dsptrs - solve a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF
SUBROUTINE DSPTRS( UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO) CHARACTER * 1 UPLO INTEGER N, NRHS, LDB, INFO INTEGER IPIVOT(*) DOUBLE PRECISION A(*), B(LDB,*)
SUBROUTINE DSPTRS_64( UPLO, N, NRHS, A, IPIVOT, B, LDB, INFO) CHARACTER * 1 UPLO INTEGER*8 N, NRHS, LDB, INFO INTEGER*8 IPIVOT(*) DOUBLE PRECISION A(*), B(LDB,*)
SUBROUTINE SPTRS( UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO]) CHARACTER(LEN=1) :: UPLO INTEGER :: N, NRHS, LDB, INFO INTEGER, DIMENSION(:) :: IPIVOT REAL(8), DIMENSION(:) :: A REAL(8), DIMENSION(:,:) :: B
SUBROUTINE SPTRS_64( UPLO, N, NRHS, A, IPIVOT, B, [LDB], [INFO]) CHARACTER(LEN=1) :: UPLO INTEGER(8) :: N, NRHS, LDB, INFO INTEGER(8), DIMENSION(:) :: IPIVOT REAL(8), DIMENSION(:) :: A REAL(8), DIMENSION(:,:) :: B
#include <sunperf.h>
void dsptrs(char uplo, int n, int nrhs, double *a, int *ipivot, double *b, int ldb, int *info);
void dsptrs_64(char uplo, long n, long nrhs, double *a, long *ipivot, double *b, long ldb, long *info);
dsptrs solves a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
= 'L': Lower triangular, form is A = L*D*L**T.
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value