NAME

dsttrs - computes the solution to a real system of linear equations A * X = B


SYNOPSIS

  SUBROUTINE DSTTRS( N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)
  INTEGER N, NRHS, LDB, INFO
  INTEGER IPIV(*)
  DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)
  SUBROUTINE DSTTRS_64( N, NRHS, L, D, SUBL, B, LDB, IPIV, INFO)
  INTEGER*8 N, NRHS, LDB, INFO
  INTEGER*8 IPIV(*)
  DOUBLE PRECISION L(*), D(*), SUBL(*), B(LDB,*)

F95 INTERFACE

  SUBROUTINE STTRS( [N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])
  INTEGER :: N, NRHS, LDB, INFO
  INTEGER, DIMENSION(:) :: IPIV
  REAL(8), DIMENSION(:) :: L, D, SUBL
  REAL(8), DIMENSION(:,:) :: B
  SUBROUTINE STTRS_64( [N], [NRHS], L, D, SUBL, B, [LDB], IPIV, [INFO])
  INTEGER(8) :: N, NRHS, LDB, INFO
  INTEGER(8), DIMENSION(:) :: IPIV
  REAL(8), DIMENSION(:) :: L, D, SUBL
  REAL(8), DIMENSION(:,:) :: B

C INTERFACE

#include <sunperf.h>

void dsttrs(int n, int nrhs, double *l, double *d, double *subl, double *b, int ldb, int *ipiv, int *info);

void dsttrs_64(long n, long nrhs, double *l, double *d, double *subl, double *b, long ldb, long *ipiv, long *info);


PURPOSE

dsttrs computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric tridiagonal matrix and X and B are N-by-NRHS matrices.


ARGUMENTS