NAME

dpptrf - compute the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format


SYNOPSIS

  SUBROUTINE DPPTRF( UPLO, N, A, INFO)
  CHARACTER * 1 UPLO
  INTEGER N, INFO
  DOUBLE PRECISION A(*)
  SUBROUTINE DPPTRF_64( UPLO, N, A, INFO)
  CHARACTER * 1 UPLO
  INTEGER*8 N, INFO
  DOUBLE PRECISION A(*)

F95 INTERFACE

  SUBROUTINE PPTRF( UPLO, N, A, [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER :: N, INFO
  REAL(8), DIMENSION(:) :: A
  SUBROUTINE PPTRF_64( UPLO, N, A, [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER(8) :: N, INFO
  REAL(8), DIMENSION(:) :: A

C INTERFACE

#include <sunperf.h>

void dpptrf(char uplo, int n, double *a, int *info);

void dpptrf_64(char uplo, long n, double *a, long *info);


PURPOSE

dpptrf computes the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format.

The factorization has the form

   A = U**T * U,  if UPLO = 'U', or
   A = L  * L**T,  if UPLO = 'L',

where U is an upper triangular matrix and L is lower triangular.


ARGUMENTS


FURTHER DETAILS

The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U':

Two-dimensional storage of the symmetric matrix A:

   a11 a12 a13 a14
       a22 a23 a24
           a33 a34     (aij  = aji)
               a44

Packed storage of the upper triangle of A:

A = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]