
Building Web Components
Forte™ for Java™ , Internet Edition, 2.0
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7518-10
December 2000, Revision A

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900, U.S.A.
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. PointBase
software is for internal development purposes only and can only be commercially deployed under a separate
license from PointBase. Parts of Forte for Java, Internet Edition were developed using the public domain tool
ANTLR. This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Sun, Sun Microsystems, the Sun logo, Java, Forte, NetBeans, Solaris, iPlanet, StarOffice, StarPortal, Jini, and
Jiro are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and
Conditions.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900, U.S.A.
Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licenses qui en restreignent
l’utilisation, la copie, la distribution et la décompilation. Aucune partie de ce produit ou document ne peut
être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractère, est protégé
par un copyright et licencié par des fournisseurs de Sun. Le logiciel PointBase est destiné au développement
interne uniquement et ne peut être mis sur le marché que sous une licence distincte émise par PointBase.
Certains composants de Forte pour Java, Internet Edition ont été développés à l’aide de l’outil de domaine
public ANTLR. Ce produit comprend un logiciel développé par Apache Software Foundation
(http://www.apache.org/).

Sun, Sun Microsystems, le logo Sun, Java, Forte, NetBeans, Solaris, iPlanet, StarOffice, StarPortal, Jini et Jiro
sont des marques commerciales ou déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Acquisitions fédérales : logiciels commerciaux—Les utilisateurs du gouvernement sont soumis aux termes et
conditions standard.

Contents
Preface
Organization of This Manual . 6

Conventions . 7

The Forte for Java, Internet Edition Documentation Set 8
Documentation Set . 8
Online Help . 8
Javadoc . 8

1 J2EE Web Application Concepts
Conceptual Background. .10

Web Containers . 10
Web Modules . 11

Structure . 11
Runtime Representation . 12

Web Components . 13
Servlets . 13
JSP Pages . 14

JSP Page Life Cycle . 14
Code Constructs in JSP Pages . 15
Scopes and Implicit Objects . 18

Supporting Classes, Beans, and other Files . 20

2 Design and Programming Issues
Choosing Between Servlets and JSP Pages. .22

Web Components in J2EE Applications . 22

Designing Data Source Access .24

Programming JSP Pages .28
Code Reuse Through Forwards and Includes . 28
Accessing Java Objects . 29
Using JSP Pages as Layout Templates. 31

4

3 Programming a Web Application
Web Module Development Work Flow . 34

Creating a Web Module . 36
Web Modules in Forte for Java. 36

Creating JSP Pages .38

Working With Dreamweaver Templates . 39

Creating Servlets, Classes, and Beans . 41

Test Running an Application . 42
Test Running a Single Web Module . 42
Test Running Multiple Web Modules . 42

Configuring the Web Module Deployment Descriptor 44
Mapping Servlets and JSP Pages . 44

Packaging and Deploying a Web Module . 48
Deployment. 48

4 JSP Tag Libraries
About JSP Tag Libraries . 50

Tag Library Descriptor . 52

Tag Handlers . 53
Custom Actions with Bodies . 53
Generated Tag Handlers . 54

Methods Generated . 55
Regenerating Tag Handlers . 55

Accessing a Tag Library . 57

Developing a Custom Tag Library—Tutorials . 59
Creating a Tag Library—Tutorial . 59
Adding an Attribute to a Tag Handler—Tutorial. 62
Packaging a Tag Library and Accessing the JAR—Tutorial. 63

Index . 65
Building Web Components

Preface
Welcome to the Building Web Components book of the Forte™ for Java™ programming series.
This book focuses on web application development in the context of the Java 2 Platform
Enterprise Edition specification (J2EE™) and its supporting technologies, which include the
Java Servlet and JavaServer Pages™(JSP) technologies.

Specifically, this book describes how to build applications consisting of components that run
in a J2EE web container. These applications typically utilize Java servlets, JSP pages, JSP tag
libraries, and supporting classes and files. They may access persistent data, for example, a
database. They may be independent applications in which all functionality is managed by a
web container. Or, they may provide primarily a user interface while depending on
components in a J2EE EJB™ container for other services, such as execution of business logic
and access to persistent data (this book does not address development of EJB components).

The book assumes a general knowledge of Java programming, JSP page programming, and
HTML coding.

Before you read this book: The following list of documents will help you understand the
concepts upon which this book is based:

■ Java™ 2 Platform, Enterprise Edition Blueprints—www.java.sun.com/j2ee/blueprints

■ Java™ 2 Platform Enterprise Edition Specification—www.java.sun.com/products

■ Java™ Servlet Specification, v2.2—www.java.sun.com/products/servlet/index.html

■ JavaServer Pages™ Specification, v1.1—www.java.sun.com/products/jsp/index.html

Organization of This Manual6
Organization of This Manual
This manual is designed to be read from beginning to end. Each chapter in the book builds
upon concepts and code examples discussed in earlier chapters.

The following table briefly describes the contents of each chapter:

Chapter Description

Chapter 1, “J2EE Web Application Concepts” Provides an overview of the core J2EE technologies used in
building web-centric Java applications.

Chapter 2, “Design and Programming Issues” Discusses important design and programming issues
relevant to J2EE web applications.

Chapter 3, “Programming a Web Application” Discusses issues specific to programming a web application
using Forte for Java.

Chapter 4, “JSP Tag Libraries” Describes JSP tag libraries and explains how to create,
package, and access them.
Building Web Components

Conventions 7
Conventions
This table provides information about the conventions used in this document.

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate clause or value where you see
italicized text. Italicized text is also used to designate a document title, for emphasis, or for a word
or phrase being introduced.

monospace Monospace text represents example code, commands that you enter on the command line,
directory, file, or path names, error message text, class names, method names (including all
elements in the signature), package names, reserved words, and URLs.

monospace
bold

Monospace bold text represents user input contrasted with computer output.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML and so forth), environment variables,
or acronyms (FFJ, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign. For example, Ctrl+A means press both keys
simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen. For example, Esc-S means press the Esc key,
release it, then press the S key.
Preface

The Forte for Java, Internet Edition Documentation Set8
The Forte for Java, Internet Edition Documentation Set
Forte for Java offers a set of books delivered in Acrobat Reader (PDF) format and online help.
This section provides descriptions of these documents.

Documentation Set
You can download the following documents from the Forte for Java web site:

■ The Forte for Java programming series:

■ Introduction to the Programming Series – Introduces the two books in the Forte for
Java, Internet Edition programming series.

■ Building Web Components – Describes how to build a web application as a J2EE web
module that uses JSP pages, servlets, tag libraries, and supporting classes and files.

■ Programming Persistence – Describes support for different persistence programming
models provided by Forte for Java: JDBC and Transparent Persistence.

■ Forte for Java, Internet Edition Tutorial

Provides step-by-step instructions for building a simple web application using tools
introduced in Forte for Java, Internet Edition, which facilitate creating a web module, as
described in the Java™ 2 Platform Enterprise Edition Specification.

Online Help
Online help is available inside the Forte for Java development environment. You can access
it by pressing the help key (Help on Solaris, F1 on Windows and Linux), or by choosing
Help>Contents from the Help menu. This action gives you a list of help topics and a search
facility.

Javadoc
Javadoc documentation is available within the IDE for many Forte for Java modules. Refer to
the Release Notes for instructions for installing Javadoc. When you start the IDE, you can
access this Javadoc documentation by clicking on the Javadoc pane of the Explorer.
Building Web Components

Chapter 1
J2EE Web Application Concepts
This chapter provides an overview of the core J2EE technologies used in web applications,
including:

■ Servlets

■ JSP Pages

■ Web Containers

■ Web Modules

Conceptual Background10
Conceptual Background
The J2EE specification defines a broad architecture that encompasses numerous component
types and runtime environments for these components. In all, it defines three runtime
environments—the web container, EJB container, and application client container. It also
classifies its component types into categories that correspond with the containers in which
they run. Thus, we have web components, EJB components, and application client
components.

This chapter discusses concepts that are fundamental only to the web container and its
component types. It also gives consideration to supporting classes and files that are not
directly managed by the web container but that are logically part of the web application and
that are deployed together with the web components.

For further information on J2EE web technologies, see:

■ Java™ 2 Platform, Enterprise Edition Blueprints

■ JavaServer Pages Specification, version 1.1

■ Java Servlet API Specification, version 2.2.

Web Containers
A web container provides runtime services that support the execution of the web
components of a J2EE application. These services include

■ Life-cycle management, network services (by which requests and responses are sent)

■ Decoding of requests and formatting of responses

■ Interpreting and processing of JSP pages into servlets

■ Access to the J2EE service and communication APIs, which provide for security,
concurrency, transaction, and deployment

Web containers forward client requests from a web server to web components in the
application and forward the client-bound responses from the web components to the web
server. Web containers typically run in a web server process (as a web server plug-in) or in a
J2EE application server process.
Building Web Components

Conceptual Background 11
Web Modules
A web module is the smallest deployable and usable unit of web resources in a J2EE
application. It corresponds to a “web application” as defined in the Java Servlet Specification
version 2.2.

Web modules can be packaged and deployed as web archive (WAR) files. The format of a WAR
file is identical to that of a JAR file. However, because the contents and use of a WAR file differ
from that of a JAR file, WAR file names use a .war extension.

