jadmm, sjadmm, djadmm, cjadmm, zjadmm - Jagged diagonal matrix-matrix multiply (modified Ellpack)
SUBROUTINE SJADMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, INDX, PNTR, MAXNZ, IPERM, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, M, N, K, DESCRA(5), MAXNZ, * LDB, LDC, LWORK INTEGER*4 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M) REAL*4 ALPHA, BETA REAL*4 VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE DJADMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, INDX, PNTR, MAXNZ, IPERM, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, M, N, K, DESCRA(5), MAXNZ, * LDB, LDC, LWORK INTEGER*4 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M) REAL*8 ALPHA, BETA REAL*8 VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE CJADMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, INDX, PNTR, MAXNZ, IPERM, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, M, N, K, DESCRA(5), MAXNZ, * LDB, LDC, LWORK INTEGER*4 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M) COMPLEX*8 ALPHA, BETA COMPLEX*8 VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE ZJADMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, INDX, PNTR, MAXNZ, IPERM, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, M, N, K, DESCRA(5), MAXNZ, * LDB, LDC, LWORK INTEGER*4 INDX(NNZ), PNTR(MAXNZ+1), IPERM(M) COMPLEX*16 ALPHA, BETA COMPLEX*16 VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
C <- alpha op(A) B + beta C
where ALPHA and BETA are scalar, C and B are dense matrices, A is a matrix represented in jagged-diagonal format and op( A ) is one of
op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). ( ' indicates matrix transpose)
TRANSA Indicates how to operate with the sparse matrix 0 : operate with matrix 1 : operate with transpose matrix 2 : operate with the conjugate transpose of matrix. 2 is equivalent to 1 if matrix is real.
M Number of rows in matrix A
N Number of columns in matrix C
K Number of columns in matrix A
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array DESCRA(1) matrix structure 0 : general 1 : symmetric (A=A') 2 : Hermitian (A= CONJG(A')) 3 : Triangular 4 : Skew(Anti)-Symmetric (A=-A') 5 : Diagonal 6 : Skew-Hermitian (A= -CONJG(A')) DESCRA(2) upper/lower triangular indicator 1 : lower 2 : upper DESCRA(3) main diagonal type 0 : non-unit 1 : unit DESCRA(4) Array base (NOT IMPLEMENTED) 0 : C/C++ compatible 1 : Fortran compatible DESCRA(5) repeated indices? (NOT IMPLEMENTED) 0 : unknown 1 : no repeated indices
VAL() array of length NNZ consisting of entries of A. VAL can be viewed as a column major ordering of a row permutation of the Ellpack representation of A, where the Ellpack representation is permuted so that the rows are non-increasing in the number of nonzero entries. Values added for padding in Ellpack are not included in the Jagged-Diagonal format.
INDX() array of length NNZ consisting of the column indices of the corresponding entries in VAL.
PNTR() array of length MAXNZ+1, where PNTR(I)-PNTR(1)+1 points to the location in VAL of the first element in the row-permuted Ellpack represenation of A.
MAXNZ max number of nonzeros elements per row.
IPERM() integer array of length M such that I = IPERM(I'), where row I in the original Ellpack representation corresponds to row I' in the permuted representation. If IPERM(1) = 0, it is assumed by convention that IPERM(I) = I. IPERM is used to determine the order in which rows of C are updated.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. WORK is not referenced in the current version.
LWORK length of WORK array. LWORK is not referenced in the current version.
NIST FORTRAN Sparse Blas User's Guide available at: