diamm, sdiamm, ddiamm, cdiamm, zdiamm - diagonal format matrix-matrix multiply
SUBROUTINE SDIAMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) REAL*4 ALPHA, BETA REAL*4 VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE DDIAMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) REAL*8 ALPHA, BETA REAL*8 VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE CDIAMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) COMPLEX*8 ALPHA, BETA COMPLEX*8 VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)
SUBROUTINE ZDIAMM( TRANSA, M, N, K, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, M, N, K, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) COMPLEX*16 ALPHA, BETA COMPLEX*16 VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)
C <- alpha op(A) B + beta C
where ALPHA and BETA are scalar, C and B are dense matrices, A is a matrix represented in diagonal format and op( A ) is one of
op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). ( ' indicates matrix transpose)
TRANSA Indicates how to operate with the sparse matrix 0 : operate with matrix 1 : operate with transpose matrix 2 : operate with the conjugate transpose of matrix. 2 is equivalent to 1 if matrix is real.
M Number of rows in matrix A
N Number of columns in matrix C
K Number of columns in matrix A
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array 0 : general 1 : symmetric (A=A') 2 : Hermitian (A= CONJG(A')) 3 : Triangular 4 : Skew(Anti)-Symmetric (A=-A') 5 : Diagonal 6 : Skew-Hermitian (A= -CONJG(A')) DESCRA(2) upper/lower triangular indicator 1 : lower 2 : upper DESCRA(3) main diagonal type 0 : non-unit 1 : unit DESCRA(4) Array base (NOT IMPLEMENTED) 0 : C/C++ compatible 1 : Fortran compatible DESCRA(5) repeated indices? (NOT IMPLEMENTED) 0 : unknown 1 : no repeated indices
VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I) consists of non-zero elements on diagonal IDIAG(I) of A. Diagonals in the lower triangular part of A are padded from the top, and those in the upper triangular part are padded from the bottom.
LDA leading dimension of VAL, must be .GE. MIN(M,K)
IDIAG() integer array of length NDIAG consisting of the corresponding diagonal offsets of the non-zero diagonals of A in VAL. Lower triangular diagonals have negative offsets, the main diagonal has offset 0, and upper triangular diagonals have positive offset.
NDIAG number of non-zero diagonals in A.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. WORK is not referenced in the current version.
LWORK length of WORK array. LWORK is not referenced in the current version.
NIST FORTRAN Sparse Blas User's Guide available at: