NAME

dsygs2 - reduce a real symmetric-definite generalized eigenproblem to standard form


SYNOPSIS

  SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO)
  CHARACTER * 1 UPLO
  INTEGER ITYPE, N, LDA, LDB, INFO
  DOUBLE PRECISION A(LDA,*), B(LDB,*)
  SUBROUTINE DSYGS2_64( ITYPE, UPLO, N, A, LDA, B, LDB, INFO)
  CHARACTER * 1 UPLO
  INTEGER*8 ITYPE, N, LDA, LDB, INFO
  DOUBLE PRECISION A(LDA,*), B(LDB,*)

F95 INTERFACE

  SUBROUTINE SYGS2( ITYPE, UPLO, [N], A, [LDA], B, [LDB], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER :: ITYPE, N, LDA, LDB, INFO
  REAL(8), DIMENSION(:,:) :: A, B
  SUBROUTINE SYGS2_64( ITYPE, UPLO, [N], A, [LDA], B, [LDB], [INFO])
  CHARACTER(LEN=1) :: UPLO
  INTEGER(8) :: ITYPE, N, LDA, LDB, INFO
  REAL(8), DIMENSION(:,:) :: A, B

C INTERFACE

#include <sunperf.h>

void dsygs2(int itype, char uplo, int n, double *a, int lda, double *b, int ldb, int *info);

void dsygs2_64(long itype, char uplo, long n, double *a, long lda, double *b, long ldb, long *info);


PURPOSE

dsygs2 reduces a real symmetric-definite generalized eigenproblem to standard form.

If ITYPE = 1, the problem is A*x = lambda*B*x,

and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')

If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or

B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.

B must have been previously factorized as U'*U or L*L' by SPOTRF.


ARGUMENTS