Structure
A web module may contain:

■ Java class files for the servlets and the classes that they depend on, optionally packaged
as a JAR file

■ JSP pages and their helper Java classes

■ JSP tag libraries (normally packaged as a JAR file)

■ Static documents (for example, HTML, images, sound files, and so on)

■ Applets and their class files

A web module must contain:

■ A Web deployment descriptor
Chapter 1J2EE Web Application Concepts

Conceptual Background12
Web modules use a hierarchical structure for storing their resources. This structure can be
represented at development time as a file system. The following diagram illustrates the web
module hierarchy.

Figure 1 Web Module Hierarchical Structure

Runtime Representation
A web module is represented at runtime by an object implementing the ServletContext
interface. The ServletContext instance provides web components with access to
resources available within the web module. For example, it enables web components to log
events, obtain URL references to resources, and set and store attributes that other web
components in the web module can use.

web module root directory

WEB-INF

classes

lib

JSP, HTML, XML, image files, etc.

web module deployment descriptor

Java class files (including servlets)

JAR files (including tag libraries)

web.xml
Building Web Components

Conceptual Background 13
A ServletContext instance is unique within a nondistributed web module and is shared
by all web components within the web module. This object is implicitly available in JSP pages
as the application instance variable. (This variable is always available; it does not need to
be declared.)

A ServletContext instance, and the web module it represents, is rooted at a specific path
within a web server. It could, for example, be rooted at
http://www.myStore.com/productList. In this case, all requests starting with the
/productList request path, known as the context path, would be routed to this
ServletContext instance.

Web Components
Web components are server-side J2EE components. They are managed by and communicate
directly with a web container. They are capable of receiving HTTP requests through the web
container, processing them, and returning HTTP responses through the web container. The
J2EE platform defines two web component types: servlets and JSP pages.

Servlets
Strictly speaking, a servlet is any Java class that implements javax.servlet.Servlet.
However, most servlets in use today, and the servlets that this book refers to by way of the
term servlet, are subclasses of javax.servlet.http.HttpServlet.

Servlets execute within a web container and are used to extend the functionality of web
servers and web-enabled application servers. The Servlet API enables programmers, within
their servlet code, to access HTTP requests and to generate HTTP responses as Java objects
and provides many useful methods for manipulating these objects. For example, you can
retrieve and set request and response parameters through simple method calls. You can also
access HTTP cookies and manage user sessions through Java objects.

Servlets are used typically to provide services such as generating dynamic content in
response to a request generated by an HTML form, often accessing a data source to do so.
They are also used to control application flow by enabling and disabling access to certain web
resources, depending on some state that the servlet tracks. Another common use for servlets
is for tracking user sessions, for example, adding and deleting items from a user’s shopping
cart.
Chapter 1J2EE Web Application Concepts

Conceptual Background14
JSP Pages
A JSP page is a text-based web component that is dynamically translated into a servlet by the
web container before execution.

This book uses the following terms:

■ JSP file – the JSP text-based source file that a developer creates and edits

■ JSP implementation class – a Java class that the web container creates by translating a JSP
file

■ JSP page – a logical term that includes both of the previous concepts and is used when
it is not important or desirable to differentiate between them

From a user's perspective, a JSP page is the flip side of a servlet class—it describes how to
process an HTTP request and generate an HTTP response in a presentation- and document-
centric way rather than a logic-centric way. Physically, it is somewhat like a servlet turned
inside out; whereas a servlet source file is generally programming code with embedded
HTML, a JSP file is generally HTML with embedded programming code.

JSP Page Life Cycle
A JSP page is processed by its runtime environment—the web container—and in turn
performs processing on an HTTP request and generates an HTTP response. The processes
involved in this phase are JSP page translation and instantiation, request processing, and JSP
page destruction.

Translation

JSP page translation refers to the process by which the web container converts a JSP file into
a servlet class. The details of this process are implementation specific. In the reference
implementation the JSP file is converted to a Java servlet source file and then compiled it to
a class file.

The web container translates a JSP file the first time it receives a request for it. On
subsequent requests for the same JSP page, the web container normally bypasses this phase.
However, translation may also occur if the date on the JSP implementation class is older than
the date on the JSP file.

Instantiation

When the web container receives a request for a particular JSP page, it first attempts to locate
a corresponding JSP instance. If it cannot find one, it instantiates one (as part of this process,
it translates the JSP file if the implementation class does not yet exist). It then calls the
instance's _jspInit method, which corresponds to the jspInit method of the JSP file. You
can use this method to prepare resources that your JSP pages might require.
Building Web Components

Conceptual Background 15
Request Processing

The JSP page receives client requests from the web container, processes the request according
to its programmed logic, and sends a response to the container. By default, each request
executes in its own thread.

Destruction

The web container can reclaim resources by destroying a JSP instance. Before doing so, it
calls the instance’s jspDestroy method, which corresponds to the jspDestroy method of
the JSP file. You can use this method to close resources that are no longer needed.

Web containers typically provide a way to limit how long a JSP instance can persist without
receiving a request. After the user-specified limit, the web container calls the jspDestroy
method.

Code Constructs in JSP Pages
A JSP page can contain template data and elements. Elements are constructs recognized by
the web container; they provide dynamic capabilities. Template data are unrecognized
constructs, such as HTML and XML code; these are passed through to the HTTP response
verbatim. Template data is generally used to provide static content and to format dynamic
data. Because HTML is passed through verbatim, coding presentation content is very natural
for a web page designer.

JSP elements are grouped into three categories: directive elements, action elements, and
scripting elements.

Directive Elements

Directive elements provide global declarative information about a JSP page that is unrelated
to any particular request. For example, you use a directive to import packages into a page.
You also use a directive to associate a page with the current HTTP session. Directives are
processed at translation time. They do not write output to the HTTP response object (output
written to the HTTP response object appears as text in the generated web page).

Directives are placed between <%@ and %> symbols. For example, the following page
directive imports the java.util package and associates the JSP page with the current HTTP
session.

The JSP Specification defines these directives: page, include, and taglib.

<%@ page import="java.util.*" session="true"%>
Chapter 1J2EE Web Application Concepts

Conceptual Background16
Action Elements

Action elements are XML-style tags that provide a means of working with Java objects
without writing Java code. For example, you can use actions to locate and instantiate objects,
and to get and set an object’s properties. Actions are processed at request time. Some actions
write output to the HTTP response object.

Because actions use XML syntax, they provide web page designers with a familiar paradigm
for accessing dynamic data. (Even though they might not code the actions themselves, web
page designers need to understand actions enough to work in a file that contains them; they
might have to provide HTML formatting for actions that produce output to a web page.)
Actions are also potentially easy for tools to analyze (unlike Java code).

Standard actions are actions defined by the JSP specification and implemented by the web
container. The standard actions are: forward, include, useBean, getProperty,
setProperty, param, and plugin.

The JSP specification also allows for the development of custom actions to provide
functionality not available through standard actions. You define custom actions in an XML
document called a tag library descriptor (TLD) and implement them as JavaBeans™
components. The TLD and implementing beans are conceptually one component—called a
tag library.

A tag library is normally packaged as a JAR file and made available to a JSP page through a
taglib directive in the page. You can develop your own tag libraries or obtain them from a
vendor (they could, for example, be provided as part of some vendor’s implementation of a
web container). For more information on custom actions and tag libraries, see “JSP Tag
Libraries” on page 49.

Actions are placed between < and /> symbols. The following example shows the include
action being used to insert a JSP page named header.jsp into the current JSP page.

In the example, the prefix (jsp) before the colon indicates that this is a standard action. The
string after the colon, in this case include, is the name of the action. The name-value pairs
(page="header.jsp" and flush="true") are attributes of the action.

<jsp:include page="header.jsp" flush="true"/>
Building Web Components

Conceptual Background 17
Some actions can contain a body, that is, they have a beginning and ending tag that can
enclose another action, scripting elements, or template data. For example, in the following
code, the useBean action attempts to locate an object available by the reference cBean in
the application scope and make it available locally through a scripting variable also
named cBean. (For more information about scopes, see “Scopes and Implicit Objects” on
page 18.) If the object cannot be located, the action instantiates it, using the specified
Expns.CBean class, and makes it locally available. The two method calls contained in the
body of the action (getConnected and getEngine) are invoked only if the action
instantiates the Expns.CBean class. If the action locates an already existing instance, the
two methods are not invoked.

Scripting Elements

Scripting Elements allow you to embed Java code within a JSP file. You can use these
elements for programming logic and also for writing output to the HTTP response object.
There are three syntactically distinct types of scripting elements—declarations, scriptlets,
and expressions.

Declarations allow you to declare and initialize variables, instantiate objects, and declare
methods. Declarations are processed at translation time and do not write output to the HTTP
response object. Declarations are placed between <%! and %> symbols. The following
example declares and initializes two String variables:

Scriptlets allow you to enter any piece of valid Java code. Variables and methods declared in
a declaration element are available to scriptlets in the same JSP page. A Java statement can
begin in one scriptlet and end in another (interspersed, for example, with HTML code).
Scriptlets are processed at request time and write output to the HTTP response object if you
code them to do so. Scriptlets are placed between <% and %> symbols.

<jsp:useBean id="cBean" scope="application" class="Expns.CBean">

<%

cBean.getConnected();

cBean.getEngine();

%>

</jsp:useBean>

<%!

String name = null;

String title = null;

%>
Chapter 1J2EE Web Application Concepts

Conceptual Background18
The following scriptlet example shows a Java if statement that spans two scriptlets and is
used to conditionalize a fragment of HTML code that lies between them. The HTML code will
be included in the HTTP response only if the if statement evaluates to true.

Expression elements allow you to enter any valid and complete Java expression. The web
container converts an expression element to a String at request time. The resulting String is
then written to the HTTP response object. Expressions are placed between <%= and %>
symbols.

The following example inserts a piece of dynamic data into an HTML string.

Scopes and Implicit Objects
When you instantiate an object in a JSP page you will want to make it available to other
objects in your application. You may want to make it available to all objects in your
application, or you may want to restrict its availability to some subset of these objects. For
example, you may want to make it available only to objects associated with the current
user’s HTTP session.

<% if (name.equals("Elvis Presley")){

%>

<p>Let’s hear it for Elvis!

<% title = "King";

}

%>

<p>Hail the <%= title %>!
Building Web Components

Conceptual Background 19
To enable you to control the availability of an object, the JSP specification defines a number
of scopes in which you can place a reference to the object. These are the page, request,
session, and application scopes. At runtime, these scopes are implemented as Java objects, as
described in the following table.

You can locate or make an object available within one of these scopes with a useBean action.
In this action you supply a scope attribute in order to specify the availability of the bean
instance, for example:

Scopes (and the objects they represent) are also implicitly available to the scripting elements
of a page through scripting variables that the page automatically instantiates for you. These
scripting variables use the same names as the scopes they represent—page, request,
session, and application.

Table 1 Scopes in JSP pages

Scope Object Type Description

page javax.servlet.jsp.PageContext Represents the current JSP page. This object is available only to JSP
elements in the current page or in pages included by an include
directive (but not pages included by an include action; this is
because the directive is executed at page translation time, and the
included pages are concatenated into the same JSP implementation
class).

request javax.servlet.ServletRequest Represents the current HTTP request. This object is available only to
JSP pages and servlets executing in the current HTTP request. For
example, if one JSP page forwards to another (using a forward
action), both pages have access to the same ServletRequest
object.

session javax.servlet.http.HttpSession Represents the current user’s HTTP session. This object is available
only to JSP pages and servlets executing in requests associated with
the current user’s HTTP session.

application javax.servlet.ServletContext Represents the runtime web module. This object is available to all
JSP pages and servlets in the web module.

<jsp:useBean id="myCart" scope="session" class="Cart">
Chapter 1J2EE Web Application Concepts

Conceptual Background20
For example, the following scriptlet uses the implicit request variable to populate the Cart
bean we instantiated in the previous useBean action. It then uses the session variable to
place the Cart bean in the session scope, where it will be available to other scripting
elements on the page, or other pages in the same user session. Notice that we did not
instantiate the session and request variables:

Note By default, JSP pages have access to the session scope. However, if a page’s page directive
specifies a session attribute whose value is set to false, the page is not associated with
the current HTTP session and therefore cannot access the session scope and may not
reference the session implicit variable.

For example, the previous useBean action and scriptlet code samples would be illegal on a
page containing the following page directive.

Supporting Classes, Beans, and other Files
Web components generally require additional classes, beans, HTML files, and other files to
provide supporting functionality. For example, a servlet could delegate complex tasks such
as screen flow management or session control to a supporting bean. A servlet could also use
a bean for accessing a remote resource, such as an EJB or database, and for caching results
returned by calls to such resources. Also, the JSP pages and HTML files will often reference
image files and perhaps sound and video files.

<%

 CartLineItem lineItem = new CartLineItem();

 lineItem.setID(request.getParameter("cdId"));

 lineItem.setCDTitle(request.getParameter("cdTitle"));

 lineItem.setPrice(request.getParameter("cdPrice"));

 myCart.lineItems.addElement(lineItem);

 session.putValue("myLineItems", myCart.getLineItems());

%>

<%@ page session="false" %>
Building Web Components

Chapter 2
Design and Programming Issues
This chapter discusses web application design and programming issues relevant to J2EE
applications in general and that do not pertain specifically to programming in Forte for Java.

This chapter discusses these topics:

■ Functional roles of web components in J2EE Applications

■ Choosing between using servlets or JSP pages

■ Architecture design for accessing a data source

■ Techniques for reusing code in JSP pages

■ Techniques for accessing Java Objects in JSP pages

■ Using a JSP Page as a layout template

Choosing Between Servlets and JSP Pages22
Choosing Between Servlets and JSP Pages
JSP pages are servlets at runtime and possess all the capabilities inherent to this interface,
foremost among these being the ability to access an HTTP request, process it, and create an
HTTP response. The question arises, then, whether you should program your application
using servlets or JSP pages.

Even though servlets and JSP pages possess the same basic capabilities, they are suited to
playing different roles in a J2EE application, mainly because of the format of their sources.
For example, a servlet is well suited for performing logic because it is a standard Java class,
and you can use the standard Java programming paradigm and tools to create, edit, compile,
and debug it.

Servlets are not well suited for generating web pages, however, for two reasons:

■ Web page designers are typically not programmers and are not accustomed to working in
Java source files.

■ Coding HTML in a servlet is cumbersome because it requires the embedding of HTML
code within numerous println statements; the println statements require escape
sequences for many of the HTML characters.

JSP syntax makes the coding of HTML natural, because HTML is coded in a JSP file exactly
the way it is coded in an HTML file (the same is true for XML). For this reason JSP pages are
ideal for generating presentation content.

The guiding principle in choosing between servlets and JSP pages, therefore, is to use JSP
pages for generating HTML and to use servlets for programming the logic that determines
the behavior of an application. You can, however, also modularize logic into classes, beans,
or tag libraries and access it from servlets and JSP pages.

This document may use either the term JSP page or servlet, depending on which of these web
components is more appropriate for a particular function, but it does so with the
understanding that JSP pages and servlets are potentially interchangeable.

Web Components in J2EE Applications
A web component can perform any of the following functional roles in an application:

■ Front component – In a model-view-controller (MVC) type of application, this component
is at the front of the controller structure; it receives the HTTP request from the web server.
It can process the request or simply redirect it to another component for processing. The
MVC architecture typically uses only one front component that receives all HTTP
requests. Other architectures may use multiple front components, for example one front
component for each presentation component. A front component can be implemented as
either a servlet or JSP page.
Building Web Components

Choosing Between Servlets and JSP Pages 23
■ Logic component – This type of component performs some type of logic processing, for
example, application flow management, fetching data, or processing business logic. Such
components are most often implemented as a servlet, some other class, a bean, or a tag
library, although JSP pages can also be used for this purpose.

■ Presentation component – This type of component generates part or all of the HTTP
response sent to the client. JSP pages are usually the best choice for this function,
although servlets can also be used.

Figure 2 shows the relationship of these functional roles.

Figure 2 Potential Uses for Web Components

It is possible to implement all these roles using a single web component, and in a simple
application, this might be the best way to do it. However, complex applications will benefit
from separating these roles into individual web components. For example, application flow,
data source access, and presentation can be independently edited and optimized if they are
modularized. Modularization also makes it easier to divide development tasks between the
members of a team, allowing them to specialize in their areas of strength.

Using single-role JSP pages also allows for code reuse and hence centralization of
functionality. For example, by separating application-flow logic from presentation, you can
centralize the code that controls application flow into a single component. This
centralization makes it easier to comprehend and change the application flow when needed.

 receives HTTP
request via web server

Front
Component

HTTP
request

HTTP
response

to database or

other application components
processes logic

(application flow,
data access, etc.)

Logic
Component

generates HTTP
response

Presentation
Component

 url

Web
Page

Web Client Label
Chapter 2Design and Programming Issues

Designing Data Source Access24
Designing Data Source Access
J2EE technology provides a flexible architecture for the dynamic retrieval, update, and
presentation of data. These types of actions make logical candidates for code reuse because
application developers routinely re-implement the code that performs these actions. Instead
of re-implementing such code, developers can encapsulate their code into separate servlets,
classes, beans, or tag libraries. Such code can be accessed from a JSP page using one of these
means:

■ JSP scripting elements

■ Standard JSP tags

■ Custom JSP tags

Applications that access dynamic data revolve around three major concepts: data source,
data object, and data presentation.

■ A data source is the location from which a web component retrieves data for display, or
the location to which it sends data updates. The data source could be a database, an EJB
method, a JavaBean method, or a PersistenceManager method, in the case of
Transparent Persistence. The data source returns a data object For more information on
Transparent Persistence, see Programming Persistence.

■ A data object is usually a Java object, but can also be an XML document or some other
format of a database result set. Note that if the data object is a Java object, it could be
typed as a Java class or a Java interface. It could also represent a single business object
(such as a customer), a Java collection (such as a list of orders), or a complex Java object
graph (such as a customer with a list of outstanding orders).

■ A data presentation is the specific format used for presenting the data object to the user.
Some example data presentation styles are “form,” “table,” “bulleted list of links,” or
“master/detail.”
Building Web Components

Designing Data Source Access 25
The diagrams in Figure 3, Figure 4, and Figure 5 illustrate these concepts. Figure 3 shows the
simplest implementation, in which a single web component both accesses the data source
and generates the presentation for the returned data object.

Figure 3 Query and Presentation Using Single Web Component

Figure 4 shows an implementation that allows for more reuse. It uses a servlet to access the
data source and a JSP page to generate the presentation of the data object.

Figure 4 Query and Presentation Using Two Web Components

Query
Web Page

 Data Presentation
Web Page

Data Source
(database URL,

EJB method,
 bean method,
or PM method)

URL query

HTTP
response

Data Object
(Java class, bean, interface, collection, TP
object, XML document, or DB result set)

fetches data object
2

3

generates data
presentation web page

call to data source

JSP/Servlet1

Query
Web Page

 Data Presentation
Web Page

Data Source
(database URL,

EJB method,
 bean method,
or PM method)

generates data
presentation web page

Data Presentation
JSP

call to data source

Query Handler
Servlet

URL query

HTTP
response

Data Object
(Java class, bean, interface, collection, TP
object, XML document, or DB result set)

Current Request, Session,
or Application Scope

places data object
in scope

forwards
request

fetches data object

2

3
4

1

5

Chapter 2Design and Programming Issues

Designing Data Source Access26
Figure 5 shows an implementation of an update action, in which a servlet updates the data
source and a JSP page generates a presentation that displays an update status message. This
example could have many possible variations, for example, the update status message could
be an HTML file. In another variation, the update handler servlet could also query the data
source and retrieve the updated data to display to the user.

Figure 5 Update and Presentation Using Two Web Components

Update
Web Page

Update Status
Web Page

Data Source
(database URL,

EJB method,
 bean method,
or PM method)

 generates, or is,
update status web page

Presentation JSP
 or HTML File

call to data
source

Update Handler
Servlet

URL update

HTTP
response

Data Object

(Java class, bean, interface,
collection, TP object, or XML

document)

creates or locates
data object

forwards
request

passes data object,

receives update status
3

2

4

1

5

Building Web Components

Designing Data Source Access 27
The concepts of data source, data object, and data presentation are interrelated, but their
relationships are not rigidly defined. For example, a given type of data object can be
displayed using a number of different data presentations, as shown in Table 2.

Similarly, a given type of data object can be retrieved from any number of data sources. You
could, for example, retrieve a customer object from a database, an EJB method, a
PersistenceManager, or a method on a JavaBeans component. Furthermore, the data source
does not determine the data presentation. For example, you can format a collection as a table
regardless of whether the collection was retrieved from a database, a method on a JavaBeans
component, an EJB method, or a TP PersistenceManager.

Table 2 Presentation Possibilities for a Data Object

Data Object Data Presentation

single customer detailed form layout

summary form layout

collection of customer
objects

tabular layout

form layout (with navigation buttons)

list of links
Chapter 2Design and Programming Issues

Programming JSP Pages28
Programming JSP Pages
This section discusses JSP programming topics.

Code Reuse Through Forwards and Includes
JSP technology provides for reuse of JSP pages through include and forward actions and
include directives.

An include directive inserts a specified file, verbatim, into the file containing the directive.

For example:

In this example, the inclusion is performed at translation time and the code is inserted into
the compiled implementation class. Because the inclusion occurs at translation time, you
can not make it dependent on a reference that is resolved at request time. In other words,
the value of the file attribute (which in the example is myFile.jsp) is interpreted
literally. This restriction means that you can not use an expression for the value of this
attribute because expressions are evaluated at request time.

The include action is similar to the include directive, except that it performs its inclusion
at request time. You use the action’s page attribute to specify the file that you want to
include. This attribute can accept an expression as its value, which means that you can
determine at runtime which file to include. For example, you could obtain the value of a
request parameter and use it to compute the name of the file to include.

The following example shows an include action that uses an expression in this way.

Note Only some attributes accept an expression as a value (consult the JSP Specification for a
complete list). The value for such an attribute must be either an expression or a literal ASCII
string. You cannot mix the two. For example, the following include action is invalid:

In JSP 1.1, the include action requires a flush attribute set to true.

The forward action is similar to the include action, except that whereas the include
action forwards execution (along with the request) to another page and then returns to the
original page, the forward action terminates execution of the current JSP page and
forwards execution (along with the request) to another page. The forward action uses the
same page attribute as the include action but does not require the flush attribute, as
shown in the following example:

<%@ include file="myFile.jsp" %>

<jsp:include page="<%= myFile %>" flush="true"/>

<jsp:include page="<%= myFile %>.html" flush="true"/> INVALID

<jsp:forward page="<%= myFile %>" />
Building Web Components

Programming JSP Pages 29
Accessing Java Objects
JSP technology provides two means for working with Java objects: actions and scripting
elements. These two types of JSP elements represent two different programming paradigms.

Actions enable you to access and manipulate Java objects without using Java code directly in
a JSP page. For example, the standard action, useBean, enables you to locate an existing
bean object in a specified scope (or instantiate one if it doesn’t already exist) and make it
available to other actions or scripting elements on the page. For example, the following code
sample locates an object of the class com.xyz.Cart that is available by the name myCart
on the current session object; if the object does not exist, it creates one and adds it to the
session object. It then makes this object locally available by the name myCart.

Scripting elements allow you to write Java code directly in a JSP page. With scripting
elements, you have unlimited access to the Java API and any custom classes you need.

The following sample code performs the same work as the previous action example.

Even though actions and scripting elements essentially represent different programming
paradigms, you can mix them in a single JSP page. For example, in the previous two code
samples, we instantiated a myCart object. If we wanted to access a piece of data from this
object and display it on a web page, we could do so using a getProperty action or an
expression (one of the three types of scripting elements), regardless of whether we used an
action or scriptlet to instantiate the object.

<jsp:useBean id="myCart" class="com.xyz.Cart" scope="session" />

<%

Cart myCart = (Cart)session.getValue("myCart");

if (myCart==null) {

myCart = new Cart();

session.setValue("myCart", myCart);

}

%>
Chapter 2Design and Programming Issues

Programming JSP Pages30
The following code sample uses a getProperty action to get the myCart object’s user name
and write it to the HTTP response, along with some HTML formatting:

You could use an expression, as in the following code sample, to achieve the same result as
the previous getProperty action:

<tr>

<td>User Name:</td>

<td><jsp:getProperty name="myCart" property="userName" /></td>

</tr>

<tr>

<td>User Name:</td>

<td><%= myCart.getUserName() %></td>

</tr>
Building Web Components

Programming JSP Pages 31
Using JSP Pages as Layout Templates
JSP include actions and include directives provide a powerful yet simple means for
controlling the look and feel of an application. These elements can enable a single JSP page
to serve as a template that defines the layout for multiple screens. (A screen is the sum total
HTML sent to a client for any single request.)

Figure 6 shows a common layout used for web pages. It has four sections: a header, side bar,
body, and footer.

Figure 6 Elements of a Typical Web Page Layout

A template of this type defines the layout of a web page but typically does not provide
content. The content is provided by additional JSP pages and/or HTML files through the use
of include directives or include actions in the template. Content can be determined
dynamically at request time by using an include action with an expression as the value of
its page attribute.

Header

Body

Side Bar

Footer
Chapter 2Design and Programming Issues

Programming JSP Pages32
For example:

A template typically declares both the start and end of the HTML document as well as the
start and end of the table that defines the overall grid layout. It’s good practice to design
included files to describe a complete HTML element, with both its start tag and end tag (if
an end tag is required). By following this principle, you have a better chance of being able to
view your JSP files in a web browser or manipulate them with a tool, even though they might
not be complete HTML documents. For example, many web browsers correctly display a
document containing a validly constructed HTML table, even though the start and end tags
that declare the document as an HTML document are missing.

<jsp:include page="<%= currentScreen %>" flush="true" />
Building Web Components

Chapter 3
Programming a Web Application
This chapter assumes that you have finished designing your application and are now ready
to begin programming.

J2EE web applications may consist of one or more web modules. This chapter begins by
providing a high-level view of developing web modules in Forte for Java. This high-level view
ties together the disparate tasks you will have to perform in developing your application. It
then delves into details on individual programming tasks.

Web Module Development Work Flow34
Web Module Development Work Flow
This section gives you an overview of the workflow involved in programming a web module
using Forte for Java. The overview is intentionally simplistic and does not attempt to describe
iterations of coding and testing. It more importantly lists the major tasks the development
team will undertake, and gives a logical order in which these tasks could be performed. Each
task references a section later in the chapter that provides more detailed information on the
task. Forte for Java on-line help also provides information on most of these tasks.

1 If your web module requires a JDBC™ database driver, copy it to the lib/ext directory of
your Forte for Java installation directory.

Placing the driver in this directory adds it to the Forte for Java internal classpath, which
enables you to test your application with your database.

Note Adding the database driver to your system classpath variable is not an alternative to this
step. You must add the driver to the lib/ext directory.

2 Create a web module (see “Creating a Web Module” on page 36).

Note Although you can create and test run simple applications without creating a web module,
it is highly recommended that create your application within a web module (for more
information on this recommendation, see “Creating a Web Module” on page 36).

3 Create the JSP pages required for your web module.

These go in the root (top-level) directory of the web module (see “Creating JSP Pages” on
page 38).

4 Create or import the servlets, classes, and beans required for your web module.

These go in the /WEB-INF/Classes directory of the web module unless they are
packaged as JAR files, in which case they go in the /WEB-INF/lib directory (see
“Creating Servlets, Classes, and Beans” on page 41).

Note Classes developed using Transparent Persistence are an exception to this rule. You must
develop any persistence-capable classes that your web module depends on outside the
web module. After you package the persistence-capable classes as a JAR file, place them
in your web module’s /WEB-INF/lib directory. You can then test your application or
package it as a WAR file.

