dpttrs - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF
SUBROUTINE DPTTRS( N, NRHS, DIAG, OFFD, B, LDB, INFO) INTEGER N, NRHS, LDB, INFO DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)
SUBROUTINE DPTTRS_64( N, NRHS, DIAG, OFFD, B, LDB, INFO) INTEGER*8 N, NRHS, LDB, INFO DOUBLE PRECISION DIAG(*), OFFD(*), B(LDB,*)
SUBROUTINE PTTRS( [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO]) INTEGER :: N, NRHS, LDB, INFO REAL(8), DIMENSION(:) :: DIAG, OFFD REAL(8), DIMENSION(:,:) :: B
SUBROUTINE PTTRS_64( [N], [NRHS], DIAG, OFFD, B, [LDB], [INFO]) INTEGER(8) :: N, NRHS, LDB, INFO REAL(8), DIMENSION(:) :: DIAG, OFFD REAL(8), DIMENSION(:,:) :: B
#include <sunperf.h>
void dpttrs(int n, int nrhs, double *diag, double *offd, double *b, int ldb, int *info);
void dpttrs_64(long n, long nrhs, double *diag, double *offd, double *b, long ldb, long *info);
dpttrs solves a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF. D is a diagonal matrix specified in the vector D, L is a unit bidiagonal matrix whose subdiagonal is specified in the vector E, and X and B are N by NRHS matrices.
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value