NAME

stgsja - compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matrices A and B


SYNOPSIS

  SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, 
 *      TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, 
 *      INFO)
  CHARACTER * 1 JOBU, JOBV, JOBQ
  INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
  REAL TOLA, TOLB
  REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)
  SUBROUTINE STGSJA_64( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, 
 *      LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, 
 *      NCYCLE, INFO)
  CHARACTER * 1 JOBU, JOBV, JOBQ
  INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
  REAL TOLA, TOLB
  REAL A(LDA,*), B(LDB,*), ALPHA(*), BETA(*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)

F95 INTERFACE

  SUBROUTINE TGSJA( JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA], 
 *       B, [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], 
 *       [WORK], NCYCLE, [INFO])
  CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
  INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
  REAL :: TOLA, TOLB
  REAL, DIMENSION(:) :: ALPHA, BETA, WORK
  REAL, DIMENSION(:,:) :: A, B, U, V, Q
  SUBROUTINE TGSJA_64( JOBU, JOBV, JOBQ, [M], [P], [N], K, L, A, [LDA], 
 *       B, [LDB], TOLA, TOLB, ALPHA, BETA, U, [LDU], V, [LDV], Q, [LDQ], 
 *       [WORK], NCYCLE, [INFO])
  CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
  INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
  REAL :: TOLA, TOLB
  REAL, DIMENSION(:) :: ALPHA, BETA, WORK
  REAL, DIMENSION(:,:) :: A, B, U, V, Q

C INTERFACE

#include <sunperf.h>

void stgsja(char jobu, char jobv, char jobq, int m, int p, int n, int k, int l, float *a, int lda, float *b, int ldb, float tola, float tolb, float *alpha, float *beta, float *u, int ldu, float *v, int ldv, float *q, int ldq, int *ncycle, int *info);

void stgsja_64(char jobu, char jobv, char jobq, long m, long p, long n, long k, long l, float *a, long lda, float *b, long ldb, float tola, float tolb, float *alpha, float *beta, float *u, long ldu, float *v, long ldv, float *q, long ldq, long *ncycle, long *info);


PURPOSE

stgsja computes the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matrices A and B.

On entry, it is assumed that matrices A and B have the following forms, which may be obtained by the preprocessing subroutine SGGSVP from a general M-by-N matrix A and P-by-N matrix B:

             N-K-L  K    L
   A =    K ( 0    A12  A13 ) if M-K-L >= 0;
          L ( 0     0   A23 )
      M-K-L ( 0     0    0  )
           N-K-L  K    L
   A =  K ( 0    A12  A13 ) if M-K-L < 0;
      M-K ( 0     0   A23 )
           N-K-L  K    L
   B =  L ( 0     0   B13 )
      P-L ( 0     0    0  )

where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.

On exit,

            U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),

where U, V and Q are orthogonal matrices, Z' denotes the transpose of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are ``diagonal'' matrices, which are of the following structures:

If M-K-L >= 0,

                    K  L
       D1 =     K ( I  0 )
                L ( 0  C )
            M-K-L ( 0  0 )
                  K  L
       D2 = L   ( 0  S )
            P-L ( 0  0 )
               N-K-L  K    L
  ( 0 R ) = K (  0   R11  R12 ) K
            L (  0    0   R22 ) L

where

  C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
  S = diag( BETA(K+1),  ... , BETA(K+L) ),
  C**2 + S**2 = I.
  R is stored in A(1:K+L,N-K-L+1:N) on exit.

If M-K-L < 0,

               K M-K K+L-M
    D1 =   K ( I  0    0   )
         M-K ( 0  C    0   )
                 K M-K K+L-M
    D2 =   M-K ( 0  S    0   )
         K+L-M ( 0  0    I   )
           P-L ( 0  0    0   )
               N-K-L  K   M-K  K+L-M
          M-K ( 0     0   R22  R23  )
        K+L-M ( 0     0    0   R33  )

where

C = diag( ALPHA(K+1), ... , ALPHA(M) ),

S = diag( BETA(K+1), ... , BETA(M) ),

C**2 + S**2 = I.

R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored ( 0 R22 R23 )

in B(M-K+1:L,N+M-K-L+1:N) on exit.

The computation of the orthogonal transformation matrices U, V or Q is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices U1, V1, or Q1.

STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L matrix B13 to the form:

   U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,

where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose of Z. C1 and S1 are diagonal matrices satisfying

   C1**2 + S1**2 = I,

and R1 is an L-by-L nonsingular upper triangular matrix.


ARGUMENTS