: basic base64(name:password)

Authorization: basic base64(‘orderclerk:$$clerk##’)

Authorization: FusionXML base64(XML_authentication_document)
Chapter 5Service Requestor Authentication Use Case

Authenticating a Service Requestor with a Proxy94
Creating an Authentication Document
An authentication document is an XML document that uses a specific structure and
vocabulary. For information about the format of an authentication document, see
Appendix B, “Proxy Document Element Hierarchies” and the Fusion Backbone online Help.

The FNAuthenticate element is required, because it is the document element that identifies
the string as an authentication document. Although, strictly speaking, all other elements
are optional, you must include all values required by the Fusion user validation, for
example, a user profile or role.

When you create the document, you use the XML structure and vocabulary that Fusion
understands, so no transformations are required. There are no stylesheets associated with
authentication documents, and the proxy’s XSL processor never processes them.

Example Authentication Document
The following example shows an authentication document that a service requestor might
submit to a proxy:

Document element <FNAuthenticate>

Fusion user profile <FNUserProfile Name="FNProxyProfile"/>

Fusion user information <FNUser Name="ProxyUser"

Password="pxy$usr"

OtherInfo="telesales">

List of Fusion roles <FNRoleList>

Fusion roles from <FNRole Name="ProcessCreator"/>

proxy configuration <FNRole Name="OrderTaker"/>

</FNRoleList>

</FNAuthenticate>
Forte Fusion Backbone Integration Guide

Chapter 6
Service Provider
Authentication Use Case
This chapter describes the integration tasks required to enable a proxy (configured for
HTTP) to authenticate itself with a service provider application. Authentication discussed
in this chapter applies only to proxies configured for HTTP communication.

For information about the basic tasks and stylesheets required when a proxy submits an
activity to a service provider, see Chapter 3, “Synchronous Service Provider Use Case” or
Chapter 4, “Asynchronous Service Provider Use Case.”

For general information about authentication in a Fusion enterprise application (including
authentication for proxies configured for JMS), see the Forte Fusion Backbone System
Guide.

Use Case Summary96
Use Case Summary
The following table provides an overview of this use case:

Use Case Information Description

description A proxy submits a request to perform an activity to a service provider application
that requires authentication.

expected outcome The application accepts the proxy’s authentication, performs the activity, and notifies
the proxy when it is completed.

actors involved ❚ the application proxy

❚ the service requestor application

(the Fusion process engine is not involved in the authentication process, only in
submitting the activity to the proxy, then completing it when notified by the proxy)

proxy document and
message flow

1 Proxy generates an “ActivityStarted” state document based on a call from the
engine that the activity has entered the ACTIVE state.

2 Proxy generates command document with request for service provider.

3 Proxy sends request to service provider as application document.

4 Service provider responds with message containing HTTP 401 Unauthorized error
and WWW-Authenticate header specifying the type of authentication it requires
(Basic or FusionXML).

5 Proxy resends application document with authorization header containing
authentication information (either user name/password combination or XML
authentication document).

6 Service provider performs activity and sends application document to proxy with
message that activity was performed.

7 Proxy generates command document to notify engine that activity is complete

Proxy

 url

Command
Document

 url

State
Document

(ActivityStarted) url

Command
Document
(CmpltActvty)

7

1

2

 url

Application
Document

3

 url

Application
Document

5

Authorization Header

 url

Application
Document

6

Service Provider

Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

4

Forte Fusion Backbone Integration Guide

Use Case Summary 97
The remainder of this chapter describes this use case in more detail and provides
procedures for performing the tasks required for authentication.

stylesheets required outbound stylesheet to:

❚ transform state document into command document that sends request to service
provider (Step 2)

❚ generate application document containing request to service provider (Step 3)

inbound stylesheet to transform application document into command document to
notify engine that application performed the activity (Step 7)

No stylesheets are required for the proxy to create an authentication document,
because the proxy already knows the required XML structure and vocabulary.

Other integration tasks ❚ use FNscript commands to provide the proxy with the authentication information
to submit to the service provider

❚ configure your application to tell proxy what type of authentication is required

❚ if you are using FusionXML authentication, make sure your partner application
knows how to interpret the proxy’s authentication document

Use Case Information Description
Chapter 6Service Provider Authentication Use Case

Authenticating a Proxy with a Service Provider98
Authenticating a Proxy with a Service Provider
When a proxy sends a service provider application a request to perform an activity, the
application may require authentication from the proxy before accepting the request and
performing the activity.

Authentication message flow The following flow of documents and messages takes place when a proxy sends a request to
a service provider that requires authentication:

1 The proxy sends an application document to the service requestor.

2 The service requestor rejects the document, and returns a message with:

■ a “401 Unauthorized” error in the message body

■ A WWW-Authenticate header message specifying the type of authentication (Basic or
FusionXML) that the service provider requires from the proxy.

3 The proxy resubmits the application document with the appropriate application user
information included in the HTTP message header.

The specific information the proxy supplies depends on the type of authentication that
the application specifies:

■ For Basic authentication, the proxy returns a string containing a user name and
password.

■ For FusionXML authentication, the proxy returns a string containing an XML
authentication document containing additional user information.

You must ensure that the proxy is configured to know the information to submit. For
information about configuring a proxy with application authentication information, see
“Providing User Information to the Proxy” on page 100.

4 The service provider validates the proxy’s user information; if the information is
accepted, the service provider:

■ creates a session for the proxy

■ performs the activity

■ returns an application document to the proxy indicating completion

5 The proxy generates a command document to notify the Fusion engine that the activity
was completed.

From the point at which the service provider accepts the proxy’s application document
(Step 4), the procedure for performing the activity and sending the required notifications is
the same as any for any service provider application.

For information about sending synchronous requests to a services provider, see Chapter 3,
“Synchronous Service Provider Use Case.” For information about sending asynchronous
requests, see Chapter 4, “Asynchronous Service Provider Use Case.”

Enabling authentication To enable the service provider to authenticate the proxy and complete the activity, take the
following steps:

1 Configure your partner application to require authentication and to specify the type of
configuration required.

2 Configure the proxy with the authentication information for the service provider.

The following sections describe how to perform these tasks.

For more information about proxy configuration and session authentication, see the Forte
Fusion Backbone System Guide.
Forte Fusion Backbone Integration Guide

Configuring the Service Provider for Authentication 99
Configuring the Service Provider for Authentication
To require that a proxy authenticate itself with a service provider application, the
application must be configured to inform the proxy what kind of authentication is
required. The specific procedures you need to follow depend, of course, on the type of your
application.

You specify the authentication type in the WWW-Authenticate header of the 401
Unauthorized error message that the application sends in response to the original
application document. To accomplish this task, include either of the following strings in
the message header (where backbonename and proxyname represent the Fusion Backbone
and service provider’s partner proxy):

Basic authentication instructs the proxy to send the application a user name and password.
The proxy sends the name and password of the user you specify when you configure the
proxy, as described in “Providing User Information to the Proxy” on page 100.

The user name and password are encoded with Base64 and embedded as an authorization
header in the HTTP message containing the application document requesting the
application to perform the activity. For information about the format of this message
header, see “Sending a User Name and Password” on page 93.

FusionXML authentication instructs the proxy to send the application an XML
authentication document with additional information, for example, a user profile or role.
The authentication document is encoded with Base64 and embedded as a string in the
authorization header of the HTTP message containing the application document that
requests the application to perform the activity.

The proxy constructs the authentication document based on the application user
information you supply when you configure the proxy, as described in the following
section, “Providing User Information to the Proxy.”

Note Your application must be capable of interpreting the authentication document. For
information on the authentication document XML structure and vocabulary, see
Appendix B, “Proxy Document Element Hierarchies” and the Fusion Backbone online Help.

Basic authentication WWW-Authenticate: basic realm="backbonename:proxyname"

FusionXML authentication WWW-Authenticate: FusionXML realm="backbonename:proxyname"
Chapter 6Service Provider Authentication Use Case

Providing User Information to the Proxy100
Providing User Information to the Proxy
For either Basic or FusionXML authentication, the proxy must know what application user
information to pass to the service provider when requested. The proxy can only send the
information about which it knows, so be sure that you configure values for all items that
the service provider expects.

You use FNscript commands to provide application user information to the proxy. The
following table shows the relevant commands:

For more information about proxy configuration, see the Forte Fusion Backbone System
Guide.

Command Description

SetAplSession username [password [, otherinfo]] Specifies the name of a user authorized to connect to the
service provider application; may contain an optional
password and “otherinfo” string with information
meaningful to the application, for example, a department or
manager name.

AddAplRole rolename Specifies the name of a user role that the application requires
for access.

For example, a CreditCheck application might only allow
access to proxies that connect with the role of
CreditManager.

SetAplProfile profilename Specifies the name of a user proflle required by the
application for access.
Forte Fusion Backbone Integration Guide

Chapter 7
Proxy Recovery Use Case
This chapter describes the XSL stylesheets and related integration tasks required to submit
activities to a service provider application after its proxy has failed and recovered.

The chapter also presents an alternative scenario in which the recovered activities are
aborted.

For information about the basic tasks and stylesheets required for a proxy to submit a
request to a service provider, see Chapter 3, “Synchronous Service Provider Use Case.” If
the proxy and application communicate asynchronously, also see Chapter 4,
“Asynchronous Service Provider Use Case.”

If you are running an independent proxy, you cannot use the recovery methods that Fusion
provides. A proxy must be connected to a running Fusion process engine to be able to
recover activities after proxy or application failure.

Use Case Summary102
Use Case Summary
The following table provides an overview of this use case:

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

Note For an alternative scenario in which the activity is aborted rather than submitted to the
application, see “Alternative Processing: Aborting the Recovered Activity” on page 108.

Use Case Information Description

description A service provider proxy fails then recovers during a Fusion process.

expected outcome Upon recovery, the proxy retrieves all ACTIVE activities from the engine and submits
them to the partner application as though they were new activities.

actors ❚ application proxy

❚ Fusion process engine

❚ service provider application

proxy document flow 1 After it recovers, the proxy generates an “ActivityExists” state document for each
activity in the ACTIVE state.

2 Proxy generates command document with request to service provider for each
activity.

3 Proxy sends application document to service provider to perform activity.

4 Service provider sends application document to proxy with disposition of activity.

5 Proxy generates command document to notify engine to complete activity.

required stylesheets outbound stylesheet to:

❚ transform state document into command document to send request to service
provider (Step 2)

❚ generate application document containing request to service provider (Step 3)

inbound stylesheet to send command document to engine to complete the activity
(Step 5)

other integrator tasks ❚ provide your partner application with the logic to handle possibly duplicate
activities

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ActivityExists)

 url

Command
Document
(CmpltActvty)

 url

Application
Document

4

5

1

2

3
Service Provider
Forte Fusion Backbone Integration Guide

Submitting a Recovered Activity to a Service Provider 103
Submitting a Recovered Activity to a Service Provider
If a proxy for a service provider fails during a Fusion process, the following actions occur:

1 The backbone manager restarts the proxy.

2 The proxy reconnects to the Fusion process engine.

3 The proxy retrieves a list of ACTIVE activities from the engine.

4 The proxy generates a state document for each activity with a value of “ActivityExists”
for the State attribute of the FNCndState element.

The proxy, however, has no way of knowing whether or not any of these activities were sent
to the service provider before the failure. Therefore, your outbound stylesheet must contain
rules for processing these recovered activities and handling them according to the partner
application’s business logic.

The simplest way to handle a recovered activity is to send the service provider an
application document with a request to perform the activity. In essence, you are treating
the activity like any other activity that has entered the ACTIVE state, without regard for
whether the activity might already have been sent to the service provider.

The option is generally preferred for situations where it is acceptable for the application to
perform the activity twice, or where the application can determine how to handle duplicate
requests. For example, if the activity involved adding records to a database, the database
itself would reject any duplicate records.

Submitting the Activity
To send an ACTIVE activity to a service provider after a proxy recovers, your outbound
stylesheet must:

■ locate the activity in the state document by matching an FNCndState element whose
State attribute has a value of “ActivityExists”

■ generate a command document that sends an application document requesting the
service provider to perform the activity

To accomplish these tasks, include a template like the following in your outbound
stylesheet:

The procedure for submitting the activity to the service provider is similar to that for
handling a newly ACTIVE activity. The only difference is that for the recovered activity your
stylesheet must match an FNCndState State attribute value of “ActivityExists,” as shown in
the above template, rather than “ActivityStarted,” as for new activities.

Match found activity in state doc <xsl:template match="FNCndState[@State=’ActivityExists’]">

Send message <FNAplCommand Command="SendMessage" Method="Post"/>

Specifies that app doc follows <FNMessage>

Document element for app doc <WorkRoot>

Top-level element for app doc <NewWork>

Process children <xsl:apply-templates/>

</NewWork>

</WorkRoot>

</FNMessage>

</FNAplCommand>

</xsl:template>
Chapter 7Proxy Recovery Use Case

Submitting a Recovered Activity to a Service Provider104
Synchronous and
asynchronous activities

Because you are handling the recovered activity like a new activity, you should treat the
recovered activity as synchronous or asynchronous according to the usual processing for
this proxy and application. That is, apply your usual rules for including or omitting
information from the FNIdentity element to identify the activity.

For the complete procedure required to generate the command document and application
document to a synchronous service provider, see “Communicating Synchronously With a
Service Provider” on page 57.

For the complete procedure required to generate the command document and application
document to an asynchronous service provider, see “Communicating Asynchronously With
a Service Provider” on page 70.
Forte Fusion Backbone Integration Guide

Generated Document Examples 105
Generated Document Examples
The following sections describe the XML documents that are generated when a service
provider proxy recovers from failure.

State Document
A proxy that has recovered from failure generates a state document like the following for
each activity that the Fusion process engine informs it is in the ACTIVE state:

Note The only difference between a state document for an activity in the ActivityExists state and
a state document for an activity in the ActivityStarted state is the value of the State attribute
of the FNCndState element.

XML declaration <?xml version="1.0"?>

State doc document element <FNState>

State of activity <FNCndState State="ActivityExists">

Process/activity information <FNIdentity

ProcessID="52"

ProcessName="FNOrdersProcess"

ActivityID="5"

ActivityName="BillPreparation"

ActivityAppCode="Billing"/>

Process attribute list from app dict. <FNProcessAttributeList>

Status process attribute <FNProcessAttribute Name="Status" Type="TextData">

Value from previous activity CreditVerified

</FNProcessAttribute>

StartingMessage proc attribute <FNProcessAttribute Name="StartingMessage"

Type="TextData">

Service requestor app document <MsgDoc>

<NewOrder>

<Atts>

<Att>

 <AttName>Billee</AttName>

 <AttType>TextData</AttType>

<AttValue><![CDATA[fred]]></AttValue>

 </Att>

<Att>

<AttName>Shippee</AttName>

<AttType>TextData</AttType>

 <AttValue><![CDATA[fred]]></AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

 <AttType>TextData</AttType>

 <AttValue><![CDATA[20]]></AttValue>

</Att>

 <Att>

 <AttName>OrderID</AttName>

<AttType>TextData</AttType>
Chapter 7Proxy Recovery Use Case

Generated Document Examples106
Document Notes
In the above document, the value of the Status process attribute is CreditVerified, because
that was the last activity that updated the Status value.

Command Document
The command document that the proxy generates to send a recovery activity to a service
provider is identical to the document generated for a newly ACTIVE activity. For an
example of such a command document, see “Command Document” on page 77.

Application Document
The application document in this case also is identical to the application document
generated for a newly ACTIVE activity. For a discussion of this application document, see
“Application Document” on page 79.

<AttValue><![CDATA[15]]></AttValue>

 </Att>

</Atts>

</NewOrder>

</MsgDoc>

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndState>

</FNState>
Forte Fusion Backbone Integration Guide

Receiving Notification of Completion from the Application 107
Receiving Notification of Completion from the Application
When the application notifies the proxy that it has performed the activity, the proxy uses
the inbound stylesheet to generate a command document as it would for any other
completed activity. Whether or not the proxy treats the activity as synchronous or
asynchronous depends on how the activity was submitted to the service provider.

For the steps required to generate the command document based on an asynchronous
response from the application, see “Receiving Synchronous Notification of Completion” on
page 64.

For the steps required to generate the command document based on an asynchronous
response from the application, see “Receiving Asynchronous Notification of Completion”
on page 80.
Chapter 7Proxy Recovery Use Case

Alternative Processing: Aborting the Recovered Activity108
Alternative Processing: Aborting the Recovered Activity
If a process is interrupted because a proxy fails, you might need to abort or rollback the
activity, or even abort the process, without submitting the activity to the application. Such
a situation might exist, for example, in a manufacturing process in which timing is critical.

In such a case, your outbound stylesheet needs a rule to generate a command document to
instruct the engine to abort the activity or process, rather than generating an application
document.

To accomplish this task, your outbound stylesheet needs rules to:

1 Generate the FNCommand document element for command documents.

2 Find an activity in the state document whose State attribute has a value of
“ActivityExists.”

3 Generate a command to the engine to abort the process or activity.

4 If the proxy processes activities asynchronously, include the identity of the activity, as
specified by the FNIdentity element in the state document.

To accomplish these tasks, include a template like the following in your outbound
stylesheet:

Transformation Notes
In the above template:

■ To roll back the activity or abort the entire process, substitute “RollbackActivity” or
“AbortProcess,” respectively, for the value of the Command attribute.

■ If the proxy processes activities synchronously, omit the FNIdentity information.

