NAME

dstevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T


SYNOPSIS

  SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, 
 *      W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
  CHARACTER * 1 JOBZ, RANGE
  INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
  INTEGER ISUPPZ(*), IWORK(*)
  DOUBLE PRECISION VL, VU, ABSTOL
  DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)
  SUBROUTINE DSTEVR_64( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, 
 *      M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
  CHARACTER * 1 JOBZ, RANGE
  INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
  INTEGER*8 ISUPPZ(*), IWORK(*)
  DOUBLE PRECISION VL, VU, ABSTOL
  DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

F95 INTERFACE

  SUBROUTINE STEVR( JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, M, 
 *       W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])
  CHARACTER(LEN=1) :: JOBZ, RANGE
  INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
  INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
  REAL(8) :: VL, VU, ABSTOL
  REAL(8), DIMENSION(:) :: D, E, W, WORK
  REAL(8), DIMENSION(:,:) :: Z
  SUBROUTINE STEVR_64( JOBZ, RANGE, [N], D, E, VL, VU, IL, IU, ABSTOL, 
 *       M, W, Z, [LDZ], ISUPPZ, [WORK], [LWORK], [IWORK], [LIWORK], [INFO])
  CHARACTER(LEN=1) :: JOBZ, RANGE
  INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
  INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
  REAL(8) :: VL, VU, ABSTOL
  REAL(8), DIMENSION(:) :: D, E, W, WORK
  REAL(8), DIMENSION(:,:) :: Z

C INTERFACE

#include <sunperf.h>

void dstevr(char jobz, char range, int n, double *d, double *e, double vl, double vu, int il, int iu, double abstol, int *m, double *w, double *z, int ldz, int *isuppz, int *info);

void dstevr_64(char jobz, char range, long n, double *d, double *e, double vl, double vu, long il, long iu, double abstol, long *m, double *w, double *z, long ldz, long *isuppz, long *info);


PURPOSE

dstevr computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, SSTEVR calls SSTEGR to compute the

eigenspectrum using Relatively Robust Representations. SSTEGR computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various ``good'' L D L^T representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T,

   (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
        is a relatively robust representation,
   (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
       relative accuracy by the dqds algorithm,
   (c) If there is a cluster of close eigenvalues, "choose" sigma_i
       close to the cluster, and go to step (a),
   (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
       compute the corresponding eigenvector by forming a
       rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter ABSTOL.

For more details, see ``A new O(n^2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem'', by Inderjit Dhillon, Computer Science Division Technical Report No. UCB//CSD-97-971, UC Berkeley, May 1997.

Note 1 : SSTEVR calls SSTEGR when the full spectrum is requested on machines which conform to the ieee-754 floating point standard. SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and

when partial spectrum requests are made.

Normal execution of SSTEGR may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the ieee standard default manner.


ARGUMENTS


FURTHER DETAILS

Based on contributions by

   Inderjit Dhillon, IBM Almaden, USA
   Osni Marques, LBNL/NERSC, USA
   Ken Stanley, Computer Science Division, University of California at Berkeley, USA