NAME

cgbtrf - compute an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges


SYNOPSIS

  SUBROUTINE CGBTRF( M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)
  COMPLEX A(LDA,*)
  INTEGER M, N, NSUB, NSUPER, LDA, INFO
  INTEGER IPIVOT(*)
  SUBROUTINE CGBTRF_64( M, N, NSUB, NSUPER, A, LDA, IPIVOT, INFO)
  COMPLEX A(LDA,*)
  INTEGER*8 M, N, NSUB, NSUPER, LDA, INFO
  INTEGER*8 IPIVOT(*)

F95 INTERFACE

  SUBROUTINE GBTRF( [M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])
  COMPLEX, DIMENSION(:,:) :: A
  INTEGER :: M, N, NSUB, NSUPER, LDA, INFO
  INTEGER, DIMENSION(:) :: IPIVOT
  SUBROUTINE GBTRF_64( [M], [N], NSUB, NSUPER, A, [LDA], IPIVOT, [INFO])
  COMPLEX, DIMENSION(:,:) :: A
  INTEGER(8) :: M, N, NSUB, NSUPER, LDA, INFO
  INTEGER(8), DIMENSION(:) :: IPIVOT

C INTERFACE

#include <sunperf.h>

void cgbtrf(int m, int n, int nsub, int nsuper, complex *a, int lda, int *ipivot, int *info);

void cgbtrf_64(long m, long n, long nsub, long nsuper, complex *a, long lda, long *ipivot, long *info);


PURPOSE

cgbtrf computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges.

This is the blocked version of the algorithm, calling Level 3 BLAS.


ARGUMENTS


FURTHER DETAILS

The band storage scheme is illustrated by the following example, when M = N = 6, NSUB = 2, NSUPER = 1:

On entry: On exit:

    *    *    *    +    +    +       *    *    *   u14  u25  u36
    *    *    +    +    +    +       *    *   u13  u24  u35  u46
    *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
   a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
   a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
   a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *

Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of U because of fill-in resulting from the row interchanges.