NAME

zgeesx - compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z


SYNOPSIS

  SUBROUTINE ZGEESX( JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, W, 
 *      Z, LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)
  CHARACTER * 1 JOBZ, SORTEV, SENSE
  DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
  INTEGER N, LDA, NOUT, LDZ, LDWORK, INFO
  LOGICAL SELECT
  LOGICAL BWORK3(*)
  DOUBLE PRECISION RCONE, RCONV
  DOUBLE PRECISION WORK2(*)
  SUBROUTINE ZGEESX_64( JOBZ, SORTEV, SELECT, SENSE, N, A, LDA, NOUT, 
 *      W, Z, LDZ, RCONE, RCONV, WORK, LDWORK, WORK2, BWORK3, INFO)
  CHARACTER * 1 JOBZ, SORTEV, SENSE
  DOUBLE COMPLEX A(LDA,*), W(*), Z(LDZ,*), WORK(*)
  INTEGER*8 N, LDA, NOUT, LDZ, LDWORK, INFO
  LOGICAL*8 SELECT
  LOGICAL*8 BWORK3(*)
  DOUBLE PRECISION RCONE, RCONV
  DOUBLE PRECISION WORK2(*)

F95 INTERFACE

  SUBROUTINE GEESX( JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], NOUT, 
 *       W, Z, [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], [BWORK3], 
 *       [INFO])
  CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
  COMPLEX(8), DIMENSION(:) :: W, WORK
  COMPLEX(8), DIMENSION(:,:) :: A, Z
  INTEGER :: N, LDA, NOUT, LDZ, LDWORK, INFO
  LOGICAL :: SELECT
  LOGICAL, DIMENSION(:) :: BWORK3
  REAL(8) :: RCONE, RCONV
  REAL(8), DIMENSION(:) :: WORK2
  SUBROUTINE GEESX_64( JOBZ, SORTEV, SELECT, SENSE, [N], A, [LDA], 
 *       NOUT, W, Z, [LDZ], RCONE, RCONV, [WORK], [LDWORK], [WORK2], 
 *       [BWORK3], [INFO])
  CHARACTER(LEN=1) :: JOBZ, SORTEV, SENSE
  COMPLEX(8), DIMENSION(:) :: W, WORK
  COMPLEX(8), DIMENSION(:,:) :: A, Z
  INTEGER(8) :: N, LDA, NOUT, LDZ, LDWORK, INFO
  LOGICAL(8) :: SELECT
  LOGICAL(8), DIMENSION(:) :: BWORK3
  REAL(8) :: RCONE, RCONV
  REAL(8), DIMENSION(:) :: WORK2

C INTERFACE

#include <sunperf.h>

void zgeesx(char jobz, char sortev, logical(*select)(COMPLEX*16), char sense, int n, doublecomplex *a, int lda, int *nout, doublecomplex *w, doublecomplex *z, int ldz, double *rcone, double *rconv, int *info);

void zgeesx_64(char jobz, char sortev, logical(*select)(COMPLEX*16), char sense, long n, doublecomplex *a, long lda, long *nout, doublecomplex *w, doublecomplex *z, long ldz, double *rcone, double *rconv, long *info);


PURPOSE

zgeesx computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**H).

Optionally, it also orders the eigenvalues on the diagonal of the Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (RCONDV). The leading columns of Z form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers RCONDE and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where these quantities are called s and sep respectively).

A complex matrix is in Schur form if it is upper triangular.


ARGUMENTS