NAME

vbrmm, svbrmm, dvbrmm, cvbrmm, zvbrmm - variable block sparse row format matrix-matrix multiply


SYNOPSIS

  SUBROUTINE SVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
 *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
  INTEGER*4  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 *           BPNTRB(MB), BPNTRE(MB)
  REAL*4     ALPHA, BETA
  REAL*4     VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE DVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
 *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
  INTEGER*4  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 *           BPNTRB(MB), BPNTRE(MB)
  REAL*8     ALPHA, BETA
  REAL*8     VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE CVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
 *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
  INTEGER*4  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 *           BPNTRB(MB), BPNTRE(MB)
  COMPLEX*8  ALPHA, BETA
  COMPLEX*8  VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE ZVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
 *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
  INTEGER*4  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
 *           BPNTRB(MB), BPNTRE(MB)
  COMPLEX*16 ALPHA, BETA
  COMPLEX*16 VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)


DESCRIPTION

          C <- alpha op(A) B + beta C

 where ALPHA and BETA are scalar, C and B are  matrices,
 A is a matrix represented in variable block sparse row  format    
 and op( A )  is one  of
 op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                    ( ' indicates matrix transpose)


ARGUMENTS

 TRANSA        Indicates how to operate with the sparse matrix
                 0 : operate with matrix
                 1 : operate with transpose matrix
                 2 : operate with the conjugate transpose of matrix.
                     2 is equivalent to 1 if the matrix is real.
 MB            Number of block rows in matrix A
 N             Number of columns in matrix C
 KB            Number of block columns in matrix A
 ALPHA         Scalar parameter
 DESCRA()      Descriptor argument.  Five element integer array
               DESCRA(1) matrix structure
                 0 : general
                 1 : symmetric (A=A')
                 2 : Hermitian (A= CONJG(A'))
                 3 : Triangular
                 4 : Skew(Anti)-Symmetric (A=-A')
                 5 : Diagonal
                 6 : Skew-Hermitian (A= -CONJG(A'))
               DESCRA(2) upper/lower triangular indicator 
                 1 : lower
                 2 : upper
               DESCRA(3) main diagonal type 
                 0 : non-unit
                 1 : unit
               DESCRA(4) Array base  (NOT IMPLEMENTED)
                 0 : C/C++ compatible
                 1 : Fortran compatible
               DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                 0 : unknown
                 1 : no repeated indices

 VAL()         scalar array of length NNZ consisting of the block entries 
               of A where each block entry is a dense rectangular matrix 
               stored column by column.
               NNZ is the total number of point entries in all nonzero 
               block  entries of a matrix A.
 INDX()        integer array of length BNNZ+1 where BNNZ is the number of
               block entries of a matrix A such that the I-th element of
               INDX[] points to the location in VAL of the (1,1) element
               of the I-th block entry.
 BINDX()       integer array of length BNNZ consisting of the block
               column indices of the block entries of A where BNNZ is
               the number block entries of a matrix A.
 RPNTR()       integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
               is the row index of the first point row in the I-th block
               row.
               RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
               rows in matrix A.
               Thus, the number of point rows in the I-th block row is
               RPNTR(I+1)-RPNTR(I).
 CPNTR()       integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
               is the column index of the first point column in the J-th
               block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is 
               the number of columns in matrix A.
               Thus, the number of point columns in the J-th block column
               is CPNTR(J+1)-CPNTR(J).
 BPNTRB()      integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
               points to location in BINDX of the first block entry of 
               the I-th block row of A.
 BPNTRE()      integer array of length MB such that BPNTRE(I)-BPNTRB(1)
               points to location in BINDX of the last block entry of
               the I-th block row of A.
 B()           rectangular array with first dimension LDB.
 LDB           leading dimension of B
 BETA          Scalar parameter
 C()           rectangular array with first dimension LDC.
 LDC           leading dimension of C
 WORK()        scratch array of length LWORK. WORK is not
               referenced in the current version.

 LWORK         length of WORK array. LWORK is not referenced
               in the current version.


SEE ALSO

NIST FORTRAN Sparse Blas User's Guide available at:

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/


NOTES/BUGS

It is known that there exits another representation of the variable block sparse row format (see for example Y.Saad, ``Iterative Methods for Sparse Linear Systems'', WPS, 1996). Its data structure consists of six array instead of the seven used in the current implementation. The main difference is that only one array, IA, containing the pointers to the beginning of each block row in the array BINDX is used instead of two arrays BPNTRB and BPNTRE. To use the routine with this kind of variable block sparse row format the following calling sequence should be used SUBROUTINE SVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA, * VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2), * B, LDB, BETA, C, LDC, WORK, LWORK )