For information on Transparent Persistence, see Programming Persistence in the Forte for
Java programming series. For information on packaging web modules, see “Packaging and
Deploying a Web Module” on page 48.
Building Web Components

Web Module Development Work Flow 35
5 Create and/or add any tag libraries your JSP pages depend on.

You normally develop a tag library within a separate web module that is specifically for
that purpose. You then package it as a JAR file and place it in the lib directory of the web
module containing the dependent JSP pages (see “JSP Tag Libraries” on page 49).

6 Test run your application in the development environment, optionally monitoring it with
the HTTP transaction monitor (for information on test running an application, see “Test
Running an Application” on page 42; for information on using the HTTP transaction
monitor, refer to on-line help).

7 Debug your application (for information on using the debugger, refer to on-line help).

8 Configure the web module (see “Configuring the Web Module Deployment Descriptor” on
page 44).

9 Package the web module as a WAR file and deploy it (see “Packaging and Deploying a Web
Module” on page 48)
Chapter 3Programming a Web Application

Creating a Web Module36
Creating a Web Module
A web module is a J2EE deployment construct and is not directly related to how you develop
your application— there is no J2EE requirement that you develop a web application using a
web module directory structure. However, you should develop your web application as a web
module for these reasons:

■ Your application’s files must eventually be part of a web module in order to package them
as a WAR file. If you do not develop them in that structure, you will have to manually
place them in a web module before you can package and then deploy your application.

■ If you create a web component outside of a web module, Forte for Java invisibly creates a
web module for it and deploys it to its internal web container. However, this feature is
currently suitable for testing only simple applications. Developing your application as a
web module ensures that you can test run it in the development environment.

Web Modules in Forte for Java
In Forte for Java, a web module is represented in the Explorer as a mounted file system that
conforms to the structure of a WAR file (for more information on this structure, see
“Structure” on page 11).

Figure 7 Web Module mounted in the Explorer

You mount a web module in the Explorer exactly as you would mount any other file system
(see on-line help for information on mounting file systems). But, you must mount the web
module itself. If you mount a directory that contains a web module, rather than the web
module itself (in other words if you mount a web module in such a way that it is a
subdirectory of a mounted file system), Forte for Java will not properly recognize the web
module. This means you will not be able to perform some operations normally associated
with a web module.

Although a web module is not an object type in a programming sense, it is treated as an
object type in the Explorer. This means, for example, that it has properties that you can set
in its Properties window and a set of commands available in its pop-up menu that pertain
to the web module. It also means, that like any other object type in the Explorer, you create
it from a template.

web module

web module root directory
Building Web Components

Creating a Web Module 37
You can create a web module in one of two ways:

■ You can create a web module as a new directory.

■ You can convert an already existing directory into a web module.

Note If you have an existing directory structure that conforms to that of a web module, you
can mount and use it in the Explorer as a web module without converting it. Forte for
Java will recognize such a directory as a web module by its structure.

➤ To create a new directory as a web module:

1 From the main window, choose File>New.

The Template Chooser wizard opens.

2 Open the JSP & Servlet template folder, select the Web Module template, and then click
Next.

The Web Module dialog box opens.

3 Click the ellipsis button (marked with …).

A file chooser opens.

4 Navigate to the location in which you want to create the new directory, and then click the
new folder icon.

5 Locate the new folder (it is entitled New Folder, but it is not selected; you may have to
scroll to find it).

6 Slowly double-click the new folder's title to make it editable. Then type a name for the
folder and press Return.

7 Verify that the File Name field indicates the folder's new name (you might have to select
a different folder and then reselect the new folder).

8 Click Add.

Focus returns to the Web Module dialog box.

9 Verify that the Directory field indicates the correct directory, and then click Finish.

The web module is created and mounted in the Explorer.

➤ To convert an existing directory into a web module:

1 In the Explorer, choose Mount Directory from the pop-up menu of the Filesystems icon.

A file browser opens.

2 Navigate to the directory you want to convert into a web module and click Mount.

The directory is mounted in the Explorer as a file system.

3 From the directory’s pop-up menu, choose Tools>Convert Filesystem into Web Module.

4 Click OK in the confirmation dialog box that opens.

The directory is converted to a web module.
Chapter 3Programming a Web Application

Creating JSP Pages38
Creating JSP Pages
You can create a JSP page in one of two ways:

■ You can create a JSP page using the template chooser.

■ You can create a JSP page by generating it from a Dreamweaver template. For information
on this topic, see “To generate a JSP page from a Dreamweaver template:” on page 40.

Note For most situations, it is recommended that you create your JSP pages within a web module.
You should create them in the root directory of your web module or in some subdirectory
that you have created in the root directory. Do not place them within the WEB-INF directory.
For more information on this topic, see “Creating a Web Module” on page 36.

➤ To create a JSP page using the Template Chooser:

1 In the Explorer, find the directory in which you want to create the JSP page.

2 From the directory’s pop-up menu, select New>JSP & Servlet and then choose one of the
JSP templates: either JSP (HTML), JSP (Plain Text), or JSP (XML).

3 In the Name field of the wizard that opens, type a name for your JSP page and click Finish.

The JSP page is created and opens in the Source Editor.
Building Web Components

Working With Dreamweaver Templates 39
Working With Dreamweaver Templates
Forte for Java enables you to work with Macromedia™ Dreamweaver™ templates in these
ways:

■ You can open and edit Dreamweaver templates in the Source Editor.

■ You can configure Forte for Java to open Dreamweaver templates in an editor of your
choice.

■ You can generate a JSP page from a Dreamweaver template.

Forte for Java recognizes Dreamweaver templates as an individual file type (Dreamweaver
templates use a .dwt extension). This support enables you to open and edit Dreamweaver
templates in the Source Editor. By default, a Dreamweaver template will open in the Source
Editor when you double-click it in the explorer.

You can reconfigure Forte for Java to open Dreamweaver templates in an external editor of
your choice. The following procedure provides an example of how to do this.

➤ To configure Forte for Java to open Dreamweaver templates in the Dreamweaver application:

1 Click Tools>Global Options.

2 In the left pane of the Global Options window, open the node entitled JSP & Servlets
(Internet Edition).

3 Click on the Dreamweaver Template icon.

4 In the right pane, click the Editor field and choose External Editor from the drop-down
list.

5 Click the Eternal Editor Executable field and then the customize button marked by the
ellipsis (…).
Chapter 3Programming a Web Application

Working With Dreamweaver Templates40
6 In the file browser that opens, navigate to and select your Dreamweaver executable and
click Select.

7 Close the Global Options window.

When you double-click a Dreamweaver template, the Dreamweaver application launches
and opens the template.

➤ To generate a JSP page from a Dreamweaver template:

1 In the explorer, select the Dreamweaver template.

2 From its pop-up menu, choose Save Template as JSP.

3 In the dialog box that opens, type a name for the JSP page in the File Name field and click
OK.

The resulting JSP page has the same contents as the Dreamweaver template.
Building Web Components

Creating Servlets, Classes, and Beans 41
Creating Servlets, Classes, and Beans
As with other object types, Forte for Java provides templates for creating servlets, classes, and
beans.

Note For most situations, it is recommended that you create these object types within a web
module (for more information on this topic, see “Creating a Web Module” on page 36). You
should create them in the WEB-INF/classes directory of your web module. This directory
is included in Forte for Java’s internal classpath when the web module is mounted in the
Explorer.

➤ To create a servlet:

1 In the Explorer, locate the WEB-INF/classes directory.

2 From this directory’s pop-up menu, select New>JSP & Servlet>Servlet.

3 In the Name field of the wizard that opens, type a name for your servlet and click Finish.

The servlet is created and opens in the Source Editor.

For information on creating other classes and beans, refer to on-line help.
Chapter 3Programming a Web Application

Test Running an Application42
Test Running an Application
Forte for Java enables you to test run your application from within the IDE by transparently
deploying it to the internal web server upon execution. This functionality makes iterative
testing during the development cycle quick and easy. You can test run applications that are
composed of either single or multiple web modules.

Test Running a Single Web Module
➤ To test run an application composed of a single web module:

1 Select your web module in the explorer and from its pop-up menu choose Build All.

This action ensures that you have saved all the files and compiled all the classes and
components in your web module.

2 Select the servlet or JSP page that is the starting point of your application, and from its
pop-up menu, choose Execute or Execute (restart server) depending on the following
conditions:

a If the internal web server is not running or you have not made changes to any classes
(including servlets), you may choose Execute. For example, if the web server is
running but you have edited only JSP pages and HTML files, you may choose Execute.
The updated pages will be reloaded.

b Otherwise, choose Execute (restart server). If you are unsure, choose this command.

This action switches your view in the IDE to the Running workspace and launches the
internal web browser.

Test Running Multiple Web Modules
You can also test run applications that are composed of multiple web modules. To do this
you must perform these tasks:

1 Create a web server configuration file. The internal web server will use this file to
determine which web modules to load and to map the web modules to URIs.

2 Add the web modules that you want to run to the web server configuration file.

3 Configure the executor property for the servlets and JSP pages in your web modules.

4 Execute the servlet or JSP page that is the starting point of your application

The remainder of this section explains these tasks in detail.
Building Web Components

Test Running an Application 43
➤ To create a web server configuration file:

1 In the Explorer, mount or create the directory that will contain the web server
configuration file.

Although you may use one of your web module directories, it is recommended that you
use a different directory because you would not normally want to include this file in any
of the WAR files produced when you package your web modules.

2 From the directory’s pop-up menu, choose New>JSP & Servlet>ServerConfiguration.

➤ To add a web module to a web server configuration file:

1 Mount your web module in the Explorer, if it is not already mounted.

2 Select your web server configuration file, and from its pop-up menu choose Add Web
Module.

3 In the Add Web Module dialog box, select one of your web modules from the drop-down
list, and then type a URI for this web module into the Mapping field, for example,
/webModuleA.

This mapping is used to access components and files in the web module. For example, if
you use the mapping /webModuleA, and your web module contains a JSP page named
myJSP.jsp at the root level, you would use the URI /webModuleA/myJSP.jsp to
access that JSP page from a JSP page in another module in your web server configuration.

➤ To configure the executor property for a web module:

1 Open the properties window for a JSP or servlet in the web module.

2 Click the Execution tab.

3 Click the Executor field and then its customizer button, marked with an ellipsis (…).

The Property Editor for the Executor opens.

4 In the Executor Property Editor, click the Context Execution Mode field and then its
customizer button.

The Property Editor for the Context Execution Mode opens.

5 In the Context Execution Mode Property Editor, click the Use Server Configuration radio
button.

6 Click the Browse button and choose the web server configuration file that you want to
use.

7 Click OK in the Executor Property Editor and Context Execution Mode Property Editor.

➤ To execute your application:

1 Select the servlet or JSP page that is the starting point of your application.

2 From its pop-up menu, choose Execute or Execute (restart server) depending on the
conditions explained in Step 2 of the procedure “To test run an application composed of
a single web module:” on page 42.
Chapter 3Programming a Web Application

Configuring the Web Module Deployment Descriptor44
Configuring the Web Module Deployment Descriptor
All web modules contain a deployment descriptor in the form of an XML file named
web.xml located in the web module’s WEB-INF directory. The deployment descriptor
provides configuration information to the web module’s deployment environment— the web
container. It provides information such as:

■ Initialization parameters for the ServletContext object (which is the runtime
representation of the web module)

■ Definitions of servlets and JSP pages and their mapping to URIs

■ Mapping of tag libraries to URIs

■ MIME type mappings

■ Session timeout interval

■ A list of welcome files

■ Mappings of error codes and exceptions to resources

■ Security configuration

In Forte for Java, you can configure the deployment descriptor in two ways:

■ You can browse the elements of the deployment descriptor in the Explorer and edit them
through their properties windows.

■ You can open the deployment descriptor file in the source editor and edit it manually.

Mapping Servlets and JSP Pages
The ability to map servlets and JSP pages to any URI is powerful feature of the deployment
descriptor. It enables you to reference these components without having to hard-code their
locations in your programming code.

Creating such a mapping entails two tasks:

■ creating and configuring a servlet element to represent your component in the
deployment descriptor

■ creating and configuring a servlet-mapping element to define the actual mapping

The following tutorial shows you how to use the Explorer to create and map a JSP page to a
URI and then access that page using the URI.
Building Web Components

Configuring the Web Module Deployment Descriptor 45
➤ To create and map the JSP page to a URI and access it:

1 Create a web module.

For an example of how to do this, see Step 1 of the procedure “To create the tag library:”
on page 59.

2 In the root directory of the web module, create a JSP page named HelloWorld.

For an example of how to do this, see “To create a JSP page using the Template Chooser:”
on page 38.

3 In the Source Editor, edit your JSP page by adding a line containing the following text
after the HTML <body> tag.

4 In the Explorer, select the Servlets folder inside the deployment descriptor as shown:

5 From its pop-up menu, select New Servlet.

This action creates a Servlet element inside the Servlets folder.

6 Open the Servlets folder, locate the Servlet element, and open its Properties window.

<p>Hello World!
Chapter 3Programming a Web Application

Configuring the Web Module Deployment Descriptor46
7 Delete the default value entered for the Servlet Class property, and then set the JSP File
property to /HelloWorld.jsp and the Servlet Name property to HW as shown in the
following figure.

8 In the Explorer, select the ServletMappings folder inside the deployment descriptor as
shown:

9 From its pop-up menu, select New ServletMapping.

This action creates a ServletMapping element inside the ServletMappings folder.

10 Open the ServletMappings folder, locate the ServletMapping element, and open its
Properties window.
Building Web Components

Configuring the Web Module Deployment Descriptor 47
11 Set the Servlet Name property to HW and the URL Pattern property to hello, as shown in
the following figure.

12 In the root directory of the web module, create another JSP page named StartHere.

13 In the Source Editor, edit this JSP page by adding a line containing the following text after
the HTML <body> tag.

14 Select the StartHere JSP page in the Explorer, and from its pop-up menu choose
Execute.

A web browser should open and display the text Hello World!.

<jsp:include page="hello" flush="true" />
Chapter 3Programming a Web Application

Packaging and Deploying a Web Module48
Packaging and Deploying a Web Module
Forte for Java enables you to package your web modules as WAR files. The WAR file format
helps to simplify archiving and deployment of your applications. All J2EE-compliant web
containers are capable of running web modules in this format.

Note If your web module is to include persistence-capable classes, you must develop these classes
outside the structure of your web module, package them as a JAR file, and place them in the
web module’s lib directory. After performing this task, you can package the web module.

➤ To package a web module as a WAR file:

1 In the Explorer, select the root directory of your web module.

2 Choose Tools>Package WAR File.

A file browser opens.

3 Navigate to the directory in which you want to generate the WAR (if necessary, use the
file browser’s new folder icon to create a directory).

4 In the File Name field, type a name for the WAR file (you are not required to include a
.war extension to the file name).

5 Click OK.

The WAR file is generated in your chosen directory.

Deployment
Forte for Java does not provide deployment specific tools.

➤ To deploy your application:

1 Move the web module(s) that constitute your application to the server on which they will
run.

In most cases you will want to package each web module as a WAR file before moving it.
Whether or not you should package your web modules depends on the requirements of
your server’s web container.

2 Install and reconfigure your web modules according to your server’s documentation.
Building Web Components

Chapter 4
JSP Tag Libraries
The chapter introduces you to JSP tag libraries. It provides a conceptual overview of the
structure and workings of tag libraries, explains how to create, package, and use tag libraries
in the Forte for Java development environment.

About JSP Tag Libraries50
About JSP Tag Libraries
The JSP specification defines a set of code constructs called actions that you can use for
coding dynamic behavior into your JSP pages. For example, the include action includes a
specified JSP page into the current page. J2EE web containers implement the functionality
for the standard set of actions defined in the JSP specification. (For more information on JSP
actions, see “Code Constructs in JSP Pages” on page 15.)

The JSP specification also defines a mechanism by which you can extend the standard set of
actions by creating your own custom actions. By creating custom actions, you can
modularize and encapsulate functional units of code within your application and make your
code more reusable. With proper design, you can also cleanly separate logic from formatting,
thereby eliminating, or at least reducing, the amount of Java code used in your JSP pages.

Custom actions are also commonly referred to as custom tags. However, the term custom
action generally refers to the code construct used in a JSP page, whereas the term custom tag
generally refers to the code that implements the functionality of a custom action.

A tag library is a collection of related custom tags. A tag library consists of a tag library
descriptor (TLD), which is an XML document that describes the tags in the library, and the
tag handlers that implement the tag library's functionality. A tag handler is a bean that
implements the functionality for a single tag. The TLD maps each tag to its implementing
tag handler. Figure 8 illustrates this architecture.

Figure 8 Tag Library Architecture

Forte for Java provides all the tools you need for creating your own tag libraries:

■ Templates for creating TLDs

■ A tool for generating tag handlers from a TLD

■ A tool for packaging a tag library as a JAR file

For an example of how to use these facilities, see “Developing a Custom Tag Library—
Tutorials” on page 59.

Tag Library
DescriptorJSP Page

Tag Handler
Beans

Tag Library
Building Web Components

About JSP Tag Libraries 51
In addition to supporting the development of tag libraries, Forte for Java lets you to import
third-party tag libraries and access them from your JSP pages. Forte for Java also provides
several prepackaged tag libraries. These tag libraries enable you to:

■ Access and perform operations on data sources using JDBC or Transparent Persistence.

■ Iterate through rows and fields in a JDBC ResultSet; objects and their fields in a
Vector, Collection, List, Iterator, or Enumeration; or elements (and their fields,
if the element is an object) of a Java array.

■ Conditionalize parts of a JSP page (using if/else logic).

For more information on these tag libraries, refer to online help.
Chapter 4JSP Tag Libraries

Tag Library Descriptor52
Tag Library Descriptor
A tag library descriptor (TLD) is an XML document that defines a tag library. The web
container uses a tag library’s TLD to interpret custom actions on JSP pages that reference
that tag library through a taglib directive. At the highest level, the TLD defines specifics of
the tag library as a whole, such as its version number and the version number of its intended
web container. At a lower level, it defines each tag in the library.

Forte for Java enables you to create and edit TLDs without writing XML code. You create a
TLD from one of the TLD templates provided by Forte for Java. After you have created a TLD,
you can edit it from the explorer through menu commands and through the properties and
customizer windows of the TLD and its elements.

For example, you can define a tag in a TLD by selecting the TLD in the explorer and choosing
Add Tag in the pop-up menu. You can then define an attribute of that tag by selecting the
tag and choosing Add Attribute. These actions create tag and attribute elements with default
values. After creating such elements, you can use their customizer windows to edit them. See
“Developing a Custom Tag Library—Tutorials” on page 59 for an example of creating and
editing a TLD.
Building Web Components

Tag Handlers 53
Tag Handlers
A tag handler is a bean that implements the functionality of a custom action. There is a one-
to-one correspondence between a custom action and a tag handler.

Custom Actions with Bodies
Custom actions, in principle, can contain bodies. That is, they can have beginning and
ending tags that enclose other actions, scripting elements, or plain text.

For example, this sample custom action contains a body composed of plain text:

Whether or not a particular custom action can contain a body depends on how it is defined
in the TLD. The Body Content field in the Tag Customizer lets you specify how the body is
handled (you can access this window from the pop-up menu of the custom action’s tag
handler). As shown in Figure 9, you can choose one of these values: JSP, empty, or
tagdependent.

Figure 9 Tag Customizer Window

<mt:convertToTable>

type distance / a 30,000 / g 5,500 / z 200

</mt:convertToTable>
Chapter 4JSP Tag Libraries

Tag Handlers54
The following table explains the meaning of each of these choices.

All tag handlers implement javax.servlet.jsp.tagext.Tag. Tag handlers that do not
accept or process a body need only implement this interface. Tag handlers that process a
body must also implement javax.servlet.jsp.tagext.BodyTag. This interface
provides additional methods for handling this processing.

Generated Tag Handlers
In Forte for Java, you generate tag handlers from a TLD. These generated tag handlers
implement the interface(s) appropriate for their corresponding custom actions, as defined in
the TLD (either the Tag interface or both the Tag and BodyTag interfaces). Additionally, all
of the tag handlers’ required class members (fields, methods, and properties) are generated
for you. The exact list of class members depends on your TLD, but will always include the
methods required by the interface(s) that your tag handler implements.

The specific class members generated depend on the interface(s) your tag handlers
implement, and also on the attributes and scripting variables that you have declared in your
TLD. For example, if you declare an attribute named myAttribute in your TLD, a property
named myAttribute will be generated in the tag handler.

Table 3 Meaning of Body Content Field in Tag Customizer Window

Body Content field Meaning

JSP Body content is optional. The web container evaluates JSP elements and then passes
the body to the tag handler. The tag handler processes the body and writes output to
the out object according to your programming logic.

empty Body content is not permitted.

tagdependent Body content is optional. The web container does not evaluate JSP elements but does
pass the body to the tag handler. The tag handler processes the body and writes
output to the out object according to your programming logic.
Building Web Components

Tag Handlers 55
Methods Generated
The following table lists the methods that Forte for Java creates when you generate tag
handlers. They are listed according the interface(s) the tag handler implements. Methods
used to get and set properties are not listed.

Regenerating Tag Handlers
To develop your tag library, you add programming logic to the tag handlers to provide the
functionality your custom actions require. During the course of your development, you
might have to add additional attributes or scripting variables to your TLD. If this is the case,
you will then need to regenerate your tag handlers so that the corresponding class members
are created. When you do this, some of the tag handler’s methods are regenerated and some
are left untouched.

Forte for Java regenerates the methods doStartTag, doEndTag, and doAfterBody. The
source editor does not permit you to edit these methods because your changes would be
overwritten when you regenerate tag handlers.

Instead of editing the methods that get regenerated, place your custom code in methods
that these regenerated methods call. For example, the doStartTag method calls the
otherDoStartTagOperations and theBodyShouldBeEvaluated methods. The JSP
specification indicates that you should use the doStartTag method for processing that
needs to be performed at the beginning of the tag, before the body of the tag is evaluated.

This method is also used to return a Boolean to indicate whether the body should be
evaluated. In Forte for Java, use the otherDoStartTagOperations method for the
processing that needs to be performed at the beginning of the tag, and use the
theBodyShouldBeEvaluated method to return the Boolean. Code that you place in these
two methods will not be affected by regeneration.

Table 4 Generated Methods in Tag Handlers

Interface Method

Tag doEndTag

doStartTag

otherDoEndTagOperations

otherDoStartTagOperations

shouldEvaluateRestOfPageAfterEndTag

theBodyShouldBeEvaluated

theBodyShouldBeEvaluatedAgain

BodyTag All of the methods generated for the Tag interface plus the following:

doAfterBody

writeTagBodyContent
Chapter 4JSP Tag Libraries

Tag Handlers56
The following table indicates which methods are regenerated and which methods you may
edit.

Table 5 Editable Methods in Tag Handlers

Do not edit these methods Put your custom code in these methods instead

doEndTag otherDoEndTagOperations

shouldEvaluateRestOfPageAfterEndTag

doStartTag otherDoStartTagOperations

theBodyShouldBeEvaluated

doAfterBody writeTagBodyContent

theBodyShouldBeEvaluatedAgain
Building Web Components

Accessing a Tag Library 57
Accessing a Tag Library
You use the functionality of a tag library by coding custom actions in a JSP page. For the
custom actions to access the tag library, the JSP page must declare the tag library with a
taglib directive.

For example:

The uri attribute of a taglib directive references either the tag library descriptor (TLD) or,
as in the previous example, a JAR file containing both the TLD and the tag handler beans.
You must place the taglib directive before any custom actions that use the tag library.

The previous example’s uri attribute specifies a hard-coded path relative to the root of the
web module (the leading slash denotes the web module root). However, it is also possible to
specify this attribute in a more abstract manner that permits it to be configured at a post-
development date. To do this, you must create a taglib element in the web module
deployment descriptor (the web.xml file). You then configure this taglib element so that
it maps a URI to the physical location of your TLD or tag library JAR file.

For example, the following taglib element makes the TLD located at
/WEB-INF/tlds/myTagLib.tld accessible through the URI myTags:

For an example of how Forte for Java facilitates this mapping procedure, see “Developing a
Custom Tag Library—Tutorials” on page 59.

With the previous mapping declared, you could make the tag library accessible to a JSP page
by placing the following taglib directive in the JSP page:

You must place the taglib directive somewhere before the first custom action that uses the
tag library.

If your taglib directive references a TLD file rather than a tag library JAR file, as would be
likely during tag library development, you must ensure that the TLD specifies the class
names of the tag handlers and that the tag handlers are in your classpath. Forte for Java
performs both these tasks for you automatically when you generate tag handlers.

<%@taglib uri="/WEB-INF/lib/myTagLib.jar" prefix="mt" %>

<taglib>

 <taglib-uri>myTags</taglib-uri>

 <taglib-location>/WEB-INF/tlds/myTagLib.tld</taglib-location>

</taglib>

<%@taglib uri="myTags" prefix="mt" %>
Chapter 4JSP Tag Libraries

Accessing a Tag Library58
You use the prefix attribute of a taglib directive to specify an identifier by which you
refer to the tag library from custom actions coded in the JSP page. For example the following
custom action (presumed to be in the same JSP page as the preceding taglib directive) uses
the prefix mt to refer to the tag library. The string table specifies the tag handler that will
process this custom tag.

The mapping between the tag name (in this case, table) and the tag handler bean is
specified in the TLD file. You can edit this mapping in the Tag Customizer window, which is
accessible in the explorer from the tag’s pop-up menu.

Custom actions may create objects and make them available in the JSP page as scripting
variables. Scripting variables can be accessed by other actions and scripting elements on the
JSP page.

<mt:table results="productDS"/>
Building Web Components

Developing a Custom Tag Library—Tutorials 59
Developing a Custom Tag Library— Tutorials
This section presents three short tutorials that demonstrate how to perform several
important tasks involved in developing a tag library.

■ The first tutorial walks you through creating a simple “Hello World” tag library and
accessing it from a JSP page.

■ The second tutorial shows you how to add an attribute to your tag library and regenerate
the tag handler bean.

■ The third tutorial shows you how to package your tag library as a JAR file and then access
it from a JSP page.

Creating a Tag Library— Tutorial
In this tutorial, you will create a tag library and, within it, create a single tag that outputs
the string Hello World. You will also create and execute a JSP page that accesses your
library and displays the string.

➤ To create the tag library:

1 Create a new web module. For information on how to do this, see “Creating a Web Module”
on page 36.

This operation creates a web module directory structure, as shown in the following
figure.

2 Create a tag library descriptor in your web module and name it MyTagLib.

To do this, select the web module’s root directory in the explorer, and choose New>JSP &
Servlet>TagLibraries>Blank TagLibrary from its pop-up menu. Type MyTagLib into the
name field of the wizard that opens, and click Finish.

Web module root directory mounted as a file system

Web module deployment descriptor (web.xml)
Chapter 4JSP Tag Libraries

Developing a Custom Tag Library—Tutorials60
This operation creates a tag library descriptor and opens the Tag Library Customizer.
(Close the Tag Library Customizer.) The following figure shows the resulting tag library
descriptor:

3 Add a tag element named HelloWorld to your tag library descriptor, and specify
HelloWorldTag as its handler class.

To do this, select your tag library descriptor in the explorer (the MyTagLib node), and
choose Add Tag from its pop-up menu. In the dialog box that opens, type HelloWorld
in the Tag Name field. In the Tag Class Name field, type HelloWorldTag (tabbing out of
the Tag Name field does this automatically). Click Close.

The following figure shows the newly created tag element:

The G in parentheses following the tag name indicates that changes have been made to
the tag since the last time its tag handler was generated (because we have not yet
generated the tag handler).

4 Generate a tag handler bean.

To do this, select your tag library descriptor in the explorer, and choose Generate Tag
Handlers from its pop-up menu.

Tag library descriptor

Tag element
Building Web Components

Developing a Custom Tag Library—Tutorials 61
This operation generates a package named MyTagLib in the root directory of the web
module. This package contains the tag handler bean HelloWorldTag, as shown in the
following figure.

5 Modify the otherDoStartTagOperations method of the HelloWorldTag bean by
adding this code to it and then compiling:

6 Add a taglib element to your web module deployment descriptor (web.xml).

To do this, open the web module’s WEB-INF directory, then the web node, and finally the
WebApp node. Select the Taglibs node, and from its pop-up menu choose New Taglib.

Tag handler bean

try{

 JspWriter out = pageContext.getOut();

 out.println("Hello World");

}

catch (Exception e){

 System.out.println(e);

}

Taglib element
Chapter 4JSP Tag Libraries

Developing a Custom Tag Library—Tutorials62
7 Map the location of the tag library descriptor to the URI myTags.

To do this, open the properties window for the Taglib element you created in the previous
step. Set the Taglib Location field to /MyTagLib.tld and the Taglib URI field to myTags.

This operation makes the tag library accessible to a JSP page through the URI myTags.

Note The leading slash in the Taglib Location field (/MyTagLib.tld) denotes the root of
the web module.

8 Create a new JSP page and name it TestCustomTag.

To do this, select the root directory of your web module in the explorer and choose
New>JSP & Servlet>JSP(HTML) from its pop-up menu. Type TestCustomTag in the name
field of the wizard that opens. Click Finish.

9 Add the following code to your JSP page on the line after the HTML <body> tag:

10 Restart the server and execute the JSP page.

To do this, choose Execute (restart server) from the pop-up menu of the JSP page.

The web browser should display a page that reads Hello World.

Adding an Attribute to a Tag Handler— Tutorial
The following tutorial starts where the previous tutorial left off. It shows you how to add an
attribute to your “Hello World” tag that controls the color in which its output is displayed by
your web browser. As part of the procedure, you learn how to regenerate tag handler beans.

➤ To add the attribute to your tag handler:

1 Add an attribute named color to your HelloWorld tag.

To do this, select the HelloWorld tag in the explorer and choose Add Tag Attribute from
its pop-up menu. When the Tag Attribute Customer window opens, type color into the
Name field and click Close.

<%@taglib uri="myTags" prefix="mt" %>

<mt:HelloWorld />

Tag attribute
Building Web Components

Developing a Custom Tag Library—Tutorials 63
2 Regenerate the HelloWorld tag handler.

To do this, select the MyTagLib tag library descriptor in the explorer, and choose
Generate Tag Handlers from its pop-up menu.

This operation generates a property named color on the tag handler, and three
corresponding class members: a field named color and methods named getColor and
setColor.

3 Modify the otherDoStartTagOperations method of the tag handler so that the text
it outputs is colored according to the value assigned to the color attribute.

To do this, modify the println statement to read as follows and then compile the class:

4 Modify the HelloWorld action in the TestCustomTag JSP page so that its output is
colored red.

To do this, change the action to read as follows and then compile the JSP page:

5 Restart the server and execute the JSP page.

To do this, choose Execute (restart server) from the pop-up menu of the JSP page.

Your web browser should now display Hello World in red.

Packaging a Tag Library and Accessing the JAR— Tutorial
The following tutorial shows you how to package the tag library you developed in the
previous tutorials and then access it from your JSP page.

➤ To package and access your tag library:

1 From the pop-up menu on the MyTagLib tag library descriptor, choose Create Tab Library
JAR.

This operation creates a JAR file named MyTagLib.jar in the web module’s root
directory (the file extension is not displayed by the explorer).

2 Use the Cut and Paste commands on the pop-up menu of the JAR file to move the JAR file
into the WEB-INF/lib directory.

out.println("<p>Hello World");

<mt:HelloWorld color="red"/>
Chapter 4JSP Tag Libraries

Developing a Custom Tag Library—Tutorials64
3 Modify the Taglib element in the deployment descriptor so that it maps to the
MyTagLib JAR file rather than the MyTagLib directory in which you developed the tag
library.

To do this, open the web module’s WEB-INF directory, then the web node, the WebApp
node, and finally the Taglibs node. Open the Properties window for the Taglib
element and type /WEB-INF/lib/MyTagLib.jar into the Taglib Location field, as
shown in the following figure.

Note When mapping a taglib element to a tag library that is packaged as a JAR file, do not
specify the location of the tag library descriptor. Specify only the location of the JAR file.
The location of the tag library descriptor within the JAR file is known by the web
container.

4 Restart the server and execute the JSP page.

To do this, choose Execute (restart server) from the pop-up menu of the JSP page.

As in the previous tutorial, your web browser should display Hello World in red.
Building Web Components

Index
A
action element compared with scripting

element 29

action element in JSP page 16

application instance variable in JSP page 13

application scope 19

B
BodyTag interface 54

C
classpath, adding tag handlers to 57

component
front 22
logic 23
presentation 23

configuring a web module 44

container, web 10

creating a web module 36

D
data object 24

data presentation 24

data retrieval using JSP page 24

data source 24

declaration scripting element 17

deploying a web module 48

deployment descriptor for web module
configuring 44
mapping a servlet or JSP page 44

destruction of JSP page 15

developing a web module 34

directive element in JSP page
about 15
taglib 57

Dreamweaver templates, working with 39

E
executor property, configuring 43

expression scripting element 18

F
front component 22

G
generating a tag handler 59

I
implicit objects in JSP pages 18

instantiation of JSP page 14

66 Section J
interface
BodyTag 54
Servlet 13
ServletContext 12
Tag 54

J
Javadoc, using in Forte for Java 8

Java objects, accessing from JSP pages 29

JSP page
accessing Java objects from 29
action element 16
code constructs 15
compared with servlet 22
creating 38
description 14
destruction 15
directive element 15
dynamic data retrieval, using in 24
element types 15
importing packages 15
instantiation 14
joining a session 15
lifecycle 14
mapping in deployment descriptor 44
scripting element 17
translation of 14
using as layout template 31

L
layout template 31

lifecycle of JSP page 14

logic component 23

M
methods in tag handlers 55

module, web, See web module

P
packaging a web module 48

page scope 19

prefix attribute of taglib directive 58

presentation component 23

R
regenerating tag handlers 55

request scope 19

running your application 42

S
scopes in JSP pages 18

scripting elements in JSP page
declaration 17
expression 18
scriptlet 17
types of 17

scripting variable 58

scriptlets 17

servlet
compared with JSP page 22
creating 41
description 13
mapping in deployment descriptor 44

ServletContext interface 12

session scope 19
Building Web Components

67Section T
T
Tag Customizer window 58

tag handler
adding an attribute to 62
description 50, 53
generating 54, 59
methods 55
regenerating 55
regenerating (example of) 62

Tag interface 54

taglib directive 57
prefix attribute 58

taglib element (in deployment descriptor) 57

tag library
accessing 57
accessing (example of) 59
accessing as JAR (example) 63
creating 59
described 50
packaging (example) 63

tag library descriptor (TLD) 50

template, working with Dreamweaver 39

test running your application 42

translation of JSP page 14

W
WAR file 11

web component
description 13
functional uses in applications 22
JSP page 14
servlet 13

web container 10

web module
creating 36
deploying 48
deployment descriptor 44
described 11
development flow 34
packaging 48
root 13
test running 42

web server configuration file, creating 43

window, Tag Customizer 58
Index

68 Section W
Building Web Components

	Contents
	Preface
	Organization of This Manual
	Conventions
	The Forte for Java, Internet Edition Documentation Set
	Documentation Set
	Online Help
	Javadoc

	1 J2EE Web Application Concepts
	Conceptual Background
	Web Containers
	Web Modules
	Structure
	Runtime Representation

	Web Components
	Servlets
	JSP Pages
	JSP Page Life Cycle
	Code Constructs in JSP Pages
	Scopes and Implicit Objects

	Supporting Classes, Beans, and other Files

	2 Design and Programming Issues
	Choosing Between Servlets and JSP Pages
	Web Components in J2EE Applications

	Designing Data Source Access
	Programming JSP Pages
	Code Reuse Through Forwards and Includes
	Accessing Java Objects
	Using JSP Pages as Layout Templates

	3 Programming a Web Application
	Web Module Development Work Flow
	Creating a Web Module
	Web Modules in Forte for Java

	Creating JSP Pages
	Working With Dreamweaver Templates
	Creating Servlets, Classes, and Beans
	Test Running an Application
	Test Running a Single Web Module
	Test Running Multiple Web Modules

	Configuring the Web Module Deployment Descriptor
	Mapping Servlets and JSP Pages

	Packaging and Deploying a Web Module
	Deployment

	4 JSP Tag Libraries
	About JSP Tag Libraries
	Tag Library Descriptor
	Tag Handlers
	Custom Actions with Bodies
	Generated Tag Handlers
	Methods Generated
	Regenerating Tag Handlers

	Accessing a Tag Library
	Developing a Custom Tag Library—�Tutorials
	Creating a Tag Library—�Tutorial
	Adding an Attribute to a Tag Handler—�Tutorial
	Packaging a Tag Library and Accessing the JAR—�Tutorial

	Index

