NAME

sorghr - generate a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD


SYNOPSIS

  SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
  INTEGER N, ILO, IHI, LDA, LWORK, INFO
  REAL A(LDA,*), TAU(*), WORK(*)
  SUBROUTINE SORGHR_64( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
  INTEGER*8 N, ILO, IHI, LDA, LWORK, INFO
  REAL A(LDA,*), TAU(*), WORK(*)

F95 INTERFACE

  SUBROUTINE ORGHR( [N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], 
 *       [INFO])
  INTEGER :: N, ILO, IHI, LDA, LWORK, INFO
  REAL, DIMENSION(:) :: TAU, WORK
  REAL, DIMENSION(:,:) :: A
  SUBROUTINE ORGHR_64( [N], ILO, IHI, A, [LDA], TAU, [WORK], [LWORK], 
 *       [INFO])
  INTEGER(8) :: N, ILO, IHI, LDA, LWORK, INFO
  REAL, DIMENSION(:) :: TAU, WORK
  REAL, DIMENSION(:,:) :: A

C INTERFACE

#include <sunperf.h>

void sorghr(int n, int ilo, int ihi, float *a, int lda, float *tau, int *info);

void sorghr_64(long n, long ilo, long ihi, float *a, long lda, float *tau, long *info);


PURPOSE

sorghr generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).


ARGUMENTS