NAME

dgeevx - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors


SYNOPSIS

  SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, 
 *      VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, WORK, 
 *      LDWORK, IWORK2, INFO)
  CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
  INTEGER N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
  INTEGER IWORK2(*)
  DOUBLE PRECISION ABNRM
  DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), SCALE(*), RCONE(*), RCONV(*), WORK(*)
  SUBROUTINE DGEEVX_64( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, 
 *      WI, VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONE, RCONV, 
 *      WORK, LDWORK, IWORK2, INFO)
  CHARACTER * 1 BALANC, JOBVL, JOBVR, SENSE
  INTEGER*8 N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
  INTEGER*8 IWORK2(*)
  DOUBLE PRECISION ABNRM
  DOUBLE PRECISION A(LDA,*), WR(*), WI(*), VL(LDVL,*), VR(LDVR,*), SCALE(*), RCONE(*), RCONV(*), WORK(*)

F95 INTERFACE

  SUBROUTINE GEEVX( BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR, 
 *       WI, VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV, 
 *       WORK, [LDWORK], [IWORK2], [INFO])
  CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
  INTEGER :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
  INTEGER, DIMENSION(:) :: IWORK2
  REAL(8) :: ABNRM
  REAL(8), DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
  REAL(8), DIMENSION(:,:) :: A, VL, VR
  SUBROUTINE GEEVX_64( BALANC, JOBVL, JOBVR, SENSE, [N], A, [LDA], WR, 
 *       WI, VL, [LDVL], VR, [LDVR], ILO, IHI, SCALE, ABNRM, RCONE, RCONV, 
 *       WORK, [LDWORK], [IWORK2], [INFO])
  CHARACTER(LEN=1) :: BALANC, JOBVL, JOBVR, SENSE
  INTEGER(8) :: N, LDA, LDVL, LDVR, ILO, IHI, LDWORK, INFO
  INTEGER(8), DIMENSION(:) :: IWORK2
  REAL(8) :: ABNRM
  REAL(8), DIMENSION(:) :: WR, WI, SCALE, RCONE, RCONV, WORK
  REAL(8), DIMENSION(:,:) :: A, VL, VR

C INTERFACE

#include <sunperf.h>

void dgeevx(char balanc, char jobvl, char jobvr, char sense, int n, double *a, int lda, double *wr, double *wi, double *vl, int ldvl, double *vr, int ldvr, int *ilo, int *ihi, double *scale, double *abnrm, double *rcone, double *rconv, double *work, int ldwork, int *info);

void dgeevx_64(char balanc, char jobvl, char jobvr, char sense, long n, double *a, long lda, double *wr, double *wi, double *vl, long ldvl, double *vr, long ldvr, long *ilo, long *ihi, double *scale, double *abnrm, double *rcone, double *rconv, double *work, long ldwork, long *info);


PURPOSE

dgeevx computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ILO, IHI, SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues (RCONDE), and reciprocal condition numbers for the right

eigenvectors (RCONDV).

The right eigenvector v(j) of A satisfies

                 A * v(j) = lambda(j) * v(j)

where lambda(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

              u(j)**H * A = lambda(j) * u(j)**H

where u(j)**H denotes the conjugate transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation D * A * D**(-1), where D is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers (in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see section 4.10.2 of the LAPACK Users' Guide.


ARGUMENTS