NAME

dpttrs - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF


SYNOPSIS

  SUBROUTINE DPTTRS( N, NRHS, DIAG, OFFD, B, LDB, INFO)
  INTEGER N, NRHS, LDB, INFO
  DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)
  SUBROUTINE DPTTRS_64( N, NRHS, DIAG, OFFD, B, LDB, INFO)
  INTEGER*8 N, NRHS, LDB, INFO
  DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)

F95 INTERFACE

  SUBROUTINE PTTRS( [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])
  INTEGER :: N, NRHS, LDB, INFO
  REAL(8), DIMENSION(:) :: DIAG, OFFD
  REAL(8), DIMENSION(:,:) :: B
  SUBROUTINE PTTRS_64( [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO])
  INTEGER(8) :: N, NRHS, LDB, INFO
  REAL(8), DIMENSION(:) :: DIAG, OFFD
  REAL(8), DIMENSION(:,:) :: B

C INTERFACE

#include <sunperf.h>

void dpttrs(int n, int nrhs, double *diag, double *offd, double *b, int ldb, int *info);

void dpttrs_64(long n, long nrhs, double *diag, double *offd, double *b, long ldb, long *info);


PURPOSE

dpttrs solves a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF. D is a diagonal matrix specified in the vector D, L is a unit bidiagonal matrix whose subdiagonal is specified in the vector E, and X and B are N by NRHS matrices.


ARGUMENTS