NAME

slagtf - factorize the matrix (T-lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T-lambda*I = PLU


SYNOPSIS

  SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO)
  INTEGER N, INFO
  INTEGER IN(*)
  REAL LAMBDA, TOL
  REAL A(*), B(*), C(*), D(*)
  SUBROUTINE SLAGTF_64( N, A, LAMBDA, B, C, TOL, D, IN, INFO)
  INTEGER*8 N, INFO
  INTEGER*8 IN(*)
  REAL LAMBDA, TOL
  REAL A(*), B(*), C(*), D(*)

F95 INTERFACE

  SUBROUTINE LAGTF( [N], A, LAMBDA, B, C, TOL, D, IN, [INFO])
  INTEGER :: N, INFO
  INTEGER, DIMENSION(:) :: IN
  REAL :: LAMBDA, TOL
  REAL, DIMENSION(:) :: A, B, C, D
  SUBROUTINE LAGTF_64( [N], A, LAMBDA, B, C, TOL, D, IN, [INFO])
  INTEGER(8) :: N, INFO
  INTEGER(8), DIMENSION(:) :: IN
  REAL :: LAMBDA, TOL
  REAL, DIMENSION(:) :: A, B, C, D

C INTERFACE

#include <sunperf.h>

void slagtf(int n, float *a, float lambda, float *b, float *c, float tol, float *d, int *in, int *info);

void slagtf_64(long n, float *a, float lambda, float *b, float *c, float tol, float *d, long *in, long *info);


PURPOSE

slagtf factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as where P is a permutation matrix, L is a unit lower tridiagonal matrix with at most one non-zero sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero super-diagonal elements per column.

The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling.

The parameter LAMBDA is included in the routine so that SLAGTF may be used, in conjunction with SLAGTS, to obtain eigenvectors of T by inverse iteration.


ARGUMENTS