NAME

dormbr - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'


SYNOPSIS

  SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 
 *      WORK, LWORK, INFO)
  CHARACTER * 1 VECT, SIDE, TRANS
  INTEGER M, N, K, LDA, LDC, LWORK, INFO
  DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)
  SUBROUTINE DORMBR_64( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, 
 *      LDC, WORK, LWORK, INFO)
  CHARACTER * 1 VECT, SIDE, TRANS
  INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
  DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)

F95 INTERFACE

  SUBROUTINE ORMBR( VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], TAU, 
 *       C, [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: VECT, SIDE, TRANS
  INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
  REAL(8), DIMENSION(:) :: TAU, WORK
  REAL(8), DIMENSION(:,:) :: A, C
  SUBROUTINE ORMBR_64( VECT, SIDE, [TRANS], [M], [N], K, A, [LDA], 
 *       TAU, C, [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: VECT, SIDE, TRANS
  INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
  REAL(8), DIMENSION(:) :: TAU, WORK
  REAL(8), DIMENSION(:,:) :: A, C

C INTERFACE

#include <sunperf.h>

void dormbr(char vect, char side, char trans, int m, int n, int k, double *a, int lda, double *tau, double *c, int ldc, int *info);

void dormbr_64(char vect, char side, char trans, long m, long n, long k, double *a, long lda, double *tau, double *c, long ldc, long *info);


PURPOSE

dormbr VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T

If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C with

                SIDE = 'L'     SIDE = 'R'

TRANS = 'N': P * C C * P

TRANS = 'T': P**T * C C * P**T

Here Q and P**T are the orthogonal matrices determined by SGEBRD when reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T are defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the orthogonal matrix Q or P**T that is applied.

If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k);

if nq < k, Q = H(1) H(2) . . . H(nq-1).

If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k);

if k >= nq, P = G(1) G(2) . . . G(nq-1).


ARGUMENTS