NAME

dgges - compute for a pair of N-by-N real nonsymmetric matrices (A,B),


SYNOPSIS

  SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, LDB, 
 *      SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, 
 *      BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT
  INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
  LOGICAL DELCTG
  LOGICAL BWORK(*)
  DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)
  SUBROUTINE DGGES_64( JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, 
 *      LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, 
 *      LWORK, BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT
  INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
  LOGICAL*8 DELCTG
  LOGICAL*8 BWORK(*)
  DOUBLE PRECISION A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), WORK(*)

F95 INTERFACE

  SUBROUTINE GGES( JOBVSL, JOBVSR, SORT, DELCTG, [N], A, [LDA], B, 
 *       [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], 
 *       [WORK], [LWORK], [BWORK], [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
  INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
  LOGICAL :: DELCTG
  LOGICAL, DIMENSION(:) :: BWORK
  REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
  REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR
  SUBROUTINE GGES_64( JOBVSL, JOBVSR, SORT, DELCTG, [N], A, [LDA], B, 
 *       [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], 
 *       [WORK], [LWORK], [BWORK], [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
  INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
  LOGICAL(8) :: DELCTG
  LOGICAL(8), DIMENSION(:) :: BWORK
  REAL(8), DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
  REAL(8), DIMENSION(:,:) :: A, B, VSL, VSR

C INTERFACE

#include <sunperf.h>

void dgges(char jobvsl, char jobvsr, char sort, logical(*delctg)(double,double,double), int n, double *a, int lda, double *b, int ldb, int *sdim, double *alphar, double *alphai, double *beta, double *vsl, int ldvsl, double *vsr, int ldvsr, int *info);

void dgges_64(char jobvsl, char jobvsr, char sort, logical(*delctg)(double,double,double), long n, double *a, long lda, double *b, long ldb, long *sdim, double *alphar, double *alphai, double *beta, double *vsl, long ldvsl, double *vsr, long ldvsr, long *info);


PURPOSE

dgges computes for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized real Schur form (S,T), optionally, the left and/or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization

         (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T.The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces).

(If only the generalized eigenvalues are needed, use the driver SGGEV instead, which is faster.)

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0 or both being zero.

A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of S will be ``standardized'' by making the corresponding elements of T have the form:

        [  a  0  ]
        [  0  b  ]

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of generalized eigenvalues.


ARGUMENTS