NAME

dpbtf2 - compute the Cholesky factorization of a real symmetric positive definite band matrix A


SYNOPSIS

  SUBROUTINE DPBTF2( UPLO, N, KD, AB, LDAB, INFO)
  CHARACTER * 1 UPLO
  INTEGER N, KD, LDAB, INFO
  DOUBLE PRECISION AB(LDAB,*)
  SUBROUTINE DPBTF2_64( UPLO, N, KD, AB, LDAB, INFO)
  CHARACTER * 1 UPLO
  INTEGER*8 N, KD, LDAB, INFO
  DOUBLE PRECISION AB(LDAB,*)

F95 INTERFACE

  SUBROUTINE PBTF2( UPLO, [N], KD, AB, [LDAB], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER :: N, KD, LDAB, INFO
  REAL(8), DIMENSION(:,:) :: AB
  SUBROUTINE PBTF2_64( UPLO, [N], KD, AB, [LDAB], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER(8) :: N, KD, LDAB, INFO
  REAL(8), DIMENSION(:,:) :: AB

C INTERFACE

#include <sunperf.h>

void dpbtf2(char uplo, int n, int kd, double *ab, int ldab, int *info);

void dpbtf2_64(char uplo, long n, long kd, double *ab, long ldab, long *info);


PURPOSE

dpbtf2 computes the Cholesky factorization of a real symmetric positive definite band matrix A.

The factorization has the form

   A = U' * U ,  if UPLO = 'U', or
   A = L  * L',  if UPLO = 'L',

where U is an upper triangular matrix, U' is the transpose of U, and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.


ARGUMENTS


FURTHER DETAILS

The band storage scheme is illustrated by the following example, when N = 6, KD = 2, and UPLO = 'U':

On entry: On exit:

    *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
    *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
   a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

Similarly, if UPLO = 'L' the format of A is as follows:

On entry: On exit:

   a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
   a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
   a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

Array elements marked * are not used by the routine.