NAME

cggesx - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the complex Schur form (S,T),


SYNOPSIS

  SUBROUTINE CGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, 
 *      B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE, 
 *      RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
  COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
  INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER IWORK(*)
  LOGICAL SELCTG
  LOGICAL BWORK(*)
  REAL RCONDE(*), RCONDV(*), RWORK(*)
  SUBROUTINE CGGESX_64( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, 
 *      LDA, B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, RCONDE, 
 *      RCONDV, WORK, LWORK, RWORK, IWORK, LIWORK, BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
  COMPLEX A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
  INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER*8 IWORK(*)
  LOGICAL*8 SELCTG
  LOGICAL*8 BWORK(*)
  REAL RCONDE(*), RCONDV(*), RWORK(*)

F95 INTERFACE

  SUBROUTINE GGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, [N], A, [LDA], 
 *       B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], RCONDE, 
 *       RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], [BWORK], 
 *       [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
  COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
  COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
  INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER, DIMENSION(:) :: IWORK
  LOGICAL :: SELCTG
  LOGICAL, DIMENSION(:) :: BWORK
  REAL, DIMENSION(:) :: RCONDE, RCONDV, RWORK
  SUBROUTINE GGESX_64( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, [N], A, 
 *       [LDA], B, [LDB], SDIM, ALPHA, BETA, VSL, [LDVSL], VSR, [LDVSR], 
 *       RCONDE, RCONDV, [WORK], [LWORK], [RWORK], [IWORK], [LIWORK], 
 *       [BWORK], [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
  COMPLEX, DIMENSION(:) :: ALPHA, BETA, WORK
  COMPLEX, DIMENSION(:,:) :: A, B, VSL, VSR
  INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER(8), DIMENSION(:) :: IWORK
  LOGICAL(8) :: SELCTG
  LOGICAL(8), DIMENSION(:) :: BWORK
  REAL, DIMENSION(:) :: RCONDE, RCONDV, RWORK

C INTERFACE

#include <sunperf.h>

void cggesx(char jobvsl, char jobvsr, char sort, logical(*selctg)(complex,complex), char sense, int n, complex *a, int lda, complex *b, int ldb, int *sdim, complex *alpha, complex *beta, complex *vsl, int ldvsl, complex *vsr, int ldvsr, float *rconde, float *rcondv, int *info);

void cggesx_64(char jobvsl, char jobvsr, char sort, logical(*selctg)(complex,complex), char sense, long n, complex *a, long lda, complex *b, long ldb, long *sdim, complex *alpha, complex *beta, complex *vsl, long ldvsl, complex *vsr, long ldvsr, float *rconde, float *rcondv, long *info);


PURPOSE

cggesx computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the complex Schur form (S,T), and, optionally, the left and/or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H )

where (VSR)**H is the conjugate-transpose of VSR.

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper triangular matrix S and the upper triangular matrix T; computes a reciprocal condition number for the average of the selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (RCONDV). The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0 or for both being zero.

A pair of matrices (S,T) is in generalized complex Schur form if T is upper triangular with non-negative diagonal and S is upper triangular.


ARGUMENTS