NAME

zgbbrd - reduce a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary transformation


SYNOPSIS

  SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, 
 *      PT, LDPT, C, LDC, WORK, RWORK, INFO)
  CHARACTER * 1 VECT
  DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*), WORK(*)
  INTEGER M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
  DOUBLE PRECISION D(*), E(*), RWORK(*)
  SUBROUTINE ZGBBRD_64( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, 
 *      LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO)
  CHARACTER * 1 VECT
  DOUBLE COMPLEX AB(LDAB,*), Q(LDQ,*), PT(LDPT,*), C(LDC,*), WORK(*)
  INTEGER*8 M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
  DOUBLE PRECISION D(*), E(*), RWORK(*)

F95 INTERFACE

  SUBROUTINE GBBRD( VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, E, 
 *       Q, [LDQ], PT, [LDPT], C, [LDC], [WORK], [RWORK], [INFO])
  CHARACTER(LEN=1) :: VECT
  COMPLEX(8), DIMENSION(:) :: WORK
  COMPLEX(8), DIMENSION(:,:) :: AB, Q, PT, C
  INTEGER :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
  REAL(8), DIMENSION(:) :: D, E, RWORK
  SUBROUTINE GBBRD_64( VECT, [M], [N], [NCC], KL, KU, AB, [LDAB], D, 
 *       E, Q, [LDQ], PT, [LDPT], C, [LDC], [WORK], [RWORK], [INFO])
  CHARACTER(LEN=1) :: VECT
  COMPLEX(8), DIMENSION(:) :: WORK
  COMPLEX(8), DIMENSION(:,:) :: AB, Q, PT, C
  INTEGER(8) :: M, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFO
  REAL(8), DIMENSION(:) :: D, E, RWORK

C INTERFACE

#include <sunperf.h>

void zgbbrd(char *vect, int m, int n, int ncc, int kl, int ku, doublecomplex *ab, int ldab, double *d, double *e, doublecomplex *q, int ldq, doublecomplex *pt, int ldpt, doublecomplex *c, int ldc, int *info);

void zgbbrd_64(char *vect, long m, long n, long ncc, long kl, long ku, doublecomplex *ab, long ldab, double *d, double *e, doublecomplex *q, long ldq, doublecomplex *pt, long ldpt, doublecomplex *c, long ldc, long *info);


PURPOSE

zgbbrd reduces a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary transformation: Q' * A * P = B.

The routine computes B, and optionally forms Q or P', or computes Q'*C for a given matrix C.


ARGUMENTS