NAME

chpgvd - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x


SYNOPSIS

  SUBROUTINE CHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, 
 *      LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
  CHARACTER * 1 JOBZ, UPLO
  COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
  INTEGER ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
  INTEGER IWORK(*)
  REAL W(*), RWORK(*)
  SUBROUTINE CHPGVD_64( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, 
 *      LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
  CHARACTER * 1 JOBZ, UPLO
  COMPLEX AP(*), BP(*), Z(LDZ,*), WORK(*)
  INTEGER*8 ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
  INTEGER*8 IWORK(*)
  REAL W(*), RWORK(*)

F95 INTERFACE

  SUBROUTINE HPGVD( ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], [WORK], 
 *       [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])
  CHARACTER(LEN=1) :: JOBZ, UPLO
  COMPLEX, DIMENSION(:) :: AP, BP, WORK
  COMPLEX, DIMENSION(:,:) :: Z
  INTEGER :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
  INTEGER, DIMENSION(:) :: IWORK
  REAL, DIMENSION(:) :: W, RWORK
  SUBROUTINE HPGVD_64( ITYPE, JOBZ, UPLO, [N], AP, BP, W, Z, [LDZ], 
 *       [WORK], [LWORK], [RWORK], [LRWORK], [IWORK], [LIWORK], [INFO])
  CHARACTER(LEN=1) :: JOBZ, UPLO
  COMPLEX, DIMENSION(:) :: AP, BP, WORK
  COMPLEX, DIMENSION(:,:) :: Z
  INTEGER(8) :: ITYPE, N, LDZ, LWORK, LRWORK, LIWORK, INFO
  INTEGER(8), DIMENSION(:) :: IWORK
  REAL, DIMENSION(:) :: W, RWORK

C INTERFACE

#include <sunperf.h>

void chpgvd(int itype, char jobz, char uplo, int n, complex *ap, complex *bp, float *w, complex *z, int ldz, int *info);

void chpgvd_64(long itype, char jobz, char uplo, long n, complex *ap, complex *bp, float *w, complex *z, long ldz, long *info);


PURPOSE

chpgvd computes all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.


ARGUMENTS


FURTHER DETAILS

Based on contributions by

   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA