NAME

jadmm, sjadmm, djadmm, cjadmm, zjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)


SYNOPSIS

  SUBROUTINE SJADMM( TRANSA, M, N, K, ALPHA, DESCRA,
 *           VAL, INDX, PNTR, MAXNZ, IPERM,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, M, N, K, DESCRA(5), MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
  REAL*4     ALPHA, BETA
  REAL*4     VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE DJADMM( TRANSA, M, N, K, ALPHA, DESCRA,
 *           VAL, INDX, PNTR, MAXNZ, IPERM,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, M, N, K, DESCRA(5), MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
  REAL*8     ALPHA, BETA
  REAL*8     VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE CJADMM( TRANSA, M, N, K, ALPHA, DESCRA,
 *           VAL, INDX, PNTR, MAXNZ, IPERM,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, M, N, K, DESCRA(5), MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
  COMPLEX*8  ALPHA, BETA
  COMPLEX*8  VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE ZJADMM( TRANSA, M, N, K, ALPHA, DESCRA,
 *           VAL, INDX, PNTR, MAXNZ, IPERM,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, M, N, K, DESCRA(5), MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(NNZ), PNTR(MAXNZ+1), IPERM(M)
  COMPLEX*16 ALPHA, BETA
  COMPLEX*16 VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)


DESCRIPTION

          C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are dense matrices,
 A is a matrix represented in jagged-diagonal format and    
 op( A )  is one  of
 op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                    ( ' indicates matrix transpose)


ARGUMENTS

 TRANSA        Indicates how to operate with the sparse matrix
                 0 : operate with matrix
                 1 : operate with transpose matrix
                 2 : operate with the conjugate transpose of matrix.
                     2 is equivalent to 1 if matrix is real.
 M             Number of rows in matrix A
 N             Number of columns in matrix C
 K             Number of columns in matrix A
 ALPHA         Scalar parameter
 DESCRA()      Descriptor argument.  Five element integer array
               DESCRA(1) matrix structure
                 0 : general
                 1 : symmetric (A=A')
                 2 : Hermitian (A= CONJG(A'))
                 3 : Triangular
                 4 : Skew(Anti)-Symmetric (A=-A')
                 5 : Diagonal
                 6 : Skew-Hermitian (A= -CONJG(A'))
               DESCRA(2) upper/lower triangular indicator 
                 1 : lower
                 2 : upper
               DESCRA(3) main diagonal type
                 0 : non-unit
                 1 : unit
               DESCRA(4) Array base  (NOT IMPLEMENTED)
                 0 : C/C++ compatible
                 1 : Fortran compatible
               DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                 0 : unknown
                 1 : no repeated indices
 VAL()         array of length NNZ consisting of entries of A.
               VAL can be viewed as a column major ordering of a    
               row permutation of the Ellpack representation of A, 
               where the Ellpack representation is permuted so that
               the rows are non-increasing in the number of nonzero
               entries.  Values added for padding in Ellpack are
               not included in the Jagged-Diagonal format.
 INDX()        array of length NNZ consisting of the column indices
               of the corresponding entries in VAL.
 PNTR()        array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1
               points to the location in VAL of the first element
               in the row-permuted Ellpack represenation of A.
 MAXNZ         max number of nonzeros elements per row.
 IPERM()       integer array of length M such that I = IPERM(I'), 
               where row I in the original Ellpack representation
               corresponds to row I' in the permuted representation. 
               If IPERM(1) = 0, it is assumed by convention that
               IPERM(I) = I. IPERM is used to determine the order 
               in which rows of C are updated.
 B()           rectangular array with first dimension LDB.
 LDB           leading dimension of B
 BETA          Scalar parameter
 C()           rectangular array with first dimension LDC.
 LDC           leading dimension of C
 WORK()        scratch array of length LWORK. WORK is not
               referenced in the current version.

 LWORK         length of WORK array. LWORK is not referenced
               in the current version.


SEE ALSO

NIST FORTRAN Sparse Blas User's Guide available at:

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/