NAME

ellsm, sellsm, dellsm, cellsm, zellsm - Ellpack format triangular solve


SYNOPSIS

  SUBROUTINE SELLSM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 *           VAL, INDX, LDA, MAXNZ,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(LDA,MAXNZ)
  REAL*4     ALPHA, BETA
  REAL*4     DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE DELLSM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 *           VAL, INDX, LDA, MAXNZ,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(LDA,MAXNZ)
  REAL*8     ALPHA, BETA
  REAL*8     DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE CELLSM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 *           VAL, INDX, LDA, MAXNZ,
 *           B, LDB, BETA, C, LDC, WORK, LWORK )
  INTEGER*4  TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(LDA,MAXNZ)
  COMPLEX*8  ALPHA, BETA
  COMPLEX*8  DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
  SUBROUTINE DELLSM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA,
 *           VAL, INDX, LDA, MAXNZ,
 *           B, LDB, BETA, C, LDC, WORK, LWORK)
  INTEGER*4  TRANSA, M, N, UNITD, DESCRA(5), LDA, MAXNZ,
 *           LDB, LDC, LWORK
  INTEGER*4  INDX(LDA,MAXNZ)
  COMPLEX*16 ALPHA, BETA
  COMPLEX*16 DV(M), VAL(LDA,MAXNZ), B(LDB,*), C(LDC,*), WORK(LWORK)


DESCRIPTION

   C <- ALPHA  op(A) B + BETA C     C <- ALPHA D op(A) B + BETA C
   C <- ALPHA op(A) D B + BETA C
 where ALPHA and BETA are scalar, C and B are m by n dense matrices,
 D is a diagonal scaling matrix,  A is a unit, or non-unit, upper or 
 lower triangular matrix represented in Ellpack format and    
 op( A )  is one  of
  op( A ) = inv(A) or  op( A ) = inv(A')  or  op( A ) =inv(conjg( A' ))
  (inv denotes matrix inverse,  ' indicates matrix transpose)


ARGUMENTS

 TRANSA        Indicates how to operate with the sparse matrix
                 0 : operate with matrix
                 1 : operate with transpose matrix
                 2 : operate with the conjugate transpose of matrix.
                     2 is equivalent to 1 if matrix is real.
 M             Number of rows in matrix A
 N             Number of columns in matrix C
 UNITD         Type of scaling:
                 1 : Identity matrix (argument DV[] is ignored)
                 2 : Scale on left (row scaling)
                 3 : Scale on right (column scaling)
 DV()          Array of length M containing the diagonal entries of the
               scaling diagonal matrix D.
 ALPHA         Scalar parameter
 DESCRA()      Descriptor argument.  Five element integer array
               DESCRA(1) matrix structure
                 0 : general
                 1 : symmetric (A=A')
                 2 : Hermitian (A= CONJG(A'))
                 3 : Triangular
                 4 : Skew(Anti)-Symmetric (A=-A')
                 5 : Diagonal
                 6 : Skew-Hermitian (A= -CONJG(A'))
               Note: For the routine, only DESCRA(1)=3 is supported.

               DESCRA(2) upper/lower triangular indicator
                 1 : lower
                 2 : upper
               DESCRA(3) main diagonal type
                 0 : non-unit
                 1 : unit
               DESCRA(4) Array base  (NOT IMPLEMENTED)
                 0 : C/C++ compatible
                 1 : Fortran compatible
               DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                 0 : unknown
                 1 : no repeated indices
 VAL()         two-dimensional LDA-by-MAXNZ array such that VAL(I,:)
               consists of non-zero elements in row I of A, padded by 
               zero values if the row contains less than MAXNZ.
 INDX()        two-dimensional integer LDA-by-MAXNZ array such 
               INDX(I,:) consists of the column indices of the 
               nonzero elements in row I, padded by the integer 
               value I if the number of nonzeros is less than MAXNZ.
               The column indices MUST be sorted in increasing order                
               for each row.
 LDA           leading dimension of VAL and INDX.
 MAXNZ         max number of nonzeros elements per row.
 B()           rectangular array with first dimension LDB.
 LDB           leading dimension of B
 BETA          Scalar parameter
 C()           rectangular array with first dimension LDC.
 LDC           leading dimension of C
 WORK()        scratch array of length LWORK.
               On exit,  if LWORK = -1, WORK(1) returns the optimum LWORK.
 LWORK         length of WORK array.  LWORK should be at least M.

              For good performance, LWORK should generally be larger.
              For optimum performance on multiple processors, LWORK 
              >=M*N_CPUS where N_CPUS is the maximum number of 
              processors available to the program.
              If LWORK=0, the routine is to allocate workspace needed.

              If LWORK = -1, then a workspace query is assumed; the
              routine only calculates the optimum size of the WORK
              array, returns this value as the first entry of the WORK
              array, and no error message related to LWORK is issued
              by XERBLA.


SEE ALSO

NIST FORTRAN Sparse Blas User's Guide available at:

http://math.nist.gov/mcsd/Staff/KRemington/fspblas/


NOTES/BUGS

No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.