belmm, sbelmm, dbelmm, cbelmm, zbelmm - block Ellpack format matrix-matrix multiply
SUBROUTINE SBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) REAL*4 ALPHA, BETA REAL*4 VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE DBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) REAL*8 ALPHA, BETA REAL*8 VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE CBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) COMPLEX*8 ALPHA, BETA COMPLEX*8 VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE ZBELMM( TRANSA, MB, N, KB, ALPHA, DESCRA, * VAL, BINDX, BLDA, MAXBNZ, LB, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, MB, N, KB, DESCRA(5), BLDA, MAXBNZ, LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BLDA,MAXBNZ) COMPLEX*16 ALPHA, BETA COMPLEX*16 VAL(LB*LB*BLDA*MAXBNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
C <- alpha op(A) B + beta C
where ALPHA and BETA are scalar, C and B are dense matrices, A is a matrix represented in block Ellpack format and op( A ) is one of
op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). ( ' indicates matrix transpose)
TRANSA Indicates how to operate with the sparse matrix 0 : operate with matrix 1 : operate with transpose matrix 2 : operate with the conjugate transpose of matrix. 2 is equivalent to 1 if matrix is real.
MB Number of block rows in matrix A
N Number of columns in matrix C
KB Number of block columns in matrix A
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array DESCRA(1) matrix structure 0 : general 1 : symmetric (A=A') 2 : Hermitian (A= CONJG(A')) 3 : Triangular 4 : Skew(Anti)-Symmetric (A=-A') 5 : Diagonal 6 : Skew-Hermitian (A= -CONJG(A')) DESCRA(2) upper/lower triangular indicator 1 : lower 2 : upper DESCRA(3) main diagonal type 0 : non-unit 1 : unit DESCRA(4) Array base (NOT IMPLEMENTED) 0 : C/C++ compatible 1 : Fortran compatible DESCRA(5) repeated indices? (NOT IMPLEMENTED) 0 : unknown 1 : no repeated indices
VAL() scalar array of length LB*LB*BLDA*MAXBNZ containing matrix entries, stored column-major within each dense block.
BINDX() two-dimensional integer BLDA-by-MAXBNZ array such BINDX(i,:) consists of the block column indices of the nonzero blocks in block row i, padded by the integer value i if the number of nonzero blocks is less than MAXBNZ.
BLDA leading dimension of BINDX(:,:).
MAXBNZ max number of nonzeros blocks per row.
LB row and column dimension of the dense blocks composing VAL.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. WORK is not referenced in the current version.
LWORK length of WORK array. LWORK is not referenced in the current version.
NIST FORTRAN Sparse Blas User's Guide available at: