NAME

dpoequ - compute row and column scalings intended to equilibrate a symmetric positive definite matrix A and reduce its condition number (with respect to the two-norm)


SYNOPSIS

  SUBROUTINE DPOEQU( N, A, LDA, SCALE, SCOND, AMAX, INFO)
  INTEGER N, LDA, INFO
  DOUBLE PRECISION SCOND, AMAX
  DOUBLE PRECISION A(LDA,*), SCALE(*)
  SUBROUTINE DPOEQU_64( N, A, LDA, SCALE, SCOND, AMAX, INFO)
  INTEGER*8 N, LDA, INFO
  DOUBLE PRECISION SCOND, AMAX
  DOUBLE PRECISION A(LDA,*), SCALE(*)

F95 INTERFACE

  SUBROUTINE POEQU( [N], A, [LDA], SCALE, SCOND, AMAX, [INFO])
  INTEGER :: N, LDA, INFO
  REAL(8) :: SCOND, AMAX
  REAL(8), DIMENSION(:) :: SCALE
  REAL(8), DIMENSION(:,:) :: A
  SUBROUTINE POEQU_64( [N], A, [LDA], SCALE, SCOND, AMAX, [INFO])
  INTEGER(8) :: N, LDA, INFO
  REAL(8) :: SCOND, AMAX
  REAL(8), DIMENSION(:) :: SCALE
  REAL(8), DIMENSION(:,:) :: A

C INTERFACE

#include <sunperf.h>

void dpoequ(int n, double *a, int lda, double *scale, double *scond, double *amax, int *info);

void dpoequ_64(long n, double *a, long lda, double *scale, double *scond, double *amax, long *info);


PURPOSE

dpoequ computes row and column scalings intended to equilibrate a symmetric positive definite matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.


ARGUMENTS