NAME

dpotf2 - compute the Cholesky factorization of a real symmetric positive definite matrix A


SYNOPSIS

  SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO)
  CHARACTER * 1 UPLO
  INTEGER N, LDA, INFO
  DOUBLE PRECISION A(LDA,*)
  SUBROUTINE DPOTF2_64( UPLO, N, A, LDA, INFO)
  CHARACTER * 1 UPLO
  INTEGER*8 N, LDA, INFO
  DOUBLE PRECISION A(LDA,*)

F95 INTERFACE

  SUBROUTINE POTF2( UPLO, [N], A, [LDA], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER :: N, LDA, INFO
  REAL(8), DIMENSION(:,:) :: A
  SUBROUTINE POTF2_64( UPLO, [N], A, [LDA], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER(8) :: N, LDA, INFO
  REAL(8), DIMENSION(:,:) :: A

C INTERFACE

#include <sunperf.h>

void dpotf2(char uplo, int n, double *a, int lda, int *info);

void dpotf2_64(char uplo, long n, double *a, long lda, long *info);


PURPOSE

dpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form

   A = U' * U ,  if UPLO = 'U', or
   A = L  * L',  if UPLO = 'L',

where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.


ARGUMENTS