belsm, sbelsm, dbelsm, cbelsm, zbelsm - block Ellpack format triangular solve
SUBROUTINE SBELSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) REAL*4 ALPHA, BETA REAL*4 DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), * WORK(LWORK)
SUBROUTINE DBELSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) REAL*8 ALPHA, BETA REAL*8 DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), * WORK(LWORK)
SUBROUTINE CBELSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) COMPLEX*8 ALPHA, BETA COMPLEX*8 DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), * WORK(LWORK)
SUBROUTINE ZBELSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) COMPLEX*16 ALPHA, BETA COMPLEX*16 DV(MB*LB*LB), VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), * WORK(LWORK)
C <- ALPHA op(A) B + BETA C C <- ALPHA D op(A) B + BETA C C <- ALPHA op(A) D B + BETA C
where ALPHA and BETA are scalar, C and B are m by n dense matrices, D is a block diagonal matrix, A is a unit, or non-unit, upper or lower triangular matrix represented in block Ellpack format and op( A ) is one of
op( A ) = inv(A) or op( A ) = inv(A') or op( A ) =inv(conjg( A' )) (inv denotes matrix inverse, ' indicates matrix transpose)
All blocks of A on the main diagonal MUST be triangular matrices.
TRANSA Indicates how to operate with the sparse matrix 0 : operate with matrix 1 : operate with transpose matrix 2 : operate with the conjugate transpose of matrix. 2 is equivalent to 1 if matrix is real.
MB Number of block rows in matrix A
N Number of columns in matrix C
UNITD Type of scaling: 1 : Identity matrix (argument DV[] is ignored) 2 : Scale on left (row scaling) 3 : Scale on right (column scaling)
DV() Array of the length MB*LB*LB consisting of the block entries of block diagonal matrix D where each block is stored in standard column-major form.
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array DESCRA(1) matrix structure 0 : general 1 : symmetric (A=A') 2 : Hermitian (A= CONJG(A')) 3 : Triangular 4 : Skew(Anti)-Symmetric (A=-A') 5 : Diagonal 6 : Skew-Hermitian (A= -CONJG(A')) Note: For the routine, DESCRA(1)=3 is only supported.
DESCRA(2) upper/lower triangular indicator 1 : lower 2 : upper DESCRA(3) main diagonal type 0 : non-identity blocks on the main diagonal 1 : identity diagonal block DESCRA(4) Array base (NOT IMPLEMENTED) 0 : C/C++ compatible 1 : Fortran compatible DESCRA(5) repeated indices? (NOT IMPLEMENTED) 0 : unknown 1 : no repeated indices
VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing matrix entries, stored column-major within each dense block.
BINDX() two-dimensional integer BLDA-by-MAXBNZ array such BINDX(i,:) consists of the block column indices of the nonzero blocks in block row i, padded by the integer value i if the number of nonzero blocks is less than MAXBNZ. The block column indices MUST be sorted in increasing order for each block row.
BLDA leading dimension of BINDX(:,:).
MAXBNZ max number of nonzeros blocks per row.
LB row and column dimension of the dense blocks composing A.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. On exit, if LWORK= -1, WORK(1) returns the minimum size of LWORK.
LWORK length of WORK array. LWORK should be at least MB*LB.
For good performance, LWORK should generally be larger. For optimum performance on multiple processors, LWORK >=MB*LB*N_CPUS where N_CPUS is the maximum number of processors available to the program.
If LWORK=0, the routine is to allocate workspace needed.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimum size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
NIST FORTRAN Sparse Blas User's Guide available at:
http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.