Match found activity in state doc <xsl:template match="FNCndState[@State=’ActivityExists’]">

Doc element for command doc <FNCommand>

Send command to engine <FNCndCommand Command="AbortActivity"/>

Copy FNIdentity from state doc <xsl:copy-of select="FNIdentity"/>

</FNCndCommand>

</FNCommand>

</xsl:template>
Forte Fusion Backbone Integration Guide

Alternative Processing: Aborting the Recovered Activity 109
Altering the Document Flow
This processing option implements an alternative flow of proxy documents. In this case,
the documents flow from the Fusion process engine to the proxy, then back to the engine,
without involving the partner application.

Also, although templates to generate commands to the engine usually are placed in
inbound stylesheets, the above template is in the proxy’s outbound stylesheet. The reason
for this difference is that the source document is an outbound state document, rather than
an inbound application document.

Generated Document Examples
The following sections provide examples of the XML documents that a proxy generates for
the preceding scenario.

State Document
For an example of a state document that a proxy generates for a recovered activity, see
“State Document” on page 105.

Command Document
The following command document is generated by the preceding steps.

Document Notes

In the above document, the value of the Command attribute depends on the template you
specify in your outbound stylesheet.

Application Document
There is no application document generated for this variation of the use case. The proxy
transforms the state document into a command document that sends a command back to
the Fusion process engine, rather than to the application.

Start command document <FNCommand>

Command to send msg to app <FNCndCommand Command="AbortActivity">

Copy FNIdentity from state doc <FNIdentity

ProcessID="52"

ProcessName="Replication"

ActivityID="5"

ActivityName="Cloning"

ActivityAppCode="CloneDNA"/>

</FNCndCommand>

</FNCommand>
Chapter 7Proxy Recovery Use Case

Alternative Processing: Aborting the Recovered Activity110
Forte Fusion Backbone Integration Guide

Chapter 8
Application Recovery Use Case
This chapter describes the XSL stylesheets you need to write and related integration tasks
you need to perform to submit activities to a service provider application that has failed
and recovered.

For information about the basic tasks and stylesheets required for a proxy to submit a
request to a service provider, see Chapter 3, “Synchronous Service Provider Use Case.” If
the proxy and application communicate asynchronously, also see Chapter 4,
“Asynchronous Service Provider Use Case.”

If you are running an independent proxy, you cannot use the recovery methods that Fusion
provides. A proxy must be connected to a running Fusion process engine to be able to
recover activities after proxy or application failure.

Use Case Summary112
Use Case Summary
The following table provides an overview of this use case:

Use Case Information Description

description A service provider application fails during and recovers during a Fusion process.

expected outcome When the application notifies the proxy that it has recovered, the proxy retrieves all
ACTIVE activities and submits them to the partner application.

actors ❚ service requestor application

❚ application proxy

❚ Fusion process engine

proxy document flow 1 Upon recovery, service provider sends application document to notify proxy that it
is available again.

2 Proxy generates a “ListActivities” command document to retrieve all ACTIVE
activities.

3 Proxy generates an “ActivityExists” state document for each activity in the ACTIVE
state.

4 Proxy generates command document with request to service provider for each
activity.

5 Proxy sends application document with request for each activity to service
provider.

6 Service provider sends application document to proxy with disposition of activity.

7 Proxy generates command document to notify engine that activity was
performed.

 url

Command
Document

(CompleteActivity)

 url

Application
Document

6

7

Proxy

 url

Application
Document

 url

Command
Document

 url

State
Document
(ActivityExists)

 url

Command
Document
(ListActivities)

 url

Application
Document

1

2

3

4

5

Service Provider

Proxy
Forte Fusion Backbone Integration Guide

Use Case Summary 113
The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheets required for its successful completion.

required stylesheets inbound stylesheet to:

❚ transform recovery notification from application into request to list ACTIVE
activities (Step 2)

❚ transform application document into command document to notify engine that
application performed the activity (Step 7)

outbound stylesheet to:

❚ transform state document into command document that sends request to service
provider (Step 4)

❚ generate application document containing request to service provider (Step 5)

other integrator tasks Configure the proxy for the service provider as an HTTP server. For details about
configuring proxies, see the Forte Fusion Backbone System Guide.

Provide your partner application with the logic to:

❚ notify the proxy that the application has recovered

❚ handle possibly duplicate activities resubmitted by the proxy

Use Case Information Description
Chapter 8Application Recovery Use Case

Notifying the Proxy of Application Recovery114
Notifying the Proxy of Application Recovery
A service provider application that has failed must notify its proxy when it becomes
available again, so that it can continue to receive requests to perform work. The form of
this notification depends on the application; it might be as simple as an application
document with a single element, for example:

The proxy’s inbound stylesheet should include two templates. The first template:

■ matches the application document root element

■ creates the FNCndCommand element in the command document

■ causes all children of the root element in the application document to be processed

The second template:

■ matches the application’s recovery notification

■ transforms this notification into a command document to list all currently ACTIVE
activities for the proxy

The stylesheet also should include a template that:

To accomplish these tasks, include the first template shown below, and a template like the
second, in your inbound stylesheet:

Generated Command Document Example
The following command document is generated by the preceding template.

<MsgDoc>

<AppRecovered>

</MsgDoc>

Match app doc root element <xsl:template match="/">

<FNCommand>

Create FNCndCommand element <FNCndCommand>

Process all elements in app doc <xsl:apply-templates/>

</FNCndCommand>

</xsl:template>

Match recovery notification in app doc <xsl:template match="AppRecovered">

Generate ListActivities command <FNCndCommand Command="ListActivities"/>

</xsl:template>

Start command document <FNCommand>

Command to send msg to app <FNCndCommand Command="ListActivities"/>

</FNCommand>
Forte Fusion Backbone Integration Guide

Submitting Activities to a Recovered Application 115
Submitting Activities to a Recovered Application
When the proxy receives the command document with the “ListActivities” command, it
checks its list of ACTIVE activities. For each activity on the list, it generates a state
document with a State attribute value of “ActivityExists.”

Your outbound stylesheet now can generate command documents from these state
documents to submit these activities to the recovered service provider application, just as it
would if the proxy had failed and recovered.

For information about submitting recovered activities to a service provider, see “Submitting
a Recovered Activity to a Service Provider” on page 103.
Chapter 8Application Recovery Use Case

Receiving Notification of Completion from the Application116
Receiving Notification of Completion from the Application
When the application notifies the proxy that it has performed the activity, the proxy uses
the inbound stylesheet to generate a command document as it would for any other
completed activity. Whether or not the proxy treats the activity as synchronous or
asynchronous depends on how the activity was submitted to the service provider.

For the steps required to generate the command document based on an asynchronous
response from the application, see “Receiving Synchronous Notification of Completion” on
page 64.

For the steps required to generate the command document based on an asynchronous
response from the application, see “Receiving Asynchronous Notification of Completion”
on page 80.
Forte Fusion Backbone Integration Guide

Chapter 9
Independent Proxy Use Case
This chapter describes the XSL stylesheets you need to write any related integration tasks
you need to perform to enable an application to send information in the form of XML
documents to another application through an independent Fusion proxy. An independent
proxy is one that is not connected to a Fusion process engine.

If the proxy requires user authentication from the requestor application, there are
additional tasks you must perform. After you read this chapter, see Chapter 10,
“Independent Proxy Authentication Use Case.”

Use Case Summary118
Use Case Summary
The following table provides an overview of this use case:

The remainder of this chapter describes this use case in more detail and provides
procedures for writing the stylesheet required for its successful completion.

Use Case Information Description

description An application sends XML data to another application through a Fusion proxy that is
not connected to a running Fusion process engine.

expected outcome The proxy receives an application document from the initiating application and uses
the inbound stylesheet to transform the document into another application
document, which it transmits to a target application.

actors ❚ initiating application

❚ application proxy

❚ target application

proxy document flow 1 Initiating application sends application document to proxy.

2 Proxy generates command document with message for target application.

3 Proxy sends message as application document to target application.

required stylesheets inbound stylesheet to transform application document into command document
that generates message containing application document for target application

No outbound stylesheet is required because, without a Fusion process engine, there
is no state document generated.

other integration tasks Set the UseProcessEngine FNscript command to off to specify that the proxy is not
connected to a Fusion process engine.

Initiating Application

Proxy

 url

Application
Document

 url

Command
Document

 url

Application
Document

1

2

3

Forte Fusion Backbone Integration Guide

Transferring Data Between Applications 119
Transferring Data Between Applications
You can use a Fusion proxy to enable applications to share data by transforming XML
documents. For such simple data transformations, the proxy—known as an independent
proxy—need not be connected to a Fusion process engine.

Independent proxies always involve client-server applications, that is, a client application
performs some work, then sends data to a server.

For example, you might have an online registration page for visitors to a trade show. When
a new visitor registers, you might want to send some of the information to an application
that prints a badge for the visitor. You would not need to create a Fusion process definition
to perform such a simple transfer of data.

To transfer data between applications through an independent proxy:

■ Create an inbound stylesheet to transform the initiating application’s application
document into a command document containing an application document for the
target application.

■ Configure the proxy to specify that it is not connected to a Fusion engine.

The rest of this chapter describes how to create such a stylesheet and configure an
independent proxy.

For general information about using independent proxies, see “Communicating Between
Applications Without A Process Definition” on page 40.

Authentication Note The following steps assume that any user is authorized to connect to the proxy and the
applications involved. For information about how to allow only authorized users to create
connections, see Chapter 10, “Independent Proxy Authentication Use Case.”
Chapter 9Independent Proxy Use Case

Creating a Stylesheet for Data Transformation120
Creating a Stylesheet for Data Transformation
To transfer data between applications through an independent proxy, create an XSL
stylesheet that performs the following functions:

■ includes a template that overrides the default action, which is to copy all text nodes to
the results document

■ creates the FNCommand document element to identify itself as a command document

■ creates the FNAplCommand element to send a message to the target application

■ creates the FNDestination element to specify the location of the target application

■ creates the FNMessage element that encompasses the application document to be sent
to the target application

■ creates a document element for the target application document

■ transforms any relevant data from the initiating application document into the
appropriate format within the application document for the target application

The following sections describe how to create a stylesheet that performs these functions.

Because you are transforming the inbound application document, an independent proxy
uses only an inbound stylesheet to generate the application document for the target
application. There is no outbound stylesheet because, in the absence of a Fusion process
engine, there is no state document to transform into a command document to the
application.

Step 1. Overriding the Default for Text Nodes
By default, the Fusion XSL processor concatenates the values of all text nodes and copies
them to the results document. This behavior occurs even if you do not explicitly include
the default template that causes it. When transforming data between applications,
however, this behavior is generally undesirable. Rather, you want to specify which text
nodes from the initiating application document are copied to the target application
document.

For example, the printer application may have no need of personal visitor information,
such as a home address, that is part of the visitor record in the registration application. You
only want to transmit information about the visitor that the printer application needs to
print a badge.

� To copy text nodes selectively to the results document:

1 Include templates in your stylesheet to match the specific text you want to appear in the
results document.

For an example of such templates, see “Specifying the Message Content” on page 123.

2 In your inbound stylesheet, include the following template in place of the usual default
for text nodes:

This “empty” template matches any text node. However, rather than performing some
action on the match, as the default template does, it simply ends (with the “/”), doing
nothing.

<xsl:template match="text()"/>
Forte Fusion Backbone Integration Guide

Creating a Stylesheet for Data Transformation 121
Step 2. Generating the Command Document Element
The proxy identifies a command document by using the FNCommand element as its
document element. The first task your inbound stylesheet must perform is to generate this
document element.

To generate the FNCommand document element, include the following template in your
inbound stylesheet:

Transformation Notes
In the above template:

■ The xsl:apply-templates element ensures that the XSL processor processes all children
of the document element of the application document. Without the xsl:apply-templates
element, the XSL processor would complete its work after it created the FNCommand
element, generating it as an empty element.

Step 3. Generating the Command to Send a Message
The next step your outbound stylesheet must perform is to generate the commands to send
a message to the application.

� To generate these commands:

■ Create a template that matches the Registrant document element in the initiating
application document.

■ Generate an FNAplCommand element whose Command attribute has a value of
“SendMessage” and whose Method attribute specifies the HTTP method (Get or Post).

For more information about specifying values for the Command and Method attributes of
the FNAplCommand element, see the Fusion Backbone online Help.

To generate the appropriate FNAplCommand element and attributes, include a template
like the following in your outbound stylesheet:

Match document element <xsl:template match="RegDoc">

Create command doc doc elem. <FNCommand>

Process children of root element <xsl:apply-templates/>

</FNCommand>

</xsl:template>

Match a new employee record <xsl:template match="Registrant">

Send an HTTP message <FNAplCommand command="SendMessage" method="Post">

<xsl:apply-templates/>

</FNAplCommand>

</xsl:template>
Chapter 9Independent Proxy Use Case

Creating a Stylesheet for Data Transformation122
Transformation Notes
The above template includes an xsl:apply-templates element to ensure that the following
information, to be specified later, is placed within the FNAplCommand element:

■ optionally, the target application location information (generated by the template in the
next section, “Specifying the Target Application Location”)

■ the FNMessage element that holds the target application document (generated by the
template in “Generating a Message to the Target Application” on page 122)

■ the target application document itself (generated by the templates in “Specifying the
Message Content” on page 123)

Communicating with Multiple Applications
You can specify that an application send messages to multiple target applications. To do so,
include one FNAplCommand element for each target application; each FNAplCommand
must contain the appropriate location information and content transformations, as
described in the following sections.

Step 4. Specifying the Target Application Location
The next task the stylesheet can perform is to specify the location to which to send the
message. You accomplish this task by including an FNDestination element within the
FNAplCommand element.

To specify the location of the target application, include a template like the following in
your inbound stylesheet:

Step 5. Generating a Message to the Target Application
The next step is to generate an FNMessage element to hold the target application
document. The FNMessage element is a child of the FNAplCommand element, located at
the same level in the hierarchy as the FNDestination element created in Step 4.

To create the FNMessage element, include the following template in your inbound
stylesheet:

<xsl:template match="Registrant">

Created in Step 3. <FNAplCommand command="SendMessage" method="Post">

Specify the target app URL <FNDestination address="badger.acmecorp.com:4500"/>

Process Registrant children <xsl:apply-templates/>

</FNAplCommand>

<xsl:template match="Registrant">

Created in Step 3. <FNAplCommand command="SendMessage" method="Post">

Created in Step 4. <FNDestination address="badger.acmecorp.com:4500"/>

Start of msg to target app <FNMessage>

Msg content (see Step 7.) ...application document for target application

</FNMessage>

</FNAplCommand>
Forte Fusion Backbone Integration Guide

Creating a Stylesheet for Data Transformation 123
Step 6. Generating the Target Application
Document Element

The next step is to generate the document element that informs the defect tracking
application that it is receiving a new user record. You accomplish this task by generating a
NewUser element within the template that matches the Registrant element—which is the
document element of the initiating application document—as shown in the previous
section.

To generate the document element for the target application document, including a
template like the following in your inbound stylesheet:

Step 7. Specifying the Message Content
After you create the FNMessage element, you create its contents, which become the
application document sent to the target application.

The application document contains whatever information the application expects. In the
example used in this chapter, assume that the target application—the badge printing
application—requires the following information to set up a new user:

■ visitor name

■ visitor number

■ company name

■ job title

The XSL stylesheet must contain the appropriate transformations to render this
information in a format that is usable by the target application.

<xsl:template match="Registrant">

Created in Step 3. <FNAplCommand command="SendMessage" method="Post">

Created in Step 4. <FNDestination address="badger.acmecorp.com:4500"/>

Created in Step 5. <FNMessage>

Target app document element <NewBadge>

ProcessRegistrant children <xsl:apply-templates/>

(see Step 7.) </NewBadge>

</FNMessage>

</FNAplCommand>
Chapter 9Independent Proxy Use Case

Creating a Stylesheet for Data Transformation124
To generate the appropriate data, include templates like the following in the inbound
stylesheet:

Transformation Notes
In the above templates:

■ The xsl:apply-templates element in the template that matches Registrant (shown in
“Generating the Target Application Document Element” on page 123) ensures that all its
children elements are processed; the results of any matches are placed within the
NewBadge document element in the target application document.

■ The value of the BadgeName element is generated by matching the RegistrantName
element in the source document, then uses the “concat” function to create a string
consisting of the First child element, a blank, and the Last child element.

Concatenation is an example of the many XPath functions that are available for
manipulating string and numerical data. For detailed information about XPath
functions, see the XPath specification at http://www.w3.org/TR/xpath.html.

■ To create the BadgeNumber element, the stylesheet matches the VisitorNumber
element in the source document. The “.” in the xsl-value-of transformation specifies
that the value of the BadgeNumber element should be the value of the current element,
which is VisitorNumber.

The same logic applies to creating Employer from Company and Position from JobTitle.

Match RegistrantName child of <xsl:template match="RegName">

Registrant

Create BadgeName element <BadgeName>

Combine first, last names <xsl:value-of select=’concat(First," ",Last)’/>

</BadgeName>

Match RegNumber child of Registrant <xsl:template match="RegNumber">

Create BadgeNumber element <BadgeNumber>

Copy value of RegNumber <xsl:value-of select="."/>

</BadgeNumber>

</xsl:template>

Match Company child of Registrant <xsl:template match="Company">

Create Employer element <Employer>

Copy value of Company element <xsl:value-of select="."/>

</xsl:template>

Match JobTitle child of Registrant <xsl:template match="JobTitle">

Create Position element <Position>

Copy value ofRegistrant <xsl:value-of select="."/>

</Position>

</xsl:template>
Forte Fusion Backbone Integration Guide

Creating a Stylesheet for Data Transformation 125
Sample Documents and Stylesheet
The following sections provide examples of:

■ an application document from an initiating application

■ the inbound stylesheet to transform this XML document

■ the command document the proxy generates, including the application document sent
to the target application

Initiating Application Document
The following XML document provides an example of a new employee record that a
personnel application might create.

Inbound Stylesheet
The following XSL stylesheet provides the transformations described in this chapter to
transmit application documents between an initiating application and a target application.

xml declaration ?xml version="1.0"?>

Document document <RegDoc>

<Registrant>

<RegName>

<First>Frank</First>

<Middle>X.</Middle>

<Last>Jones</Last>

</RegName>

<RegNumber>10203045</RegNumber>

<HomeAddress>

<HStreet>6666 South Milagro Boulevard</HStreet>

<HCity>San Arnaldo</HCity>

<HState>WY</HState>

<HZip>74949-2423</HZip>

</RegAddress>

<Company>Superior Products</Company>

<WorkAddress>

<WStreet>1000 Superior Way</WStreet>

<WCity>Superior</WCity>

<WState>WY</WState>

<WZip>74801-2003</WZip>

</WorkAddress>

<JobTitle>Customer Support Representative</JobTitle>

</Registrant>

</RegDoc>

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"/>

<xsl:output method="xml" indent="yes"/>

<xsl:template match=”text()”/>
Chapter 9Independent Proxy Use Case

Creating a Stylesheet for Data Transformation126
<xsl:template match=”/”>

<xsl:apply-templates/>

<xsl:template>

<xsl:template match=”RegDoc”>

<FNCommand>

<xsl:apply-templates/>

</FNCommand>

</xsl:template>

<xsl:template match="Registrant">

<FNAplCommand command="SendMessage" method="Post">

<FNDestination address="bugs.acmecorp.com:4500"/>

<FNMessage>

<NewBadge>

<xsl:apply-templates/>

</NewBadge>

</FNMessage>

</FNAplCommand>

</xsl:template>

<xsl:template match="RegName">

<BadgeName>

<xsl:value-of select=’concat(First," ",Last)’/>

</BadgeName>

</xsl:template>

<xsl:template match="RegNumber">

<BadgeNumber>

<xsl:value-of select="."/>

</BadgeNumber>

</xsl:template>

<xsl:template match="Company">

<Employer>

<xsl:value-of select="."/>

</Employer>

</xsl:template>

<xsl:template match="JobTitle">

<Position>

<xsl:value-of select="."/>

</Position>

</xsl:template>

</xsl:stylesheet>
Forte Fusion Backbone Integration Guide

Creating a Stylesheet for Data Transformation 127
Command Document
The proxy generates the following command document based on the XSL stylesheet shown
in this chapter.

Target Application Document
The lines between the start and end tags of the FNMessage element in the above command
document make up the application document that is sent to the target application. The
application document begins and ends with the start and end tags, respectively, of the
NewUser document element.

<?xml version="1.0"?>

Start command document <FNCommand>

Command to send msg to app <FNAplCommand Command="SendMessage" Method="Post">

Location of target app <FNDestination address="badger.acmecorp.com:4500"/>

Application document follows <FNMessage>

Document element of app doc <NewBadge>

<BadgeName>Frank Jones</BadgeName>

<BadgeNumber>10203045</BadgeNumber>

<Employer>Superior Products</Employer>

<Position>Customer Support Representative</Position>

</NewBadge>

Application doc completed </FNMessage>

</FNAplCommand>

</FNCommand>
Chapter 9Independent Proxy Use Case

Configuring an Independent Proxy128
Configuring an Independent Proxy
To configure a proxy to function as an independent proxy, issue the following FNscript
command:

Issue this command in addition to any normal configuration commands.

Note Independent proxy always refers to the proxy whose partner application is the initiating
application, not the target application.

You can issue this command even if the proxy has been configured previously to use a
Fusion process engine (with the SetCEngine command). In this way, you can override the
use of the engine, and use the proxy for test purposes.

For more information about configuring an independent proxy, see the Forte Fusion
Backbone System Guide.

UseProcessEngine off
Forte Fusion Backbone Integration Guide

Chapter 10
Independent Proxy
Authentication Use Case
This chapter describes the integration tasks required to enable an independent proxy—a
proxy that is not connected to a running process engine—to require user authentication
from its partner application. It also describes how to require authentication from the proxy
by a target application. Authentication discussed in this chapter applies only to proxies
configured for HTTP communication.

For information about the basic tasks and stylesheets required when using an independent
proxy, see Chapter 9, “Independent Proxy Use Case.”

For general information about using independent proxies, see “Communicating Between
Applications Without A Process Definition” on page 40.

For general information about authentication in a Fusion enterprise application (including
authentication for proxies configured for JMS), see the Forte Fusion Backbone System
Guide.

Use Case Summary130
Use Case Summary
The following table provides an overview of this use case:

The remainder of this chapter describes this use case in more detail and provides
procedures for performing the tasks required for authentication.

Use Case Information Description

description An independent proxy requires authentication from its partner application.

expected outcome The proxy accepts the initiating application’s authentication and transforms its
application document into a message for the target application.

actors involved ❚ the application proxy

❚ the initiating application

proxy document and
message flow

1 Initiating application attempts to send XML application document to its proxy.

2 Proxy responds with message containing HTTP 401 Unauthorized error and
WWW-Authenticate header requesting Basic authentication.

3 Application resends application document with authorization header containing
user name/password combination.

4 Proxy verifies authentication information against data in configuration file.

5 Proxy accepts initiating application document and uses inbound stylesheet to
generate command document to send message to target application

6 Proxy sends application document to target application.

stylesheets required inbound stylesheet to:

❚ transform initiating application document into command document that sends
message to target application (Step 5)

❚ transform relevant data in initiating application document into application
document usable by target application(Step 6)

Other integration tasks ❚ use UseProcessEngine FNscript command specify that proxy is independent

❚ use SetAuthentication FNscript command to specify authentication type

❚ use SetCredentials FNscript command to specify user name and password
against which the proxy validates authentication information sent by initiating
application

Proxy

 url

Application
Document

6

 url

Application
Document

3

Authorization Header

 url

Application
Document

1
Attribute 1
Attribute 2

WWW-Authenticate

401 Unauthorized

2

Initiating Application

 url

Command
Document

5

Configuration
File

4

Forte Fusion Backbone Integration Guide

Authenticating an Application To an Independent Proxy 131
Authenticating an Application To an Independent Proxy
You can use a Fusion proxy—known as an independent proxy—to transmit XML data
between two applications without being connected to a process engine. As part of this
process, you might want to require the initiating application to authenticate itself with the
proxy, so that only authorized users can submit data to the target application.

Note Alternatively, the target application can request authentication from the proxy before
accepting the data from the initiating application. For information about such a
configuration, see “Authenticating a Proxy To a Target Application” on page 134.

Authentication Message Flow
The following flow of documents and messages takes place when an initiating application
sends a request to a proxy that requires authentication:

1 The initiating application sends an application document to the proxy.

2 The proxy rejects the document, and returns a message with:

■ a “401 Unauthorized” error in the message body

■ A WWW-Authenticate header message specifying that the proxy requires Basic
authentication

3 The application resubmits the application document with the user name and password
encoded in the HTTP Authentication message header.

Note You could submit the user information with the application document from the beginning
and bypass Step 2 and Step 3. However, it is good practice for security reasons not to send
the authorization information until the proxy requests it. An HTTP client always be
prepared for a 401 response.

4 The proxy validates the application’s user information against the values in its
configuration file; if the information is accepted, the proxy:

■ creates an HTTP session for the application

■ accepts the application document from the initiating application

■ sends a cookie to the application, so that the application is authorized for subsequent
requests during the current HTTP session

You must ensure that the proxy is configured with the information against which to
validate this user name and password. For information about configuring a proxy with
application authentication information, see “Configuring the Proxy for Authentication”
on page 133.

From this point, the procedure for transmitting the XML to the target application is the
same as described in Chapter 9, “Independent Proxy Use Case.”

Enabling Authentication
To enable the initiating application to be authenticated and the application document
accepted, take the following steps:

1 Enable the application to send the authentication information when requested by the
proxy.

2 Configure the proxy to require Basic authentication, and provide the proxy with the
authentication information to use for validation.

The following sections describe how to perform these tasks.
Chapter 10Independent Proxy Authentication Use Case

Submitting Authentication Information132
Submitting Authentication Information
When a proxy that requires authentication returns a 401 Unauthorized message, you must
resubmit the initiating application document with the appropriate authorization
information in the message header. Independent proxies only support Basic
authentication, for which you include a user name:password string in the authorization
header of the application document as follows:

where username and password correspond to the values with which you configured the
proxy with the SetCredentials FNscript command, as described in “Specify the
Authentication Values” on page 133.

For example, assume that user name “personnel” and password “$$entry##” are a valid
user name and password known to the proxy. When the proxy prompts the initiating
application to submit authentication, you would include the following string in the HTTP
message header:

The name and password are encoded with Base64 and sent to the proxy, which validates
them against the information in the proxy’s configuration file. If the proxy validates this
user name and password, it processes the initiating application document.

Authorization: basic base64(username:password)

Authorization: basic cGVyc29ubmVsOiQkzw50cnkjIw==
Forte Fusion Backbone Integration Guide

Configuring the Proxy for Authentication 133
Configuring the Proxy for Authentication
For an independent proxy to authenticate an initiating application document, the proxy
must:

■ be configured as independent

■ require Basic authentication on the local server

■ know the authentication values to validate

The following subsections describe the FNscript commands you use to accomplish these
tasks. For more information about any of these commands, and for additional information
about configuring proxies, see the Forte Fusion Backbone System Guide.

Step 1. Specify the Proxy As Independent
To specify that a proxy not require connection to a running process engine, issue the
following FNscript command:

Even if a proxy has been configured with a process engine (with the SetCEngine
command), you can use the above command to specify that the proxy does not need to be
connected to that engine. This situation is useful, for example, if you simply want to test
the proxy without running the full Fusion application.

Step 2. Specify That the Proxy Require Authentication
To specify that the proxy require authentication from its partner application, issue the
following FNscript command:

Basic authentication specifies that only a user name and password are required for
authentication. Local authentication specifies that the authentication information is stored
in the proxy’s configuration file on the local server, rather than in a UserValidation
associated with a engine.

Step 3. Specify the Authentication Values
To specify the values against which the proxy should validate the user name and password
that the application supplies, issue the following FNscript command:

where username and password represent the authentication values expected from the
application. These values are stored in encrypted form in the proxy’s configuration file and
validated at run time.

UseProcessEngine off

SetAuthentication Scheme=Basic Server=Local

SetCredentials user=username password=password
Chapter 10Independent Proxy Authentication Use Case

Authenticating a Proxy To a Target Application134
Authenticating a Proxy To a Target Application
Rather than having the initiating application authenticate itself to the independent proxy,
you might configure your Fusion application so that the proxy must authenticate itself to
the target application before the target application accepts any data. In such a case, you
configure the proxy in the same manner as that described in “Configuring the Proxy for
Authentication” on page 133.

However, you must configure your target application to request authentication when the
proxy attempts to transmit the target application document. To accomplish this task, code
your target application to send a 401 Unauthorized message to the proxy, along with the
following WWW-Authenticate message header:

where backbonename is the name of the Fusion Backbone and proxyname is the name of
the independent proxy. When the proxy receives the request for authentication, it resends
the target application document with the appropriate authorization header as described in
“Submitting Authentication Information” on page 132, supplying the user name and
password that was specified with the SetAplSession FNscript command.

Note You could configure your Fusion application so that both the independent proxy and the
target application require authentication. However, they would both need to accept the
same user name and password, because you can only configure the proxy with one set of
authorization information.

WWW-Authenticate: basic realm=”backbonename:proxyname”
Forte Fusion Backbone Integration Guide

Appendix A
Transforming Proxy Documents
This appendix illustrates how the Fusion proxy:

■ transforms inbound and outbound proxy documents according to its XSL stylesheets

■ can function as an HTTP server or client within the Fusion enterprise application

■ can function as a JMS listener or sender within the Fusion enterprise application

To understand how XSL transformations occur, see Chapter 1, “Introduction.” For
procedures describing how to develop the stylesheets required, see the chapters in this
manual for the relevant use cases.

For an overview of proxy documents, including management of HTTP sessions and JMS
sessions, see the Forte Fusion Backbone System Guide.

Proxy Document Processing136
Proxy Document Processing
All XML documents contain patterns consisting of elements, attributes, text data, and
instructions. Elements identify the type of content and can be followed by attributes
(name-value pairs). Fusion allows its applications to send XML documents without
restrictions on form or content.

The proxy has an internal XSL processor to manage transformation of incoming and
outgoing documents.

XSL Stylesheets for the Proxy
Fusion application proxies refer to their configured XSL stylesheets to translate between
the XML understood by the application (or adapter) and that understood by the proxy. For
example, the result of applying an XSL stylesheet to an application document is a
command document. Command documents are internal to the proxy and drive the proxy’s
interaction with its partners (the Fusion process engine and the application).

Through transformation, XML documents arriving from the application (application
documents) result in command documents that determine operations performed by the
process engine. Events arriving from the engine are converted into state documents and
result in command documents that determine the XML sent to the application.

Figure 5 illustrates a proxy taking an application document and inbound XSL stylesheets as
input, and generating a command document as the output:

Figure 5 Generating Command Documents

A proxy configured for HTTP sessions can present itself to its application as an HTTP
server, HTTP client, or both. When configured for JMS sessions, the proxy can present itself
as a JMS listener, JMS sender , or both.

The following sections explain typical message processing according to the proxy’s function
in the Fusion system. The scenario illustrates the process definition in the Fusion TOOL
adapter example.

For an overview of proxy document types and concepts, see the Forte Fusion Backbone
System Guide.

Proxy

XSL
Processor Command

Document

Command
Processor

Inbound
stylesheet rules

XSL
Stylesheets

Instructions
to engine

Application
Document
Forte Fusion Backbone Integration Guide

Proxy Document Processing 137
Service Requestor Application
Service requestor applications send requests to the proxy. The proxy can act as an HTTP
server, processing service requestor HTTP requests and sending back responses. It can also
act as a JMS listener processing service requests. The processing of proxy documents
results in the specified actions being performed by the Fusion process engine and the
application, typically initiating a business process or starting/completing a business
activity.

Figure 6 shows an order processing flow in which a Web client initiates a new order by
forwarding an XML representation of the order to its proxy. The proxy’s XSL processor uses
its inbound stylesheets to identify certain patterns in the order and determine which
business process instance to create. The proxy also sets initial values for Fusion process
attributes, based on the XML representation of the order.

Figure 6 illustrates the order processing flow described subsequently in numbered steps.
Step numbers are indicated by circled numbers on the diagram:

Figure 6 Fusion Order Entry Service Requestor Sends in New Order

Note This is an example of one possible message flow; many variations are possible in an actual
system.

Proxy
Fusion
Engine

Interface

XSL
Processor

Command
Processor

 url

XML
Data

Fusion
engine

response

Request to
Fusion
engine

Engine Commands

Service Requestor
Application

Application
doc

Application
doc

5 4

2 7

81

3

6
Application Commands
Appendix ATransforming Proxy Documents

Proxy Document Processing138
1 The service requestor application sends a request to the proxy. The request contains an
application document to place a new order:

2 The proxy forwards the document to its XSL processor.

3 The XSL processor applies the inbound stylesheets:

The XSL processor then generates a command document to start the process instance
and send a response to the application:

4 The command processor interprets the command document and invokes the
CreateProcess command.

<PlaceOrder>

<ShipTo>

Beelzebub

</ShipTo>

</PlaceOrder>

XML declaration <?xml version="1.0">

XSL stylesheet declaration <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

Locate source element <xsl:template match="PlaceOrder"/>

<FNComment>Create a new process</FNComment>

<FNCommand>

Command to <FNCndCommand Command="CreateProcess"

Create process ProcessName="OrderEntry">

Process children <xsl:apply-templates/>

</FNCndCommand>

Send response to application
(HTTP sessions)

<FNAplCommand Action="SendResponse"/>

</FNCommand>

</xsl:template>

</xsl:stylesheet>

command doc document elem. <FNCommand>

Command to create <FNCndCommand Command="CreateProcess"

the OrderEntry process ProcessName="OrderEntry">

Create list of process attributes <FNProcessAttributeList>

<FNProcessAttribute Name="Shipto"

Type="TextData">

Beelzebub

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndCommand>

Send response to application
(HTTP sessions)

<FNAplCommand Command="SendResponse"/>

</FNCommand>
Forte Fusion Backbone Integration Guide

Proxy Document Processing 139
5 The process engine returns the CreateProcess status, which indicates that it has started
the process instance. The proxy represents this information in a state document:

6 The XSL processor applies the outbound stylesheet to translate this output for the
response message:

7 The command processor continues processing the inbound application document. It
finds the <FNAplCommand> and sends an outbound response document regarding the
process status.

8 The application receives the XML confirmation message:

After the Fusion process engine starts the process, the first activity in this example is a
credit check. The ensuing steps are described in the following section.

State of the process <FNCndState State="ProcessStarted">

Identity of the process <FNIdentity ProcessName="OrderEntry"

ProcessID="1234"/>

</FNCndState>

<xsl:template match=

"/FNState/FNCndState[@State=’ProcessStarted’]">

HTTP sessions use SendResponse <FNAplCommand Command="SendResponse">

JMS sessions use SendMessage <FNMessage>

<OrderEntered>

<xsl:apply-templates/>

</OrderEntered>

</FNMessage>

</FNAplCommand>

</xsl:template>

<xsl:template match=

Process the children ""FNCndState[@State=’ProcessStarted’]/FNIdentity">

<Cfnumber>

<xsl:value-of select="@ProcessID"/>

</Cfnumber>

</xsl:template>

<Order>...

<Conf>

Proc. ID as confirmation nmbr 1234

</Conf>

</Order>
Appendix ATransforming Proxy Documents

Proxy Document Processing140
Service Provider Application
When a proxy acts as an HTTP client or JMS listener, it creates application documents that
are sent to the application’s URL, and takes action based on the response. The first
document is sent when the Fusion process engine informs the proxy that it can start a
business activity. The proxy starts the activity and sends a message describing the request
to the application.

In the credit check application example, the proxy’s session parameters are configured to
identify it to the engine as the credit check application (the subscriber to work events
involving credit checking). The process engine presents the proxy with each request for a
customer credit check. The proxy builds an XML state document based on this
information, forwarding each message to the XSL processor. The XSL processor generates
an application command document to be sent to the application.

In the original command document, the tags specify process attributes, such as the
customer number and the amount. The service provider’s response document includes a
tag that indicates either approval or rejection. The XSL processor handles this response,
which instructs the process engine interface to pass the activity completion status
(approved or not) to the engine by invoking the CompleteActivity method.

Figure 7 shows how the CreditCheck proxy might process a request for a credit check.

Figure 7 Fusion StartAndVerify Application Processes Credit Check

Proxy
Fusion
Engine

Interface

XSL
Processor

Command
Processor

 url

XML
Data

Fusion
engine
request

Response to
Fusion
engine

Application Command doc

Service Provider
Application

Application
doc

Application
doc

1 8

6 3

45

2

7
 Command document
Forte Fusion Backbone Integration Guide

Proxy Document Processing 141
1 The process engine starts the activity in response to the READY event. The proxy then
generates an ActivityStarted state document, which provides the parameters needed to
perform the credit check:

2 The XSL processor checks its outbound XSL stylesheet and applies the rules that match.
In this example, the first relevant rule specifies that when an activity with a value of
ActivityStarted is received, the proxy should notify the application to process the new
work:

<FNState>

State of the activity <FNCndState State="ActivityStarted">

Identity of the activity <FNIdentity ProcessID="920"

ActivityID="2"

ActivityName="CreditCheck"

ActivityAppCode="Perform Credit Check"/>

List of process attributes <FNProcessAttributeList>

<FNProcessAttribute Name="Billee"

Type="TextData">

B_1

</FNProcessAttribute>

<FNProcessAttribute Name="ItemCount"

Type="TextData">

100

</FNProcessAttribute>

<FNProcessAttribute Name="CreditApproved"

Type="TextData">

Credit denial No

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndState>

</FNState>

Matches a started activity <xsl:template match="FNCndState/[@State=’ActivityStarted’]"/>

Send message to application <FNAplCommand Command="SendMessage"

Method="Post">

Start of the message <FNMessage>

<WorkRoot>

Tell app to process new work <NewWork>

Process child elements <xsl:apply-templates/>

</NewWork>

</WorkRoot>

</FNMessage>

</FNAplCommand>

</xsl:template>
Appendix ATransforming Proxy Documents

Proxy Document Processing142
The XSL processor applies the rules and generates a command document with the
application command. The process ID and activity ID are required in this scenario only
if the interaction between the proxy and the application is asynchronous.

3 The command processor builds an outbound application document from the command
document.

4 The application document transmits the request and the application performs the
credit check.

5 The application responds with a message to disapprove the credit.

Document element <FNCommand>

Command to send message <FNAplCommand Command="SendMessage"

to application Method="Post">

Start of the message <FNMessage>

<WorkRoot>

<NewWork>

Identifies the started activity <ProcessID>920</ProcessID>

<ActivityID>2</ActivityID>

<WorkType>CreditCheck</WorkType>

Fusion process attributes <Atts>

transformed into <Att>

application’s vocabulary <AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>B_1</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>100</AttValue>

</Att>

<Att>

<AttName>CreditApproved</AttName>

<AttType>TextData</AttType>

<AttValue>No</AttValue>

</Att>

</Atts>

</NewWork>

</WorkRoot>

</FNMessage>

</FNAplCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Proxy Document Processing 143
6 The incoming application document is forwarded to the XSL processor:

<WorkRoot>

<WorkCompleted>

<ProcessID>920</ProcessID>

<ActivityID>2</ActivityID>

<Atts>

<Att>

<AttName>Billee</AttName>

<AttType>TextData</AttType>

<AttValue>B_1</AttValue>

</Att>

<Att>

<AttName>ItemCount</AttName>

<AttType>TextData</AttType>

<AttValue>100</AttValue>

</Att>

<Att>

<AttName>CreditApproved</AttName>

<AttType>TextData</AttType>

Customer tagged as deadbeat <AttValue>Deadbeat</AttValue>

</Att>

</Atts>

</WorkCompleted>

</WorkRoot>
Appendix ATransforming Proxy Documents

Proxy Document Processing144
7 The XSL processor applies its inbound stylesheet, and generates a CompleteActivity
command document:

8 The proxy engine interface interprets the command document and performs the
specified CompleteActivity API request to the process engine.

Document element <FNCommand>

Engine command <FNCndCommand Command="CompleteActivity">

Identify the activity <FNIdentity ProcessID="920"

ActivityID="3"/>

Fusion process attribute list <FNProcessAttributeList>

<FNProcessAttribute Name="Billee"

<Type="TextData">

B_1

</FNProcessAttribute>

<FNProcessAttribute Name="ItemCount"

Type="TextData">

100

</FNProcessAttribute>

<FNProcessAttribute Name="CreditApproved"

Type="TextData">

Deadbeat

</FNProcessAttribute>

</FNProcessAttributeList>

</FNCndCommand>

</FNCommand>
Forte Fusion Backbone Integration Guide

Appendix B
Proxy Document Element
Hierarchies
This appendix provides diagrams showing the XML hierarchies for command documents,
state documents, and authentication documents, including element attributes.

Command Document Element Hierarchy146
Command Document Element Hierarchy
Figure 8 illustrates the hierarchy of elements that the proxy uses to construct command
documents:

Figure 8 Command Document Hierarchy

You need to be familiar with the command document hierarchy so that:

■ your inbound stylesheets can transform application documents into command
documents

■ your outbound stylesheets can transform state documents into command documents

For detailed information about the command document elements and attributes, see the
Fusion Backbone online help.

FNCommand

ProcessID
ActivityID

ProcessName
ActivityName

ActivityAppCode

FNIdentity

Name
Type

FNProcessAttribute

Command (to engine)
Recovery (level)

FNCndCommand

Command (send msg
to application)

Method (Get or Post)

FNAplCommand
FNNoProcessing

Address
Query

FNDestination
FNProcessAttributeList FNMessage

FNComment
Forte Fusion Backbone Integration Guide

State Document Hierarchy 147
State Document Hierarchy
Figure 9 illustrates the hierarchy of elements that the proxy uses to construct state
documents:

Figure 9 State Document Element Hierarchy

You need to be familiar with the state document hierarchy so that your outbound
stylesheets can transform state documents into command documents.

For detailed information about the state document elements and attributes, see the Fusion
Backbone online help.

FNState

ProcessID
ActivityID

ProcessName
ActivityName

ActivityAppCode

FNIdentity

State (activity state
change info)

FNCndState

Name
Type

FNProcessAttribute

FNProcessAttributeList
Appendix BProxy Document Element Hierarchies

Authentication Document Hierarchy148
Authentication Document Hierarchy
Figure 10 illustrates the hierarchy of elements used to construct authentication documents:

Figure 10 Authentication Document Element Hierarchy

Authentication documents apply only to proxies configured to communicate using HTTP.
Authentication documents (and authentication in general) are optional, and all child
elements within the documents are optional. Any values you provide are placed in the
appropriate fields of the user profile used by the proxy.

Proxies create authentication documents when an application asks the proxy to
authenticate itself. You create authentication documents when an application must
authenticate itself to a proxy.

You need to be familiar with the authentication document hierarchy so that you can create
authentication documents when required by a proxy. You do not need to write stylesheets
to transform authentication documents, because you construct them using the above
vocabulary and structure, which the proxy already understands.

For more information on authentication documents, see the Forte Fusion Backbone System
Guide. For detailed information about authentication document elements and attributes,
see the Fusion Backbone online help.

FNAuthentication

Name
Password
OtherInfo

FNUser

Name

FNUserProfile

Name

FNRole

FNRoleList
Forte Fusion Backbone Integration Guide

Index
A
activity information, supplying to

applications 36

applications
independent proxies, using 40, 118
non-partner 39
recovery use case 112

C
command documents

described 136
element hierarchy 146

command syntax conventions 13

Conductor system, See Fusion process
management system

D
documentation set for Fusion 15

E
element hierarchy

authentication documents 148
command documents 146
state documents 147

example programs 14

F
Fusion

example application 21
message processing 136
stylesheet examples 21

Fusion backbone system
described 10
documentation 16

Fusion process management system
described 10
documentation 15

Fusion product description 10

Fusion system described 10

H
hierarchy of elements

authentication documents 148
command documents 146
state documents 147

HTTP
messages 37
messages, examples 38
methods, Get and Post 37

I
independent proxy use cases

without session authentication 130
with session authentication 118

M
messages

examples 38
HTTP 37
type, specifying 37

O
online help 15

150 Section P
P
PDF files, viewing and searching 17

process attributes
and application documents 35
handling in stylesheets 32
transforming lists of 33
transforming values of 34

proxies
HTTP client functioning 140
HTTP server functioning 137
independent 40
independent, session authentication 130
independent, use case 118
recovery, use case 102

proxy documents
hierarchy diagrams 145
processing 136

R
recovery

application use case 112
proxy use case 102

S
searching Fusion documentation 17

sending messages to applications 36

service provider use cases
asynchronous 68
session authentication 96
synchronous 56

service requestor use cases
application 44
session authentication 88

session authentication, HTTP
for independent proxies 41, 130
service provider application 98
service requestor application 90

stylesheets, See XSL stylesheets

T
templates

default 29
reusing 31

TOOL code conventions 13

U
use cases

application recovery 112
asynchronous service provider 68
independent proxy 118
independent proxy with session

authentication 130
overview 20
proxy recovery 102
service provider with session authentication 96
service requestor 44
service requestor with session authentication 88
synchronous service provider 56

X
XML/XSL Workshop 25

XML documents, processing 136

XML output type 27

XSL stylesheets
activity information for applications 36
application documents as process attributes 35
attributes, creating in results document 28
creating 25
declarations required 27
default, overriding for text nodes 29
in example application 21
guidelines, Fusion-related 27
inbound 24, 137
for independent proxies 40
messages, sending to applications 36
message type 37
outbound 24, 141
process attribute lists, transforming 33
process attributes, handling 32
process attribute values, transforming 34
processing instructions 27
templates, default 29
templates, reusing 31
XML output type 27

XSL transformations
about 22
inbound 24
outbound 24
Forte Fusion Backbone Integration Guide

	Contents
	Preface
	About Forte Fusion
	Organization of this Manual
	Conventions
	Command Syntax Conventions
	Forte 4GL TOOL Code Conventions

	Fusion Example Programs
	Process Client Example Programs
	Backbone Example Programs

	Documentation
	Forte Fusion Documentation Resources
	Forte Fusion Process Management
	Forte Fusion Backbone
	Forte Application Environment

	Viewing and Searching PDF Files

	1 Introduction
	Working with the Fusion Use Cases
	Using the Fusion Example Application
	Example Application Stylesheets

	Understanding XSL Stylesheets and XSL Transformations
	Writing XSL Transformations
	Using Inbound and Outbound Stylesheets
	Inbound Transformations
	Outbound Transformations

	Developing Stylesheets with the Fusion Workshops

	Developing Fusion Stylesheets: General Guidelines
	Including Required Declarations and Processing Instructions
	Specifying the XML Output Type
	Creating Elements and Attributes
	Elements
	Attributes

	Including Default Templates
	Overriding the Default for Text Nodes

	Combining Stylesheets
	Importing Subordinate Stylesheets
	Including External Stylesheets

	Reusing Templates

	Performing Common Fusion Stylesheet Transformations
	Handling Process Attributes in Stylesheets
	Generating Process Attributes
	Transforming Process Attribute Lists
	Transforming Process Attribute Values
	Transmitting Application Documents as Process Attributes

	Supplying Activity Information to Applications
	Sending Messages to Applications
	Specifying the Message Type
	Communicating with Non-Partner Applications

	Communicating Between Applications Without A Process Definition
	Creating an Inbound Stylesheet
	Configuring an Independent Proxy
	Omitting Fusion Process Management Functions

	2 Service Requestor Use Case
	Use Case Summary
	Starting the Fusion Process
	Configuration Notes
	Step�1. Generating the Document Element
	Transformation Notes

	Step�2. Instructing the Engine to Start the Process
	Transformation Notes

	Step�3. Passing Process Attributes to the Engine
	Command Document Example
	Document Notes

	Transforming State Information
	Step�1. Generating the Document Element
	Step�2. Generating the Application Command
	Transformation Notes

	Step�3. Creating the Message Content
	Transformation Notes

	Step�4. Generating Values for the Application
	Transformation Notes

	Generated Document Examples
	State Document
	Command Document
	Application Document

	3 Synchronous Service Provider Use Case
	Use Case Summary
	Communicating Synchronously With a Service Provider
	Step�1. Generating the Document Element
	Step�2. Generating a Message to the Application
	Transformation Notes

	Step�3. Providing the Message Content
	Transformation Notes

	Step�4. Sending Process Attribute Values
	Handling Redundant Values

	Generated Document Examples
	State Document
	Command Document
	Application Document

	Receiving Synchronous Notification of Completion
	Step�1. Generating the Document Element
	Step�2. Sending a Command to the Engine
	Transformation Notes

	Step�3. Returning Updated Process Attribute Values
	Command Document Example
	Document Notes

	4 Asynchronous Service Provider Use Case
	Use Case Summary
	Communicating Asynchronously With a Service Provider
	Configuration Notes
	Step�1. Generating the Document Element
	Step�2. Generating a Message to the Application
	Transformation Notes

	Step�3. Providing Identifying Information
	Transformation Notes

	Step�4. Sending Process Attribute Values
	Step�5. (HTTP Sessions) Receiving Acknowledgment from the Application
	Transformation Notes

	Generated Document Examples
	State Document
	Command Document
	Application Document

	Receiving Asynchronous Notification of Completion
	Step�1. Generating the Document Element
	Step�2. Sending a Command to the Engine
	Transformation Notes

	Step�3. Identifying the Completed Activity to the Proxy
	Transformation Notes

	Step�4. Returning Updated Process Attribute Values
	Step�5. (HTTP Sessions) Acknowledging the Completion Message
	Transformation Notes

	Command Document Example
	Document Notes

	5 Service Requestor Authentication Use Case
	Use Case Summary
	Authenticating a Service Requestor with a Proxy
	Step�1. Configuring the Proxy for Authentication
	Setting Session Parameters

	Step�2. Creating a User Validation
	Step�3. Mapping Application Users to Fusion Users
	Step�4. Submitting Authentication Information
	Sending a User Name and Password
	Sending an Authentication Document
	Creating an Authentication Document
	Example Authentication Document

	6 Service Provider Authentication Use Case
	Use Case Summary
	Authenticating a Proxy with a Service Provider
	Configuring the Service Provider for Authentication
	Providing User Information to the Proxy

	7 Proxy Recovery Use Case
	Use Case Summary
	Submitting a Recovered Activity to a Service Provider
	Submitting the Activity

	Generated Document Examples
	State Document
	Document Notes

	Command Document
	Application Document

	Receiving Notification of Completion from the Application
	Alternative Processing: Aborting the Recovered Activity
	Transformation Notes
	Altering the Document Flow
	Generated Document Examples
	State Document
	Command Document
	Application Document

	8 Application Recovery Use Case
	Use Case Summary
	Notifying the Proxy of Application Recovery
	Generated Command Document Example

	Submitting Activities to a Recovered Application
	Receiving Notification of Completion from the Application

	9 Independent Proxy Use Case
	Use Case Summary
	Transferring Data Between Applications
	Creating a Stylesheet for Data Transformation
	Step�1. Overriding the Default for Text Nodes
	Step�2. Generating the Command Document Element
	Transformation Notes

	Step�3. Generating the Command to Send a Message
	Transformation Notes
	Communicating with Multiple Applications

	Step�4. Specifying the Target Application Location
	Step�5. Generating a Message to the Target Application
	Step�6. Generating the Target Application Document Element
	Step�7. Specifying the Message Content
	Transformation Notes

	Sample Documents and Stylesheet
	Initiating Application Document
	Inbound Stylesheet
	Command Document
	Target Application Document

	Configuring an Independent Proxy

	10 Independent Proxy Authentication Use Case
	Use Case Summary
	Authenticating an Application To an Independent Proxy
	Authentication Message Flow
	Enabling Authentication

	Submitting Authentication Information
	Configuring the Proxy for Authentication
	Step�1. Specify the Proxy As Independent
	Step�2. Specify That the Proxy Require Authentication
	Step�3. Specify the Authentication Values

	Authenticating a Proxy To a Target Application

	A Transforming Proxy Documents
	Proxy Document Processing
	XSL Stylesheets for the Proxy
	Service Requestor Application
	Service Provider Application

	B Proxy Document Element Hierarchies
	Command Document Element Hierarchy
	State Document Hierarchy
	Authentication Document Hierarchy

	Index
	A
	C
	D
	E
	F
	H
	I
	M
	O
	P
	R
	S
	T
	U
	X

