dptts2 - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF
SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB) INTEGER N, NRHS, LDB DOUBLE PRECISION D(*), E(*), B(LDB,*)
SUBROUTINE DPTTS2_64( N, NRHS, D, E, B, LDB) INTEGER*8 N, NRHS, LDB DOUBLE PRECISION D(*), E(*), B(LDB,*)
SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB) INTEGER :: N, NRHS, LDB REAL(8), DIMENSION(:) :: D, E REAL(8), DIMENSION(:,:) :: B
SUBROUTINE DPTTS2_64( N, NRHS, D, E, B, LDB) INTEGER(8) :: N, NRHS, LDB REAL(8), DIMENSION(:) :: D, E REAL(8), DIMENSION(:,:) :: B
#include <sunperf.h>
void dptts2(int n, int nrhs, double *d, double *e, double *b, int ldb);
void dptts2_64(long n, long nrhs, double *d, double *e, double *b, long ldb);
dptts2 solves a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF. D is a diagonal matrix specified in the vector D, L is a unit bidiagonal matrix whose subdiagonal is specified in the vector E, and X and B are N by NRHS matrices.