NAME

dpotrf - compute the Cholesky factorization of a real symmetric positive definite matrix A


SYNOPSIS

  SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO)
  CHARACTER * 1 UPLO
  INTEGER N, LDA, INFO
  DOUBLE PRECISION A(LDA,*)
  SUBROUTINE DPOTRF_64( UPLO, N, A, LDA, INFO)
  CHARACTER * 1 UPLO
  INTEGER*8 N, LDA, INFO
  DOUBLE PRECISION A(LDA,*)

F95 INTERFACE

  SUBROUTINE POTRF( UPLO, [N], A, [LDA], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER :: N, LDA, INFO
  REAL(8), DIMENSION(:,:) :: A
  SUBROUTINE POTRF_64( UPLO, [N], A, [LDA], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER(8) :: N, LDA, INFO
  REAL(8), DIMENSION(:,:) :: A

C INTERFACE

#include <sunperf.h>

void dpotrf(char uplo, int n, double *a, int lda, int *info);

void dpotrf_64(char uplo, long n, double *a, long lda, long *info);


PURPOSE

dpotrf computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form

   A = U**T * U,  if UPLO = 'U', or
   A = L  * L**T,  if UPLO = 'L',

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.


ARGUMENTS