NAME

sggsvp - compute orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0


SYNOPSIS

  SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, 
 *      TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)
  CHARACTER * 1 JOBU, JOBV, JOBQ
  INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
  INTEGER IWORK(*)
  REAL TOLA, TOLB
  REAL A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), TAU(*), WORK(*)
  SUBROUTINE SGGSVP_64( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, 
 *      TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)
  CHARACTER * 1 JOBU, JOBV, JOBQ
  INTEGER*8 M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
  INTEGER*8 IWORK(*)
  REAL TOLA, TOLB
  REAL A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), TAU(*), WORK(*)

F95 INTERFACE

  SUBROUTINE GGSVP( JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, [LDB], 
 *       TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], [TAU], 
 *       [WORK], [INFO])
  CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
  INTEGER :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
  INTEGER, DIMENSION(:) :: IWORK
  REAL :: TOLA, TOLB
  REAL, DIMENSION(:) :: TAU, WORK
  REAL, DIMENSION(:,:) :: A, B, U, V, Q
  SUBROUTINE GGSVP_64( JOBU, JOBV, JOBQ, [M], [P], [N], A, [LDA], B, 
 *       [LDB], TOLA, TOLB, K, L, U, [LDU], V, [LDV], Q, [LDQ], [IWORK], 
 *       [TAU], [WORK], [INFO])
  CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
  INTEGER(8) :: M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, INFO
  INTEGER(8), DIMENSION(:) :: IWORK
  REAL :: TOLA, TOLB
  REAL, DIMENSION(:) :: TAU, WORK
  REAL, DIMENSION(:,:) :: A, B, U, V, Q

C INTERFACE

#include <sunperf.h>

void sggsvp(char jobu, char jobv, char jobq, int m, int p, int n, float *a, int lda, float *b, int ldb, float tola, float tolb, int *k, int *l, float *u, int ldu, float *v, int ldv, float *q, int ldq, int *info);

void sggsvp_64(char jobu, char jobv, char jobq, long m, long p, long n, float *a, long lda, float *b, long ldb, float tola, float tolb, long *k, long *l, float *u, long ldu, float *v, long ldv, float *q, long ldq, long *info);


PURPOSE

sggsvp computes orthogonal matrices U, V and Q such that L ( 0 0 A23 )

          M-K-L ( 0     0    0  )
                 N-K-L  K    L
        =     K ( 0    A12  A13 )  if M-K-L < 0;
            M-K ( 0     0   A23 )
               N-K-L  K    L
 V'*B*Q =   L ( 0     0   B13 )
          P-L ( 0     0    0  )

where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the transpose of Z.

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine SGGSVD.


ARGUMENTS


FURTHER DETAILS

The subroutine uses LAPACK subroutine SGEQPF for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy.