NAME

sggesx - compute for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the real Schur form (S,T), and,


SYNOPSIS

  SUBROUTINE SGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, 
 *      B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, 
 *      RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
  INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER IWORK(*)
  LOGICAL SELCTG
  LOGICAL BWORK(*)
  REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*), WORK(*)
  SUBROUTINE SGGESX_64( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, 
 *      LDA, B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, 
 *      RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO)
  CHARACTER * 1 JOBVSL, JOBVSR, SORT, SENSE
  INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER*8 IWORK(*)
  LOGICAL*8 SELCTG
  LOGICAL*8 BWORK(*)
  REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*), VSR(LDVSR,*), RCONDE(*), RCONDV(*), WORK(*)

F95 INTERFACE

  SUBROUTINE GGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, [N], A, [LDA], 
 *       B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, [LDVSR], 
 *       RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], [BWORK], 
 *       [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
  INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER, DIMENSION(:) :: IWORK
  LOGICAL :: SELCTG
  LOGICAL, DIMENSION(:) :: BWORK
  REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE, RCONDV, WORK
  REAL, DIMENSION(:,:) :: A, B, VSL, VSR
  SUBROUTINE GGESX_64( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, [N], A, 
 *       [LDA], B, [LDB], SDIM, ALPHAR, ALPHAI, BETA, VSL, [LDVSL], VSR, 
 *       [LDVSR], RCONDE, RCONDV, [WORK], [LWORK], [IWORK], [LIWORK], 
 *       [BWORK], [INFO])
  CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT, SENSE
  INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, LIWORK, INFO
  INTEGER(8), DIMENSION(:) :: IWORK
  LOGICAL(8) :: SELCTG
  LOGICAL(8), DIMENSION(:) :: BWORK
  REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, RCONDE, RCONDV, WORK
  REAL, DIMENSION(:,:) :: A, B, VSL, VSR

C INTERFACE

#include <sunperf.h>

void sggesx(char jobvsl, char jobvsr, char sort, logical(*selctg)(float,float,float), char sense, int n, float *a, int lda, float *b, int ldb, int *sdim, float *alphar, float *alphai, float *beta, float *vsl, int ldvsl, float *vsr, int ldvsr, float *rconde, float *rcondv, int *info);

void sggesx_64(char jobvsl, char jobvsr, char sort, logical(*selctg)(float,float,float), char sense, long n, float *a, long lda, float *b, long ldb, long *sdim, float *alphar, float *alphai, float *beta, float *vsl, long ldvsl, float *vsr, long ldvsr, float *rconde, float *rcondv, long *info);


PURPOSE

sggesx computes for a pair of N-by-N real nonsymmetric matrices (A,B), the generalized eigenvalues, the real Schur form (S,T), and, optionally, the left and/or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization

A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T; computes a reciprocal condition number for the average of the selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (RCONDV). The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0 or for both being zero.

A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of S will be ``standardized'' by making the corresponding elements of T have the form:

        [  a  0  ]
        [  0  b  ]

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of generalized eigenvalues.


ARGUMENTS